Nothing Special   »   [go: up one dir, main page]

WO2019143111A1 - 유기 화합물 및 이를 이용한 유기 전계 발광 소자 - Google Patents

유기 화합물 및 이를 이용한 유기 전계 발광 소자 Download PDF

Info

Publication number
WO2019143111A1
WO2019143111A1 PCT/KR2019/000615 KR2019000615W WO2019143111A1 WO 2019143111 A1 WO2019143111 A1 WO 2019143111A1 KR 2019000615 W KR2019000615 W KR 2019000615W WO 2019143111 A1 WO2019143111 A1 WO 2019143111A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
aryl
formula
chemical formula
same
Prior art date
Application number
PCT/KR2019/000615
Other languages
English (en)
French (fr)
Inventor
박정근
엄민식
홍진석
심재의
손효석
이용환
박우재
한송이
Original Assignee
주식회사 두산
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020180165797A external-priority patent/KR20190087284A/ko
Application filed by 주식회사 두산 filed Critical 주식회사 두산
Publication of WO2019143111A1 publication Critical patent/WO2019143111A1/ko

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/111Organic polymers or oligomers comprising aromatic, heteroaromatic, or aryl chains, e.g. polyaniline, polyphenylene or polyphenylene vinylene
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D209/00Heterocyclic compounds containing five-membered rings, condensed with other rings, with one nitrogen atom as the only ring hetero atom
    • C07D209/56Ring systems containing three or more rings
    • C07D209/80[b, c]- or [b, d]-condensed
    • C07D209/82Carbazoles; Hydrogenated carbazoles
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D307/00Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom
    • C07D307/77Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom ortho- or peri-condensed with carbocyclic rings or ring systems
    • C07D307/91Dibenzofurans; Hydrogenated dibenzofurans
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D405/00Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom
    • C07D405/14Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing three or more hetero rings
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers

Definitions

  • the present invention relates to a novel organic compound and an organic electroluminescent device using the same. More particularly, the present invention relates to a novel compound having excellent thermal stability and light emitting ability, and a novel compound containing the same in one or more organic layers to improve characteristics such as luminous efficiency, And an organic electroluminescent device.
  • the organic electroluminescent device when a voltage is applied between two electrodes, holes are injected into the anode, and electrons are injected into the organic layer from the cathode. When the injected holes and electrons meet, an exciton is formed. When the exciton falls to the ground state, light is emitted.
  • the material used as the organic material layer may be classified into a light emitting material, a hole injecting material, a hole transporting material, an electron transporting material, and an electron injecting material depending on its function.
  • the light emitting layer forming material of the organic electroluminescent device can be classified into blue, green and red light emitting materials according to the luminescent color.
  • yellow and orange light emitting materials are also used as light emitting materials for realizing better color.
  • a host / dopant system can be used as a light emitting material.
  • the dopant material can be divided into a fluorescent dopant using an organic material and a phosphorescent dopant using a metal complex compound containing heavy atoms such as Ir and Pt.
  • a metal complex compound containing heavy atoms such as Ir and Pt.
  • NPB, BCP, Alq 3 and the like are widely known as materials used for the hole injecting layer, the hole transporting layer, the hole blocking layer and the electron transporting layer, and the anthracene derivatives as a luminescent material have been reported as a fluorescent dopant / host material .
  • Ir as a phosphorescent material that has a great advantage in improving the efficiency aspects of the light-emitting material (ppy) 3, (acac) Ir (btp) 2
  • Ir metal complex compound is a blue, green and red host material that includes such as . So far, CBP has shown excellent properties as a phosphorescent host material.
  • Patent Document 1 Japanese Laid-Open Patent Publication No. 2001-160489
  • the present invention has been conceived to solve the above-mentioned problems, and it is an object of the present invention to provide an organic electroluminescent device capable of being applied to an organic electroluminescent device, And a phosphorescent light emitting material excellent in heat stability and light emitting ability.
  • Another object of the present invention is to provide an organic electroluminescent device including the above-described novel organic compound and exhibiting thermal stability, a low driving voltage and a high luminous efficiency, and having an improved lifetime.
  • the present invention provides a compound represented by the following general formula (1).
  • X 1 and X 2 are the same as or different from each other and each independently O or S,
  • Y 1 to Y 16 are the same as or different from each other, and each independently CR 8 or N, provided that when there are a plurality of CR 8 s , the plurality of R 8 s are the same as or different from each other,
  • Z 1 to Z 3 are the same or different and each independently CR 5 or N, at least one of them is N,
  • Ar 1 is selected from the group consisting of hydrogen, deuterium, halogen, cyano, nitro, C 1 to C 40 alkyl, C 2 to C 40 alkenyl, C 2 to C 40 alkynyl, C 3 to C 40 cycloalkyl, A C 6 to C 60 aryl group,
  • n are each an integer of 0 to 3, m + n? 1,
  • a and B are the same or different from each other and are each independently any one of substituents represented by the following formulas (2) to (4);
  • X 3 is a single bond, or O or S,
  • L is a single bond or an arylene group having 6 to 40 carbon atoms
  • Ar 2 and Ar 3 are the same or different and each independently represents a C 1 to C 40 alkyl group, a C 2 to C 40 alkenyl group, a C 2 to C 40 alkynyl group, a C 3 to C 40 cycloalkyl group, C 6 ⁇ C 60 aryl group, the number of nuclear atoms of 5 to 60 heteroaryl group, and a C 6 ⁇ , or selected from the group consisting of C 60 aryl amine, with or adjacent groups bonded may form a condensed ring,
  • a, c, and f are each an integer of 0 to 3
  • b, d and e are each an integer of 0 to 4, wherein b + m? 4, d + n? 4,
  • R 1 to R 8 are the same or different from each other and each independently represents hydrogen, deuterium, halogen, cyano, nitro, C 1 to C 40 alkyl, C 2 to C 40 alkenyl, C 2 to C 40 An alkynyl group, a C 3 to C 40 cycloalkyl group, a heteroaryl group having 3 to 40 nuclear atoms, a C 6 to C 60 aryl group, a heteroaryl group having 5 to 60 nuclear atoms, a C 1 to C 40 alkyl A C 6 to C 60 aryloxy group, a C 1 to C 40 alkylsilyl group, a C 6 to C 60 arylsilyl group, a C 1 to C 40 alkylboron group, a C 6 to C 60 aryl boron group, C 6 ⁇ C 60 aryl phosphine group, C 6 ⁇ C 60 aryl phosphine oxide group, and a C 6 ⁇ , or selected from the group consisting of an
  • At least one of Ar 1 , A and B includes a C 6 to C 60 aryl group substituted with at least one deuterium (D) or a heteroaryl group having 5 to 60 nuclear atoms,
  • the present invention also provides an organic electroluminescent device comprising a cathode, a cathode, and at least one organic layer sandwiched between the anode and the cathode, wherein at least one of the one or more organic layers includes a compound represented by the general formula An electroluminescent device is provided.
  • At least one of the organic compound layers including the compound represented by Formula 1 may be selected from the group consisting of a hole injection layer, a hole transport layer, a light emission assist layer, a light emitting layer, an electron transport layer, and an electron injection layer, .
  • the compound represented by Formula 1 may be used as a phosphorescent host of the light emitting layer.
  • the compound represented by the general formula (1) of the present invention has excellent thermal stability and luminescent properties and can be used as a material of an organic material layer of an organic electroluminescent device.
  • a novel compound according to the present invention is a core comprising a nitrogen-containing heteroaromatic ring (e.g., azine) and two dibenzo-based moieties (e.g., dibenzofuran or dibenzothiophene) And a structure in which an electron donating group (EDG) having a typical electron donor group of the art is connected to at least one phenyl group of the two dibenzo-based moieties.
  • EDG electron donating group
  • it is characterized in that it contains an aryl group and / or a heteroaryl group substituted with at least one deuterium (D) in the basic skeleton.
  • the compound of Chemical Formula 1 has dibenzo-type moieties (eg, dibenzofuran (DBF), dibenzothiophene (DBT)) having both physicochemical properties with respect to holes and electrons, (E. G., Pyridine, pyrazine, triazine) which is a kind of azine group which is a large electron withdrawing group (EWG), and the above dibenzo series moieties such as carbazole, indolocarbazole, phenoxazine, An electron donor group such as azine, arylamine or the like is connected.
  • dibenzo-type moieties eg, dibenzofuran (DBF), dibenzothiophene (DBT) having both physicochemical properties with respect to holes and electrons, (E. G., Pyridine, pyrazine, triazine) which is a kind of azine group which is a large electron withdrawing group (EWG)
  • EWG electron
  • the compound of Formula 1 is a bipolar compound, the recombination of holes and electrons is high, so that the hole injecting / transporting ability, luminous efficiency, driving voltage, lifetime characteristics, durability and the like can be improved. Accordingly, when the compound of Chemical Formula 1 is applied as a green phosphorescent material, not only can it have excellent luminous efficiency characteristics, but also can be driven at a low voltage and exhibit lifetime increasing effect, and can exhibit thermal stability, high glass transition temperature characteristics, (morphology). Since the organic EL device is also effective in inhibiting crystallization of the organic material layer, the performance and lifetime characteristics of the organic EL device including the compound can be greatly improved.
  • the present invention essentially comprises an aryl group and / or a heteroaryl group substituted by at least one deuterium (D) in the above-mentioned molecular structure.
  • the compounds containing a plurality of deuterium atoms can maximize the color purity of the green color compared with the compounds having the same structure without deuterium, further increase the intramolecular bonding force between the weakened carbon-hydrogen atoms, .
  • the planarity and stereoscopic property of the compound can be realized according to the bonding positions of two dibenzofurans or dibenzothiophene moieties bonded to azine groups.
  • the electron transporting ability is improved, and the driving and efficiency of the device to which these compounds are applied can be expected to be increased.
  • the dibenzofuran moiety or the dibenzothiophene moiety is more excellent in electron and hole stability than an aryl group, lifetime characteristics of a device to which such a compound is applied can be further improved.
  • EDG electron donor groups
  • carbazole groups indolocarbazoles, phenoxazines, phenoxathiazines, arylamine groups and the like
  • the HOMO level of the compound can be freely controlled.
  • the carbazole group is electrochemically stable and has a deep HOMO level by conjugation with other amines EDG.
  • the polycyclic electron donor (EDG) having a condensed ring and / or fused ring form has excellent thermal stability and electrochemical stability, has a high glass transition temperature (Tg) and excellent carrier transporting ability.
  • Tg glass transition temperature
  • the electron and hole transport mobility is very excellent, and the balance of the carriers in the light emitting layer is very excellent.
  • the host material should have a triplet energy gap higher than the dopant of the host. That is, in order to effectively provide phosphorescent emission from the dopant, the lowest excitation state of the host must be higher energy than the lowest emission state of the dopant.
  • the compound represented by Formula 1 has a high triplet energy and can be used as a host material because the energy level can be controlled higher than that of the dopant.
  • the compound represented by the formula (1) can prevent the excitons generated in the light emitting layer from diffusing into the electron transporting layer or the hole transporting layer adjacent to the light emitting layer. Accordingly, the luminous efficiency of the device can be improved by increasing the number of the excitons contributing to the light emission in the light emitting layer, the durability and stability of the device can be improved, and the lifetime of the device can be efficiently increased.
  • the compound represented by the above formula (1) can improve the phosphorescence characteristics of the organic electroluminescent device and improve the electron injection / transport ability, luminous efficiency, driving voltage and lifetime characteristics. Therefore, the compound of Chemical Formula (1) according to the present invention can be used as a material of any one of a hole injection layer, a hole transporting layer, a light emitting layer, an electron transporting layer and an electron injecting layer which is an organic material layer of an organic electroluminescent device, , Green and / or red phosphorescent host material).
  • the compound represented by formula (1) of the present invention when used as a blue, green and / or red phosphorescent host material, preferably phosphorescent green n-type host and / or phosphor red host, for example, a full color display panel having a low driving voltage, a high efficiency and a long lifetime compared with the organic electroluminescent device can be manufactured, and a high efficiency and a long life can be improved.
  • the compound represented by formula (1) according to the present invention has a core comprising an azine group and two dibenzo-based moieties (dibenzofuran or dibenzothiophene moiety) connected to both sides thereof, An aryl group and / or a heteroaryl group in which at least one electron donor group (EDG) is bonded to any one of six-membered rings in the core and substituted with at least one deuterium (D).
  • EDG electron donor group
  • D deuterium
  • the number of deuterium (D) substituted in the compound is not particularly limited, and may be, for example, one or more, preferably four or more. Specifically, it may be 1 to 18.
  • X 1 and X 2 are the same as or different from each other and each independently O or S. At this time, when d is 0, dibenzofuran moiety is formed, and in case of S, dibenzothiophene moiety can be formed.
  • Y 1 to Y 16 are the same as or different from each other, and each independently CR 8 or N; In this case, when there are a plurality of CR 8 s , the plurality of R 8 s may be the same or different.
  • the remaining is CR 8 ;
  • At least one of Y 13 to Y 16 is N, the remaining is CR 8 ;
  • At least one of Y 1 to Y 4 is N, and at least one of Y 9 to Y 12 is N, the remainder is CR 8 ;
  • At least one of Y 5 to Y 8 is N, and at least one of Y 13 to Y 16 is N, the remainder is CR 8 ;
  • At least one of Y 1 to Y 4 is N, and when one of Y 13 to Y 16 is N, the remaining is CR 8 ;
  • Y 1 to Y 16 may all be CR 8 (see the following formulas 13 to 17).
  • R 8 is hydrogen, heavy hydrogen, a halogen group, a cyano group, a nitro group, an amino group, an alkynyl group of C 1 ⁇ C 40 alkyl group, C 2 ⁇ C 40 alkenyl group, C 2 ⁇ C 40 of, C 3 ⁇ C 40 cycloalkyl group, the number of nuclear atoms of 3 to 40 heterocycloalkyl group, C 6 ⁇ C 60 aryl group, nuclear atoms aryl of from 5 to 60 heteroaryl group, a C 1 ⁇ alkyloxy group of C 40, C 6 ⁇ C 60 aryloxy group, C group 1 ⁇ C 40 alkyl silyl, C 6 ⁇ C 60 aryl silyl group, a alkyl boronic of C 1 ⁇ C 40, an aryl boronic a C 6 ⁇ C 60, C 1 ⁇ C 40 phosphine groups, C 1 to C 40 phosphine oxide groups, and C 6 to C 60
  • R 8 is a hydrogen, a deuterium, a halogen, a cyano group, a nitro group, C 1 ⁇ C 40 alkyl group, C 2 ⁇ C 40 alkenyl group, C 2 ⁇ C 40 alkynyl group, C 3 ⁇ C 40 of the A cycloalkyl group, and a C 6 to C 60 aryl group.
  • Z 1 to Z 3 are the same or different and are each independently CR 5 or N, and at least one of them is N. In one preferred embodiment, from 1 to 3 of Z 1 to Z 3 may be N, for example, pyridine, pyrimidine, triazine. More preferably, all of Z 1 to Z 3 are N and triazine is electron-withdrawing.
  • Ar 1 is selected from the group consisting of hydrogen, deuterium, halogen, cyano, nitro, C 1 to C 40 alkyl, C 2 to C 40 alkenyl, C 2 to C 40 alkynyl, C 3 to C 40 cycloalkyl, A C 6 to C 60 aryl group, and the like.
  • Ar 1 is preferably an aryl group of C 6 to C 60 , and may be, for example, a phenyl group, a biphenyl group, a naphthyl group, a triphenyl group, an anthryl group, a phenanthryl group and the like.
  • Ar 1 can be selected from the group of substituents represented by the following structural formulas. Although not specifically shown herein, any hydrogen included in the following substituents may be substituted with at least one deuterium (D).
  • Ar 1 may be substituted with at least one substituent group known in the art (for example, the same definition as R 6 ).
  • Ar 1 when Ar 1 is an aryl group substituent of C 6 to C 60 substituted with at least one deuterium (D), it may be further specified by any one of substituent groups represented by the following structural formulas. However, the present invention is not particularly limited thereto.
  • Each of a and c is an integer of 0 to 3
  • b and d are an integer of 0 to 4, respectively.
  • hydrogen means not substituted with R 1 to R 4
  • a to d are each an integer of 1 or more, one or more hydrogen atoms are substituted with R 1 to R 4 . it means.
  • R 1 to R 5 are the same or different from each other and each independently represents hydrogen, deuterium, halogen, cyano, nitro, C 1 to C 40 alkyl, C 2 to C 40 alkenyl , A C 2 to C 40 alkynyl group, a C 3 to C 40 cycloalkyl group, a heteroaryl group having 3 to 40 nuclear atoms, a C 6 to C 60 aryl group, a heteroaryl group having 5 to 60 nuclear atoms, A C 1 to C 40 alkyloxy group, a C 6 to C 60 aryloxy group, a C 1 to C 40 alkylsilyl group, a C 6 to C 60 arylsilyl group, a C 1 to C 40 alkylboron group, C 6 ⁇ aryl of C 60 boron group, C 6 ⁇ C 60 aryl phosphine group, C 6 ⁇ C 60 aryl phosphine oxide groups and selected from the group consisting
  • R 1 to R 5 each are plural, they are the same as or different from each other. Specifically, R 1 to R 5 are the same or different and each independently represents hydrogen, deuterium, halogen, cyano, nitro, C 1 to C 40 alkyl, C 2 to C 40 alkenyl, C 2 An alkynyl group of C 40 to C 40 , a cycloalkyl group of C 3 to C 40 , and an aryl group of C 6 to C 60 .
  • m and n are each an integer of 0 to 3, and m + n? 1.
  • m or n 0, it means that hydrogen is not substituted with A or B.
  • m and n are each an integer of 1 or more, it means that at least one hydrogen is substituted with A and B, respectively.
  • m and n may each be an integer of 0 to 2.
  • b + m and d + n may be an integer of 0 to 4, respectively.
  • a and B are electron donating substituents each of which serves to provide electrons.
  • an electron donating group (EDG) known in the art can be used without limitation.
  • a and B are each a carbazole group, a condensed ring or a fused ring-type polycyclic carbazole-based moiety (e.g., a condensed carbazole, an indolocarbazole, a biscarbazole), phenoxazine, phenoxathiazine, Amine group, and the like.
  • a and B are the same as or different from each other, and each independently may be any of the substituents represented by the above formulas (2) to (4).
  • X 3 is a single bond or may be selected from the group consisting of O, or S.
  • X 3 may be a carbazole group, a condensed ring and / or a polycyclic carbazole-based moiety in the form of a fused ring (for example, a condensed carbazole, an indolocarbazole, or the like) Of a bis-carbazole.
  • X < 3 > is O or S, phenoxazine or phenoxythiazine can be formed.
  • e is an integer of 0 to 4
  • f is an integer of 0 to 3.
  • hydrogen means not substituted by R 6 and R 7
  • e and f are each an integer of 1 or more, at least one hydrogen is substituted with R 6 and R 7 respectively .
  • R 6 and R 7 are the same or different, each independently represent hydrogen, deuterium, a halogen, a cyano group, a nitro group, C 1 ⁇ alkenyl group of the C 40 alkyl group, C 2 ⁇ C 40 of, C 2 ⁇ C A C 3 to C 40 cycloalkyl group, a heteroaryl group having 3 to 40 nuclear atoms, a C 6 to C 60 aryl group, a heteroaryl group having 5 to 60 nuclear atoms, a C 1 to C 40 alkenyl group, C 6 -C 60 aryloxy groups, C 1 -C 40 alkylsilyl groups, C 6 -C 60 arylsilyl groups, C 1 -C 40 alkylboron groups, C 6 -C 60 a group of the arylboronic, C 6 ⁇ C 60 aryl phosphine group, C 6 ⁇ C 60 aryl phosphine oxide group, and a C 6 ⁇ selected from the
  • R 6 and R 7 are plural, they may be the same as or different from each other.
  • R 6 and R 7 are each independently hydrogen, deuterium, a halogen, a cyano group, a nitro group, C 1 ⁇ alkenyl group of the C 40 alkyl group, C 2 ⁇ C 40 of, C 2 ⁇ C 40 A C 3 to C 40 cycloalkyl group, and a C 6 to C 60 aryl group, or may be bonded to adjacent groups to form a condensed ring.
  • adjacent groups may be one R 6 and one R 6 , one R 6 and one Ar 2 , one R 7 and another R 7 , one R 7, and one Ar 2 .
  • L may be a divalent group linker known in the art. Specifically, L is a single bond or an arylene group having 6 to 40 carbon atoms. When L is a C 6 to C 40 arylene group, it may be a phenylene group, a biphenylene group, a naphthylene group, a triphenylene group or the like, preferably a phenylene group or a biphenylene group.
  • Ar 2 and Ar 3 are the same or different and each independently represents a C 1 to C 40 alkyl group, a C 2 to C 40 alkenyl group, a C 2 to C 40 alkenyl group, group, C 3 ⁇ C 40 cycloalkyl group, C 6 ⁇ C 60 aryl group, the number of nuclear atoms of 5 to 60 heteroaryl group, and a C 6 ⁇ , or selected from the group consisting of an aryl amine of the C 60, or adjacent groups combined To form a condensed ring.
  • said Ar 2 and Ar 3 are the same or different from each other, and each independently C 6 ⁇ C 60 aryl group, the number of nuclear atoms of 5 to 60 heteroaryl group, and a C 6 ⁇ the group consisting of an aryl amine of the C 60 . ≪ / RTI >
  • a and B are the same as or different from each other, and each independently can be any one selected from the group of substituents represented by the following structural formulas. Although not specifically shown herein, any hydrogen included in the following substituents may be substituted with at least one deuterium (D).
  • E is selected from the group consisting of O, S, NR 11 , CR 12 R 13 , and SiR 14 R 15 ,
  • a halogen atom, a cyano group, a nitro group, a C 1 to C 40 alkyl group, a C 6 to C 60 aryl group, and a substituted or unsubstituted alkyl group having 5 to 5 nucleus atoms, wherein R 11 to R 15 are the same or different and each independently represents hydrogen, deuterium, Lt; / RTI > to 60, and < RTI ID 0.0 >
  • Ar 11 is hydrogen or a C 6 to C 60 aryl group
  • any of the substituent groups represented by the following structural formulas It can be more concrete in one. However, it is not particularly limited.
  • Ar 11 , Ar 2 and Ar 3 are each as defined in the above-mentioned structural formula.
  • the nitrogen-containing heterocycle having an EWG properties such as, Z 1 ⁇ Z 3 containing ring
  • EWG properties such as, Z 1 ⁇ Z 3 containing ring
  • X 1 hamyuhwan and X Symmetry or asymmetry structure depending on the carbon bond positions of the carbon-carbon double bonds.
  • the bonding position of one of Y 1 to Y 4 of the X 1 containing ring connected to the Z 1 to Z 3 containing ring and the bonding position of one of Y 9 to Y 12 of the X 2 containing ring are symmetrical or asymmetric Structure.
  • the carbon position of the X 1 -containing ring bonded to the azine group is Y 1
  • the X 2 -containing The carbon position of the ring may be any of Y 10 to Y 12 except Y 9 (see Chemical Formula 5 below).
  • the asymmetric structure of two dibenzo-based moieties respectively linked to the nitrogen-containing heterocycle may be represented by any one of the following formulas (5) to (8).
  • the ring containing Z 1 to Z 3 in Formula 5 is bonded to any one of Y 10 to Y 12 (provided that the ring containing Z 1 to Z 3 is not bonded to Y 9 )
  • the ring containing Z 1 to Z 3 in Formula 6 is bonded to any one of Y 9 and Y 11 to Y 12 (provided that the ring containing Z 1 to Z 3 is not bonded to Y 10 )
  • the Z 1 to Z 3 -containing ring of formula (7) is bonded to any one of Y 9 , Y 10 and Y 12 (provided that the Z 1 to Z 3 containing ring is not bonded to Y 11 )
  • the ring containing Z 1 to Z 3 in the above formula (8) is bonded to any one of Y 9 to Y 11 (provided that the ring containing Z 1 to Z 3 is not bonded to Y 12 ).
  • X 1 , X 2 , Y 1 to Y 16 , Z 1 to Z 3 , Ar 1 , m, n, A, B, a to d and R 1 to R 4 are as defined in Formula 1, respectively.
  • asymmetric compound In the case of the above-mentioned asymmetric compound, it is relatively easy to control the intermolecular distance as compared with the compound having a symmetric structure. That is, due to the nature of the dibenzo-based moiety capable of bonding at the 1,2,3,4-position, a structural disorder between the hydrogen of triazine and the dibenzo-based moiety occurs at the 1,4-bond, The distance will be farther away, which will also increase the T1 value. By using the above-mentioned characteristics, it is possible to adjust the HOMO-LUMO and T1 and S1 values of the organic material layer through the asymmetry of the chemical structure.
  • the compound represented by Formula 5 may be further represented by any one of Formulas 5a to 5c.
  • the compound represented by Formula 6 may be further represented by any one of Formulas 6a to 6c.
  • the compound represented by the above formula (7) may be further represented by any one of formulas (7a) to (7c).
  • the compound represented by the formula (8) may be further represented by any one of formulas (8a) to (8c).
  • X 1 , X 2 , Y 1 to Y 16 , Z 1 to Z 3 , Ar 1 , m, n, A, B, a to d and R 1 to R 4 are as defined in claim 1, respectively.
  • X 2- containing ring when the carbon position of the X 1 -containing ring bonded to the azine group (for example, a ring containing Z 1 to Z 3 ) is Y 1 , X 2- containing ring may be Y 9 (see Chemical Formula 9 below).
  • the symmetric structure of two dibenzo-based moieties respectively linked to the nitrogen-containing heterocycle may be represented by any one of the following formulas (9) to (12).
  • X 1 , X 2 , Y 1 to Y 16 , Z 1 to Z 3 , Ar 1 , m, n, A, B, a to d and R 1 to R 4 are as defined in Formula 1, respectively.
  • the degree of symmetry affects the HOMO-LUMO overlap. This can affect the T1 and S1 values, and if this difference is large, it also affects the TTA and singlet fission, so it is important to adjust it appropriately.
  • dibenzo-based moieties such as dibenzofurane or dibenzothiophene moiety may be further represented by any one of the following formulas (13) to (17).
  • X 1 , X 2 , Z 1 to Z 3 , Ar 1 , n, A and B are as defined in the above formula (1).
  • each of X 1 and X 2 is independently O or S, and Z 1 to Z 3 are each independently CR 5 or N, a is N, Ar 1 is an aryl group of C 6 ⁇ C 60.
  • At least one of A and B may be selected from the substituent groups of A and B exemplified above, provided that at least one of Ar 1 , A and B is an aryl group substituted with at least one deuterium (D) and / Or a heteroaryl group.
  • the compound represented by the formula (1) according to the present invention described above can be further represented by a compound represented by any one of the following compounds 1 to 188.
  • the compounds represented by formula (1) of the present invention are not limited by the following examples.
  • alkyl means a monovalent substituent derived from a straight or branched saturated hydrocarbon having 1 to 40 carbon atoms.
  • alkyl include, but are not limited to, methyl, ethyl, propyl, isobutyl, sec-butyl, pentyl, iso-amyl and hexyl.
  • alkenyl in the present invention means a monovalent substituent derived from a straight or branched chain unsaturated hydrocarbon having 2 to 40 carbon atoms and having at least one carbon-carbon double bond.
  • alkenyl include, but are not limited to, vinyl, allyl, isopropenyl, 2-butenyl, and the like.
  • alkynyl in the present invention means a monovalent substituent derived from a straight or branched chain unsaturated hydrocarbon having 2 to 40 carbon atoms and having at least one carbon-carbon triple bond.
  • alkynyls include, but are not limited to, ethynyl, 2-propynyl, and the like.
  • Cycloalkyl in the present invention means a monovalent substituent derived from a monocyclic or polycyclic non-aromatic hydrocarbon having 3 to 40 carbon atoms.
  • Examples of such cycloalkyls include, but are not limited to, cyclopropyl, cyclopentyl, cyclohexyl, norbornyl, adamantine, and the like.
  • Aryl in the present invention means a monovalent substituent derived from a C6-C60 aromatic hydrocarbon having a single ring or a combination of two or more rings. Also, a form in which two or more rings are pendant or condensed with each other may be included. Examples of such aryl include, but are not limited to, phenyl, naphthyl, phenanthryl, anthryl, and the like.
  • Heteroaryl in the present invention means a monovalent substituent derived from a monoheterocyclic or polyheterocyclic aromatic hydrocarbon having 5 to 60 nuclear atoms. Wherein at least one of the carbons, preferably one to three carbons, is replaced by a heteroatom such as N, O, S or Se.
  • a form in which two or more rings are pendant or condensed with each other may be included, and further, a condensed form with an aryl group may be included.
  • heteroaryls include 6-membered monocyclic rings such as pyridyl, pyrazinyl, pyrimidinyl, pyridazinyl, triazinyl, phenoxathienyl, indolizinyl, indolyl indolyl), purinyl, quinolyl, benzothiazole, carbazolyl, and heterocyclic rings such as 2-furanyl, N-imidazolyl, 2- , 2-pyridinyl, 2-pyrimidinyl, and the like, but are not limited thereto.
  • alkyloxy means a monovalent substituent group represented by R'O-, and R 'means alkyl having 1 to 40 carbon atoms.
  • alkyloxy may include linear, branched or cyclic structures. Examples of such alkyloxy include, but are not limited to, methoxy, ethoxy, n-propoxy, 1-propoxy, t-butoxy, n-butoxy and pentoxy.
  • aryloxy means a monovalent substituent represented by RO-, and R means aryl having 6 to 60 carbon atoms. Examples of such aryloxy include, but are not limited to, phenyloxy, naphthyloxy, diphenyloxy, and the like.
  • Alkylsilyl in the present invention refers to silyl substituted with alkyl having 1 to 40 carbon atoms
  • arylsilyl means silyl substituted with aryl having 6 to 60 carbon atoms.
  • alkyl boron is boron substituted with alkyl having 1 to 40 carbon atoms
  • aryl boron means boron substituted with aryl having 6 to 60 carbon atoms.
  • arylphosphine means a phosphine substituted with aryl having 6 to 60 carbon atoms
  • arylphosphine oxide group means that phosphine substituted with aryl having 6 to 60 carbon atoms includes O do.
  • condensed rings means condensed aliphatic rings, condensed aromatic rings, condensed heteroaliphatic rings, condensed heteroaromatic rings, or a combination thereof.
  • Arylamine in the present invention means an amine substituted with aryl having 6 to 60 carbon atoms.
  • the compounds represented by formula (1) of the present invention can be prepared without limitation by methods known in the art. For example, various syntheses can be carried out by referring to the synthesis process of the following examples.
  • the present invention provides an organic electroluminescent device comprising a compound represented by the above formula (1).
  • the organic electroluminescent device includes at least one anode, an anode, and at least one organic layer sandwiched between the anode and the cathode, and at least one of the one or more organic layers Include the compounds represented by the above formula (1).
  • the compounds may be used alone or in combination of two or more.
  • the at least one organic material layer may include at least one of a hole injecting layer, a hole transporting layer, a light emitting auxiliary layer, a light emitting layer, an electron transporting layer, and an electron injecting layer.
  • the organic compound layer containing the compound of Formula 1 is preferably a light emitting layer.
  • the light emitting layer of the organic electroluminescence device of the present invention may include a host material (preferably, a phosphorescent host material).
  • the light emitting layer of the organic electroluminescent device of the present invention may contain a compound other than the compound of Formula 1 as a host.
  • the structure of the organic electroluminescent device of the present invention is not particularly limited, and examples thereof include a substrate, an anode, a hole injecting layer, a hole transporting layer, a light emitting auxiliary layer, a light emitting layer, an electron transporting layer, an electron injecting layer and a cathode sequentially stacked Structure. At least one of the hole injecting layer, the hole transporting layer, the light-emitting auxiliary layer, the light emitting layer, the electron transporting layer, and the electron injecting layer may include the compound represented by Formula 1, ≪ / RTI > compounds. Further, the structure of the organic electroluminescent device of the present invention may be a structure in which an insulating layer or an adhesive layer is inserted into the interface between the electrode and the organic layer.
  • the organic electroluminescent device of the present invention can be manufactured by forming an organic material layer and an electrode by materials and methods known in the art, except that at least one of the organic material layers includes the compound represented by the above formula have.
  • the organic material layer may be formed by a vacuum deposition method or a solution coating method.
  • the solution coating method include, but are not limited to, spin coating, dip coating, doctor blading, inkjet printing, or thermal transfer.
  • the substrate used in the fabrication of the organic electroluminescent device of the present invention is not particularly limited, but silicon wafer, quartz, glass plate, metal plate, plastic film and sheet can be used.
  • the positive electrode material examples include metals such as vanadium, chromium, copper, zinc, and gold, or alloys thereof; Metal oxides such as zinc oxide, indium oxide, indium tin oxide (ITO), and indium zinc oxide (IZO); A combination of a metal and an oxide such as ZnO: Al or SnO2: Sb; Conductive polymers such as polythiophene, poly (3-methylthiophene), poly [3,4- (ethylene-1,2-dioxy) thiophene] (PEDT), polypyrrole or polyaniline; And carbon black, but are not limited thereto.
  • Examples of the negative electrode material include metals such as magnesium, calcium, sodium, potassium, titanium, indium, yttrium, lithium, gadolinium, aluminum, silver, tin or lead or alloys thereof; And multi-layer structure materials such as LiF / Al or LiO2 / Al, but are not limited thereto.
  • the hole injecting layer, the hole transporting layer, the electron injecting layer and the electron transporting layer are not particularly limited, and ordinary materials known in the art can be used.
  • Core-2-1 (225 g, 941 mmol) and PPh 3 (617 g, 2,353 mmol) were added to RBF and stirred at 150 ° C for 8 hours. After completion of the reaction, the product was dissolved in MC and purified by column chromatography to obtain Core-2-1 (225 g, yield 94%).
  • Core-4-1 250 g, 668 mmol
  • 2-bromo-6-chlorodibenzo [ b, d] furan 188 g, 668 mmol
  • Pd (PPh 3) 4 31 g, 27 mmol
  • K 2 CO 3 277 g, 2,004 mmol
  • the reaction mixture was extracted with ethyl acetate, and the organic layer was separated and washed with MgSO 4 .
  • the solvent was removed from the organic layer from which water had been removed, and then purified by column chromatography to obtain Core-4-2 (255 g, yield 85%).
  • a glass substrate coated with ITO (Indium tin oxide) thin film having a thickness of 1500 ⁇ was washed with distilled water ultrasonic waves. After the distilled water was washed, the substrate was ultrasonically washed with a solvent such as isopropyl alcohol, acetone, or methanol, dried and transferred to a UV OZONE cleaner (Power Sonic 405, Hoshin Tech), the substrate was cleaned using UV for 5 minutes, The substrate was transferred.
  • ITO Indium tin oxide
  • a green organic EL device was fabricated in the same manner as in Example 1, except that CBP was used instead of the compound P-1 as a luminescent host material in forming the light emitting layer.
  • a green organic EL device was fabricated in the same manner as in Example 1, except that Compound 1 was used instead of Compound P-1 as a luminescent host material in forming the light emitting layer.
  • a green organic EL device was fabricated in the same manner as in Example 1, except that Compound 2 was used instead of Compound P-1 as a luminescent host material in the formation of the light emitting layer.
  • the green organic electroluminescent devices of Examples 1 to 12 in which the compound according to the present invention was used as a light emitting layer of a green organic EL device, were compared with each other in Comparative Example using conventional CBP, compounds I and II as light emitting layers
  • the organic EL device of the present invention exhibits superior performance in terms of efficiency and driving voltage as compared with the green organic EL devices of 1 to 3.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

