Nothing Special   »   [go: up one dir, main page]

WO2016129672A1 - 芳香族複素環誘導体、それを用いた有機エレクトロルミネッセンス素子、照明装置及び表示装置 - Google Patents

芳香族複素環誘導体、それを用いた有機エレクトロルミネッセンス素子、照明装置及び表示装置 Download PDF

Info

Publication number
WO2016129672A1
WO2016129672A1 PCT/JP2016/054126 JP2016054126W WO2016129672A1 WO 2016129672 A1 WO2016129672 A1 WO 2016129672A1 JP 2016054126 W JP2016054126 W JP 2016054126W WO 2016129672 A1 WO2016129672 A1 WO 2016129672A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
ring
carbon atoms
substituted
organic
Prior art date
Application number
PCT/JP2016/054126
Other languages
English (en)
French (fr)
Inventor
杉野 元昭
加藤 栄作
Original Assignee
コニカミノルタ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタ株式会社 filed Critical コニカミノルタ株式会社
Priority to KR1020237009612A priority Critical patent/KR20230043245A/ko
Priority to KR1020177022113A priority patent/KR20170102000A/ko
Priority to EP16749315.4A priority patent/EP3257850B1/en
Priority to CN201680009902.9A priority patent/CN107250132B/zh
Priority to KR1020197021634A priority patent/KR20190089236A/ko
Priority to US15/550,590 priority patent/US20180037546A1/en
Priority to EP23180820.5A priority patent/EP4271160A3/en
Publication of WO2016129672A1 publication Critical patent/WO2016129672A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D209/00Heterocyclic compounds containing five-membered rings, condensed with other rings, with one nitrogen atom as the only ring hetero atom
    • C07D209/56Ring systems containing three or more rings
    • C07D209/80[b, c]- or [b, d]-condensed
    • C07D209/82Carbazoles; Hydrogenated carbazoles
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D405/00Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom
    • C07D405/14Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing three or more hetero rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D409/00Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms
    • C07D409/14Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms containing three or more hetero rings
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/654Aromatic compounds comprising a hetero atom comprising only nitrogen as heteroatom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6572Polycyclic condensed heteroaromatic hydrocarbons comprising only nitrogen in the heteroaromatic polycondensed ring system, e.g. phenanthroline or carbazole
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6574Polycyclic condensed heteroaromatic hydrocarbons comprising only oxygen in the heteroaromatic polycondensed ring system, e.g. cumarine dyes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6576Polycyclic condensed heteroaromatic hydrocarbons comprising only sulfur in the heteroaromatic polycondensed ring system, e.g. benzothiophene
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1029Heterocyclic compounds characterised by ligands containing one nitrogen atom as the heteroatom
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1044Heterocyclic compounds characterised by ligands containing two nitrogen atoms as heteroatoms
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1059Heterocyclic compounds characterised by ligands containing three nitrogen atoms as heteroatoms
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1088Heterocyclic compounds characterised by ligands containing oxygen as the only heteroatom
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1092Heterocyclic compounds characterised by ligands containing sulfur as the only heteroatom

