Nothing Special   »   [go: up one dir, main page]

WO2016199718A1 - 冷凍機油用エステルおよび冷凍機油用作動流体組成物 - Google Patents

冷凍機油用エステルおよび冷凍機油用作動流体組成物 Download PDF

Info

Publication number
WO2016199718A1
WO2016199718A1 PCT/JP2016/066756 JP2016066756W WO2016199718A1 WO 2016199718 A1 WO2016199718 A1 WO 2016199718A1 JP 2016066756 W JP2016066756 W JP 2016066756W WO 2016199718 A1 WO2016199718 A1 WO 2016199718A1
Authority
WO
WIPO (PCT)
Prior art keywords
component
ester
mol
derived
refrigerating machine
Prior art date
Application number
PCT/JP2016/066756
Other languages
English (en)
French (fr)
Inventor
文隆 吉川
武 加治木
宗宏 山田
成大 上田
Original Assignee
日油株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日油株式会社 filed Critical 日油株式会社
Priority to EP16807425.0A priority Critical patent/EP3305878A4/en
Priority to CN201680029198.3A priority patent/CN107614663B/zh
Priority to KR1020187000300A priority patent/KR102523681B1/ko
Priority to JP2017523626A priority patent/JP6614510B2/ja
Publication of WO2016199718A1 publication Critical patent/WO2016199718A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M105/00Lubricating compositions characterised by the base-material being a non-macromolecular organic compound
    • C10M105/08Lubricating compositions characterised by the base-material being a non-macromolecular organic compound containing oxygen
    • C10M105/32Esters
    • C10M105/42Complex esters, i.e. compounds containing at least three esterified carboxyl groups and derived from the combination of at least three different types of the following five types of compound: monohydroxy compounds, polyhydroxy compounds, monocarboxylic acids, polycarboxylic acids and hydroxy carboxylic acids
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/28Esters
    • C10M2207/30Complex esters, i.e. compounds containing at leasst three esterified carboxyl groups and derived from the combination of at least three different types of the following five types of compounds: monohydroxyl compounds, polyhydroxy xompounds, monocarboxylic acids, polycarboxylic acids or hydroxy carboxylic acids
    • C10M2207/301Complex esters, i.e. compounds containing at leasst three esterified carboxyl groups and derived from the combination of at least three different types of the following five types of compounds: monohydroxyl compounds, polyhydroxy xompounds, monocarboxylic acids, polycarboxylic acids or hydroxy carboxylic acids used as base material
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2020/00Specified physical or chemical properties or characteristics, i.e. function, of component of lubricating compositions
    • C10N2020/09Characteristics associated with water
    • C10N2020/097Refrigerants
    • C10N2020/101Containing Hydrofluorocarbons
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2030/00Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
    • C10N2030/06Oiliness; Film-strength; Anti-wear; Resistance to extreme pressure
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2030/00Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
    • C10N2030/08Resistance to extreme temperature
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/30Refrigerators lubricants or compressors lubricants