본 발명은 신규한 유기 화합물 및 이를 이용한 유기 전계 발광 소자에 관한 것으로, 보다 상세하게는 열안정성과 발광능이 우수한 신규 화합물 및 이를 하나 이상의 유기물층에 포함함으로써, 열적 안정성고, 높은 발광효율, 낮은 구동전압, 장수명 등의 특성이 향상된 유기 전계 발광 소자에 관한 것이다.

Description

유기 화합물 및 이를 이용한 유기 전계 발광 소자
본 발명은 신규한 유기 화합물 및 이를 이용한 유기 전계 발광 소자에 관한 것으로, 보다 상세하게는 열안정성과 발광능이 우수한 신규 화합물 및 이를 하나 이상의 유기물층에 포함함으로써 발광효율, 구동 전압, 수명 등의 특성이 향상된 유기 전계 발광 소자에 관한 것이다.
1950년대 Bernanose의 유기 박막 발광 관측을 시점으로 1965년 안트라센 단결정을 이용한 청색 전기발광으로 이어진 유기 전계 발광(electroluminescent) 소자에 대한 연구는 1987년 탕(Tang)에 의하여 정공층과 발광층의 기능층으로 나눈 적층구조의 유기 전계 발광 소자가 제시되었다. 이후 고효율, 고수명의 유기 전계 발광 소자를 만들기 위하여, 소자 내 각각의 특징적인 유기물 층을 도입하는 형태로 발전하여 왔으며, 이에 사용되는 특화된 물질의 개발로 이어졌다.
유기 전계 발광 소자는 두 전극 사이에 전압을 걸어 주면 양극에서는 정공이 주입되고, 음극에서는 전자가 유기물층으로 주입된다. 주입된 정공과 전자가 만났을 때 엑시톤(exciton)이 형성되며, 이 엑시톤이 바닥상태로 떨어질 때 빛이 나게 된다. 이때 유기물층으로 사용되는 물질은 그 기능에 따라, 발광 물질, 정공 주입 물질, 정공 수송 물질, 전자 수송 물질, 전자 주입 물질 등으로 분류될 수 있다.
유기 전계 발광 소자의 발광층 형성재료는 발광색에 따라 청색, 녹색, 적색 발광 재료로 구분될 수 있다. 그밖에, 보다 나은 천연색을 구현하기 위한 발광재료로 노란색 및 주황색 발광재료도 사용된다. 또한, 색순도의 증가와 에너지 전이를 통한 발광 효율을 증가시키기 위하여, 발광 재료로서 호스트/도펀트 계를 사용할 수 있다.
도판트 물질은 유기 물질을 사용하는 형광 도판트와 Ir, Pt 등의 중원자(heavy atoms)가 포함된 금속 착체 화합물을 사용하는 인광 도판트로 나눌 수 있다. 이러한 인광 재료의 개발은 이론적으로 형광에 비해 4배까지의 발광 효율을 향상시킬 수 있어 인광 도판트 뿐만 아니라 인광 호스트 재료들에 대해 관심이 집중되고 있다.
현재까지 정공 주입층, 정공 수송층, 정공 차단층, 전자 수송층에 사용되는 물질로는 NPB, BCP, Alq3 등이 널리 알려져 있고, 발광 물질로는 안트라센 유도체들이 형광 도판트/호스트 재료로서 보고되고 있다. 특히 발광재료 중 효율 향상 측면에서 큰 장점을 가지고 있는 인광 재료로서는 Firpic, Ir(ppy)3, (acac)Ir(btp)2 등과 같은 Ir을 포함하는 금속 착체 화합물이 청색, 녹색, 적색 도판트 재료로 사용되고 있다. 현재까지는 CBP가 인광 호스트 재료로 우수한 특성을 나타내고 있다.
그러나 종래 발광 물질들은 발광 특성 측면에서 유리한 면이 있으나, 유리전이온도가 낮고 열적 안정성이 매우 좋지 않기 때문에, 유기 전계 발광 소자에서의 수명 측면에서 만족할만한 수준이 되지 못하고 있다. 따라서, 우수한 성능을 가지는 발광 물질의 개발이 요구되고 있다.
[선행기술문헌]
[특허문헌]
(특허문헌 1) 일본공개특허공보 제2001-160489호
본 발명은 전술한 문제점을 해결하기 위해 안출된 것으로서, 보다 구체적으로 유기 전계 발광 소자에 적용할 수 있으며, 열안정성과 발광능, 정공 주입능, 정공 수송능, 발광능, 전자 수송능, 전자 주입능 등이 모두 우수한 신규 유기 화합물, 바람직하게는 열안정성과 발광능이 우수한 인광 발광 재료를 제공하는 것을 목적으로 한다.
또한, 본 발명은 전술한 신규 유기 화합물을 포함하여 열적 안정성, 낮은 구동전압과 높은 발광효율을 나타내며, 수명이 향상되는 유기 전계 발광 소자를 제공하는 것을 또 다른 목적으로 한다.
상기 목적을 달성하기 위하여, 본 발명은 하기 화학식 1 로 표시되는 화합물을 제공한다.
Figure PCTKR2019000615-appb-C000001
상기 화학식 1에서,
X1 및 X2는 서로 동일하거나 상이하며, 각각 독립적으로 O 또는 S이고,
Y1 내지 Y16은 서로 동일하거나 상이하며, 각각 독립적으로 CR8 또는 N이고, 이때 CR8이 복수 개인 경우 복수의 R8은 서로 동일하거나 또는 상이하며,
Z1 내지 Z3는 서로 동일하거나 상이하며, 각각 독립적으로 CR5 또는 N이고, 이들 중 적어도 하나는 N이고,
Ar1은 수소, 중수소, 할로겐, 시아노기, 니트로기, C1~C40의 알킬기, C2~C40의 알케닐기, C2~C40의 알키닐기, C3~C40의 시클로알킬기 및 C6~C60의 아릴기로 이루어진 군에서 선택되고,
m 및 n은 각각 0 내지 3의 정수이며, m+n ≥ 1이고,
A 및 B는 서로 동일하거나 상이하며, 각각 독립적으로 하기 화학식 2 내지 4로 표시되는 치환체 중 어느 하나이며;
[화학식 2]
Figure PCTKR2019000615-appb-I000001
[화학식 3]
Figure PCTKR2019000615-appb-I000002
[화학식 4]
Figure PCTKR2019000615-appb-I000003
상기 화학식 2 내지 4에서,
*은 상기 화학식 1에 결합되는 부위를 의미하고,
X3는 단일결합이거나, 혹은 O 또는 S이고,
L은 단일결합이거나, 혹은 C6~C40의 아릴렌기이고,
Ar2 및 Ar3은 서로 동일하거나 상이하며, 각각 독립적으로 C1~C40의 알킬기, C2~C40의 알케닐기, C2~C40의 알키닐기, C3~C40의 시클로알킬기, C6~C60의 아릴기, 핵원자수 5 내지 60개의 헤테로아릴기 및 C6~C60의 아릴아민기로 이루어진 군에서 선택되거나, 혹은 인접한 기와 결합하여 축합 고리를 형성할 수 있고,
a, c 및 f는 각각 0 내지 3의 정수이고,
b, d 및 e는 각각 0 내지 4의 정수이며, 이때 b+m≤4, d+n≤4이고,
R1 내지 R8은 서로 동일하거나 상이하며, 각각 독립적으로 수소, 중수소, 할로겐, 시아노기, 니트로기, C1~C40의 알킬기, C2~C40의 알케닐기, C2~C40의 알키닐기, C3~C40의 시클로알킬기, 핵원자수 3 내지 40개의 헤테로시클로알킬기, C6~C60의 아릴기, 핵원자수 5 내지 60개의 헤테로아릴기, C1~C40의 알킬옥시기, C6~C60의 아릴옥시기, C1~C40의 알킬실릴기, C6~C60의 아릴실릴기, C1~C40의 알킬보론기, C6~C60의 아릴보론기, C6~C60의 아릴포스핀기, C6~C60의 아릴포스핀옥사이드기 및 C6~C60의 아릴아민기로 이루어진 군에서 선택되거나, 혹은 인접한 기와 결합하여 축합 고리를 형성할 수 있고, 이때 상기 R1 내지 R7이 각각 복수인 경우, 이들은 서로 동일하거나 상이하고,
다만, 상기 Ar1, A 및 B 중 적어도 하나는, 1개 이상의 중수소(D)로 치환된 C6~C60의 아릴기 또는 핵원자수 5 내지 60개의 헤테로아릴기를 포함하며,
상기 Ar1 내지 Ar3, 및 R1 내지 R8의 알킬기, 알케닐기, 알키닐기, 시클로알킬기, 헤테로시클로알킬기, 아릴기, 헤테로아릴기, 알킬옥시기, 아릴옥시기, 알킬실릴기, 아릴실릴기, 알킬보론기, 아릴보론기, 아릴포스핀기, 아릴포스핀옥사이드기 및 아릴아민기는 각각 독립적으로 중수소, 할로겐, 시아노기, 니트로기, C2~C40의 알케닐기, C2~C40의 알키닐기, C3~C40의 시클로알킬기, 핵원자수 3 내지 40개의 헤테로시클로알킬기, C1~C40의 알킬기, C6~C60의 아릴기, 핵원자수 5 내지 60개의 헤테로아릴기, C1~C40의 알킬옥시기, C6~C60의 아릴옥시기, C1~C40의 알킬실릴기, C6~C60의 아릴실릴기, C1~C40의 알킬보론기, C6~C60의 아릴보론기, C6~C60의 아릴포스핀기, C6~C60의 아릴포스핀옥사이드기 및 C6~C60의 아릴아민기로 이루어진 군에서 선택된 1종 이상의 치환기로 치환될 수 있으며, 이때 상기 치환기가 복수인 경우, 이들은 서로 동일하거나 상이할 수 있다.
또한, 본 발명은 양극, 음극 및 상기 양극과 음극 사이에 개재(介在)된 1층 이상의 유기물층을 포함하고, 상기 1층 이상의 유기물층 중 적어도 하나는 상기 화학식 1로 표시되는 화합물을 포함하는 것인 유기 전계 발광 소자를 제공한다.
여기서, 상기 화학식 1로 표시되는 화합물을 포함하는 유기물층 중 적어도 하나는 정공 주입층, 정공 수송층, 발광 보조층, 발광층, 전자 수송층 및 전자 주입층으로 이루어진 군에서 선택될 수 있으며, 발광층인 것이 바람직하다. 이때, 상기 화학식 1로 표시되는 화합물은 발광층의 인광 호스트로 사용될 수 있다.
본 발명의 화학식 1로 표시되는 화합물은 열적 안정성 및 발광 특성이 우수하기 때문에 유기 전계 발광 소자의 유기물층의 재료로 사용될 수 있다.
특히, 본 발명의 화학식 1로 표시되는 화합물을 인광 호스트 재료로 사용할 경우, 종래의 호스트 재료에 비해 낮은 구동전압, 높은 효율 및 긴 수명을 갖는 유기 전계 발광 소자를 제조할 수 있고, 나아가 성능 및 수명이 향상된 풀 칼라 디스플레이 패널도 제조할 수 있다.
이하, 본 발명을 상세히 설명한다.
<유기 화합물>
본 발명에 따른 신규 화합물은, 함질소 헤테로방향족환(예, azine)과, 이의 양측에 결합된 2개의 디벤조계 모이어티(예, 디벤조퓨란 또는 디벤조티오펜)를 갖는 코어(core)를 포함하며, 상기 2개의 디벤조계 모이어티 중 적어도 하나의 페닐기에 당 분야의 통상적인 전자공여성을 갖는 전자주게기(electron donating group, EDG)가 연결되는 구조를 기본 골격으로 한다. 다만, 상기 기본 골격 내에 적어도 1개 이상의 중수소(D)로 치환된 아릴기 및/또는 헤테로아릴기를 포함하는 것을 특징으로 한다.
구체적으로, 상기 화학식 1의 화합물은 정공(hole)과 전자(electron)에 대한 양쪽성의 물리화학적 성질을 가진 디벤조계 모이어티[예, dibenzofuran (DBF), dibenzothiophene (DBT)]와, 전자흡수성이 큰 전자끌게기(EWG)인 아진기의 일종인 함질소 헤테로방향족환(예, pyridine, pyrazine, triazine)을 포함하며, 상기 디벤조계 모이어티에 카바졸, 인돌로카바졸, 페녹싸진, 페녹싸이아진, 아릴아민 등의 전자주게기가 연결된다. 이러한 화학식 1의 화합물은 양극성(bipolar) 화합물이기 때문에, 정공과 전자의 재결합이 높아 정공 주입/수송 능력, 발광 효율, 구동 전압, 수명 특성, 내구성 등을 향상시킬 수 있다. 이에 따라, 상기 화학식 1의 화합물을 그린 인광재료로서 적용할 경우, 우수한 발광효율 특성을 가질 뿐만 아니라 저전압 구동이 가능하여 수명 상승 효과를 나타낼 수 있으며, 열적 안정성, 높은 유리전이온도 특성 및 균일한 모폴로지(morphology)를 가져 소자 특성이 우수하다. 그리고 유기물층의 결정화 억제에도 효과가 있으므로, 상기 화합물을 포함하는 유기 전계 발광 소자의 성능 및 수명 특성이 크게 향상될 수 있다.
특히, 본 발명에서는 전술한 분자 구조 내에 적어도 1개 이상의 중수소(D)가 치환된 아릴기 및/또는 헤테로아릴기를 필수적으로 포함한다. 이와 같이 복수 개의 중수소를 포함하는 화합물은, 중수소가 비포함된 동일 구조의 화합물에 비해 녹색의 색순도가 보다 극대화될 수 있으며, 약화된 탄소-수소 간의 분자 내 결합력을 더 증가시켜 수명 특성을 유의적으로 향상시킬 수 있다.
또한 본 발명에서는 아진기에 결합되는 2개의 디벤조퓨란 또는 디벤조티오펜 모이어티의 결합 위치에 따라, 화합물의 평면성 및 입체성이 구현될 수 있다. 이로 인해 전자의 전달 능력이 향상되어 이러한 화합물이 적용된 소자의 구동 및 효율 증가 효과를 기대할 수 있다. 더욱이, 상기 디벤조퓨란 모이어티 또는 디벤조티오펜 모이어티는 아릴기에 비해 전자 및 정공 안정성이 뛰어나므로, 이러한 화합물이 적용된 소자의 수명 특성을 보다 향상시킬 수 있다.
아울러, 본 발명에서는 카바졸기, 인돌로카바졸, 페녹싸진, 페녹싸이아진, 아릴아민기 등을 비롯한 다양한 형태의 전자주게기(EDG)가 도입될 수 있다. 이와 같이 다양한 EDG가 도입됨에 따라 화합물의 HOMO Level을 자유롭게 조절 가능하다. 일례로, 카바졸기는 다른 아민류 EDG에 비해 conjugation을 이루어 전기화학적으로 안정하며 deep HOMO level을 가진다. 또한 축합환 및/또는 융합환 형태의 다환 전자주게기(EDG)는 열적 안정성과 전기화학적 안정성이 매우 우수하고, 높은 유리전이온도(Tg)와 우수한 캐리어 수송 능력을 갖는다. 특히 전자 및 정공 수송 이동성이 매우 우수하여, 발광층 내에서의 캐리어들의 밸런스가 매우 우수한 특성들을 나타낼 수 있다.
한편 유기 전계 발광 소자의 인광 발광층에서, 호스트 물질은 호스트의 삼중항 에너지 갭이 도펀트보다 높아야 한다. 즉, 도펀트로부터 효과적으로 인광 발광을 제공하기 위해서는 호스트의 가장 낮은 여기 상태가 도펀트의 가장 낮은 방출 상태보다 에너지가 더 높아야 한다. 상기 화학식 1로 표시되는 화합물은 높은 삼중항 에너지를 가지며, 에너지 준위가 도펀트에 비해 높게 조절될 수 있어 호스트 물질로 사용될 수 있다. 이러한 화학식 1로 표시되는 화합물은 발광층에서 생성된 엑시톤이 발광층에 인접하는 전자 수송층 또는 정공 수송층으로 확산되는 것을 방지할 수 있다. 이로 인해, 발광층 내 발광에 기여하는 엑시톤의 수가 증가됨으로써 소자의 발광 효율이 개선될 수 있고, 소자의 내구성 및 안정성이 향상되어 소자의 수명 또한 효율적으로 증가될 수 있다.
전술한 사항들로 인해, 상기 화학식 1 로 표시되는 화합물은 유기 전계 발광 소자의 인광 특성을 향상시킴과 동시에, 전자 주입/수송 능력, 발광 효율, 구동 전압, 수명 특성 등을 향상시킬 수 있다. 따라서, 본 발명에 따른 화학식 1의 화합물은 유기 전계 발광 소자의 유기물층인 정공 주입층, 정공 수송층, 발광층, 전자 수송층 및 전자 주입층 중 어느 하나의 재료로 사용될 수 있으며, 바람직하게는 발광층 재료(청색, 녹색 및/또는 적색의 인광 호스트 재료)로 사용될 수 있다. 특히, 본 발명의 화학식 1로 표시되는 화합물을 청색, 녹색 및/또는 적색의 인광 호스트 재료, 바람직하게는 인광 그린 n-type 호스트 및/또는 인광 레드 호스트로 사용시, 종래의 발광 호스트 재료(예를 들어, CBP)에 비해 낮은 구동전압, 높은 효율 및 장수명을 갖는 유기 전계 발광 소자를 제조할 수 있고, 나아가 고효율 및 장수명 특성이 향상된 풀 칼라 디스플레이 패널도 제조할 수 있다.
구체적으로, 본 발명에 따른 화학식 1로 표시되는 화합물은, 아진기와 이의 양측에 연결된 2개의 디벤조계 모이어티(디벤조퓨란 또는 디벤조티오펜 모이어티)를 포함하는 코어(core)를 가지며, 상기 코어 내 어느 하나의 6원 고리에 적어도 하나의 전자주게기(EDG)가 결합되고, 적어도 1개 이상의 중수소(D)로 치환된 아릴기 및/또는 헤테로아릴기를 포함한다. 이때 상기 화합물 내 치환되는 중수소(D)의 개수는 특별히 제한되지 않으며, 일례로 1개 이상, 바람직하게는 4개 이상일 수 있다. 구체적으로 1개 내지 18개일 수 있다.
상기 화학식 1로 표시되는 화합물에서, X1 및 X2는 서로 동일하거나 상이하며, 각각 독립적으로 O 또는 S이다. 이때, O일 경우에는 디벤조퓨란 모이어티를 형성하며, S일 경우에는 디벤조티오펜 모이어티를 형성할 수 있다.
Y1 내지 Y16은 서로 동일하거나 상이하며, 각각 독립적으로 CR8 또는 N이다. 이때 CR8이 복수 개인 경우 복수의 R8은 서로 동일하거나 또는 상이할 수 있다. 예를 들면, Y1 내지 Y4 중 하나 이상이 N일 경우, 나머지는 CR8이고; Y13 내지 Y16 중 하나 이상이 N일 경우, 나머지는 CR8이고; Y1 내지 Y4 중 하나 이상이 N이며, Y9 내지 Y12 중 하나 이상이 N일 경우, 나머지는 CR8이고; Y5 내지 Y8 중 하나 이상이 N이며, Y13 내지 Y16 중 하나 이상이 N일 경우, 나머지는 CR8이고; Y1 내지 Y4 중 하나 이상이 N이며, Y13 내지 Y16 중 하나가 N일 경우, 나머지는 CR8이고; Y1 내지 Y16가 모두 CR8일 수 있다(하기 화학식 13 내지 17 참조).