Definitions

  • the present invention relates to an aromatic heterocyclic derivative, an organic electroluminescence element using the same, an illumination device, and a display device. More specifically, an aromatic heterocyclic derivative, an organic electroluminescence element using the same, having high luminous efficiency, long emission lifetime, and little change with time even when used at high temperatures, lighting device and display provided with the same Relates to the device.
  • organic electroluminescence element (hereinafter also referred to as “organic EL element”) is a thin-film type all-solid structure in which an organic thin film layer (single layer portion or multilayer portion) containing an organic light-emitting substance is formed between an anode and a cathode. It is an element.
  • organic EL element When a voltage is applied to such an organic EL element, electrons are injected from the cathode into the organic thin film layer and holes are injected from the anode, and these are recombined in the light emitting layer (organic light emitting substance-containing layer) to generate excitons.
  • the organic EL element is a light-emitting element using light emission (fluorescence / phosphorescence) from these excitons, and is a technology expected as a next-generation flat display and illumination.
  • the phosphorescence emission method is a method having a very high potential.
  • a method for controlling the position of the emission center is significantly different from that using fluorescence emission. How to recombine within the light emitting layer to stabilize light emission is an important technical problem for increasing the efficiency and life of the device.
  • multilayer stacked devices having a hole transport layer located on the anode side of the light-emitting layer and an electron transport layer located on the cathode side of the light-emitting layer in a form adjacent to the light-emitting layer are well known. ing.
  • a mixed layer using a phosphorescent compound as a light emitting dopant and a host compound is often used for the light emitting layer.
  • organic EL materials using a compound in which a polycondensed compound and a six-membered nitrogen-containing heterocycle are bonded via an arylene linking group have been reported as host compounds of phosphorescent compounds (for example, patent documents) See 1-3.)
  • Patent Documents 1 to 3 when these compounds described in Patent Documents 1 to 3 are used as an organic EL device material, the lifetime of the device and the light emission efficiency have been improved to some extent, but it is not sufficient, and further improvement has been demanded. Moreover, it turned out that the organic EL element using these compounds has the fault that it is inferior to thermal stability.
  • the present invention has been made in view of the above-described problems and situations, and a solution to that problem is to provide a novel aromatic heterocyclic derivative.
  • Another object of the present invention is to provide an organic EL device using the same, having high luminous efficiency, long luminous lifetime, and small change with time even when used at high temperature. Moreover, it is providing the display apparatus and illuminating device with which the said organic EL element was comprised.
  • An organic electroluminescence device in which at least one organic layer including a light emitting layer is sandwiched between an anode and a cathode, and at least one of the organic layers includes the following general formulas (1), (2), An organic electroluminescence device comprising an aromatic heterocyclic derivative having a structure represented by (3) or (4).
  • Y 1 , Y 2 and Y 3 each independently represent CR ′ or a nitrogen atom, and Y 1 , Y 2 or Y 3 At least one of is a nitrogen atom.
  • R ′, Ar 1 and Ar 2 are Hydrogen atom, A substituted or unsubstituted alkyl group having 1 to 12 carbon atoms, or It represents a substituted or unsubstituted aryl group having 6 to 30 ring carbon atoms.
  • R ′, Ar 1 and Ar 2 are not all hydrogen atoms at the same time.
  • X represents an oxygen atom or a sulfur atom.
  • Ra and Rb each independently represent a substituent.
  • L 1 is Single bond, A substituted or unsubstituted alkylene group having 1 to 12 carbon atoms, A substituted or unsubstituted arylene group having 6 to 30 ring carbon atoms, or a divalent linking group composed of a combination thereof.
  • L 2 is Single bond, A substituted or unsubstituted alkylene group having 1 to 12 carbon atoms, A substituted or unsubstituted arylene group having 6 to 30 ring carbon atoms, It represents a substituted or unsubstituted heteroarylene group having 5 to 30 ring atoms, or a divalent linking group composed of a combination thereof.
  • R 1 and R 2 are each independently A substituted or unsubstituted alkyl group having 1 to 12 carbon atoms, a cyano group, a halogen atom, or It represents an aryl group having 6 to 30 ring carbon atoms having no substituent or a structure selected from the following general formula (A-1) or (A-2) as a substituent.
  • R 3 is A substituted or unsubstituted alkyl group having 1 to 12 carbon atoms, A substituted or unsubstituted aryl group having 6 to 30 ring carbon atoms, or It represents a substituted or unsubstituted heteroaryl group having 5 to 30 ring atoms.
  • n1, na1 and nb1 each independently represents an integer of 0 to 3
  • na2 represents an integer of 0 to 2
  • n2, n3, n4 and nb2 each independently represents an integer of 0 to 4.
  • na1, nb1, na2 and nb2 are each 2 or more
  • a plurality of R 1 , R 2 , Ra and Rb may be the same or different, and adjacent Ra and Rb are bonded to each other.
  • a ring structure may be formed.
  • a 1 to A 5 and A 11 to A 18 each independently represent CRc or a nitrogen atom, Rc independently represents a hydrogen atom, a substituent or a bond.
  • Rc is an aryl group having 6 to 30 ring carbon atoms represented by R 1 or R 2. It is a bond that connects directly.
  • the other Rc may be the same or different, and adjacent Rc may be bonded to each other to form a ring structure.
  • X 11 represents an oxygen atom or a sulfur atom.
  • Item 1 is characterized in that, in the general formulas (1), (2), (3) and (4), L 1 represents a single bond, a phenylene group, a biphenylene group or an alkylene group having 2 or less carbon atoms.
  • the organic electroluminescent element of description is characterized in that, in the general formulas (1), (2), (3) and (4), L 1 represents a single bond, a phenylene group, a biphenylene group or an alkylene group having 2 or less carbon atoms.
  • L 2 represents a single bond, a phenylene group, a heteroarylene group or an alkylene group having 2 or less carbon atoms, Or the organic electroluminescent element of a 2nd term
  • L 1 is the 2-position or 4-position of the condensed ring containing X of the aromatic heterocyclic derivative represented by the formula (I)
  • the organic electroluminescence device according to any one of items 1 to 3, wherein the organic electroluminescence device is bonded to any one of the positions.
  • L 2 is bonded to either the 5-position or the 7-position of the condensed ring containing X of the aromatic heterocyclic derivative represented by the formula (I).
  • the organic electroluminescence device according to any one of items 1 to 4, wherein the organic electroluminescence device is characterized in that:
  • Ar 1 and Ar 2 each represents a substituted or unsubstituted aryl group having 6 to 30 ring carbon atoms.
  • the organic electroluminescent element according to any one of items 1 to 7.
  • organic electroluminescence device according to any one of items 1 to 8, wherein the organic layer containing the aromatic heterocyclic derivative is a light emitting layer.
  • a display device comprising the organic electroluminescence element according to any one of items 1 to 12.
  • An illuminating device comprising the organic electroluminescent element according to any one of items 1 to 12.
  • An aromatic heterocyclic derivative characterized by having a structure represented by the general formula (1), (2), (3) or (4) described in the organic electroluminescence device of item 1.
  • the above-mentioned means of the present invention can provide a novel aromatic heterocyclic derivative.
  • a display device and a lighting device including the organic EL element can be provided.
  • the driving voltage of the organic EL element is preferably small.
  • the energy level (HOMO level) of the highest occupied molecular orbital of the compound used in the element is increased and the energy level (LUMO level) of the lowest unoccupied molecular orbital is increased.
  • the excited singlet energy (S 1 energy) decreases and the excited triplet energy (T 1 energy) also decreases.
  • S 1 energy when used as a host compound for phosphorescent dopant, a reduction in the the T 1 energy is a problem.
  • T 1 S 1 - ⁇ Est ⁇ Est can be reduced by reducing the interaction between parallel spins in the molecule, that is, by separating the center-to-center distance between the region where HOMO is localized and the region where LUMO is localized. .
  • the compound of the present invention is designed so that the center of HOMO is localized on the carbazole ring and the center of LUMO is localized in the six-membered nitrogen-containing heteroaromatic ring, and each site is at the end of the molecule.
  • a six-membered nitrogen-containing heteroaromatic ring has a lower stability when it is not substituted, especially as the number of nitrogen atoms in the ring increases.
  • Tg glass transition point
  • the HOMO and LUMO localization centers are at the end of the molecule, it becomes easier for hopping movement of charges between molecules, and as a result, suppressing changes in carrier transfer efficiency over time, Life could be improved.
  • the molecular weight is preferably suitable for vapor deposition.
  • a condensed ring structure (containing X) can use a synthetic method with high positional selectivity when introducing a substituent. Therefore, a high-purity compound can be synthesized with a high yield and can be produced at an appropriate cost.
  • the compound of the present invention can improve thermal stability by properly selecting substituents on the carbazole ring, and can exhibit stable device performance against prolonged heating, which is advantageous in mass production. It is.
  • the schematic perspective view which showed an example of the structure of the display apparatus of this invention The schematic perspective view which showed an example of the structure of the display part A shown in FIG.
  • the organic electroluminescent device of the present invention is an organic electroluminescent device in which at least one organic layer including a light emitting layer is sandwiched between an anode and a cathode, and at least one of the organic layers includes the general electroluminescent device. It contains an aromatic heterocyclic derivative having a structure represented by the formula (1), (2), (3) or (4). This feature is a technical feature common to the inventions according to claims 1 to 15.
  • L 1 is a single bond, a phenylene group, a biphenylene group or carbon. It is preferable to represent an alkylene group of several 2 or less because an effect of improving thermal stability due to an increase in glass transition temperature (Tg) can be obtained.
  • L 2 represents a single bond, a phenylene group, a heteroarylene group, or an alkylene group having 2 or less carbon atoms. This is preferable because an effect of improving stability can be obtained.
  • L 1 contains X of the aromatic heterocyclic derivative represented by the formula (I). It is preferably bonded to either the 2-position or 4-position of the fused ring. Thereby, a highly selective synthesis method can be used, and the compound can be obtained in high yield and high purity.
  • L 2 is either the 5-position or the 7-position of the condensed ring containing X of the aromatic heterocyclic derivative represented by the formula (I). It is preferable that it is couple
  • L 2 is the 2-position or 4-position of the condensed ring containing X of the aromatic heterocyclic derivative represented by the formula (I). It is preferable that it has couple
  • Y 1 to Y 3 in the general formulas (1), (2), (3) and (4) all represent a nitrogen atom from the viewpoint of manifesting the effect of the present invention. Is preferred.
  • Ar 1 and Ar 2 represent a substituted or unsubstituted aryl group having 6 to 30 ring carbon atoms. This is preferable because the effect of stabilizing the excited state is obtained.
  • the organic layer containing the aromatic heterocyclic derivative is preferably a light emitting layer.
  • the said light emitting layer contains the said aromatic heterocyclic derivative as a host compound.
  • the light emitting layer contains a phosphorescent compound from the viewpoint of high efficiency and long life.
  • the light emitting layer further contains a host compound having a structure different from that of the aromatic heterocyclic derivative because an effect of improving the recombination probability can be obtained by adjusting the carrier balance.
  • the organic EL element of the present invention can be suitably included in a lighting device and a display device.
  • the compound contained in the organic electroluminescence device is preferably a compound having a structure represented by the general formula (1), (2), (3) or (4).
  • is used to mean that the numerical values described before and after it are included as a lower limit value and an upper limit value.
  • the organic electroluminescence device of the present invention is characterized in that an aromatic heterocyclic derivative represented by the general formula (1), (2), (3) or (4) is contained in at least one organic layer.
  • Aromatic Heterocyclic Derivatives Represented by General Formulas (1), (2), (3), and (4) >> In the general formulas (1), (2), (3), and (4), Y 1 , Y 2, and Y 3 each independently represent CR ′ or a nitrogen atom, and at least one is a nitrogen atom.
  • Y 1 , Y 2 and Y 3 are nitrogen atoms, and more preferably Y 1 , Y 2 and Y 3 are all nitrogen atoms.
  • R ′, Ar 1 and Ar 2 each independently represent a hydrogen atom, a substituted or unsubstituted alkyl group having 1 to 12 carbon atoms, or a substituted or unsubstituted aryl group having 6 to 30 ring carbon atoms. .
  • R ′, Ar 1 and Ar 2 are not all hydrogen atoms at the same time.
  • the alkyl group having 1 to 12 carbon atoms represented by R ′, Ar 1 or Ar 2 has a branched structure even if it is linear as long as it does not inhibit the function of the compound of the present invention. It may also be a cyclic structure such as a cycloalkyl group.
  • alkyl group having 1 to 12 carbon atoms examples include methyl group, ethyl group, propyl group, butyl group, pentyl group, hexyl group, heptyl group, octyl group, nonyl group, decyl group, undecyl group, dodecyl group, isopropyl Group, neopentyl group, cyclopropyl group, cyclobutyl group, cyclopentyl group, cyclohexyl group, cyclooctyl group, and the like.
  • the aryl group having 6 to 30 ring carbon atoms (also referred to as aromatic hydrocarbon ring group) represented by R ′, Ar 1 or Ar 2 may be non-condensed or condensed, for example Phenyl group, naphthyl group, anthryl group, phenanthryl group, pyrenyl group, chrysenyl group, biphenyl group, terphenyl group, quarterphenyl group, fluoranthenyl group, triphenylenyl group, fluorenyl group, azulenyl group, acenaphthenyl group, indenyl group, And indenofluorene ring.
  • a phenyl group, a naphthyl group, a phenanthryl group, a biphenyl group, a terphenyl group, a quaterphenyl group, and a triphenylenyl group are used for the purpose of appropriately maintaining the excited triplet energy level (T 1 energy level) of the compound of the present invention.
  • a fluorenyl group are preferred.
  • the above alkyl group and aryl group may each further have a substituent as long as the function of the compound of the present invention is not impaired.
  • Specific examples of the substituent include a substituent represented by Ra or Rb described later. Examples thereof include the same groups as those described above.
  • R ′ is a hydrogen atom or an alkyl group, more preferably a hydrogen atom.
  • Ar 1 and Ar 2 are preferably an alkyl group or an aryl group, and more preferably Ar 1 and Ar 2 are an alkyl group or an aryl group having 4 or less carbon atoms.
  • Ra and Rb each independently represent a substituent.
  • the substituent represented by Ra and Rb is not particularly limited as long as it does not inhibit the function of the compound of the present invention, and may be used positively for fine adjustment of the effect of the present invention. it can.
  • substituents include, for example, an alkyl group (eg, methyl group, ethyl group, propyl group, isopropyl group, tert-butyl group, pentyl group, hexyl group, octyl group, dodecyl group, tridecyl group, tetradecyl group, Pentadecyl group etc.), cycloalkyl group (eg cyclopentyl group, cyclohexyl group etc.), alkenyl group (eg vinyl group, allyl group etc.), alkynyl group (eg ethynyl group, propargyl group etc.), aromatic hydrocarbon group (Also referred to as aromatic hydrocarbon ring group, aromatic carbocyclic group, aryl group, etc., for example, phenyl group, p-chlorophenyl group, mesityl group, tolyl group, xylyl group, naph
  • substituents may be further substituted with the above-mentioned substituents, and a plurality of these substituents may be bonded to each other to form a ring structure.
  • Ra and Rb may be the same or different, respectively, adjacent Ra or Rb may be bonded to each other to form a ring structure.
  • Ra and Rb are preferably an alkyl group, an aryl group, or a heteroaryl group.
  • L 1 represents a single bond, a substituted or unsubstituted alkylene group having 1 to 12 carbon atoms, a substituted or unsubstituted arylene group having 6 to 30 ring carbon atoms or a combination thereof.
  • L 2 is a single bond, a substituted or unsubstituted alkylene group having 1 to 12 carbon atoms, a substituted or unsubstituted arylene group having 6 to 30 ring carbon atoms, a substituted or unsubstituted ring atom having 5 to 30 ring atoms. It represents a divalent linking group composed of a heteroarylene group or a combination thereof.
  • the alkylene group having 1 to 12 carbon atoms represented by L 1 and L 2 may be linear or have a branched structure as long as it does not inhibit the function of the compound of the present invention.
  • a cyclic structure such as a cycloalkylene group may be used.
  • alkylene group having 1 to 12 carbon atoms include divalent derivatives derived by removing one hydrogen atom from the alkyl group having 1 to 12 carbon atoms represented by R ′, Ar 1 or Ar 2 described above. Groups.
  • the arylene group having 6 to 30 ring carbon atoms represented by L 1 and L 2 may be non-condensed or condensed, and specific examples of the arylene group having 6 to 30 ring carbon atoms are as follows. And a divalent group derived by removing one hydrogen atom from the aryl group having 6 to 30 ring carbon atoms represented by R ′, Ar 1 or Ar 2 described above.
  • the arylene group includes o-phenylene group, m-phenylene group, p-phenylene group, naphthalenediyl group, phenanthreneyl group, biphenylene group, terphenylene group. Group, quarterphenylene group, triphenylenediyl group and fluorenediyl group are preferred.
  • the heteroarylene group having 5 to 30 ring atoms represented by L 2 may be non-condensed or condensed, and preferably includes B, N, O, S as heteroatoms forming the ring. , Si, P or Se, more preferably any of N, O, S or Si.
  • the ring formed is preferably a non-fused 5-membered ring, a non-fused 6-membered ring, or a fused ring composed of a 5-membered ring or a 6-membered ring.
  • heteroarylene group having 5 to 30 ring atoms examples include pyridine ring, pyrazine ring, pyrimidine ring, piperidine ring, triazine ring, pyrrole ring, imidazole ring, pyrazole ring, triazole ring, indole ring, isoindole ring, Benzimidazole ring, furan ring, benzofuran ring, isobenzofuran ring, dibenzofuran ring, thiophene ring, benzothiophene ring, dibenzothiophene ring, silole ring, benzosilole ring, dibenzosilole ring, quinoline ring, isoquinoline ring, quinoxaline ring, phenanthridine Ring, phenanthroline ring, acridine ring, phenazine ring, phenoxazine ring, phenothiazine
  • More preferred heteroarylene groups include removing two hydrogen atoms from a pyridine ring, pyrazine ring, pyrimidine ring, piperidine ring, triazine ring, dibenzofuran ring, dibenzothiophene ring, carbazole ring, carboline ring, diazacarbazole ring, etc. Examples thereof include a divalent group to be derived.
  • the above alkylene group, arylene group and heteroarylene group may each further have a substituent within a range not impairing the function of the compound of the present invention, and examples of the substituent include the aforementioned R ′, Ar 1 or Ar. This is the same as the substituent shown in 2 .
  • L 1 and L 2 are more preferably a single bond, a phenylene group, a heteroarylene group, or an alkylene group having 2 or less carbon atoms.
  • R 1 and R 2 are each independently a substituted or unsubstituted alkyl group having 1 to 12 carbon atoms, a cyano group, a halogen atom, or unsubstituted or from the following general formula (A-1) or (A-2) An aryl group having 6 to 30 ring carbon atoms and having a selected structure as a substituent.
  • the alkyl group having 1 to 12 carbon atoms represented by R 1 or R 2 may be linear or have a branched structure as long as the function of the compound of the present invention is not impaired. Moreover, a cyclic structure like a cycloalkyl group may be sufficient.
  • the alkyl group having 1 to 12 carbon atoms is the same as the alkyl group having 1 to 12 carbon atoms represented by R ′, Ar 1 or Ar 2 described above.
  • Examples of the halogen atom represented by R 1 or R 2 include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom.
  • the aryl group having 6 to 30 ring carbon atoms represented by R 1 or R 2 may be non-condensed or condensed ring. Specific examples of the aryl group having 6 to 30 ring carbon atoms are as follows. Includes the same group as the aryl group having 6 to 30 ring carbon atoms represented by R ′, Ar 1 or Ar 2 described above.
  • each of R 1 and R 2 is preferably an alkyl group having 4 or less carbon atoms or an aryl group.
  • the aryl group represented by R 1 or R 2 may have a structure selected from the following general formula (A-1) or (A-2) as a substituent.
  • a 1 to A 5 each independently represent CRc or a nitrogen atom. However, one of A 1 to A 5 represents CRc and a single bond in which Rc is directly bonded to the aryl group represented by R 1 or R 2 .
  • 3 to 5 of A 1 to A 5 are CRc, and more preferably the structure represented by the general formula (A-1) is a pyridine ring, a pyrimidine ring or a triazine ring.
  • a 11 to A 18 each independently represents CRc or a nitrogen atom. However, one of A 11 to A 18 represents CRc and a single bond in which the Rc is directly bonded to the aryl group represented by R 1 or R 2 .
  • a 11 to A 18 are CRc, more preferably 7 or 8 are CRc, and still more preferably A 11 to A 18 are all CRc.
  • Rc represents a hydrogen atom or a substituent in addition to the above bond, and the substituent represented by Rc is not particularly limited as long as it does not inhibit the function of the compound of the present invention. It can be used positively for fine adjustment of sex.
  • Rc is the same as the substituent represented by Ra or Rb in the aforementioned general formulas (1), (2), (3) and (4).
  • the plurality of Rc may be the same or different, and adjacent Rc may be bonded to each other to form a ring structure.
  • Rc is an alkyl group, an aryl group, or a heteroaryl group.
  • R 3 represents a substituted or unsubstituted alkyl group having 1 to 12 carbon atoms or a substituted or unsubstituted aryl group having 6 to 30 ring carbon atoms. Or a substituted or unsubstituted heteroaryl group having 5 to 30 ring atoms.
  • the alkyl group having 1 to 12 carbon atoms is the same as the alkyl group having 1 to 12 carbon atoms represented by R ′, Ar 1 or Ar 2 described above.
  • the aryl group having 6 to 30 ring carbon atoms is the same as the aryl group having 6 to 30 ring carbon atoms represented by R ′, Ar 1 or Ar 2 described above.
  • More preferable aryl groups include a phenyl group, a naphthyl group, a phenanthryl group, a biphenyl group, a terphenyl group, and a quarterphenyl group for the purpose of appropriately maintaining the excited triplet energy level (T 1 energy level) of the compound of the present invention.
  • the heteroaryl group having 5 to 30 ring atoms may be non-condensed or condensed, and preferably has B, N, O, It contains any of S, Si, P or Se, more preferably any of N, O, S or Si.
  • the ring formed is preferably a non-fused 5-membered ring, a non-fused 6-membered ring, or a fused ring composed of a 5-membered ring or a 6-membered ring.
  • heteroaryl group having 5 to 30 ring atoms examples include pyridine ring, pyrazine ring, pyrimidine ring, piperidine ring, triazine ring, pyrrole ring, imidazole ring, pyrazole ring, triazole ring, indole ring, isoindole ring, Benzimidazole ring, furan ring, benzofuran ring, isobenzofuran ring, dibenzofuran ring, thiophene ring, benzothiophene ring, dibenzothiophene ring, silole ring, benzosilole ring, dibenzosilole ring, quinoline ring, isoquinoline ring, quinoxaline ring, phenanthridine Ring, phenanthroline ring, acridine ring, phenazine ring, phenoxazine ring, phenothiazine
  • More preferred heteroaryl groups include removing one hydrogen atom from a pyridine ring, pyrazine ring, pyrimidine ring, piperidine ring, triazine ring, dibenzofuran ring, dibenzothiophene ring, carbazole ring, carboline ring, diazacarbazole ring, etc.
  • the group to be derived is mentioned.
  • the above alkyl group, aryl group and heteroaryl group may each further have a substituent as long as the function of the compound of the present invention is not impaired, and examples of the substituent include the aforementioned R ′, Ar 1 or Ar. This is the same as the substituent shown in 2 .
  • n1, na1 and nb1 each independently represents an integer of 0 to 3
  • na2 represents an integer of 0 to 2
  • n2, n3 , N4 and nb2 each independently represents an integer of 0 to 4.
  • n1 to n4 represent 1, and na1, nb1, na2, and nb2 represent 1.
  • L 1 is preferably bonded to any position of the 2-position, 3-position or 4-position of the condensed ring containing X, and more preferably 2-position or 4-position.
  • L 2 is preferably bonded to any of the 5-position, 6-position and 7-position, more preferably 5-position or 7-position.
  • L 1 is preferably bonded to any position of the 2-position, 3-position or 4-position of the condensed ring containing X, and more preferably 2-position or 4-position.
  • L 2 is preferably bonded to any of the 5-position, 6-position and 7-position, more preferably 5-position or 7-position.
  • L 1 is preferably bonded to any position of the 2-position, 3-position or 4-position of the condensed ring containing X, and more preferably 2-position or 4-position.
  • L 2 is preferably bonded to any of the 2-position, 3-position and 4-position, and more preferably 2-position or 4-position.
  • L 1 is preferably bonded to any position of the 2-position, 3-position or 4-position of the condensed ring containing X, and more preferably 2-position or 4-position.
  • L 2 is preferably bonded to any of the 2-position, 3-position and 4-position, and more preferably 2-position or 4-position.
  • L 1 is preferably bonded to the 2nd or 3rd position of the carbazole ring, and more preferably bonded to the 3rd position.
  • L 1 is preferably bonded to the 2nd or 3rd position of the carbazole ring, and more preferably bonded to the 3rd position.
  • the preference of the binding positions of L 1 and L 2 in the general formulas (1), (2), (3) and (4) is not limited to the functional expression of the compound of the present invention, Synthetic viewpoints such as the ease of reaction, the ease of purification, the cost of raw materials, and the like that provide a compound stably at a lower cost are also included.
  • the aromatic heterocyclic derivatives represented by the general formulas (1), (2), (3) and (4) are more preferably the following general formulas (1-1) to (1-4), (2-1 ) To (2-4), (3-1), (3-2), (4-1), and (4-2).
  • Formulas (1-1) to (1-4), (2-1) to (2-4), (3-1), (3-2), (4-1), and (4-2) Y 1 , Y 2 , Y 3 , Ar 1 , Ar 2 , X, Ra, Rb, L 1 , L 2 , R 1 , R 2 , R 3 , n1 to n4, na1, nb1, na2 and nb2 are , Y 1 , Y 2 , Y 3 , Ar 1 , Ar 2 , X, Ra, Rb, L 1 , L 2 , R 1 in the aforementioned general formulas (1), (2), (3) and (4). , R 2 , R 3 , n1 to n4, na1, nb1, na2 and nb2.
  • Y 1 , Y 2 , Y 3 , Ar 1 , Ar 2 , X, Ra, Rb, L 1 , L 2 , R 1 , R 2 , R 3 are Y 1 , Y 2 , Y 3 , Ar 1 , Ar 2 , X, Ra, Rb, L 1 , L 2 , R 1 , in the aforementioned general formulas (1), (2), (3) and (4) Synonymous with R 2 and R 3 .
  • the molecular weight of the heterocyclic derivative of the present invention is preferably 800 or less, more preferably 720 or less, from the viewpoint of ease of sublimation during sublimation purification.
  • the compound of the present invention can be synthesized by a known synthesis method such as J. Org. Chem. 42, 1821 (1977), J. MoI. Am. Chem. Soc. 101, 4992 (1977), Chem. Rev. 95, 2457 (1995); Org. Chem. , 53, 918 (1988), etc., a cross-coupling reaction using Pd that forms a carbon-carbon bond, Angew. Chem. Int. Ed. 1998, 37, 2046, etc., a cross-coupling reaction that forms a carbon-nitrogen bond using Pd, Angew. Chem. Int. Ed. It can be synthesized by using the carbon-nitrogen bond forming reaction using Cu described in 2003, 42, 5400.
  • exemplary compound 619 is shown as a specific synthesis example.
  • the light emitting layer according to the present invention is composed of a single layer or a plurality of layers, and when there are a plurality of light emitting layers, a non-light emitting intermediate layer may be provided between the light emitting layers.
  • a hole blocking layer also referred to as a hole blocking layer
  • an electron injection layer also referred to as a cathode buffer layer
  • An electron blocking layer also referred to as an electron barrier layer
  • a hole injection layer also referred to as an anode buffer layer
  • the electron transport layer according to the present invention is a layer having a function of transporting electrons, and in a broad sense, an electron injection layer and a hole blocking layer are also included in the electron transport layer. Moreover, you may be comprised by multiple layers.
  • the hole transport layer according to the present invention is a layer having a function of transporting holes, and in a broad sense, a hole injection layer and an electron blocking layer are also included in the hole transport layer. Moreover, you may be comprised by multiple layers.
  • the layer excluding the anode and the cathode is also referred to as “organic layer”.
  • the organic EL element of the present invention may be a so-called tandem element in which a plurality of light emitting units including at least one light emitting layer are stacked.
  • first light emitting unit / second light emitting unit / third light emitting unit / cathode Anode / first light emitting unit / intermediate layer / second light emitting unit / intermediate layer / third light emitting unit / cathode
  • first light emitting unit The second light emitting unit and the third light emitting unit may all be the same or different. Two light emitting units may be the same, and the remaining one may be different.
  • the third light emitting unit may not be provided, and on the other hand, a light emitting unit or an intermediate layer may be further provided between the third light emitting unit and the electrode.
  • a plurality of light emitting units may be laminated directly or via an intermediate layer, and the intermediate layer is generally an intermediate electrode, an intermediate conductive layer, a charge generation layer, an electron extraction layer, a connection layer, an intermediate layer.
  • the intermediate layer is generally an intermediate electrode, an intermediate conductive layer, a charge generation layer, an electron extraction layer, a connection layer, an intermediate layer.
  • Known materials and structures can be used as long as they are also called insulating layers and have a function of supplying electrons to the anode-side adjacent layer and holes to the cathode-side adjacent layer.
  • Examples of materials used for the intermediate layer include ITO (indium tin oxide), IZO (indium zinc oxide), ZnO 2 , TiN, ZrN, HfN, TiOx, VOx, CuI, InN, GaN, and CuAlO 2.
  • Preferred examples of the structure within the light emitting unit include those obtained by removing the anode and the cathode from the structures (1) to (7) mentioned in the above representative element structures, but the present invention is not limited to these. Not.
  • tandem organic EL element examples include, for example, US Pat. No. 6,337,492, US Pat. No. 7,420,203, US Pat. No. 7,473,923, US Pat. No. 6,872,472, US Pat. No. 6,107,734, US Pat. No. 6,337,492, International JP 2005/009087, JP 2006-228712, JP 2006-24791, JP 2006-49393, JP 2006-49394, JP 2006-49396, JP 2011. No. -96679, JP 2005-340187, JP 47114424, JP 34966681, JP 3884564, JP 4213169, JP 2010-192719, JP 2009-076929, JP Open 2008-078 No. 14, JP 2007-059848 A, JP 2003-272860 A, JP 2003-045676 A, International Publication No. 2005/094130, and the like.
  • the present invention is not limited to these.
  • the light emitting layer according to the present invention is a layer that provides a field in which electrons and holes injected from an electrode or an adjacent layer are recombined to emit light via excitons, and the light emitting portion is a layer of the light emitting layer. Even within, it may be the interface between the light emitting layer and the adjacent layer.
  • the structure of the light emitting layer according to the present invention is not particularly limited as long as it satisfies the requirements defined in the present invention.
  • the total thickness of the light emitting layer is not particularly limited, but it prevents the uniformity of the film to be formed, the application of unnecessary high voltage during light emission, and the improvement of the stability of the emission color with respect to the driving current. From the viewpoint, it is preferably adjusted to a range of 2 nm to 5 ⁇ m, more preferably adjusted to a range of 2 to 500 nm, and further preferably adjusted to a range of 5 to 200 nm.
  • each light emitting layer of the present invention is preferably adjusted to a range of 2 nm to 1 ⁇ m, more preferably adjusted to a range of 2 to 200 nm, and further preferably adjusted to a range of 3 to 150 nm.
  • the light emitting layer of the present invention preferably contains a light emitting dopant (also simply referred to as a dopant) and a host compound (light emitting host, also simply referred to as a host).
  • a light emitting dopant also simply referred to as a dopant
  • a host compound light emitting host, also simply referred to as a host
  • a fluorescent luminescent dopant also referred to as a fluorescent dopant or a fluorescent compound
  • a phosphorescent dopant also referred to as a phosphorescent dopant or a phosphorescent compound
  • the concentration of the luminescent dopant in the luminescent layer can be arbitrarily determined based on the specific dopant used and the requirements of the device, and is contained at a uniform concentration in the thickness direction of the luminescent layer. It may also have an arbitrary concentration distribution.
  • the light emitting dopant according to the present invention may be used in combination of two or more kinds, a combination of dopants having different structures, or a combination of a fluorescent light emitting dopant and a phosphorescent light emitting dopant. Thereby, arbitrary luminescent colors can be obtained.
  • the light emission color of the organic EL device of the present invention and the compound according to the present invention is shown in FIG. 4.16 on page 108 of “New Color Science Handbook” (edited by the Japan Color Society, University of Tokyo Press, 1985). It is determined by the color when the result measured with a total of CS-1000 (manufactured by Konica Minolta Co., Ltd.) is applied to the CIE chromaticity coordinates.
  • one or a plurality of light-emitting layers contain a plurality of light-emitting dopants having different emission colors and emit white light.
  • the white color in the organic EL device of the present invention is not particularly limited, and may be white near orange or white near blue, but when the 2 ° viewing angle front luminance is measured by the method described above.
  • the phosphorescent dopant according to the present invention is a compound in which light emission from an excited triplet is observed.
  • the phosphorescent dopant is a compound that emits phosphorescence at room temperature (25 ° C.) and has a phosphorescence quantum yield of 25. Although it is defined as a compound of 0.01 or more at ° C., a preferable phosphorescence quantum yield is 0.1 or more.
  • the phosphorescent quantum yield can be measured by the method described in Spectroscopic II, page 398 (1992 edition, Maruzen) of the Fourth Edition Experimental Chemistry Course 7. Although the phosphorescence quantum yield in a solution can be measured using various solvents, the phosphorescence dopant according to the present invention achieves the phosphorescence quantum yield (0.01 or more) in any solvent. That's fine.
  • phosphorescent dopants There are two types of light emission of phosphorescent dopants in principle. One is the recombination of carriers on the host compound to which carriers are transported to generate an excited state of the host compound, and this energy is transferred to the phosphorescent dopant. It is an energy transfer type to obtain light emission from a phosphorescent dopant. The other is a carrier trap type in which a phosphorescent dopant serves as a carrier trap, and carrier recombination occurs on the phosphorescent dopant to emit light from the phosphorescent dopant. In any case, it is a condition that the excited state energy of the phosphorescent dopant is lower than the excited state energy of the host compound.
  • the phosphorescent dopant that can be used in the present invention can be appropriately selected from known ones used in the light emitting layer of the organic EL device.
  • JP 2003-81988, JP 2002-302671 discloses a JP 2002-363552 and the like.
  • a preferable phosphorescent dopant includes an organometallic complex having Ir as a central metal. More preferably, a complex containing at least one coordination mode of metal-carbon bond, metal-nitrogen bond, metal-oxygen bond, and metal-sulfur bond is preferable.
  • Fluorescent luminescent dopant (1.2) Fluorescent luminescent dopant
  • fluorescent dopant The fluorescent luminescent dopant according to the present invention (hereinafter also referred to as “fluorescent dopant”) will be described.
  • the fluorescent dopant according to the present invention is a compound that can emit light from an excited singlet, and is not particularly limited as long as light emission from the excited singlet is observed.
  • Examples of the fluorescent dopant according to the present invention include anthracene derivatives, pyrene derivatives, chrysene derivatives, fluoranthene derivatives, perylene derivatives, fluorene derivatives, arylacetylene derivatives, styrylarylene derivatives, styrylamine derivatives, arylamine derivatives, boron complexes, coumarin derivatives.
  • luminescent dopants using delayed fluorescence have been developed, and these may be used.
  • luminescent dopant using delayed fluorescence examples include, for example, compounds described in International Publication No. 2011/156793, Japanese Patent Application Laid-Open No. 2011-213643, Japanese Patent Application Laid-Open No. 2010-93181, and the like. Is not limited to these.
  • the host compound according to the present invention is a compound mainly responsible for charge injection and transport in the light-emitting layer, and its own light emission is not substantially observed in the organic EL device.
  • it is a compound having a phosphorescence quantum yield of phosphorescence emission of less than 0.1 at room temperature (25 ° C.), more preferably a compound having a phosphorescence quantum yield of less than 0.01. Moreover, it is preferable that the mass ratio in the layer is 20% or more among the compounds contained in a light emitting layer.
  • the excited state energy of the host compound is preferably higher than the excited state energy of the light-emitting dopant contained in the same layer.
  • the host compounds may be used alone or in combination of two or more. By using a plurality of types of host compounds, it is possible to adjust the movement of charges, and the organic EL element can be made highly efficient.
  • the host compound that can be used in the present invention is not particularly limited, and compounds conventionally used in organic EL devices can be used. It may be a low molecular compound or a high molecular compound having a repeating unit, or a compound having a reactive group such as a vinyl group or an epoxy group.
  • Tg glass transition temperature
  • the glass transition point (Tg) is a value determined by a method based on JIS-K-7121 using DSC (Differential Scanning Colorimetry).
  • the electron transport layer is made of a material having a function of transporting electrons, and may have a function of transmitting electrons injected from the cathode to the light emitting layer.
  • the total thickness of the electron transport layer according to the present invention is not particularly limited, but is usually in the range of 2 nm to 5 ⁇ m, more preferably 2 to 500 nm, and further preferably 5 to 200 nm.
  • the organic EL element when the light generated in the light emitting layer is extracted from the electrode, the light extracted directly from the light emitting layer interferes with the light extracted after being reflected by the electrode from which the light is extracted and the electrode located at the counter electrode. It is known to wake up. When light is reflected at the cathode, this interference effect can be efficiently utilized by appropriately adjusting the total thickness of the electron transport layer between 5 nm and 1 ⁇ m.
  • the electron mobility of the electron transport layer is preferably 10 ⁇ 5 cm 2 / Vs or more.
  • the material used for the electron transport layer may be any of electron injecting or transporting properties and hole blocking properties, and can be selected from conventionally known compounds. Can be selected and used.
  • nitrogen-containing aromatic heterocyclic derivatives (carbazole derivatives, azacarbazole derivatives (one or more carbon atoms constituting the carbazole ring are substituted with nitrogen atoms), pyridine derivatives, pyrimidine derivatives, pyrazine derivatives, pyridazine derivatives, Triazine derivatives, quinoline derivatives, quinoxaline derivatives, phenanthroline derivatives, azatriphenylene derivatives, oxazole derivatives, thiazole derivatives, oxadiazole derivatives, thiadiazole derivatives, triazole derivatives, benzimidazole derivatives, benzoxazole derivatives, benzthiazole derivatives, etc.), dibenzofuran derivatives, And dibenzothiophene derivatives, silole derivatives, aromatic hydrocarbon ring derivatives (naphthalene derivatives, anthracene derivatives, triphenylene, etc.)
  • a metal complex having a quinolinol skeleton or a dibenzoquinolinol skeleton as a ligand such as tris (8-quinolinol) aluminum (Alq), tris (5,7-dichloro-8-quinolinol) aluminum, tris (5,7- Dibromo-8-quinolinol) aluminum, tris (2-methyl-8-quinolinol) aluminum, tris (5-methyl-8-quinolinol) aluminum, bis (8-quinolinol) zinc (Znq), etc.
  • a metal complex in which the central metal is replaced with In, Mg, Cu, Ca, Sn, Ga, or Pb can also be used as the electron transport material.
  • metal-free or metal phthalocyanine or those having terminal ends substituted with an alkyl group or a sulfonic acid group can be preferably used as the electron transporting material.
  • the distyrylpyrazine derivative exemplified as the material for the light emitting layer can also be used as an electron transport material, and an inorganic semiconductor such as n-type-Si, n-type-SiC, etc. as in the case of the hole injection layer and the hole transport layer. Can also be used as an electron transporting material.
  • a polymer material in which these materials are introduced into a polymer chain or these materials as a polymer main chain can be used.
  • the electron transport layer may be doped with a doping material as a guest material to form an electron transport layer having a high n property (electron rich).
  • the doping material include n-type dopants such as metal complexes and metal compounds such as metal halides.
  • Specific examples of the electron transport layer having such a structure include, for example, JP-A-4-297076, JP-A-10-270172, JP-A-2000-196140, 2001-102175, J. Pat. Appl. Phys. , 95, 5773 (2004) and the like.
  • More preferable electron transport materials in the present invention include pyridine derivatives, pyrimidine derivatives, pyrazine derivatives, triazine derivatives, dibenzofuran derivatives, dibenzothiophene derivatives, carbazole derivatives, azacarbazole derivatives, and benzimidazole derivatives.
  • the electron transport material may be used alone or in combination of two or more.
  • the hole blocking layer is a layer having a function of an electron transport layer in a broad sense, and is preferably made of a material having a function of transporting electrons while having a small ability to transport holes, and transporting electrons while transporting holes. The probability of recombination of electrons and holes can be improved by blocking.
  • the structure of the electron transport layer described above can be used as a hole blocking layer according to the present invention, if necessary.
  • the hole blocking layer provided in the organic EL device of the present invention is preferably provided adjacent to the cathode side of the light emitting layer.
  • the layer thickness of the hole blocking layer according to the present invention is preferably in the range of 3 to 100 nm, more preferably in the range of 5 to 30 nm.
  • the material used for the hole blocking layer As the material used for the hole blocking layer, the material used for the above-described electron transport layer is preferably used, and the material used as the above-described host compound is also preferably used for the hole blocking layer.
  • the electron injection layer (also referred to as “cathode buffer layer”) according to the present invention is a layer provided between the cathode and the light emitting layer in order to lower the driving voltage and improve the light emission luminance. It is described in detail in Chapter 2 “Electrode Materials” (pages 123 to 166) of the second edition of “The Forefront of Industrialization (issued by NTT Corporation on November 30, 1998)”.
  • the electron injection layer may be provided as necessary, and may be present between the cathode and the light emitting layer or between the cathode and the electron transport layer as described above.
  • the electron injection layer is preferably a very thin film, and the layer thickness is preferably in the range of 0.1 to 5 nm, depending on the material. Moreover, the nonuniform film
  • JP-A-6-325871, JP-A-9-17574, JP-A-10-74586, and the like Specific examples of materials preferably used for the electron injection layer are as follows. , Metals typified by strontium and aluminum, alkali metal compounds typified by lithium fluoride, sodium fluoride, potassium fluoride, etc., alkaline earth metal compounds typified by magnesium fluoride, calcium fluoride, etc., oxidation Examples thereof include metal oxides typified by aluminum, metal complexes typified by lithium 8-hydroxyquinolate (Liq), and the like. Further, the above-described electron transport material can also be used.
  • the materials used for the electron injection layer may be used alone or in combination of two or more.
  • the hole transport layer is made of a material having a function of transporting holes and may have a function of transmitting holes injected from the anode to the light emitting layer.
  • the total thickness of the hole transport layer according to the present invention is not particularly limited, but is usually in the range of 5 nm to 5 ⁇ m, more preferably 2 to 500 nm, and further preferably 5 nm to 200 nm.
  • a material used for the hole transport layer (hereinafter referred to as a hole transport material), any material that has either a hole injection property or a transport property or an electron barrier property may be used. Any one can be selected and used.
  • porphyrin derivatives for example, porphyrin derivatives, phthalocyanine derivatives, oxazole derivatives, oxadiazole derivatives, triazole derivatives, imidazole derivatives, pyrazoline derivatives, pyrazolone derivatives, phenylenediamine derivatives, hydrazone derivatives, stilbene derivatives, polyarylalkane derivatives, triarylamine derivatives, carbazole derivatives , Indolocarbazole derivatives, isoindole derivatives, acene derivatives such as anthracene and naphthalene, fluorene derivatives, fluorenone derivatives, and polyvinyl carbazole, polymer materials or oligomers with aromatic amines introduced into the main chain or side chain, polysilane, conductive And polymer (for example, PEDOT: PSS, aniline copolymer, polyaniline, polythiophene, etc.).
  • PEDOT PSS, aniline copolymer, polyaniline
  • triarylamine derivative examples include a benzidine type typified by ⁇ NPD, a starburst type typified by MTDATA, and a compound having fluorene or anthracene in the triarylamine linking core part.
  • hexaazatriphenylene derivatives such as those described in JP-T-2003-519432 and JP-A-2006-135145 can also be used as a hole transport material.
  • a hole transport layer having a high p property doped with impurities can also be used.
  • examples thereof include JP-A-4-297076, JP-A-2000-196140, JP-A-2001-102175, J. Pat. Appl. Phys. 95, 5773 (2004), and the like.
  • JP-A-11-251067, J. Org. Huang et. al. It is also possible to use so-called p-type hole transport materials and inorganic compounds such as p-type-Si and p-type-SiC, as described in the literature (Applied Physics Letters 80 (2002), p. 139). Further, ortho-metalated organometallic complexes having Ir or Pt as the central metal as typified by Ir (ppy) 3 are also preferably used.
  • the above-mentioned materials can be used as the hole transport material, a triarylamine derivative, a carbazole derivative, an indolocarbazole derivative, an azatriphenylene derivative, an organometallic complex, or an aromatic amine is introduced into the main chain or side chain.
  • the polymer materials or oligomers used are preferably used.
  • the hole transport material may be used alone or in combination of two or more.
  • the electron blocking layer is a layer having a function of a hole transport layer in a broad sense, and is preferably made of a material having a function of transporting holes and a small ability to transport electrons, and transporting electrons while transporting holes. The probability of recombination of electrons and holes can be improved by blocking.
  • the above-described configuration of the hole transport layer can be used as an electron blocking layer according to the present invention, if necessary.
  • the electron blocking layer provided in the organic EL device of the present invention is preferably provided adjacent to the anode side of the light emitting layer.
  • the layer thickness of the electron blocking layer according to the present invention is preferably in the range of 3 to 100 nm, more preferably in the range of 5 to 30 nm.
  • the material used for the electron blocking layer is preferably used, and the material used for the host compound is also preferably used for the electron blocking layer.
  • the hole injection layer (also referred to as “anode buffer layer”) according to the present invention is a layer provided between the anode and the light emitting layer for the purpose of lowering the driving voltage and improving the light emission luminance. It is described in detail in Volume 2, Chapter 2, “Electrode Materials” (pages 123 to 166) of “The Forefront of Industrialization (issued by NTT Corporation on November 30, 1998)”.
  • the hole injection layer may be provided as necessary, and may be present between the anode and the light emitting layer or between the anode and the hole transport layer as described above.
  • the details of the hole injection layer are described in JP-A-9-45479, JP-A-9-260062, JP-A-8-288069, etc.
  • Examples of materials used for the hole injection layer include: Examples thereof include materials used for the above-described hole transport layer.
  • phthalocyanine derivatives typified by copper phthalocyanine, hexaazatriphenylene derivatives as described in JP-T-2003-519432, JP-A-2006-135145, etc.
  • metal oxides typified by vanadium oxide, amorphous carbon, polyaniline (emeral) Din) and polythiophene conductive polymers
  • orthometalated complexes represented by tris (2-phenylpyridine) iridium complex 2,4-phenylpyridine
  • the materials used for the hole injection layer described above may be used alone or in combination of two or more.
  • the organic layer in the present invention described above may further contain other inclusions.
  • halogen elements and halogenated compounds such as bromine, iodine and chlorine, alkali metals and alkaline earth metals such as Pd, Ca, and Na, transition metal compounds, complexes, and salts.
  • the content of the inclusion can be arbitrarily determined, but is preferably 1000 ppm or less, more preferably 500 ppm or less, and even more preferably 50 ppm or less with respect to the total mass% of the contained layer. .
  • the formation method of the organic layer according to the present invention is not particularly limited, and a conventionally known formation method such as a vacuum deposition method or a wet method (also referred to as a wet process) can be used.
  • wet method examples include spin coating method, casting method, ink jet method, printing method, die coating method, blade coating method, roll coating method, spray coating method, curtain coating method, and LB method (Langmuir-Blodgett method). From the standpoint of obtaining a homogeneous thin film and high productivity, a method having high roll-to-roll method suitability such as a die coating method, a roll coating method, an ink jet method, and a spray coating method is preferable.
  • liquid medium for dissolving or dispersing the organic EL material according to the present invention examples include ketones such as methyl ethyl ketone and cyclohexanone, fatty acid esters such as ethyl acetate, halogenated hydrocarbons such as dichlorobenzene, toluene, xylene, and mesitylene.
  • ketones such as methyl ethyl ketone and cyclohexanone
  • fatty acid esters such as ethyl acetate
  • halogenated hydrocarbons such as dichlorobenzene, toluene, xylene, and mesitylene.
  • Aromatic hydrocarbons such as cyclohexylbenzene, aliphatic hydrocarbons such as cyclohexane, decalin, and dodecane
  • organic solvents such as DMF and DMSO
  • a dispersion method it can be dispersed by a dispersion method such as ultrasonic wave, high shearing force dispersion or media dispersion.
  • vapor deposition conditions vary depending on the type of compound used, but generally a boat heating temperature of 50 to 450 ° C., a degree of vacuum of 10 ⁇ 6 to 10 ⁇ 2 Pa, and a vapor deposition rate of 0.01 to It is desirable to select appropriately within a range of 50 nm / second, a substrate temperature of ⁇ 50 to 300 ° C., and a thickness of 0.1 nm to 5 ⁇ m, preferably 5 to 200 nm.
  • the organic layer according to the present invention it is preferable to consistently produce from the hole injection layer to the cathode by a single evacuation, but it may be taken out halfway and subjected to different film forming methods. In that case, it is preferable to perform the work in a dry inert gas atmosphere.
  • anode As the anode in the organic EL element, a material having a work function (4 eV or more, preferably 4.5 eV or more) of a metal, an alloy, an electrically conductive compound, or a mixture thereof is preferably used.
  • electrode materials include metals such as Au, and conductive transparent materials such as CuI, indium tin oxide (ITO), SnO 2 , and ZnO.
  • conductive transparent materials such as CuI, indium tin oxide (ITO), SnO 2 , and ZnO.
  • an amorphous material such as IDIXO (In 2 O 3 —ZnO) capable of forming a transparent conductive film may be used.
  • these electrode materials may be formed into a thin film by a method such as vapor deposition or sputtering, and a pattern of a desired shape may be formed by a photolithography method, or when pattern accuracy is not so required (about 100 ⁇ m or more)
  • a pattern may be formed through a mask having a desired shape at the time of vapor deposition or sputtering of the electrode material.
  • a wet film forming method such as a printing method or a coating method can also be used.
  • the transmittance be greater than 10%, and the sheet resistance as the anode is preferably several hundred ⁇ / ⁇ or less.
  • the thickness of the anode depends on the material, but is usually selected in the range of 10 nm to 1 ⁇ m, preferably 10 to 200 nm.
  • cathode As the cathode, a material having a work function (4 eV or less) metal (referred to as an electron injecting metal), an alloy, an electrically conductive compound, and a mixture thereof as an electrode material is used. Specific examples of such electrode materials include sodium, sodium-potassium alloy, magnesium, lithium, magnesium / copper mixture, magnesium / silver mixture, magnesium / aluminum mixture, magnesium / indium mixture, aluminum / aluminum oxide (Al 2 O 3 ) Mixtures, indium, lithium / aluminum mixtures, aluminum, rare earth metals and the like.
  • a mixture of an electron injecting metal and a second metal which is a stable metal having a larger work function than this for example, a magnesium / silver mixture, Magnesium / aluminum mixtures, magnesium / indium mixtures, aluminum / aluminum oxide (Al 2 O 3 ) mixtures, lithium / aluminum mixtures, aluminum and the like are preferred.
  • the cathode can be produced by forming a thin film of these electrode materials by a method such as vapor deposition or sputtering.
  • the sheet resistance as the cathode is preferably several hundred ⁇ / ⁇ or less, and the thickness is usually selected in the range of 10 nm to 5 ⁇ m, preferably 50 to 200 nm.
  • the emission luminance is improved, which is convenient.
  • a transparent or semi-transparent cathode can be produced by producing a conductive transparent material mentioned in the description of the anode on the cathode after producing the above metal with a thickness of 1 to 20 nm.
  • a support substrate (hereinafter also referred to as a substrate, substrate, substrate, support, etc.) that can be used in the organic EL device of the present invention, there is no particular limitation on the type of glass, plastic, etc., and it is transparent. May be opaque. When extracting light from the support substrate side, the support substrate is preferably transparent. Examples of the transparent support substrate preferably used include glass, quartz, and a transparent resin film. A particularly preferable support substrate is a resin film capable of giving flexibility to the organic EL element.
  • polyesters such as polyethylene terephthalate (PET) and polyethylene naphthalate (PEN), polyethylene, polypropylene, cellophane, cellulose diacetate, cellulose triacetate (TAC), cellulose acetate butyrate, cellulose acetate propionate ( CAP), cellulose esters such as cellulose acetate phthalate, cellulose nitrate or derivatives thereof, polyvinylidene chloride, polyvinyl alcohol, polyethylene vinyl alcohol, syndiotactic polystyrene, polycarbonate, norbornene resin, polymethylpentene, polyether ketone, polyimide , Polyethersulfone (PES), polyphenylene sulfide, polysulfones Cycloolefin resins such as polyetherimide, polyetherketoneimide, polyamide, fluororesin, nylon, polymethylmethacrylate, acrylic, or polyarylate, Arton (trade name, manufactured by JSR) or Appel (
  • the surface of the resin film may be formed with an inorganic film, an organic film, or a hybrid film of both, and the water vapor permeability (25 ⁇ 0.5 ° C.) measured by a method according to JIS K 7129-1992.
  • Relative humidity (90 ⁇ 2)% RH) is preferably 0.01 g / (m 2 ⁇ 24 h) or less, and further, oxygen measured by a method according to JIS K 7126-1987.
  • a high barrier film having a permeability of 10 ⁇ 3 ml / (m 2 ⁇ 24 h ⁇ atm) or less and a water vapor permeability of 10 ⁇ 5 g / (m 2 ⁇ 24 h) or less is preferable.
  • the material for forming the barrier film may be any material that has a function of suppressing the entry of elements that cause deterioration of elements such as moisture and oxygen.
  • silicon oxide, silicon dioxide, silicon nitride, and the like can be used.
  • the method for forming the barrier film is not particularly limited.
  • vacuum deposition, sputtering, reactive sputtering, molecular beam epitaxy, cluster ion beam, ion plating, plasma polymerization, atmospheric pressure plasma polymerization A plasma CVD method, a laser CVD method, a thermal CVD method, a coating method, or the like can be used, but an atmospheric pressure plasma polymerization method as described in JP-A-2004-68143 is particularly preferable.
  • the opaque support substrate examples include metal plates such as aluminum and stainless steel, films, opaque resin substrates, ceramic substrates, and the like.
  • the external extraction quantum efficiency at room temperature of light emission of the organic EL device of the present invention is preferably 1% or more, and more preferably 5% or more.
  • the external extraction quantum efficiency (%) the number of photons emitted to the outside of the organic EL element / the number of electrons sent to the organic EL element ⁇ 100.
  • a hue improvement filter such as a color filter may be used in combination, or a color conversion filter that converts the emission color from the organic EL element into multiple colors using a phosphor may be used in combination.
  • sealing means used for sealing the organic EL element of the present invention include a method of bonding a sealing member, an electrode, and a support substrate with an adhesive.
  • a sealing member it should just be arrange
  • transparency and electrical insulation are not particularly limited.
  • Specific examples include a glass plate, a polymer plate / film, and a metal plate / film.
  • the glass plate include soda-lime glass, barium / strontium-containing glass, lead glass, aluminosilicate glass, borosilicate glass, barium borosilicate glass, and quartz.
  • the polymer plate include polycarbonate, acrylic, polyethylene terephthalate, polyether sulfide, and polysulfone.
  • the metal plate include those made of one or more metals or alloys selected from the group consisting of stainless steel, iron, copper, aluminum, magnesium, nickel, zinc, chromium, titanium, molybdenum, silicon, germanium, and tantalum.
  • a polymer film and a metal film can be preferably used because the organic EL element can be thinned.
  • the polymer film has an oxygen permeability measured by a method according to JIS K 7126-1987 of 1 ⁇ 10 ⁇ 3 ml / (m 2 ⁇ 24 h ⁇ atm) or less, and a method according to JIS K 7129-1992.
  • the measured water vapor permeability (25 ⁇ 0.5 ° C., relative humidity (90 ⁇ 2)%) is preferably 1 ⁇ 10 ⁇ 3 g / (m 2 ⁇ 24 h) or less.
  • sealing member For processing the sealing member into a concave shape, sandblasting, chemical etching, or the like is used.
  • the adhesive include photocuring and thermosetting adhesives having reactive vinyl groups of acrylic acid oligomers and methacrylic acid oligomers, and moisture curing adhesives such as 2-cyanoacrylates. be able to.
  • hot-melt type polyamide, polyester, and polyolefin can be mentioned.
  • a cationic curing type ultraviolet curing epoxy resin adhesive can be mentioned.
  • an organic EL element may deteriorate by heat processing, what can be adhesively cured from room temperature to 80 ° C. is preferable.
  • a desiccant may be dispersed in the adhesive.
  • coating of the adhesive agent to a sealing part may use commercially available dispenser, and may print like screen printing.
  • the electrode and the organic layer are coated on the outside of the electrode facing the support substrate with the organic layer interposed therebetween, and an inorganic or organic layer is formed in contact with the support substrate to form a sealing film.
  • the material for forming the film may be any material that has a function of suppressing intrusion of elements that cause deterioration of elements such as moisture and oxygen.
  • silicon oxide, silicon dioxide, silicon nitride, or the like may be used. it can.
  • a laminated structure of these inorganic layers and layers made of organic materials it is preferable to have a laminated structure of these inorganic layers and layers made of organic materials.
  • the method of forming these films There are no particular limitations on the method of forming these films. For example, vacuum deposition, sputtering, reactive sputtering, molecular beam epitaxy, cluster ion beam, ion plating, plasma polymerization, atmospheric pressure plasma A combination method, a plasma CVD method, a laser CVD method, a thermal CVD method, a coating method, or the like can be used.
  • an inert gas such as nitrogen or argon, or an inert liquid such as fluorinated hydrocarbon or silicon oil can be injected in the gas phase and liquid phase.
  • a vacuum can also be used.
  • a hygroscopic compound can also be enclosed inside.
  • hygroscopic compound examples include metal oxides (for example, sodium oxide, potassium oxide, calcium oxide, barium oxide, magnesium oxide, aluminum oxide) and sulfates (for example, sodium sulfate, calcium sulfate, magnesium sulfate, cobalt sulfate).
  • metal oxides for example, sodium oxide, potassium oxide, calcium oxide, barium oxide, magnesium oxide, aluminum oxide
  • sulfates for example, sodium sulfate, calcium sulfate, magnesium sulfate, cobalt sulfate.
  • metal halides eg calcium chloride, magnesium chloride, cesium fluoride, tantalum fluoride, cerium bromide, magnesium bromide, barium iodide, magnesium iodide etc.
  • perchloric acids eg perchloric acid Barium, magnesium perchlorate, and the like
  • anhydrous salts are preferably used in sulfates, metal halides, and perchloric acids.
  • a protective film or a protective plate may be provided outside the sealing film or the sealing film on the side facing the support substrate with the organic layer interposed therebetween.
  • the mechanical strength is not necessarily high, and thus it is preferable to provide such a protective film and a protective plate.
  • the same glass plate, polymer plate / film, metal plate / film, etc. used for the sealing can be used, but the polymer film is light and thin. Is preferably used.
  • An organic electroluminescent element emits light inside a layer having a refractive index higher than that of air (with a refractive index of about 1.6 to 2.1), and about 15% to 20% of light generated in the light emitting layer. It is generally said that only light can be extracted. This is because light incident on the interface (interface between the transparent substrate and air) at an angle ⁇ greater than the critical angle causes total reflection and cannot be taken out of the device, or between the transparent electrode or light emitting layer and the transparent substrate. This is because light is totally reflected between the light and the light is guided through the transparent electrode or the light emitting layer, and as a result, the light escapes in the direction of the side surface of the device.
  • a technique for improving the light extraction efficiency for example, a method of forming irregularities on the surface of the transparent substrate to prevent total reflection at the transparent substrate and the air interface (for example, US Pat. No. 4,774,435), A method for improving efficiency by providing light condensing property (for example, Japanese Patent Laid-Open No. 63-134795), a method for forming a reflective surface on the side surface of an element (for example, Japanese Patent Laid-Open No. 1-220394), a substrate A method of forming an antireflection film by introducing a flat layer having an intermediate refractive index between the substrate and the light emitter (for example, Japanese Patent Laid-Open No.
  • these methods can be used in combination with the organic EL device of the present invention.
  • a method of introducing a flat layer having a lower refractive index than the substrate between the substrate and the light emitter, or a substrate, transparent A method of forming a diffraction grating between any layers of the electrode layer and the light emitting layer (including between the substrate and the outside) can be suitably used.
  • the light extracted from the transparent electrode has a higher extraction efficiency to the outside as the refractive index of the medium is lower.
  • the low refractive index layer examples include aerogel, porous silica, magnesium fluoride, and a fluorine-based polymer. Since the refractive index of the transparent substrate is generally in the range of about 1.5 to 1.7, the low refractive index layer preferably has a refractive index of about 1.5 or less. Furthermore, it is preferable that it is 1.35 or less.
  • the thickness of the low refractive index medium is preferably at least twice the wavelength in the medium. This is because the effect of the low refractive index layer is diminished when the thickness of the low refractive index medium is about the wavelength of light and the electromagnetic wave exuded by evanescent enters the substrate.
  • the method of introducing a diffraction grating into an interface that causes total reflection or in any medium has a feature that the effect of improving the light extraction efficiency is high.
  • This method uses the property that the diffraction grating can change the direction of light to a specific direction different from refraction by so-called Bragg diffraction, such as first-order diffraction or second-order diffraction.
  • the light that cannot be emitted due to total internal reflection between layers is diffracted by introducing a diffraction grating into any layer or medium (in the transparent substrate or transparent electrode). , Trying to extract light out.
  • the diffraction grating to be introduced has a two-dimensional periodic refractive index. This is because light emitted from the light-emitting layer is randomly generated in all directions, so in a general one-dimensional diffraction grating having a periodic refractive index distribution only in a certain direction, only light traveling in a specific direction is diffracted. The light extraction efficiency does not increase so much.
  • the refractive index distribution a two-dimensional distribution
  • the light traveling in all directions is diffracted, and the light extraction efficiency is increased.
  • the position where the diffraction grating is introduced may be in any layer or in the medium (in the transparent substrate or the transparent electrode), but is preferably in the vicinity of the organic light emitting layer where light is generated.
  • the period of the diffraction grating is preferably in the range of about 1/2 to 3 times the wavelength of light in the medium.
  • the arrangement of the diffraction gratings is preferably two-dimensionally repeated, such as a square lattice, a triangular lattice, or a honeycomb lattice.
  • the organic EL element of the present invention can be processed in a specific direction, for example, an element by combining a so-called condensing sheet, for example, by processing so as to provide a structure on a microlens array on the light extraction side of a support substrate (substrate). Condensing light in the front direction with respect to the light emitting surface can increase the luminance in a specific direction.
  • a quadrangular pyramid having a side of 30 ⁇ m and an apex angle of 90 degrees is arranged two-dimensionally on the light extraction side of the substrate.
  • One side is preferably within a range of 10 to 100 ⁇ m. If it becomes smaller than this, the effect of diffraction will generate
  • the condensing sheet it is possible to use, for example, an LED backlight of a liquid crystal display device that has been put into practical use.
  • a brightness enhancement film (BEF) manufactured by Sumitomo 3M Limited can be used.
  • BEF brightness enhancement film
  • a substrate may be formed with a ⁇ -shaped stripe having an apex angle of 90 degrees and a pitch of 50 ⁇ m, or the apex angle is rounded and the pitch is changed randomly. Other shapes may also be used.
  • a light diffusion plate / film may be used in combination with the light collecting sheet.
  • a diffusion film (light-up) manufactured by Kimoto Co., Ltd. can be used.
  • the organic EL element of the present invention can be used as a display device, a display, and various light emission sources.
  • lighting devices home lighting, interior lighting
  • clock and liquid crystal backlights billboard advertisements, traffic lights, light sources of optical storage media, light sources of electrophotographic copying machines, light sources of optical communication processors, light
  • the light source of a sensor etc. are mentioned, It is not limited to this, Especially, it can use effectively for the use as a backlight of a liquid crystal display device, and a light source for illumination.
  • patterning may be performed by a metal mask, an ink jet printing method, or the like during film formation, if necessary.
  • patterning only the electrode may be patterned, the electrode and the light emitting layer may be patterned, or the entire layer of the element may be patterned.
  • a conventionally known method is used. Can do.
  • FIG. 1 is a schematic perspective view showing an example of the configuration of a display device composed of the organic EL element of the present invention, which displays image information by light emission of the organic EL element, for example, a display such as a mobile phone FIG.
  • the display 1 includes a display unit A having a plurality of pixels, a control unit B that performs image scanning of the display unit A based on image information, and the like.
  • Control unit B is electrically connected to display unit A.
  • the control unit B sends a scanning signal and an image data signal to each of the plurality of pixels based on image information from the outside.
  • each pixel sequentially emits light according to the image data signal for each scanning line by the scanning signal, and the image information is displayed on the display unit A.
  • FIG. 2 is a schematic diagram of the display section A shown in FIG.
  • the display unit A has a wiring unit including a plurality of scanning lines 5 and data lines 6, a plurality of pixels 3 and the like on a substrate.
  • the main components of the display unit A will be described below.
  • FIG. 2 shows a case where the light emitted from the pixel 3 is extracted in the direction of the white arrow (downward).
  • Each of the scanning lines 5 and the plurality of data lines 6 in the wiring portion is made of a conductive material.
  • the scanning lines 5 and the data lines 6 are orthogonal to each other in a grid pattern and are connected to the pixels 3 at the orthogonal positions (details are not shown).
  • the pixel 3 When the scanning signal is transmitted from the scanning line 5, the pixel 3 receives the image data signal from the data line 6 and emits light according to the received image data.
  • a full-color display is possible by arranging pixels in the red region, the green region, and the blue region as appropriate in parallel on the same substrate.
  • the non-light emitting surface of the organic EL device of the present invention is covered with a glass case, a 300 ⁇ m thick glass substrate is used as a sealing substrate, and an epoxy photocurable adhesive (LUX The track LC0629B) is applied, and this is overlaid on the cathode and brought into close contact with the transparent support substrate, irradiated with UV light from the glass substrate side, cured, sealed, and illuminated as shown in FIGS.
  • a device can be formed.
  • FIG. 3 shows a schematic diagram of a lighting device, and the organic EL element 101 of the present invention is covered with a glass cover 102 (in the sealing operation with the glass cover, the organic EL element 101 is brought into contact with the atmosphere. And a glove box under a nitrogen atmosphere (in an atmosphere of high-purity nitrogen gas having a purity of 99.999% or more).
  • FIG. 4 shows a cross-sectional view of the lighting device.
  • 105 denotes a cathode
  • 106 denotes an organic EL layer
  • 107 denotes a glass substrate with a transparent electrode.
  • the glass cover 102 is filled with nitrogen gas 108 and a water catching agent 109 is provided.
  • Each of the resistance heating boats for vapor deposition in the vacuum vapor deposition apparatus was filled with the constituent material of each layer in an optimum amount for device fabrication.
  • the resistance heating boat was made of molybdenum or tungsten.
  • the resistance heating boat containing HI-1 was energized and heated, and deposited on the ITO transparent electrode at a deposition rate of 0.1 nm / second. A hole injection layer was formed.
  • HT-1 was deposited at a deposition rate of 0.1 nm / second to form a hole transport layer having a layer thickness of 30 nm.
  • the resistance heating boat containing comparative compounds 1 and GD-1 as comparative host compounds is energized and heated, and deposited on the hole transport layer at a deposition rate of 0.1 nm / second and 0.010 nm / second, respectively. Co-evaporation was performed to form a light emitting layer having a layer thickness of 40 nm.
  • HB-1 was deposited at a deposition rate of 0.1 nm / second to form a first electron transport layer having a layer thickness of 5 nm.
  • ET-1 was deposited at a deposition rate of 0.1 nm / second to form a second electron transport layer having a layer thickness of 45 nm.
  • the non-light-emitting surface of the organic EL element 101 is covered with a glass case in an atmosphere of high purity nitrogen gas with a purity of 99.999% or more, and a glass substrate having a layer of 300 ⁇ m is used as a sealing substrate.
  • An epoxy photo-curing adhesive (Lux Track LC0629B manufactured by Toagosei Co., Ltd.) is applied as a sealing material, and this is overlaid on the cathode to be in close contact with the transparent support substrate, and irradiated with UV light from the glass substrate side, It hardened and sealed, and the illuminating device which consists of a structure as shown in FIG.3 and FIG.4 was produced, and this was made into the sample.
  • the measurement of emission luminance was performed using CS-2000 (manufactured by Konica Minolta Co., Ltd.), and the external extraction quantum efficiency was expressed as a relative value with the organic EL element 101 as 100.
  • Each organic EL element was driven at a constant current with a current giving an initial luminance of 4000 cd / m 2 , and a time during which the initial luminance was 1 ⁇ 2 was obtained.
  • the half-life was expressed as a relative value with the organic EL element 101 as 100.
  • Heat resistance (%) (half life at high temperature) / (half life at room temperature) ⁇ 100
  • the organic EL element 101 is expressed as a relative value with 100. The larger the heat resistance value, the higher the durability against temperature change, that is, the high temperature storage stability is superior to the comparison.
  • the organic EL elements 102 to 111 of the present invention are superior in external extraction quantum efficiency, half-life and high-temperature storage stability as compared with the comparative organic EL element 101.
  • Each of the resistance heating boats for vapor deposition in the vacuum vapor deposition apparatus was filled with the constituent material of each layer in an optimum amount for device fabrication.
  • the resistance heating boat was made of molybdenum or tungsten.
  • the resistance heating boat containing HI-2 was energized and heated, and deposited on the ITO transparent electrode at a deposition rate of 0.1 nm / second. A hole injection layer was formed.
  • HT-2 was deposited at a deposition rate of 0.1 nm / second to form a hole transport layer having a layer thickness of 30 nm.
  • the resistance heating boat containing comparative compound 2 and GD-2 as comparative host compounds was energized and heated, and deposited on the hole transport layer at a deposition rate of 0.1 nm / second and 0.010 nm / second, respectively. Co-evaporation was performed to form a light emitting layer with a layer thickness of 30 nm.
  • HB-2 was deposited at a deposition rate of 0.1 nm / second to form a first electron transport layer having a layer thickness of 5 nm.
  • ET-2 was deposited at a deposition rate of 0.1 nm / second to form a second electron transport layer having a layer thickness of 45 nm.
  • the non-light emitting surface of the organic EL element 201 is covered with a glass case in an atmosphere of high purity nitrogen gas having a purity of 99.999% or more, and a glass substrate having a layer of 300 ⁇ m is used as a sealing substrate.
  • An epoxy photo-curing adhesive (Lux Track LC0629B manufactured by Toagosei Co., Ltd.) is applied as a sealing material, and this is overlaid on the cathode to be in close contact with the transparent support substrate, and irradiated with UV light from the glass substrate side, It hardened and sealed, and the illuminating device which consists of a structure as shown in FIG.3 and FIG.4 was produced, and this was made into the sample.
  • Example 2 The external extraction quantum efficiency, half-life, and high-temperature storage stability evaluation were evaluated in the same manner as in Example 1 and expressed as relative values with each characteristic value of the organic EL element 201 being 100.
  • the organic EL elements 202 to 212 of the present invention are superior in external extraction quantum efficiency, half-life and high-temperature storage stability as compared with the comparative organic EL element 201.
  • Example 3 Production of organic EL element >> (1) Production of organic EL element 301 After forming ITO (indium tin oxide) with a thickness of 150 nm as a positive electrode on a glass substrate of 50 mm ⁇ 50 mm and a thickness of 0.7 mm and performing patterning, The transparent substrate with the ITO transparent electrode was ultrasonically cleaned with isopropyl alcohol, dried with dry nitrogen gas, and subjected to UV ozone cleaning for 5 minutes, and then the transparent substrate was fixed to a substrate holder of a commercially available vacuum deposition apparatus. .
  • ITO indium tin oxide
  • Each of the resistance heating boats for vapor deposition in the vacuum vapor deposition apparatus was filled with the constituent material of each layer in an amount optimal for device fabrication.
  • the resistance heating boat was made of molybdenum or tungsten.
  • the resistance heating boat containing HI-2 was energized and heated, deposited on the ITO transparent electrode at a deposition rate of 0.1 nm / second, and a positive thickness of 20 nm. A hole injection layer was formed.
  • HT-1 was deposited at a deposition rate of 0.1 nm / second to form a hole transport layer having a layer thickness of 20 nm.
  • a resistance heating boat containing comparative compounds 3 and GD-3, which are comparative host compounds, is energized and heated, and deposited on the hole transport layer at a deposition rate of 0.1 nm / second and 0.010 nm / second, respectively. Co-evaporation was performed to form a light emitting layer with a layer thickness of 30 nm.
  • HB-3 was deposited at a deposition rate of 0.1 nm / second to form a first electron transport layer having a layer thickness of 10 nm.
  • ET-2 was deposited at a deposition rate of 0.1 nm / second to form a second electron transport layer having a layer thickness of 40 nm.
  • the non-light emitting surface of the organic EL element 301 is covered with a glass case in an atmosphere of high purity nitrogen gas having a purity of 99.999% or more, and a glass substrate having a layer of 300 ⁇ m is used as a sealing substrate.
  • An epoxy photo-curing adhesive (Lux Track LC0629B manufactured by Toagosei Co., Ltd.) is applied as a sealing material, and this is overlaid on the cathode to be in close contact with the transparent support substrate, and irradiated with UV light from the glass substrate side, It hardened and sealed, and the illuminating device which consists of a structure as shown in FIG.3 and FIG.4 was produced, and this was made into the sample.
  • Example 2 The external extraction quantum efficiency, half-life, and high-temperature storage stability evaluation were evaluated in the same manner as in Example 1 and expressed as relative values with each characteristic value of the organic EL element 301 being 100.
  • the organic EL elements 302 to 312 of the present invention are superior in external extraction quantum efficiency, half-life and high-temperature storage stability as compared with the comparative organic EL element 301.
  • Example 4 Production of organic EL element >> (1) Preparation of organic EL element 401 After depositing ITO (indium tin oxide) with a thickness of 120 nm as a positive electrode on a glass substrate of 50 mm ⁇ 50 mm and a thickness of 0.7 mm, and performing patterning, The transparent substrate with the ITO transparent electrode was ultrasonically cleaned with isopropyl alcohol, dried with dry nitrogen gas, and subjected to UV ozone cleaning for 5 minutes.
  • ITO indium tin oxide
  • this transparent substrate was fixed to a substrate holder of a commercially available vacuum deposition apparatus.
  • Each of the resistance heating boats for vapor deposition in the vacuum vapor deposition apparatus was filled with the constituent material of each layer in an optimum amount for device fabrication.
  • the resistance heating boat for vapor deposition was made of molybdenum or tungsten.
  • the resistance heating boat containing HT-2 was energized and heated, and deposited on the hole injection layer at a deposition rate of 0.1 nm / second. A hole transport layer was formed.
  • a resistance heating boat containing comparative compound 4 and GD-1 which are comparative host compounds is energized and heated, and deposited on the hole transport layer at a deposition rate of 0.1 nm / second and 0.010 nm / second, respectively. Co-evaporation was performed to form a light emitting layer having a layer thickness of 40 nm.
  • ET-1 was deposited at a deposition rate of 0.1 nm / second to form an electron transport layer having a layer thickness of 40 nm.
  • lithium fluoride was vapor-deposited to a thickness of 0.5 nm, and then 100 nm of aluminum was vapor-deposited to form a cathode to produce an organic EL element 401.
  • the non-light-emitting surface of the organic EL element 401 is covered with a glass case in an atmosphere of high purity nitrogen gas with a purity of 99.999% or more, and a glass substrate having a layer of 300 ⁇ m is used as a sealing substrate.
  • An epoxy photo-curing adhesive (Lux Track LC0629B manufactured by Toagosei Co., Ltd.) is applied as a sealing material, and this is overlaid on the cathode to be in close contact with the transparent support substrate, and irradiated with UV light from the glass substrate side, It hardened and sealed, and the illuminating device which consists of a structure as shown in FIG.3 and FIG.4 was produced, and this was made into the sample.
  • Example 2 The external extraction quantum efficiency, half-life, and high-temperature storage stability evaluation were evaluated in the same manner as in Example 1 and expressed as relative values with each characteristic value of the organic EL element 401 being 100.
  • Table 4 shows the evaluation results.
  • the organic EL elements 402 to 412 of the present invention are superior in external extraction quantum efficiency, half-life and high-temperature storage stability as compared with the comparative organic EL element 401.
  • Example 5 Production of organic EL element >> (1) Preparation of organic EL element 501 After forming ITO (indium tin oxide) with a thickness of 120 nm as a positive electrode on a glass substrate of 50 mm ⁇ 50 mm and a thickness of 0.7 mm and performing patterning, The transparent substrate with the ITO transparent electrode was ultrasonically cleaned with isopropyl alcohol, dried with dry nitrogen gas, and subjected to UV ozone cleaning for 5 minutes.
  • ITO indium tin oxide
  • this transparent substrate was fixed to a substrate holder of a commercially available vacuum deposition apparatus.
  • Each of the resistance heating boats for vapor deposition in the vacuum vapor deposition apparatus was filled with the constituent material of each layer in an optimum amount for device fabrication.
  • the resistance heating boat for vapor deposition was made of molybdenum or tungsten.
  • the resistance heating boat containing HT-4 was energized and heated, and deposited on the hole injection layer at a deposition rate of 0.1 nm / second. A hole transport layer was formed.
  • the resistance heating boat containing comparative compounds 1 and GD-1 as comparative host compounds is energized and heated, and deposited on the hole transport layer at a deposition rate of 0.1 nm / second and 0.010 nm / second, respectively. Co-evaporation was performed to form a light emitting layer having a layer thickness of 40 nm.
  • HB-1 was deposited at a deposition rate of 0.1 nm / second to form a first electron transport layer having a layer thickness of 5 nm.
  • ET-3 was deposited at a deposition rate of 0.1 nm / second to form a second electron transport layer having a layer thickness of 30 nm.
  • the non-light-emitting surface of the organic EL element 501 is covered with a glass case in an atmosphere of high-purity nitrogen gas having a purity of 99.999% or more, and a 300 ⁇ m-thick glass substrate is used as a sealing substrate.
  • An epoxy photo-curing adhesive (Lux Track LC0629B manufactured by Toagosei Co., Ltd.) is applied as a sealing material, and this is overlaid on the cathode to be in close contact with the transparent support substrate, and irradiated with UV light from the glass substrate side, It hardened and sealed, and the illuminating device which consists of a structure as shown in FIG.3 and FIG.4 was produced, and this was made into the sample.
  • Example 2 The external extraction quantum efficiency, half-life, and high-temperature storage stability evaluation were evaluated in the same manner as in Example 1, and expressed as relative values with each characteristic value of the organic EL element 501 being 100.
  • the organic EL elements 502 to 512 of the present invention are superior in external extraction quantum efficiency, half-life, and high-temperature storage stability as compared with the comparative organic EL element 501.
  • Example 6 Production of organic EL element >> (1) Preparation of organic EL element 601 After forming ITO (indium tin oxide) with a thickness of 150 nm as a positive electrode on a glass substrate of 50 mm ⁇ 50 mm and a thickness of 0.7 mm and performing patterning, The transparent substrate with the ITO transparent electrode was ultrasonically cleaned with isopropyl alcohol, dried with dry nitrogen gas, and subjected to UV ozone cleaning for 5 minutes, and then the transparent substrate was fixed to a substrate holder of a commercially available vacuum deposition apparatus. .
  • ITO indium tin oxide
  • Each of the resistance heating boats for vapor deposition in the vacuum vapor deposition apparatus was filled with the constituent material of each layer in an optimum amount for device fabrication.
  • the resistance heating boat was made of molybdenum or tungsten.
  • the resistance heating boat containing HI-1 was energized and heated, and deposited on the ITO transparent electrode at a deposition rate of 0.1 nm / second. A hole injection layer was formed.
  • HT-3 was deposited at a deposition rate of 0.1 nm / second to form a hole transport layer having a layer thickness of 30 nm.
  • the resistance heating boat containing comparative compound 2 and GD-2 as comparative host compounds was energized and heated, and deposited on the hole transport layer at a deposition rate of 0.1 nm / second and 0.010 nm / second, respectively. Co-evaporation was performed to form a light emitting layer having a layer thickness of 40 nm.
  • ET-2 was deposited at a deposition rate of 0.1 nm / second to form a second electron transport layer having a layer thickness of 40 nm.
  • the non-light-emitting surface of the organic EL element 601 is covered with a glass case in an atmosphere of high-purity nitrogen gas with a purity of 99.999% or more, and a 300 ⁇ m-thick glass substrate is used as a sealing substrate.
  • An epoxy photo-curing adhesive (Lux Track LC0629B manufactured by Toagosei Co., Ltd.) is applied as a sealing material, and this is overlaid on the cathode to be in close contact with the transparent support substrate, and irradiated with UV light from the glass substrate side, It hardened and sealed, and the illuminating device which consists of a structure as shown in FIG.3 and FIG.4 was produced, and this was made into the sample.
  • Example 2 The external extraction quantum efficiency, half-life, and high-temperature storage stability evaluation were evaluated in the same manner as in Example 1 and expressed as relative values with each characteristic value of the organic EL element 601 being 100.
  • the organic EL elements 602 to 611 of the present invention are superior in external extraction quantum efficiency, half-life and high-temperature storage stability compared to the comparative organic EL element 601.
  • Example 7 Production of organic EL element >> (1) Preparation of Organic EL Element 701 In the preparation of the organic EL element 601 described in Example 6, HT-2 was used instead of HT-3, Comparative Compound 3 was used instead of Comparative Compound 2, and GD-2 An organic EL element 701 was produced in the same manner except that GD-4 was used instead of ET-3 and ET-3 was used instead of ET-2. After the production, an illumination device having the configuration shown in FIGS. 3 and 4 was produced in the same manner as in Example 1, and this was used as a sample.
  • Example 2 The external extraction quantum efficiency, half-life, and high-temperature storage stability evaluation were evaluated in the same manner as in Example 1 and expressed as relative values with each characteristic value of the organic EL element 701 being 100.
  • Table 7 shows the evaluation results.
  • the organic EL elements 702 to 711 of the present invention are superior in external extraction quantum efficiency, half-life and high-temperature storage stability as compared with the comparative organic EL element 701.
  • Example 8 Production of organic EL element >> (1) Preparation of Organic EL Element 801 In the preparation of the organic EL element 201 described in Example 2, HT-3 was used instead of HT-2, Comparative Compound 4 was used instead of Comparative Compound 2, and GD-2 An organic EL device 801 was fabricated in the same manner except that GD-3 was used instead of HB-3, HB-3 was used instead of HB-2, and ET-3 was used instead of ET-2. After the production, an illumination device having the configuration shown in FIGS. 3 and 4 was produced in the same manner as in Example 1, and this was used as a sample.
  • Example 2 The external extraction quantum efficiency, half-life, and high-temperature storage stability evaluation were evaluated in the same manner as in Example 1 and expressed as relative values with each characteristic value of the organic EL element 801 being 100.
  • Table 8 shows the evaluation results.
  • the organic EL elements 802 to 111 of the present invention are superior in external extraction quantum efficiency, half-life and high-temperature storage stability as compared with the comparative organic EL element 801.
  • Example 9 Production of organic EL element >> (1) Production of Organic EL Element 901
  • HT-4 was used instead of HT-2
  • Comparative Compound 1 was used instead of Comparative Compound 2
  • GD-2 An organic EL device 901 was fabricated in the same manner except that GD-4 was used instead of HB-3, HB-3 was used instead of HB-2, and ET-4 was used instead of ET-2.
  • an illumination device having the configuration shown in FIGS. 3 and 4 was produced in the same manner as in Example 1, and this was used as a sample.
  • Example 2 The external extraction quantum efficiency, half-life, and high-temperature storage stability evaluation were evaluated in the same manner as in Example 1, and expressed as relative values with each characteristic value of the organic EL element 901 being 100.
  • Table 9 shows the evaluation results.
  • the organic EL elements 902 to 911 of the present invention are superior in external extraction quantum efficiency, half-life and high-temperature storage stability as compared with the comparative organic EL element 901.
  • Example 10 Production of organic EL element >> (1) Preparation of Organic EL Element 1001 In the preparation of the organic EL element 401 described in Example 4, HT-3 was used instead of HT-2, Comparative Compound 2 was used instead of Comparative Compound 4, and ET-1 An organic EL device 1001 was produced in the same manner except that ET-4 was used instead of ET-4. After the production, an illumination device having the configuration shown in FIGS. 3 and 4 was produced in the same manner as in Example 1, and this was used as a sample.
  • Example 2 The external extraction quantum efficiency, half-life, and high-temperature storage stability evaluation were evaluated in the same manner as in Example 1 and expressed as relative values with each characteristic value of the organic EL element 1001 being 100.
  • Table 10 shows the evaluation results.
  • the organic EL elements 1002 to 1013 of the present invention are excellent in external extraction quantum efficiency, half-life and high-temperature storage stability as compared with the comparative organic EL element 1001.
  • Example 11 Production of organic EL element >> (1) Production of Organic EL Element 1101
  • HT-1 was used instead of HT-4
  • Comparative Compound 3 was used instead of Comparative Compound 1
  • GD-1 An organic EL device 1101 was fabricated in the same manner except that GD-4 was used instead of ET-2 and ET-2 was used instead of ET-3.
  • an illumination device having the configuration shown in FIGS. 3 and 4 was produced in the same manner as in Example 1, and this was used as a sample.
  • Example 2 The external extraction quantum efficiency, half-life, and high-temperature storage stability evaluation were evaluated in the same manner as in Example 1 and expressed as relative values with each characteristic value of the organic EL element 1101 being 100.
  • Table 11 shows the evaluation results.
  • the organic EL elements 1102 to 1112 of the present invention are superior in external extraction quantum efficiency, half-life and high-temperature storage stability as compared with the comparative organic EL element 1101.
  • Example 12 Production of organic EL element >> (1) Preparation of Organic EL Element 1201 In the preparation of organic EL element 101 described in Example 1, HT-4 was used instead of HT-1, Comparative Compound 4 was used instead of Comparative Compound 1, and GD-1 An organic EL device 1201 was fabricated in the same manner except that GD-3 was used instead of HB-1, HB-2 was used instead of HB-1, and ET-3 was used instead of ET-1. After the production, an illumination device having the configuration shown in FIGS. 3 and 4 was produced in the same manner as in Example 1, and this was used as a sample.
  • Example 2 The external extraction quantum efficiency, half-life, and high-temperature storage stability evaluation were evaluated in the same manner as in Example 1 and expressed as relative values with each characteristic value of the organic EL element 1201 being 100.
  • Table 12 shows the evaluation results.
  • the organic EL elements 1202 to 1214 of the present invention are superior in external extraction quantum efficiency, half-life and high-temperature storage stability as compared with the comparative organic EL element 1201.
  • Example 13 ⁇ Production of full-color display device> (1) Production of blue light-emitting element ⁇ Production of organic EL element 1301 >> This ITO transparent electrode was patterned after patterning on a substrate (NH45 manufactured by NH Techno Glass) having a thickness of 100 nm of ITO (indium tin oxide) formed on a 100 mm ⁇ 100 mm ⁇ 1.1 mm glass substrate as an anode.
  • the transparent support substrate provided with was ultrasonically cleaned with isopropyl alcohol, dried with dry nitrogen gas, and subjected to UV ozone cleaning for 5 minutes.
  • This transparent support substrate was fixed to a substrate holder of a commercially available vacuum deposition apparatus, while 200 mg of HT-1 was placed in a molybdenum resistance heating boat, and mCP (1,3- 200 mg of Bis-N carbazolylbenzene), 200 mg of HB-2 in a separate resistance heating boat made of molybdenum, 100 mg of BD-1 as a luminescent dopant in another resistance heating boat made of molybdenum, and another resistance in molybdenum 200 mg of ET-2 was placed in a heating boat and attached to a vacuum deposition apparatus.
  • mCP 1,3- 200 mg of Bis-N carbazolylbenzene
  • the vacuum chamber is depressurized to 4 ⁇ 10 ⁇ 4 Pa, and then heated by heating the resistance heating boat made of molybdenum containing HT-1 and deposited on the transparent support substrate at a deposition rate of 0.1 nm / second. Then, a hole transport layer having a layer thickness of 40 nm was provided.
  • the molybdenum resistance heating boat containing mCP (1,3-bis-N-carbazolylbenzene) and BD-1 was heated by energization, and the deposition rates were 0.2 nm / second and 0.012 nm / second, respectively.
  • the light emitting layer having a thickness of 40 nm was provided by co-evaporation on the hole transport layer.
  • the substrate temperature during vapor deposition was room temperature.
  • the molybdenum resistance heating boat containing HB-2 was energized and heated, and deposited on the light emitting layer at a deposition rate of 0.1 nm / second to provide a hole blocking layer having a thickness of 10 nm. .
  • the resistance heating boat containing ET-2 was heated by energization, and was deposited on the hole blocking layer at a deposition rate of 0.1 nm / second to provide an electron transport layer having a thickness of 40 nm.
  • the substrate temperature during vapor deposition was room temperature.
  • the non-light emitting surface of the organic EL element 1301 is covered with a glass case, a glass substrate having a thickness of 300 ⁇ m is used as a sealing substrate, and an epoxy-based photo-curing adhesive (Luxe manufactured by Toagosei Co., Ltd.) is used as a sealing material.
  • an epoxy-based photo-curing adhesive (Luxe manufactured by Toagosei Co., Ltd.) is used as a sealing material.
  • the track LC0629B is applied, and this is overlaid on the cathode and brought into close contact with the transparent support substrate, irradiated with UV light from the glass substrate side, cured, and sealed.
  • An illuminating device having such a structure was constructed and used as a sample.
  • FIG. 2 shows only a schematic view of the display portion A of the produced display device.
  • the display unit A includes a plurality of pixels 3 (light emission color pixels in the red region, green region pixels, and a plurality of pixels 3 arranged in parallel with the wiring unit including the plurality of scanning lines 5 and the data lines 6 on the same substrate. Blue region pixels, etc.).
  • Each of the scanning lines 5 and the plurality of data lines 6 in the wiring portion is made of a conductive material.
  • the scanning lines 5 and the data lines 6 are orthogonal to each other in a grid pattern, and are connected to the pixels 3 at the orthogonal positions (details are not shown).
  • the plurality of pixels 3 are driven by an active matrix system provided with an organic EL element corresponding to each emission color, a switching transistor as an active element, and a driving transistor, and a scanning signal is transmitted from the scanning line 5.
  • the image data signal is received from the data line 6 and light is emitted according to the received image data. In this manner, a full color display device was manufactured by appropriately arranging the red, green, and blue pixels 3 in parallel.
  • the organic electroluminescence device using the novel aromatic heterocyclic derivative of the present invention has a high light emission efficiency, a long light emission life, and a small change over time even when used at high temperatures. It can comprise suitably.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Optics & Photonics (AREA)
  • Electroluminescent Light Sources (AREA)
  • Plural Heterocyclic Compounds (AREA)