Definitions

  • the present invention relates to an ester for refrigerating machine oil having excellent lubricity and heat resistance.
  • the present invention relates to an ester for refrigerating machine oil, which is used for a working fluid composition for refrigerating machine oil containing a non-chlorine fluorocarbon refrigerant or a natural refrigerant.
  • Air conditioners such as room air conditioners and packaged air conditioners, low-temperature equipment such as household refrigerator-freezers, industrial refrigerators, and car air conditioners such as hybrid cars and electric cars contain chlorine, which causes destruction of the ozone layer.
  • R-- is a mixed refrigerant of 1,1,1,2-tetrafluoroethane (R-134a), pentafluoroethane (R-125), difluoromethane (R-32) and R-125.
  • Hydrofluorocarbon (HFC) such as 410A is used as a refrigerant
  • HFC refrigerant has an ozone depletion coefficient of zero, it has a high global warming potential (GWP) of 1000 or more. Therefore, it is subject to regulations aimed at reducing the greenhouse effect, and the use of refrigerants with low GWP is being studied because use is restricted. For example, conversion to 2,3,3,3-tetrafluoropropene (HFO-1234yf) having a GWP of 4 and R-32 having a GWP of 675 alone has been promoted.
  • HFO-1234yf 2,3,3,3-tetrafluoropropene
  • Patent Document 1 discloses pentaerythritol, 2-ethylhexanoic acid, and 3 as esters having high stability even in a compressor that is operated in a thermally severe environment due to the use of a mixed refrigerant containing R-32. , 5,5,5-trimethylhexanoic acid-based lubricating oil for refrigerating machine oil is disclosed.
  • HC hydrocarbon
  • Patent Document 2 proposes a complex ester having excellent lubricity and excellent heat resistance even under such severe lubrication conditions, and lubricity is improved by using 1,4-butanediol as a raw material. In addition, it is disclosed that heat resistance is improved by using monovalent alcohol as a raw material.
  • An object of the present invention is to provide an ester lubricant for refrigerating machine oil having excellent lubricity and heat resistance.
  • the present invention is as follows.
  • a refrigerating machine ester obtained from the following component (A), component (B), component (C) and component (D), 0.1 to 0.4 mol of the component derived from the component (B) and 0.1 to 0.4 mol of the component derived from the component (C) with respect to 1.0 mol of the component derived from the component (A) in the ester.
  • the ester has a hydroxyl value of 5 to 40 mgKOH / g and satisfies the formulas (1) and (2).
  • a OH is the number of moles of terminal hydroxyl groups from component (A) in the ester
  • B OH is the number of moles of terminal hydroxyl groups from component (B) in the ester
  • a mol is the number of moles of the component derived from the component (A) in the ester
  • B mol is the number of moles of the component derived from the component (B) in the ester
  • a working fluid composition for refrigerating machine oil comprising a non-chlorine fluorocarbon refrigerant or a natural refrigerant and the refrigerating machine oil ester of (1).
  • component (A), component (B), component (C) and component (D) are subjected to a primary esterification reaction at a temperature of 100 to 150 ° C., Next, it is subjected to a secondary esterification reaction at a temperature of 150 ° C. to 250 ° C.
  • the ester for refrigerating machine oil of the present invention has high heat resistance, it can be suitably used for a compressor of a refrigerating and air-conditioning apparatus that particularly requires thermal stability. Moreover, since the ester for refrigerating machine oil of this invention has high compatibility with a non-chlorine type CFC refrigerant or a natural refrigerant, it can be suitably used for a working fluid composition for a refrigerating machine containing these refrigerants.
  • the ester for refrigerating machine oil of the present invention will be described.
  • the numerical range defined using the symbol “ ⁇ ” includes the numerical values at both ends (upper limit and lower limit) of “ ⁇ ”.
  • “2 to 5” represents “2 or more and 5 or less”.
  • the ester for refrigerating machine oil of the present invention comprises neopentyl glycol (component (A)), a linear dihydric alcohol (component (B)) having 2 to 6 carbon atoms and having hydroxyl groups at both terminal carbons, A linear divalent carboxylic acid (component (C)) having 4 to 10 carbon atoms and having carboxyl groups at both ends of carbon and a monohydric alcohol having 6 to 12 carbon atoms (component (D)) are mixed. It can be obtained by esterification reaction.
  • component (A), component (B), component (C), and component (D) are general terms for convenience, and there may be one kind of compound belonging to each component, or it belongs to each component. Two or more compounds may be used. When each component contains two or more types of compounds, the amount of each component is the total amount of the two or more types of compounds belonging to that component.
  • neopentyl glycol of the component (A) used in the present invention industrially available neopentyl glycol can be used, and the shape of neopentyl glycol is solid or liquid diluted with water. You can use things.
  • Component (B) is a linear dihydric alcohol having 2 to 6 carbon atoms and having hydroxyl groups at both terminal carbons, specifically ethylene glycol, 1,3-propanediol, 1,4-butane. Diol, 1,5-pentanediol, 1,6-hexanediol and the like can be mentioned. A linear divalent saturated alcohol is preferred, and 1,4-butanediol is particularly preferred.
  • component (B) an ester excellent in viscosity index, low-temperature stability, and lubricity can be obtained.
  • Component (C) is a linear divalent carboxylic acid having 4 to 10 carbon atoms and having carboxyl groups at both terminal carbons, and specifically includes succinic acid (4 carbon atoms), glutaric acid (5 carbon atoms). ), Adipic acid (carbon number 6), pimelic acid (carbon number 7), suberic acid (carbon number 8), azelaic acid (carbon number 9), sebacic acid (carbon number 10), and the like. It is preferable to use a linear divalent saturated carboxylic acid having 6 to 8 carbon atoms. By the component (C), an ester excellent in viscosity index and low temperature stability can be obtained.
  • Component (D) is a monohydric alcohol having 6 to 12 carbon atoms, and these may be either linear alcohols or branched alcohols. Specific examples include 1-hexanol, 1-heptanol, 1-octanol, 1-nonanol, 1-decanol, 1-undecanol, 1-dodecanol, 2-ethylhexanol, 3,5,5-trimethylhexanol and the like. A saturated branched alcohol having 6 to 10 carbon atoms is preferred, and an ester having excellent low-temperature stability can be obtained. In particular, 2-ethylhexanol and 3,5,5-trimethylhexanol are preferably used.
  • the ester for refrigerating machine oil of the present invention comprises 0.1 to 0.4 mol of the component derived from the component (B), and the component derived from the component (C) with respect to 1.0 mol of the component derived from the component (A).
  • This is an ester for refrigerating machine oil composed of 0.8 to 2.8 mol and a ratio of component 0.3 to 2.3 mol derived from component (D).
  • the amount of the component derived from the component (B) is less than 0.1 mol relative to 1.0 mol of the component derived from the component (A), it is difficult to obtain the desired viscosity index and lubricity, and 0.4 mol. If it exceeds 1, the low-temperature stability of the ester deteriorates.
  • the amount of the component derived from component (B) can be 0.1 to 0.3 mol relative to 1.0 mol of the component derived from component (A).
  • the amount of the component derived from component (C) is preferably 0.9 mol or more, and preferably 2.3 mol or less, relative to 1.0 mol of the component derived from component (A).
  • the amount of the component derived from the component (D) is preferably 0.5 mol or more and preferably 2.1 mol or less with respect to 1.0 mol of the component derived from the component (A).
  • the molar ratio of each component described above is calculated by analysis by gas chromatography.
  • 0.1 g of ester is diluted with 5 g of a toluene / methanol (80 wt% / 20 wt%) mixed solvent, then 0.3 g of 28% sodium methoxide methanol solution (Wako Pure Chemical Industries, Ltd.) is added, and the mixture is heated at 60 ° C. for 30 g.
  • the ester is subjected to methanol decomposition by standing still.
  • the obtained ester decomposition solution is analyzed by gas chromatography, and the peak area ratio of the obtained component (A), component (B), component (C), and component (D) is converted into a molar ratio. be able to.
  • the component of an ester decomposition product can be identified by analyzing the gas chromatography of each component single.
  • the carboxyl group of the component (C) is converted into the components (A), (C) by adjusting the molar ratio of the components derived from the components (A), (B), (C), (D).
  • B) or an ester synthesized so as to be blocked by (D) the terminal structure of which is an alkyl group derived from component (D), and the terminal structure of the ester is a hydroxyl group derived from component (A) as a minor component Groups, esters which are hydroxyl groups derived from component (B) are included.
  • Formula (3) is a structure having an alkyl group derived from component (D) at the terminal of the ester
  • Formula (4) is a structure having a hydroxyl group derived from component (A) at the terminal of the ester.
  • R 1 represents an alkyl group derived from component (D).
  • the ester for refrigerating machine oil of the present invention satisfies the formulas (1) and (2). 0.08 ⁇ BOH / ( AOH + BOH ) ⁇ 0.15 (1)
  • a OH is the number of moles of terminal hydroxyl groups from component (A) in the ester;
  • B OH is the number of moles of terminal hydroxyl groups from component (B) in the ester.
  • Formula (1) represents the molar ratio of the terminal hydroxyl group derived from component (B) to the sum of the terminal hydroxyl group derived from component (A) and the terminal hydroxyl group derived from component (B) in the ester.
  • a OH is the number of moles of terminal hydroxyl groups from component (A) in the ester
  • B OH is the number of moles of terminal hydroxyl groups from component (B) in the ester
  • a mol is the number of moles of the component derived from the component (A) in the ester
  • B mol is the number of moles of the component derived from the component (B) in the ester.
  • the molecule of the formula (2) is [B OH / (A OH + B OH )], which is shown in the formula (1), and the terminal hydroxyl group derived from the component (A) in the ester and the component The molar ratio of the terminal hydroxyl group derived from the component (B) to the sum of the terminal hydroxyl groups derived from (B) is shown.
  • the denominator of formula (2) is [B mol / (A mol + B mol )], which is the sum of the component derived from component (A) and the component derived from component (B) in the ester. The molar ratio of the structural component derived from the component (B) is expressed.
  • Formula (2) represents how much the molar ratio of the terminal hydroxyl group derived from the component (B) is smaller than the molar ratio of the component derived from the component (B) in the ester, In other words, it represents the degree of uneven distribution of the component (B) in the terminal structure relative to the entire ester structure.
  • each numerical value of Formula (1) (2) is measured as follows. (Numerical value of formula (1) and numerical value of numerator of formula (2): B OH / (A OH + B OH )) Among the 1 H-NMR spectra, the integrated value of the ⁇ hydrogen peak (3.2 to 3.4 ppm) with respect to the hydroxyl group derived from the component (A) and the ⁇ hydrogen peak with respect to the hydroxyl group derived from the component (B) (3 (6 to 3.8 ppm), and the integral value of ⁇ hydrogen with respect to the hydroxyl group derived from component (B) was divided by the sum of the integral values.
  • component (A) hydrogen is not bonded to the ⁇ carbon ( ⁇ hydrogen is not present), and therefore the terminal hydroxyl group generated at the end of the ester structure is the terminal structure derived from component (A) derived from component (B).