여기서, R8은 수소, 중수소, 할로겐기, 시아노기, 니트로기, 아미노기, C1~C40의 알킬기, C2~C40의 알케닐기, C2~C40의 알키닐기, C3~C40의 시클로알킬기, 핵원자수 3 내지 40의 헤테로시클로알킬기, C6~C60의 아릴기, 핵원자수 5 내지 60의 헤테로아릴기, C1~C40의 알킬옥시기, C6~C60의 아릴옥시기, C1~C40의 알킬실릴기, C6~C60의 아릴실릴기, C1~C40의 알킬보론기, C6~C60의 아릴보론기, C1~C40의 포스핀기, C1~C40의 포스핀옥사이드기 및 C6~C60의 아릴아민기로 이루어진 군에서 선택될 수 있다. 구체적으로, R8은 수소, 중수소, 할로겐, 시아노기, 니트로기, C1~C40의 알킬기, C2~C40의 알케닐기, C2~C40의 알키닐기, C3~C40의 시클로알킬기, 및 C6~C60의 아릴기로 이루어진 군에서 선택되는 것이 바람직하다.
Z1 내지 Z3는 서로 동일하거나 상이하며, 각각 독립적으로 CR5 또는 N이고, 이들 중 적어도 하나는 N이다. 바람직한 일 실시예를 들면, Z1 내지 Z3는 중 1~3개가 N일 수 있으며, 예를 들면, 피리딘, 피리미딘, 트리아진일 수 있다. 보다 바람직하게는Z1 내지 Z3가 모두 N으로, 전자 끄는 특성이 큰 트리아진이다.
Ar1은 수소, 중수소, 할로겐, 시아노기, 니트로기, C1~C40의 알킬기, C2~C40의 알케닐기, C2~C40의 알키닐기, C3~C40의 시클로알킬기 및 C6~C60의 아릴기로 이루어진 군에서 선택될 수 있다. 구체적으로, Ar1은 C6~C60의 아릴기인 것이 바람직하며, 예컨대 페닐기, 비페닐기, 나프틸기, 트리페닐기, 안트릴기, 페난트릴기 등일 수 있다.
본 발명의 일 구체예를 들면, Ar1는 하기 구조식으로 표시된 치환체 군에서 선택될 수 있다. 이때 구체적으로 표시되지 않았으나, 하기 각 치환체에 포함된 임의의 수소는 적어도 1개 이상의 중수소(D)로 치환되어 있을 수 있다.
Figure PCTKR2019000615-appb-I000004
또한 전술한 구조식에 표시되지 않았으나, 상기 Ar1은 당 분야에 공지된 치환기(예컨대, R6의 정의부와 동일)가 적어도 하나 이상 치환될 수 있다.
본 발명의 일 실시예에 따라, Ar1이 적어도 1개의 중수소(D)로 치환된 C6~C60의 아릴기 치환체인 경우, 하기 구조식으로 표시되는 치환체 군 중 어느 하나로 보다 구체화될 수 있다. 그러나 이에 특별히 제한되는 것은 아니다.
Figure PCTKR2019000615-appb-I000005
또한, a 및 c는 각각 0 내지 3의 정수이고, b 및 d는 각각 0 내지 4의 정수이다. 이때, a 내지 d가 0일 경우에는 수소가 각각 R1 내지 R4로 치환되지 않은 것을 의미하고, a 내지 d가 각각 1 이상의 정수일 경우에는 하나 이상의 수소가 각각 R1 내지 R4로 치환되는 것을 의미한다.
본 발명의 화학식 1에서, R1 내지 R5는 서로 동일하거나 상이하며, 각각 독립적으로 수소, 중수소, 할로겐, 시아노기, 니트로기, C1~C40의 알킬기, C2~C40의 알케닐기, C2~C40의 알키닐기, C3~C40의 시클로알킬기, 핵원자수 3 내지 40개의 헤테로시클로알킬기, C6~C60의 아릴기, 핵원자수 5 내지 60개의 헤테로아릴기, C1~C40의 알킬옥시기, C6~C60의 아릴옥시기, C1~C40의 알킬실릴기, C6~C60의 아릴실릴기, C1~C40의 알킬보론기, C6~C60의 아릴보론기, C6~C60의 아릴포스핀기, C6~C60의 아릴포스핀옥사이드기 및 C6~C60의 아릴아민기로 이루어진 군에서 선택되거나, 혹은 인접한 기와 결합하여 축합 고리를 형성할 수 있다. 이때 R1 내지 R5가 각각 복수인 경우, 이들은 서로 동일하거나 상이하다. 구체적으로, 상기 R1 내지 R5는 서로 동일하거나 상이하며, 각각 독립적으로 수소, 중수소, 할로겐, 시아노기, 니트로기, C1~C40의 알킬기, C2~C40의 알케닐기, C2~C40의 알키닐기, C3~C40의 시클로알킬기 및 C6~C60의 아릴기로 이루어진 군에서 선택되는 것이 바람직하다.
m 및 n은 각각 0 내지 3의 정수이며, m+n≥1이다. 이때, m 또는 n이 0일 경우에는 수소가 A 또는 B로 치환되지 않은 것을 의미하고, m 및 n이 각각 1 이상의 정수일 경우에는 하나 이상의 수소가 각각 A 및 B로 치환되는 것을 의미한다. 바람직하게는, m 및 n은 각각 0 내지 2의 정수일 수 있다. 예를 들면, m=1, n=0; m=0, n=1; m=1, n=1; m=2, n=0; m=0, n=2일 수 있다. 더욱 바람직하게는, m=1, n=0 또는 m=1, n=1일 수 있다. 즉, 후술되는 A와 B 는 적어도 하나 이상 존재할 수 있다.
또한 상기 b+m, d+n은 각각 0 내지 4의 정수일 수 있다. 바람직하게는, b+m=1일 경우, d+n=0 또는 d+n=1일 수 있다.
본 발명의 화학식 1에서, A 및 B는 각각 전자를 제공하는 역할을 하는 전자공여성 치환체이다. 본 발명에서는, 당 분야의 공지된 통상의 전자주게기(electron donating group, EDG)가 제한 없이 사용될 수 있다. 일례로, 상기 A와 B는 각각 카바졸기, 축합환 또는 융합환 형태의 다환의 카바졸계 모이어티(예, 축합카바졸, 인돌로카바졸, 비스카바졸), 페녹사진, 페녹싸이아진, 아릴아민기 등일 수 있다. 구체적으로, A 및 B는 서로 동일하거나 상이하며, 각각 독립적으로 상기 화학식 2 내지 4로 표시되는 치환체 중 어느 하나일 수 있다.
상기 화학식 2 및 3으로 표시되는 치환체에서, X3는 단일결합이거나, 혹은 O, 또는 S로 이루어진 군에서 선택될 수 있다. 이때, X3이 단일결합일 경우에는 카바졸기, 축합환 및/또는 융합환 형태의 다환 카바졸계 모이어티(예, 축합 카바졸, 인돌로카바졸 등)이거나, 또는 2개의 카바졸이 연결된 형태의 비스카바졸(bis-carbazole)을 형성할 수 있다. 또한, X3이 O 또는 S일 경우에는 페녹사진 또는 페녹싸이아진을 형성할 수 있다.
e는 0 내지 4의 정수이고, f는 0 내지 3의 정수이다. 이때, e 및 f가 각각 0일 경우에는 수소가 각각 R6 및 R7으로 치환되지 않은 것을 의미하고, e 및 f 가 각각 1 이상의 정수일 경우에는 하나 이상의 수소가 각각 R6 및 R7으로 치환되는 것을 의미한다.
여기서, R6 및 R7는 서로 동일하거나 상이하며, 각각 독립적으로 수소, 중수소, 할로겐, 시아노기, 니트로기, C1~C40의 알킬기, C2~C40의 알케닐기, C2~C40의 알키닐기, C3~C40의 시클로알킬기, 핵원자수 3 내지 40개의 헤테로시클로알킬기, C6~C60의 아릴기, 핵원자수 5 내지 60개의 헤테로아릴기, C1~C40의 알킬옥시기, C6~C60의 아릴옥시기, C1~C40의 알킬실릴기, C6~C60의 아릴실릴기, C1~C40의 알킬보론기, C6~C60의 아릴보론기, C6~C60의 아릴포스핀기, C6~C60의 아릴포스핀옥사이드기 및 C6~C60의 아릴아민기로 이루어진 군에서 선택되거나, 혹은 인접한 기와 결합하여 축합 고리를 형성할 수 있다. 이때 R6 및 R7이 복수인 경우, 이들은 서로 동일하거나 상이할 수 있다. 바람직한 일 실시예를 들면, R6 및 R7는 각각 독립적으로 수소, 중수소, 할로겐, 시아노기, 니트로기, C1~C40의 알킬기, C2~C40의 알케닐기, C2~C40의 알키닐기, C3~C40의 시클로알킬기 및 C6~C60의 아릴기로 이루어진 군에서 선택되거나, 혹은 인접한 기와 결합하여 축합 고리를 형성할 수 있다. 이때, 인접한 기로는 하나의 R6와 다른 하나의 R6, 하나의 R6와 하나의 Ar2, 하나의 R7과 다른 하나의 R7, 하나의 R7과 하나의 Ar2일 수 있다.
상기 화학식 4로 표시되는 치환체에서, L은 당 분야에 알려진 통상적인 2가(divalent) 그룹의 연결기(Linker)일 수 있다. 구체적으로, L은 단일결합이거나, 혹은 C6~C40의 아릴렌기이다. 이때 L이 C6~C40의 아릴렌기일 경우, 페닐렌기, 비페닐렌기, 나프틸렌기, 트리페닐렌기 등일 수 있으며, 바람직하게는 페닐렌기, 비페닐렌기일 수 있다.
상기 화학식 2 내지 4로 표시되는 치환체에서, Ar2 및 Ar3은 서로 동일하거나 상이하며, 각각 독립적으로 C1~C40의 알킬기, C2~C40의 알케닐기, C2~C40의 알키닐기, C3~C40의 시클로알킬기, C6~C60의 아릴기, 핵원자수 5 내지 60개의 헤테로아릴기 및 C6~C60의 아릴아민기로 이루어진 군에서 선택되거나, 혹은 인접한 기와 결합하여 축합 고리를 형성할 수 있다. 구체적으로, 상기 Ar2 및 Ar3은 서로 동일하거나 상이하며, 각각 독립적으로 C6~C60의 아릴기, 핵원자수 5 내지 60개의 헤테로아릴기 및 C6~C60의 아릴아민기로 이루어진 군에서 선택되는 것이 바람직하다.
본 발명의 일 구체예를 들면, A 및 B는 서로 동일하거나 또는 상이하며, 각각 독립적으로 하기 구조식으로 표시되는 치환체 군 중에서 선택된 어느 하나일 수 있다. 이때 구체적으로 표시되지 않았으나, 하기 각 치환체에 포함된 임의의 수소는 적어도 1개 이상의 중수소(D)로 치환되어 있을 수 있다.
Figure PCTKR2019000615-appb-I000006
상기 화학식에서,
*은 상기 화학식 1에 결합되는 부위를 의미하고,
E는 O, S, NR11, CR12R13, 및 SiR14R15로 구성된 군에서 선택되며,
상기 R11 내지 R15는 서로 동일하거나 또는 상이하며, 각각 독립적으로 수소, 중수소, 할로겐, 시아노기, 니트로기, C1~C40의 알킬기, C6~C60의 아릴기 및 핵원자수 5 내지 60의 헤테로아릴기로 구성된 군에서 선택되고,
Ar11는 수소 또는 C6~C60의 아릴기이며,
Ar2 및 Ar3는 화학식 1에서 정의한 바와 같다. 또한 구체적으로 표시되지 않았으나, 전술한 구조식은 당 분야에 공지된 치환기(예컨대, R6의 정의부와 동일)가 적어도 하나 이상 치환될 수 있다.
본 발명의 일 실시예에 따라, A 및/또는 B 가 적어도 1개의 중수소(D)로 치환된 C6~C60의 아릴기 또는 헤테로아릴기 치환체인 경우, 하기 구조식으로 표시되는 치환체 군 중 어느 하나로 보다 구체화될 수 있다. 그러나, 이에 특별히 제한되는 것은 아니다.
Figure PCTKR2019000615-appb-I000007
상기 화학식에서,
E, Ar11, Ar2 및 Ar3는 각각 전술한 구조식에서 정의한 바와 같다.
전술한 화학식 1에서, L의 아릴렌기와, Ar1 내지 Ar3, R1 내지 R8의 알킬기, 알케닐기, 알키닐기, 시클로알킬기, 헤테로시클로알킬기, 아릴기, 헤테로아릴기, 알킬옥시기, 아릴옥시기, 알킬실릴기, 아릴실릴기, 알킬보론기, 아릴보론기, 아릴포스핀기, 아릴포스핀옥사이드기 및 아릴아민기는 각각 독립적으로 중수소, 할로겐, 시아노기, 니트로기, C2~C40의 알케닐기, C2~C40의 알키닐기, C3~C40의 시클로알킬기, 핵원자수 3 내지 40개의 헤테로시클로알킬기, C1~C40의 알킬기, C6~C60의 아릴기, 핵원자수 5 내지 60개의 헤테로아릴기, C1~C40의 알킬옥시기, C6~C60의 아릴옥시기, C1~C40의 알킬실릴기, C6~C60의 아릴실릴기, C1~C40의 알킬보론기, C6~C60의 아릴보론기, C6~C60의 아릴포스핀기, C6~C60의 아릴포스핀옥사이드기 및 C6~C60의 아릴아민기로 이루어진 군에서 선택된 1종 이상의 치환기로 치환될 수 있으며, 이때 상기 치환기가 복수인 경우, 이들은 서로 동일하거나 상이할 수 있다.
한편 본 발명에 따라 화학식 1로 표시되는 화합물은, EWG 특성을 갖는 함질소 헤테로환(예, Z1~Z3 함유 환)에 결합되는 2개의 디벤조계 모이어티(예, X1 함유환 및 X2 함유환)의 탄소 결합위치에 따라 서로 대칭(Symmetry) 또는 비대칭(Asymmetry) 구조를 이루게 된다. 구체적으로, Z1 내지 Z3 함유 환에 연결되는 상기 X1 함유 환의 Y1~Y4 중 하나의 결합위치와, 상기 X2 함유 환의 Y9~Y12 중 하나의 결합위치가 서로 대칭 또는 비대칭 구조를 나타낸다.
본 발명의 일 실시예에 따라 비대칭 구조를 설명하면, 아진기(예, Z1~Z3 함유 환)에 결합되는 X1 함유 환의 탄소위치가 Y1 일 경우, 상기 아진기에 결합되는 X2 함유 환의 탄소위치는 Y9을 제외한 Y10 내지 Y12 중 어느 하나일 수 있다(하기 화학식 5 참조). 이와 같이 함질소 헤테로환에 각각 연결되는 2개의 디벤조계 모이어티의 비대칭 구조를 보다 구체화하면, 하기 화학식 5 내지 화학식 8 중 어느 하나로 표시될 수 있다.
[화학식 5]
Figure PCTKR2019000615-appb-I000008
[화학식 6]
Figure PCTKR2019000615-appb-I000009
[화학식 7]
Figure PCTKR2019000615-appb-I000010
[화학식 8]
Figure PCTKR2019000615-appb-I000011
상기 화학식 5 내지 8에서,
상기 화학식 5의 Z1 내지 Z3 함유환은 Y10 내지 Y12 중 어느 하나와 결합되며(단, Z1 내지 Z3 함유환이 Y9과 결합되는 것은 제외됨),
상기 화학식 6의 Z1 내지 Z3 함유환은 Y9, Y11 내지 Y12 중 어느 하나와 결합되며(단, Z1 내지 Z3 함유환이 Y10과 결합되는 것은 제외됨),
상기 화학식 7의 Z1 내지 Z3 함유환은 Y9, Y10 및 Y12 중 어느 하나와 결합되며(단, Z1 내지 Z3 함유환이 Y11과 결합되는 것은 제외됨),
상기 화학식 8의 Z1 내지 Z3 함유환은 Y9 내지 Y11 중 어느 하나와 결합되며(단, Z1 내지 Z3 함유환이 Y12와 결합되는 것은 제외됨).
X1, X2, Y1 내지 Y16, Z1 내지 Z3, Ar1, m, n, A, B, a 내지 d, R1 내지 R4는 각각 상기 화학식 1에서 정의한 바와 같다.
전술한 비대칭 구조의 화합물의 경우, 대칭 구조를 갖는 화합물에 비해 분자간 거리의 조절이 상대적으로 용이하다. 즉, 1,2,3,4 번 위치에 결합이 가능한 디벤조계 모이어티의 특성상 1,4번 결합에서의 트리아진의 수소와 디벤조계 모이어티 간의 구조적 장애(Steric hindrance)가 발생하여 분자간 거리가 멀어지게 되며, 이로 인해 T1 값 또한 높아지게 된다. 전술한 특성을 이용할 경우 화학 구조의 비대칭성(Asymmetry)을 통해 유기물층 재료의 HOMO-LUMO 및 T1, S1 값의 튜닝이 가능하다.
본 발명의 일 구체예를 들면, 상기 화학식 5로 표시되는 화합물은 각각 화학식 5a 내지 화학식 5c 중 어느 하나로 보다 구체화될 수 있다.
[화학식 5a]
Figure PCTKR2019000615-appb-I000012
[화학식 5b]
Figure PCTKR2019000615-appb-I000013
[화학식 5c]
Figure PCTKR2019000615-appb-I000014
본 발명의 다른 일 구체예를 들면, 상기 화학식 6으로 표시되는 화합물은 각각 화학식 6a 내지 화학식 6c 중 어느 하나로 보다 구체화될 수 있다.
[화학식 6a]
Figure PCTKR2019000615-appb-I000015
[화학식 6b]
Figure PCTKR2019000615-appb-I000016
[화학식 6c]
Figure PCTKR2019000615-appb-I000017
본 발명의 또 다른 일 구체예를 들면, 상기 화학식 7로 표시되는 화합물은 각각 화학식 7a 내지 화학식 7c 중 어느 하나로 보다 구체화될 수 있다.
[화학식 7a]
Figure PCTKR2019000615-appb-I000018
[화학식 7b]
Figure PCTKR2019000615-appb-I000019
[화학식 7c]
Figure PCTKR2019000615-appb-I000020
본 발명의 또 다른 일 구체예를 들면, 상기 화학식 8로 표시되는 화합물은 각각 화학식 8a 내지 화학식 8c 중 어느 하나로 보다 구체화될 수 있다.
[화학식 8a]
Figure PCTKR2019000615-appb-I000021
[화학식 8b]
Figure PCTKR2019000615-appb-I000022
[화학식 8c]
Figure PCTKR2019000615-appb-I000023
상기 화학식 5a 내지 8c에서,
X1, X2, Y1 내지 Y16, Z1 내지 Z3, Ar1, m, n, A, B, a 내지 d, R1 내지 R4는 각각 제1항에서 정의한 바와 같다.
또한 본 발명의 다른 일 실시예에 따라 대칭 구조를 설명하면, 아진기(예, Z1~Z3 함유 환)에 결합되는 X1 함유 환의 탄소위치가 Y1 일 경우, 상기 아진기에 결합되는 X2 함유 환의 탄소위치는 Y9가 될 수 있다(하기 화학식 9 참조). 이와 같이 함질소 헤테로환에 각각 연결되는 2개의 디벤조계 모이어티의 대칭 구조를 보다 구체화하면, 하기 화학식 9 내지 화학식 12 중 어느 하나로 표시될 수 있다.
[화학식 9]
Figure PCTKR2019000615-appb-I000024
[화학식 10]