Abstract

 本発明の課題は、新規な芳香族複素環誘導体を提供することである。また、それを用いた、発光効率が高く、発光寿命が長く、高温下での使用においても経時変化が小さい有機EL素子を提供することである。また、当該有機EL素子が具備された表示装置及び照明装置を提供することである。 本発明の芳香族複素環誘導体は、カルバゾール環を含む特定構造を有する芳香族複素環誘導体であることを特徴とする。

Description

芳香族複素環誘導体、それを用いた有機エレクトロルミネッセンス素子、照明装置及び表示装置
 本発明は、芳香族複素環誘導体、それを用いた有機エレクトロルミネッセンス素子、照明装置及び表示装置に関する。より詳しくは、芳香族複素環誘導体、それを用いた、発光効率が高く、発光寿命が長く、高温下での使用においても経時変化が小さい有機エレクトロルミネッセンス素子、それが具備された照明装置及び表示装置に関する。
 有機エレクトロルミネッセンス素子(以下、「有機EL素子」ともいう)は、陽極と陰極の間を、有機発光物質が含有された有機薄膜層(単層部又は多層部)で構成する薄膜型の全固体素子である。この様な有機EL素子に電圧を印加すると、有機薄膜層に陰極から電子が、陽極から正孔が注入され、これらが発光層(有機発光物質含有層)において再結合して励起子が生じる。有機EL素子はこれら励起子からの光の放出(蛍光・リン光)を利用した発光素子であり、次世代の平面ディスプレイや照明として期待されている技術である。
 さらに、蛍光発光を利用する有機EL素子に比べ、原理的に約4倍の発光効率が実現可能である励起三重項からのリン光発光を利用する有機EL素子がプリンストン大学から報告されて以来、室温でリン光を示す材料の開発を始めとし、発光素子の層構成や電極の研究開発が世界中で行われている。
 このように、リン光発光方式は大変ポテンシャルの高い方式であるが、リン光発光を利用する有機ELデバイスにおいては、蛍光発光を利用するそれとは大きく異なり、発光中心の位置をコントロールする方法、とりわけ発光層の内部で再結合を行い、いかに発光を安定に行わせることができるかが、素子の効率・寿命を高める上で重要な技術的問題となっている。
 そこで、近年は発光層に隣接する形で、発光層の陽極側に位置する正孔輸送層や、発光層の陰極側に位置する電子輸送層等を備えた多層積層型の素子が良く知られている。また、発光層には発光ドーパントとしてのリン光発光性化合物とホスト化合物とを用いた混合層が多く用いられている。
 一方、材料の観点からは、素子性能向上に対する新規材料創出の期待が大きい。特にリン光発光性化合物のホスト化合物として、多縮環化合物と六員の含窒素複素環がアリーレン連結基を介して結合した化合物を用いた有機EL用材料が報告されている(例えば、特許文献1~3参照。)。
 しかし、これら特許文献1~3に記載の化合物では、有機EL素子材料として用いるにあたり、素子の寿命、発光効率はある程度改良されているが、十分とはいえず、さらなる改良が求められていた。また、これらの化合物を用いた有機EL素子は熱安定性に劣るという欠点を有していることが分かった。
国際公開第2013/035275号 国際公開第2007/069569号 米国特許出願公開第2014/0158992号明細書
 本発明は、上記問題・状況に鑑みてなされたものであり、その解決課題は、新規な芳香族複素環誘導体を提供することである。また、それを用いた、発光効率が高く、発光寿命が長く、高温下での使用においても経時変化が小さい有機EL素子を提供することである。また、当該有機EL素子が具備された表示装置及び照明装置を提供することである。
 本発明者は、上記課題を解決すべく、上記問題の原因等について検討した結果、カルバゾール環を含む特定構造を有する芳香族複素環誘導体が、上記課題の解決に有効であることを見出し本発明に至った。
 すなわち、本発明に係る上記課題は、以下の手段により解決される。
 1.陽極と陰極の間に、発光層を含む少なくとも1層の有機層が挟持された有機エレクトロルミネッセンス素子であって、前記有機層のうち少なくとも1層に、下記一般式(1)、(2)、(3)又は(4)で表される構造を有する芳香族複素環誘導体を含有することを特徴とする有機エレクトロルミネッセンス素子。
Figure JPOXMLDOC01-appb-C000016
 (一般式(1)、(2)、(3)及び(4)中、Y、Y及びYは、それぞれ独立に、CR′又は窒素原子を表し、Y、Y又はYの少なくとも一つは窒素原子である。
R′、Ar及びArは、
 水素原子、
 置換若しくは無置換の炭素数1~12のアルキル基、又は、
 置換若しくは無置換の環形成炭素数6~30のアリール基を表す。
 R′、Ar及びArが全て同時に水素原子であることはない。
Xは、酸素原子又は硫黄原子を表す。
Ra及びRbは、それぞれ独立に、置換基を表す。
は、
 単結合、
 置換若しくは無置換の炭素数1~12のアルキレン基、
 置換若しくは無置換の環形成炭素数6~30のアリーレン基、又は
 これらの組み合わせからなる2価の連結基を表す。
は、
 単結合、
 置換若しくは無置換の炭素数1~12のアルキレン基、
 置換若しくは無置換の環形成炭素数6~30のアリーレン基、
 置換若しくは無置換の環形成原子数5~30のヘテロアリーレン基、又は
 これらの組み合わせからなる2価の連結基を表す。
及びRは、それぞれ独立に、
 置換若しくは無置換の炭素数1~12のアルキル基、シアノ基、ハロゲン原子、又は、
 無置換若しくは下記一般式(A-1)又は(A-2)から選択される構造を置換基として有する環形成炭素数6~30のアリール基を表す。
は、
 置換若しくは無置換の炭素数1~12のアルキル基、
 置換若しくは無置換の環形成炭素数6~30のアリール基、又は、
 置換若しくは無置換の環形成原子数5~30のヘテロアリール基を表す。
n1、na1及びnb1は、それぞれ独立に、0~3の整数を表し、
na2は、0~2の整数を表し、
n2、n3、n4及びnb2は、それぞれ独立に、0~4の整数を表す。
 なお、n1~n4、na1、nb1、na2及びnb2がそれぞれ2以上の場合、複数のR、R、Ra及びRbはそれぞれ同一でも異なっていてもよく、隣接するRa及びRb同士は互いに結合し、環構造を形成してもよい。
Figure JPOXMLDOC01-appb-C000017
 一般式(A-1)及び(A-2)中、
 A~A及びA11~A18は、それぞれ独立に、CRc又は窒素原子を表し、
 Rcは、それぞれ独立に、水素原子、置換基又は結合手を表す。
 A~Aのうち一つ、及び、A11~A18のうち一つは、CRcであり、かつRcはR又はRで表される環形成炭素数6~30のアリール基と直接結合する結合手である。
 他のRcは、それぞれ同一でも異なっていてもよく、隣接するRc同士が互いに結合し、環構造を形成してもよい。
 X11は、酸素原子又は硫黄原子を表す。)
 2.前記一般式(1)、(2)、(3)及び(4)において、Lが単結合、フェニレン基、ビフェニレン基又は炭素数2以下のアルキレン基を表すことを特徴とする第1項に記載の有機エレクトロルミネッセンス素子。
 3.前記一般式(1)、(2)、(3)及び(4)において、Lが単結合、フェニレン基、ヘテロアリーレン基又は炭素数2以下のアルキレン基を表すことを特徴とする第1項又は第2項に記載の有機エレクトロルミネッセンス素子。
 4.前記一般式(1)、(2)、(3)及び(4)において、Lが、式(I)で表される前記芳香族複素環誘導体のXを含む縮合環の2位又は4位のいずれかの位置に結合していることを特徴とする第1項から第3項までのいずれか一項に記載の有機エレクトロルミネッセンス素子。
Figure JPOXMLDOC01-appb-C000018
 5.前記一般式(1)及び(2)において、Lが、式(I)で表される前記芳香族複素環誘導体のXを含む縮合環の5位又は7位のいずれかの位置に結合していることを特徴とする第1項から第4項までのいずれか一項に記載の有機エレクトロルミネッセンス素子。
Figure JPOXMLDOC01-appb-C000019
 6.前記一般式(3)及び(4)において、Lが、式(I)で表される前記芳香族複素環誘導体のXを含む縮合環の2位又は4位のいずれかの位置に結合していることを特徴とする第1項から第4項までのいずれか一項に記載の有機エレクトロルミネッセンス素子。
Figure JPOXMLDOC01-appb-C000020
 7.前記一般式(1)、(2)、(3)及び(4)において、Y~Yが、全て窒素原子を表すことを特徴とする第1項から第6項までのいずれか一項に記載の有機エレクトロルミネッセンス素子。
 8.前記一般式(1)、(2)、(3)及び(4)において、Ar及びArが、置換若しくは無置換の環形成炭素数6~30のアリール基を表すことを特徴とする第1項から第7項までのいずれか一項に記載の有機エレクトロルミネッセンス素子。
 9.前記芳香族複素環誘導体を含有する前記有機層が、発光層であることを特徴とする第1項から第8項までのいずれか一項に記載の有機エレクトロルミネッセンス素子。
 10.前記発光層が、前記芳香族複素環誘導体をホスト化合物として含有することを特徴とする第1項から第9項までのいずれか一項に記載の有機エレクトロルミネッセンス素子。
 11.前記発光層が、リン光発光性化合物を含有することを特徴とする第1項から第10項までのいずれか一項に記載の有機エレクトロルミネッセンス素子。
 12.前記発光層が、前記芳香族複素環誘導体とは異なる構造を有するホスト化合物をさらに含有することを特徴とする第1項から第11項までのいずれか一項に記載の有機エレクトロルミネッセンス素子。
 13.第1項から第12項までのいずれか一項に記載の有機エレクトロルミネッセンス素子を具備することを特徴とする表示装置。
 14.第1項から第12項までのいずれか一項に記載の有機エレクトロルミネッセンス素子を具備することを特徴とする照明装置。
 15.第1項の有機エレクトロルミネッセンス素子に記載の一般式(1)、(2)、(3)又は(4)で表される構造を有することを特徴とする芳香族複素環誘導体。
 本発明の上記手段により、新規な芳香族複素環誘導体を提供することができる。また、それを用いた、発光効率が高く、発光寿命が長く、高温下での使用においても経時変化が小さい有機EL素子を提供することができる。また、当該有機EL素子が具備された表示装置及び照明装置を提供することができる。
 本発明の効果の発現機構ないし作用機構については、明確にはなっていないが、以下のように推察している。
 有機EL素子の駆動電圧は小さい方が好ましく、そのためには素子に用いられる化合物の最高被占分子軌道のエネルギー準位(HOMO準位)を高くし、最低空分子軌道のエネルギー準位(LUMO準位)を低くすることで、発光層への電荷の注入性を向上させ、駆動電圧を低下させることができる。
 しかしながら、HOMO準位を高くし、LUMO準位を低くすると、励起一重項エネルギー(Sエネルギー)が小さくなり、励起三重項エネルギー(Tエネルギー)も小さくなってしまう。特に、リン光発光ドーパントに対するホスト化合物として使用する場合には、このTエネルギーの低下が問題となる。
 この問題を解決する手段として、SエネルギーとTエネルギーとの差(△Est)を小さくすることが考えられる。
 △Estを小さくすることによって、HOMO準位を高くし、LUMO準位を低くすることによって小さくなるSエネルギーと同等のエネルギーを確保できるという観点から、Tエネルギーを高く維持できる。△EstとSエネルギー、及びTエネルギーの関係は、下記式で表すことができることからも理解できる。
=S-△Est
 △Estは、分子内の平行スピン間の相互作用を小さくする、すなわち、HOMOが局在化している部位とLUMOが局在化している部位との中心間距離を離すことで小さくすることができる。そこで本発明の化合物においては、HOMOの中心がカルバゾール環上に、LUMOの中心が六員の含窒素複素芳香環部に局在化するように設計し、さらに、それぞれの部位が分子の末端にあることが好ましい。しかし、六員の含窒素複素芳香環は、特に環中の窒素原子数が多いほど無置換では安定性が低いため、適切な置換基を最低限導入する必要がある。
 また、カルバゾール環と六員の含窒素複素芳香環とを連結する部位にアルキレン等のフレキシブルな基を組み込むと分子全体の剛直性が低下し、その結果、分子が膜中で状態変化を起こしやすくなるという問題がある。そこで、本発明の芳香族複素環誘導体においては、カルバゾール環と六員の含窒素複素芳香環との間に、HOMO及びLUMOの局在化部位に影響せず、かつ分子全体の剛直性を向上させる(Xを含有する)縮環構造を導入することによって、上記の問題を解決できた。さらに、(Xを含有する)縮環構造を導入することにより、Tg(ガラス転移点)が向上し、凝集及び結晶化が抑制できるようになり、効率及び寿命の低下を防止、更には高温状態での安定性も向上できるようになったと推測している。
 また、分子の末端にHOMO及びLUMOの局在化中心が来るように設計することで、分子間での電荷のホッピング移動がしやすくなり、結果、経時でのキャリア移動効率の変化を抑制し、寿命を向上させることができた。
 さらには、不必要に分子を大きくすると、昇華性が低下して蒸着が困難になり、生産性が低下してしまうため、蒸着に適した適度な分子量であることが好ましい。
 また(Xを含有する)縮環構造は置換基を導入する際、位置の選択性の高い合成法を用いることが可能である。したがって高い収率で、高純度の化合物を合成することができ、適正なコストで製造することが可能である。
 さらに本発明の化合物はカルバゾール環上の置換基を適切に選択することにより、熱安定性を向上し、長時間の加熱に対して安定した素子性能を発揮することが可能であり、量産において有利である。
本発明の表示装置の構成の一例を示した概略斜視図 図1に示す表示部Aの構成の一例を示した概略斜視図 本発明の有機EL素子を用いた照明装置の一例を示す概略斜視図 本発明の有機EL素子を用いた照明装置の一例を示す概略断面図
 本発明の有機エレクトロルミネッセンス素子は、陽極と陰極の間に、発光層を含む少なくとも1層の有機層が挟持された有機エレクトロルミネッセンス素子であって、前記有機層のうち少なくとも1層に、前記一般式(1)、(2)、(3)又は(4)で表される構造を有する芳香族複素環誘導体を含有することを特徴とする。この特徴は、請求項1から請求項15までの請求項に係る発明に共通する技術的特徴である。
 本発明の実施態様としては、本発明の効果発現の観点から、前記一般式(1)、(2)、(3)及び(4)において、Lが単結合、フェニレン基、ビフェニレン基又は炭素数2以下のアルキレン基を表すことが、ガラス転移温度(Tg)上昇による熱安定の向上の効果が得られることから好ましい。また前記一般式(1)、(2)、(3)及び(4)において、Lが単結合、フェニレン基、ヘテロアリーレン基又は炭素数2以下のアルキレン基を表すことが、Tg上昇による熱安定の向上の効果が得られることから、好ましい。
 さらに、本発明においては、前記一般式(1)、(2)、(3)及び(4)において、Lが、前記式(I)で表される前記芳香族複素環誘導体のXを含む縮合環の2位又は4位のいずれかの位置に結合していることが好ましい。これにより、選択性の高い合成法を用いることができ、化合物を高収率、高純度で得られる。
 また、前記一般式(1)及び(2)において、Lが、前記式(I)で表される前記芳香族複素環誘導体のXを含む縮合環の5位又は7位のいずれかの位置に結合していることが好ましい。これにより、選択性の高い合成法を用いることができ、化合物を高収率、高純度で得られる。
 また、本発明においては、前記一般式(3)及び(4)において、Lが、前記式(I)で表される前記芳香族複素環誘導体のXを含む縮合環の2位又は4位のいずれかの位置に結合していることが好ましい。これにより、選択性の高い合成法を用いることができ、化合物を高収率、高純度で得られる。
 本発明の実施態様としては、本発明の効果発現の観点から、前記一般式(1)、(2)、(3)及び(4)において、Y~Yが、全て窒素原子を表すことが好ましい。また、前記一般式(1)、(2)、(3)及び(4)において、Ar及びArが、置換若しくは無置換の環形成炭素数6~30のアリール基を表すことが、化合物の励起状態の安定化の効果が得られることから、好ましい。
 さらに、本発明においては、前記芳香族複素環誘導体を含有する前記有機層が、発光層であることが好ましい。これにより、高効率化、高寿命化の効果が得られる。また、前記発光層が、前記芳香族複素環誘導体をホスト化合物として含有することが好ましい。さらに前記発光層が、リン光発光性化合物を含有することが高効率化、高寿命化の観点から好ましい。
 また、前記発光層が、前記芳香族複素環誘導体とは異なる構造を有するホスト化合物をさらに含有することが、キャリアバランスの調整により再結合確率の向上の効果が得られることから、好ましい。
 本発明の有機EL素子は、照明装置及び表示装置に好適に具備され得る。
 さらに、有機エレクトロルミネッセンス素子に含有される化合物が、前記一般式(1)、(2)、(3)又は(4)で表される構造を有する化合物であることが好ましい。
 以下、本発明とその構成要素、及び本発明を実施するための形態・態様について詳細な説明をする。なお、本願において、「~」は、その前後に記載される数値を下限値及び上限値として含む意味で使用する。
 本発明の有機エレクトロルミネッセンス素子は、少なくとも1層の有機層に一般式(1)、(2)、(3)又は(4)で表される芳香族複素環誘導体を含むことを特徴とする。
 以下に本発明を実施するための形態について詳細に説明するが、本発明はこれらに限定されるものではない。
 《一般式(1)、(2)、(3)、及び(4)で表される芳香族複素環誘導体》
 一般式(1)、(2)、(3)、及び(4)において、Y、Y及びYはそれぞれ独立に、CR′又は窒素原子を表し、少なくとも一つは窒素原子である。
 より好ましくはY、Y及びYの内、二つ又は三つが窒素原子であり、より好ましくはY、Y及びYが全て窒素原子である。
 R′、Ar及びArは、それぞれ独立に、水素原子、置換若しくは無置換の炭素数1~12のアルキル基、又は、置換若しくは無置換の環形成炭素数6~30のアリール基を表す。R′、Ar及びArが全て同時に水素原子であることはない。
 R′、Ar又はArで表される炭素数1~12のアルキル基は、本発明の化合物の機能を阻害しない範囲であれば、直鎖状であっても分岐構造を有していてもよく、また、シクロアルキル基のように環状構造であってもよい。
 炭素数1~12のアルキル基の例としては、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基、ウンデシル基、ドデシル基、イソプロピル基、ネオペンチル基、シクロプロピル基、シクロブチル基、シクロペンチル基、シクロヘキシル基、シクロオクチル基、等が挙げられる。
 R′、Ar又はArで表される環形成炭素数6~30のアリール基(芳香族炭化水素環基ともいう)としては、非縮合であっても縮合環であってもよく、例えば、フェニル基、ナフチル基、アントリル基、フェナントリル基、ピレニル基、クリセニル基、ビフェニル基、ターフェニル基、クォーターフェニル基、フルオランテニル基、トリフェニレニル基、フルオレニル基、アズレニル基、アセナフテニル基、インデニル基、インデノフルオレン環等が挙げられる。
 好ましくは、本発明の化合物の励起三重項エネルギー準位(Tエネルギー準位)を適度に保つ目的から、フェニル基、ナフチル基、フェナントリル基、ビフェニル基、ターフェニル基、クォーターフェニル基、トリフェニレニル基、フルオレニル基、が好ましい。
 上記のアルキル基及びアリール基は、本発明の化合物の機能を阻害しない範囲で各々更に置換基を有していてもよく、置換基の具体例としては、後述のRa又はRbで表される置換基と同様の基が挙げられる。
 好ましくは、R′は水素原子又はアルキル基であり、より好ましくは水素原子である。
 好ましくはAr及びArはアルキル基又はアリール基であり、より好ましくはAr及びArは炭素数4以下のアルキル基又はアリール基である。
 Ra及びRbは、それぞれ独立に、置換基を表す。
 Ra及びRbで表される置換基としては、本発明の化合物の機能を阻害しない範囲であれば特に限定はなく、また、本発明の効果発現性の微調整のために積極的に用いることができる。
 置換基の具体例としては、例えば、アルキル基(例えば、メチル基、エチル基、プロピル基、イソプロピル基、tert-ブチル基、ペンチル基、ヘキシル基、オクチル基、ドデシル基、トリデシル基、テトラデシル基、ペンタデシル基等)、シクロアルキル基(例えば、シクロペンチル基、シクロヘキシル基等)、アルケニル基(例えば、ビニル基、アリル基等)、アルキニル基(例えば、エチニル基、プロパルギル基等)、芳香族炭化水素基(芳香族炭化水素環基、芳香族炭素環基、アリール基等ともいい、例えば、フェニル基、p-クロロフェニル基、メシチル基、トリル基、キシリル基、ナフチル基、アントリル基、アズレニル基、アセナフテニル基、フルオレニル基、フェナントリル基、インデニル基、ピレニル基、ビフェニリル基等)、芳香族複素環基(例えば、ピリジル基、ピラジル基、ピリミジニル基、トリアジル基、フリル基、ピロリル基、イミダゾリル基、ベンゾイミダゾリル基、ピラゾリル基、ピラジニル基、トリアゾリル基(例えば、1,2,4-トリアゾール-1-イル基、1,2,3-トリアゾール-1-イル基等)、オキサゾリル基、ベンゾオキサゾリル基、チアゾリル基、イソオキサゾリル基、イソチアゾリル基、フラザニル基、チエニル基、キノリル基、ベンゾフリル基、ジベンゾフリル基、ベンゾチエニル基、ジベンゾチエニル基、インドリル基、カルバゾリル基、アザカルバゾリル基(前記カルバゾリル基のカルバゾール環を構成する炭素原子の任意の一つ以上が窒素原子で置き換わったものを示す)、キノキサリニル基、ピリダジニル基、トリアジニル基、キナゾリニル基、フタラジニル基等)、複素環基(例えば、ピロリジル基、イミダゾリジル基、モルホリル基、オキサゾリジル基等)、アルコキシ基(例えば、メトキシ基、エトキシ基、プロピルオキシ基、ペンチルオキシ基、ヘキシルオキシ基、オクチルオキシ基、ドデシルオキシ基等)、シクロアルコキシ基(例えば、シクロペンチルオキシ基、シクロヘキシルオキシ基等)、アリールオキシ基(例えば、フェノキシ基、ナフチルオキシ基等)、アルキルチオ基(例えば、メチルチオ基、エチルチオ基、プロピルチオ基、ペンチルチオ基、ヘキシルチオ基、オクチルチオ基、ドデシルチオ基等)、シクロアルキルチオ基(例えば、シクロペンチルチオ基、シクロヘキシルチオ基等)、アリールチオ基(例えば、フェニルチオ基、ナフチルチオ基等)、アルコキシカルボニル基(例えば、メチルオキシカルボニル基、エチルオキシカルボニル基、ブチルオキシカルボニル基、オクチルオキシカルボニル基、ドデシルオキシカルボニル基等)、アリールオキシカルボニル基(例えば、フェニルオキシカルボニル基、ナフチルオキシカルボニル基等)、スルファモイル基(例えば、アミノスルホニル基、メチルアミノスルホニル基、ジメチルアミノスルホニル基、ブチルアミノスルホニル基、ヘキシルアミノスルホニル基、シクロヘキシルアミノスルホニル基、オクチルアミノスルホニル基、ドデシルアミノスルホニル基、フェニルアミノスルホニル基、ナフチルアミノスルホニル基、2-ピリジルアミノスルホニル基等)、アシル基(例えば、アセチル基、エチルカルボニル基、プロピルカルボニル基、ペンチルカルボニル基、シクロヘキシルカルボニル基、オクチルカルボニル基、2-エチルヘキシルカルボニル基、ドデシルカルボニル基、フェニルカルボニル基、ナフチルカルボニル基、ピリジルカルボニル基等)、アシルオキシ基(例えば、アセチルオキシ基、エチルカルボニルオキシ基、ブチルカルボニルオキシ基、オクチルカルボニルオキシ基、ドデシルカルボニルオキシ基、フェニルカルボニルオキシ基等)、アミド基(例えば、メチルカルボニルアミノ基、エチルカルボニルアミノ基、ジメチルカルボニルアミノ基、プロピルカルボニルアミノ基、ペンチルカルボニルアミノ基、シクロヘキシルカルボニルアミノ基、2-エチルヘキシルカルボニルアミノ基、オクチルカルボニルアミノ基、ドデシルカルボニルアミノ基、フェニルカルボニルアミノ基、ナフチルカルボニルアミノ基等)、カルバモイル基(例えば、アミノカルボニル基、メチルアミノカルボニル基、ジメチルアミノカルボニル基、プロピルアミノカルボニル基、ペンチルアミノカルボニル基、シクロヘキシルアミノカルボニル基、オクチルアミノカルボニル基、2-エチルヘキシルアミノカルボニル基、ドデシルアミノカルボニル基、フェニルアミノカルボニル基、ナフチルアミノカルボニル基、2-ピリジルアミノカルボニル基等)、ウレイド基(例えば、メチルウレイド基、エチルウレイド基、ペンチルウレイド基、シクロヘキシルウレイド基、オクチルウレイド基、ドデシルウレイド基、フェニルウレイド基ナフチルウレイド基、2-ピリジルアミノウレイド基等)、スルフィニル基(例えば、メチルスルフィニル基、エチルスルフィニル基、ブチルスルフィニル基、シクロヘキシルスルフィニル基、2-エチルヘキシルスルフィニル基、ドデシルスルフィニル基、フェニルスルフィニル基、ナフチルスルフィニル基、2-ピリジルスルフィニル基等)、アルキルスルホニル基(例えば、メチルスルホニル基、エチルスルホニル基、ブチルスルホニル基、シクロヘキシルスルホニル基、2-エチルヘキシルスルホニル基、ドデシルスルホニル基等)、アリールスルホニル基又はヘテロアリールスルホニル基(例えば、フェニルスルホニル基、ナフチルスルホニル基、2-ピリジルスルホニル基等)、アミノ基(例えば、アミノ基、エチルアミノ基、ジメチルアミノ基、ブチルアミノ基、シクロペンチルアミノ基、2-エチルヘキシルアミノ基、ドデシルアミノ基、アニリノ基、ナフチルアミノ基、2-ピリジルアミノ基等)、ハロゲン原子(例えば、フッ素原子、塩素原子、臭素原子等)、フッ化炭化水素基(例えば、フルオロメチル基、トリフルオロメチル基、ペンタフルオロエチル基、ペンタフルオロフェニル基等)、シアノ基、ニトロ基、ヒドロキシ基、メルカプト基、シリル基(例えば、トリメチルシリル基、トリイソプロピルシリル基、トリフェニルシリル基、フェニルジエチルシリル基等)、ホスホノ基等が挙げられる。
 これらの置換基は、上記の置換基によって更に置換されていてもよく、更に、これらの置換基は複数が互いに結合して環構造を形成してもよい。
 また、Ra及びRbがそれぞれ複数存在する場合は、Ra及びRはそれぞれ同じでも異なっていてもよく、隣接するRa又はRb同士が互いに結合し、環構造を形成してもよい。
 Ra及びRbは、好ましくは、アルキル基、アリール基又はヘテロアリール基である。
 Lは、単結合、置換若しくは無置換の炭素数1~12のアルキレン基、置換若しくは無置換の環形成炭素数6~30のアリーレン基、又はこれらの組み合わせからなる2価の連結基を表す。
 Lは、単結合、置換若しくは無置換の炭素数1~12のアルキレン基、置換若しくは無置換の環形成炭素数6~30のアリーレン基、置換若しくは無置換の環形成原子数5~30のヘテロアリーレン基又はこれらの組み合わせからなる2価の連結基を表す。
 L及びLで表される炭素数1~12のアルキレン基としては、本発明の化合物の機能を阻害しない範囲であれば、直鎖状であっても分岐構造を有していてもよく、また、シクロアルキレン基のように環状構造であってもよい。
 炭素数1~12のアルキレン基の具体例としては、前述のR′、Ar又はArで示した炭素数1~12のアルキル基から、水素原子を一つ除くことにより導かれる2価の基が挙げられる。
 L及びLで表される環形成炭素数6~30のアリーレン基は、非縮合であっても縮合環であってもよく、環形成炭素数6~30のアリーレン基の具体例としては、前述のR′、Ar又はArで示した環形成炭素数6~30のアリール基から、水素原子を一つ除くことにより導かれる2価の基が挙げられる。
 本発明の化合物のTエネルギー準位を適度に保つ目的から、アリーレン基としては、o-フェニレン基、m-フェニレン基、p-フェニレン基、ナフタレンジイル基、フェナントレンジイル基、ビフェニレン基、ターフェニレン基、クォーターフェニレン基、トリフェニレンジイル基、フルオレンジイル基が好ましい。
 Lで表される環形成原子数5~30のヘテロアリーレン基は、非縮合であっても縮合環であってもよく、好ましくは環を形成するヘテロ原子として、B、N、O、S、Si、P又はSeのいずれかを含み、より好ましくは、N、O、S又はSiのいずれかを含む。また、形成される環は、非縮合の5員環、非縮合の6員環、若しくは5員環又は6員環から構成される縮合環が好ましい。
 環形成原子数5~30のヘテロアリーレン基の例としては、ピリジン環、ピラジン環、ピリミジン環、ピペリジン環、トリアジン環、ピロール環、イミダゾール環、ピラゾール環、トリアゾール環、インドール環、イソインドール環、ベンゾイミダゾール環、フラン環、ベンゾフラン環、イソベンゾフラン環、ジベンゾフラン環、チオフェン環、ベンゾチオフェン環、ジベンゾチオフェン環、シロール環、ベンゾシロール環、ジベンゾシロール環、キノリン環、イソキノリン環、キノキサリン環、フェナントリジン環、フェナントロリン環、アクリジン環、フェナジン環、フェノキサジン環、フェノチアジン環、フェノキサチイン環、ピリジン環、ピラジン環、ピリミジン環、ピリダジン環、トリアジン環、アクリジン環、オキサゾール環、オキサジアゾール環、ベンゾオキサゾール環、チアゾール環、チアジアゾール環、ベンゾチアゾール環、ベンゾジフラン環、チエノチオフェン環、ベンゾジチオフェン環、サイクラジン環、キンドリン環、テペニジン環、キニンドリン環、トリフェノジチアジン環、トリフェノジオキサジン環、フェナントラジン環、アントラジン環、ペリミジン環、ナフトフラン環、ナフトチオフェン環、ベンゾジチオフェン環、ナフトジフラン環、ナフトジチオフェン環、アントラフラン環、アントラジフラン環、アントラチオフェン環、アントラジチオフェン環、チアントレン環、フェノキサチイン環、ナフトチオフェン環、カルバゾール環、カルボリン環、ジアザカルバゾール環(カルバゾール環を構成する炭素原子の任意の二つ以上が窒素原子で置き換わったものを表す)、アザジベンゾフラン環(ジベンゾフラン環を構成する炭素原子の任意の一つ以上が窒素原子で置き換わったものを表す)、アザジベンゾチオフェン環(ジベンゾチオフェン環を構成する炭素原子の任意の一つ以上が窒素原子で置き換わったものを表す)、インドロカルバゾール環、インデノインドール環、等から水素原子を二つ除くことにより導かれる2価の基が挙げられる。
 より好ましいヘテロアリーレン基としては、ピリジン環、ピラジン環、ピリミジン環、ピペリジン環、トリアジン環、ジベンゾフラン環、ジベンゾチオフェン環、カルバゾール環、カルボリン環、ジアザカルバゾール環等から水素原子を二つ除くことにより導かれる2価の基が挙げられる。
 上記のアルキレン基、アリーレン基及びヘテロアリーレン基は、本発明の化合物の機能を阻害しない範囲で各々更に置換基を有していてもよく、置換基としては、前述のR′、Ar又はArで示した置換基と同様である。
 L及びLは、さらに好ましくは単結合、フェニレン基、ヘテロアリーレン基、又は炭素数2以下のアルキレン基である。
 R及びRはそれぞれ独立に、置換若しくは無置換の炭素数1~12のアルキル基、シアノ基、ハロゲン原子、又は、無置換若しくは下記一般式(A-1)又は(A-2)から選択される構造を置換基として有する環形成炭素数6~30のアリール基を表す。
 R又はRで表される炭素数1~12のアルキル基は、本発明の化合物の機能を阻害しない範囲であれば、直鎖状であっても分岐構造を有していてもよく、また、シクロアルキル基のように環状構造であってもよい。
 炭素数1~12のアルキル基としては、前述のR′、Ar又はArで示した炭素数1~12のアルキル基と同様である。
 R又はRで表されるハロゲン原子としては、例えば、フッ素原子、塩素原子、臭素原子、ヨウ素原子等が挙げられる。
 R又はRで表される環形成炭素数6~30のアリール基としては、非縮合であっても縮合環であってもよく、環形成炭素数6~30のアリール基の具体例としては、前述のR′、Ar又はArで表される環形成炭素数6~30のアリール基と同様の基が挙げられる。
 R及びRは、置換基として存在しないか、置換基として存在する場合、それぞれ、炭素数4以下のアルキル基、又はアリール基であることが好ましい。
 R又はRで表されるアリール基は、下記一般式(A-1)又は(A-2)から選択される構造を置換基として有してもよい。
Figure JPOXMLDOC01-appb-C000021
 一般式(A-1)において、A~Aはそれぞれ独立に、CRc又は窒素原子を表す。ただし、A~Aのうち一つは、CRc且つ、該RcがR又はRで表されるアリール基と直接結合する単結合手を表す。
 好ましくはA~Aの内、3~5個がCRcであり、より好ましくは一般式(A-1)で表される構造が、ピリジン環、ピリミジン環又はトリアジン環である。
 一般式(A-2)において、A11~A18はそれぞれ独立に、CRc又は窒素原子を表す。ただし、A11~A18のうち一つは、CRc且つ、該RcがR又はRで表されるアリール基と直接結合する単結合手を表す。
 好ましくはA11~A18の内、6~8個がCRcであり、より好ましくは7個又は8個がCRcであり、さらに好ましくは、A11~A18が全てCRcである。
 Rcは、上記結合手の他に水素原子又は置換基を表し、Rcで表される置換基は本発明の化合物の機能を阻害しない範囲であれば特に限定はなく、また、本発明の効果発現性の微調整のために積極的に用いることができる。
 Rcで表される置換基としては、前述の一般式(1)、(2)、(3)及び(4)におけるRa又はRbで示した置換基と同様である。
 複数のRcはそれぞれ同一でも異なっていてもよく、隣接するRc同士が互いに結合し、環構造を形成してもよい。
 好ましくは、Rcはアルキル基、アリール基、又はヘテロアリール基である。
 一般式(1)、(2)、(3)及び(4)において、Rは置換若しくは無置換の炭素数1~12のアルキル基、置換若しくは無置換の環形成炭素数6~30のアリール基、又は、置換若しくは無置換の環形成原子数5~30のヘテロアリール基を表す。
 炭素数1~12のアルキル基としては、前述のR′、Ar又はArで示した炭素数1~12のアルキル基と同様である。
 環形成炭素数6~30のアリール基としては、前述のR′、Ar又はArで示した環形成炭素数6~30のアリール基と同様である。
 より好ましいアリール基としては、本発明の化合物の励起三重項エネルギー準位(Tエネルギー準位)を適度に保つ目的から、フェニル基、ナフチル基、フェナントリル基、ビフェニル基、ターフェニル基、クォーターフェニル基、トリフェニレニル基、フルオレニル基、が挙げられる。
 環形成原子数5~30のヘテロアリール基(芳香族複素環基)は、非縮合であっても縮合環であってもよく、好ましくは環を形成するヘテロ原子として、B、N、O、S、Si、P又はSeのいずれかを含み、より好ましくは、N、O、S又はSiのいずれかを含む。また、形成される環は、非縮合の5員環、非縮合の6員環、若しくは5員環又は6員環から構成される縮合環が好ましい。
 環形成原子数5~30のヘテロアリール基の例としては、ピリジン環、ピラジン環、ピリミジン環、ピペリジン環、トリアジン環、ピロール環、イミダゾール環、ピラゾール環、トリアゾール環、インドール環、イソインドール環、ベンゾイミダゾール環、フラン環、ベンゾフラン環、イソベンゾフラン環、ジベンゾフラン環、チオフェン環、ベンゾチオフェン環、ジベンゾチオフェン環、シロール環、ベンゾシロール環、ジベンゾシロール環、キノリン環、イソキノリン環、キノキサリン環、フェナントリジン環、フェナントロリン環、アクリジン環、フェナジン環、フェノキサジン環、フェノチアジン環、フェノキサチイン環、ピリジン環、ピラジン環、ピリミジン環、ピリダジン環、トリアジン環、アクリジン環、オキサゾール環、オキサジアゾール環、ベンゾオキサゾール環、チアゾール環、チアジアゾール環、ベンゾチアゾール環、ベンゾジフラン環、チエノチオフェン環、ベンゾジチオフェン環、サイクラジン環、キンドリン環、テペニジン環、キニンドリン環、トリフェノジチアジン環、トリフェノジオキサジン環、フェナントラジン環、アントラジン環、ペリミジン環、ナフトフラン環、ナフトチオフェン環、ベンゾジチオフェン環、ナフトジフラン環、ナフトジチオフェン環、アントラフラン環、アントラジフラン環、アントラチオフェン環、アントラジチオフェン環、チアントレン環、フェノキサチイン環、ナフトチオフェン環、カルバゾール環、カルボリン環、ジアザカルバゾール環(カルバゾール環を構成する炭素原子の任意の二つ以上が窒素原子で置き換わったものを表す)、アザジベンゾフラン環(ジベンゾフラン環を構成する炭素原子の任意の一つ以上が窒素原子で置き換わったものを表す)、アザジベンゾチオフェン環(ジベンゾチオフェン環を構成する炭素原子の任意の一つ以上が窒素原子で置き換わったものを表す)、インドロカルバゾール環、インデノインドール環、等から水素原子を一つ除くことにより導かれる基が挙げられる。
 より好ましいヘテロアリール基としては、ピリジン環、ピラジン環、ピリミジン環、ピペリジン環、トリアジン環、ジベンゾフラン環、ジベンゾチオフェン環、カルバゾール環、カルボリン環、ジアザカルバゾール環等から水素原子を一つ除くことにより導かれる基が挙げられる。
 上記のアルキル基、アリール基及びヘテロアリール基は、本発明の化合物の機能を阻害しない範囲で各々更に置換基を有していてもよく、置換基としては、前述のR′、Ar又はArで示した置換基と同様である。
 一般式(1)、(2)、(3)及び(4)において、n1、na1及びnb1はそれぞれ独立に、0~3の整数を表し、na2は0~2の整数を表し、n2、n3、n4及びnb2はそれぞれ独立に、0~4の整数を表す。
 より好ましくは、n1~n4は1を表し、na1、nb1、na2及びnb2は1を表す。
 一般式(1)、(2)、(3)及び(4)において、L又はLが結合するXを含む縮合環の好ましい結合位置について説明する。なお、Xを含む縮合環における結合位置は、式(I)で示す番号のとおりである。
Figure JPOXMLDOC01-appb-C000022
 一般式(1)において、Lは好ましくは、Xを含む縮合環の2位、3位又は4位のいずれかの位置に結合し、より好ましくは2位又は4位である。Lは好ましくは、5位、6位又は7位のいずれかの位置に結合し、より好ましくは5位又は7位である。
 一般式(2)において、Lは好ましくは、Xを含む縮合環の2位、3位又は4位のいずれかの位置に結合し、より好ましくは2位又は4位である。Lは好ましくは、5位、6位又は7位のいずれかの位置に結合し、より好ましくは5位又は7位である。
 一般式(3)において、Lは好ましくは、Xを含む縮合環の2位、3位又は4位のいずれかの位置に結合し、より好ましくは2位又は4位である。Lは好ましくは、2位、3位又は4位のいずれかの位置に結合し、より好ましくは2位又は4位である。
 一般式(4)において、Lは好ましくは、Xを含む縮合環の2位、3位又は4位のいずれかの位置に結合し、より好ましくは2位又は4位である。Lは好ましくは、2位、3位又は4位のいずれかの位置に結合し、より好ましくは2位又は4位である。
 次に、一般式(1)又は(3)において、Lが結合するカルバゾール環の好ましい結合位置について説明する。なお、カルバゾール環における結合位置は、式(II)で示す番号のとおりである。
Figure JPOXMLDOC01-appb-C000023
 一般式(1)において、Lは好ましくは、カルバゾール環の2位又は3位に結合し、より好ましくは3位に結合する。
 一般式(3)において、Lは好ましくは、カルバゾール環の2位又は3位に結合し、より好ましくは3位に結合する。
 なお、一般式(1)、(2)、(3)及び(4)におけるL及びLの結合位置の好ましさは、本発明の化合物の機能発現の観点に加え、合成ステップ数、反応のしやすさ、精製のしやすさ、原料のコスト等、より安価に安定して化合物を提供するという合成上の観点も含まれている。
 一般式(1)、(2)、(3)及び(4)で表される芳香族複素環誘導体は、より好ましくは下記一般式(1-1)~(1-4)、(2-1)~(2-4)、(3-1)、(3-2)、(4-1)、及び(4-2)で表される。
Figure JPOXMLDOC01-appb-C000024
Figure JPOXMLDOC01-appb-C000025
Figure JPOXMLDOC01-appb-C000026
 一般式(1-1)~(1-4)、(2-1)~(2-4)、(3-1)、(3-2)、(4-1)、及び(4-2)における、Y、Y、Y、Ar、Ar、X、Ra、Rb、L、L、R、R、R、n1~n4、na1、nb1、na2及びnb2は、前述の一般式(1)、(2)、(3)及び(4)におけるY、Y、Y、Ar、Ar、X、Ra、Rb、L、L、R、R、R、n1~n4、na1、nb1、na2及びnb2と同義である。
 一般式(1)、(2)、(3)及び(4)で表される構造を有する化合物の具体例を下記に示すが、これらに限定されない。なお、一般式(1)、(2)、(3)及び(4)は、さらに一般式(A1)~一般式(P3)を用いて以下に示した。
 一般式(A1)~一般式(P3)における、Y、Y、Y、Ar、Ar、X、Ra、Rb、L、L、R、R、Rは、前述の一般式(1)、(2)、(3)及び(4)におけるY、Y、Y、Ar、Ar、X、Ra、Rb、L、L、R、R、Rと同義である。
 表中、L、Lの欄の「-」は単結合であることを表し、RA、Rb、R、Rの欄の「-」は置換基が存在しないことを表す。また、表中の括弧内の数値は、置換基の結合位置を表す。Ar、Arの欄の「-」は、Ar、Arが水素原子であることを表す。
Figure JPOXMLDOC01-appb-C000027
Figure JPOXMLDOC01-appb-C000028
Figure JPOXMLDOC01-appb-C000029
Figure JPOXMLDOC01-appb-C000030
Figure JPOXMLDOC01-appb-C000031
Figure JPOXMLDOC01-appb-C000032
Figure JPOXMLDOC01-appb-C000033
Figure JPOXMLDOC01-appb-C000034
Figure JPOXMLDOC01-appb-C000035
Figure JPOXMLDOC01-appb-C000036
Figure JPOXMLDOC01-appb-C000037
Figure JPOXMLDOC01-appb-C000038
Figure JPOXMLDOC01-appb-C000039
Figure JPOXMLDOC01-appb-C000040
Figure JPOXMLDOC01-appb-C000041
Figure JPOXMLDOC01-appb-C000042
Figure JPOXMLDOC01-appb-C000043
Figure JPOXMLDOC01-appb-C000044
Figure JPOXMLDOC01-appb-C000045
Figure JPOXMLDOC01-appb-C000046
Figure JPOXMLDOC01-appb-C000047
Figure JPOXMLDOC01-appb-C000048
Figure JPOXMLDOC01-appb-C000049
Figure JPOXMLDOC01-appb-C000050
Figure JPOXMLDOC01-appb-C000051
Figure JPOXMLDOC01-appb-C000052
Figure JPOXMLDOC01-appb-C000053
Figure JPOXMLDOC01-appb-C000054
Figure JPOXMLDOC01-appb-C000055
Figure JPOXMLDOC01-appb-C000056
Figure JPOXMLDOC01-appb-C000057
Figure JPOXMLDOC01-appb-C000058
Figure JPOXMLDOC01-appb-C000059
Figure JPOXMLDOC01-appb-C000060
Figure JPOXMLDOC01-appb-C000061
Figure JPOXMLDOC01-appb-C000062
Figure JPOXMLDOC01-appb-C000063
Figure JPOXMLDOC01-appb-C000064
Figure JPOXMLDOC01-appb-C000065
Figure JPOXMLDOC01-appb-C000066
Figure JPOXMLDOC01-appb-C000067
Figure JPOXMLDOC01-appb-C000068
Figure JPOXMLDOC01-appb-C000069
Figure JPOXMLDOC01-appb-C000070
Figure JPOXMLDOC01-appb-C000071
Figure JPOXMLDOC01-appb-C000072
Figure JPOXMLDOC01-appb-C000073
Figure JPOXMLDOC01-appb-C000074
Figure JPOXMLDOC01-appb-C000075
Figure JPOXMLDOC01-appb-C000076
Figure JPOXMLDOC01-appb-C000077
Figure JPOXMLDOC01-appb-C000078
Figure JPOXMLDOC01-appb-C000079
Figure JPOXMLDOC01-appb-C000080
Figure JPOXMLDOC01-appb-C000081
Figure JPOXMLDOC01-appb-C000082
Figure JPOXMLDOC01-appb-C000083
Figure JPOXMLDOC01-appb-C000084
Figure JPOXMLDOC01-appb-C000085
Figure JPOXMLDOC01-appb-C000086
Figure JPOXMLDOC01-appb-C000087
Figure JPOXMLDOC01-appb-C000088
Figure JPOXMLDOC01-appb-C000089
Figure JPOXMLDOC01-appb-C000090
Figure JPOXMLDOC01-appb-C000091
Figure JPOXMLDOC01-appb-C000092
Figure JPOXMLDOC01-appb-C000093
Figure JPOXMLDOC01-appb-C000094
Figure JPOXMLDOC01-appb-C000095
Figure JPOXMLDOC01-appb-C000096
Figure JPOXMLDOC01-appb-C000097
Figure JPOXMLDOC01-appb-C000098