  • Excellent heat resistance compared to the terminal structure That is, an ester having more ester structure terminals derived from the component (A) is superior in heat resistance as compared to an ester that is not.
  • the ester having more excellent heat resistance can be obtained by setting the molar ratio of the hydroxyl group derived from the component (B) to the total hydroxyl groups to be 0.15 or less.
  • the molar ratio of the terminal hydroxyl group derived from component (B) to the total of the terminal hydroxyl group derived from component (A) and the terminal hydroxyl group derived from component (B) is 0.08 to 0.15. Esters are easily obtained. From this viewpoint, the molar ratio is more preferably 0.09 or more, and further preferably 0.14 or less.
  • the ester unevenly distributed so that the molar ratio of the terminal hydroxyl group derived from the component (B) is smaller than the molar ratio of the component derived from the component (B) in the ester is superior in heat resistance.
  • the uneven distribution degree of the component (B) in the terminal structure can be represented by the molar ratio of the terminal hydroxyl group derived from the component (B) to the molar ratio of the component derived from the component (B) in the ester.
  • This value is 0.9 or less, but more preferably 0.8 or less.
  • the lower limit of this value is not particularly limited, but is preferably 0.2 or more, more preferably 0.3 or more, and still more preferably 0.5 or more.
  • the ester of the present invention comprises all hydroxyl groups in the ester with respect to the molar ratio of the component derived from the component (B) to the sum of the component derived from the component (A) and the component derived from the component (B) in the ester.
  • the ester which reduced the molar ratio of the hydroxyl group derived from the component (B) in the above, and the ester satisfying the formula (1) and the formula (2) is an ester having further excellent heat resistance for the reasons described above.
  • the above components (A), (B), (C) and (D) are all charged into an appropriate reactor, and an esterification reaction is carried out under normal pressure and nitrogen atmosphere.
  • the esterification reaction can be usually carried out at 150 to 250 ° C. in order to efficiently remove the reaction product water.
  • a primary esterification reaction is performed at 100 to 150 ° C.
  • a secondary esterification reaction is carried out at 150 ° C. to 250 ° C.
  • the primary esterification reaction is preferably performed at 100 to 140 ° C., more preferably 100 to 130 ° C., whereby an ester having excellent heat resistance can be easily obtained.
  • the primary esterification reaction is preferably performed for 1 to 10 hours, more preferably 2 to 8 hours, whereby an ester having excellent heat resistance can be easily obtained.
  • the secondary esterification reaction is preferably performed at 160 to 260 ° C, more preferably 180 to 250 ° C. At this time, the secondary esterification reaction is carried out until the acid value becomes 10 mgKOH / g or less, preferably 5 mgKOH / g or less, more preferably 2 mgKOH / g.
  • the esterification reaction may be performed using a Bronsted acid catalyst or a Lewis acid catalyst, but is preferably performed without a catalyst.
  • the target ester for refrigerating machine oil can be obtained by refining the crude ester with an adsorbent.
  • the kinematic viscosity at 40 ° C. of the ester for refrigerating machine oil of the present invention is preferably 20 to 500 mm 2 / s. More preferably, it is 20 to 300 mm 2 / s, still more preferably 20 to 250 mm 2 / s, and most preferably 20 to 180 mm 2 / s.
  • the hydroxyl value is preferably 5 to 40 mgKOH / g, more preferably 15 to 35 mgKOH / g.
  • the ester for refrigerating machine oil of the present invention can be used alone as a base oil, or can be used by mixing with other base oils.
  • additives such as phenolic antioxidants, metal deactivators such as benzotriazole, thiadiazole or dithiocarbamate, acid scavengers such as epoxy compounds or carbodiimides, additives such as phosphorus extreme pressure agents Can be appropriately blended depending on the purpose.
  • the ester for refrigerating machine oil of the present invention has high compatibility with non-chlorine fluorocarbon refrigerants and natural refrigerants, it can be suitably used for a working fluid composition for refrigerating machines containing these refrigerants.
  • non-chlorine-based chlorofluorocarbon refrigerant include hydrofluorocarbon (HFC), hydrofluoroolefin (HFO), hydrocarbon (HC), a natural refrigerant alone, or a mixture thereof.
  • hydrofluorocarbon (HFC) refrigerant examples include 1,1,1,2-tetrafluoroethane (R-134a), pentafluoroethane (R-125), difluoroethane (R-32), trifluoromethane ( R-23), 1,1,2,2-tetrafluorofluoroethane (R-134), 1,1,1-trifluoroethane (R-143a), 1,1-difluoroethane (R-152a), etc. Any one or a mixture of two or more is preferable.
  • a refrigerant containing at least one of R-134a and R-32 is particularly preferable, and a single R-32 refrigerant is more preferable.
  • hydrofluoroolefin (HFO) refrigerant examples include 1,2,3,3,3-pentafluoropropene (HFO-1225ye) and 1,3,3,3-tetrafluoropropene (HFO-1234ze). 2,3,3,3-tetrafluoropropene (HFO-1234yf), 1,2,3,3-tetrafluoropropene (HFO-1234ye), and 3,3,3-trifluoropropene (HFO-1243zf) It is preferable that they are 1 type, or a mixture of 2 or more types. From the viewpoint of the physical properties of the refrigerant, one or more selected from HFO-1225ye, HFO-1234ze, and HFO-1234yf are preferable.
  • examples of the hydrocarbon (HC) refrigerant include propane (R290) and isobutane (R600a) and mixtures thereof, and examples of the natural refrigerant include ammonia and carbon dioxide. Particularly preferred are R290, R600 and carbon dioxide.
  • the working fluid composition for refrigerating machine oil usually has a mass ratio of 10:90 to 90:10 of the refrigerating machine ester according to the present invention and a non-chlorine fluorocarbon refrigerant or a natural refrigerant. If the mass ratio of the refrigerant is within this range, the working fluid composition has an appropriate viscosity, which is preferable because it has excellent lubricity and high refrigeration efficiency.
  • ester for refrigerator oil obtained in the Example and the comparative example was analyzed in accordance with the following method.
  • Acid value Measured according to JIS K2501.
  • Hydroxyl value Measured according to JIS K0070.
  • Kinematic viscosity Measured according to JIS K2283.
  • Example 1 124 g (1.19 mol) neopentyl glycol, 30 g (0.34 mol) 1,4-butanediol, 355 g (2.43 mol) adipic acid, 339 g (2.35 mol) 3,5,5-trimethylhexanol ) was charged into a four-necked flask and reacted at normal pressure for 3 hours while distilling off the reaction water at 120 ° C. in a nitrogen atmosphere. Thereafter, the reaction was continued for 7 hours at 200 ° C. until the acid value became 2 or less. Subsequently, excess 3,5,5-trimethylhexanol was distilled off at 200 ° C.
  • a crude ester under reduced pressure of 1 to 5 kPa to obtain a crude ester.
  • the crude ester was cooled, and acid clay and silica-alumina-based adsorbent were added to each so as to be 1.0% by mass of the theoretically obtained ester amount, followed by adsorption treatment.
  • the adsorption treatment temperature, pressure, and adsorption treatment time were 100 ° C., 1 to 5 kPa, and 2 hours. Finally, filtration was performed using a 1-micron filter to obtain the target ester.
  • Example 2 180 g (1.73 mol) neopentyl glycol, 25 g (0.28 mol) 1,4-butanediol, 360 g (2.47 mol) adipic acid, 256 g (1.78 mol) 3,5,5-trimethylhexanol ) In a four-necked flask, and the reaction was carried out at normal pressure for 4 hours while distilling off the reaction water at 115 ° C. in a nitrogen atmosphere. The subsequent steps were performed in the same manner as in Example 1 to obtain the target ester.
  • Example 3 Neopentyl glycol 205 g (1.97 mol), 1,4-butanediol 26 g (0.28 mol), adipic acid 373 g (2.55 mol), 3,5,5-trimethylhexanol 217 g (1.50 mol) ) was charged into a four-necked flask and reacted at normal pressure for 3 hours while distilling off the reaction water at 125 ° C. in a nitrogen atmosphere. The subsequent steps were performed in the same manner as in Example 1 to obtain the target ester.
  • Example 4 174 g (1.66 mol) neopentyl glycol, 46 g (0.51 mol) 1,4-butanediol, 373 g (2.55 mol) adipic acid, 238 g (1.65 mol) 3,5,5-trimethylhexanol ) was charged into a four-necked flask and reacted at normal pressure for 4 hours while distilling off the reaction water at 120 ° C. in a nitrogen atmosphere. The subsequent steps were performed in the same manner as in Example 1 to obtain the target ester.
  • Example 5 Manufacture of Example 5 129 g (1.23 mol) of neopentylglycol, 28 g (0.26 mol) of 1,5-pentanediol, 393 g (2.25 mol) of suberic acid, and 300 g (2.30 mol) of n-octanol were used in four necks. The flask was charged and reacted at normal pressure for 5 hours while distilling off the reaction water at 120 ° C. in a nitrogen atmosphere. The subsequent steps were performed in the same manner as in Example 1 to obtain the target ester.
  • Example 6 Neopentyl glycol 215 g (2.07 mol), 1,3-propanediol 22 g (0.29 mol), adipic acid 385 g (2.64 mol), 3,5,5-trimethylhexanol 214 g (1.49 mol) ) was charged into a four-necked flask and reacted at normal pressure for 4 hours while distilling off the reaction water at 120 ° C. in a nitrogen atmosphere. The subsequent steps were performed in the same manner as in Example 1 to obtain the target ester.
  • Example 7 Neopentyl glycol 211 g (2.03 mol), 1,6-hexanediol 42 g (0.36 mol), adipic acid 385 g (2.64 mol), 3,5,5-trimethylhexanol 206 g (1.43 mol) ) was charged into a four-necked flask and reacted at normal pressure for 5 hours while distilling off the reaction water at 115 ° C. in a nitrogen atmosphere. The subsequent steps were performed in the same manner as in Example 1 to obtain the target ester.
  • the crude ester was cooled, and acid clay and silica-alumina-based adsorbent were added to each so as to be 1.0% by mass of the theoretically obtained ester amount, followed by adsorption treatment.
  • the adsorption treatment temperature, pressure, and adsorption treatment time were 100 ° C., 1 to 5 kPa, and 2 hours. Finally, filtration was performed using a 1-micron filter to obtain the target ester.
  • Heat resistance The heat resistance of the ester for refrigerating machine oil was evaluated by carrying out a heating test on the ester for refrigerating machine oil. In the heat resistance test, heating was performed in a thermostatic bath at 130 ° C. for 72 hours in an air atmosphere, and the acid value of the ester for refrigerating machine oil after heating was measured.
  • Lubricity About the said ester for refrigerator oil, lubricity was evaluated with the SRV test machine.
  • the SRV test was performed with a ball / disk, and test pieces made of SUJ-2 were used.
  • the test conditions were a test temperature of 60 ° C., a load of 100 N, an amplitude of 1 mm, and a vibration frequency of 50 Hz, and the wear scar diameter after a test time of 25 minutes was measured.
  • Examples 1 to 7 and Comparative Examples 1 and 2 are summarized in Tables 1 and 2, and the physical properties, heat resistance, and lubricity are summarized in Tables 3 and 4.
  • Table 1 and Table 2 describe the charging ratio of each component
  • Tables 3 and 4 list the measured values of the molar ratio of the constituent components derived from each component in the produced ester.
  • the esters of Examples 1 to 7 have excellent lubricity and excellent heat resistance, so that they are not easily deteriorated even under severe lubricating conditions in the compressor. It can be used in.
  • the increase in the acid value in the heating test is suppressed, the generation of decomposition products that cause corrosion such as metals in the compressor can also be suppressed.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Emergency Medicine (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Organic Chemistry (AREA)
  • Lubricants (AREA)