Figure PCTKR2019000615-appb-I000025
[화학식 11]
Figure PCTKR2019000615-appb-I000026
[화학식 12]
Figure PCTKR2019000615-appb-I000027
상기 화학식 9 내지 12에서,
X1, X2, Y1 내지 Y16, Z1 내지 Z3, Ar1, m, n, A, B, a 내지 d, R1 내지 R4는 각각 상기 화학식 1에서 정의한 바와 같다.
전술한 대칭 구조를 갖는 화합물에서, 대칭 정도는 HOMO-LUMO 중첩 (overlap)에 영향을 주게 된다. 이는 T1, S1 값에 영향을 줄 수 있고 이러한 차이가 커지면 TTA, singlet fission에도 영향을 주므로 적절히 조절해 주는 것이 중요하다.
한편 상기 화학식 1로 표시되는 화합물에서, 디벤조계 모이어티, 일례로 디벤조퓨란 또는 디벤조티오펜 모이어티를 보다 구체화하면, 하기 화학식 13 내지 17 중 어느 하나로 표시될 수 있다.
[화학식 13]
Figure PCTKR2019000615-appb-I000028
[화학식 14]
Figure PCTKR2019000615-appb-I000029
[화학식 15]
Figure PCTKR2019000615-appb-I000030
[화학식 16]
Figure PCTKR2019000615-appb-I000031
[화학식 17]
Figure PCTKR2019000615-appb-I000032
상기 화학식 13 내지 17에서,
X1, X2, Z1 내지 Z3, Ar1, n, A, B는 각각 상기 화학식 1에서 정의한 바와 같다.
상기 화학식 5 및 화학식 17 중 어느 하나로 표시되는 화합물의 보다 구체적인 일례를 들면, X1 및 X2는 각각 독립적으로 O 또는 S이고, Z1 내지 Z3는 각각 독립적으로 CR5 또는 N이되, 이들 모두가 N이며, Ar1은 C6~C60의 아릴기이다.
또한 A와 B 중 적어도 하나는, 상기 예시된 A와 B의 치환체 군 중에서 선택될 수 있으며, 다만, Ar1, A 및 B중 적어도 하나는 1개 이상의 중수소(D)로 치환된 아릴기 및/또는 헤테로아릴기를 포함한다.
이상에서 설명한 본 발명에 따른 화학식 1로 표시되는 화합물은 하기 예시되는 화합물 1 내지 188 중 어느 하나로 표시되는 화합물로 보다 구체화될 수 있다. 그러나, 본 발명의 화학식 1로 표시되는 화합물이 하기 예시된 것들에 의해 한정되는 것은 아니다.
Figure PCTKR2019000615-appb-I000033
Figure PCTKR2019000615-appb-I000034
Figure PCTKR2019000615-appb-I000035
Figure PCTKR2019000615-appb-I000036
Figure PCTKR2019000615-appb-I000037
Figure PCTKR2019000615-appb-I000038
Figure PCTKR2019000615-appb-I000039
Figure PCTKR2019000615-appb-I000040
Figure PCTKR2019000615-appb-I000041
본 발명에서 "알킬"은 탄소수 1 내지 40개의 직쇄 또는 측쇄의 포화 탄화수소에서 유래되는 1가의 치환기를 의미한다. 이러한 알킬의 예로는 메틸, 에틸, 프로필, 이소부틸, sec-부틸, 펜틸, iso-아밀, 헥실 등을 들 수 있으나, 이에 한정되지는 않는다.
본 발명에서 "알케닐(alkenyl)"은 탄소-탄소 이중 결합을 1개 이상 가진 탄소수 2 내지 40개의 직쇄 또는 측쇄의 불포화 탄화수소에서 유래되는 1가의 치환기를 의미한다. 이러한 알케닐의 예로는 비닐(vinyl), 알릴(allyl), 이소프로펜일(isopropenyl), 2-부텐일(2-butenyl) 등을 들 수 있으나, 이에 한정되지는 않는다.
본 발명에서 "알키닐(alkynyl)"은 탄소-탄소 삼중 결합을 1개 이상 가진 탄소수 2 내지 40개의 직쇄 또는 측쇄의 불포화 탄화수소에서 유래되는 1가의 치환기를 의미한다. 이러한 알키닐의 예로는 에티닐(ethynyl), 2-프로파닐(2-propynyl) 등을 들 수 있으나, 이에 한정되지는 않는다.
본 발명에서 "시클로알킬"은 탄소수 3 내지 40개의 모노사이클릭 또는 폴리사이클릭 비-방향족 탄화수소로부터 유래된 1가의 치환기를 의미한다. 이러한 사이클로알킬의 예로는 사이클로프로필, 사이클로펜틸, 사이클로헥실, 노르보닐(norbornyl), 아다만틴(adamantine) 등을 들 수 있으나, 이에 한정되지는 않는다.
본 발명에서 "헤테로시클로알킬"은 핵원자수 3 내지 40개의 비-방향족 탄화수소로부터 유래된 1가의 치환기를 의미하며, 고리 중 하나 이상의 탄소, 바람직하게는 1 내지 3개의 탄소가 N, O, S 또는 Se와 같은 헤테로 원자로 치환된다. 이러한 헤테로시클로알킬의 예로는 모르폴린, 피페라진 등을 들 수 있으나, 이에 한정되지는 않는다.
본 발명에서 "아릴"은 단독 고리 또는 2 이상의 고리가 조합된 탄소수 6 내지 60개의 방향족 탄화수소로부터 유래된 1가의 치환기를 의미한다. 또한, 2 이상의 고리가 서로 단순 부착(pendant)되거나 축합된 형태도 포함될 수 있다. 이러한 아릴의 예로는 페닐, 나프틸, 페난트릴, 안트릴 등을 들 수 있으나, 이에 한정되지는 않는다.
본 발명에서 "헤테로아릴"은 핵원자수 5 내지 60개의 모노헤테로사이클릭 또는 폴리헤테로사이클릭 방향족 탄화수소로부터 유래된 1가의 치환기를 의미한다. 이때, 고리 중 하나 이상의 탄소, 바람직하게는 1 내지 3개의 탄소가 N, O, S 또는 Se와 같은 헤테로원자로 치환된다. 또한, 2 이상의 고리가 서로 단순 부착(pendant)되거나 축합된 형태도 포함될 수 있고, 나아가 아릴기와의 축합된 형태도 포함될 수 있다. 이러한 헤테로아릴의 예로는 피리딜, 피라지닐, 피리미디닐, 피리다지닐, 트리아지닐과 같은 6-원 모노사이클릭 고리, 페녹사티에닐(phenoxathienyl), 인돌리지닐(indolizinyl), 인돌릴(indolyl), 퓨리닐(purinyl), 퀴놀릴(quinolyl), 벤조티아졸(benzothiazole), 카바졸릴(carbazolyl)과 같은 폴리사이클릭 고리 및 2-퓨라닐, N-이미다졸릴, 2-이속사졸릴, 2-피리디닐, 2-피리미디닐 등을 들 수 있으나, 이에 한정되지는 않는다.
본 발명에서 "알킬옥시"는 R'O-로 표시되는 1가의 치환기로, 상기 R'는 탄소수 1 내지 40개의 알킬을 의미한다. 이러한 알킬옥시는 직쇄(linear), 측쇄(branched) 또는 사이클릭(cyclic) 구조를 포함할 수 있다. 이러한 알킬옥시의 예로는 메톡시, 에톡시, n-프로폭시, 1-프로폭시, t-부톡시, n-부톡시, 펜톡시 등을 들 수 있으나, 이에 한정되지는 않는다.
본 발명에서 "아릴옥시"는 RO-로 표시되는 1가의 치환기로, 상기 R은 탄소수 6 내지 60개의 아릴을 의미한다. 이러한 아릴옥시의 예로는 페닐옥시, 나프틸옥시, 디페닐옥시 등을 들 수 있으나, 이에 한정되지는 않는다.
본 발명에서 "알킬실릴"은 탄소수 1 내지 40개의 알킬로 치환된 실릴이고, "아릴실릴"은 탄소수 6 내지 60개의 아릴로 치환된 실릴을 의미한다.
본 발명에서 "알킬보론"은 탄소수 1 내지 40개의 알킬로 치환된 보론이고, "아릴보론"은 탄소수 6 내지 60개의 아릴로 치환된 보론을 의미한다.
본 발명에서 "아릴포스핀"은 탄소수 6 내지 60개의 아릴로 치환된 포스핀을 의미하고, "아릴포스핀옥사이드기"는 탄소수 6 내지 60개의 아릴로 치환된 포스핀이 O를 포함하는 것을 의미한다.
본 발명에서 "축합 고리"는 축합 지방족 고리, 축합 방향족 고리, 축합 헤테로지방족 고리, 축합 헤테로방향족 고리 또는 이들의 조합된 형태를 의미한다.
본 발명에서 "아릴아민"은 탄소수 6 내지 60개의 아릴로 치환된 아민을 의미한다.
이와 같은 본 발명의 화학식 1로 표시되는 화합물은 당 분야에 공지된 방법에 따라 제한 없이 제조될 수 있다. 일례로, 하기 실시예의 합성과정을 참고하여 다양하게 합성할 수 있다.
<유기 전계 발광 소자>
본 발명은 상기 화학식 1로 표시되는 화합물을 포함하는 유기 전계 발광 소자를 제공한다.
보다 구체적으로, 본 발명에 따른 유기 전계 발광 소자는 양극(anode), 음극(cathode) 및 상기 양극과 음극 사이에 개재(介在)된 1층 이상의 유기물층을 포함하며, 상기 1층 이상의 유기물층 중 적어도 하나는 상기 화학식 1로 표시되는 화합물을 포함한다. 이때, 상기 화합물은 단독으로 사용되거나, 또는 2 이상이 혼합되어 사용될 수 있다.
상기 1층 이상의 유기물층은 정공 주입층, 정공 수송층, 발광 보조층, 발광층, 전자 수송층 및 전자 주입층 중 어느 하나 이상일 수 있고, 이 중에서 적어도 하나의 유기물층은 상기 화학식 1로 표시되는 화합물을 포함할 수 있다. 구체적으로, 상기 화학식 1의 화합물을 포함하는 유기물층은 발광층인 것이 바람직하다.
본 발명의 유기 전계 발광 소자의 발광층은 호스트 재료(바람직하게는, 인광 호스트 재료)를 포함할 수 있다. 또한, 본 발명의 유기 전계 발광 소자의 발광층은 상기 화학식 1의 화합물 이외의 화합물을 호스트로 포함할 수 있다.
이러한 본 발명의 유기 전계 발광 소자의 구조는 특별히 한정되지 않으나, 비제한적인 예로 기판, 양극, 정공 주입층, 정공 수송층, 발광 보조층, 발광층, 전자 수송층, 전자 주입층 및 음극이 순차적으로 적층된 구조일 수 있다. 이때, 상기 정공 주입층, 정공 수송층, 발광 보조층, 발광층, 전자 수송층 및 전자 주입층 중 하나 이상은 상기 화학식 1로 표시되는 화합물을 포함할 수 있고, 바람직하게는 발광층이 상기 화학식 1로 표시되는 화합물을 포함할 수 있다. 또한, 본 발명의 유기 전계 발광 소자의 구조는 전극과 유기물층 계면에 절연층 또는 접착층이 삽입된 구조일 수 있다.
한편, 본 발명의 유기 전계 발광 소자는 상기 유기물층 중 1층 이상이 상기 화학식 1로 표시되는 화합물을 포함하는 것을 제외하고는, 당업계에 공지된 재료 및 방법으로 유기물층 및 전극을 형성하여 제조할 수 있다.
상기 유기물층은 진공 증착법이나 용액 도포법에 의하여 형성될 수 있다. 상기 용액 도포법의 예로는 스핀 코팅, 딥코팅, 닥터 블레이딩, 잉크젯 프린팅 또는 열 전사법 등이 있으나, 이에 한정되지는 않는다.
본 발명의 유기 전계 발광 소자 제조시 사용되는 기판은 특별히 한정되지 않으나, 실리콘 웨이퍼, 석영, 유리판, 금속판, 플라스틱 필름 및 시트 등을 사용할 수 있다.
또한, 양극 물질로는 바나듐, 크롬, 구리, 아연, 금과 같은 금속 또는 이들의 합금; 아연산화물, 인듐산화물, 인듐 주석 산화물(ITO), 인듐 아연 산화물(IZO)과 같은 금속 산화물; ZnO:Al 또는 SnO2:Sb와 같은 금속과 산화물의 조합; 폴리티오펜, 폴리(3-메틸티오펜), 폴리[3,4-(에틸렌-1,2-디옥시)티오펜](PEDT), 폴리피롤 또는 폴리아닐린과 같은 전도성 고분자; 및 카본블랙 등을 들 수 있으나, 이에 한정되지는 않는다.
또한, 음극 물질로는 마그네슘, 칼슘, 나트륨, 칼륨, 타이타늄, 인듐, 이트륨, 리튬, 가돌리늄, 알루미늄, 은, 주석, 또는 납과 같은 금속 또는 이들의 합금; 및 LiF/Al 또는 LiO2/Al과 같은 다층 구조 물질 등을 들 수 있으나, 이에 한정되지는 않는다.
또한, 정공 주입층, 정공 수송층, 전자 주입층 및 전자 수송층은 특별히 한정되는 것은 아니며, 당 업계에 알려진 통상의 물질을 사용할 수 있다.
이하, 본 발명을 실시예를 통하여 상세히 설명하면 다음과 같다. 단, 하기 실시예는 본 발명을 예시하는 것일 뿐, 본 발명이 하기 실시예에 의해 한정되는 것은 아니다.
[준비예 1] Core-1 의 합성
<단계 1> Core-1-1 의 합성
Figure PCTKR2019000615-appb-I000042
Carbzole (202 g, 1,000 mmol)과 D5-Bromobenzene (162 g, 1,000 mmol) 및 Pd2(dba)3 (37 g, 40 mmol), P(t-Bu)3 (16 g, 80 mmol), sodium tert-butoxide (288 g, 3,000 mmol) 을 3 L toluene 에 넣고 110℃에서 12시간 동안 교반하였다. 반응 종결 후 Ethyl acetate로 추출하여 유기층을 분리하여 MgSO4를 사용하여 물을 제거하였다. 물이 제거된 유기층에서 용매를 제거한 후 Toluene에 녹여 Silica filter 하였다. 그리고 유기층을 농축한 후 Toluene으로 재결정 하여 목적 화합물인 Core-1-1 (269 g, 수율 95 %)을 얻었다.
<단계 2> Core-1 의 합성
Figure PCTKR2019000615-appb-I000043
Core-1-1 (269 g, 951 mmol)와 4,6-bis(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)dibenzo[b,d]furan (400 g, 951 mmol) 및 Pd(PPh3)4 (44 g, 38 mmol), K2CO3 (394 g, 2,853 mmol) 를 3 L THF와 1.5 L H2O 에 넣고 75℃에서 8시간 동안 교반하였다. 반응 종결 후 Ethyl acetate로 추출하여 유기층을 분리하여 MgSO4를 사용하여 물을 제거하였다. 물이 제거된 유기층에서 용매를 제거한 후 컬럼크로마토그래피로 정제하여 Core-1 (308 g, 수율 60 %)을 얻었다.
[준비예 2] Core-2 의 합성
<단계 1> Core-2-1 의 합성
Figure PCTKR2019000615-appb-I000044
D5-Phenylboronic acid (123 g, 1,000 mmol)와 4-chloro-2-iodo-1-nitrobenzene (283 g, 1,000 mmol) 및 Pd(PPh3)4 (46 g, 40 mmol), NaOH (120 g, 3,000 mmol) 를 3 L THF와 1.5 L H2O 에 넣고 75℃에서 8시간 동안 교반하였다. 반응 종결 후 Ethyl acetate로 추출하여 유기층을 분리하여 MgSO4를 사용하여 물을 제거하였다. 물이 제거된 유기층에서 용매를 제거한 후 컬럼크로마토그래피로 정제하여 Core-2-1 (225 g, 수율 94 %)을 얻었다.
<단계 2> Core-2-2 의 합성
Figure PCTKR2019000615-appb-I000045
Core-2-1 (225 g, 941 mmol)와 PPh3 (617 g, 2,353 mmol) 를 RBF에 넣고 150℃에서 8시간 동안 교반하였다. 반응 종결 후 MC로 녹여 컬럼크로마토그래피로 정제하여 Core-2-1 (225 g, 수율 94 %)을 얻었다.
<단계 3> Core-2-3 의 합성
Figure PCTKR2019000615-appb-I000046
Core-2-2 (225 g, 1,093 mmol)과 D5-Bromobenzene (177 g, 1,093 mmol) 및 Pd2(dba)3 (40 g, 43 mmol), P(t-Bu)3 (18 g, 87 mmol), sodium tert-butoxide (315 g, 3,279 mmol) 을 3 L toluene 에 넣고 110℃에서 12시간 동안 교반하였다. 반응 종결 후 Ethyl acetate로 추출하여 유기층을 분리하여 MgSO4를 사용하여 물을 제거하였다. 물이 제거된 유기층에서 용매를 제거한 후 Toluene에 녹여 Silica filter 하였다. 그리고 유기층을 농축한 후 Toluene으로 재결정 하여 목적 화합물인 Core-2-3 (266 g, 수율 85 %)을 얻었다.
<단계 4> Core-2 의 합성
Figure PCTKR2019000615-appb-I000047
Core-2-3 (266 g, 927 mmol)와 4,6-bis(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)dibenzo[b,d]furan (390 g, 927 mmol) 및 Pd(PPh3)4 (43 g, 37 mmol), K2CO3 (384 g, 2,781 mmol) 를 3 L THF와 1.5 L H2O 에 넣고 75℃에서 8시간 동안 교반하였다. 반응 종결 후 Ethyl acetate로 추출하여 유기층을 분리하여 MgSO4를 사용하여 물을 제거하였다. 물이 제거된 유기층에서 용매를 제거한 후 컬럼크로마토그래피로 정제하여 Core-2 (278 g, 수율 55 %)을 얻었다.
[준비예 3] Core-3 의 합성
<단계 1> Core-3 의 합성
Figure PCTKR2019000615-appb-I000048