Figure JPOXMLDOC01-appb-C000099
Figure JPOXMLDOC01-appb-C000100
Figure JPOXMLDOC01-appb-C000101
Figure JPOXMLDOC01-appb-C000102
Figure JPOXMLDOC01-appb-C000103
Figure JPOXMLDOC01-appb-C000104
Figure JPOXMLDOC01-appb-C000105
Figure JPOXMLDOC01-appb-C000106
Figure JPOXMLDOC01-appb-C000107
Figure JPOXMLDOC01-appb-C000108
Figure JPOXMLDOC01-appb-C000109
Figure JPOXMLDOC01-appb-C000110
Figure JPOXMLDOC01-appb-C000111
Figure JPOXMLDOC01-appb-C000112
Figure JPOXMLDOC01-appb-C000113
Figure JPOXMLDOC01-appb-C000114
Figure JPOXMLDOC01-appb-C000115
Figure JPOXMLDOC01-appb-C000116
Figure JPOXMLDOC01-appb-C000117
Figure JPOXMLDOC01-appb-C000118
Figure JPOXMLDOC01-appb-C000119
Figure JPOXMLDOC01-appb-C000120
Figure JPOXMLDOC01-appb-C000121
Figure JPOXMLDOC01-appb-C000122
Figure JPOXMLDOC01-appb-C000123
Figure JPOXMLDOC01-appb-C000124
Figure JPOXMLDOC01-appb-C000125
Figure JPOXMLDOC01-appb-C000126
Figure JPOXMLDOC01-appb-C000127
Figure JPOXMLDOC01-appb-C000128
 本発明の複素環誘導体は、昇華精製時の昇華のしやすさの観点から、分子量は800以下であることが好ましく、より好ましくは720以下である。
 本発明の化合物は、公知の合成法、例えば、J.Org.Chem.,42,1821(1977)、J.Am.Chem.Soc.,101,4992(1977)、Chem.Rev.,95,2457(1995)、J.Org.Chem.,53,918(1988)等に記載の炭素―炭素結合を形成するPdを用いたクロスカップリング反応、Angew.Chem.Int.Ed.1998,37,2046等に記載のPdを用いた炭素―窒素結合を形成するクロスカップリング反応、Angew.Chem.Int.Ed.2003,42,5400に記載のCuを用いた炭素―窒素結合形成反応を用いることにより合成することができる。
 以下に具体的な合成例として例示化合物619の合成を示す。
Figure JPOXMLDOC01-appb-C000129
 (中間体1の合成)
 窒素雰囲気下、ジベンゾフラン33.6g(200mmol)をTHF700mlに溶解し、-70℃以下でn-ブチルリチウム(1.6mol/l ヘキサン溶液)を350ml加えた。添加終了後、-70℃以下で1時間撹拌したのち、反応液を0℃まで昇温させ、1時間撹拌したのち、再び―70℃以下まで冷却し、1,2-ジブロモエタン45g(300mmol)を滴下した。滴下終了後、室温で12時間撹拌したのち、反応液に水を加え、酢酸エチルで抽出した。有機層を水洗し、溶媒を減圧下で除去して得られる残留物をヘキサンで再結晶し、中間体1を37.1g得た。収率は75%であった。NMR、マススペクトルで構造を確認した。
 (中間体2の合成)
 窒素雰囲気下24.7gの中間体1(100mmol)を200mlのN,N-ジメチルアセトアミドに溶解し、カルバゾール17.6g(105mmol)、銅粉末14.3g(150mmol)、炭酸カリウム27.6g(200mmol)を加え170℃で12時間撹拌した。反応液を冷却したのち、水500mlに開け、析出する固体をろ取した。ろ取した固体を酢酸エチルに溶解し、不溶物をろ過して除去したのち、溶媒を減圧下で除去して得られる固体をメタノールで再結晶し、33.3gの中間体2を得た。収率は80%であった。NMR、マススペクトルで構造を確認した。
 (例示化合物619の合成)
窒素雰囲気下、16.7gの中間体2(50mmol)をTHF300mlに溶解し、-70℃以下でn-ブチルリチウム(1.6mol/l ヘキサン溶液)を90ml加えた。添加終了後、-70℃以下で1時間撹拌したのち、反応液を0℃まで昇温させ、1時間撹拌したのち、再び―70℃以下まで冷却し、1-クロロ-3,5-ジフェニルトリアジン14.7g(55mmol)をTHF80mlに溶解した溶液を添加した。添加終了後、滴下終了後、室温で6時間撹拌したのち、反応液に水を加え、析出する固体をろ取し、シリカゲルカラムクロマトグラフィ―で精製したのち、メタノールで再結晶し、さらにアセトニトリルで再結晶することにより25.4gの例示化合物619を得た。収率は90%であった。NMR,マススペクトルで構造を確認した。
 その他の本発明の化合物も同様の方法で合成することができる。
 《有機EL素子の構成層》
 本発明の有機EL素子における代表的な素子構成としては、以下の構成を上げることができるが、これらに限定されるものではない。
(1)陽極/発光層/陰極
(2)陽極/発光層/電子輸送層/陰極
(3)陽極/正孔輸送層/発光層/陰極
(4)陽極/正孔輸送層/発光層/電子輸送層/陰極
(5)陽極/正孔輸送層/発光層/電子輸送層/電子注入層/陰極
(6)陽極/正孔注入層/正孔輸送層/発光層/電子輸送層/陰極
(7)陽極/正孔注入層/正孔輸送層/(電子阻止層/)発光層/(正孔阻止層/)電子輸送層/電子注入層/陰極
 上記の中で(7)の構成が好ましく用いられるが、これに限定されるものではない。
 本発明に係る発光層は、単層又は複数層で構成されており、発光層が複数の場合は各発光層の間に非発光性の中間層を設けてもよい。
 必要に応じて、発光層と陰極との間に正孔阻止層(正孔障壁層ともいう)や電子注入層(陰極バッファー層ともいう)を設けてもよく、また、発光層と陽極との間に電子阻止層(電子障壁層ともいう)や正孔注入層(陽極バッファー層ともいう)を設けてもよい。
 本発明に係る電子輸送層とは、電子を輸送する機能を有する層であり、広い意味で電子注入層、正孔阻止層も電子輸送層に含まれる。また、複数層で構成されていてもよい。
 本発明に係る正孔輸送層とは、正孔を輸送する機能を有する層であり、広い意味で正孔注入層、電子阻止層も正孔輸送層に含まれる。また、複数層で構成されていてもよい。
 上記の代表的な素子構成において、陽極と陰極を除いた層を「有機層」ともいう。
 (タンデム構造)
 また、本発明の有機EL素子は、少なくとも1層の発光層を含む発光ユニットを複数積層した、いわゆるタンデム構造の素子であってもよい。
 タンデム構造の代表的な素子構成としては、例えば以下の構成を挙げることができる。
 陽極/第1発光ユニット/第2発光ユニット/第3発光ユニット/陰極
 陽極/第1発光ユニット/中間層/第2発光ユニット/中間層/第3発光ユニット/陰極
 ここで、上記第1発光ユニット、第2発光ユニット及び第3発光ユニットは全て同じであっても、異なっていてもよい。また二つの発光ユニットが同じであり、残る一つが異なっていてもよい。
 また、第3発光ユニットはなくてもよく、一方で第3発光ユニットと電極の間にさらに発光ユニットや中間層を設けてもよい。
 複数の発光ユニットは直接積層されていても、中間層を介して積層されていてもよく、中間層は、一般的に中間電極、中間導電層、電荷発生層、電子引抜層、接続層、中間絶縁層とも呼ばれ、陽極側の隣接層に電子を、陰極側の隣接層に正孔を供給する機能を持った層であれば、公知の材料及び構成を用いることができる。
 中間層に用いられる材料としては、例えば、ITO(インジウム・スズ酸化物)、IZO(インジウム・亜鉛酸化物)、ZnO、TiN、ZrN、HfN、TiOx、VOx、CuI、InN、GaN、CuAlO、CuGaO、SrCu、LaB、RuO、Al等の導電性無機化合物層や、Au/Bi等の2層膜や、SnO/Ag/SnO、ZnO/Ag/ZnO、Bi/Au/Bi、TiO/TiN/TiO、TiO/ZrN/TiO等の多層膜、またC60等のフラーレン類、オリゴチオフェン等の導電性有機物層、金属フタロシアニン類、無金属フタロシアニン類、金属ポルフィリン類、無金属ポルフィリン類等の導電性有機化合物層等が挙げられるが、本発明はこれらに限定されない。
 発光ユニット内の好ましい構成としては、例えば上記の代表的な素子構成で挙げた(1)~(7)の構成から、陽極と陰極を除いたもの等が挙げられるが、本発明はこれらに限定されない。
 タンデム型有機EL素子の具体例としては、例えば、米国特許第6337492号、米国特許第7420203号、米国特許第7473923号、米国特許第6872472号、米国特許第6107734号、米国特許第6337492号、国際公開第2005/009087号、特開2006-228712号公報、特開2006-24791号公報、特開2006-49393号公報、特開2006-49394号公報、特開2006-49396号公報、特開2011-96679号公報、特開2005-340187号公報、特許第4711424号、特許第3496681号、特許第3884564号、特許第4213169号、特開2010-192719号公報、特開2009-076929号公報、特開2008-078414号公報、特開2007-059848号公報、特開2003-272860号公報、特開2003-045676号公報、国際公開第2005/094130号等に記載の素子構成や構成材料等が挙げられるが、本発明はこれらに限定されない。
 以下、本発明の有機EL素子を構成する各層について説明する。
 《発光層》
 本発明に係る発光層は、電極又は隣接層から注入されてくる電子及び正孔が再結合し、励起子を経由して発光する場を提供する層であり、発光する部分は発光層の層内であっても、発光層と隣接層との界面であってもよい。本発明に係る発光層は、本発明で規定する要件を満たしていれば、その構成に特に制限はない。
 発光層の層厚の総和は、特に制限はないが、形成する膜の均質性や、発光時に不必要な高電圧を印加するのを防止し、且つ、駆動電流に対する発光色の安定性向上の観点から、2nm~5μmの範囲に調整することが好ましく、より好ましくは2~500nmの範囲に調整され、更に好ましくは5~200nmの範囲に調整される。
 また、本発明の個々の発光層の層厚としては、2nm~1μmの範囲に調整することが好ましく、より好ましくは2~200nmの範囲に調整され、更に好ましくは3~150nmの範囲に調整される。
 本発明の発光層には、発光ドーパント(単にドーパントともいう)と、ホスト化合物(発光ホスト、単にホストともいう)とを含有することが好ましい。
 (1)発光ドーパント
 本発明に係る発光ドーパントについて説明する。
 発光ドーパントとしては、蛍光発光性ドーパント(蛍光ドーパント、蛍光性化合物ともいう)と、リン光発光性ドーパント(リン光ドーパント、リン光性化合物ともいう)が好ましく用いられる。本発明においては、少なくとも1層の発光層がリン光発光ドーパントを含有することが好ましい。
 発光層中の発光ドーパントの濃度については、使用される特定のドーパント及びデバイスの必要条件に基づいて、任意に決定することができ、発光層の層厚方向に対し、均一な濃度で含有されていてもよく、また任意の濃度分布を有していてもよい。
 また、本発明に係る発光ドーパントは、複数種を併用して用いてもよく、構造の異なるドーパント同士の組み合わせや、蛍光発光性ドーパントとリン光発光性ドーパントとを組み合わせて用いてもよい。これにより、任意の発光色を得ることができる。
 本発明の有機EL素子や本発明に係る化合物の発光する色は、「新編色彩科学ハンドブック」(日本色彩学会編、東京大学出版会、1985)の108頁の図4.16において、分光放射輝度計CS-1000(コニカミノルタ(株)製)で測定した結果をCIE色度座標に当てはめたときの色で決定される。
 本発明においては、1層又は複数層の発光層が、発光色の異なる複数の発光ドーパントを含有し、白色発光を示すことも好ましい。
 白色を示す発光ドーパントの組み合わせについては特に限定はないが、例えば青と橙や、青と緑と赤の組み合わせ等が挙げられる。
 本発明の有機EL素子における白色とは、特に限定はなく、橙色寄りの白色であっても青色寄りの白色であってもよいが、2度視野角正面輝度を前述の方法により測定した際に、1000cd/mでのCIE1931表色系における色度がx=0.39±0.09、y=0.38±0.08の領域内にあることが好ましい。
 (1.1)リン光発光性ドーパント
 本発明に係るリン光発光性ドーパント(以下、「リン光ドーパント」ともいう)について説明する。
 本発明に係るリン光ドーパントは、励起三重項からの発光が観測される化合物であり、具体的には、室温(25℃)にてリン光発光する化合物であり、リン光量子収率が、25℃において0.01以上の化合物であると定義されるが、好ましいリン光量子収率は0.1以上である。
 上記リン光量子収率は、第4版実験化学講座7の分光IIの398頁(1992年版、丸善)に記載の方法により測定できる。溶液中でのリン光量子収率は種々の溶媒を用いて測定できるが、本発明に係るリン光ドーパントは、任意の溶媒のいずれかにおいて上記リン光量子収率(0.01以上)が達成されればよい。
 リン光ドーパントの発光は原理としては二種挙げられ、一つはキャリアが輸送されるホスト化合物上でキャリアの再結合が起こってホスト化合物の励起状態が生成し、このエネルギーをリン光ドーパントに移動させることでリン光ドーパントからの発光を得るというエネルギー移動型である。もう一つはリン光ドーパントがキャリアトラップとなり、リン光ドーパント上でキャリアの再結合が起こりリン光ドーパントからの発光が得られるというキャリアトラップ型である。いずれの場合においても、リン光ドーパントの励起状態のエネルギーはホスト化合物の励起状態のエネルギーよりも低いことが条件である。
 本発明において使用できるリン光ドーパントとしては、有機EL素子の発光層に使用される公知のものの中から適宜選択して用いることができる。
 本発明に使用できる公知のリン光ドーパントの具体例としては、以下の文献に記載されている化合物等が挙げられる。
 Nature 395,151(1998)、Appl.Phys.Lett.78,1622(2001)、Adv.Mater.19,739(2007)、Chem.Mater. 17,3532(2005)、Adv.Mater.17,1059(2005)、国際公開第2009/100991号、国際公開第2008/101842号、国際公開第2003/040257号、米国特許公開第2006835469号、米国特許公開第20060202194号、米国特許公開第20070087321号、米国特許公開第20050244673号、Inorg.Chem.40,1704(2001)、Chem.Mater.16,2480(2004)、Adv.Mater.16,2003(2004)、Angew.Chem.lnt.Ed.2006,45,7800、Appl.Phys.Lett.86,153505(2005)、Chem.Lett.34,592(2005)、Chem.Commun.2906(2005)、Inorg.Chem.42,1248(2003)、国際公開第2009/050290号、国際公開第2002/015645号、国際公開第2009/000673号、米国特許公開第20020034656号、米国特許第7332232号、米国特許公開第20090108737号、米国特許公開第20090039776号、米国特許第6921915号、米国特許第6687266号、米国特許公開第20070190359号、米国特許公開第20060008670号、米国特許公開第20090165846号、米国特許公開第20080015355号、米国特許第7250226号、米国特許第7396598号、米国特許公開第20060263635号、米国特許公開第20030138657号、米国特許公開第20030152802号、米国特許第7090928号、Angew.Chem.lnt.Ed.47,1(2008)、Chem.Mater.18,5119(2006)、Inorg.Chem.46,4308(2007)、Organometallics 23,3745(2004)、Appl.Phys.Lett.74,1361(1999)、国際公開第2002/002714号、国際公開第2006/009024号、国際公開第2006/056418号、国際公開第2005/019373号、国際公開第2005/123873号、国際公開第2005/123873号、国際公開第2007/004380号、国際公開第2006/082742号、米国特許公開第20060251923号、米国特許公開第20050260441号、米国特許第7393599号、米国特許第7534505号、米国特許第7445855号、米国特許公開第20070190359号、米国特許公開第20080297033号、米国特許第7338722号、米国特許公開第20020134984号、米国特許第7279704号、米国特許公開第2006098120号、米国特許公開第2006103874号、国際公開第2005/076380号、国際公開第2010/032663号、国際公開第2008/140115号、国際公開第2007/052431号、国際公開第2011/134013号、国際公開第2011/157339号、国際公開第2010/086089号、国際公開第2009/113646号、国際公開第2012/020327号、国際公開第2011/051404号、国際公開第2011/004639号、国際公開第2011/073149号、米国特許公開第2012228583号、米国特許公開第2012212126号、特開2012-069737号公報、特開2012-195554号公報、特開2009-114086号公報、特開2003-81988号公報、特開2002-302671号公報、特開2002-363552号公報等である。
 中でも、好ましいリン光ドーパントとしてはIrを中心金属に有する有機金属錯体が挙げられる。さらに好ましくは、金属-炭素結合、金属-窒素結合、金属-酸素結合、金属-硫黄結合の少なくとも一つの配位様式を含む錯体が好ましい。
 (1.2)蛍光発光性ドーパント
 本発明に係る蛍光発光性ドーパント(以下、「蛍光ドーパント」ともいう)について説明する。
 本発明に係る蛍光ドーパントは、励起一重項からの発光が可能な化合物であり、励起一重項からの発光が観測される限り特に限定されない。
 本発明に係る蛍光ドーパントとしては、例えば、アントラセン誘導体、ピレン誘導体、クリセン誘導体、フルオランテン誘導体、ペリレン誘導体、フルオレン誘導体、アリールアセチレン誘導体、スチリルアリーレン誘導体、スチリルアミン誘導体、アリールアミン誘導体、ホウ素錯体、クマリン誘導体、ピラン誘導体、シアニン誘導体、クロコニウム誘導体、スクアリウム誘導体、オキソベンツアントラセン誘導体、フルオレセイン誘導体、ローダミン誘導体、ピリリウム誘導体、ペリレン誘導体、ポリチオフェン誘導体、又は希土類錯体系化合物等が挙げられる。
 また、近年では遅延蛍光を利用した発光ドーパントも開発されており、これらを用いてもよい。
 遅延蛍光を利用した発光ドーパントの具体例としては、例えば、国際公開第2011/156793号、特開2011-213643号公報、特開2010-93181号公報等に記載の化合物が挙げられるが、本発明はこれらに限定されない。
 (2)ホスト化合物
 本発明に係るホスト化合物は、発光層において主に電荷の注入及び輸送を担う化合物であり、有機EL素子においてそれ自体の発光は実質的に観測されない。
 好ましくは室温(25℃)においてリン光発光のリン光量子収率が、0.1未満の化合物であり、さらに好ましくはリン光量子収率が0.01未満の化合物である。また、発光層に含有される化合物の内で、その層中での質量比が20%以上であることが好ましい。
 また、ホスト化合物の励起状態エネルギーは、同一層内に含有される発光ドーパントの励起状態エネルギーよりも高いことが好ましい。
 ホスト化合物は、単独で用いてもよく、又は複数種併用して用いてもよい。ホスト化合物を複数種用いることで、電荷の移動を調整することが可能であり、有機EL素子を高効率化することができる。
 本発明で用いることができるホスト化合物としては、特に制限はなく、従来有機EL素子で用いられる化合物を用いることができる。低分子化合物でも繰り返し単位を有する高分子化合物でもよく、また、ビニル基やエポキシ基のような反応性基を有する化合物でもよい。
 公知のホスト化合物としては、正孔輸送能又は電子輸送能を有しつつ、且つ、発光の長波長化を防ぎ、さらに、有機EL素子を高温駆動時や素子駆動中の発熱に対して安定して動作させる観点から、高いガラス転移温度(Tg)を有することが好ましい。好ましくはTgが90℃以上であり、より好ましくは120℃以上である。
 ここで、ガラス転移点(Tg)とは、DSC(Differential Scanning Colorimetry:示差走査熱量法)を用いて、JIS-K-7121に準拠した方法により求められる値である。
 本発明の有機EL素子に用いられる、公知のホスト化合物の具体例としては、以下の文献に記載の化合物等が挙げられるが、本発明はこれらに限定されない。
 特開2001-257076号公報、同2002-308855号公報、同2001-313179号公報、同2002-319491号公報、同2001-357977号公報、同2002-334786号公報、同2002-8860号公報、同2002-334787号公報、同2002-15871号公報、同2002-334788号公報、同2002-43056号公報、同2002-334789号公報、同2002-75645号公報、同2002-338579号公報、同2002-105445号公報、同2002-343568号公報、同2002-141173号公報、同2002-352957号公報、同2002-203683号公報、同2002-363227号公報、同2002-231453号公報、同2003-3165号公報、同2002-234888号公報、同2003-27048号公報、同2002-255934号公報、同2002-260861号公報、同2002-280183号公報、同2002-299060号公報、同2002-302516号公報、同2002-305083号公報、同2002-305084号公報、同2002-308837号公報、米国特許公開第20030175553号、米国特許公開第20060280965号、米国特許公開第20050112407号、米国特許公開第20090017330号、米国特許公開第20090030202号、米国特許公開第20050238919号、国際公開第2001039234号、国際公開第2009/021126号、国際公開第2008/056746号、国際公開第2004/093207号、国際公開第2005/089025号、国際公開第2007/063796号、国際公開第2007/063754号、国際公開第2004/107822号、国際公開第2005/030900号、国際公開第2006/114966号、国際公開第2009/086028号、国際公開第2009/003898号、国際公開第2012/023947号、特開2008-074939号公報、特開2007-254297号公報、EP2034538等である。
 《電子輸送層》
 本発明において電子輸送層とは、電子を輸送する機能を有する材料からなり、陰極より注入された電子を発光層に伝達する機能を有していればよい。
 本発明に係る電子輸送層の総層厚については特に制限はないが、通常は2nm~5μmの範囲であり、より好ましくは2~500nmであり、さらに好ましくは5~200nmである。
 また、有機EL素子においては発光層で生じた光を電極から取り出す際、発光層から直接取り出される光と、光を取り出す電極と対極に位置する電極によって反射されてから取り出される光とが干渉を起こすことが知られている。光が陰極で反射される場合は、電子輸送層の総層厚を5nm~1μmの間で適宜調整することにより、この干渉効果を効率的に利用することが可能である。
 一方で、電子輸送層の層厚を厚くすると電圧が上昇しやすくなるため、特に層厚が厚い場合においては、電子輸送層の電子移動度は10-5cm/Vs以上であることが好ましい。
 電子輸送層に用いられる材料(以下、電子輸送材料という)としては、電子の注入性又は輸送性、正孔の障壁性のいずれかを有していればよく、従来公知の化合物の中から任意のものを選択して用いることができる。
 例えば、含窒素芳香族複素環誘導体(カルバゾール誘導体、アザカルバゾール誘導体(カルバゾール環を構成する炭素原子の一つ以上が窒素原子に置換されたもの)、ピリジン誘導体、ピリミジン誘導体、ピラジン誘導体、ピリダジン誘導体、トリアジン誘導体、キノリン誘導体、キノキサリン誘導体、フェナントロリン誘導体、アザトリフェニレン誘導体、オキサゾール誘導体、チアゾール誘導体、オキサジアゾール誘導体、チアジアゾール誘導体、トリアゾール誘導体、ベンズイミダゾール誘導体、ベンズオキサゾール誘導体、ベンズチアゾール誘導体等)、ジベンゾフラン誘導体、ジベンゾチオフェン誘導体、シロール誘導体、芳香族炭化水素環誘導体(ナフタレン誘導体、アントラセン誘導体、トリフェニレン等)等が挙げられる。
 また、配位子にキノリノール骨格やジベンゾキノリノール骨格を有する金属錯体、例えば、トリス(8-キノリノール)アルミニウム(Alq)、トリス(5,7-ジクロロ-8-キノリノール)アルミニウム、トリス(5,7-ジブロモ-8-キノリノール)アルミニウム、トリス(2-メチル-8-キノリノール)アルミニウム、トリス(5-メチル-8-キノリノール)アルミニウム、ビス(8-キノリノール)亜鉛(Znq)等、及びこれらの金属錯体の中心金属がIn、Mg、Cu、Ca、Sn、Ga又はPbに置き替わった金属錯体も、電子輸送材料として用いることができる。
 その他、メタルフリー若しくはメタルフタロシアニン、又はそれらの末端がアルキル基やスルホン酸基等で置換されているものも、電子輸送材料として好ましく用いることができる。また、発光層の材料として例示したジスチリルピラジン誘導体も、電子輸送材料として用いることができるし、正孔注入層、正孔輸送層と同様にn型-Si、n型-SiC等の無機半導体も電子輸送材料として用いることができる。
 また、これらの材料を高分子鎖に導入した、又はこれらの材料を高分子の主鎖とした高分子材料を用いることもできる。
 本発明に係る電子輸送層においては、電子輸送層にドープ材をゲスト材料としてドープして、n性の高い(電子リッチ)電子輸送層を形成してもよい。ドープ材としては、金属錯体やハロゲン化金属など金属化合物等のn型ドーパントが挙げられる。このような構成の電子輸送層の具体例としては、例えば、特開平4-297076号公報、同10-270172号公報、特開2000-196140号公報、同2001-102175号公報、J.Appl.Phys.,95,5773(2004)等の文献に記載されたものが挙げられる。
 本発明の有機EL素子に用いられる、公知の好ましい電子輸送材料の具体例としては、以下の文献に記載の化合物等が挙げられるが、本発明はこれらに限定されない。
 米国特許第6528187号 、米国特許第7230107号、米国特許公開第20050025993号 、米国特許公開第20040036077号 、米国特許公開第20090115316号、米国特許公開第20090101870号、米国特許公開第20090179554号、国際公開第2003/060956号、国際公開第2008/132085号、Appl.Phys.Lett.75,4(1999)、Appl.Phys.Lett.79,449(2001)、Appl.Phys.Lett.81,162(2002)、Appl.Phys.Lett.81,162(2002)、Appl.Phys.Lett.79,156(2001)、米国特許第7964293号、米国特許公開第2009030202号、国際公開第2004/080975号、国際公開第2004/063159号、国際公開第2005/085387号、国際公開第2006/067931号、国際公開第2007/086552号、国際公開第2008/114690号、国際公開第2009/069442号、国際公開第2009/066779号、国際公開第2009/054253号、国際公開第2011/086935号、国際公開第2010/150593号、国際公開第2010/047707号、EP2311826号、特開2010-251675号公報、特開2009-209133号公報、特開2009-124114号公報、特開2008-277810号公報、特開2006-156445号公報、特開2005-340122号公報、特開2003-45662号公報、特開2003-31367号公報、特開2003-282270号公報、国際公開第2012/115034号等である。
 本発明におけるよりより好ましい電子輸送材料としては、ピリジン誘導体、ピリミジン誘導体、ピラジン誘導体、トリアジン誘導体、ジベンゾフラン誘導体、ジベンゾチオフェン誘導体、カルバゾール誘導体、アザカルバゾール誘導体、ベンズイミダゾール誘導体が挙げられる。
 電子輸送材料は単独で用いてもよく、また複数種を併用して用いてもよい。
 《正孔阻止層》
 正孔阻止層とは広い意味では電子輸送層の機能を有する層であり、好ましくは電子を輸送する機能を有しつつ正孔を輸送する能力が小さい材料からなり、電子を輸送しつつ正孔を阻止することで電子と正孔の再結合確率を向上させることができる。
 また、前述する電子輸送層の構成を必要に応じて、本発明に係る正孔阻止層として用いることができる。
 本発明の有機EL素子に設ける正孔阻止層は、発光層の陰極側に隣接して設けられることが好ましい。
 本発明に係る正孔阻止層の層厚としては、好ましくは3~100nmの範囲であり、更に好ましくは5~30nmの範囲である。
 正孔阻止層に用いられる材料としては、前述の電子輸送層に用いられる材料が好ましく用いられ、また、前述のホスト化合物として用いられる材料も正孔阻止層に好ましく用いられる。
 《電子注入層》
 本発明に係る電子注入層(「陰極バッファー層」ともいう)とは、駆動電圧低下や発光輝度向上のために陰極と発光層との間に設けられる層のことで、「有機EL素子とその工業化最前線(1998年11月30日エヌ・ティー・エス社発行)」の第2編第2章「電極材料」(123~166頁)に詳細に記載されている。
 本発明において電子注入層は必要に応じて設け、上記の如く陰極と発光層との間、又は陰極と電子輸送層との間に存在させてもよい。
 電子注入層はごく薄い膜であることが好ましく、素材にもよるがその層厚は0.1~5nmの範囲が好ましい。また構成材料が断続的に存在する不均一な膜であってもよい。
 電子注入層は、特開平6-325871号公報、同9-17574号公報、同10-74586号公報等にもその詳細が記載されており、電子注入層に好ましく用いられる材料の具体例としては、ストロンチウムやアルミニウム等に代表される金属、フッ化リチウム、フッ化ナトリウム、フッ化カリウム等に代表されるアルカリ金属化合物、フッ化マグネシウム、フッ化カルシウム等に代表されるアルカリ土類金属化合物、酸化アルミニウムに代表される金属酸化物、リチウム8-ヒドロキシキノレート(Liq)等に代表される金属錯体等が挙げられる。また、前述の電子輸送材料を用いることも可能である。
 また、上記の電子注入層に用いられる材料は単独で用いてもよく、複数種を併用して用いてもよい。
 《正孔輸送層》
 本発明において正孔輸送層とは、正孔を輸送する機能を有する材料からなり、陽極より注入された正孔を発光層に伝達する機能を有していればよい。
 本発明に係る正孔輸送層の総層厚については特に制限はないが、通常は5nm~5μmの範囲であり、より好ましくは2~500nmであり、さらに好ましくは5nm~200nmである。
 正孔輸送層に用いられる材料(以下、正孔輸送材料という)としては、正孔の注入性又は輸送性、電子の障壁性のいずれかを有していればよく、従来公知の化合物の中から任意のものを選択して用いることができる。
 例えば、ポルフィリン誘導体、フタロシアニン誘導体、オキサゾール誘導体、オキサジアゾール誘導体、トリアゾール誘導体、イミダゾール誘導体、ピラゾリン誘導体、ピラゾロン誘導体、フェニレンジアミン誘導体、ヒドラゾン誘導体、スチルベン誘導体、ポリアリールアルカン誘導体、トリアリールアミン誘導体、カルバゾール誘導体、インドロカルバゾール誘導体、イソインドール誘導体、アントラセンやナフタレン等のアセン系誘導体、フルオレン誘導体、フルオレノン誘導体、及びポリビニルカルバゾール、芳香族アミンを主鎖又は側鎖に導入した高分子材料又はオリゴマー、ポリシラン、導電性ポリマー又はオリゴマー(例えばPEDOT:PSS、アニリン系共重合体、ポリアニリン、ポリチオフェン等)等が挙げられる。
 トリアリールアミン誘導体としては、αNPDに代表されるベンジジン型や、MTDATAに代表されるスターバースト型、トリアリールアミン連結コア部にフルオレンやアントラセンを有する化合物等が挙げられる。
 また、特表2003-519432号公報や特開2006-135145号公報等に記載されているようなヘキサアザトリフェニレン誘導体も同様に正孔輸送材料として用いることができる。
 さらに不純物をドープしたp性の高い正孔輸送層を用いることもできる。その例としては、特開平4-297076号公報、特開2000-196140号公報、同2001-102175号公報の各公報、J.Appl.Phys.,95,5773(2004)等に記載されたものが挙げられる。
 また、特開平11-251067号公報、J.Huang et.al.著文献(Applied Physics Letters 80(2002),p.139)に記載されているような、いわゆるp型正孔輸送材料やp型-Si、p型-SiC等の無機化合物を用いることもできる。さらにIr(ppy)に代表されるような中心金属にIrやPtを有するオルトメタル化有機金属錯体も好ましく用いられる。
 正孔輸送材料としては、上記のものを使用することができるが、トリアリールアミン誘導体、カルバゾール誘導体、インドロカルバゾール誘導体、アザトリフェニレン誘導体、有機金属錯体、芳香族アミンを主鎖又は側鎖に導入した高分子材料又はオリゴマー等が好ましく用いられる。
 本発明の有機EL素子に用いられる、公知の好ましい正孔輸送材料の具体例としては、上記で挙げた文献の他、以下の文献に記載の化合物等が挙げられるが、本発明はこれらに限定されない。
 例えば、Appl.Phys.Lett.69,2160(1996)、J.Lumin.72-74,985(1997)、Appl.Phys.Lett.78,673(2001)、Appl.Phys.Lett.90,183503(2007)、Appl.Phys.Lett.90,183503(2007)、Appl.Phys.Lett.51,913(1987)、Synth.Met.87,171(1997)、Synth.Met.91,209(1997)、Synth.Met.111,421(2000)、SID Symposium Digest,37,923(2006)、J.Mater.Chem.3,319(1993)、Adv.Mater.6,677(1994)、Chem.Mater.15,3148(2003)、米国特許公開第20030162053号、米国特許公開第20020158242号、米国特許公開第20060240279号、米国特許公開第20080220265号、米国特許第5061569号、国際公開第2007/002683号、国際公開第2009/018009号、EP650955、米国特許公開第20080124572号、米国特許公開第20070278938号、米国特許公開第20080106190号、米国特許公開第20080018221号、国際公開第2012/115034号、特表2003-519432号公報、特開2006-135145号公報、米国特許出願番号13/585981号等である。
 正孔輸送材料は単独で用いてもよく、また複数種を併用して用いてもよい。
 《電子阻止層》
 電子阻止層とは広い意味では正孔輸送層の機能を有する層であり、好ましくは正孔を輸送する機能を有しつつ電子を輸送する能力が小さい材料からなり、正孔を輸送しつつ電子を阻止することで電子と正孔の再結合確率を向上させることができる。
 また、前述する正孔輸送層の構成を必要に応じて、本発明に係る電子阻止層として用いることができる。
 本発明の有機EL素子に設ける電子阻止層は、発光層の陽極側に隣接して設けられることが好ましい。
 本発明に係る電子阻止層の層厚としては、好ましくは3~100nmの範囲であり、更に好ましくは5~30nmの範囲である。
 電子阻止層に用いられる材料としては、前述の正孔輸送層に用いられる材料が好ましく用いられ、また、前述のホスト化合物として用いられる材料も電子阻止層に好ましく用いられる。
 《正孔注入層》
 本発明に係る正孔注入層(「陽極バッファー層」ともいう)とは、駆動電圧低下や発光輝度向上のために陽極と発光層との間に設けられる層のことで、「有機EL素子とその工業化最前線(1998年11月30日エヌ・ティー・エス社発行)」の第2編第2章「電極材料」(123~166頁)に詳細に記載されている。
 本発明において正孔注入層は必要に応じて設け、上記の如く陽極と発光層又は陽極と正孔輸送層との間に存在させてもよい。
 正孔注入層は、特開平9-45479号公報、同9-260062号公報、同8-288069号公報等にもその詳細が記載されており、正孔注入層に用いられる材料としては、例えば前述の正孔輸送層に用いられる材料等が挙げられる。
 中でも銅フタロシアニンに代表されるフタロシアニン誘導体、特表2003-519432や特開2006-135145等に記載されているようなヘキサアザトリフェニレン誘導体、酸化バナジウムに代表される金属酸化物、アモルファスカーボン、ポリアニリン(エメラルディン)やポリチオフェン等の導電性高分子、トリス(2-フェニルピリジン)イリジウム錯体等に代表されるオルトメタル化錯体、トリアリールアミン誘導体等が好ましい。
 前述の正孔注入層に用いられる材料は単独で用いてもよく、また複数種を併用して用いてもよい。
 《含有物》
 前述した本発明における有機層は、更に他の含有物が含まれていてもよい。
 含有物としては、例えば臭素、ヨウ素及び塩素等のハロゲン元素やハロゲン化化合物、Pd、Ca、Na等のアルカリ金属やアルカリ土類金属、遷移金属の化合物や錯体、塩等が挙げられる。
 含有物の含有量は、任意に決定することができるが、含有される層の全質量%に対して1000ppm以下であることが好ましく、より好ましくは500ppm以下であり、さらに好ましくは50ppm以下である。
 ただし、電子や正孔の輸送性を向上させる目的や、励起子のエネルギー移動を有利にするための目的などによってはこの範囲内ではない。
 《有機層の形成方法》
 本発明に係る有機層(正孔注入層、正孔輸送層、発光層、正孔阻止層、電子輸送層、電子注入層等)の形成方法について説明する。
 本発明に係る有機層の形成方法は、特に制限はなく、従来公知の例えば真空蒸着法、湿式法(ウェットプロセスともいう)等による形成方法を用いることができる。
 湿式法としては、スピンコート法、キャスト法、インクジェット法、印刷法、ダイコート法、ブレードコート法、ロールコート法、スプレーコート法、カーテンコート法、LB法(ラングミュア-ブロジェット法)等があるが、均質な薄膜が得られやすく、且つ高生産性の点から、ダイコート法、ロールコート法、インクジェット法、スプレーコート法などのロール・to・ロール方式適性の高い方法が好ましい。
 本発明に係る有機EL材料を溶解又は分散する液媒体としては、例えば、メチルエチルケトン、シクロヘキサノン等のケトン類、酢酸エチル等の脂肪酸エステル類、ジクロロベンゼン等のハロゲン化炭化水素類、トルエン、キシレン、メシチレン、シクロヘキシルベンゼン等の芳香族炭化水素類、シクロヘキサン、デカリン、ドデカン等の脂肪族炭化水素類、DMF、DMSO等の有機溶媒を用いることができる。
 また、分散方法としては、超音波、高剪断力分散やメディア分散等の分散方法により分散することができる。
 更に層毎に異なる製膜法を適用してもよい。製膜に蒸着法を採用する場合、その蒸着条件は使用する化合物の種類等により異なるが、一般にボート加熱温度50~450℃、真空度10-6~10-2Pa、蒸着速度0.01~50nm/秒、基板温度-50~300℃、厚さ0.1nm~5μm、好ましくは5~200nmの範囲で適宜選ぶことが望ましい。
 本発明に係る有機層の形成は、一回の真空引きで一貫して正孔注入層から陰極まで作製するのが好ましいが、途中で取り出して異なる製膜法を施しても構わない。その際は作業を乾燥不活性ガス雰囲気下で行うことが好ましい。
 《陽極》
 有機EL素子における陽極としては、仕事関数の大きい(4eV以上、好ましくは4.5eV以上)金属、合金、電気伝導性化合物及びこれらの混合物を電極物質とするものが好ましく用いられる。このような電極物質の具体例としては、Au等の金属、CuI、インジウムチンオキシド(ITO)、SnO、ZnO等の導電性透明材料が挙げられる。また、IDIXO(In-ZnO)等非晶質で透明導電膜を作製可能な材料を用いてもよい。
 陽極はこれらの電極物質を蒸着やスパッタリング等の方法により薄膜を形成させ、フォトリソグラフィー法で所望の形状のパターンを形成してもよく、又はパターン精度をあまり必要としない場合は(100μm以上程度)、上記電極物質の蒸着やスパッタリング時に所望の形状のマスクを介してパターンを形成してもよい。
 または、有機導電性化合物のように塗布可能な物質を用いる場合には、印刷方式、コーティング方式等湿式成膜法を用いることもできる。この陽極より発光を取り出す場合には、透過率を10%より大きくすることが望ましく、また陽極としてのシート抵抗は数百Ω/□以下が好ましい。
 陽極の厚さは材料にもよるが、通常10nm~1μm、好ましくは10~200nmの範囲で選ばれる。
 《陰極》
 陰極としては、仕事関数の小さい(4eV以下)金属(電子注入性金属と称する)、合金、電気伝導性化合物及びこれらの混合物を電極物質とするものが用いられる。このような電極物質の具体例としては、ナトリウム、ナトリウム-カリウム合金、マグネシウム、リチウム、マグネシウム/銅混合物、マグネシウム/銀混合物、マグネシウム/アルミニウム混合物、マグネシウム/インジウム混合物、アルミニウム/酸化アルミニウム(Al)混合物、インジウム、リチウム/アルミニウム混合物、アルミニウム、希土類金属等が挙げられる。これらの中で、電子注入性及び酸化等に対する耐久性の点から、電子注入性金属とこれより仕事関数の値が大きく安定な金属である第二金属との混合物、例えば、マグネシウム/銀混合物、マグネシウム/アルミニウム混合物、マグネシウム/インジウム混合物、アルミニウム/酸化アルミニウム(Al)混合物、リチウム/アルミニウム混合物、アルミニウム等が好適である。
 陰極はこれらの電極物質を蒸着やスパッタリング等の方法により薄膜を形成させることにより、作製することができる。また、陰極としてのシート抵抗は数百Ω/□以下が好ましく、厚さは通常10nm~5μm、好ましくは50~200nmの範囲で選ばれる。
 なお、発光した光を透過させるため、有機EL素子の陽極又は陰極のいずれか一方が透明又は半透明であれば発光輝度が向上し好都合である。
 また、陰極に上記金属を1~20nmの厚さで作製した後に、陽極の説明で挙げる導電性透明材料をその上に作製することで、透明又は半透明の陰極を作製することができ、これを応用することで陽極と陰極の両方が透過性を有する素子を作製することができる。
 《支持基板》
 本発明の有機EL素子に用いることのできる支持基板(以下、基体、基板、基材、支持体等とも言う)としては、ガラス、プラスチック等の種類には特に限定はなく、また透明であっても不透明であってもよい。支持基板側から光を取り出す場合には、支持基板は透明であることが好ましい。好ましく用いられる透明な支持基板としては、ガラス、石英、透明樹脂フィルムを挙げることができる。特に好ましい支持基板は、有機EL素子にフレキシブル性を与えることが可能な樹脂フィルムである。
 樹脂フィルムとしては、例えば、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)等のポリエステル、ポリエチレン、ポリプロピレン、セロファン、セルロースジアセテート、セルローストリアセテート(TAC)、セルロースアセテートブチレート、セルロースアセテートプロピオネート(CAP)、セルロースアセテートフタレート、セルロースナイトレート等のセルロースエステル類又はそれらの誘導体、ポリ塩化ビニリデン、ポリビニルアルコール、ポリエチレンビニルアルコール、シンジオタクティックポリスチレン、ポリカーボネート、ノルボルネン樹脂、ポリメチルペンテン、ポリエーテルケトン、ポリイミド、ポリエーテルスルホン(PES)、ポリフェニレンスルフィド、ポリスルホン類、ポリエーテルイミド、ポリエーテルケトンイミド、ポリアミド、フッ素樹脂、ナイロン、ポリメチルメタクリレート、アクリル、又はポリアリレート類、アートン(商品名JSR社製)若しくはアペル(商品名三井化学社製)といったシクロオレフィン系樹脂等を挙げられる。
 樹脂フィルムの表面には、無機物、有機物の被膜又はその両者のハイブリッド被膜が形成されていてもよく、JIS K 7129-1992に準拠した方法で測定された、水蒸気透過度(25±0.5℃、相対湿度(90±2)%RH)が0.01g/(m・24h)以下のバリア性フィルムであることが好ましく、更には、JIS K 7126-1987に準拠した方法で測定された酸素透過度が、10-3ml/(m・24h・atm)以下、水蒸気透過度が、10-5g/(m・24h)以下の高バリア性フィルムであることが好ましい。
 バリア膜を形成する材料としては、水分や酸素等素子の劣化をもたらすものの浸入を抑制する機能を有する材料であればよく、例えば、酸化ケイ素、二酸化ケイ素、窒化ケイ素等を用いることができる。更に該膜の脆弱性を改良するために、これら無機層と有機材料からなる層の積層構造を持たせることがより好ましい。無機層と有機層の積層順については特に制限はないが、両者を交互に複数回積層させることが好ましい。
 バリア膜の形成方法については特に限定はなく、例えば、真空蒸着法、スパッタリング法、反応性スパッタリング法、分子線エピタキシー法、クラスターイオンビーム法、イオンプレーティング法、プラズマ重合法、大気圧プラズマ重合法、プラズマCVD法、レーザーCVD法、熱CVD法、コーティング法等を用いることができるが、特開2004-68143号公報に記載されているような大気圧プラズマ重合法によるものが特に好ましい。