Abstract

【課題】優れた潤滑性および耐熱性を有する冷凍機油用エステル潤滑油を提供する。 【解決手段】冷凍機油用エステルは、下記の成分(A)、成分(B)、成分(C)および成分(D)から得られ、成分(A)由来の構成成分1.0モルに対して、成分(B)由来の構成成分0.1~0.4モル、成分(C)由来の構成成分0.8~2.8モルおよび成分(D)由来の構成成分0.3~2.3モルの比率である。エステルのヒドロキシル価が5~40mgKOH/gであり、式(1)および式(2)を満たす。(A)ネオペンチルグリコール;(B)炭素数2~6で両末端の炭素にヒドロキシル基を有する直鎖状の2価アルコール;(C)炭素数4~10で両末端の炭素にカルボキシル基を有する直鎖状の2価カルボン酸;(D)炭素数6~12の1価アルコール 0.08 ≦ BOH/(AOH+BOH)≦ 0.15 ・・・(1) 〔BOH/(AOH+BOH)〕/〔Bmol/(Amol+Bmol)〕 ≦ 0.9 ・・・(2) AOHは、エステル中の成分(A)由来の末端ヒドロキシル基のモル数 BOHは、エステル中の成分(B)由来の末端ヒドロキシル基のモル数 Amolは、エステル中の成分(A)由来の構成成分のモル数 Bmolは、エステル中の成分(B)由来の構成成分のモル数

Description

冷凍機油用エステルおよび冷凍機油用作動流体組成物
 本発明は、優れた潤滑性および耐熱性を有する冷凍機油用エステルに関する。また、非塩素系フロン冷媒または自然冷媒を含有する冷凍機油用作動流体組成物に使用されることを特徴とする冷凍機油用エステルに関する。
 ルームエアコン、パッケージエアコンなどの空調機器、家庭用冷凍冷蔵庫などの低温機器、産業用冷凍機、およびハイブリッドカー、電気自動車などのカーエアコンには、オゾン層の破壊などの原因となる、塩素を含むフロン冷媒に代えて、1,1,1,2-テトラフルオロエタン(R-134a)、ペンタフルオロエタン(R-125)、ジフルオロメタン(R-32)とR-125の混合冷媒であるR-410Aなどハイドロフルオロカーボン(HFC)が冷媒として使用されている
 しかし、上述したHFC冷媒はオゾン層破壊係数がゼロであるものの、地球温暖化係数(GWP)が1000以上と高い。そのため、温室効果の低減を目的とした規制の対象となっており、使用が制限されてくることからGWPの低い冷媒の使用が検討されている。例えばGWPが4である2,3,3,3-テトラフルオロプロペン(HFO-1234yf)や、GWPが675であるR-32の単独使用などへの転換が進められている。
 低GWPのHFC冷媒への転換が進むに従い、これら低GWP冷媒との相溶性が高いポリオールエステルを基油とする冷凍機油用エステルが種々提案されている。また、代替冷媒候補のうちR-32、またはR-32を含む混合冷媒など圧力が高くなる冷媒使用時は、コンプレッサーでの吐出温度が高くなり、コンプレッサー内の潤滑条件がより厳しくなることから、潤滑性および安定性を向上した冷凍機油用エステルが提案されている。
 例えば、特許文献1には、R-32を含む混合冷媒の使用に伴い、熱的に厳しい環境で運転されるコンプレッサーにおいても高い安定性を有するエステルとして、ペンタエリスリトールと2-エチルヘキサン酸および3,5,5-トリメチルヘキサン酸とからなるエステルを主成分とした冷凍機油用潤滑油が開示されている。
 また、ハイドロカーボン(HC)冷媒の場合は、HC分子内に潤滑性を高めるフッ素がない事から、HFC冷媒等のように冷媒による潤滑性向上効果が期待できず、さらにHC冷媒への冷凍機油への溶解度が高く、油の粘度を下げることから、潤滑条件がさらに厳しくなる。特許文献2には、このような厳しい潤滑条件においても優れた潤滑性および優れた耐熱性を有するコンプレックスエステルが提案されており、1,4-ブタンジオールを原料に用いることで潤滑性が向上すること、1価のアルコールを原料に用いることで耐熱性が向上することが開示されている。
特開平10-8084号公報 WO2014/017596
 しかしながら、冷凍機油を使用した機器のコンパクト化(1台あたりの冷凍機油使用量の減少)や省エネルギー化(インバーター制御による圧縮機の稼働時間の伸張)が進むことで、冷凍機油の使用条件はさらに過酷になっている。そのため、圧縮機の摺動部における摩擦熱によって、局部的に高温条件下に晒された冷凍機油が熱分解し、生成した分解物が金属部材を腐食したり、樹脂材料に悪影響を与える可能性があることから、より過酷な条件下においても優れた潤滑性および熱安定性を示す冷凍機油用エステルの開発が求められている。
 本発明の課題は、優れた潤滑性および耐熱性を有する冷凍機油用エステル潤滑油を提供することにある。
 本発明者らは、上記課題を解決するために鋭意検討を行なった結果、特定の2価アルコール、2価カルボン酸、1価アルコールを構成成分とするエステルが、優れた潤滑性および耐熱性を有することを見出し、本発明を完成するに至った。
 すなわち、本発明は、以下のものである。
(1) 下記成分(A)、成分(B)、成分(C)および成分(D)から得られる冷凍機油用エステルであって、
 前記エステル中の前記成分(A)由来の構成成分1.0モルに対して、前記成分(B)由来の構成成分0.1~0.4モル、前記成分(C)由来の構成成分0.8~2.8モルおよび前記成分(D)由来の構成成分0.3~2.3モルの比率であり、
 前記エステルのヒドロキシル価が5~40mgKOH/gであり、式(1)および式(2)を満たすことを特徴とする。
 
(A) ネオペンチルグリコール
(B) 炭素数2~6で両末端の炭素にヒドロキシル基を有する直鎖状の2価アルコール
(C) 炭素数4~10で両末端の炭素にカルボキシル基を有する直鎖状の2価カルボン酸
(D) 炭素数6~12の1価アルコール
 
0.08 ≦ BOH/(AOH+BOH)≦ 0.15 ・・・(1)
〔BOH/(AOH+BOH)〕/〔Bmol/(Amol+Bmol)〕 ≦ 0.9
                      ・・・(2)
 
(前記式(1)および前記式(2)において、
 AOHは、前記エステル中の前記成分(A)由来の末端ヒドロキシル基のモル数であり、
 BOHは、前記エステル中の前記成分(B)由来の末端ヒドロキシル基のモル数であり、
 Amolは、前記エステル中の前記成分(A)由来の構成成分のモル数であり、
 Bmolは、前記エステル中の前記成分(B)由来の構成成分のモル数である)
 