3-Chloro-9-phenyl-9H-carbazole (264 g, 951 mmol)와 4,6-bis(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)dibenzo[b,d]furan (400 g, 951 mmol) 및 Pd(PPh3)4 (44 g, 38 mmol), K2CO3 (394 g, 2,853 mmol) 를 3 L THF와 1.5 L H2O 에 넣고 75℃에서 8시간 동안 교반하였다. 반응 종결 후 Ethyl acetate로 추출하여 유기층을 분리하여 MgSO4를 사용하여 물을 제거하였다. 물이 제거된 유기층에서 용매를 제거한 후 컬럼크로마토그래피로 정제하여 Core-3 (331 g, 수율 65 %)을 얻었다.
[준비예 4] Core-4 의 합성
<단계 1> Core-4-1 의 합성
Figure PCTKR2019000615-appb-I000049
Core-1-1 (248 g, 877 mmol) 및 Pd(dppf)Cl2 (25.7 g, 35 mmol), Pinacol diboron (244 g, 964 mmol), KOAc (258 g, 2,629 mmol) 를 2,000 ml DMF 에 넣고 110℃에서 8시간 동안 교반하였다. 반응 종결 후 H2O를 첨가하였고, Ethyl acetate로 추출하여 유기층을 분리하여 MgSO4를 사용하여 물을 제거하였다. 물이 제거된 유기층에서 용매를 제거한 후 컬럼크로마토그래피로 정제하여 Core-4-1 (250 g, 수율 76 %)을 얻었다
<단계 2> Core-4-2 의 합성
Figure PCTKR2019000615-appb-I000050
Core-4-1 (250 g, 668 mmol)와 2-bromo-6-chlorodibenzo[b,d]furan (188 g, 668 mmol) 및 Pd(PPh3)4 (31 g, 27 mmol), K2CO3 (277 g, 2,004 mmol) 를 3 L THF와 1.5 L H2O 에 넣고 75℃에서 8시간 동안 교반하였다. 반응 종결 후 Ethyl acetate로 추출하여 유기층을 분리하여 MgSO4를 사용하여 물을 제거하였다. 물이 제거된 유기층에서 용매를 제거한 후 컬럼크로마토그래피로 정제하여 Core-4-2 (255 g, 수율 85 %)을 얻었다.
<단계 3> Core-4 의 합성
Figure PCTKR2019000615-appb-I000051
Core-4-2 (255 g, 568 mmol) 및 Pd(dppf)Cl2 (21 g, 23 mmol), Pinacol diboron (173 g, 682 mmol), KOAc (167 g, 1,704 mmol) 를 2,000 ml DMF 에 넣고 110℃에서 8시간 동안 교반하였다. 반응 종결 후 H2O를 첨가하였고, Ethyl acetate로 추출하여 유기층을 분리하여 MgSO4를 사용하여 물을 제거하였다. 물이 제거된 유기층에서 용매를 제거한 후 컬럼크로마토그래피로 정제하여 Core-4 (221 g, 수율 72 %)을 얻었다
[준비예 5] Core-5 의 합성
<단계 1> Core-5 의 합성
Figure PCTKR2019000615-appb-I000052
Core-1-1 (57 g, 200 mmol)와 4,6-bis(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)dibenzo[b,d]thiophene (87 g, 200 mmol) 및 Pd(PPh3)4 (9 g, 8 mmol), K2CO3 (83 g, 600 mmol) 를 1 L THF와 0.5 L H2O 에 넣고 75℃에서 8시간 동안 교반하였다. 반응 종결 후 Ethyl acetate로 추출하여 유기층을 분리하여 MgSO4를 사용하여 물을 제거하였다. 물이 제거된 유기층에서 용매를 제거한 후 컬럼크로마토그래피로 정제하여 Core-5 (57 g, 수율 50 %)을 얻었다
[준비예 6] Core-6 의 합성
<단계 1> Core-6 의 합성
Figure PCTKR2019000615-appb-I000053
9-(6-bromodibenzo[b,d]furan-4-yl)-9H-carbazole (41 g, 100 mmol) 및 Pd(dppf)Cl2 (3.7 g, 4 mmol), Pinacol diboron (30 g, 120 mmol), KOAc (29 g, 300 mmol) 를 500 ml DMF 에 넣고 110℃에서 8시간 동안 교반하였다. 반응 종결 후 H2O를 첨가하였고, Ethyl acetate로 추출하여 유기층을 분리하여 MgSO4를 사용하여 물을 제거하였다. 물이 제거된 유기층에서 용매를 제거한 후 컬럼크로마토그래피로 정제하여 Core-6 (32 g, 수율 70 %)을 얻었다
[합성예 1] P-1 의 합성
Figure PCTKR2019000615-appb-I000054
Core-1 (5.4 g, 10 mmol), 2-chloro-4-(dibenzo[b,d]furan-1-yl)-6-phenyl-1,3,5-triazine (3.6 g, 10 mmol) 및 Pd(PPh3)4 (0.5 g, 0.4 mmol), NaOH (1.2 g, 30 mmol) 를 50 ml THF와 20 ml H2O 에 넣고 75℃에서 8시간 동안 교반하였다. 반응 종결 후 생성된 고체는 필터 후 Toluene으로 녹여 Silica 필터하였다. 그리고 Toluene을 농축시킨 후 Toluene으로 재결정하여 P-1 (6.5 g, 수율 87 %)를 얻었다
[LCMS] : 735
[합성예 2] P-2 의 합성
Figure PCTKR2019000615-appb-I000055
Core-1 (5.4 g, 10 mmol), 2-chloro-4-(dibenzo[b,d]furan-3-yl)-6-phenyl-1,3,5-triazine (3.6 g, 10 mmol) 및 Pd(PPh3)4 (0.5 g, 0.4 mmol), NaOH (1.2 g, 30 mmol) 를 50 ml THF와 20 ml H2O 에 넣고 75℃에서 8시간 동안 교반하였다. 반응 종결 후 생성된 고체는 필터 후 Toluene으로 녹여 Silica 필터하였다. 그리고 Toluene을 농축시킨 후 Toluene으로 재결정하여 P-2 (6.4 g, 수율 85 %)를 얻었다
[LCMS] : 735
[합성예 3] P-8 의 합성
Figure PCTKR2019000615-appb-I000056
Core-1 (5.4 g, 10 mmol), 2-chloro-4-(dibenzo[b,d]furan-4-yl)-6-phenyl-1,3,5-triazine (3.6 g, 10 mmol) 및 Pd(PPh3)4 (0.5 g, 0.4 mmol), NaOH (1.2 g, 30 mmol) 를 50 ml THF와 20 ml H2O 에 넣고 75℃에서 8시간 동안 교반하였다. 반응 종결 후 생성된 고체는 필터 후 Toluene으로 녹여 Silica 필터하였다. 그리고 Toluene을 농축시킨 후 Toluene으로 재결정하여 P-8 (6.3 g, 수율 84 %)를 얻었다
[LCMS] : 735
[합성예 4] P-9 의 합성
Figure PCTKR2019000615-appb-I000057
Core-2 (5.4 g, 10 mmol), 2-chloro-4-(dibenzo[b,d]furan-4-yl)-6-phenyl-1,3,5-triazine (3.6 g, 10 mmol) 및 Pd(PPh3)4 (0.5 g, 0.4 mmol), NaOH (1.2 g, 30 mmol) 를 50 ml THF와 20 ml H2O 에 넣고 75℃에서 8시간 동안 교반하였다. 반응 종결 후 생성된 고체는 필터 후 Toluene으로 녹여 Silica 필터하였다. 그리고 Toluene을 농축시킨 후 Toluene으로 재결정하여 P-9 (5 g, 수율 68 %)를 얻었다
[LCMS] : 739
[합성예 5] P-11 의 합성
Figure PCTKR2019000615-appb-I000058
Core-3 (5.4 g, 10 mmol), 2-chloro-4-(dibenzo[b,d]furan-1-yl)-6-D5-phenyl-1,3,5-triazine (3.6 g, 10 mmol) 및 Pd(PPh3)4 (0.5 g, 0.4 mmol), NaOH (1.2 g, 30 mmol) 를 50 ml THF와 20 ml H2O 에 넣고 75℃에서 8시간 동안 교반하였다. 반응 종결 후 생성된 고체는 필터 후 Toluene으로 녹여 Silica 필터하였다. 그리고 Toluene을 농축시킨 후 Toluene으로 재결정하여 P-11 (6 g, 수율 80 %)를 얻었다.
[LCMS] : 735
[합성예 6] P-25 의 합성
Figure PCTKR2019000615-appb-I000059
Core-4 (5.4 g, 10 mmol), 2-chloro-4-(dibenzo[b,d]furan-1-yl)-6-phenyl-1,3,5-triazine (3.6 g, 10 mmol) 및 Pd(PPh3)4 (0.5 g, 0.4 mmol), NaOH (1.2 g, 30 mmol) 를 50 ml THF와 20 ml H2O 에 넣고 75℃에서 8시간 동안 교반하였다. 반응 종결 후 생성된 고체는 필터 후 Toluene으로 녹여 Silica 필터하였다. 그리고 Toluene을 농축시킨 후 Toluene으로 재결정하여 P-25 (6.5 g, 수율 88 %)를 얻었다
[LCMS] : 735
[합성예 7] P-26 의 합성
Figure PCTKR2019000615-appb-I000060
Core-4 (5.4 g, 10 mmol), 2-chloro-4-(dibenzo[b,d]furan-3-yl)-6-phenyl-1,3,5-triazine (3.6 g, 10 mmol) 및 Pd(PPh3)4 (0.5 g, 0.4 mmol), NaOH (1.2 g, 30 mmol) 를 50 ml THF와 20 ml H2O 에 넣고 75℃에서 8시간 동안 교반하였다. 반응 종결 후 생성된 고체는 필터 후 Toluene으로 녹여 Silica 필터하였다. 그리고 Toluene을 농축시킨 후 Toluene으로 재결정하여 P-26 (4.8 g, 수율 65 %)를 얻었다
[LCMS] : 735
[합성예 8] P-49 의 합성
Figure PCTKR2019000615-appb-I000061
Core-1 (5.4 g, 10 mmol), 2-chloro-4-(dibenzo[b,d]thiophen-1-yl)-6-phenyl-1,3,5-triazine (3.7 g, 10 mmol) 및 Pd(PPh3)4 (0.5 g, 0.4 mmol), NaOH (1.2 g, 30 mmol) 를 50 ml THF와 20 ml H2O 에 넣고 75℃에서 8시간 동안 교반하였다. 반응 종결 후 생성된 고체는 필터 후 Toluene으로 녹여 Silica 필터하였다. 그리고 Toluene을 농축시킨 후 Toluene으로 재결정하여 P-49 (6.4 g, 수율 85 %)를 얻었다
[LCMS] : 751
[합성예 9] P-50 의 합성
Figure PCTKR2019000615-appb-I000062
Core-1 (5.4 g, 10 mmol), 2-([1,1'-biphenyl]-2-yl)-4-chloro-6-(dibenzo[b,d]thiophen-3-yl)-1,3,5-triazine (4.5 g, 10 mmol) 및 Pd(PPh3)4 (0.5 g, 0.4 mmol), NaOH (1.2 g, 30 mmol) 를 50 ml THF와 20 ml H2O 에 넣고 75℃에서 8시간 동안 교반하였다. 반응 종결 후 생성된 고체는 필터 후 Toluene으로 녹여 Silica 필터하였다. 그리고 Toluene을 농축시킨 후 Toluene으로 재결정하여 P-50 (6.4 g, 수율 77 %)를 얻었다
[LCMS] : 827
[합성예 10] P-98 의 합성
Figure PCTKR2019000615-appb-I000063
Core-5 (5.6 g, 10 mmol), 2-chloro-4-(dibenzo[b,d]furan-3-yl)-6-phenyl-1,3,5-triazine (3.6 g, 10 mmol) 및 Pd(PPh3)4 (0.5 g, 0.4 mmol), NaOH (1.2 g, 30 mmol) 를 50 ml THF와 20 ml H2O 에 넣고 75℃에서 8시간 동안 교반하였다. 반응 종결 후 생성된 고체는 필터 후 Toluene으로 녹여 Silica 필터하였다. 그리고 Toluene을 농축시킨 후 Toluene으로 재결정하여 P-98 (5.6 g, 수율 75 %)를 얻었다
[LCMS] : 751
[합성예 11] P-173 의 합성
Figure PCTKR2019000615-appb-I000064
Core-6 (4.5 g, 10 mmol), 2-chloro-4-(dibenzo[b,d]furan-3-yl)-6-D5-phenyl-1,3,5-triazine (3.6 g, 10 mmol) 및 Pd(PPh3)4 (0.5 g, 0.4 mmol), NaOH (1.2 g, 30 mmol) 를 50 ml THF와 20 ml H2O 에 넣고 75℃에서 8시간 동안 교반하였다. 반응 종결 후 생성된 고체는 필터 후 Toluene으로 녹여 Silica 필터하였다. 그리고 Toluene을 농축시킨 후 Toluene으로 재결정하여 P-173 (5.3 g, 수율 80 %)를 얻었다
[LCMS] : 659
[실시예 1 ~ 11] 녹색 유기 EL 소자의 제작
합성예 1~11에서 합성한 각 화합물을 통상적으로 알려진 방법으로 고순도 승화정제를 한 후 아래의 과정에 따라 녹색 유기 EL 소자를 제작하였다.
먼저, ITO (Indium tin oxide)가 1500Å 두께로 박막 코팅된 유리 기판을 증류수 초음파로 세척하였다. 증류수 세척이 끝나면 이소프로필 알코올, 아세톤, 메탄올 등의 용제로 초음파 세척을 하고 건조시킨 후 UV OZONE 세정기 (Power sonic 405, 화신테크)로 이송시킨 다음 UV를 이용하여 상기 기판을 5분간 세정하고 진공 증착기로 기판을 이송하였다.
이렇게 준비된 ITO 투명 전극 위에 m-MTDATA (60 nm)/TCTA (80 nm)/90% 각각의 화합물 [P-1, P-2, P-8, P-9, P-11, P-25, P-26, P-49, P-50, P-98, P-173] + 10 % Ir(ppy)3 (30nm)/BCP (10 nm)/Alq3 (30 nm)/LiF (1 nm)/Al (200 nm) 순으로 적층하여 유기 EL 소자를 제작하였다.
[비교예 1] 녹색 유기 EL 소자의 제작
발광층 형성시 발광 호스트 물질로서 화합물 P-1 대신 CBP을 사용한 것을 제외하고는, 상기 실시예 1과 동일한 과정으로 녹색 유기 EL 소자를 제작하였다.
[비교예 2] 녹색 유기 EL 소자의 제작
발광층 형성시 발광 호스트 물질로서 화합물 P-1 대신 화합물 1을 사용한 것을 제외하고는, 상기 실시예 1과 동일한 과정으로 녹색 유기 EL 소자를 제작하였다.
[비교예 3] 녹색 유기 EL 소자의 제작
발광층 형성시 발광 호스트 물질로서 화합물 P-1 대신 화합물 2를 사용한 것을 제외하고는, 상기 실시예 1과 동일한 과정으로 녹색 유기 EL 소자를 제작하였다.
참고로, 본원 실시예 및 비교예에서 사용된 m-MTDATA, TCTA, Ir(ppy)3, CBP, BCP, 화합물 Ⅰ 및 Ⅱ의 구조는 각각 하기와 같다.
Figure PCTKR2019000615-appb-I000065
Figure PCTKR2019000615-appb-I000066
Figure PCTKR2019000615-appb-I000067
[평가예]
실시예 1 ~ 11 및 비교예 1에서 제작한 각각의 녹색 유기 EL 소자에 대하여 전류밀도 10 mA/㎠에서의 구동전압, 전류효율 및 발광 피크를 측정하고, 그 결과를 하기 표 1에 나타내었다.
샘플 호스트 구동 전압(V) EL 피크(nm) 전류효율(cd/A)
실시예 1 P-1 4.61 516 59.2
실시예 2 P-2 4.43 516 60.2
실시예 3 P-8 4.55 516 48.1
실시예 4 P-9 4.51 516 58.2
실시예 5 P-11 4.77 516 51.2
실시예 6 P-25 4.51 516 53.1
실시예 7 P-26 4.41 516 48.2
실시예 8 P-49 4.58 516 49.2
실시예 9 P-50 4.55 516 55.5
실시예 10 P-98 4.76 516 48.1
실시예 11 P-173 4.54 516 53.0
비교예 1 CBP 6.93 516 30.2
비교예 2 화합물 Ⅰ 5.92 516 31.5
비교예 3 화합물 Ⅱ 5.90 516 32.5
상기 표 1에 나타낸 바와 같이, 본 발명에 따른 화합물을 녹색 유기 EL 소자의 발광층으로 사용하는 실시예 1 내지 12의 녹색 유기전계 발광소자는, 종래 CBP, 화합물 Ⅰ 및 Ⅱ를 각각 발광층으로 사용한 비교예 1 내지 3의 녹색 유기 EL 소자와 비교해 볼 때 효율 및 구동전압 면에서 보다 우수한 성능을 나타내는 것을 알 수 있었다.