 不透明な支持基板としては、例えば、アルミ、ステンレス等の金属板、フィルムや不透明樹脂基板、セラミック製の基板等が挙げられる。
 本発明の有機EL素子の発光の室温における外部取り出し量子効率は、1%以上であることが好ましく、5%以上であるとより好ましい。
 ここで、外部取り出し量子効率(%)=有機EL素子外部に発光した光子数/有機EL素子に流した電子数×100である。
 また、カラーフィルター等の色相改良フィルター等を併用しても、有機EL素子からの発光色を蛍光体を用いて多色へ変換する色変換フィルターを併用してもよい。
 《封止》
 本発明の有機EL素子の封止に用いられる封止手段としては、例えば、封止部材と、電極、支持基板とを接着剤で接着する方法を挙げることができる。封止部材としては、有機EL素子の表示領域を覆うように配置されていればよく、凹板状でも、平板状でもよい。また、透明性、電気絶縁性は特に限定されない。
 具体的には、ガラス板、ポリマー板・フィルム、金属板・フィルム等が挙げられる。ガラス板としては、特にソーダ石灰ガラス、バリウム・ストロンチウム含有ガラス、鉛ガラス、アルミノケイ酸ガラス、ホウケイ酸ガラス、バリウムホウケイ酸ガラス、石英等を挙げることができる。また、ポリマー板としては、ポリカーボネート、アクリル、ポリエチレンテレフタレート、ポリエーテルサルファイド、ポリサルフォン等を挙げることができる。金属板としては、ステンレス、鉄、銅、アルミニウム、マグネシウム、ニッケル、亜鉛、クロム、チタン、モリブテン、シリコン、ゲルマニウム及びタンタルからなる群から選ばれる一種以上の金属又は合金からなるものが挙げられる。
 本発明においては、有機EL素子を薄膜化できるということからポリマーフィルム、金属フィルムを好ましく使用することができる。さらには、ポリマーフィルムはJIS K 7126-1987に準拠した方法で測定された酸素透過度が1×10-3ml/(m・24h・atm)以下、JIS K 7129-1992に準拠した方法で測定された、水蒸気透過度(25±0.5℃、相対湿度(90±2)%)が、1×10-3g/(m・24h)以下のものであることが好ましい。
 封止部材を凹状に加工するのは、サンドブラスト加工、化学エッチング加工等が使われる。
 接着剤として具体的には、アクリル酸系オリゴマー、メタクリル酸系オリゴマーの反応性ビニル基を有する光硬化及び熱硬化型接着剤、2-シアノアクリル酸エステル等の湿気硬化型等の接着剤を挙げることができる。また、エポキシ系等の熱及び化学硬化型(二液混合)を挙げることができる。また、ホットメルト型のポリアミド、ポリエステル、ポリオレフィンを挙げることができる。また、カチオン硬化タイプの紫外線硬化型エポキシ樹脂接着剤を挙げることができる。
 なお、有機EL素子が熱処理により劣化する場合があるので、室温から80℃までに接着硬化できるものが好ましい。また、前記接着剤中に乾燥剤を分散させておいてもよい。封止部分への接着剤の塗布は市販のディスペンサーを使ってもよいし、スクリーン印刷のように印刷してもよい。
 また、有機層を挟み支持基板と対向する側の電極の外側に該電極と有機層を被覆し、支持基板と接する形で無機物、有機物の層を形成し封止膜とすることも好適にできる。この場合、該膜を形成する材料としては、水分や酸素等素子の劣化をもたらすものの浸入を抑制する機能を有する材料であればよく、例えば、酸化ケイ素、二酸化ケイ素、窒化ケイ素等を用いることができる。
 さらに該膜の脆弱性を改良するために、これら無機層と有機材料からなる層の積層構造を持たせることが好ましい。これらの膜の形成方法については特に限定はなく、例えば、真空蒸着法、スパッタリング法、反応性スパッタリング法、分子線エピタキシー法、クラスターイオンビーム法、イオンプレーティング法、プラズマ重合法、大気圧プラズマ重合法、プラズマCVD法、レーザーCVD法、熱CVD法、コーティング法等を用いることができる。
 封止部材と有機EL素子の表示領域との間隙には、気相及び液相では、窒素、アルゴン等の不活性気体やフッ化炭化水素、シリコンオイルのような不活性液体を注入することが好ましい。また、真空とすることも可能である。また、内部に吸湿性化合物を封入することもできる。
 吸湿性化合物としては、例えば、金属酸化物(例えば、酸化ナトリウム、酸化カリウム、酸化カルシウム、酸化バリウム、酸化マグネシウム、酸化アルミニウム等)、硫酸塩(例えば、硫酸ナトリウム、硫酸カルシウム、硫酸マグネシウム、硫酸コバルト等)、金属ハロゲン化物(例えば、塩化カルシウム、塩化マグネシウム、フッ化セシウム、フッ化タンタル、臭化セリウム、臭化マグネシウム、ヨウ化バリウム、ヨウ化マグネシウム等)、過塩素酸類(例えば、過塩素酸バリウム、過塩素酸マグネシウム等)等が挙げられ、硫酸塩、金属ハロゲン化物及び過塩素酸類においては無水塩が好適に用いられる。
 《保護膜、保護板》
 有機層を挟み支持基板と対向する側の前記封止膜又は前記封止用フィルムの外側に、素子の機械的強度を高めるために、保護膜若しくは保護板を設けてもよい。特に、封止が前記封止膜により行われている場合には、その機械的強度は必ずしも高くないため、このような保護膜、保護板を設けることが好ましい。これに使用することができる材料としては、前記封止に用いたのと同様なガラス板、ポリマー板・フィルム、金属板・フィルム等を用いることができるが、軽量かつ薄膜化ということからポリマーフィルムを用いることが好ましい。
 《光取り出し向上技術》
 有機エレクトロルミネッセンス素子は、空気よりも屈折率の高い(屈折率1.6~2.1程度の範囲内)層の内部で発光し、発光層で発生した光のうち15%から20%程度の光しか取り出せないことが一般的に言われている。これは、臨界角以上の角度θで界面(透明基板と空気との界面)に入射する光は、全反射を起こし素子外部に取り出すことができないことや、透明電極ないし発光層と透明基板との間で光が全反射を起こし、光が透明電極ないし発光層を導波し、結果として、光が素子側面方向に逃げるためである。
 この光の取り出しの効率を向上させる手法としては、例えば、透明基板表面に凹凸を形成し、透明基板と空気界面での全反射を防ぐ方法(例えば、米国特許第4774435号明細書)、基板に集光性を持たせることにより効率を向上させる方法(例えば、特開昭63-314795号公報)、素子の側面等に反射面を形成する方法(例えば、特開平1-220394号公報)、基板と発光体の間に中間の屈折率を持つ平坦層を導入し、反射防止膜を形成する方法(例えば、特開昭62-172691号公報)、基板と発光体の間に基板よりも低屈折率を持つ平坦層を導入する方法(例えば、特開2001-202827号公報)、基板、透明電極層や発光層のいずれかの層間(含む、基板と外界間)に回折格子を形成する方法(特開平11-283751号公報)などが挙げられる。
 本発明においては、これらの方法を本発明の有機EL素子と組み合わせて用いることができるが、基板と発光体の間に基板よりも低屈折率を持つ平坦層を導入する方法、又は基板、透明電極層や発光層のいずれかの層間(含む、基板と外界間)に回折格子を形成する方法を好適に用いることができる。
 本発明は、これらの手段を組み合わせることにより、更に高輝度又は耐久性に優れた素子を得ることができる。
 透明電極と透明基板の間に低屈折率の媒質を光の波長よりも長い厚さで形成すると、透明電極から出てきた光は、媒質の屈折率が低いほど、外部への取り出し効率が高くなる。
 低屈折率層としては、例えば、エアロゲル、多孔質シリカ、フッ化マグネシウム、フッ素系ポリマーなどが挙げられる。透明基板の屈折率は一般に1.5~1.7程度の範囲内であるので、低屈折率層は、屈折率がおよそ1.5以下であることが好ましい。またさらに1.35以下であることが好ましい。
 また、低屈折率媒質の厚さは、媒質中の波長の2倍以上となるのが望ましい。これは、低屈折率媒質の厚さが、光の波長程度になってエバネッセントで染み出した電磁波が基板内に入り込む層厚になると、低屈折率層の効果が薄れるからである。
 全反射を起こす界面又は、いずれかの媒質中に回折格子を導入する方法は、光取り出し効率の向上効果が高いという特徴がある。この方法は、回折格子が1次の回折や、2次の回折といった、いわゆるブラッグ回折により、光の向きを屈折とは異なる特定の向きに変えることができる性質を利用して、発光層から発生した光のうち、層間での全反射等により外に出ることができない光を、いずれかの層間若しくは、媒質中(透明基板内や透明電極内)に回折格子を導入することで光を回折させ、光を外に取り出そうとするものである。
 導入する回折格子は、二次元的な周期屈折率を持っていることが望ましい。これは、発光層で発光する光はあらゆる方向にランダムに発生するので、ある方向にのみ周期的な屈折率分布を持っている一般的な一次元回折格子では、特定の方向に進む光しか回折されず、光の取り出し効率がさほど上がらない。
 しかしながら、屈折率分布を二次元的な分布にすることにより、あらゆる方向に進む光が回折され、光の取り出し効率が上がる。
 回折格子を導入する位置としては、いずれかの層間、若しくは媒質中(透明基板内や透明電極内)でも良いが、光が発生する場所である有機発光層の近傍が望ましい。このとき、回折格子の周期は、媒質中の光の波長の約1/2~3倍程度の範囲内が好ましい。回折格子の配列は、正方形のラチス状、三角形のラチス状、ハニカムラチス状など、二次元的に配列が繰り返されることが好ましい。
 《集光シート》
 本発明の有機EL素子は、支持基板(基板)の光取り出し側に、例えばマイクロレンズアレイ上の構造を設けるように加工したり、又は、いわゆる集光シートと組み合わせることにより、特定方向、例えば素子発光面に対し正面方向に集光することにより、特定方向上の輝度を高めることができる。
 マイクロレンズアレイの例としては、基板の光取り出し側に一辺が30μmでその頂角が90度となるような四角錐を二次元に配列する。一辺は10~100μmの範囲内が好ましい。これより小さくなると回折の効果が発生して色付く、大きすぎると厚さが厚くなり好ましくない。
 集光シートとしては、例えば液晶表示装置のLEDバックライトで実用化されているものを用いることが可能である。このようなシートとして例えば、住友スリーエム社製輝度上昇フィルム(BEF)などを用いることができる。プリズムシートの形状としては、例えば基材に頂角90度、ピッチ50μmの△状のストライプが形成されたものであってもよいし、頂角が丸みを帯びた形状、ピッチをランダムに変化させた形状、その他の形状であっても良い。
 また、有機EL素子からの光放射角を制御するために光拡散板・フィルムを、集光シートと併用してもよい。例えば、(株)きもと製拡散フィルム(ライトアップ)などを用いることができる。
 《用途》
 本発明の有機EL素子は、表示デバイス、ディスプレイ、各種発光光源として用いることができる。
 発光光源として、例えば、照明装置(家庭用照明、車内照明)、時計や液晶用バックライト、看板広告、信号機、光記憶媒体の光源、電子写真複写機の光源、光通信処理機の光源、光センサーの光源等が挙げられるがこれに限定するものではないが、特に液晶表示装置のバックライト、照明用光源としての用途に有効に用いることができる。
 本発明の有機EL素子においては、必要に応じ成膜時にメタルマスクやインクジェットプリンティング法等でパターニングを施してもよい。パターニングする場合は、電極のみをパターニングしてもよいし、電極と発光層をパターニングしてもよいし、素子全層をパターニングしてもよく、素子の作製においては、従来公知の方法を用いることができる。
 《表示装置》
以下、本発明の有機EL素子を有する表示装置の一例を図面に基づいて説明する。
 図1は、本発明の有機EL素子から構成される表示装置の構成の一例を示した概略斜視図であって、有機EL素子の発光により画像情報の表示を行う、例えば、携帯電話等のディスプレイの模式図である。図1に示すとおり、ディスプレイ1は、複数の画素を有する表示部A、画像情報に基づいて表示部Aの画像走査を行う制御部B等からなる。
 制御部Bは表示部Aと電気的に接続されている。制御部Bは、複数の画素それぞれに対し、外部からの画像情報に基づいて走査信号と画像データ信号を送る。その結果、各画素が走査信号により走査線毎に画像データ信号に応じて順次発光し、画像情報が表示部Aに表示される。
 図2は、図1に記載の表示部Aの模式図である。
 表示部Aは基板上に、複数の走査線5及びデータ線6を含む配線部と、複数の画素3等とを有する。
 表示部Aの主要な部材の説明を以下に行う。
 図2においては、画素3の発光した光が白矢印方向(下方向)へ取り出される場合を示している。配線部の走査線5及び複数のデータ線6はそれぞれ導電材料から構成されている。走査線5とデータ線6は互いに格子状に直交して、その直交する位置で画素3に接続されている(詳細は図示していない)。
 画素3は、走査線5から走査信号が送信されると、データ線6から画像データ信号を受け取り、受け取った画像データに応じて発光する。
 発光の色が赤領域の画素、緑領域の画素、青領域の画素を適宜同一基板上に並列配置することによって、フルカラー表示が可能となる。
 《照明装置》
 本発明の有機EL素子を具備した、本発明の照明装置の一態様について説明する。
 本発明の有機EL素子の非発光面をガラスケースで覆い、厚さ300μmのガラス基板を封止用基板として用いて、周囲にシール材として、エポキシ系光硬化型接着剤(東亞合成社製ラックストラックLC0629B)を適用し、これを陰極上に重ねて透明支持基板と密着させ、ガラス基板側からUV光を照射して、硬化させて、封止し、図3、図4に示すような照明装置を形成することができる。
 図3は、照明装置の概略図を示し、本発明の有機EL素子101はガラスカバー102で覆われている(なお、ガラスカバーでの封止作業は、有機EL素子101を大気に接触させることなく窒素雰囲気下のグローブボックス(純度99.999%以上の高純度窒素ガスの雰囲気下)で行った。)。
 図4は、照明装置の断面図を示し、図4において、105は陰極、106は有機EL層、107は透明電極付きガラス基板を示す。なお、ガラスカバー102内には窒素ガス108が充填され、捕水剤109が設けられている。
 以下、実施例を挙げて本発明を具体的に説明するが、本発明はこれらに限定されるものではない。なお、実施例において「部」又は「%」の表示を用いるが、特に断りがない限り「体積%」を表す。
 《実施例に用いた化合物》
Figure JPOXMLDOC01-appb-C000130
Figure JPOXMLDOC01-appb-C000131
Figure JPOXMLDOC01-appb-C000132
 〔実施例1〕
 《有機EL素子の作製》
 (1)有機EL素子101の作製
 50mm×50mm、厚さ0.7mmのガラス基板上に、陽極としてITO(インジウム・スズ酸化物)を150nmの厚さで製膜し、パターニングを行った後、このITO透明電極を付けた透明基板をイソプロピルアルコールで超音波洗浄し、乾燥窒素ガスで乾燥し、UVオゾン洗浄を5分間行った後、この透明基板を市販の真空蒸着装置の基板ホルダーに固定した。
 真空蒸着装置内の蒸着用の抵抗加熱ボートの各々に、各層の構成材料を、各々素子作製に最適の量を充填した。前記抵抗加熱ボートはモリブデン製又はタングステン製を用いた。
 真空度1×10-4Paまで減圧した後、HI-1の入った抵抗加熱ボートに通電して加熱し、蒸着速度0.1nm/秒でITO透明電極上に蒸着し、層厚15nmの正孔注入層を形成した。
 次いで、HT-1を蒸着速度0.1nm/秒で蒸着し、層厚30nmの正孔輸送層を形成した。
 次いで、比較のホスト化合物である比較化合物1とGD-1の入った抵抗加熱ボートに通電して加熱し、それぞれ蒸着速度0.1nm/秒、0.010nm/秒で前記正孔輸送層上に共蒸着し、層厚40nmの発光層を形成した。
 次いで、HB-1を蒸着速度0.1nm/秒で蒸着し、層厚5nmの第一電子輸送層を形成した。
 さらにその上に、ET―1を蒸着速度0.1nm/秒で蒸着し、層厚45nmの第二電子輸送層を形成した。
 その後、フッ化リチウムを厚さ0.5nmになるよう蒸着した後に、アルミニウム100nmを蒸着して陰極を形成し、有機EL素子101を作製した。
 作製後、有機EL素子101の非発光面を、純度99.999%以上の高純度窒素ガスの雰囲気下にてガラスケースで覆い、層さ300μmのガラス基板を封止用基板として用いて、周囲にシール材としてエポキシ系光硬化型接着剤(東亞合成社製ラックストラックLC0629B)を適用し、これを前記陰極上に重ねて透明支持基板と密着させ、ガラス基板側からUV光を照射して、硬化させて、封止して、図3及び図4に示すような構成からなる照明装置を作製し、これをサンプルとした。
 《有機EL素子102~111の作製》
 有機EL素子101の作製において、ホスト化合物を表1に記載の化合物に変更した。それ以外は同様にして、有機EL素子102~111を作製した。作製後、同様に図3及び図4に示すような構成からなる照明装置を作製し、これをサンプルとした。
 《有機EL素子101~111の評価》
 各サンプルについて下記の評価を行った。評価結果を表1に示す。
 (1)外部取り出し量子効率
 有機EL素子を室温(約23℃)、2.5mA/cmの定電流条件下による通電を行い、発光開始直後の発光輝度(L0)[cd/m]を測定することにより、外部取り出し量子効率(η)を算出した。
 ここで、発光輝度の測定はCS-2000(コニカミノルタ(株)製)を用いて行い、外部取り出し量子効率は有機EL素子101を100とする相対値で表した。
 なお、値が大きいほうが発光効率に優れていることを示す。
 (2)半減寿命
 下記測定法に従って、半減寿命の評価を行った。
 各有機EL素子を初期輝度4000cd/mを与える電流で定電流駆動して、初期輝度の1/2になる時間を求め、これを半減寿命の尺度とした。なお、半減寿命は有機EL素子101を100とする相対値で表した。
 なお、値が大きいほうが比較に対して耐久性に優れていることを示す。
 (3)高温保存安定性評価
 有機EL素子を高温条件下(約50±5℃)の恒温槽に入れ、上記(2)半減寿命の測定法と同条件で半減寿命の評価を行い、下記式を用いて耐熱性を算出した。
 耐熱性(%)=(高温条件下での半減寿命)/(室温での半減寿命)×100
 表1には有機EL素子101を100とする相対値で表した。耐熱性の値が大きいほうが比較に対して温度変化に対する耐久性が高い、つまり高温保存安定性が優れていることを示す。
Figure JPOXMLDOC01-appb-T000133
 表1より、本発明の有機EL素子102~111は比較の有機EL素子101に比べ、外部取り出し量子効率、半減寿命及び高温保存安定性に優れていることが分かる。
 〔実施例2〕
 《有機EL素子の作製》
 (1)有機EL素子201の作製
 50mm×50mm、厚さ0.7mmのガラス基板上に、陽極としてITO(インジウム・スズ酸化物)を150nmの厚さで製膜し、パターニングを行った後、このITO透明電極を付けた透明基板をイソプロピルアルコールで超音波洗浄し、乾燥窒素ガスで乾燥し、UVオゾン洗浄を5分間行った後、この透明基板を市販の真空蒸着装置の基板ホルダーに固定した。
 真空蒸着装置内の蒸着用の抵抗加熱ボートの各々に、各層の構成材料を、各々素子作製に最適の量を充填した。前記抵抗加熱ボートはモリブデン製又はタングステン製を用いた。
 真空度1×10-4Paまで減圧した後、HI-2の入った抵抗加熱ボートに通電して加熱し、蒸着速度0.1nm/秒でITO透明電極上に蒸着し、層厚10nmの正孔注入層を形成した。
 次いで、HT-2を蒸着速度0.1nm/秒で蒸着し、層厚30nmの正孔輸送層を形成した。
 次いで、比較のホスト化合物である比較化合物2とGD-2の入った抵抗加熱ボートに通電して加熱し、それぞれ蒸着速度0.1nm/秒、0.010nm/秒で前記正孔輸送層上に共蒸着し、層厚30nmの発光層を形成した。
 次いで、HB-2を蒸着速度0.1nm/秒で蒸着し、層厚5nmの第一電子輸送層を形成した。
 さらにその上に、ET-2を蒸着速度0.1nm/秒で蒸着し、層厚45nmの第二電子輸送層を形成した。
 その後、フッ化リチウムを厚さ0.5nmになるよう蒸着した後に、アルミニウム100nmを蒸着して陰極を形成し、有機EL素子201を作製した。
 作製後、有機EL素子201の非発光面を、純度99.999%以上の高純度窒素ガスの雰囲気下にてガラスケースで覆い、層さ300μmのガラス基板を封止用基板として用いて、周囲にシール材としてエポキシ系光硬化型接着剤(東亞合成社製ラックストラックLC0629B)を適用し、これを前記陰極上に重ねて透明支持基板と密着させ、ガラス基板側からUV光を照射して、硬化させて、封止して、図3及び図4に示すような構成からなる照明装置を作製し、これをサンプルとした。
 《有機EL素子202~212の作製》
 有機EL素子201の作製において、ホスト化合物を表2に記載のホスト化合物に変更した。それ以外は同様にして、有機EL素子202~212を作製した。作製後、同様に図3及び図4に示すような構成からなる照明装置を作製し、これをサンプルとした。
 《有機EL素子201~212の評価》
 各サンプルについて下記の評価を行った。
 外部取り出し量子効率、半減寿命、高温保存安定性評価については、実施例1と同様の方法で評価し、有機EL素子201の各特性値を100とする相対値で表した。
 評価結果を表2に示す。
Figure JPOXMLDOC01-appb-T000134
 表2より、本発明の有機EL素子202~212は比較の有機EL素子201に比べ、外部取り出し量子効率、半減寿命及び高温保存安定性に優れていることが分かる。
 〔実施例3〕
 《有機EL素子の作製》
 (1)有機EL素子301の作製
 50mm×50mm、厚さ0.7mmのガラス基板上に、陽極としてITO(インジウム・スズ酸化物)を150nmの厚さで製膜し、パターニングを行った後、このITO透明電極を付けた透明基板をイソプロピルアルコールで超音波洗浄し、乾燥窒素ガスで乾燥し、UVオゾン洗浄を5分間行った後、この透明基板を市販の真空蒸着装置の基板ホルダーに固定した。
 真空蒸着装置内の蒸着用の抵抗加熱ボートの各々に、各層の構成材料を、各々素子作製に最適の量を充填した。前記抵抗加熱ボートはモリブデン製又はタングステン製を用いた。
 真空度1×10-4Paまで減圧した後、HI-2の入った抵抗加熱ボートに通電して加熱し、蒸着速度0.1nm/秒でITO透明電極上に蒸着し、層厚20nmの正孔注入層を形成した。
 次いで、HT-1を蒸着速度0.1nm/秒で蒸着し、層厚20nmの正孔輸送層を形成した。
 次いで、比較のホスト化合物である比較化合物3とGD-3の入った抵抗加熱ボートに通電して加熱し、それぞれ蒸着速度0.1nm/秒、0.010nm/秒で前記正孔輸送層上に共蒸着し、層厚30nmの発光層を形成した。
 次いで、HB-3を蒸着速度0.1nm/秒で蒸着し、層厚10nmの第一電子輸送層を形成した。
 さらにその上に、ET-2を蒸着速度0.1nm/秒で蒸着し、層厚40nmの第二電子輸送層を形成した。
 その後、フッ化リチウムを厚さ0.5nmになるよう蒸着した後に、アルミニウム100nmを蒸着して陰極を形成し、有機EL素子301を作製した。
 作製後、有機EL素子301の非発光面を、純度99.999%以上の高純度窒素ガスの雰囲気下にてガラスケースで覆い、層さ300μmのガラス基板を封止用基板として用いて、周囲にシール材としてエポキシ系光硬化型接着剤(東亞合成社製ラックストラックLC0629B)を適用し、これを前記陰極上に重ねて透明支持基板と密着させ、ガラス基板側からUV光を照射して、硬化させて、封止して、図3及び図4に示すような構成からなる照明装置を作製し、これをサンプルとした。
 《有機EL素子302~312の作製》
 有機EL素子301の作製において、ホスト化合物を表3に記載のホスト化合物に変更した。それ以外は同様にして、有機EL素子302~312を作製した。作製後、同様に図3及び図4に示すような構成からなる照明装置を作製し、これをサンプルとした。
 《有機EL素子301~312の評価》
 各サンプルについて下記の評価を行った。
 外部取り出し量子効率、半減寿命、高温保存安定性評価については、実施例1と同様の方法で評価し、有機EL素子301の各特性値を100とする相対値で表した。
 評価結果を表3に示す。
Figure JPOXMLDOC01-appb-T000135
 表3より、本発明の有機EL素子302~312は比較の有機EL素子301に比べ、外部取り出し量子効率、半減寿命及び高温保存安定性に優れていることが分かる。
 〔実施例4〕
 《有機EL素子の作製》
 (1)有機EL素子401の作製
 50mm×50mm、厚さ0.7mmのガラス基板上に、陽極としてITO(インジウム・スズ酸化物)を120nmの厚さで製膜し、パターニングを行った後、このITO透明電極を付けた透明基板をイソプロピルアルコールで超音波洗浄し、乾燥窒素ガスで乾燥し、UVオゾン洗浄を5分間行った。
 この透明支持基板上に、ポリ(3,4-エチレンジオキシチオフェン)-ポリスチレンスルホネート(PEDOT/PSS、Bayer社製、Baytron P Al 4083)を純水で70%に希釈した溶液を用い、3000rpm、30秒の条件でスピンコート法により薄膜を形成した後、200℃にて1時間乾燥し、層厚20nmの正孔注入層を設けた。
 次に、この透明基板を市販の真空蒸着装置の基板ホルダーに固定した。
 真空蒸着装置内の蒸着用の抵抗加熱ボートの各々に、各層の構成材料を、各々素子作製に最適の量を充填した。蒸着用抵抗加熱ボートはモリブデン製又はタングステン製を用いた。
 真空度1×10-4Paまで減圧した後、HT-2の入った抵抗加熱ボートに通電して加熱し、蒸着速度0.1nm/秒で正孔注入層上に蒸着し、層厚20nmの正孔輸送層を形成した。
 次いで、比較のホスト化合物である比較化合物4とGD-1の入った抵抗加熱ボートに通電して加熱し、それぞれ蒸着速度0.1nm/秒、0.010nm/秒で前記正孔輸送層上に共蒸着し、層厚40nmの発光層を形成した。
 次いで、ET-1を蒸着速度0.1nm/秒で蒸着し、層厚40nmの電子輸送層を形成した。
 その上に、フッ化リチウムを厚さ0.5nmになるよう蒸着した後に、アルミニウム100nmを蒸着して陰極を形成し、有機EL素子401を作製した。
 作製後、有機EL素子401の非発光面を、純度99.999%以上の高純度窒素ガスの雰囲気下にてガラスケースで覆い、層さ300μmのガラス基板を封止用基板として用いて、周囲にシール材としてエポキシ系光硬化型接着剤(東亞合成社製ラックストラックLC0629B)を適用し、これを前記陰極上に重ねて透明支持基板と密着させ、ガラス基板側からUV光を照射して、硬化させて、封止して、図3及び図4に示すような構成からなる照明装置を作製し、これをサンプルとした。
 《有機EL素子402~412の作製》
 有機EL素子401の作製において、ホスト化合物を表4に記載のホスト化合物に変更した。それ以外は同様にして、有機EL素子402~412を作製した。作製後、同様に図3及び図4に示すような構成からなる照明装置を作製し、これをサンプルとした。
 《有機EL素子401~412の評価》
 各サンプルについて下記の評価を行った。
 外部取り出し量子効率、半減寿命、高温保存安定性評価については、実施例1と同様の方法で評価し、有機EL素子401の各特性値を100とする相対値で表した。
 評価結果を表4に示す。
Figure JPOXMLDOC01-appb-T000136
 表4より、本発明の有機EL素子402~412は比較の有機EL素子401に比べ、外部取り出し量子効率、半減寿命及び高温保存安定性に優れていることが分かる。
 〔実施例5〕
 《有機EL素子の作製》
 (1)有機EL素子501の作製
 50mm×50mm、厚さ0.7mmのガラス基板上に、陽極としてITO(インジウム・スズ酸化物)を120nmの厚さで製膜し、パターニングを行った後、このITO透明電極を付けた透明基板をイソプロピルアルコールで超音波洗浄し、乾燥窒素ガスで乾燥し、UVオゾン洗浄を5分間行った。
 この透明支持基板上に、ポリ(3,4-エチレンジオキシチオフェン)-ポリスチレンスルホネート(PEDOT/PSS、Bayer社製、Baytron P Al 4083)を純水で70%に希釈した溶液を用い、3000rpm、30秒の条件でスピンコート法により薄膜を形成した後、200℃にて1時間乾燥し、層厚20nmの正孔注入層を設けた。
 次に、この透明基板を市販の真空蒸着装置の基板ホルダーに固定した。
 真空蒸着装置内の蒸着用の抵抗加熱ボートの各々に、各層の構成材料を、各々素子作製に最適の量を充填した。蒸着用抵抗加熱ボートはモリブデン製又はタングステン製を用いた。
 真空度1×10-4Paまで減圧した後、HT-4の入った抵抗加熱ボートに通電して加熱し、蒸着速度0.1nm/秒で正孔注入層上に蒸着し、層厚20nmの正孔輸送層を形成した。
 次いで、比較のホスト化合物である比較化合物1とGD-1の入った抵抗加熱ボートに通電して加熱し、それぞれ蒸着速度0.1nm/秒、0.010nm/秒で前記正孔輸送層上に共蒸着し、層厚40nmの発光層を形成した。
 次いで、HB-1を蒸着速度0.1nm/秒で蒸着し、層厚5nmの第一電子輸送層を形成した。
 さらにその上に、ET-3を蒸着速度0.1nm/秒で蒸着し、層厚30nmの第二電子輸送層を形成した。
 その後、フッ化リチウムを厚さ0.5nmになるよう蒸着した後に、アルミニウム100nmを蒸着して陰極を形成し、有機EL素子501を作製した。
 作製後、有機EL素子501の非発光面を、純度99.999%以上の高純度窒素ガスの雰囲気下にてガラスケースで覆い、層さ300μmのガラス基板を封止用基板として用いて、周囲にシール材としてエポキシ系光硬化型接着剤(東亞合成社製ラックストラックLC0629B)を適用し、これを前記陰極上に重ねて透明支持基板と密着させ、ガラス基板側からUV光を照射して、硬化させて、封止して、図3及び図4に示すような構成からなる照明装置を作製し、これをサンプルとした。
 《有機EL素子502~512の作製》
 有機EL素子501の作製において、ホスト化合物を表5に記載のホスト化合物に変更した。それ以外は同様にして、有機EL素子502~512を作製した。作製後、同様に図3及び図4に示すような構成からなる照明装置を作製し、これをサンプルとした。
 《有機EL素子501~512の評価》
 各サンプルについて下記の評価を行った。
 外部取り出し量子効率、半減寿命、高温保存安定性評価については、実施例1と同様の方法で評価し、有機EL素子501の各特性値を100とする相対値で表した。
 評価結果を表5に示す。
Figure JPOXMLDOC01-appb-T000137
 表1より、本発明の有機EL素子502~512は比較の有機EL素子501に比べ、外部取り出し量子効率、半減寿命及び高温保存安定性に優れていることが分かる。
 〔実施例6〕
 《有機EL素子の作製》
 (1)有機EL素子601の作製
 50mm×50mm、厚さ0.7mmのガラス基板上に、陽極としてITO(インジウム・スズ酸化物)を150nmの厚さで製膜し、パターニングを行った後、このITO透明電極を付けた透明基板をイソプロピルアルコールで超音波洗浄し、乾燥窒素ガスで乾燥し、UVオゾン洗浄を5分間行った後、この透明基板を市販の真空蒸着装置の基板ホルダーに固定した。
 真空蒸着装置内の蒸着用の抵抗加熱ボートの各々に、各層の構成材料を、各々素子作製に最適の量を充填した。前記抵抗加熱ボートはモリブデン製又はタングステン製を用いた。
 真空度1×10-4Paまで減圧した後、HI-1の入った抵抗加熱ボートに通電して加熱し、蒸着速度0.1nm/秒でITO透明電極上に蒸着し、層厚15nmの正孔注入層を形成した。
 次いで、HT-3を蒸着速度0.1nm/秒で蒸着し、層厚30nmの正孔輸送層を形成した。
 次いで、比較のホスト化合物である比較化合物2とGD-2の入った抵抗加熱ボートに通電して加熱し、それぞれ蒸着速度0.1nm/秒、0.010nm/秒で前記正孔輸送層上に共蒸着し、層厚40nmの発光層を形成した。
 次いで、ET-2を蒸着速度0.1nm/秒で蒸着し、層厚40nmの第二電子輸送層を形成した。
 さらにその上に、フッ化リチウムを厚さ0.5nmになるよう蒸着した後に、アルミニウム100nmを蒸着して陰極を形成し、有機EL素子601を作製した。
 作製後、有機EL素子601の非発光面を、純度99.999%以上の高純度窒素ガスの雰囲気下にてガラスケースで覆い、層さ300μmのガラス基板を封止用基板として用いて、周囲にシール材としてエポキシ系光硬化型接着剤(東亞合成社製ラックストラックLC0629B)を適用し、これを前記陰極上に重ねて透明支持基板と密着させ、ガラス基板側からUV光を照射して、硬化させて、封止して、図3及び図4に示すような構成からなる照明装置を作製し、これをサンプルとした。
 《有機EL素子602~611の作製》
 有機EL素子601の作製において、ホスト化合物を表6に記載のホスト化合物に変更した。それ以外は同様にして、有機EL素子602~611を作製した。作製後、同様に図3及び図4に示すような構成からなる照明装置を作製し、これをサンプルとした。
 《有機EL素子601~611の評価》
 各サンプルについて下記の評価を行った。
 外部取り出し量子効率、半減寿命、高温保存安定性評価については、実施例1と同様の方法で評価し、有機EL素子601の各特性値を100とする相対値で表した。
 評価結果を表6に示す。
Figure JPOXMLDOC01-appb-T000138
 表6より、本発明の有機EL素子602~611は比較の有機EL素子601に比べ、外部取り出し量子効率、半減寿命及び高温保存安定性に優れていることが分かる。
 〔実施例7〕
 《有機EL素子の作製》
 (1)有機EL素子701の作製
 実施例6に記載の有機EL素子601の作製において、HT-3の代わりにHT-2を用い、比較化合物2の代わりに比較化合物3を用い、GD-2の代わりにGD-4を用い、ET-2の代わりにET-3を用いた以外は同様にして、有機EL素子701を作製した。作製後、実施例1と同様に図3及び図4に示すような構成からなる照明装置を作製し、これをサンプルとした。
 《有機EL素子702~711の作製》
 有機EL素子701の作製において、ホスト化合物を表7に記載のホスト化合物に変更した。それ以外は同様にして、有機EL素子702~711を作製した。作製後、同様に図3及び図4に示すような構成からなる照明装置を作製し、これをサンプルとした。
 《有機EL素子701~711の評価》
 各サンプルについて下記の評価を行った。
 外部取り出し量子効率、半減寿命、高温保存安定性評価については、実施例1と同様の方法で評価し、有機EL素子701の各特性値を100とする相対値で表した。
 評価結果を表7に示す。
Figure JPOXMLDOC01-appb-T000139
 表7より、本発明の有機EL素子702~711は比較の有機EL素子701に比べ、外部取り出し量子効率、半減寿命及び高温保存安定性に優れていることが分かる。
 〔実施例8〕
 《有機EL素子の作製》
 (1)有機EL素子801の作製
 実施例2に記載の有機EL素子201の作製において、HT-2の代わりにHT-3を用い、比較化合物2の代わりに比較化合物4を用い、GD-2の代わりにGD-3を用い、HB-2の代わりにHB-3を用い、ET-2の代わりにET-3を用いた以外は同様にして、有機EL素子801を作製した。作製後、実施例1と同様に図3及び図4に示すような構成からなる照明装置を作製し、これをサンプルとした。
 《有機EL素子802~811の作製》
 有機EL素子801の作製において、ホスト化合物を表8に記載のホスト化合物に変更した。それ以外は同様にして、有機EL素子802~811を作製した。作製後、同様に図3及び図4に示すような構成からなる照明装置を作製し、これをサンプルとした。
 《有機EL素子801~811の評価》
 各サンプルについて下記の評価を行った。
 外部取り出し量子効率、半減寿命、高温保存安定性評価については、実施例1と同様の方法で評価し、有機EL素子801の各特性値を100とする相対値で表した。
 評価結果を表8に示す。
Figure JPOXMLDOC01-appb-T000140
 表8より、本発明の有機EL素子802~111は比較の有機EL素子801に比べ、外部取り出し量子効率、半減寿命及び高温保存安定性に優れていることが分かる。
 〔実施例9〕
 《有機EL素子の作製》
 (1)有機EL素子901の作製
 実施例2に記載の有機EL素子201の作製において、HT-2の代わりにHT-4を用い、比較化合物2の代わりに比較化合物1を用い、GD-2の代わりにGD-4を用い、HB-2の代わりにHB-3を用い、ET-2の代わりにET-4を用いた以外は同様にして、有機EL素子901を作製した。作製後、実施例1と同様に図3及び図4に示すような構成からなる照明装置を作製し、これをサンプルとした。
 《有機EL素子902~911の作製》
 有機EL素子901の作製において、ホスト化合物を表9に記載のホスト化合物に変更した。それ以外は同様にして、有機EL素子902~911を作製した。作製後、同様に図3及び図4に示すような構成からなる照明装置を作製し、これをサンプルとした。
 《有機EL素子901~911の評価》
 各サンプルについて下記の評価を行った。
 外部取り出し量子効率、半減寿命、高温保存安定性評価については、実施例1と同様の方法で評価し、有機EL素子901の各特性値を100とする相対値で表した。
 評価結果を表9に示す。
Figure JPOXMLDOC01-appb-T000141
 表9より、本発明の有機EL素子902~911は比較の有機EL素子901に比べ、外部取り出し量子効率、半減寿命及び高温保存安定性に優れていることが分かる。
 〔実施例10〕
 《有機EL素子の作製》
 (1)有機EL素子1001の作製
 実施例4に記載の有機EL素子401の作製において、HT-2の代わりにHT-3を用い、比較化合物4の代わりに比較化合物2を用い、ET-1の代わりにET-4を用いた以外は同様にして、有機EL素子1001を作製した。作製後、実施例1と同様に図3及び図4に示すような構成からなる照明装置を作製し、これをサンプルとした。
 《有機EL素子1002~1013の作製》
 有機EL素子1001の作製において、ホスト化合物を表10に記載のホスト化合物に変更した。それ以外は同様にして、有機EL素子1002~1013を作製した。作製後、同様に図3及び図4に示すような構成からなる照明装置を作製し、これをサンプルとした。
 《有機EL素子1001~1013の評価》
 各サンプルについて下記の評価を行った。
 外部取り出し量子効率、半減寿命、高温保存安定性評価については、実施例1と同様の方法で評価し、有機EL素子1001の各特性値を100とする相対値で表した。
 評価結果を表10に示す。
Figure JPOXMLDOC01-appb-T000142
 表10より、本発明の有機EL素子1002~1013は比較の有機EL素子1001に比べ、外部取り出し量子効率、半減寿命及び高温保存安定性に優れていることが分かる。
 〔実施例11〕
 《有機EL素子の作製》
 (1)有機EL素子1101の作製
 実施例5に記載の有機EL素子501の作製において、HT-4の代わりにHT-1を用い、比較化合物1の代わりに比較化合物3を用い、GD-1の代わりにGD-4を用い、ET-3の代わりにET-2を用いた以外は同様にして、有機EL素子1101を作製した。作製後、実施例1と同様に図3及び図4に示すような構成からなる照明装置を作製し、これをサンプルとした。
 《有機EL素子1102~1112の作製》
 有機EL素子1101の作製において、ホスト化合物を表11に記載のホスト化合物に変更した。それ以外は同様にして、有機EL素子1102~1112を作製した。作製後、同様に図3及び図4に示すような構成からなる照明装置を作製し、これをサンプルとした。
 《有機EL素子1101~1112の評価》
 各サンプルについて下記の評価を行った。
 外部取り出し量子効率、半減寿命、高温保存安定性評価については、実施例1と同様の方法で評価し、有機EL素子1101の各特性値を100とする相対値で表した。
 評価結果を表11に示す。
Figure JPOXMLDOC01-appb-T000143
 表11より、本発明の有機EL素子1102~1112は比較の有機EL素子1101に比べ、外部取り出し量子効率、半減寿命及び高温保存安定性に優れていることが分かる。
 〔実施例12〕
 《有機EL素子の作製》
 (1)有機EL素子1201の作製
 実施例1に記載の有機EL素子101の作製において、HT-1の代わりにHT-4を用い、比較化合物1の代わりに比較化合物4を用い、GD-1の代わりにGD-3を用い、HB-1の代わりにHB-2を用い、ET-1の代わりにET-3を用いた以外は同様にして、有機EL素子1201を作製した。作製後、実施例1と同様に図3及び図4に示すような構成からなる照明装置を作製し、これをサンプルとした。
 《有機EL素子1202~1214の作製》
 有機EL素子1201の作製において、ホスト化合物を表12に記載のホスト化合物に変更した。それ以外は同様にして、有機EL素子1202~1214を作製した。作製後、同様に図3及び図4に示すような構成からなる照明装置を作製し、これをサンプルとした。
 《有機EL素子1201~1214の評価》
 各サンプルについて下記の評価を行った。
 外部取り出し量子効率、半減寿命、高温保存安定性評価については、実施例1と同様の方法で評価し、有機EL素子1201の各特性値を100とする相対値で表した。
 評価結果を表12に示す。
Figure JPOXMLDOC01-appb-T000144
 表12より、本発明の有機EL素子1202~1214は比較の有機EL素子1201に比べ、外部取り出し量子効率、半減寿命及び高温保存安定性に優れていることが分かる。
 〔実施例13〕
 《フルカラー表示装置の作製》
(1)青色発光素子の作製
 《有機EL素子1301の作製》
 100mm×100mm×1.1mmのガラス基板上に、陽極としてITO(インジウム・スズ酸化物)を厚さ100nm成膜した基板(NHテクノグラス社製NA45)にパターニングを行った後、このITO透明電極を設けた透明支持基板をイソプロピルアルコールで超音波洗浄し、乾燥窒素ガスで乾燥し、UVオゾン洗浄を5分間行った。
 この透明支持基板を、市販の真空蒸着装置の基板ホルダーに固定し、一方、モリブデン製抵抗加熱ボートにHT-1を200mg入れ、別のモリブデン製抵抗加熱ボートにホスト化合物としてmCP(1,3-ビスーNカルバゾリルベンゼン)を200mg入れ、別のモリブデン製抵抗加熱ボートにHB-2を200mg入れ、別のモリブデン製抵抗加熱ボートに発光ドーパントとしてBD-1を100mg入れ、更に別のモリブデン製抵抗加熱ボートにET-2を200mg入れ、真空蒸着装置に取り付けた。
 次に、真空槽を4×10-4Paまで減圧した後、HT-1の入った前記モリブデン製抵抗加熱ボートに通電して加熱し、蒸着速度0.1nm/秒で透明支持基板上に蒸着し、層厚40nmの正孔輸送層を設けた。
 更に、mCP(1,3-ビスーNカルバゾリルベンゼン)とBD-1の入った前記モリブデン製抵抗加熱ボートを通電して加熱し、それぞれ蒸着速度0.2nm/秒、0.012nm/秒で、前記正孔輸送層上に共蒸着して、厚さ40nmの発光層を設けた。なお、蒸着時の基板温度は室温とした。
 更に、HB-2の入った前記モリブデン製抵抗加熱ボートを通電して加熱し、蒸着速度0.1nm/秒で、前記発光層上に蒸着して、厚さ10nmの正孔阻止層を設けた。
 更に、ET-2の入った前記抵抗加熱ボートを通電して加熱し、蒸着速度0.1nm/秒で、前記正孔阻止層上に蒸着して、厚さ40nmの電子輸送層を設けた。なお、蒸着時の基板温度は室温とした。
 引き続きフッ化リチウム0.5nm及びアルミニウム110nmを蒸着して陰極を形成し、有機EL素子1301を作製した。
 作製後、有機EL素子1301の非発光面をガラスケースで覆い、厚さ300μmのガラス基板を封止用基板として用いて、周囲にシール材としてエポキシ系光硬化型接着剤(東亞合成社製ラックストラックLC0629B)を適用し、これを前記陰極上に重ねて透明支持基板と密着させ、ガラス基板側からUV光を照射して、硬化させて、封止して、図3及び図4に示すような構成からなる照明装置を構成し、これをサンプルとした。
(2)緑色発光素子の作製
 実施例5の有機EL素子508を緑色発光素子として用いた。
(3)赤色発光素子の作製
 《有機EL素子1302の作製》
 緑色発光素子である実施例5の有機EL素子508において、発光ドーパントをGD-1からRD-1に変更した。それ以外は青色発光素子1301と同様にして、赤色発光素子である有機EL素子1302を作製した。
(4)表示装置の作製
 上記で作製した赤色、緑色、青色発光有機EL素子を同一基板上に並列配置し、図1に記載のような形態を有するアクティブマトリクス方式フルカラー表示装置を作製した。
 図2には、作製した前記表示装置の表示部Aの模式図のみを示した。
 図2に示すとおり、表示部Aは同一基板上に複数の走査線5及びデータ線6を含む配線部と並列配置した複数の画素3(発光の色が赤領域の画素、緑領域の画素、青領域の画素等)とを有している。配線部の走査線5及び複数のデータ線6はそれぞれ導電材料から構成されている。走査線5とデータ線6は格子状に直交して、直交する位置で画素3に接続している(詳細は図示せず)。
 複数の画素3は、それぞれの発光色に対応した有機EL素子、アクティブ素子であるスイッチングトランジスタと駆動トランジスタそれぞれが設けられたアクティブマトリクス方式で駆動されており、走査線5から走査信号が送信されるとデータ線6から画像データ信号を受け取り、受け取った画像データに応じて発光する。このように赤、緑、青の画素3を適宜、並列配置することによって、フルカラー表示装置を作製した。
 得られたフルカラーの表示装置は、駆動することにより、輝度が高く、高耐久性を有し、且つ高温時での保存性に優れたフルカラー動画表示が得られることが確認できた。
 本発明の新規な芳香族複素環誘導体を用いた有機エレクトロルミネッセンス素子は、発光効率が高く、発光寿命が長く、高温下での使用においても経時変化が小さい特徴を有し、表示装置及び照明装置に好適に具備することができる。
 1 ディスプレイ
 3 画素
 5 走査線
 6 データ線
 A 表示部
 B 制御部
 101 有機EL素子
 102 ガラスカバー
 105 陰極
 106 有機EL層
 107 透明電極尽きガラス基板
 108 窒素ガス
 109 捕水剤