(2) 非塩素系フロン冷媒または自然冷媒と、(1)の冷凍機油用エステルとを含有することを特徴とする、冷凍機油用作動流体組成物。
 
 また、前記冷凍機油用エステルを得るには、好ましくは、成分(A)、成分(B)、成分(C)および成分(D)を100~150℃の温度で1次エステル化反応に供し、次いで150℃~250℃の温度で2次エステル化反応に供する。
 本発明の冷凍機油用エステルは、高い耐熱性を有するため、熱安定性が特に要求される冷凍空調機器のコンプレッサーに好適に用いることができる。また、本発明の冷凍機油用エステルは、非塩素系フロン冷媒や自然冷媒との相溶性が高いため、これら冷媒を含有する冷凍機用作動流体組成物に好適に用いることができる。
 以下、本発明の冷凍機油用エステルについて説明する。
 なお、本明細書において記号「~」を用いて規定された数値範囲は「~」の両端(上限および下限)の数値を含むものとする。例えば「2~5」は「2以上、5以下」を表す。
 本発明の冷凍機油用エステルは、ネオペンチルグリコール(成分(A))と、炭素数2~6で両末端の炭素にヒドロキシル基を有する直鎖状の2価アルコール(成分(B))と、炭素数4~10で両末端の炭素にカルボキシル基を有する直鎖状の2価カルボン酸(成分(C))と、炭素数6~12の1価アルコール(成分(D))とを混合し、エステル化反応させることで得られる。
 なお、成分(A)、成分(B)、成分(C)および成分(D)の用語は便宜的な総称であり、各成分に属する化合物が一種類であってもよく、または各成分に属する化合物が二種類以上であってもよい。各成分に二種類以上の化合物が含まれる場合には、各成分の量は、その成分に属する二種類以上の化合物の合計量とする。
 本発明で使用される成分(A)のネオペンチルグリコールとしては、工業的に入手可能なネオペンチルグリコールを使用することができ、ネオペンチルグリコールの形状として、固体状もしくは水で希釈された液状のものを使用する事ができる。
 成分(B)は、炭素数2~6で両末端の炭素にヒドロキシル基を有する直鎖状の2価アルコールであり、具体的にはエチレングリコール、1,3-プロパンジオール、1,4-ブタンジオール、1,5ペンタンジオール、1,6-ヘキサンジオールなどが挙げられる。好ましくは直鎖状の2価飽和アルコールであり、1,4-ブタンジオールを用いることがとくに好ましい。成分(B)によって、粘度指数、低温安定性、潤滑性において優れたエステルを得ることができる。
 成分(C)は、炭素数4~10で両末端の炭素にカルボキシル基を有する直鎖状の2価カルボン酸であり、具体的にはコハク酸(炭素数4)、グルタル酸(炭素数5)、アジピン酸(炭素数6)、ピメリン酸(炭素数7)、スベリン酸(炭素数8)、アゼライン酸(炭素数9)、セバシン酸(炭素数10)などが挙げられる。直鎖状の炭素数6~8の2価飽和カルボン酸を用いることが好ましい。成分(C)によって、粘度指数と低温安定性において優れたエステルを得ることができる。
 成分(D)は、炭素数6~12の1価アルコールであり、これらは直鎖アルコール、分岐アルコールのいずれであっても良い。具体的には1-ヘキサノール、1-ヘプタノール、1-オクタノール、1-ノナノール、1-デカノール、1-ウンデカノール、1-ドデカノール、2-エチルヘキサノール、3,5,5-トリメチルヘキサノールなどが挙げられる。好ましくは炭素数6~10の飽和分岐アルコールであり、低温安定性に優れたエステルを得ることができる。特に2-エチルヘキサノール、3,5,5-トリメチルヘキサノールを用いることが好ましい。
 本発明の冷凍機油用エステルは、成分(A)由来の構成成分1.0モルに対して、成分(B)由来の構成成分0.1~0.4モル、成分(C)由来の構成成分0.8~2.8モル、成分(D)由来の構成成分0.3~2.3モルの比率で構成された冷凍機油用エステルである。
 成分(A)由来の構成成分1.0モルに対して、成分(B)由来の構成成分の量が0.1モルを下回ると、所望粘度指数および潤滑性が得られ難く、0.4モルを超えると、エステルの低温安定性が悪化する。好ましくは、成分(A)由来の構成成分1.0モルに対して、成分(B)由来の構成成分の量を0.1~0.3モルとすることができる。
 成分(A)由来の構成成分1.0モルに対して成分(C)由来の構成成分の量が0.8モルを下回ると、高い粘度指数が得られ難く、2.8を超えると、潤滑性が得られ難くなる。成分(A)由来の構成成分1.0モルに対して成分(C)由来の構成成分の量を0.9モル以上とすることが好ましく、また、2.3モル以下とすることが好ましい。
 成分(A)由来の構成成分1.0モルに対して成分(D)由来の構成成分の量を0.3~2.3モルとすると、冷凍機油用として好適な粘度のエステルが得られやすくなる。成分(A)由来の構成成分1.0モルに対して成分(D)由来の構成成分の量を0.5モル以上とすることが好ましく、また2.1モル以下とすることが好ましい。
 上述した各構成成分のモル比率は、ガスクロマトグラフィーにより分析して算出する。エステル0.1gをトルエン/メタノール(80wt%/20wt%)混合溶媒5gで希釈し、次いで28%ナトリウムメトキシドメタノール溶液(和光純薬工業(株))を0.3g加え、60℃にて30分静置することにより、エステルを加メタノール分解する。得られたエステル分解溶液をガスクロマトグラフィーで分析し、得られた成分(A)、成分(B)成分(C)、成分(D)のピーク面積比をモル比へ換算することによって、算出することができる。なお、各成分単独のガスクロマトグラフィーを分析することで、エステル分解物の成分を同定することができる。
 本発明のエステルは、各成分(A)、(B)、(C)、(D)由来の構成成分のモル比率を調整することによって、成分(C)のカルボキシル基が成分(A)、(B)または(D)によって封鎖されるように合成したエステルであり、末端構造が成分(D)由来のアルキル基であるエステルの他、マイナー成分としてエステルの末端構造が成分(A)由来のヒドロキシル基、成分(B)由来のヒドロキシル基であるエステルが含まれる。
 本発明のエステルの具体的な末端構造の一例として、式(3)、(4)、(5)を用いて説明する。式(3)は、エステルの末端に成分(D)由来のアルキル基を有する構造であり、式(4)はエステルの末端に成分(A)由来のヒドロキシル基を有する構造であり、式(5)はエステルの末端に成分(B)由来のヒドロキシル基を有する構造である。
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000003
 mは1~5の整数であり、R1は成分(D)由来のアルキル基を示している。
 このような構造設計とすることによって、冷凍機油として使用した際に、加水分解や熱分解を起こしにくく、安定性に優れたエステルとすることができる。
 本発明の冷凍機油用エステルは、式(1)および式(2)を満たす。
 
0.08 ≦ BOH/(AOH+BOH)≦ 0.15 ・・・(1)
 
(AOHは、エステル中の成分(A)由来の末端ヒドロキシル基のモル数であり、
OHは、エステル中の成分(B)由来の末端ヒドロキシル基のモル数である。)
 
 式(1)は、エステル中の成分(A)由来の末端ヒドロキシル基と成分(B)由来の末端ヒドロキシル基の合計に対する成分(B)由来の末端ヒドロキシル基のモル比率を表している。
 〔BOH/(AOH+BOH)〕/〔Bmol/(Amol+Bmol)〕 ≦ 0.9
                          ・・・(2)
 
(AOHは、エステル中の成分(A)由来の末端ヒドロキシル基のモル数であり、
 BOHは、エステル中の成分(B)由来の末端ヒドロキシル基のモル数であり、
 Amolは、エステル中の成分(A)由来の構成成分のモル数であり、
 Bmolは、エステル中の成分(B)由来の構成成分のモル数である。)
 