Claims (11)

  1. 하기 화학식 1로 표시되는 화합물:
    [화학식 1]
    Figure PCTKR2019000615-appb-I000068
    상기 화학식 1에서,
    X1 및 X2는 서로 동일하거나 상이하며, 각각 독립적으로 O 또는 S이고,
    Y1 내지 Y16은 서로 동일하거나 상이하며, 각각 독립적으로 CR8 또는 N이고, 이때 CR8이 복수 개인 경우 복수의 R8은 서로 동일하거나 또는 상이하며,
    Z1 내지 Z3는 서로 동일하거나 상이하며, 각각 독립적으로 CR5 또는 N이고, 이들 중 적어도 하나는 N이고,
    Ar1은 수소, 중수소, 할로겐, 시아노기, 니트로기, C1~C40의 알킬기, C2~C40의 알케닐기, C2~C40의 알키닐기, C3~C40의 시클로알킬기 및 C6~C60의 아릴기로 이루어진 군에서 선택되고,
    m 및 n은 각각 0 내지 3의 정수이며, m+n ≥ 1이고,
    A 및 B는 서로 동일하거나 상이하며, 각각 독립적으로 하기 화학식 2 내지 4로 표시되는 치환체 중 어느 하나이며;
    [화학식 2]
    Figure PCTKR2019000615-appb-I000069
    [화학식 3]
    Figure PCTKR2019000615-appb-I000070
    [화학식 4]
    Figure PCTKR2019000615-appb-I000071
    상기 화학식 2 내지 4에서,
    *은 상기 화학식 1에 결합되는 부위를 의미하고,
    X3는 단일결합이거나, 혹은 O 또는 S이고,
    L은 단일결합이거나, 혹은 C6~C40의 아릴렌기이고,
    Ar2 및 Ar3은 서로 동일하거나 상이하며, 각각 독립적으로 C1~C40의 알킬기, C2~C40의 알케닐기, C2~C40의 알키닐기, C3~C40의 시클로알킬기, C6~C60의 아릴기, 핵원자수 5 내지 60개의 헤테로아릴기 및 C6~C60의 아릴아민기로 이루어진 군에서 선택되거나, 혹은 인접한 기와 결합하여 축합 고리를 형성할 수 있고,
    a, c 및 f는 각각 0 내지 3의 정수이고,
    b, d 및 e는 각각 0 내지 4의 정수이며, 이때 b+m≤4, d+n≤4이고,
    R1 내지 R8은 서로 동일하거나 상이하며, 각각 독립적으로 수소, 중수소, 할로겐, 시아노기, 니트로기, C1~C40의 알킬기, C2~C40의 알케닐기, C2~C40의 알키닐기, C3~C40의 시클로알킬기, 핵원자수 3 내지 40개의 헤테로시클로알킬기, C6~C60의 아릴기, 핵원자수 5 내지 60개의 헤테로아릴기, C1~C40의 알킬옥시기, C6~C60의 아릴옥시기, C1~C40의 알킬실릴기, C6~C60의 아릴실릴기, C1~C40의 알킬보론기, C6~C60의 아릴보론기, C6~C60의 아릴포스핀기, C6~C60의 아릴포스핀옥사이드기 및 C6~C60의 아릴아민기로 이루어진 군에서 선택되거나, 혹은 인접한 기와 결합하여 축합 고리를 형성할 수 있고, 이때 상기 R1 내지 R7이 각각 복수인 경우, 이들은 서로 동일하거나 상이하고,
    다만, 상기 Ar1, A 및 B 중 적어도 하나는, 1개 이상의 중수소(D)로 치환된 C6~C60의 아릴기 또는 핵원자수 5 내지 60개의 헤테로아릴기를 포함하며,
    상기 Ar1 내지 Ar3, 및 R1 내지 R8의 알킬기, 알케닐기, 알키닐기, 시클로알킬기, 헤테로시클로알킬기, 아릴기, 헤테로아릴기, 알킬옥시기, 아릴옥시기, 알킬실릴기, 아릴실릴기, 알킬보론기, 아릴보론기, 아릴포스핀기, 아릴포스핀옥사이드기 및 아릴아민기는 각각 독립적으로 중수소, 할로겐, 시아노기, 니트로기, C2~C40의 알케닐기, C2~C40의 알키닐기, C3~C40의 시클로알킬기, 핵원자수 3 내지 40개의 헤테로시클로알킬기, C1~C40의 알킬기, C6~C60의 아릴기, 핵원자수 5 내지 60개의 헤테로아릴기, C1~C40의 알킬옥시기, C6~C60의 아릴옥시기, C1~C40의 알킬실릴기, C6~C60의 아릴실릴기, C1~C40의 알킬보론기, C6~C60의 아릴보론기, C6~C60의 아릴포스핀기, C6~C60의 아릴포스핀옥사이드기 및 C6~C60의 아릴아민기로 이루어진 군에서 선택된 1종 이상의 치환기로 치환될 수 있으며, 이때 상기 치환기가 복수인 경우, 이들은 서로 동일하거나 상이할 수 있다.
  2. 제1항에 있어서,
    상기 Ar1는 하기 구조식으로 표시된 치환체 군에서 선택되되, 당해 치환체에 있어서 임의의 수소는 적어도 1개의 중수소로 치환되어 있는 화합물.
    Figure PCTKR2019000615-appb-I000072
  3. 제1항에 있어서,
    상기 A 및 B는 각각 독립적으로 하기 구조식으로 표시되는 치환체 군에서 선택되되, 당해 치환체에 있어서 임의의 수소는 적어도 1개의 중수소로 치환되어 있는 화합물.
    Figure PCTKR2019000615-appb-I000073
    상기 화학식에서,
    *은 상기 화학식 1에 결합되는 부위를 의미하고,
    E는 O, S, NR11, CR12R13, 및 SiR14R15로 구성된 군에서 선택되며,
    상기 R11 내지 R15는 서로 동일하거나 또는 상이하며, 각각 독립적으로 수소, 중수소, 할로겐, 시아노기, 니트로기, C1~C40의 알킬기, C6~C60의 아릴기 및 핵원자수 5 내지 60의 헤테로아릴기로 구성된 군에서 선택되고,
    Ar11는 수소 또는 C6~C60의 아릴기이며,
    Ar2 및 Ar3는 각각 제1항에서 정의한 바와 같다.
  4. 제1항에 있어서,
    상기 화학식 1로 표시되는 화합물은 하기 화학식 5 내지 화학식 8 중 어느 하나로 표시되는 화합물:
    [화학식 5]
    Figure PCTKR2019000615-appb-I000074
    [화학식 6]
    Figure PCTKR2019000615-appb-I000075
    [화학식 7]
    Figure PCTKR2019000615-appb-I000076
    [화학식 8]
    Figure PCTKR2019000615-appb-I000077
    상기 화학식 5 내지 8에서,
    상기 화학식 5의 Z1 내지 Z3 함유환은 Y10 내지 Y12 중 어느 하나와 결합되며(단, Z1 내지 Z3 함유환이 Y9과 결합되는 것은 제외됨),
    상기 화학식 6의 Z1 내지 Z3 함유환은 Y9, Y11 내지 Y12 중 어느 하나와 결합되며(단, Z1 내지 Z3 함유환이 Y10과 결합되는 것은 제외됨),
    상기 화학식 7의 Z1 내지 Z3 함유환은 Y9, Y10 및 Y12 중 어느 하나와 결합되며(단, Z1 내지 Z3 함유환이 Y11과 결합되는 것은 제외됨),
    상기 화학식 8의 Z1 내지 Z3 함유환은 Y9 내지 Y11 중 어느 하나와 결합되며(단, Z1 내지 Z3 함유환이 Y12와 결합되는 것은 제외됨),
    X1, X2, Y1 내지 Y16, Z1 내지 Z3, Ar1, m, n, A, B, a 내지 d, R1 내지 R4는 각각 제1항에서 정의한 바와 같다.
  5. 제1항에 있어서,
    상기 화학식 1로 표시되는 화합물은 하기 화학식 9 내지 화학식 12 중 어느 하나로 표시되는 화합물:
    [화학식 9]
    Figure PCTKR2019000615-appb-I000078
    [화학식 10]
    Figure PCTKR2019000615-appb-I000079
    [화학식 11]
    Figure PCTKR2019000615-appb-I000080
    [화학식 12]
    Figure PCTKR2019000615-appb-I000081
    상기 화학식 9 내지 12에서,
    X1, X2, Y1 내지 Y16, Z1 내지 Z3, Ar1, m, n, A, B, a 내지 d, R1 내지 R4는 각각 제1항에서 정의한 바와 같다.
  6. 제1항에 있어서,
    상기 화학식 1로 표시되는 화합물은 하기 화학식 13 내지 17 중 어느 하나로 표시되는 화합물.
    [화학식 13]
    Figure PCTKR2019000615-appb-I000082
    [화학식 14]
    Figure PCTKR2019000615-appb-I000083
    [화학식 15]
    Figure PCTKR2019000615-appb-I000084
    [화학식 16]
    Figure PCTKR2019000615-appb-I000085
    [화학식 17]
    Figure PCTKR2019000615-appb-I000086
    상기 화학식 13 내지 17에서,
    X1, X2, Z1 내지 Z3, Ar1, n, A, B는 각각 제1항에서 정의한 바와 같다.
  7. 제1항에 있어서,
    상기 Z1 내지 Z3는 모두 N인 화합물.
  8. 제1항에 있어서,
    상기 R1 내지 R5 및 R8는 서로 동일하거나 상이하며, 각각 독립적으로 수소, 중수소, 할로겐, 시아노기, 니트로기, C1~C40의 알킬기, C2~C40의 알케닐기, C2~C40의 알키닐기, C3~C40의 시클로알킬기 및 C6~C60의 아릴기로 이루어진 군에서 선택되고,
    상기 R6 및 R7은 서로 동일하거나 상이하며, 각각 독립적으로 수소, 중수소, 할로겐, 시아노기, 니트로기, C1~C40의 알킬기, C2~C40의 알케닐기, C2~C40의 알키닐기, C3~C40의 시클로알킬기, C6~C60의 아릴기 및 핵원자수 5 내지 60의 헤테로아릴기로 이루어진 군에서 선택되거나, 혹은 인접한 기와 결합하여 축합 고리를 형성하는 화합물.
  9. 양극, 음극 및 상기 양극과 음극 사이에 개재(介在)된 1층 이상의 유기물층을 포함하고,
    상기 1층 이상의 유기물층 중 적어도 하나는 제1항 내지 제8항 중 어느 한 항에 기재된 화합물을 포함하는 것인 유기 전계 발광 소자.
  10. 제9항에 있어서,
    상기 화합물을 포함하는 유기물층은 정공 주입층, 정공 수송층, 발광 보조층, 발광층, 전자 수송층 및 전자 주입층으로 이루어진 군에서 선택되는 것인 유기 전계 발광 소자.
  11. 제9항에 있어서,
    상기 화합물을 포함하는 유기물층은 인광 발광층인 유기 전계 발광 소자.
PCT/KR2019/000615 2018-01-16 2019-01-15 유기 화합물 및 이를 이용한 유기 전계 발광 소자 WO2019143111A1 (ko)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR20180005765 2018-01-16
KR10-2018-0005765 2018-01-16
KR1020180165797A KR20190087284A (ko) 2018-01-16 2018-12-20 유기 화합물 및 이를 이용한 유기 전계 발광 소자
KR10-2018-0165797 2018-12-20