Claims (10)

  1.  下記、一般式(3)、(4)、(A1)、(A2)、(A3)、(A4)、(B1)、(B3)、(B4)、(C1)、(C2)、(C4)、(D1)、(D3)、(I1)、(I2)、(I3)、(J1)、(J3)、(J4)、(K1)、(K2)、(K3)、(K4)、(L1)、(L2)又は(L3)で表される構造を有することを特徴とする芳香族複素環誘導体。
    Figure JPOXMLDOC01-appb-C000001
    Figure JPOXMLDOC01-appb-C000002
    Figure JPOXMLDOC01-appb-C000003
    Figure JPOXMLDOC01-appb-C000004
    Figure JPOXMLDOC01-appb-C000005
    Figure JPOXMLDOC01-appb-C000006
    Figure JPOXMLDOC01-appb-C000007
    Figure JPOXMLDOC01-appb-C000008
    Figure JPOXMLDOC01-appb-C000009
    (一般式(3)、(4)、(A1)、(A2)、(A3)、(A4)、(B1)、(B3)、(B4)、(C1)、(C2)、(C4)、(D1)、(D3)、(I1)、(I2)、(I3)、(J1)、(J3)、(J4)、(K1)、(K2)、(K3)、(K4)、(L1)、(L2)及び(L3)中、
    、Y及びYは、それぞれ独立に、CR′又は窒素原子を表し、Y、Y又はYの少なくとも一つは窒素原子を表す。
    R′、Ar及びArは、
     水素原子、
     置換若しくは無置換の炭素数1~12のアルキル基、又は、
     置換若しくは無置換の環形成炭素数6~30のアリール基を表す。
     R′、Ar及びArが全て同時に水素原子であることはない。
    Xは、酸素原子又は硫黄原子を表す。
    Ra及びRbは、それぞれ独立に、置換基を表す。
    は、
     単結合、
     置換若しくは無置換の炭素数1~12のアルキレン基、
     置換若しくは無置換の環形成炭素数6~30のアリーレン基、又は
     これらの組み合わせからなる2価の連結基を表す。
    は、
     単結合、
     置換若しくは無置換の炭素数1~12のアルキレン基、
     置換若しくは無置換の環形成炭素数6~30のアリーレン基、
     置換若しくは無置換の環形成原子数5~30のヘテロアリーレン基
     、又はこれらの組み合わせからなる2価の連結基を表す。
    及びRは、それぞれ独立に、
     置換若しくは無置換の炭素数1~12のアルキル基、シアノ基、ハ
     ロゲン原子、又は、無置換若しくは下記一般式(A-1)又は(A
     -2)から選択される構造を置換基として有する環形成炭素数6~
     30のアリール基を表す。
    は、
     置換若しくは無置換の炭素数1~12のアルキル基、
     置換若しくは無置換の環形成炭素数6~30のアリール基、又は、
     置換若しくは無置換の環形成原子数5~30のヘテロアリール基を
     表す。
    n1は、0~3の整数を表し、n2、n3及びn4は、それぞれ独立
     に、0~4の整数を表す。
    na2は、0~2の整数を表し、nb2は、0~4の整数を表す。
     なお、n1~n4、na2及びnb2がそれぞれ2以上の場合、複数のR、R、Ra及びRbはそれぞれ同一でも異なっていてもよく、隣接するRa及びRb同士は互いに結合し、環構造を形成してもよい。
    Figure JPOXMLDOC01-appb-C000010
     一般式(A-1)及び(A-2)中、
     A~A及びA11~A18は、それぞれ独立に、CRc又は窒素
     原子を表し、
     Rcは、それぞれ独立に、水素原子、置換基又は結合手を表す。
     A~Aのうち一つ、及び、A11~A18のうち一つは、CRc
     であり、かつRcはR又はRで表される環形成炭素数6~30
     のアリール基と直接結合する結合手を表す。
     他のRcは、それぞれ同一でも異なっていてもよく、隣接するRc
     同士が互いに結合し、環構造を形成してもよい。
     X11は、酸素原子又は硫黄原子を表す。
  2.  下記、一般式(C3)又は(D2)で表される構造を有することを特徴とする芳香族複素環誘導体。
    Figure JPOXMLDOC01-appb-C000011
    (一般式(C3)、(D2)中、
    、Y及びYは、それぞれ独立に、CR′又は窒素原子を表し、Y、Y又はYの少なくとも一つは窒素原子を表す。
    R′、Ar及びArは、
     水素原子、
     置換若しくは無置換の炭素数1~12のアルキル基、又は、
     置換若しくは無置換の環形成炭素数6~30のアリール基を表す。
     R′、Ar及びArが全て同時に水素原子を表すことはない。
    Xは、酸素原子を表す。
    Ra及びRbは、それぞれ独立に、置換基を表す。
    は、
     単結合、
     置換若しくは無置換の炭素数1~12のアルキレン基、
     置換若しくは無置換の環形成炭素数6~30のアリーレン基、又は
     これらの組み合わせからなる2価の連結基を表す。
    は、
     単結合、
     置換若しくは無置換の炭素数1~12のアルキレン基、
     置換若しくは無置換の環形成炭素数6~30のアリーレン基、
     置換若しくは無置換の環形成原子数5~30のヘテロアリーレン基
      、又はこれらの組み合わせからなる2価の連結基を表す。
    及びRは、それぞれ独立に、
     置換若しくは無置換の炭素数1~12のアルキル基、シアノ基、ハ
     ロゲン原子、又は、無置換若しくは下記一般式(A-1)又は(A
     -2)から選択される構造を置換基として有する環形成炭素数6~
     30のアリール基を表す。
    は、
     置換若しくは無置換の炭素数1~12のアルキル基、
     置換若しくは無置換の環形成炭素数6~30のアリール基、又は、
     置換若しくは無置換の環形成原子数5~30のヘテロアリール基を
     表す。
    複数のR、R、Ra及びRbはそれぞれ同一でも異なっていてもよく、隣接するRa及びRb同士は互いに結合し、環構造を形成してもよい。
    Figure JPOXMLDOC01-appb-C000012
     