 式(2)の分子は、[BOH/(AOH+BOH)]であるが、これは式(1)に示したものであり、エステル中における成分(A)由来の末端ヒドロキシル基と成分(B)由来の末端ヒドロキシル基の合計に対する成分(B)由来の末端ヒドロキシル基のモル比率を表している。
 一方、式(2)の分母は、[Bmol/(Amol+Bmol)]であるが、これはエステル中の成分(A)由来の構成成分と成分(B)由来の構成成分との合計に対する成分(B)由来の構成成分のモル比率を表している。
 ゆえに、式(2)は、エステル中の成分(B)由来の構成成分のモル比率に対して、成分(B)由来の末端ヒドロキシル基のモル比率がどの程度小さくなっているかを表しており、言い換えると、エステル全体構造に対する末端構造における(B)成分の偏在度合いを表している。
 なお、式(1)(2)の各数値は以下のようにして測定する。
 (式(1)の数値および式(2)の分子の数値:BOH/(AOH+BOH))
 1H-NMRスペクトルの内、成分(A)由来のヒドロキシル基に対するα水素のピーク(3.2~3.4ppm)の積分値と、成分(B)由来のヒドロキシル基に対するα水素のピーク(3.6~3.8ppm)の積分値を求め、各積分値の和によって、成分(B)由来のヒドロキシル基に対するα水素の積分値を除することで算出した。
 (式(2)の分母の数値:Bmol/(Amol+Bmol))
 前記のガスクロマトグラフィー分析により成分(A)および成分(B)由来の各構成成分のモル数を求め、モル比率を算出した。
 成分(A)は、β炭素に水素が結合していない(β水素が存在しない)ため、エステル構造末端で生ずる末端ヒドロキシル基については、成分(A)由来の末端構造は成分(B)由来の末端構造と比較して耐熱性に優れている。すなわち、成分(A)由来のエステル構造末端がより多く存在するエステルは、そうでないエステルと比較して耐熱性に優れている。この結果、全ヒドロキシル基に占める成分(B)由来のヒドロキシル基のモル比率を0.15以下とすることによって、より優れた耐熱性を有するエステルとすることができる。成分(A)由来の末端ヒドロキシル基と成分(B)由来の末端ヒドロキシル基の合計に対する成分(B)由来の末端ヒドロキシル基のモル比率が0.08~0.15において潤滑性と耐熱性に優れたエステルが得られやすい。この観点からは、前記モル比率は、0.09以上が更に好ましく、また、0.14以下が更に好ましい。
 さらに、エステル中の成分(B)由来の構成成分のモル比率に対して、成分(B)由来の末端ヒドロキシル基のモル比率が小さくなるように偏在させたエステルは、耐熱性により優れたものとなる。末端構造における(B)成分の偏在度合いは、エステル中の成分(B)由来の構成成分のモル比率に対する成分(B)由来の末端ヒドロキシル基のモル比率により表すことができ、その値を0.9以下とすることで、より耐熱性に優れたエステルを得ることができる。この値は、0.9以下とするが、0.8以下とすることが更に好ましい。また、この値の下限は特にないが、0.2以上とすることが好ましく、0.3以上とすることがより好ましく、0.5以上とすることが更に好ましい。
 本発明のエステルは、エステル中の成分(A)由来の構成成分と成分(B)由来の構成成分の和に対する成分(B)由来の構成成分のモル比に対して、エステル中の全ヒドロキシル基に占める成分(B)由来のヒドロキシル基のモル比率を低減したエステルであり、上述した理由により、式(1)および式(2)を満足するエステルは、さらに耐熱性に優れたエステルとなる。
 エステルの製造に際しては、まず上記成分(A)、成分(B)、成分(C)および成分(D)を適切な反応器に全て仕込み、常圧、窒素雰囲気にてエステル化反応を行なう。エステル化反応は、効率よく反応生成水を除去するために通常150~250℃で行なうことができる。しかし、より優れた耐熱性を有するエステルを得るという観点から、まず100~150℃にて1次エステル化反応を行なう。その後、150℃~250℃にて2次エステル化反応を行なう。
 この1次エステル化反応は、好ましくは100~140℃、さらに好ましくは100~130℃で行なうことによって、耐熱性に優れたエステルが得られやすくなる。また、1次エステル化反応は、好ましくは1~10時間、さらに好ましくは2~8時間とすることで耐熱性に優れたエステルが得られやすくなる。
 2次エステル化反応は、好ましくは160~260℃、さらに好ましくは180~250℃で行なうことが好ましい。この時、酸価が10mgKOH/g以下、好ましくは5mgKOH/g以下、さらに好ましくは2mgKOH/gとなるまで2次エステル化反応を行なう。
 また、エステル化反応はブレンステッド酸触媒やルイス酸触媒を使用してもよいが、無触媒で行なうことが好ましい。
 エステル化反応後、過剰な成分(D)を減圧下で留去し、粗エステルを得る。さらに粗エステルを吸着剤にて精製処理することにより、目的の冷凍機油用エステルを得ることができる。
 本発明の冷凍機油用エステルの40℃における動粘度は、好ましくは、20~500mm/sである。より好ましくは20~300mm/sであり、さらに好ましくは20~250mm/s、最も好ましくは20~180mm/sである。またヒドロキシル価は、好ましくは5~40mgKOH/gであり、さらに好ましくは15~35mgKOH/gである。
 本発明の冷凍機油用エステルは、単独で基油として使用することもできるし、その他の基油と混合して使用することもできる。また、公知の添加剤、例えばフェノール系の酸化防止剤、ベンゾトリアゾール、チアジアゾールまたはジチオカーバメートなどの金属不活性化剤、エポキシ化合物またはカルボジイミドなどの酸捕捉剤、リン系の極圧剤などの添加剤を目的に応じて適宜配合することができる。
 本発明の冷凍機油用エステルは、非塩素系フロン冷媒や自然冷媒との相溶性が高いため、これら冷媒を含有する冷凍機用作動流体組成物に好適に用いることができる。非塩素系フロン冷媒としては、ハイドロフルオロカーボン(HFC)、ハイドロフルオロオレフィン(HFO)、ハイドロカーボン(HC)や自然冷媒の単体、またはそれらの混合物が挙げられる。
 ハイドロフルオロカーボン(HFC)冷媒の具体的な例としては、1,1,1,2-テトラフルオロエタン(R-134a)、ペンタフルオロエタン(R-125)、ジフルオロエタン(R-32)、トリフルオロメタン(R-23)、1,1,2,2-テトラロフルオロエタン(R-134)、1,1,1-トリフルオロエタン(R-143a)、1,1-ジフルオロエタン(R-152a)等のいずれかの1種または2種以上の混合物であることが好ましい。上記混合冷媒としては、例えばR-407C(R-134a/R-125/R-32=52/25/23質量%)、R-410R(R-125/R-32=50/50質量%)、R-404A(R-125/R-143/R-134a=44/52/4質量%)、R-407E(R-134a/R-125/R-32=60/15/25質量%)、R-410B(R-32/R-125=45/55質量%)などが挙げられる。これらの中でも、特にR-134a及びR-32の少なくとも一種を含む冷媒が好ましく、単一のR-32冷媒がさらに好ましく挙げられる。
 ハイドロフルオロオレフィン(HFO)冷媒の具体的な例としては、1,2,3,3,3-ペンタフルオロプロペン(HFO-1225ye)、1,3,3,3-テトラフルオロプロペン(HFO-1234ze)、2,3,3,3-テトラフルオロプロペン(HFO-1234yf)、1,2,3,3-テトラフルオロプロペン(HFO-1234ye)、および3,3,3-トリフルオロプロペン(HFO-1243zf)等のいずれかの1種または2種以上の混合物であることが好ましい。冷媒物性の観点からは、HFO-1225ye、HFO-1234zeおよびHFO-1234yfから選ばれる1種又は2種以上であることが好ましい。
 また、ハイドロカーボン(HC)冷媒としてはプロパン(R290)やイソブタン(R600a)等やそれらの混合物が挙げられ、自然冷媒としては、アンモニアや二酸化炭素等が挙げられる。とくに、R290、R600および二酸化炭素が好ましく挙げられる。
 冷凍機油用作動流体組成物は、通常、本発明による冷凍機油用エステルと非塩素系フロン冷媒もしくは自然冷媒との質量比が、10:90から90:10である。冷媒の質量比がこの範囲にあれば、作動流体組成物が適度な粘性を有するので、潤滑性に優れ、かつ冷凍効率も高いものとなり好ましい。
 以下、実施例により本発明を更に詳細に説明するが、本発明は下記実施例に制限されるものではない。
 なお実施例および比較例で得られた冷凍機油用エステルの各種分析は、以下の方法に従って分析した。
 