Publications (1)

Publication Number Publication Date
WO2019143111A1 true WO2019143111A1 (ko) 2019-07-25

Family

ID=67301601

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2019/000615 WO2019143111A1 (ko) 2018-01-16 2019-01-15 유기 화합물 및 이를 이용한 유기 전계 발광 소자

Country Status (1)

Country Link
WO (1) WO2019143111A1 (ko)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20130142967A (ko) * 2012-06-20 2013-12-30 에스에프씨 주식회사 이형고리 화합물 및 이를 포함하는 유기전계발광소자
KR20170041886A (ko) * 2014-08-13 2017-04-17 메르크 파텐트 게엠베하 유기 전계발광 소자용 재료
KR20170067671A (ko) * 2015-12-08 2017-06-16 희성소재 (주) 헤테로고리 화합물 및 이를 이용한 유기 발광 소자
KR20170102000A (ko) * 2015-02-13 2017-09-06 코니카 미놀타 가부시키가이샤 방향족 복소환 유도체, 그것을 사용한 유기 일렉트로루미네센스 소자, 조명 장치 및 표시 장치
KR20170113320A (ko) * 2016-03-28 2017-10-12 주식회사 엘지화학 신규한 화합물 및 이를 포함하는 유기 발광 소자

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20130142967A (ko) * 2012-06-20 2013-12-30 에스에프씨 주식회사 이형고리 화합물 및 이를 포함하는 유기전계발광소자
KR20170041886A (ko) * 2014-08-13 2017-04-17 메르크 파텐트 게엠베하 유기 전계발광 소자용 재료
KR20170102000A (ko) * 2015-02-13 2017-09-06 코니카 미놀타 가부시키가이샤 방향족 복소환 유도체, 그것을 사용한 유기 일렉트로루미네센스 소자, 조명 장치 및 표시 장치
KR20170067671A (ko) * 2015-12-08 2017-06-16 희성소재 (주) 헤테로고리 화합물 및 이를 이용한 유기 발광 소자
KR20170113320A (ko) * 2016-03-28 2017-10-12 주식회사 엘지화학 신규한 화합물 및 이를 포함하는 유기 발광 소자

Similar Documents

Publication Publication Date Title
WO2019004599A1 (ko) 유기 화합물 및 이를 이용한 유기 전계 발광 소자
WO2017095100A1 (ko) 유기 화합물 및 이를 포함하는 유기 전계 발광 소자
WO2019017616A1 (ko) 유기 발광 화합물 및 이를 이용한 유기 전계 발광 소자
WO2016105161A2 (ko) 유기 화합물 및 이를 포함하는 유기 전계 발광 소자
WO2018230782A1 (ko) 유기 화합물 및 이를 포함하는 유기 전계 발광 소자
WO2015060684A2 (ko) 유기 화합물 및 이를 포함하는 유기 전계 발광 소자
WO2017099430A1 (ko) 유기 화합물 및 이를 포함하는 유기 전계 발광 소자
WO2020218680A1 (ko) 유기 화합물 및 이를 이용한 유기 전계 발광 소자
WO2022103109A1 (ko) 유기 화합물 및 이를 포함하는 유기 전계 발광 소자
WO2020009381A1 (ko) 유기 화합물 및 이를 포함하는 유기 전계 발광 소자
WO2020045822A1 (ko) 유기 화합물 및 이를 이용한 유기 전계 발광 소자
WO2015060635A1 (ko) 유기 화합물 및 이를 포함하는 유기 전계 발광 소자
WO2018043913A1 (ko) 유기 화합물 및 이를 포함하는 유기 전계 발광 소자
WO2021101255A1 (ko) 유기 화합물 및 이를 이용한 유기 전계 발광 소자
WO2015099477A2 (ko) 유기 화합물 및 이를 이용한 유기 전계 발광 소자
WO2015046982A2 (ko) 유기 화합물 및 이를 포함하는 유기 전계 발광 소자
WO2022139455A1 (ko) 유기 화합물 및 이를 이용한 유기 전계 발광 소자
WO2019203430A1 (ko) 유기 발광 화합물 및 이를 이용한 유기 전계 발광 소자
WO2015012528A2 (ko) 유기 화합물 및 이를 포함하는 유기 전계 발광 소자
WO2020054931A1 (ko) 유기 화합물 및 이를 이용한 유기 전계 발광 소자
WO2024144204A1 (ko) 유기 화합물 및 이를 포함하는 유기 전계 발광 소자
WO2015084043A2 (ko) 유기 화합물 및 이를 포함하는 유기 전계 발광 소자
WO2015093818A2 (ko) 유기 화합물 및 이를 포함하는 유기 전계 발광 소자
WO2024117859A1 (ko) 화합물 및 이를 이용한 유기 전계 발광 소자
WO2024144241A1 (ko) 유기 화합물 및 이를 이용한 유기 전계 발광 소자

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19740998

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19740998

Country of ref document: EP

Kind code of ref document: A1