     一般式(A-1)及び(A-2)中、
     A~A及びA11~A18は、それぞれ独立に、CRc又は窒素
     原子を表し、
     Rcは、それぞれ独立に、水素原子、置換基又は結合手を表す。
     A~Aのうち一つ、及び、A11~A18のうち一つは、CRc
     であり、かつRcはR又はRで表される環形成炭素数6~30
     のアリール基と直接結合する結合手を表す。
     他のRcは、それぞれ同一でも異なっていてもよく、隣接するRc
     同士が互いに結合し、環構造を形成してもよい。
     X11は、酸素原子又は硫黄原子を表す。
  3.  下記、一般式(1)又は(2)で表される構造を有することを特徴とする芳香族複素環誘導体。
    Figure JPOXMLDOC01-appb-C000013
     (一般式(1)及び(2)中、
    、Y及びYは、それぞれ独立に、CR′又は窒素原子を表し
    、Y、Y又はYの少なくとも一つは窒素原子を表す。
    R′、Ar及びArは、
     水素原子、
     置換若しくは無置換の炭素数1~12のアルキル基、又は、
     置換若しくは無置換の環形成炭素数6~30のアリール基を表す。
    Xは、酸素原子又は硫黄原子を表す。
    Ra及びRbは、それぞれ独立に、置換基を表す。
    は、
     単結合、
     置換若しくは無置換の炭素数1~12のアルキレン基、
     置換若しくは無置換の環形成炭素数6~30のアリーレン基、又は
     これらの組み合わせからなる2価の連結基を表す。
    は、
     単結合、
     置換若しくは無置換の炭素数1~12のアルキレン基、
     置換若しくは無置換の環形成炭素数6~30のアリーレン基、
     置換若しくは無置換の環形成原子数5~30のヘテロアリーレン基
     、又はこれらの組み合わせからなる2価の連結基を表す。
    及びRは、それぞれ独立に、
     置換若しくは無置換の炭素数1~12のアルキル基、シアノ基、ハ
     ロゲン原子、又は、無置換若しくは下記一般式(A-1)又は(A
     -2)から選択される構造を置換基として有する環形成炭素数6~
     30のアリール基を表す。
    は、
     置換若しくは無置換の炭素数1~12のアルキル基、
     置換若しくは無置換の環形成炭素数6~30のアリール基、又は、
     置換若しくは無置換の環形成原子数5~30のヘテロアリール基を
     表す。
    n1は、0~3の整数を表し、n2、n3及びn4は、それぞれ独立
     に、0~4の整数を表す。
    na1、nb1は、それぞれ独立に、0~3の整数を表す。
    ただし、na1又はnb1の少なくとも一方が1以上の整数を表す場合は、前記R′、前記Ar1及びAr2が全て同時に水素原子を表すことはない。na1及びnb1が0である場合は、前記Ar1及びAr2は水素原子、又は置換若しくは無置換の炭素数1~12のアルキル基を表し、同時に水素原子を表すことはない。
     なお、n1~n4、na1及びnb1がそれぞれ2以上の場合、複数のR、R、Ra及びRbはそれぞれ同一でも異なっていてもよく、隣接するRa及びRb同士は互いに結合し、環構造を形成してもよい。
    Figure JPOXMLDOC01-appb-C000014
     一般式(A-1)及び(A-2)中、
     A~A及びA11~A18は、それぞれ独立に、CRc又は窒素
     原子を表し、
     Rcは、それぞれ独立に、水素原子、置換基又は結合手を表す。
     A~Aのうち一つ、及び、A11~A18のうち一つは、CRc
     であり、かつRcはR又はRで表される環形成炭素数6~30
     のアリール基と直接結合する結合手を表す。
     他のRcは、それぞれ同一でも異なっていてもよく、隣接するRc
     同士が互いに結合し、環構造を形成してもよい。
     X11は、酸素原子又は硫黄原子を表す。)
  4.  請求項1から請求項3までのいずれか一項に記載の芳香族複素環誘導体を用いたことを特徴とする有機エレクトロルミネッセンス素子。
  5.  請求項1又は請求項2に記載の芳香族複素環誘導体を用いた有機エレクトロルミネッセンス素子であって、Lが単結合、フェニレン基、ビフェニレン基又は炭素数2以下のアルキレン基を表すことを特徴とする有機エレクトロルミネッセンス素子。
  6.  請求項1又は請求項2に記載の芳香族複素環誘導体を用いた有機エレクトロルミネッセンス素子であって、Lが単結合、フェニレン基、ヘテロアリーレン基又は炭素数2以下のアルキレン基を表すことを特徴とする有機エレクトロルミネッセンス素子。
  7.  請求項1又は請求項2に記載の芳香族複素環誘導体を用いた有機エレクトロルミネッセンス素子であって、L又はLの少なくとも一方が、式(I)で表される前記芳香族複素環誘導体のXを含む縮合環の2位又は4位のいずれかの位置に結合していることを特徴とする有機エレクトロルミネッセンス素子。
    Figure JPOXMLDOC01-appb-C000015
  8.  請求項1から請求項3までのいずれか一項に記載の芳香族複素環誘導体を用いた有機エレクトロルミネッセンス素子であって、芳香族複素環誘導体はホスト化合物として発光層に含まれ、前記芳香族複素環誘導体とは異なる構造を有するホスト化合物をさらに含有することを特徴とする有機エレクトロルミネッセンス素子。
  9.  請求項4から請求項8までのいずれか一項に記載の有機エレクトロルミネッセンス素子を具備することを特徴とする表示装置。
  10.  請求項4から請求項8までのいずれか一項に記載の有機エレクトロルミネッセンス素子を具備することを特徴とする表示装置。
PCT/JP2016/054126 2015-02-13 2016-02-12 芳香族複素環誘導体、それを用いた有機エレクトロルミネッセンス素子、照明装置及び表示装置 WO2016129672A1 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
KR1020237009612A KR20230043245A (ko) 2015-02-13 2016-02-12 방향족 복소환 유도체, 그것을 사용한 유기 일렉트로루미네센스 소자, 조명 장치 및 표시 장치
KR1020177022113A KR20170102000A (ko) 2015-02-13 2016-02-12 방향족 복소환 유도체, 그것을 사용한 유기 일렉트로루미네센스 소자, 조명 장치 및 표시 장치
EP16749315.4A EP3257850B1 (en) 2015-02-13 2016-02-12 Aromatic heterocyclic derivative, and organic electroluminescent element, illumination device, and display device using aromatic heterocyclic derivative
CN201680009902.9A CN107250132B (zh) 2015-02-13 2016-02-12 芳香族杂环衍生物、使用其的有机电致发光元件、照明装置及显示装置
KR1020197021634A KR20190089236A (ko) 2015-02-13 2016-02-12 방향족 복소환 유도체, 그것을 사용한 유기 일렉트로루미네센스 소자, 조명 장치 및 표시 장치
US15/550,590 US20180037546A1 (en) 2015-02-13 2016-02-12 Aromatic heterocyclic derivative, and organic electroluminescent element, illumination device, and display device using aromatic heterocyclic derivative
EP23180820.5A EP4271160A3 (en) 2015-02-13 2016-02-12 Aromatic heterocyclic derivative, and organic electroluminescent element, illumination device, and display device using aromatic heterocyclic derivative

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015026039A JP5831654B1 (ja) 2015-02-13 2015-02-13 芳香族複素環誘導体、それを用いた有機エレクトロルミネッセンス素子、照明装置及び表示装置
JP2015-026039 2015-02-13

Publications (1)

Publication Number Publication Date
WO2016129672A1 true WO2016129672A1 (ja) 2016-08-18

Family

ID=54784417

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/054126 WO2016129672A1 (ja) 2015-02-13 2016-02-12 芳香族複素環誘導体、それを用いた有機エレクトロルミネッセンス素子、照明装置及び表示装置

Country Status (6)

Country Link
US (1) US20180037546A1 (ja)
EP (2) EP4271160A3 (ja)
JP (1) JP5831654B1 (ja)
KR (3) KR20230043245A (ja)
CN (2) CN107250132B (ja)
WO (1) WO2016129672A1 (ja)

Cited By (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017208521A (ja) * 2016-05-18 2017-11-24 ▲いく▼▲雷▼光電科技股▲分▼有限公司 有機エレクトロルミネセントデバイス用化合物およびその化合物を用いた有機エレクトロルミネセントデバイス
WO2018093080A1 (ko) * 2016-11-16 2018-05-24 주식회사 엘지화학 신규한 헤테로 고리 화합물 및 이를 이용한 유기발광 소자
WO2018101691A1 (ko) * 2016-11-29 2018-06-07 주식회사 엘지화학 유기 발광 소자
CN108239078A (zh) * 2016-12-27 2018-07-03 株式会社Lg化学 新型杂环化合物及利用其的有机发光元件
WO2018135798A1 (ko) * 2017-01-20 2018-07-26 주식회사 엘지화학 신규한 헤테로 고리 화합물 및 이를 이용한 유기 발광 소자
KR20180086126A (ko) * 2017-01-20 2018-07-30 주식회사 엘지화학 신규한 헤테로 고리 화합물 및 이를 이용한 유기 발광 소자
CN108424420A (zh) * 2017-09-30 2018-08-21 北京绿人科技有限责任公司 含有硅原子的三嗪化合物及其应用和一种有机电致发光器件
WO2018168292A1 (ja) * 2017-03-16 2018-09-20 コニカミノルタ株式会社 有機エレクトロルミネッセンス素子材料、有機エレクトロルミネッセンス素子、表示装置、照明装置及び化合物
CN108603109A (zh) * 2016-07-26 2018-09-28 株式会社Lg化学 有机发光器件
US20180287072A1 (en) * 2015-12-08 2018-10-04 Heesung Material Ltd. Heterocyclic compound and organic light emitting element using same
CN108779392A (zh) * 2016-11-29 2018-11-09 株式会社Lg化学 有机发光器件
WO2018225940A1 (ko) * 2017-06-07 2018-12-13 주식회사 엘지화학 신규한 헤테로 고리 화합물 및 이를 이용한 유기발광 소자
TWI647225B (zh) * 2016-11-16 2019-01-11 南韓商Lg化學股份有限公司 有機發光裝置
WO2019017730A1 (ko) * 2017-07-20 2019-01-24 주식회사 엘지화학 신규한 헤테로 고리 화합물 및 이를 이용한 유기 발광 소자
WO2019017702A1 (ko) * 2017-07-19 2019-01-24 주식회사 엘지화학 신규한 헤테로 고리 화합물 및 이를 이용한 유기발광 소자
TWI657087B (zh) * 2017-04-13 2019-04-21 南韓商Lg化學股份有限公司 新式雜環化合物以及包含此化合物的有機發光裝置
TWI658119B (zh) * 2017-03-30 2019-05-01 南韓商Lg化學股份有限公司 有機發光裝置
JP2019513131A (ja) * 2016-11-07 2019-05-23 エルジー・ケム・リミテッド 新規なヘテロ環化合物およびこれを利用した有機発光素子
JPWO2018034340A1 (ja) * 2016-08-19 2019-06-20 株式会社Kyulux 電荷輸送材料、化合物、遅延蛍光材料および有機発光素子
CN110225909A (zh) * 2017-06-07 2019-09-10 株式会社Lg化学 新的杂环化合物和包含其的有机发光器件
CN110709403A (zh) * 2017-07-20 2020-01-17 株式会社Lg化学 新的杂环化合物和使用其的有机发光器件
CN111527083A (zh) * 2017-12-27 2020-08-11 三星Sdi株式会社 有机化合物、组合物、有机光电装置及显示设备
US20200381629A1 (en) * 2017-03-24 2020-12-03 Lt Materials Co., Ltd. Heterocyclic compound and organic light emitting element comprising same
EP3683217A4 (en) * 2017-09-15 2021-05-12 LT Materials Co., Ltd. HETEROCYCLIC COMPOUND AND ORGANIC ELECTROLUMINESCENT ELEMENT CONTAINING IT
WO2022031028A1 (ko) * 2020-08-04 2022-02-10 주식회사 엘지화학 신규한 화합물 및 이를 이용한 유기 발광 소자
US20220089610A1 (en) * 2018-12-27 2022-03-24 Lt Materials Co., Ltd. Polycyclic compound and organic light emitting device comprising same
JP2022519980A (ja) * 2018-12-11 2022-03-28 エルティー・マテリアルズ・カンパニー・リミテッド ヘテロ環化合物、これを含む有機発光素子、その製造方法および有機物層用組成物
US11515486B2 (en) 2018-07-03 2022-11-29 Samsung Display Co., Ltd. Organic electroluminescence device and polycyclic compound for organic electroluminescence device
WO2022270591A1 (ja) * 2021-06-23 2022-12-29 株式会社Kyulux 化合物、組成物、ホスト材料、電子障壁材料および有機発光素子
JP2023506151A (ja) * 2019-12-13 2023-02-15 エルティー・マテリアルズ・カンパニー・リミテッド ヘテロ環化合物及びこれを含む有機発光素子
WO2023112808A1 (ja) * 2021-12-17 2023-06-22 株式会社Kyulux 化合物、ホスト材料、電子障壁材料、組成物および有機発光素子
US11968891B2 (en) 2018-06-26 2024-04-23 Samsung Display Co., Ltd. Organic electroluminescence device and heterocyclic compound for organic electroluminescence device

Families Citing this family (94)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10355223B2 (en) * 2014-04-30 2019-07-16 Merck Patent Gmbh Materials for electronic devices
KR101805686B1 (ko) 2015-07-27 2017-12-07 희성소재(주) 헤테로고리 화합물 및 이를 이용한 유기 발광 소자
JP6606986B2 (ja) * 2015-11-11 2019-11-20 コニカミノルタ株式会社 有機エレクトロルミネッセンス素子、表示装置、照明装置及び芳香族複素環誘導体
KR101991428B1 (ko) * 2015-11-17 2019-06-20 주식회사 엘지화학 헤테로고리 화합물 및 이를 포함하는 유기 전자 소자
KR20170074811A (ko) * 2015-12-22 2017-06-30 삼성전자주식회사 축합환 화합물, 이를 포함한 조성물 및 유기 발광 소자 및 상기 유기 발광 소자의 제조 방법
WO2017115608A1 (ja) * 2015-12-28 2017-07-06 コニカミノルタ株式会社 π共役系化合物、有機エレクトロルミネッセンス素子材料、発光材料、電荷輸送材料、発光性薄膜、有機エレクトロルミネッセンス素子、表示装置及び照明装置
JP6788314B2 (ja) * 2016-01-06 2020-11-25 コニカミノルタ株式会社 有機エレクトロルミネッセンス素子、有機エレクトロルミネッセンス素子の製造方法、表示装置及び照明装置
KR101693744B1 (ko) * 2016-05-11 2017-02-06 희성소재 (주) 헤테로고리 화합물 및 이를 이용한 유기 발광 소자
WO2018016742A1 (ko) * 2016-07-20 2018-01-25 주식회사 엘지화학 신규한 헤테로 고리 화합물 및 이를 이용한 유기발광 소자
KR101849747B1 (ko) * 2016-07-20 2018-05-31 주식회사 엘지화학 신규한 헤테로 고리 화합물 및 이를 이용한 유기발광 소자
KR102095001B1 (ko) * 2016-09-19 2020-03-30 주식회사 엘지화학 신규한 헤테로 고리 화합물 및 이를 이용한 유기발광 소자
CN107973786B (zh) * 2016-10-25 2021-07-09 株式会社Lg化学 新型化合物以及利用其的有机发光元件
KR101961334B1 (ko) * 2016-10-25 2019-03-22 주식회사 엘지화학 신규한 화합물 및 이를 이용한 유기발광 소자
KR101978453B1 (ko) * 2016-11-29 2019-05-14 주식회사 엘지화학 신규한 화합물 및 이를 이용한 유기발광 소자
KR102032953B1 (ko) * 2016-11-29 2019-10-16 주식회사 엘지화학 신규한 화합물 및 이를 이용한 유기발광 소자
KR101978454B1 (ko) * 2016-11-29 2019-05-14 주식회사 엘지화학 신규한 화합물 및 이를 이용한 유기발광 소자
WO2018174682A1 (ko) * 2017-03-24 2018-09-27 희성소재(주) 헤테로고리 화합물 및 이를 포함하는 유기 발광 소자
KR20180108426A (ko) 2017-03-24 2018-10-04 희성소재 (주) 헤테로고리 화합물 및 이를 포함하는 유기 발광 소자
WO2018174679A1 (ko) * 2017-03-24 2018-09-27 희성소재(주) 유기 발광 소자 및 유기 발광 소자의 유기물층용 조성물
WO2018174681A1 (ko) * 2017-03-24 2018-09-27 희성소재(주) 유기 발광 소자 및 유기 발광 소자의 유기물층용 조성물
WO2018174678A1 (ko) * 2017-03-24 2018-09-27 희성소재(주) 헤테로고리 화합물 및 이를 포함하는 유기 발광 소자
KR102155883B1 (ko) * 2017-07-31 2020-09-15 엘티소재주식회사 헤테로고리 화합물 및 이를 포함하는 유기 발광 소자
KR102135511B1 (ko) * 2017-11-03 2020-07-17 주식회사 엘지화학 유기 발광 소자
CN109836421B (zh) * 2017-11-24 2021-09-10 北京鼎材科技有限公司 一种通式化合物及其应用
KR102511183B1 (ko) * 2017-12-01 2023-03-20 솔루스첨단소재 주식회사 유기 화합물 및 이를 이용한 유기 전계 발광 소자
KR102469693B1 (ko) * 2017-12-08 2022-11-21 엘지디스플레이 주식회사 내열 특성이 우수한 유기 화합물, 이를 포함하는 유기발광다이오드 및 유기발광장치
EP3502108A1 (en) 2017-12-20 2019-06-26 Samsung Electronics Co., Ltd. Condensed cyclic compound, composition including the condensed cyclic compound, and organic light-emitting device including the composition
JP7145608B2 (ja) * 2017-12-20 2022-10-03 三星電子株式会社 有機エレクトロルミネッセンス素子用化合物、液状組成物、インク組成物、薄膜、及び有機エレクトロルミネッセンス素子
WO2019143111A1 (ko) * 2018-01-16 2019-07-25 주식회사 두산 유기 화합물 및 이를 이용한 유기 전계 발광 소자
KR102201559B1 (ko) * 2018-05-31 2021-01-12 주식회사 엘지화학 화합물 및 이를 포함하는 유기 발광 소자
CN111683941B (zh) * 2018-06-14 2023-09-12 株式会社Lg化学 杂环化合物和包含其的有机发光器件
KR102322698B1 (ko) * 2018-06-22 2021-11-09 엘티소재주식회사 헤테로고리 화합물, 이를 포함하는 유기 발광 소자, 유기 발광 소자의 유기물층용 조성물 및 유기 발광 소자의 제조 방법
KR102559589B1 (ko) * 2018-07-06 2023-07-25 솔루스첨단소재 주식회사 유기 화합물 및 이를 포함하는 유기 전계 발광 소자
US20210198232A1 (en) * 2018-07-09 2021-07-01 Lg Chem, Ltd. Compound and organic light emitting diode comprising same
KR102235479B1 (ko) * 2018-07-24 2021-04-02 주식회사 엘지화학 신규한 헤테로 고리 화합물 및 이를 이용한 유기발광 소자
WO2020032428A1 (ko) * 2018-08-09 2020-02-13 덕산네오룩스 주식회사 유기전기 소자용 화합물을 포함하는 유기전기소자 및 그 전자 장치
US11426818B2 (en) 2018-08-10 2022-08-30 The Research Foundation for the State University Additive manufacturing processes and additively manufactured products
KR102198227B1 (ko) * 2018-09-21 2021-01-04 주식회사 엘지화학 신규한 헤테로 고리 화합물 및 이를 이용한 유기 발광 소자
WO2020060286A1 (ko) * 2018-09-21 2020-03-26 주식회사 엘지화학 신규한 헤테로 고리 화합물 및 이를 이용한 유기 발광 소자
KR102101354B1 (ko) * 2018-10-02 2020-04-17 엘티소재주식회사 헤테로고리 화합물, 이를 포함하는 유기 발광 소자, 유기 발광 소자의 유기물층용 조성물 및 유기 발광 소자의 제조 방법
KR102235480B1 (ko) * 2018-10-22 2021-04-02 주식회사 엘지화학 신규한 헤테로 고리 화합물 및 이를 이용한 유기발광 소자
US11588118B2 (en) 2018-10-30 2023-02-21 Kyulux, Inc. Composition of matter for use in organic light-emitting diodes
US11832517B2 (en) 2018-11-06 2023-11-28 Lg Chem, Ltd. Heterocyclic compound and organic light emitting device comprising same
WO2020101441A1 (ko) * 2018-11-16 2020-05-22 주식회사 엘지화학 신규한 화합물 및 이를 이용한 유기발광 소자
KR102396403B1 (ko) 2018-11-16 2022-05-10 주식회사 엘지화학 신규한 화합물 및 이를 이용한 유기발광 소자
US11987592B2 (en) 2018-12-05 2024-05-21 Lg Chem, Ltd. Compound and organic light emitting device comprising the same
KR102703802B1 (ko) * 2018-12-17 2024-09-05 솔루스첨단소재 주식회사 유기 화합물 및 이를 이용한 유기 전계 발광 소자
KR102597552B1 (ko) 2018-12-17 2023-11-03 덕산네오룩스 주식회사 유기전기 소자용 화합물, 이를 이용한 유기전기소자 및 그 전자 장치
KR102633651B1 (ko) * 2018-12-19 2024-02-06 솔루스첨단소재 주식회사 유기 화합물 및 이를 포함하는 유기 전계 발광 소자
KR102392657B1 (ko) * 2019-01-14 2022-04-28 주식회사 엘지화학 신규한 화합물 및 이를 이용한 유기발광 소자
KR102354501B1 (ko) * 2019-01-18 2022-01-21 주식회사 엘지화학 신규한 화합물 및 이를 이용한 유기발광 소자
WO2020149656A1 (ko) * 2019-01-18 2020-07-23 주식회사 엘지화학 신규한 화합물 및 이를 이용한 유기발광 소자
JP7197076B2 (ja) * 2019-01-21 2022-12-27 エルジー・ケム・リミテッド 化合物およびこれを含む有機発光素子
WO2020159340A1 (ko) * 2019-02-01 2020-08-06 주식회사 엘지화학 화합물 및 이를 포함하는 유기 발광 소자
KR102353154B1 (ko) * 2019-02-01 2022-01-19 주식회사 엘지화학 화합물 및 이를 포함하는 유기 발광 소자
KR102339699B1 (ko) * 2019-02-01 2021-12-15 주식회사 엘지화학 화합물 및 이를 포함하는 유기 발광 소자
CN113166126B (zh) * 2019-02-01 2024-09-03 株式会社Lg化学 化合物及包含其的有机发光器件
KR102353153B1 (ko) * 2019-02-01 2022-01-19 주식회사 엘지화학 화합물 및 이를 포함하는 유기 발광 소자
WO2020159334A1 (ko) * 2019-02-01 2020-08-06 주식회사 엘지화학 화합물 및 이를 포함하는 유기 발광 소자
KR102359899B1 (ko) * 2019-02-01 2022-02-09 주식회사 엘지화학 화합물 및 이를 포함하는 유기 발광 소자
EP3928360A1 (de) * 2019-02-18 2021-12-29 Merck Patent GmbH Zusammensetzung für organische elektronische vorrichtungen
WO2020171531A1 (ko) * 2019-02-19 2020-08-27 주식회사 엘지화학 화합물 및 이를 포함하는 유기 발광 소자
KR102263104B1 (ko) * 2019-03-15 2021-06-09 주식회사 엘지화학 유기 발광 소자
WO2020222569A1 (ko) * 2019-05-02 2020-11-05 주식회사 엘지화학 유기 발광 소자
WO2020246837A1 (ko) * 2019-06-04 2020-12-10 주식회사 엘지화학 신규한 화합물 및 이를 이용한 유기 발광 소자
KR102478094B1 (ko) * 2019-08-13 2022-12-15 주식회사 엘지화학 신규한 화합물 및 이를 이용한 유기발광 소자
WO2021029634A1 (ko) * 2019-08-13 2021-02-18 주식회사 엘지화학 신규한 화합물 및 이를 이용한 유기발광 소자
KR102441471B1 (ko) * 2019-08-22 2022-09-07 주식회사 엘지화학 신규한 화합물 및 이를 이용한 유기 발광 소자
WO2021034156A1 (ko) * 2019-08-22 2021-02-25 주식회사 엘지화학 신규한 화합물 및 이를 이용한 유기 발광 소자
KR102143580B1 (ko) 2019-08-23 2020-08-12 엘티소재주식회사 유기 발광 소자, 이의 제조 방법 및 유기물층용 조성물
KR102462986B1 (ko) * 2019-09-19 2022-11-03 주식회사 엘지화학 신규한 헤테로 고리 화합물 및 이를 이용한 유기발광 소자
KR102462985B1 (ko) * 2019-09-19 2022-11-03 주식회사 엘지화학 신규한 헤테로 고리 화합물 및 이를 이용한 유기발광 소자
KR102459859B1 (ko) * 2019-09-19 2022-10-27 주식회사 엘지화학 신규한 헤테로 고리 화합물 및 이를 이용한 유기발광 소자
KR102474921B1 (ko) * 2019-10-01 2022-12-06 주식회사 엘지화학 유기 발광 소자
KR102298235B1 (ko) * 2019-10-08 2021-09-07 엘티소재주식회사 헤테로고리 화합물, 이를 포함하는 유기 발광 소자, 유기 발광 소자의 유기물층용 조성물 및 유기 발광 소자의 제조 방법
CN111018847A (zh) * 2019-10-31 2020-04-17 陕西莱特光电材料股份有限公司 含氮化合物、电子元件及电子装置
KR102234372B1 (ko) * 2019-11-05 2021-04-01 엘티소재주식회사 헤테로고리 화합물 및 이를 포함하는 유기 발광 소자
WO2021096228A1 (ko) * 2019-11-11 2021-05-20 주식회사 엘지화학 유기 발광 소자
CN112898275A (zh) * 2019-12-04 2021-06-04 三星电子株式会社 化合物、组合物、液体组合物、用于有机电致发光器件的材料和有机电致发光器件
TW202136471A (zh) 2019-12-17 2021-10-01 德商麥克專利有限公司 有機電致發光裝置用的材料
KR20210079553A (ko) * 2019-12-20 2021-06-30 엘티소재주식회사 헤테로고리 화합물 및 이를 포함하는 유기 발광 소자
KR20210113484A (ko) * 2020-03-05 2021-09-16 삼성디스플레이 주식회사 축합환 화합물 및 이를 포함하는 유기발광소자
CN111303134A (zh) * 2020-03-25 2020-06-19 烟台显华化工科技有限公司 一种有机发光材料及有机电致发光器件
KR20210147137A (ko) * 2020-05-27 2021-12-07 삼성디스플레이 주식회사 유기 전계 발광 소자 및 유기 전계 발광 소자용 아민 화합물
KR20220013910A (ko) * 2020-07-27 2022-02-04 엘티소재주식회사 헤테로고리 화합물, 및 이를 포함하는 유기 발광 소자
WO2022031016A1 (ko) * 2020-08-04 2022-02-10 주식회사 엘지화학 신규한 화합물 및 이를 이용한 유기 발광 소자
CN115551852A (zh) * 2020-08-04 2022-12-30 株式会社Lg化学 新型化合物及包含其的有机发光器件
CN111808087B (zh) * 2020-08-31 2020-12-29 南京高光半导体材料有限公司 一种oled发光化合物及有机电致发光器件
CN112028882A (zh) * 2020-08-31 2020-12-04 南京高光半导体材料有限公司 一种oled发光化合物及有机电致发光器件
KR102598598B1 (ko) * 2020-10-08 2023-11-07 엘티소재주식회사 헤테로고리 화합물, 이를 포함하는 유기 발광 소자, 이의 제조 방법 및 유기 발광 소자의 유기물층용 조성물
WO2023033583A1 (ko) * 2021-09-02 2023-03-09 에스케이머티리얼즈제이엔씨 주식회사 화합물, 유기 전계 발광 소자 및 표시 장치
KR20230128716A (ko) * 2022-02-28 2023-09-05 엘티소재주식회사 헤테로고리 화합물, 이를 포함하는 유기 발광 소자 및 유기물층 형성용 조성물
KR20240094068A (ko) * 2022-11-22 2024-06-25 삼성에스디아이 주식회사 유기 광전자 소자용 화합물, 유기 광전자 소자용 조성물, 유기 광전자 소자 및 표시 장치
WO2024219945A1 (ko) * 2023-04-20 2024-10-24 주식회사 엘지화학 신규한 화합물 및 이를 포함하는 유기 발광 소자

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009021336A (ja) 2007-07-11 2009-01-29 Konica Minolta Holdings Inc 有機エレクトロルミネッセンス素子、表示装置及び照明装置
US20110272687A1 (en) 2009-02-06 2011-11-10 Konica Minolta Holdings, Inc. Organic electroluminescent element, and illumination device and display device each comprising the element
US20120223276A1 (en) 2009-11-14 2012-09-06 Merck Patent Gmbh Materials for electronic devices
WO2013035275A1 (ja) * 2011-09-09 2013-03-14 出光興産株式会社 含窒素へテロ芳香族環化合物
JP2013131518A (ja) * 2011-12-20 2013-07-04 Konica Minolta Inc 有機エレクトロルミネッセンス素子用材料、有機エレクトロルミネッセンス素子、表示装置及び照明装置
JP2014116454A (ja) 2012-12-10 2014-06-26 Konica Minolta Inc 有機エレクトロルミネッセンス素子材料及び有機エレクトロルミネッセンス素子
JP2014209618A (ja) * 2013-03-29 2014-11-06 コニカミノルタ株式会社 有機エレクトロルミネッセンス用化合物、有機エレクトロルミネッセンス素子、それを具備した照明装置及び表示装置
US20150336937A1 (en) * 2014-05-21 2015-11-26 Samsung Electronics Co., Ltd. Carbazole compound and organic light emitting device incuding the same
EP3174954A1 (de) 2014-07-29 2017-06-07 Merck Patent GmbH Materialien für organische elektrolumineszenzvorrichtungen