酸価: JIS K2501に準拠して測定した。
水酸基価: JIS K0070に準拠して測定した。
動粘度: JIS K2283に準拠して測定した。
 
実施例1の製造
 ネオペンチルグリコール124g(1.19mol)、1,4-ブタンジオール30g(0.34mol)、アジピン酸355g(2.43mol)、3,5,5-トリメチルヘキサノール339g(2.35mol)を4つ口フラスコに仕込み、窒素雰囲気下、120℃で反応水を留去しつつ常圧で3時間反応を行なった。その後、200℃で酸価が2以下となるまで反応を7時間継続した。ついで、200℃、1~5kPaの減圧下にて過剰な3,5,5-トリメチルヘキサノールを留去し、粗エステルを得た。粗エステルを冷却し、これに酸性白土およびシリカ-アルミナ系の吸着剤を、それぞれ理論上得られるエステル量の1.0質量%となるように添加して吸着処理した。吸着処理温度、圧力、および吸着処理時間は100℃、1~5kPa、2時間とした。最後に1ミクロンのフィルターを用いて濾過を行い、目的のエステルを得た。
実施例2の製造
 ネオペンチルグリコール180g(1.73mol)、1,4-ブタンジオール25g(0.28mol)、アジピン酸360g(2.47mol)、3,5,5-トリメチルヘキサノール256g(1.78mol)を4つ口フラスコに仕込み、窒素雰囲気下、115℃で反応水を留去しつつ常圧で4時間反応を行なった。以降の工程は実施例1と同様にして行い目的のエステルを得た。
実施例3の製造
 ネオペンチルグリコール205g(1.97mol)、1,4-ブタンジオール26g(0.28mol)、アジピン酸373g(2.55mol)、3,5,5-トリメチルヘキサノール217g(1.50mol)を4つ口フラスコに仕込み、窒素雰囲気下、125℃で反応水を留去しつつ常圧で3時間反応を行なった。以降の工程は実施例1と同様にして行い目的のエステルを得た。
実施例4の製造
 ネオペンチルグリコール174g(1.66mol)、1,4-ブタンジオール46g(0.51mol)、アジピン酸373g(2.55mol)、3,5,5-トリメチルヘキサノール238g(1.65mol)を4つ口フラスコに仕込み、窒素雰囲気下、120℃で反応水を留去しつつ常圧で4時間反応を行なった。以降の工程は実施例1と同様にして行い目的のエステルを得た。
実施例5の製造
 ネオペンチルグリコール129g(1.23mol)、1,5-ペンタンジオール28g(0.26mol)、スベリン酸393g(2.25mol)、n-オクタノール300g(2.30mol)を4つ口フラスコに仕込み、窒素雰囲気下、120℃で反応水を留去しつつ常圧で5時間反応を行なった。以降の工程は実施例1と同様にして行い目的のエステルを得た。
実施例6の製造
 ネオペンチルグリコール215g(2.07mol)、1,3-プロパンジオール22g(0.29mol)、アジピン酸385g(2.64mol)、3,5,5-トリメチルヘキサノール214g(1.49mol)を4つ口フラスコに仕込み、窒素雰囲気下、120℃で反応水を留去しつつ常圧で4時間反応を行なった。以降の工程は実施例1と同様にして行い目的のエステルを得た。
実施例7の製造
 ネオペンチルグリコール211g(2.03mol)、1,6-ヘキサンジオール42g(0.36mol)、アジピン酸385g(2.64mol)、3,5,5-トリメチルヘキサノール206g(1.43mol)を4つ口フラスコに仕込み、窒素雰囲気下、115℃で反応水を留去しつつ常圧で5時間反応を行なった。以降の工程は実施例1と同様にして行い目的のエステルを得た。
比較例1の製造
 ネオペンチルグリコール174g(1.66mol)、1,4-ブタンジオール46g(0.51mol)、アジピン酸373g(2.55mol)、3,5,5-トリメチルヘキサノール238g(1.65mol)を4つ口フラスコに仕込み、窒素雰囲気下、200℃で反応水を留去しつつ酸価が2以下となるまで常圧で反応を7時間継続した。ついで、200℃、1~5kPaの減圧下にて過剰な3,5,5-トリメチルヘキサノールを留去し、粗エステルを得た。粗エステルを冷却し、これに酸性白土およびシリカ-アルミナ系の吸着剤を、それぞれ理論上得られるエステル量の1.0質量%となるように添加して吸着処理した。吸着処理温度、圧力、および吸着処理時間は100℃、1~5kPa、2時間とした。最後に1ミクロンのフィルターを用いて濾過を行い、目的のエステルを得た。
比較例2の製造
 ネオペンチルグリコール104g(1.00mol)、1,4-ブタンジオール27g(0.30mol)、アジピン酸351g(2.40mol)を4つ口フラスコに仕込み、窒素雰囲気下、200℃で反応水を留去しつつ常圧で、酸価が270以下となるまで3時間反応を行い、エステル中間体を得た。このエステル中間体に、さらに3,5,5-トリメチルヘキサノール361g(2.50mol)を添加し酸価が2以下となるまで反応を7時間継続した。ついで、200℃、1~5kPaの減圧下にて過剰な3,5,5-トリメチルヘキサノールを留去し、粗エステルを得た。粗エステルを冷却し、これに酸性白土およびシリカ-アルミナ系の吸着剤を、それぞれ理論上得られるエステル量の1.0質量%となるように添加して吸着処理した。吸着処理温度、圧力、および吸着処理時間は100℃、1~5kPa、2時間とした。最後に1ミクロンのフィルターを用いて濾過を行い、目的のエステルを得た。
耐熱性(加熱試験)
 上記の冷凍機油用エステルについて加熱試験を実施することで、冷凍機油用エステルの耐熱性を評価した。耐熱性試験は空気雰囲気下、130℃の恒温槽内で72時間加熱し、加熱後の冷凍機油用エステルの酸価を測定した。
潤滑性(SRV試験)
 上記の冷凍機油用エステルについてSRV試験機にて潤滑性を評価した。SRV試験はボール/ディスクで行い、試験片はそれぞれSUJ‐2製を用いた。試験条件は試験温度60℃、荷重100N、振幅1mm、振動数50Hzで行い、試験時間25min経過後の摩耗痕径を測定した。
 実施例1~7および比較例1~2の製造条件を表1、表2にまとめ、物性値、耐熱性、潤滑性について表3、表4にまとめた。なお、表1、表2には、各成分の仕込み比率を記載しており、表3、表4には、生成したエステルにおける各成分に由来の構成成分のモル比率の測定値を記載した。
Figure JPOXMLDOC01-appb-T000004
 
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
 表1~表4に示すように、実施例1~7のエステルは、潤滑性が優れており、かつ耐熱性にも優れていることから、コンプレッサー内の厳しい潤滑条件下においても劣化し難く長期で使用する事ができるものである。また、加熱試験での酸価上昇を抑えられていることから、コンプレッサー内の金属等の腐食原因となる分解物の発生も抑えられるものである。
 一方、比較例1~2では、実施例のエステルと異なり酸価の上昇幅が大きいことから、実施例と比較して加熱試験によるエステルの分解が進んでいることが確認された。

 

Claims (2)

  1.  下記成分(A)、成分(B)、成分(C)および成分(D)から得られる冷凍機油用エステルであって、
      前記エステル中の前記成分(A)由来の構成成分1.0モルに対して、前記成分(B)由来の構成成分0.1~0.4モル、前記成分(C)由来の構成成分0.8~2.8モルおよび前記成分(D)由来の構成成分0.3~2.3モルの比率であり、
     前記エステルのヒドロキシル価が5~40mgKOH/gであり、式(1)および式(2)を満たすことを特徴とする、冷凍機油用エステル。
     
    (A) ネオペンチルグリコール
    (B) 炭素数2~6で両末端の炭素にヒドロキシル基を有する直鎖状の2価アルコール
    (C) 炭素数4~10で両末端の炭素にカルボキシル基を有する直鎖状の2価カルボン酸
    (D) 炭素数6~12の1価アルコール
     
    0.08 ≦ BOH/(AOH+BOH)≦ 0.15 ・・・(1)
     
    〔BOH/(AOH+BOH)〕/〔Bmol/(Amol+Bmol)〕 ≦ 0.9
                          ・・・(2)
     
    (前記式(1)および前記式(2)において、
     AOHは、前記エステル中の前記成分(A)由来の末端ヒドロキシル基のモル数であり、
     BOHは、前記エステル中の前記成分(B)由来の末端ヒドロキシル基のモル数であり、
     Amolは、前記エステル中の前記成分(A)由来の構成成分のモル数であり、
     Bmolは、前記エステル中の前記成分(B)由来の構成成分のモル数である)
     
  2.  非塩素系フロン冷媒または自然冷媒と、請求項1記載の冷凍機油用エステルとを含有することを特徴とする、冷凍機油用作動流体組成物。

     
PCT/JP2016/066756 2015-06-08 2016-06-06 冷凍機油用エステルおよび冷凍機油用作動流体組成物 WO2016199718A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP16807425.0A EP3305878A4 (en) 2015-06-08 2016-06-06 Ester for refrigeration oil and working fluid composition for refrigeration oil
CN201680029198.3A CN107614663B (zh) 2015-06-08 2016-06-06 冷冻机油用酯及冷冻机油用工作流体组合物
KR1020187000300A KR102523681B1 (ko) 2015-06-08 2016-06-06 냉동기유용 에스테르 및 냉동기유용 작동 유체 조성물
JP2017523626A JP6614510B2 (ja) 2015-06-08 2016-06-06 冷凍機油用エステルおよび冷凍機油用作動流体組成物

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015115892 2015-06-08
JP2015-115892 2015-06-08

Publications (1)

Publication Number Publication Date
WO2016199718A1 true WO2016199718A1 (ja) 2016-12-15

Family

ID=57503363

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/066756 WO2016199718A1 (ja) 2015-06-08 2016-06-06 冷凍機油用エステルおよび冷凍機油用作動流体組成物

Country Status (6)

Country Link
EP (1) EP3305878A4 (ja)
JP (1) JP6614510B2 (ja)
KR (1) KR102523681B1 (ja)
CN (1) CN107614663B (ja)
TW (1) TWI689581B (ja)
WO (1) WO2016199718A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20220002354A (ko) * 2019-04-25 2022-01-06 니치유 가부시키가이샤 냉동기유용 에스테르 및 그것을 포함하는 작동 유체 조성물

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001501991A (ja) * 1996-09-11 2001-02-13 エクソン・ケミカル・パテンツ・インク 潤滑剤ベース原料としての使用のための未転化ヒドロキシル基を有するポリオールエステル組成物
JP2013181133A (ja) * 2012-03-02 2013-09-12 Jx Nippon Oil & Energy Corp 冷凍機用作動流体組成物、冷凍機油及びその製造方法
WO2014017596A1 (ja) * 2012-07-26 2014-01-30 Jx日鉱日石エネルギー株式会社 潤滑油基油、冷凍機油及び冷凍機用作動流体組成物
WO2014156738A1 (ja) * 2013-03-25 2014-10-02 Jx日鉱日石エネルギー株式会社 冷凍機用作動流体組成物

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2579502B2 (ja) * 1987-11-26 1997-02-05 日清製油株式会社 潤滑油
DE69120952T2 (de) * 1990-04-20 1996-11-28 Nippon Oil Co Ltd Synthetische Schmieröle
JPH108084A (ja) 1996-06-25 1998-01-13 Kao Corp 冷凍機作動流体用組成物
JPWO0068345A1 (en) * 1999-05-10 2000-11-16 New Japan Chem Co Ltd Lubricating oil for refrigerator, hydraulic fluid composition for refrigerator and method for lubrication of refrigerator
WO2001002518A1 (fr) * 1999-07-05 2001-01-11 Nippon Mitsubishi Oil Corporation Composition a base d'huile pour machine frigorifique
CA2487587C (en) * 2003-11-21 2012-04-24 Nof Corporation A polyol ester for use within a refrigeration lubricant composition compatible with chlorine-free hydrofluorocarbon refrigerants
JP4806967B2 (ja) * 2005-05-27 2011-11-02 日油株式会社 冷凍機用潤滑油組成物
JP5193485B2 (ja) * 2007-03-27 2013-05-08 Jx日鉱日石エネルギー株式会社 冷凍機油及び冷凍機用作動流体組成物
CN101812349B (zh) * 2010-05-11 2013-05-01 上海海都化学科技有限公司 润滑油及润滑脂基础油及其制备方法与应用

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001501991A (ja) * 1996-09-11 2001-02-13 エクソン・ケミカル・パテンツ・インク 潤滑剤ベース原料としての使用のための未転化ヒドロキシル基を有するポリオールエステル組成物
JP2013181133A (ja) * 2012-03-02 2013-09-12 Jx Nippon Oil & Energy Corp 冷凍機用作動流体組成物、冷凍機油及びその製造方法
WO2014017596A1 (ja) * 2012-07-26 2014-01-30 Jx日鉱日石エネルギー株式会社 潤滑油基油、冷凍機油及び冷凍機用作動流体組成物
WO2014156738A1 (ja) * 2013-03-25 2014-10-02 Jx日鉱日石エネルギー株式会社 冷凍機用作動流体組成物

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3305878A4 *

Also Published As

Publication number Publication date
EP3305878A1 (en) 2018-04-11
KR102523681B1 (ko) 2023-04-19
CN107614663A (zh) 2018-01-19
JP6614510B2 (ja) 2019-12-04
CN107614663B (zh) 2020-06-26
EP3305878A4 (en) 2018-12-05
JPWO2016199718A1 (ja) 2018-03-22
TWI689581B (zh) 2020-04-01
TW201700721A (zh) 2017-01-01
KR20180017079A (ko) 2018-02-20

Similar Documents

Publication Publication Date Title
EP2382288B1 (en) Production of polyol ester lubricants for refrigeration systems
JP5852176B2 (ja) 冷媒2,3,3,3‐テトラフルオロ‐1‐プロペン用冷凍機油
KR101899310B1 (ko) 냉동기용 작동 유체 조성물, 냉동기유 및 이의 제조 방법
KR101987631B1 (ko) 냉동기유 및 냉동기용 작동 유체 조성물
JP2012052135A (ja) 冷凍機用潤滑油組成物
EP3470501B1 (en) Working fluid composition for refrigerator
TWI608091B (zh) Freezer used as a fluid and fluid composition
US20120304687A1 (en) Refrigeration apparatus
JP5537999B2 (ja) 冷媒r32用冷凍機油
WO2009085848A2 (en) Refrigeration oil from gas-to-liquid derived and bio-derived diesters
JP4936656B2 (ja) 冷凍機用潤滑油組成物
JP4855175B2 (ja) 冷凍機用潤滑油組成物
JP4961666B2 (ja) 冷凍機用潤滑油組成物
JP4806967B2 (ja) 冷凍機用潤滑油組成物
JP5399455B2 (ja) 冷凍機用潤滑油組成物
JP5110240B2 (ja) 冷凍機用潤滑油組成物
JP6614510B2 (ja) 冷凍機油用エステルおよび冷凍機油用作動流体組成物
EP2531785B1 (en) Refrigeration apparatus
EP3378923B1 (en) Ester for refrigerator oils
CN115109630B (zh) 配合二氟甲烷制冷剂使用的冷冻机油组合物及其应用
AU2008343191B2 (en) Refrigeration oil from gas-to-liquid derived and bio-derived diesters

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16807425

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017523626

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20187000300

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2016807425

Country of ref document: EP