Family Cites Families (214)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1289830A (ja) 1968-12-10 1972-09-20
JPH0766856B2 (ja) 1986-01-24 1995-07-19 株式会社小松製作所 薄膜el素子
JP2670572B2 (ja) 1987-06-18 1997-10-29 株式会社小松製作所 薄膜el素子
US4774435A (en) 1987-12-22 1988-09-27 Gte Laboratories Incorporated Thin film electroluminescent device
JPH01220394A (ja) 1988-02-29 1989-09-04 Hitachi Ltd 高輝度el素子
FI82872C (fi) 1989-04-11 1991-04-25 Imatran Voima Oy Anlaeggning foer upphettning av ban- eller skivformigt dielektriskt material eller foer saenkning av dess fukthalt.
US5061569A (en) 1990-07-26 1991-10-29 Eastman Kodak Company Electroluminescent device with organic electroluminescent medium
JPH04297076A (ja) 1991-01-31 1992-10-21 Toshiba Corp 有機el素子
JPH06325871A (ja) 1993-05-18 1994-11-25 Mitsubishi Kasei Corp 有機電界発光素子
DE69412567T2 (de) 1993-11-01 1999-02-04 Hodogaya Chemical Co., Ltd., Tokio/Tokyo Aminverbindung und sie enthaltende Elektrolumineszenzvorrichtung
JP3561549B2 (ja) 1995-04-07 2004-09-02 三洋電機株式会社 有機エレクトロルミネッセンス素子
JP3529543B2 (ja) 1995-04-27 2004-05-24 パイオニア株式会社 有機エレクトロルミネッセンス素子
US5719467A (en) 1995-07-27 1998-02-17 Hewlett-Packard Company Organic electroluminescent device
JP3645642B2 (ja) 1996-03-25 2005-05-11 Tdk株式会社 有機エレクトロルミネセンス素子
US6939625B2 (en) 1996-06-25 2005-09-06 Nôrthwestern University Organic light-emitting diodes and methods for assembly and enhanced charge injection
US5776622A (en) 1996-07-29 1998-07-07 Eastman Kodak Company Bilayer eletron-injeting electrode for use in an electroluminescent device
US6337492B1 (en) 1997-07-11 2002-01-08 Emagin Corporation Serially-connected organic light emitting diode stack having conductors sandwiching each light emitting layer
JPH11251067A (ja) 1998-03-02 1999-09-17 Junji Kido 有機エレクトロルミネッセント素子
JP2991183B2 (ja) 1998-03-27 1999-12-20 日本電気株式会社 有機エレクトロルミネッセンス素子
JP3884564B2 (ja) 1998-05-20 2007-02-21 出光興産株式会社 有機el発光素子およびそれを用いた発光装置
US6528187B1 (en) 1998-09-08 2003-03-04 Fuji Photo Film Co., Ltd. Material for luminescence element and luminescence element using the same
US6830828B2 (en) 1998-09-14 2004-12-14 The Trustees Of Princeton University Organometallic complexes as phosphorescent emitters in organic LEDs
JP2000196140A (ja) 1998-12-28 2000-07-14 Sharp Corp 有機エレクトロルミネッセンス素子とその製造法
JP4729154B2 (ja) 1999-09-29 2011-07-20 淳二 城戸 有機エレクトロルミネッセント素子、有機エレクトロルミネッセント素子群及びその発光スペクトルの制御方法
JP4279971B2 (ja) 1999-11-10 2009-06-17 パナソニック電工株式会社 発光素子
US6458475B1 (en) 1999-11-24 2002-10-01 The Trustee Of Princeton University Organic light emitting diode having a blue phosphorescent molecule as an emitter
KR100377321B1 (ko) 1999-12-31 2003-03-26 주식회사 엘지화학 피-형 반도체 성질을 갖는 유기 화합물을 포함하는 전기소자
JP3929706B2 (ja) 2000-02-10 2007-06-13 富士フイルム株式会社 イリジウム錯体からなる発光素子材料及び発光素子
JP4890669B2 (ja) 2000-03-13 2012-03-07 Tdk株式会社 有機el素子
JP2002008860A (ja) 2000-04-18 2002-01-11 Mitsubishi Chemicals Corp 有機電界発光素子
JP2002015871A (ja) 2000-04-27 2002-01-18 Toray Ind Inc 発光素子
JP2001313179A (ja) 2000-05-01 2001-11-09 Mitsubishi Chemicals Corp 有機電界発光素子
JP4290858B2 (ja) 2000-06-12 2009-07-08 富士フイルム株式会社 有機電界発光素子
US20020121638A1 (en) 2000-06-30 2002-09-05 Vladimir Grushin Electroluminescent iridium compounds with fluorinated phenylpyridines, phenylpyrimidines, and phenylquinolines and devices made with such compounds
JP2002043056A (ja) 2000-07-19 2002-02-08 Canon Inc 発光素子
CN102041001B (zh) 2000-08-11 2014-10-22 普林斯顿大学理事会 有机金属化合物和发射转换有机电致磷光
JP2002141173A (ja) 2000-08-22 2002-05-17 Semiconductor Energy Lab Co Ltd 発光装置
JP4344494B2 (ja) 2000-08-24 2009-10-14 富士フイルム株式会社 発光素子及び新規重合体子
JP4554047B2 (ja) 2000-08-29 2010-09-29 株式会社半導体エネルギー研究所 発光装置
JP4026740B2 (ja) 2000-09-29 2007-12-26 富士フイルム株式会社 有機発光素子材料及びそれを用いた有機発光素子
JP4092901B2 (ja) 2000-10-30 2008-05-28 株式会社豊田中央研究所 有機電界発光素子
JP3855675B2 (ja) 2000-11-30 2006-12-13 三菱化学株式会社 有機電界発光素子
US6579630B2 (en) 2000-12-07 2003-06-17 Canon Kabushiki Kaisha Deuterated semiconducting organic compounds used for opto-electronic devices
JP2002255934A (ja) 2000-12-25 2002-09-11 Fuji Photo Film Co Ltd 新規化合物、その重合体、それらを利用した発光素子材料およびその発光素子
JP4048525B2 (ja) 2000-12-25 2008-02-20 富士フイルム株式会社 新規インドール誘導体およびそれを利用した発光素子
JP4153694B2 (ja) 2000-12-28 2008-09-24 株式会社東芝 有機el素子および表示装置
US6720090B2 (en) 2001-01-02 2004-04-13 Eastman Kodak Company Organic light emitting diode devices with improved luminance efficiency
JP3812730B2 (ja) 2001-02-01 2006-08-23 富士写真フイルム株式会社 遷移金属錯体及び発光素子
JP4598282B2 (ja) 2001-02-09 2010-12-15 三井化学株式会社 アミン化合物および該化合物を含有する有機電界発光素子
TWI243197B (en) 2001-03-08 2005-11-11 Univ Hong Kong Organometallic light-emitting material
JP4307000B2 (ja) 2001-03-08 2009-08-05 キヤノン株式会社 金属配位化合物、電界発光素子及び表示装置
JP2002334786A (ja) 2001-03-09 2002-11-22 Sony Corp 有機電界発光素子
JP2002334787A (ja) 2001-03-09 2002-11-22 Sony Corp 有機電界発光素子
JP2002334788A (ja) 2001-03-09 2002-11-22 Sony Corp 有機電界発光素子
JP4655410B2 (ja) 2001-03-09 2011-03-23 ソニー株式会社 有機電界発光素子
JP4169246B2 (ja) 2001-03-16 2008-10-22 富士フイルム株式会社 ヘテロ環化合物及びそれを用いた発光素子
JP2002299060A (ja) 2001-03-30 2002-10-11 Fuji Photo Film Co Ltd 有機発光素子
JP2002302516A (ja) 2001-04-03 2002-10-18 Fuji Photo Film Co Ltd 新規ポリマーおよびそれを用いた発光素子
JP2002363227A (ja) 2001-04-03 2002-12-18 Fuji Photo Film Co Ltd 新規ポリマーおよびそれを用いた発光素子
JP2002305083A (ja) 2001-04-04 2002-10-18 Mitsubishi Chemicals Corp 有機電界発光素子
JP2002308837A (ja) 2001-04-05 2002-10-23 Fuji Photo Film Co Ltd 新規化合物、およびそれを用いた発光素子
JP2002308855A (ja) 2001-04-05 2002-10-23 Fuji Photo Film Co Ltd 新規化合物、およびそれを用いた発光素子
JP2002343568A (ja) 2001-05-10 2002-11-29 Sony Corp 有機電界発光素子
JP2002352957A (ja) 2001-05-23 2002-12-06 Honda Motor Co Ltd 有機エレクトロルミネッセンス素子
JP4310077B2 (ja) 2001-06-19 2009-08-05 キヤノン株式会社 金属配位化合物及び有機発光素子
WO2003001616A2 (en) 2001-06-20 2003-01-03 Showa Denko K.K. Light emitting material and organic light-emitting device
JP4628594B2 (ja) 2001-06-25 2011-02-09 昭和電工株式会社 有機発光素子および発光材料
JP4003824B2 (ja) 2001-07-11 2007-11-07 富士フイルム株式会社 発光素子
JP4804661B2 (ja) 2001-07-11 2011-11-02 コニカミノルタホールディングス株式会社 有機エレクトロルミネッセンス素子
JP4611578B2 (ja) 2001-07-26 2011-01-12 淳二 城戸 有機エレクトロルミネッセント素子
JP5135657B2 (ja) 2001-08-01 2013-02-06 コニカミノルタホールディングス株式会社 有機エレクトロルミネッセンス素子及び表示装置
US7250226B2 (en) 2001-08-31 2007-07-31 Nippon Hoso Kyokai Phosphorescent compound, a phosphorescent composition and an organic light-emitting device
US7166368B2 (en) 2001-11-07 2007-01-23 E. I. Du Pont De Nemours And Company Electroluminescent platinum compounds and devices made with such compounds
SG113443A1 (en) 2001-12-05 2005-08-29 Semiconductor Energy Laboratao Organic semiconductor element
US6863997B2 (en) 2001-12-28 2005-03-08 The Trustees Of Princeton University White light emitting OLEDs from combined monomer and aggregate emission
KR100691543B1 (ko) 2002-01-18 2007-03-09 주식회사 엘지화학 새로운 전자 수송용 물질 및 이를 이용한 유기 발광 소자
US6872472B2 (en) 2002-02-15 2005-03-29 Eastman Kodak Company Providing an organic electroluminescent device having stacked electroluminescent units
JP3925265B2 (ja) 2002-03-25 2007-06-06 コニカミノルタホールディングス株式会社 有機エレクトロルミネッセンス素子及びそれを用いた表示装置
JP3933591B2 (ja) 2002-03-26 2007-06-20 淳二 城戸 有機エレクトロルミネッセント素子
JP4433680B2 (ja) 2002-06-10 2010-03-17 コニカミノルタホールディングス株式会社 薄膜形成方法
US7189989B2 (en) 2002-08-22 2007-03-13 Fuji Photo Film Co., Ltd. Light emitting element
CN100439469C (zh) 2002-08-27 2008-12-03 富士胶片株式会社 有机金属配位化合物、有机el元件及有机el显示器
FR2844661B1 (fr) 2002-09-16 2005-10-14 France Telecom Procede d'acquisition de donnees de description de contenus audiovisuels, systeme, serveur de diffusion, serveur de description, et terminal de reception pour la mise en oeuvre de ce procede
US6687266B1 (en) 2002-11-08 2004-02-03 Universal Display Corporation Organic light emitting materials and devices
EP1582516B1 (en) 2003-01-10 2013-07-17 Idemitsu Kosan Co., Ltd. Nitrogenous heterocyclic derivative and organic electroluminescent element employing the same
CN101812021B (zh) 2003-03-13 2012-12-26 出光兴产株式会社 含氮杂环衍生物及使用该衍生物的有机电致发光元件
KR101314034B1 (ko) 2003-03-24 2013-10-02 유니버시티 오브 써던 캘리포니아 Ir의 페닐-피라졸 착물
US7090928B2 (en) 2003-04-01 2006-08-15 The University Of Southern California Binuclear compounds
EP1618170A2 (de) 2003-04-15 2006-01-25 Covion Organic Semiconductors GmbH Mischungen von organischen zur emission befähigten halbleitern und matrixmaterialien, deren verwendung und elektronikbauteile enthaltend diese mischungen
KR101032355B1 (ko) 2003-05-29 2011-05-03 신닛테츠가가쿠 가부시키가이샤 유기 전계 발광 소자
KR101196558B1 (ko) 2003-07-02 2012-11-01 이데미쓰 고산 가부시키가이샤 유기 전기발광 소자 및 이를 이용한 표시 장치
US20050025993A1 (en) 2003-07-25 2005-02-03 Thompson Mark E. Materials and structures for enhancing the performance of organic light emitting devices
DE10338550A1 (de) 2003-08-19 2005-03-31 Basf Ag Übergangsmetallkomplexe mit Carbenliganden als Emitter für organische Licht-emittierende Dioden (OLEDs)
HU0302888D0 (en) 2003-09-09 2003-11-28 Pribenszky Csaba Dr In creasing of efficacity of stable storage by freezing of embryos in preimplantation stage with pretreatment by pressure
US20060269780A1 (en) 2003-09-25 2006-11-30 Takayuki Fukumatsu Organic electroluminescent device
JP4961412B2 (ja) 2003-11-10 2012-06-27 淳二 城戸 有機素子、及び、有機素子の製造方法
JP4822687B2 (ja) 2003-11-21 2011-11-24 富士フイルム株式会社 有機電界発光素子
US7332232B2 (en) 2004-02-03 2008-02-19 Universal Display Corporation OLEDs utilizing multidentate ligand systems
WO2005085387A1 (ja) 2004-03-08 2005-09-15 Idemitsu Kosan Co., Ltd. 有機エレクトロルミネッセンス素子用材料及びそれを利用した有機エレクトロルミネッセンス素子
TW200531592A (en) 2004-03-15 2005-09-16 Nippon Steel Chemical Co Organic electroluminescent device
ATE532383T1 (de) 2004-03-26 2011-11-15 Rohm Co Ltd Organisches lichtemissionselement
JP4869565B2 (ja) 2004-04-23 2012-02-08 富士フイルム株式会社 有機電界発光素子
JP4610408B2 (ja) 2004-04-28 2011-01-12 株式会社半導体エネルギー研究所 発光素子およびその作製方法、並びに発光装置
US7534505B2 (en) 2004-05-18 2009-05-19 The University Of Southern California Organometallic compounds for use in electroluminescent devices
US7279704B2 (en) 2004-05-18 2007-10-09 The University Of Southern California Complexes with tridentate ligands
US7491823B2 (en) 2004-05-18 2009-02-17 The University Of Southern California Luminescent compounds with carbene ligands
US7445855B2 (en) 2004-05-18 2008-11-04 The University Of Southern California Cationic metal-carbene complexes
US7393599B2 (en) 2004-05-18 2008-07-01 The University Of Southern California Luminescent compounds with carbene ligands
JP2005340122A (ja) 2004-05-31 2005-12-08 Konica Minolta Holdings Inc 有機エレクトロルミネッセンス素子、照明装置及び表示装置
WO2005123873A1 (ja) 2004-06-17 2005-12-29 Konica Minolta Holdings, Inc. 有機エレクトロルミネッセンス素子材料、有機エレクトロルミネッセンス素子、表示装置及び照明装置
CA2568667A1 (en) 2004-06-28 2006-01-05 Ciba Specialty Chemicals Holding Inc. Electroluminescent metal complexes with triazoles and benzotriazoles
US20060008670A1 (en) 2004-07-06 2006-01-12 Chun Lin Organic light emitting materials and devices
JP4925569B2 (ja) 2004-07-08 2012-04-25 ローム株式会社 有機エレクトロルミネッセント素子
EP2271183B1 (en) 2004-07-23 2015-03-18 Konica Minolta Holdings, Inc. Organic electroluminescent element, display and illuminator
JP4565921B2 (ja) 2004-07-30 2010-10-20 三洋電機株式会社 有機エレクトロルミネッセント素子及び有機エレクトロルミネッセント表示装置
JP4315874B2 (ja) 2004-07-30 2009-08-19 三洋電機株式会社 有機エレクトロルミネッセント素子及び有機エレクトロルミネッセント表示装置
JP4565922B2 (ja) 2004-07-30 2010-10-20 三洋電機株式会社 有機エレクトロルミネッセント素子及び有機エレクトロルミネッセント表示装置
JP4168998B2 (ja) 2004-11-05 2008-10-22 ブラザー工業株式会社 画像処理システムおよび画像処理装置
JP2006135145A (ja) 2004-11-08 2006-05-25 Sony Corp 表示素子用有機材料および表示素子
DE102004057072A1 (de) 2004-11-25 2006-06-01 Basf Ag Verwendung von Übergangsmetall-Carbenkomplexen in organischen Licht-emittierenden Dioden (OLEDs)
JP4810669B2 (ja) 2004-11-25 2011-11-09 コニカミノルタホールディングス株式会社 有機エレクトロルミネッセンス素子、表示装置及び照明装置
JP4790260B2 (ja) 2004-12-22 2011-10-12 出光興産株式会社 アントラセン誘導体を用いた有機エレクトロルミネッセンス素子
US7230107B1 (en) 2004-12-29 2007-06-12 E. I. Du Pont De Nemours And Company Metal quinoline complexes
JP4939809B2 (ja) 2005-01-21 2012-05-30 株式会社半導体エネルギー研究所 発光装置
US8377571B2 (en) 2005-02-04 2013-02-19 Konica Minolta Holdings, Inc. Material for organic electroluminescence element, organic electroluminescence element, display device and lighting device
KR100803125B1 (ko) 2005-03-08 2008-02-14 엘지전자 주식회사 적색 인광 화합물 및 이를 사용한 유기전계발광소자
US8231983B2 (en) 2005-04-18 2012-07-31 Konica Minolta Holdings Inc. Organic electroluminescent device, display and illuminating device
US7807275B2 (en) 2005-04-21 2010-10-05 Universal Display Corporation Non-blocked phosphorescent OLEDs
US9051344B2 (en) 2005-05-06 2015-06-09 Universal Display Corporation Stability OLED materials and devices
JP4533796B2 (ja) 2005-05-06 2010-09-01 富士フイルム株式会社 有機電界発光素子
US7728517B2 (en) 2005-05-20 2010-06-01 Lg Display Co., Ltd. Intermediate electrodes for stacked OLEDs
KR101634423B1 (ko) 2005-05-31 2016-06-28 유니버셜 디스플레이 코포레이션 인광 발광 다이오드에서의 트리페닐렌 호스트
KR101294905B1 (ko) 2005-06-27 2013-08-09 이 아이 듀폰 디 네모아 앤드 캄파니 전기 전도성 중합체 조성물
JP5076891B2 (ja) 2005-07-01 2012-11-21 コニカミノルタホールディングス株式会社 有機エレクトロルミネッセンス素子材料、有機エレクトロルミネッセンス素子、表示装置及び照明装置
JP4837958B2 (ja) 2005-08-26 2011-12-14 大日本印刷株式会社 有機エレクトロルミネッセンス素子
US7964293B2 (en) 2005-09-05 2011-06-21 Jnc Corporation Electron transport material and organic electroluminescent device using the same
WO2007028417A1 (en) 2005-09-07 2007-03-15 Technische Universität Braunschweig Triplett emitter having condensed five-membered rings
EP1940202B1 (en) 2005-09-22 2013-05-01 Panasonic Corporation Organic light emitting element and its fabrication method
EP1953843B1 (en) 2005-10-31 2012-12-05 Konica Minolta Holdings, Inc. Organic electroluminescent device, display and illuminating device
US7993760B2 (en) 2005-12-01 2011-08-09 Nippon Steel Chemical Co., Ltd. Compound for use in organic electroluminescent device and organic electroluminescent device
TW200735709A (en) 2005-12-01 2007-09-16 Nippon Steel Chemical Co Organic electroluminescent device
TWI420963B (zh) 2005-12-15 2013-12-21 Idemitsu Kosan Co Organic electroluminescent element materials and organic electroluminescent devices using the same
JP5119929B2 (ja) 2006-01-30 2013-01-16 Jnc株式会社 新規化合物およびこれを用いた有機電界発光素子
US8142909B2 (en) 2006-02-10 2012-03-27 Universal Display Corporation Blue phosphorescent imidazophenanthridine materials
KR102173629B1 (ko) 2006-02-10 2020-11-04 유니버셜 디스플레이 코포레이션 시클로금속화 이미다조[1,2-f]페난트리딘 및 디이미다조[1,2-a:1',2'-c]퀴나졸린 리간드, 및 이의 등전자성 및 벤즈고리화된 유사체의 금속 착체
JP4823730B2 (ja) 2006-03-20 2011-11-24 新日鐵化学株式会社 発光層化合物及び有機電界発光素子
JP4213169B2 (ja) 2006-04-21 2009-01-21 出光興産株式会社 有機el発光素子およびそれを用いた発光装置
EP2639231B1 (en) 2006-04-26 2019-02-06 Idemitsu Kosan Co., Ltd. Aromatic amine derivative, and organic electroluminescence element using the same
JP5432523B2 (ja) 2006-05-11 2014-03-05 出光興産株式会社 有機エレクトロルミネッセンス素子
KR20090016684A (ko) 2006-06-02 2009-02-17 이데미쓰 고산 가부시키가이샤 유기 전기발광 소자용 재료 및 그것을 이용한 유기 전기발광 소자
JP5203207B2 (ja) 2006-08-23 2013-06-05 出光興産株式会社 芳香族アミン誘導体及びそれらを用いた有機エレクトロルミネッセンス素子
JP5237541B2 (ja) 2006-09-21 2013-07-17 パナソニック株式会社 有機エレクトロルミネッセンス素子
JP5589251B2 (ja) 2006-09-21 2014-09-17 コニカミノルタ株式会社 有機エレクトロルミネッセンス素子材料
EP2080762B1 (en) 2006-11-09 2016-09-14 Nippon Steel & Sumikin Chemical Co., Ltd. Compound for organic electroluminescent device and organic electroluminescent device
WO2008062636A1 (en) 2006-11-24 2008-05-29 Idemitsu Kosan Co., Ltd. Aromatic amine derivative and organic electroluminescent element using the same
US8119255B2 (en) 2006-12-08 2012-02-21 Universal Display Corporation Cross-linkable iridium complexes and organic light-emitting devices using the same
US8778508B2 (en) 2006-12-08 2014-07-15 Universal Display Corporation Light-emitting organometallic complexes
CN101631793B (zh) 2007-02-23 2013-12-25 巴斯夫欧洲公司 电致发光的苯并三唑金属络合物
WO2008114690A1 (ja) 2007-03-15 2008-09-25 Hodogaya Chemical Co., Ltd. 置換されたビピリジル基とピリドインドール環構造がフェニレン基を介して連結した化合物および有機エレクトロルミネッセンス素子
EP2150556B1 (de) 2007-04-26 2011-01-12 Basf Se Silane enthaltend phenothiazin-s-oxid oder phenothiazin-s,s-dioxid-gruppen und deren verwendung in oleds
WO2008140115A1 (ja) 2007-05-16 2008-11-20 Konica Minolta Holdings, Inc. 有機エレクトロルミネッセンス素子、表示装置及び照明装置
CN101720330B (zh) 2007-06-22 2017-06-09 Udc爱尔兰有限责任公司 发光Cu(I)络合物
US8373159B2 (en) 2007-07-05 2013-02-12 Basf Se Organic light-emitting diodes comprising carbene-transition metal complex emitter, and at least one compound selected from disilylcarbazoles, disilyldibenzofurans, disilyldibenzothiophenes, disilyldibenzophospholes, disilyldibenzothiophene s-oxides and disilyldibe
US8080658B2 (en) 2007-07-10 2011-12-20 Idemitsu Kosan Co., Ltd. Material for organic electroluminescent element and organic electroluminescent element employing the same
JPWO2009008099A1 (ja) 2007-07-10 2010-09-02 出光興産株式会社 有機エレクトロルミネッセンス素子用材料及びそれを用いた有機エレクトロルミネッセンス素子
JP2010534739A (ja) 2007-07-27 2010-11-11 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー 無機ナノ粒子を含有する導電性ポリマーの水性分散体
CN104311533B (zh) 2007-08-08 2017-08-18 通用显示公司 含苯并[9,10]菲的苯并稠合的噻吩或苯并稠合的呋喃化合物
JP2009040728A (ja) 2007-08-09 2009-02-26 Canon Inc 有機金属錯体及びこれを用いた有機発光素子
EP2203461B1 (de) 2007-10-17 2011-08-10 Basf Se Übergangsmetallkomplexe mit verbrückten carbenliganden und deren verwendung in oleds
JP2009124114A (ja) 2007-10-22 2009-06-04 Chisso Corp シロール誘導体化合物を用いた電子輸送・注入層用材料及び有機電界発光素子
US20090101870A1 (en) 2007-10-22 2009-04-23 E. I. Du Pont De Nemours And Company Electron transport bi-layers and devices made with such bi-layers
WO2009054253A1 (ja) 2007-10-26 2009-04-30 Konica Minolta Holdings, Inc. 有機エレクトロルミネッセンス素子、表示装置及び照明装置
JP5279234B2 (ja) 2007-11-02 2013-09-04 キヤノン株式会社 白金錯体及びこれを用いた有機発光素子
US7914908B2 (en) 2007-11-02 2011-03-29 Global Oled Technology Llc Organic electroluminescent device having an azatriphenylene derivative
EP2221896A4 (en) 2007-11-22 2012-04-18 Idemitsu Kosan Co ORGANIC EL ELEMENT
JP5304653B2 (ja) 2007-11-26 2013-10-02 コニカミノルタ株式会社 有機エレクトロルミネッセンス素子、表示装置及び照明装置
US8221905B2 (en) 2007-12-28 2012-07-17 Universal Display Corporation Carbazole-containing materials in phosphorescent light emitting diodes
JP5509606B2 (ja) 2008-02-05 2014-06-04 Jnc株式会社 ピリジル基を有するアントラセン誘導体化合物及び有機電界発光素子
CN101970448B (zh) 2008-02-12 2016-05-11 巴斯夫欧洲公司 具有二苯并[f,h]喹*啉的电致发光金属络合物
TW200946537A (en) 2008-03-13 2009-11-16 Ube Industries Substituted ethynyl golden-cyclic alkylaminocarbene complex and organic electroluminescent element
JP4844585B2 (ja) 2008-04-14 2011-12-28 コニカミノルタホールディングス株式会社 有機エレクトロルミネッセンス素子及び表示装置
EP2479234B1 (en) 2008-05-13 2017-06-21 Konica Minolta Holdings, Inc. Organic electroluminescent element, display device and lighting device
JP5522046B2 (ja) 2008-09-17 2014-06-18 コニカミノルタ株式会社 有機エレクトロルミネッセンス素子、表示装置、照明装置及び有機エレクトロルミネッセンス素子材料
JP2010093181A (ja) 2008-10-10 2010-04-22 Canon Inc 有機発光素子
CN102203975B (zh) 2008-10-23 2014-04-30 通用显示公司 有机发光器件和用于其中的材料
CN103333167B (zh) 2008-11-03 2016-08-24 株式会社Lg化学 新的含氮杂环化合物及使用该化合物的有机电子器件
JP5493333B2 (ja) * 2008-11-05 2014-05-14 コニカミノルタ株式会社 有機エレクトロルミネッセンス素子、白色有機エレクトロルミネッセンス素子、表示装置及び照明装置
DE102009007038A1 (de) 2009-02-02 2010-08-05 Merck Patent Gmbh Metallkomplexe
JP2010192719A (ja) 2009-02-19 2010-09-02 Yamagata Promotional Organization For Industrial Technology 有機エレクトロルミネッセンス素子
JP5697856B2 (ja) * 2009-06-24 2015-04-08 コニカミノルタ株式会社 有機エレクトロルミネッセンス素子、白色有機エレクトロルミネッセンス素子、表示装置及び照明装置
WO2010150593A1 (ja) 2009-06-24 2010-12-29 コニカミノルタホールディングス株式会社 有機エレクトロルミネッセンス素子、表示装置、照明装置及び縮合多環式複素環化合物
EP2453496B1 (en) 2009-07-07 2018-11-14 Konica Minolta Holdings, Inc. Organic electroluminescent element, novel compound, lighting device and display device
KR101986469B1 (ko) 2009-10-28 2019-06-05 유디씨 아일랜드 리미티드 이종 리간드 카르벤 착체 및 유기 전자장치에서의 이의 용도
KR101838199B1 (ko) 2009-12-14 2018-04-26 유디씨 아일랜드 리미티드 디아자벤즈이미다졸로카르벤 리간드를 포함하는 금속 착물 및 oled에서의 그의 용도
WO2011086935A1 (ja) 2010-01-15 2011-07-21 出光興産株式会社 含窒素複素環誘導体及びそれを含んでなる有機エレクトロルミネッセンス素子
JP2011181303A (ja) 2010-03-01 2011-09-15 Usc Corp 蓋体係止構造、電池収容構造及びカード型電子機器
JP2011213643A (ja) 2010-03-31 2011-10-27 Canon Inc 銅錯体化合物及びこれを用いた有機発光素子
CN102939295B (zh) 2010-04-16 2017-05-24 Udc 爱尔兰有限责任公司 桥联苯并咪唑‑卡宾配合物及其在oled中的用途
EP2564446A4 (en) 2010-04-28 2013-10-02 Commw Scient Ind Res Org ELECTROLUMINESCENT DEVICES BASED ON PHOSPHORESCENT IRIDIUM AND CORRESPONDING MULTICYCLIC GROUP VIII METAL COMPOUNDS
US8742657B2 (en) 2010-06-11 2014-06-03 Universal Display Corporation Triplet-Triplet annihilation up conversion (TTA-UC) for display and lighting applications
WO2011157339A1 (de) 2010-06-15 2011-12-22 Merck Patent Gmbh Metallkomplexe
KR102132102B1 (ko) 2010-08-20 2020-07-09 유니버셜 디스플레이 코포레이션 Oled를 위한 바이카르바졸 화합물
JP5652083B2 (ja) 2010-09-24 2015-01-14 コニカミノルタ株式会社 有機エレクトロルミネッセンス素子、表示装置及び照明装置
JP5839027B2 (ja) 2011-02-22 2016-01-06 コニカミノルタ株式会社 有機エレクトロルミネッセンス素子、その製造方法、照明装置及び表示装置
WO2013137001A1 (ja) * 2012-03-12 2013-09-19 新日鉄住金化学株式会社 有機電界発光素子
WO2014013721A1 (ja) * 2012-07-20 2014-01-23 出光興産株式会社 含窒素ヘテロ芳香族環化合物、それを用いた有機エレクトロルミネッセンス素子
US9209411B2 (en) * 2012-12-07 2015-12-08 Universal Display Corporation Organic electroluminescent materials and devices
JP6407883B2 (ja) * 2012-12-14 2018-10-17 メルク パテント ゲーエムベーハー 電子素子のための材料
KR101447961B1 (ko) * 2013-02-01 2014-10-13 (주)피엔에이치테크 새로운 유기전계발광소자용 화합물 및 그를 포함하는 유기전계발광소자
EP2980094B1 (en) * 2013-03-29 2019-05-01 Konica Minolta, Inc. Isomer-mixture metal complex composition, organic electroluminescent element, illuminator, and display device
JPWO2014181640A1 (ja) * 2013-05-07 2017-02-23 コニカミノルタ株式会社 発光素子および表示装置
EP3027707B1 (de) * 2013-07-30 2019-12-11 Merck Patent GmbH Materialien für elektronische vorrichtungen
WO2015014435A1 (de) * 2013-07-30 2015-02-05 Merck Patent Gmbh Materialien für elektronische vorrichtungen
JP6890975B2 (ja) * 2014-05-05 2021-06-18 メルク パテント ゲーエムベーハー 有機エレクトロルミネッセンス素子のための材料

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009021336A (ja) 2007-07-11 2009-01-29 Konica Minolta Holdings Inc 有機エレクトロルミネッセンス素子、表示装置及び照明装置
US20110272687A1 (en) 2009-02-06 2011-11-10 Konica Minolta Holdings, Inc. Organic electroluminescent element, and illumination device and display device each comprising the element
US20120223276A1 (en) 2009-11-14 2012-09-06 Merck Patent Gmbh Materials for electronic devices
JP2013510803A (ja) * 2009-11-14 2013-03-28 メルク パテント ゲーエムベーハー 電子素子のための材料
WO2013035275A1 (ja) * 2011-09-09 2013-03-14 出光興産株式会社 含窒素へテロ芳香族環化合物
KR20140068847A (ko) 2011-09-09 2014-06-09 이데미쓰 고산 가부시키가이샤 질소 함유 헤테로 방향족환 화합물
JP2013131518A (ja) * 2011-12-20 2013-07-04 Konica Minolta Inc 有機エレクトロルミネッセンス素子用材料、有機エレクトロルミネッセンス素子、表示装置及び照明装置
JP2014116454A (ja) 2012-12-10 2014-06-26 Konica Minolta Inc 有機エレクトロルミネッセンス素子材料及び有機エレクトロルミネッセンス素子
JP2014209618A (ja) * 2013-03-29 2014-11-06 コニカミノルタ株式会社 有機エレクトロルミネッセンス用化合物、有機エレクトロルミネッセンス素子、それを具備した照明装置及び表示装置
US20150336937A1 (en) * 2014-05-21 2015-11-26 Samsung Electronics Co., Ltd. Carbazole compound and organic light emitting device incuding the same
EP3174954A1 (de) 2014-07-29 2017-06-07 Merck Patent GmbH Materialien für organische elektrolumineszenzvorrichtungen
US20170207399A1 (en) 2014-07-29 2017-07-20 Merck Patent Gmbh Materials for organic electroluminescent devices

Cited By (65)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180287072A1 (en) * 2015-12-08 2018-10-04 Heesung Material Ltd. Heterocyclic compound and organic light emitting element using same
JP2017208521A (ja) * 2016-05-18 2017-11-24 ▲いく▼▲雷▼光電科技股▲分▼有限公司 有機エレクトロルミネセントデバイス用化合物およびその化合物を用いた有機エレクトロルミネセントデバイス
CN108603109A (zh) * 2016-07-26 2018-09-28 株式会社Lg化学 有机发光器件
US11751473B2 (en) 2016-07-26 2023-09-05 Lg Chem, Ltd. Organic light emitting element
CN108603109B (zh) * 2016-07-26 2021-08-27 株式会社Lg化学 有机发光器件
JP7115745B2 (ja) 2016-08-19 2022-08-09 株式会社Kyulux 電荷輸送材料、化合物、遅延蛍光材料および有機発光素子
JPWO2018034340A1 (ja) * 2016-08-19 2019-06-20 株式会社Kyulux 電荷輸送材料、化合物、遅延蛍光材料および有機発光素子
JP2019513131A (ja) * 2016-11-07 2019-05-23 エルジー・ケム・リミテッド 新規なヘテロ環化合物およびこれを利用した有機発光素子
US11802123B2 (en) 2016-11-07 2023-10-31 Lg Chem, Ltd. Heterocyclic compound and organic light emitting device comprising the same
CN114163421A (zh) * 2016-11-07 2022-03-11 株式会社Lg化学 新的杂环化合物和包含其的有机发光器件
US11208402B2 (en) 2016-11-07 2021-12-28 Lg Chem, Ltd. Heterocyclic compound and organic light emitting device comprising the same
CN108884086B (zh) * 2016-11-16 2021-10-29 株式会社Lg化学 杂环化合物及利用其的有机发光元件
CN108884086A (zh) * 2016-11-16 2018-11-23 株式会社Lg化学 新型杂环化合物及利用其的有机发光元件
US11800730B2 (en) 2016-11-16 2023-10-24 Lg Chem, Ltd. Organic light emitting device
TWI647225B (zh) * 2016-11-16 2019-01-11 南韓商Lg化學股份有限公司 有機發光裝置
WO2018093080A1 (ko) * 2016-11-16 2018-05-24 주식회사 엘지화학 신규한 헤테로 고리 화합물 및 이를 이용한 유기발광 소자
CN108779392A (zh) * 2016-11-29 2018-11-09 株式会社Lg化学 有机发光器件
EP3415585A4 (en) * 2016-11-29 2019-04-17 LG Chem, Ltd. ORGANIC ELECTROLUMINESCENT ELEMENT
JP2019512887A (ja) * 2016-11-29 2019-05-16 エルジー・ケム・リミテッド 有機発光素子
CN108779392B (zh) * 2016-11-29 2021-03-02 株式会社Lg化学 有机发光器件
WO2018101691A1 (ko) * 2016-11-29 2018-06-07 주식회사 엘지화학 유기 발광 소자
CN108239078B (zh) * 2016-12-27 2021-09-21 株式会社Lg化学 新型杂环化合物及利用其的有机发光元件
CN108239078A (zh) * 2016-12-27 2018-07-03 株式会社Lg化学 新型杂环化合物及利用其的有机发光元件
JP2019535679A (ja) * 2017-01-20 2019-12-12 エルジー・ケム・リミテッド 新規なヘテロ環式化合物およびこれを利用した有機発光素子
KR102003351B1 (ko) * 2017-01-20 2019-07-23 주식회사 엘지화학 신규한 헤테로 고리 화합물 및 이를 이용한 유기 발광 소자
CN110023306A (zh) * 2017-01-20 2019-07-16 株式会社Lg化学 新的杂环化合物和包含其的有机发光器件
US11228001B2 (en) 2017-01-20 2022-01-18 Lg Chem, Ltd. Hetero-cyclic compound and organic light emitting device comprising the same
TWI695833B (zh) * 2017-01-20 2020-06-11 南韓商Lg化學股份有限公司 新式雜環化合物以及包含此雜環化合物之有機發光裝置
CN110023306B (zh) * 2017-01-20 2022-09-27 株式会社Lg化学 新的杂环化合物和包含其的有机发光器件
KR20180086126A (ko) * 2017-01-20 2018-07-30 주식회사 엘지화학 신규한 헤테로 고리 화합물 및 이를 이용한 유기 발광 소자
WO2018135798A1 (ko) * 2017-01-20 2018-07-26 주식회사 엘지화학 신규한 헤테로 고리 화합물 및 이를 이용한 유기 발광 소자
JPWO2018168292A1 (ja) * 2017-03-16 2020-01-30 コニカミノルタ株式会社 有機エレクトロルミネッセンス素子材料、有機エレクトロルミネッセンス素子、表示装置、照明装置及び化合物
WO2018168292A1 (ja) * 2017-03-16 2018-09-20 コニカミノルタ株式会社 有機エレクトロルミネッセンス素子材料、有機エレクトロルミネッセンス素子、表示装置、照明装置及び化合物
US20200381629A1 (en) * 2017-03-24 2020-12-03 Lt Materials Co., Ltd. Heterocyclic compound and organic light emitting element comprising same
US10454056B1 (en) 2017-03-30 2019-10-22 Lg Chem, Ltd. Organic light emitting device
TWI658119B (zh) * 2017-03-30 2019-05-01 南韓商Lg化學股份有限公司 有機發光裝置
TWI657087B (zh) * 2017-04-13 2019-04-21 南韓商Lg化學股份有限公司 新式雜環化合物以及包含此化合物的有機發光裝置
CN110267942A (zh) * 2017-04-13 2019-09-20 株式会社Lg化学 新的杂环化合物和使用其的有机发光器件
US11081655B2 (en) 2017-04-13 2021-08-03 Lg Chem, Ltd. Heterocyclic compound and organic light emitting device using the same
CN110267942B (zh) * 2017-04-13 2023-08-04 株式会社Lg化学 新的杂环化合物和使用其的有机发光器件
EP3567032A4 (en) * 2017-04-13 2020-08-26 LG Chem, Ltd. NOVEL HETEROCYCLIC COMPOSITION AND ORGANIC LIGHT-Emitting ELEMENT WITH IT
WO2018225940A1 (ko) * 2017-06-07 2018-12-13 주식회사 엘지화학 신규한 헤테로 고리 화합물 및 이를 이용한 유기발광 소자
CN110225909A (zh) * 2017-06-07 2019-09-10 株式会社Lg化学 新的杂环化合物和包含其的有机发光器件
US11851423B2 (en) 2017-07-19 2023-12-26 Lg Chem, Ltd. Heterocyclic compound and organic light emitting device comprising the same
WO2019017702A1 (ko) * 2017-07-19 2019-01-24 주식회사 엘지화학 신규한 헤테로 고리 화합물 및 이를 이용한 유기발광 소자
WO2019017730A1 (ko) * 2017-07-20 2019-01-24 주식회사 엘지화학 신규한 헤테로 고리 화합물 및 이를 이용한 유기 발광 소자
CN110709403A (zh) * 2017-07-20 2020-01-17 株式会社Lg化学 新的杂环化合物和使用其的有机发光器件
CN110709403B (zh) * 2017-07-20 2022-08-12 株式会社Lg化学 新的杂环化合物和使用其的有机发光器件
US11840538B2 (en) 2017-07-20 2023-12-12 Lg Chem, Ltd. Heterocyclic compounds and organic light emitting device using the same
US11518769B2 (en) 2017-07-20 2022-12-06 Lg Chem, Ltd. Heterocyclic compounds and organic light emitting device using the same
US11578076B2 (en) 2017-07-20 2023-02-14 Lg Chem, Ltd. Heterocyclic compound and organic light emitting device using the same
EP3683217A4 (en) * 2017-09-15 2021-05-12 LT Materials Co., Ltd. HETEROCYCLIC COMPOUND AND ORGANIC ELECTROLUMINESCENT ELEMENT CONTAINING IT
CN108424420A (zh) * 2017-09-30 2018-08-21 北京绿人科技有限责任公司 含有硅原子的三嗪化合物及其应用和一种有机电致发光器件
CN108424420B (zh) * 2017-09-30 2021-01-12 北京绿人科技有限责任公司 含有硅原子的三嗪化合物及其应用和一种有机电致发光器件
CN111527083A (zh) * 2017-12-27 2020-08-11 三星Sdi株式会社 有机化合物、组合物、有机光电装置及显示设备
US11844271B2 (en) 2017-12-27 2023-12-12 Samsung Sdi Co., Ltd. Organic compound, composition, organic optoelectronic device, and display apparatus
US11968891B2 (en) 2018-06-26 2024-04-23 Samsung Display Co., Ltd. Organic electroluminescence device and heterocyclic compound for organic electroluminescence device
US11515486B2 (en) 2018-07-03 2022-11-29 Samsung Display Co., Ltd. Organic electroluminescence device and polycyclic compound for organic electroluminescence device
JP2022519980A (ja) * 2018-12-11 2022-03-28 エルティー・マテリアルズ・カンパニー・リミテッド ヘテロ環化合物、これを含む有機発光素子、その製造方法および有機物層用組成物
US20220089610A1 (en) * 2018-12-27 2022-03-24 Lt Materials Co., Ltd. Polycyclic compound and organic light emitting device comprising same
JP2023506151A (ja) * 2019-12-13 2023-02-15 エルティー・マテリアルズ・カンパニー・リミテッド ヘテロ環化合物及びこれを含む有機発光素子
JP7422430B2 (ja) 2019-12-13 2024-01-26 エルティー・マテリアルズ・カンパニー・リミテッド ヘテロ環化合物及びこれを含む有機発光素子
WO2022031028A1 (ko) * 2020-08-04 2022-02-10 주식회사 엘지화학 신규한 화합물 및 이를 이용한 유기 발광 소자
WO2022270591A1 (ja) * 2021-06-23 2022-12-29 株式会社Kyulux 化合物、組成物、ホスト材料、電子障壁材料および有機発光素子
WO2023112808A1 (ja) * 2021-12-17 2023-06-22 株式会社Kyulux 化合物、ホスト材料、電子障壁材料、組成物および有機発光素子

Also Published As

Publication number Publication date
CN107250132B (zh) 2020-10-02
EP4271160A3 (en) 2024-01-10
CN112110905A (zh) 2020-12-22
KR20190089236A (ko) 2019-07-30
US20180037546A1 (en) 2018-02-08
JP2016149473A (ja) 2016-08-18
EP3257850A4 (en) 2017-12-20
JP5831654B1 (ja) 2015-12-09
KR20170102000A (ko) 2017-09-06
EP4271160A2 (en) 2023-11-01
CN107250132A (zh) 2017-10-13
EP3257850B1 (en) 2023-06-28
EP3257850A1 (en) 2017-12-20
KR20230043245A (ko) 2023-03-30

Similar Documents

Publication Publication Date Title
JP5831654B1 (ja) 芳香族複素環誘導体、それを用いた有機エレクトロルミネッセンス素子、照明装置及び表示装置
CN108431983B (zh) 薄膜和有机电致发光元件
WO2017170812A1 (ja) 発光性薄膜及び有機エレクトロルミネッセンス素子
WO2018186462A1 (ja) 蛍光発光性化合物、有機材料組成物、発光性膜、有機エレクトロルミネッセンス素子材料及び有機エレクトロルミネッセンス素子
JP6657895B2 (ja) 有機エレクトロルミネッセンス素子、表示装置及び照明装置
JP2017107992A (ja) 有機エレクトロルミネッセンス素子、表示装置、照明装置及び電子デバイス用有機機能性材料
JP6085985B2 (ja) 有機金属錯体、有機エレクトロルミネッセンス素子材料、有機エレクトロルミネッセンス素子、照明装置及び表示装置
JP2017123460A (ja) 有機エレクトロルミネッセンス素子、有機エレクトロルミネッセンス素子の製造方法、表示装置及び照明装置
WO2018097156A1 (ja) 有機エレクトロルミネッセンス素子及び有機材料用組成物
US11696500B2 (en) Organic electroluminescent element, display device, illumination device, and pi-conjugated compound
WO2016143508A1 (ja) 有機エレクトロルミネッセンス素子及び有機エレクトロルミネッセンス素子材料
JP2016219487A (ja) 有機エレクトロルミネッセンス素子、表示装置、照明装置、有機エレクトロルミネッセンス素子材料及び新規化合物
JP2018006700A (ja) 有機エレクトロルミネッセンス素子、表示装置、照明装置、π共役系化合物
JP6319228B2 (ja) 有機エレクトロルミネッセンス素子用の芳香族複素環誘導体、それを用いた有機エレクトロルミネッセンス素子、照明装置及び表示装置
JP6593114B2 (ja) 有機エレクトロルミネッセンス素子、表示装置、照明装置及び芳香族複素環誘導体
JP7124818B2 (ja) 有機エレクトロルミネッセンス素子
JP6641948B2 (ja) 有機エレクトロルミネッセンス素子、表示装置、照明装置及び芳香族複素環誘導体
JP6641947B2 (ja) 有機エレクトロルミネッセンス素子、表示装置、照明装置及び芳香族複素環誘導体
JP6319231B2 (ja) 有機エレクトロルミネッセンス素子用の芳香族複素環誘導体、それを用いた有機エレクトロルミネッセンス素子、照明装置及び表示装置
JP6606986B2 (ja) 有機エレクトロルミネッセンス素子、表示装置、照明装置及び芳香族複素環誘導体
JP6319230B2 (ja) 有機エレクトロルミネッセンス素子用の芳香族複素環誘導体、それを用いた有機エレクトロルミネッセンス素子、照明装置及び表示装置
JP6319229B2 (ja) 有機エレクトロルミネッセンス素子用の芳香族複素環誘導体、それを用いた有機エレクトロルミネッセンス素子、照明装置及び表示装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16749315

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20177022113

Country of ref document: KR

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2016749315

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 15550590

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE