Nothing Special   »   [go: up one dir, main page]

WO2015186413A1 - 硬質皮膜、硬質皮膜被覆部材、それらの製造方法、及び硬質皮膜の製造に用いるターゲット - Google Patents

硬質皮膜、硬質皮膜被覆部材、それらの製造方法、及び硬質皮膜の製造に用いるターゲット Download PDF

Info

Publication number
WO2015186413A1
WO2015186413A1 PCT/JP2015/059456 JP2015059456W WO2015186413A1 WO 2015186413 A1 WO2015186413 A1 WO 2015186413A1 JP 2015059456 W JP2015059456 W JP 2015059456W WO 2015186413 A1 WO2015186413 A1 WO 2015186413A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
altiw
target
substrate
arc current
Prior art date
Application number
PCT/JP2015/059456
Other languages
English (en)
French (fr)
Inventor
亮太郎 府玻
久保田 和幸
福永 有三
Original Assignee
三菱日立ツール株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱日立ツール株式会社 filed Critical 三菱日立ツール株式会社
Priority to JP2016504819A priority Critical patent/JP5967329B2/ja
Priority to KR1020167033943A priority patent/KR101907052B1/ko
Priority to CA2950701A priority patent/CA2950701A1/en
Priority to US15/315,464 priority patent/US10287672B2/en
Priority to CN201580028242.4A priority patent/CN106460151B/zh
Priority to EP15803758.0A priority patent/EP3150740B1/en
Publication of WO2015186413A1 publication Critical patent/WO2015186413A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3407Cathode assembly for sputtering apparatus, e.g. Target
    • C23C14/3414Metallurgical or chemical aspects of target preparation, e.g. casting, powder metallurgy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/12Both compacting and sintering
    • B22F3/14Both compacting and sintering simultaneously
    • B22F3/15Hot isostatic pressing
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • C04B35/645Pressure sintering
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/05Mixtures of metal powder with non-metallic powder
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C32/00Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C32/00Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ
    • C22C32/0005Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ with at least one oxide and at least one of carbides, nitrides, borides or silicides as the main non-metallic constituents
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/02Pretreatment of the material to be coated
    • C23C14/024Deposition of sublayers, e.g. to promote adhesion of the coating
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/0641Nitrides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/0676Oxynitrides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • C23C14/081Oxides of aluminium, magnesium or beryllium
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • C23C14/083Oxides of refractory metals or yttrium
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/16Metallic material, boron or silicon on metallic substrates or on substrates of boron or silicon
    • C23C14/165Metallic material, boron or silicon on metallic substrates or on substrates of boron or silicon by cathodic sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • C23C14/32Vacuum evaporation by explosion; by evaporation and subsequent ionisation of the vapours, e.g. ion-plating
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • C23C14/32Vacuum evaporation by explosion; by evaporation and subsequent ionisation of the vapours, e.g. ion-plating
    • C23C14/325Electric arc evaporation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3435Applying energy to the substrate during sputtering
    • C23C14/345Applying energy to the substrate during sputtering using substrate bias
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3485Sputtering using pulsed power to the target
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C30/00Coating with metallic material characterised only by the composition of the metallic material, i.e. not characterised by the coating process
    • C23C30/005Coating with metallic material characterised only by the composition of the metallic material, i.e. not characterised by the coating process on hard metal substrates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B27/00Tools for turning or boring machines; Tools of a similar kind in general; Accessories therefor
    • B23B27/14Cutting tools of which the bits or tips or cutting inserts are of special material
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/40Metallic constituents or additives not added as binding phase
    • C04B2235/402Aluminium
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/658Atmosphere during thermal treatment
    • C04B2235/6581Total pressure below 1 atmosphere, e.g. vacuum

Definitions

  • the present invention provides an (AlTiW) NO hard coating excellent in oxidation resistance and wear resistance, a member coated with an (AlTiW) NO hard coating, a manufacturing method thereof, and a target used for manufacturing an (AlTiW) NO hard coating. About.
  • Japanese Patent No. 3877124 contains at least Al, Ti, Cr, N and O, the nonmetallic component is N w O 100-w (where w is 70 to 99 atomic%), and oxygen.
  • An AlTiCrNO hard coating having a structure in which an A layer having a content of 1 to 10 atomic% and a B layer having an oxygen content of more than 10 atomic% and not more than 30 atomic% is disclosed.
  • Patent No. 3877124 describes that the oxygen content of the AlTiCrNO film is adjusted by using a mixed gas of nitrogen and oxygen and adjusting the mixing ratio.
  • the AlTiCrNO hard coating of Patent No. 3877124 does not have a WO bond, it cannot sufficiently meet the recent demand for high performance for cutting tools and the like.
  • the method of Patent No. 3877124 uses an oxygen-containing atmosphere, even if a hard film containing W is formed instead of Cr, oxygen in the atmosphere preferentially reacts with Al to form Al. In addition to forming an oxide, it also reacts with Ti to form a Ti oxide, and the resulting AlTiWNO coating does not have sufficient oxidation resistance and wear resistance.
  • Patent No. 4846519 contains Al, M component (one or more elements selected from Group 4a, 5a and 6a metals, Si, B and S), and Al nitride, Al nitride content is A target that is 5-30 mol% is disclosed.
  • Patent No. 5471882 is made of a Ti—Al alloy containing 1 to 30 atomic% of Al, and Al is present in a solid solution state in Ti or an intermetallic compound with Ti. Discloses a sputter target having an average oxygen content of 1070 ppmw or less.
  • the targets described in Japanese Patent Nos. 4846519 and 5471882 do not contain oxygen exceeding the inevitable impurity level, the oxygen of the film is introduced from oxygen gas in the film formation atmosphere. For this reason, similarly to the hard coating of Patent No. 3877124, the oxygen-containing hard coating obtained using the targets of Patent No. 4846519 and Patent No. 5471882 does not have sufficient oxidation resistance and wear resistance.
  • JP 2009-220260 discloses a coated tool in which a carbide phase is formed on a WC-based cemented carbide substrate after forming a W-modified phase of bcc structure, and then a nitride hard film is formed thereon. Yes.
  • Japanese Patent Application Laid-Open No. 2009-220260 describes that the W-modified phase is formed by ion bombardment using a film forming apparatus equipped with an arc discharge evaporation source. Specifically, a negative bias voltage P1 of ⁇ 1000 to ⁇ 600 V is applied to a substrate having a surface temperature of 800 to 860 ° C., and arc discharge evaporation is performed using an Ar gas containing hydrogen gas of 0.01 to 2 Pa.
  • the substrate is irradiated with metal ions (Ti ions) evaporated from the source.
  • metal ions Ti ions
  • the nitride hard film obtained in JP-A-2009-220260 does not contain oxygen in an amount exceeding the inevitable impurity level, it does not have the target oxidation resistance and wear resistance.
  • the three targets C1 (for example, Ti 100 ), C2 (for example, Al 70 Cr 30 ) and C3 (for example, Ti 75 Si 25 ) used for the manufacture of the nitride hard film disclosed in JP-A-2009-220260 also have inevitable impurity levels. Does not contain excess oxygen.
  • JP 2008-533310 is a method for forming a hard coating composed of (Al x Cr 1-x ) y O z in an oxygen-containing atmosphere using an arc vapor deposition coating apparatus having a target electrode connected to a pulse power source. Is disclosed. However, in the method of JP-T-2008-533310, oxygen is introduced from the atmospheric gas without using a target containing oxygen in an amount exceeding the inevitable impurity level, so that the obtained hard coating has the target oxidation resistance and Does not have wear resistance.
  • a first object of the present invention is to provide an (AlTiW) NO coating having an oxidation resistance and wear resistance superior to those of the conventional (AlTi) NO coating and having a long life.
  • the second object of the present invention is a hard film coated member (cutting tool, which has an oxidation resistance and wear resistance superior to those of the conventional (AlTi) NO film, and has a long-life (AlTiW) NO film. Molds, etc.).
  • a third object of the present invention is to provide a method for producing such an (AlTiW) NO coating and the hard coating-coated member.
  • a fourth object of the present invention is to provide a target used for producing such an (AlTiW) NO film.
  • the hard coating preferably has a rock salt type as a main structure and a wurtzite type as a substructure in an electron diffraction pattern.
  • the hard coating member of the present invention is characterized in that the hard coating is formed on a substrate. Between the substrate and the hard coating, selected from B, O, C and N by at least one metal element selected from elements 4a, 5a and 6a, Al and Si by physical vapor deposition It is preferable that an intermediate layer essentially including at least one element is formed.
  • a pulse arc current is applied to a target made of an AlTi alloy containing an Al nitride, Ti nitride, W nitride, and W oxide provided in an arc discharge evaporation source,
  • the pulsed arc current has a maximum arc current value of 90 to 120 A, a minimum arc current value of 50 to 90 A, and a frequency of 2 to 15 kHz, and the maximum arc current value and the minimum arc current value are
  • the difference is a substantially rectangular wave shape with a difference of 10 A or more, and has a duty ratio of 40 to 70%.
  • the method for producing the hard film-coated member of the present invention is as follows.
  • a DC bias voltage or a unipolar pulse bias voltage of ⁇ 270 to ⁇ 20 V is applied to the substrate,
  • a pulse arc current is applied to a target made of an AlTi alloy containing Al nitride, Ti nitride, W nitride and W oxide provided in an arc discharge evaporation source,
  • the pulsed arc current has a maximum arc current value of 90 to 120 A, a minimum arc current value of 50 to 90 A, and a frequency of 2 to 15 kHz, and the maximum arc current value and the minimum arc current value are
  • the difference is a substantially rectangular wave shape with a difference of 10 A or more, and has a duty ratio of 40 to 70%.
  • the target is (Al) p (AlN) q (Ti) r (TiN) s (WN) t (WOx) u (where p, q, r, s, t and u are atomic ratios of 0.59 ⁇ p ⁇ 0.8, 0.01 ⁇ q ⁇ 0.1, 0.04 ⁇ r ⁇ 0.35, 0.03, respectively.
  • x is a number of 2 to 3 in terms of atomic ratio. preferable.
  • the substrate is a WC-based cemented carbide
  • the first modified layer applies a negative DC voltage of ⁇ 850 to ⁇ 500 V to the substrate maintained at a temperature of 400 to 700 ° C. in an argon gas atmosphere with a flow rate of 30 to 150 sccm, and an arc. 50 to 100 for a target having a composition represented by Ti e O 1-e (where e is an atomic ratio of Ti and 0.7 ⁇ e ⁇ 0.95) provided in the discharge evaporation source. It is formed by applying an arc current of A and bombarding the surface of the substrate with ions generated from the target.
  • the second modified layer applies a negative DC voltage of ⁇ 1000 to ⁇ 600 V to the base body maintained at a temperature of 450 to 750 ° C. in an argon gas atmosphere with a flow rate of 30 to 150 sccm, and an arc. 50 to 100 A for a target having a composition represented by Ti f B 1-f (where f is an atomic ratio of Ti and 0.5 ⁇ f ⁇ 0.9) provided in the discharge evaporation source. And the surface of the substrate is bombarded with ions generated from the target.
  • the (AlTiW) NO film with the same crystal structure is formed immediately above the modified layer, so that the adhesion force is higher than when the (AlTiW) NO film is formed directly on the WC-based cemented carbide without the modified layer. Increases significantly.
  • the target sintered body is hot-pressed in a vacuum atmosphere with a mixed powder composed of AlTi alloy powder, AlN powder, TiN powder, WN powder, and WOx powder (for example, WO 3 and / or WO 2 powder). Is preferably obtained.
  • the hard coating of the present invention is composed of polycrystalline grains of Al-rich (AlTiW) NO in which WO bonding is recognized without almost Al-O bonding by X-ray photoelectron spectroscopy, so that O is mainly bonded to Al.
  • AlTiW Al-rich
  • oxidation resistance and wear resistance are remarkably improved. Therefore, members (cutting tools, dies, etc.) having the hard coating of the present invention have a significantly longer life than before.
  • the method of the present invention for producing the hard film introduces WO bonds from the target material containing O in the state of WOx to the hard film without containing oxygen gas in the atmosphere, so that the structure of the hard film is controlled. Can be carried out stably and efficiently, and its practicality is extremely high.
  • the hard film covering member formed by forming the (AlTiW) NO film of the present invention on a cemented carbide substrate, a ceramic substrate such as cBN, sialon, a high-speed steel substrate, or a tool steel substrate is a conventional material.
  • the oxidation resistance and wear resistance are remarkably improved, so that it is useful for cutting tools such as inserts, end mills and drills, and various dies.
  • FIG. 2 is a scanning electron micrograph (magnification: 25,000 times) showing a cross section of the hard film-coated tool of Example 1.
  • FIG. 2 is a graph showing an X-ray photoelectron spectroscopy spectrum showing the bonding state of Ti at three locations in the cross section of the (AlTiW) NO film of Example 1.
  • FIG. 2 is a graph showing an X-ray photoelectron spectroscopy spectrum showing the bonding state of W at three cross sections of the (AlTiW) NO film of Example 1.
  • FIG. 2 is a graph showing an X-ray photoelectron spectroscopy spectrum showing the bonding state of Al at three locations in the cross section of the (AlTiW) NO film of Example 1.
  • FIG. 2 is a graph showing an X-ray diffraction pattern of the (AlTiW) NO film of Example 1.
  • FIG. Transmission electron micrograph (magnification: 3,600,000 times) showing a cross section near the modified layer in the hard coated member (insert) of Example 1 having the modified layer between the WC-based cemented carbide substrate and the hard coating is there.
  • FIG. 9 is a schematic view of the transmission electron micrograph of FIG. It is the schematic which shows the method of calculating
  • FIG. 3 is a diagram showing the result of analyzing the crystal structure from the nanobeam diffraction image of the modified layer of Example 1.
  • 2 is an example showing the result of analyzing the crystal structure from the nanobeam diffraction image of the (AlTiW) NO coating of Example 1.
  • FIG. 2 is a graph showing a spectrum obtained by energy dispersive X-ray analysis of a cross section of the modified layer of Example 1.
  • FIG. 2 is a photograph showing a limited-field diffraction image of the (AlTiW) NO film of Example 1.
  • FIG. 20 is a scanning electron micrograph (magnification: 3,000 times) showing the surface of the (AlTiW) NO film of Comparative Example 19.
  • AI method Al x Ti y W z ) a N (1-ab) O b
  • the X-ray photoelectron spectroscopic spectrum of the hard coating shows that it has a WO bond substantially without an Al-O bond, and the X-ray diffraction pattern shows a rock salt type single structure.
  • the substrate needs to be made of a material that has high heat resistance and can be applied to physical vapor deposition.
  • the material of the substrate include cemented carbide, cermet, high speed steel, tool steel, and ceramics typified by a boron nitride sintered body (cBN) mainly composed of cubic boron nitride.
  • cBN boron nitride sintered body
  • WC-based cemented carbide or ceramic is preferred.
  • the WC-based cemented carbide is composed of tungsten carbide (WC) particles and a binder phase of Co or an alloy mainly composed of Co.
  • the binder phase content is preferably 1 to 13.5% by mass, and 3 to 13% by mass.
  • the substrate has insufficient toughness, and if the binder phase exceeds 13.5% by mass, the hardness (wear resistance) becomes insufficient.
  • the (AlTiW) NO coating of the present invention can be formed on any of the unprocessed surface, polished surface, and blade edge processed surface of the sintered WC-based cemented carbide.
  • the substrate surface is irradiated with ions generated from the TiO target or the TiB target, and the average thickness is 1 to 10 nm. It is preferable to form a modified layer having an Fcc structure.
  • the WC-based cemented carbide has a hexagonal crystal structure of WC as the main component, but the modified layer has the same Fcc structure as the (AlTiW) NO film, and more than 30% of the crystal lattice fringes at the boundary (interface) between them, Preferably, the portion of 50% or more, more preferably 70% or more is continuous, so that the WC-based cemented carbide substrate and the (AlTiW) NO film are firmly adhered via the modified layer.
  • the modified layer obtained by ion bombardment using a TiO target is mainly composed of W 3 O of Fcc structure in which O is slightly contained in the WC particles constituting the WC-based cemented carbide substrate, and / or O in Co. It is made of Fcc-structured CoO containing a small amount of bismuth and is formed into a high-density thin layer, making it difficult to be the starting point of destruction.
  • the modified layer obtained by ion bombardment using a TiB target also has an Fcc structure and is formed into a high-density thin layer, so it is unlikely to be a starting point for fracture. If the average thickness of the modified layer is less than 1 nm, the effect of improving the adhesion of the hard coating to the substrate cannot be sufficiently obtained, and if it exceeds 10 nm, the adhesion is worsened.
  • (C) (AlTiW) NO film (1) Composition
  • the (AlTiW) NO coating of the present invention coated on a substrate by the AI method is composed of a nitride oxide containing Al, Ti and W as essential elements.
  • (AlTiW) Composition of NO coating has the general formula: represented by (Al x Ti y W z) a N (1-ab) O b ( atomic ratio).
  • the (AlTiW) NO film of the present invention has a WO bond specified by X-ray photoelectron spectroscopy but substantially no Al-O bond, and has a rock salt type single structure in an X-ray diffraction pattern. It is characterized by that.
  • substantially having no Al—O bond means that there is no Al—O bond peak exceeding the inevitable impurity level in the X-ray photoelectron spectrum of the (AlTiW) NO film. .
  • the oxidation resistance and wear resistance of the hard coating are insufficient, and if it exceeds 0.8, the wurtzite structure is the main structure. Thus, the wear resistance of the hard coating is impaired.
  • a preferable range of the ratio x of Al is 0.6 to 0.75.
  • the Ti ratio y is less than 0.05, the adhesion between the substrate and the (AlTiW) NO coating is significantly impaired, and if it exceeds 0.38, the Al content of the hard coating is reduced. Therefore, oxidation resistance and wear resistance are impaired.
  • a preferable range of the ratio y of Ti is 0.1 to 0.3.
  • AlTiW When the total of the metal component (AlTiW), nitrogen and oxygen in the (AlTiW) NO film is 1, and the proportion a of the metal component (AlTiW) is less than 0.2, impurities are present at the grain boundaries of the (AlTiW) NO polycrystal It becomes easy to be taken in. Impurities are derived from the internal residue of the film forming apparatus. In such a case, the bonding strength of the (AlTiW) NO film is reduced, and the (AlTiW) NO film is easily destroyed by external impact.
  • a preferable range of the ratio a of the metal component (AlTiW) is 0.25 to 0.75.
  • the oxygen content b in the (AlTiW) NO film is less than 0.02 or more than 0.10, the oxidation resistance and wear resistance of the (AlTiW) NO film are low.
  • a preferable range of the oxygen content b is 0.03 to 0.10.
  • the (AlTiW) NO film of the present invention may contain C and / or B.
  • the total amount of C and B is preferably 30 atomic percent or less of the NO content, and more preferably 10 atomic percent or less in order to maintain high wear resistance.
  • the (AlTiW) NO film can be referred to as oxynitride carbide, oxynitride boride, or oxycarbonitride.
  • the mechanism by which the (AlTiW) NO film of the present invention has higher oxidation resistance and wear resistance than the conventional one is considered as follows, taking an (AlTi) N film-coated cutting tool as an example.
  • an (AlTi) N film-coated cutting tool a large amount of oxygen is taken in from the film surface during cutting, and Al near the film surface is preferentially oxidized to form an Al oxide layer.
  • Ti also combines with oxygen to form a Ti oxide layer which is a very low density fragile layer under the Al oxide layer. This is because the free energy of formation of Al oxide is smaller than the free energy of formation of Ti oxide.
  • the (AlTiW) NO film of the present invention W is present in the (AlTiW) NO film as a W—O bond and a W—N bond. It is presumed that a dense oxide of Al and W is formed in the (AlTiW) NO film satisfying this condition due to the ease of free energy of formation due to the heat generated during cutting.
  • the (AlTiW) NO film containing a W—O bond is much denser than the conventional (AlTi) N film and the (AlTiW) NO film formed in an oxygen-containing atmosphere, and therefore suppresses oxygen diffusion.
  • WO bonds that exist independently react preferentially with Al so there is no longer enough oxygen to react with Ti, and no fragile Ti oxide is formed. Continues to maintain resistance and wear resistance.
  • the average thickness of the (AlTiW) NO film of the present invention is preferably from 0.5 to 15 ⁇ m, more preferably from 1 to 12 ⁇ m. With a film thickness in this range, the (AlTiW) NO film is prevented from peeling off from the substrate, and excellent oxidation resistance and wear resistance are exhibited. If the average thickness is less than 0.5 ⁇ m, the effect of the (AlTiW) NO film cannot be obtained sufficiently, and if the average thickness exceeds 15 ⁇ m, the residual stress becomes excessive and the (AlTiW) NO film tends to peel from the substrate. .
  • the “thickness” of the non-flat (AlTiW) NO film means an average thickness.
  • the (AlTiW) NO film of the present invention has a rock salt type single structure. Further, in the limited field diffraction pattern by the transmission electron microscope, the (AlTiW) NO film of the present invention has a rock salt structure as a main structure, and may have other structures (such as a wurtzite structure) as a substructure. . In a practical (AlTiW) NO film, it is preferable that the rock salt structure is the main structure and the wurtzite structure is the substructure.
  • (D) laminating the hard coating of the present invention (AlTiW) NO coating, (Al x Ti y W z ) a N (1-ab) O b ( provided that, x, y, z, a and b are respectively atomic ratios 0.6 ⁇ x ⁇ 0.8, 0.05 ⁇ y ⁇ 0.38, 0.02 ⁇ z ⁇ 0.2, x + y + z 1, 0.2 ⁇ a ⁇ 0.8, and 0.02 ⁇ b ⁇ 0.10.
  • at least two or more (AlTiW) NO films having different compositions may be alternately laminated. With such a laminated structure, wear resistance and oxidation resistance can be further enhanced.
  • An intermediate layer that essentially contains at least one element selected from the group consisting of C and N may be formed.
  • the intermediate layer is TiN or (TiAl) N, (TiAl) NC, (TiAl) NCO, (TiAlCr) N, (TiAlCr) NC, (TiAlCr) NCO, (TiAlNb) N, whose main structure is a rock salt structure.
  • the intermediate layer may be a single layer or a stacked layer.
  • the AI apparatus includes arc discharge evaporation sources 13 and 27 attached to the decompression vessel 5 via an insulator 14, and targets 10 attached to the arc discharge evaporation sources 13 and 27, respectively.
  • 18, arc discharge power sources 11, 12 connected to the respective arc discharge evaporation sources 13, 27, a column 6 supported on the rotation axis of the decompression vessel 5 via the bearing portion 4, and a base body 7 are held.
  • a holder 8 supported by the support 6, a drive unit 1 that rotates the support 6, and a bias power source 3 that applies a bias voltage to the base 7 are provided.
  • the decompression vessel 5 is provided with a gas introduction part 2 and an exhaust port 17.
  • the arc ignition mechanisms 16 and 16 are attached to the decompression vessel 5 via arc ignition mechanism bearing portions 15 and 15.
  • the electrode 20 is attached to the decompression vessel 5 via insulators 19 and 19.
  • a shielding plate 23 is provided in the decompression vessel 5 via a shielding plate bearing portion 21.
  • the shielding plate 23 is moved, for example, vertically or horizontally by the shielding plate driving unit 22, and after the shielding plate 22 is not present in the space in the decompression vessel 5, (AlTiW) NO film is formed.
  • the (AlTiW) NO film forming target of the present invention is (Al) p (AlN) q (Ti) r (TiN) s (WN) t (other than inevitable impurities) WOx) u (where p, q, r, s, t, and u are atomic ratios of 0.59 ⁇ p ⁇ 0.8, 0.01 ⁇ q ⁇ 0.1, 0.04 ⁇ r ⁇ 0.35, 0.03 ⁇ s ⁇ 0.15, 0.01 ⁇ t, respectively.
  • (AlN), (TiN) and (WN) respectively mean (Al 1 N 1 ), (Ti 1 N 1 ) and (W 1 N 1 ) in atomic ratio, and (WOx) means in atomic ratio. It means (W 1 Ox).
  • WOx is a main component of tungsten oxide and is mainly WO 3 and / or WO 2 , but W 2 O 5 , W 4 O 11 , W 1 O 1 , W 2 O 3 , W 4 O 3 , W At least one tungsten oxide of 5 O 9 , W 3 O 8 and W 5 O 14 may be contained. If p, q, r, s, t and u are not within the above ranges, the (AlTiW) NO film of the present invention cannot be obtained.
  • the target contains (a) the amount of Al nitride, Ti nitride and W nitride in the above amount, thereby significantly reducing the amount of droplets generated during arc discharge.
  • the reason why the generation amount of droplets is suppressed is that when the constituent elements of the target evaporate by arc discharge, the nitrogen derived from the nitride of each constituent element (Al, Ti and W) is ionized near the surface of the target. This is thought to be due to the effect of increasing the moving speed of the arc spot.
  • the nitride of each constituent element (Al, Ti and W) is present in the immediate vicinity of the Al single phase, which apparently reduces the area of the low melting point Al single phase and concentrates arc discharge. Can be avoided and the amount of droplets can be reduced. This is because the nitride of each constituent element (Al, Ti and W) has a higher melting point than the Al single phase.
  • AlTiW NO film with reduced droplets the growth of polycrystalline grains is not disrupted, so a high-density (AlTiW) NO film is formed, which is stronger than before.
  • the main reason why the oxygen content can be reduced during the production of the target and during the formation of the (AlTiW) NO film is that a part of Al and Ti contained in the target is a chemically stable nitride. This is because oxidation of the raw material powder is suppressed by heat generated in the mixing process of the target raw material powder and the hot pressing process. By suppressing oxidation, the oxygen content of the target is greatly reduced, and the amount of oxygen released from the target during arc discharge is greatly reduced. As a result, unintentional mixing of oxygen into the (AlTiW) NO film is suppressed, and in particular, oxidation of Ti is significantly suppressed.
  • the (AlTiW) NO film of the present invention has fewer droplets than the prior art due to the effect of suppressing oxidation during the film formation, the growth of (AlTiW) NO polycrystalline grains is not inhibited. Furthermore, since segregation of crystal grain boundaries is also suppressed, it has a healthy structure in which polycrystalline grains have grown.
  • WOWOx in the above target is necessary to contain W-O bonds in the film.
  • WOx in the target becomes W ions and O ions by the arc spot, reacts with each other instantaneously to form a W—O bond, and reaches the (AlTiW) NO film.
  • WOx has electrical conductivity, it is possible to stably arc discharge.
  • the (AlTiW) NO film forming target can be prepared as follows.
  • a powder metallurgy method is used to fill an AlTi alloy powder, AlN powder, TiN powder, WN powder, and WOx powder (for example, WO 3 powder and / or WO 2 powder) in a ball mill hermetic container for several hours in an argon gas atmosphere ( Mix for example 5 hours).
  • the average particle diameter of each powder is preferably 0.01 to 500 ⁇ m, and more preferably 0.1 to 100 ⁇ m.
  • the average particle size of each powder is determined by observation with a scanning electron microscope (SEM).
  • alumina balls with a purity of 99.999% or more for the media.
  • the obtained mixed powder is put into a graphite mold of a vacuum hot press sintering apparatus and sintered.
  • the degree of vacuum in the sintering apparatus is set to 1 to 10 ⁇ 10 ⁇ 3 Pa (for example, 7 ⁇ 10 ⁇ 3 Pa). It is preferable to perform pressing and sintering after the above.
  • the press load is preferably set to 100 to 200 MPa (for example, 170 MPa).
  • the sintering is preferably performed at a temperature of 520 to 580 ° C. (eg 550 ° C.) for several hours (eg 2 hours).
  • the target material obtained by sintering is processed into a shape suitable for an AI device to obtain a target for (AlTiW) NO film formation.
  • TiO target for modified layer formation is Ti e O 1-e (where e is the atomic ratio of Ti and 0.7 ⁇ e ⁇ 0.95, excluding inevitable impurities) It is a number to satisfy.
  • e is the atomic ratio of Ti and 0.7 ⁇ e ⁇ 0.95, excluding inevitable impurities
  • a preferable range of the atomic ratio e of Ti is 0.8 to 0.9.
  • the TiO target for forming the modified layer is preferably produced by a hot press method.
  • metal Ti powder is put into a WC-based cemented carbide mold of a hot press sintering apparatus, and the pressure is reduced to 1 to 20 volumes after vacuuming. Sintering is performed for several hours (for example, 2 hours) in an Ar gas atmosphere containing 5% (for example, 5% by volume) of oxygen gas.
  • the obtained sintered body is processed into a shape suitable for an AI device to obtain a modified layer forming TiO target.
  • (C) Modified layer forming TiB target The modified layer forming TiB target, except for inevitable impurities, is Ti f B 1-f (where f is the atomic ratio of Ti, 0.5 ⁇ f ⁇ 0.9 It is a number to satisfy. If the atomic ratio f of Ti is less than 0.5, a modified layer having an Fcc structure cannot be obtained, and if it exceeds 0.9, a decarburized phase is formed, and a modified layer having an Fcc structure cannot be obtained.
  • a preferable range of the atomic ratio f of Ti is 0.7 to 0.9.
  • the TiB target for forming the modified layer is also preferably produced by a hot press method.
  • TiB powder is put into a WC-based cemented carbide mold of a hot press sintering apparatus, and 1 to 10 ⁇ 10 ⁇ 3 Pa (for example, 7 ⁇ 10 -3 Pa) in an atmosphere reduced in pressure for several hours (for example, 2 hours).
  • the obtained sintered body is processed into a shape suitable for the AI device to obtain a modified layer forming TiB target.
  • arc discharge evaporation sources 13 and 27 are respectively a TiO target or TiB target 10 for forming a modified layer of cathode material, and (AlTiW) NO.
  • a target for film formation for example, Al—AlN—Ti—TiN—WN—WO 3 alloy
  • a direct current arc current is applied to the target 10 from the arc discharge power supplies 11 and 12 under the conditions described below.
  • a pulsed arc current is passed through.
  • the arc discharge evaporation sources 13 and 27 are provided with magnetic field generating means (a structure having an electromagnet and / or a permanent magnet and a yoke), and there are several in the vicinity of the base 7 on which the (AlTiW) NO film is formed.
  • a magnetic field distribution with a gap magnetic flux density of 10 G (for example, 10 to 50 G) is formed.
  • the target for forming an (AlTiW) NO film of the present invention contains a small amount of low-melting metal Al.
  • the arc spot tends to stay in the Al part in the process of forming the NO film.
  • a large melting portion is generated in the staying portion, and droplets in the melting portion adhere to the surface of the substrate. These droplets are called droplets and roughen the surface of the (AlTiW) NO film.
  • the droplets cause the growth of the (AlTiW) NO polycrystalline grains and become the starting point of film destruction, and the desired (AlTiW) NO film cannot be obtained.
  • the (AlTiW) NO film of the present invention was suppressed while suppressing the formation of oxides on the target for forming the (AlTiW) NO film and the formation of droplets. It was found that a pulsed arc current must be applied to the (AlTiW) NO film forming target attached to the arc discharge evaporation source under predetermined conditions in order to form the film.
  • (E) Bias power source As shown in FIG. 1, a DC voltage or a pulse bias voltage is applied to the substrate 7 from the bias power source 3.
  • the inside of the vacuum vessel 5 is 1 to 5 ⁇ 10 ⁇ 2 Pa (for example, 1.5 ⁇ 10 ⁇ 2 Pa).
  • the substrate 7 is heated to a temperature of 250 to 650 ° C. by a heater (not shown).
  • a heater not shown
  • the substrate 7 can take various shapes such as a solid type end mill or insert.
  • argon gas is introduced into the decompression vessel 5 to obtain an argon gas atmosphere of 0.5 to 10 Pa (for example, 2 Pa).
  • a DC bias voltage or a pulse bias voltage of ⁇ 250 to ⁇ 150 V is applied to the substrate 7 from the bias power source 3, and the surface of the substrate 7 is bombarded with argon gas and cleaned.
  • the substrate temperature is less than 250 ° C, there is no etching effect by argon gas, and if it exceeds 650 ° C, the etching effect by argon gas is saturated and industrial productivity is lowered.
  • the substrate temperature is measured by a thermocouple embedded in the substrate (the same applies hereinafter).
  • the pressure of the argon gas in the decompression vessel 5 is outside the range of 0.5 to 10 Pa, the bombardment process with the argon gas becomes unstable.
  • the DC bias voltage or pulse bias voltage is less than ⁇ 250 ⁇ V, arcing occurs in the substrate, and when it exceeds ⁇ 150 ⁇ V, the cleaning effect by bombard etching cannot be sufficiently obtained.
  • Modified layer formation step Ion bombardment to the WC-based cemented carbide substrate 7 using the modified layer forming TiO target is performed in an argon gas atmosphere with a flow rate of 30 to 150 sccm after the substrate 7 is cleaned. Then, a modified layer is formed on the surface of the substrate 7.
  • An arc current (DC current) of 50 to 100 A is applied to the surface of the TiO target attached to the arc discharge evaporation source 13 from the arc discharge power supply 11.
  • the substrate 7 is heated to a temperature of 400 to 700 ° C., and a DC bias voltage of ⁇ 850 to ⁇ 500 V is applied to the substrate 7 from the bias power source 3.
  • Ti ions and O ions are irradiated onto the surface of the WC-based cemented carbide substrate 7 by ion bombardment using the TiO target.
  • the temperature of the substrate 7 is less than 400 ° C., a modified layer having an Fcc structure is not formed, and when it exceeds 700 ° C., Ti oxide having a rutile structure is deposited, thereby impairing the adhesion of the hard film.
  • the flow rate of argon gas in the decompression vessel 5 is less than 30 sccm, the energy of Ti ions incident on the substrate 7 is too strong, and a decarburized layer is formed on the surface of the substrate 7, thereby impairing the adhesion of the hard coating. If it exceeds 150 sccm, the energy of Ti ions etc. will weaken and the modified layer will not be formed.
  • the arc current is less than 50 A, the arc discharge becomes unstable, and if it exceeds 100 A, a large number of droplets are formed on the surface of the substrate 7 and the adhesion of the hard coating is impaired.
  • the DC bias voltage is less than ⁇ 850 V, the energy of Ti ions and the like is too strong to form a decarburized layer on the surface of the substrate 7, and when it exceeds ⁇ 500 V, a modified layer is not formed on the substrate surface.
  • the ion bombardment to the WC-based cemented carbide substrate 7 using the modified layer forming TiB target heats the substrate 7 to a temperature of 450 to 750 ° C., and further applies ⁇ 1000 to ⁇ 600 V from the bias power source 3 to the substrate 7.
  • the point of applying the direct current bias voltage is different from the case of ion bombardment using the modified layer forming TiO target.
  • Ti ions and B ions are irradiated onto the surface of a WC-based cemented carbide substrate by ion bombardment using a TiB target.
  • the modified layer having the Fcc structure is not formed.
  • the DC bias voltage is less than -1000 V, a decarburized layer is formed on the surface of the substrate 7, and when it exceeds -600 V, the effect of ion bombardment is substantially absent.
  • (C) (AlTiW) NO film formation step An (AlTiW) NO film is formed on the substrate 7 (if a modified layer is formed).
  • a nitriding gas is used, and a pulsed arc current is applied to the surface of the target 18 attached to the arc discharge evaporation source 27 from the arc discharge power source 12 under the conditions described later.
  • a DC bias voltage or a pulse bias voltage is applied from the bias power source 3 to the substrate 7 controlled to a predetermined temperature.
  • Substrate temperature It is necessary to set the substrate temperature to 400 to 550 ° C. when the (AlTiW) NO film is formed.
  • (AlTiW) NO does not crystallize sufficiently, so that the (AlTiW) NO film does not have sufficient wear resistance, and causes an increase in residual stress and causes film peeling.
  • the substrate temperature exceeds 550 ° C., the rock salt structure becomes unstable, and the wear resistance and oxidation resistance of the (AlTiW) NO coating are impaired.
  • the substrate temperature is preferably 400 to 540 ° C.
  • nitriding gas for forming the (AlTiW) NO film on the substrate 7 nitrogen gas, a mixed gas of ammonia gas and hydrogen gas, or the like can be used.
  • the pressure of the nitriding gas is preferably 2 to 6 Pa. If the pressure of the nitriding gas is less than 2 Pa, the formation of nitride is insufficient, and if it exceeds 6 Pa, the effect of adding the nitriding gas is saturated.
  • a DC bias voltage or a unipolar pulse bias voltage is applied to the substrate.
  • the DC bias voltage should be negative -270 to -20 V. If it is less than ⁇ 270 V, arcing or reverse sputtering occurs on the substrate, and no WO bond is formed. On the other hand, if it exceeds ⁇ 20 V, the effect of applying a bias voltage cannot be obtained, and a WO bond is not formed.
  • a preferred range for the DC bias voltage is -250 to -50 V.
  • the negative bias voltage (negative peak value excluding the steep rise from zero to the negative side) should be -270 to -20V. Outside this range, the (AlTiW) NO film of the present invention cannot be obtained.
  • the preferred range of negative bias voltage is -250 to -50 V.
  • the frequency of the unipolar pulse bias voltage is preferably 20 to 50 kHz, and more preferably 30 to 40 kHz.
  • Pulsed arc current (AlTiW)
  • the target 18 for (AlTiW) NO film formation is used.
  • the pulse arc current is a substantially rectangular pulse wave having at least two stages, as schematically shown in FIG. 2 (waveform waveform of the pulse arc current of Example 1), for example.
  • t min is the energization time on the minimum value A min side in the stable region of the pulse arc current
  • t max is the energization time on the maximum value A max side in the stable region of the pulse arc current.
  • the stable region on the maximum value A max side is a steep rising portion (from the final position P 4 on the A min side to the start position on the A max side except to P 1), and from the start position P 1 of a max side final position P 2 of a max side, the energizing time from the position P 1 to the position P 2 and the t max. Since the pulse current waveform of A max side is decreased gradually toward the position P 2 from the position P 1, the pulsed arc current waveform value 95 A of the position P 2 to the A max.
  • a min side of the start position P 3 was set, and the energization time from the position P 3 to the position P 4 was set to t min . Since the pulse current waveform of A min side are decreased gradually toward the position P 4 from the position P 3, the pulsed arc current waveform value 65 A of the position P 4 was A min.
  • a min is 50 to 90 A, preferably 50 to 80 A. It is. When A min is less than 50 A, arc discharge does not occur and film formation is impossible. On the other hand, when A min exceeds 90 A, the number of droplets increases and the oxidation resistance of the film is impaired.
  • a max is 90 to 120 A, preferably 90 to 110 A. When A max is out of the range of 90 to 120 A, the number of droplets increases and the oxidation resistance of the film is impaired.
  • the difference ⁇ A between A max and A min is 10 A or more, preferably 10 to 60 A, and more preferably 20 to 55 A. If ⁇ A is less than 10 A, droplets increase and the oxidation resistance of the film is impaired.
  • the duty ratio D is 40 to 70%, preferably 45 to 65%. If the duty ratio D is outside the range of 40 to 70%, the arc discharge becomes unstable, and the rock salt structure of the (AlTiW) NO film becomes unstable or the number of droplets increases.
  • the waveform of the pulse arc current is not limited to the two stages shown in FIG. 2, and may be three or more stages (for example, 3 to 10 stages) as long as it has a stable region of at least A max and A min .
  • the frequency of the pulse arc current is 2 to 15 kHz, preferably 2 to 14 kHz. If the frequency of the pulsed arc current is outside the range of 2 to 15 kHz, the arc discharge is not stable or a large amount of oxide is formed on the surface of the (AlTiW) NO film forming target.
  • Stable arc discharge can be obtained by applying a pulsed arc current under conditions within the above optimal range. That is, stagnation in the Al portion of the arc spot and oxide formation on the target surface for (AlTiW) NO film formation are suppressed, so the AlTiWO alloy is uniformly melted and evaporated to form on the substrate (AlTiW) The composition of the NO film is stable.
  • the (AlTiW) NO of the present invention forms a WO bond with almost no Al oxide or Ti oxide formed. A film is formed.
  • WOx evaporates by the arc spot and instantly ionizes to generate W ions and O ions, which react with each other instantaneously. As a result, it is thought that the formation of Al oxide and Ti oxide is suppressed by forming a W—O bond in the film.
  • the present invention will be described in more detail with reference to the following examples, but the present invention is of course not limited thereto.
  • the target composition is a value measured by chemical analysis unless otherwise specified.
  • the insert is used as the base of the hard coating.
  • the present invention is of course not limited thereto, and can be applied to cutting tools other than the insert (end mill, drill, etc.) or a die. .
  • Example 1 Substrate cleaning High-feed milling insert base made of WC-base cemented carbide containing 6.0% by mass of Co and the balance consisting of WC and inevitable impurities (Hitachi Tool Co., Ltd. having the shape shown in Fig. 14) EDNW15T4TN-15 (manufactured by Hitachi Chemical Co., Ltd.) and an insert base for measuring physical properties (SNMN120408 manufactured by Hitachi Tool Co., Ltd.) are set on the holder 8 of the AI device shown in FIG. Heated to 600 ° C.
  • argon gas was introduced at a flow rate of 500 sccm to adjust the pressure in the decompression vessel 5 to 2.0 Pa, and a negative DC bias voltage of ⁇ 200 V was applied to each substrate to perform etching by argon ion bombardment.
  • the substrate was cleaned.
  • Sccm means a flow rate (cc / min) at 1 atm and 25 ° C.
  • (AlTiW) NO film The substrate temperature was set to 450 ° C., 800 sccm of nitrogen gas was introduced, and the pressure in the vacuum vessel 5 was adjusted to 3.1 Pa.
  • a target composed of an Al-AlN-Ti-TiN-WN-WO 3 alloy having a composition represented by the atomic ratio (Al) 0.63 (AlN) 0.07 (Ti) 0.10 (TiN) 0.10 (WN) 0.03 (WO 3 ) 0.07 18 is arranged in an arc discharge evaporation source 27 to which an arc discharge power source 12 is connected.
  • a negative DC voltage of ⁇ 80 V is applied to each substrate by the bias power source 3, and a substantially arc-shaped pulsed arc current is applied to the surface of the target 18 from the arc discharge power source 12, and the atomic ratio (Al 0.71 Ti 0.20 A film having a thickness of 3 ⁇ m having a composition represented by W 0.09 ) 0.48 N 0.44 O 0.08 was formed.
  • the film composition was measured with the electron probe microanalyzer EPMA (JXA-8500F manufactured by JEOL Ltd.) under the conditions of an acceleration voltage of 10 kV, an irradiation current of 0.05 A, and a beam diameter of 0.5 ⁇ m. .
  • the measurement conditions for EPMA are the same in other examples.
  • the minimum value A min of the pulse arc current is 65 A
  • the maximum value A max is 95 A
  • the duty ratio D was 50%.
  • FIG. 3 is a scanning electron microscope (SEM) photograph (magnification: 25,000 times) showing a cross-sectional structure of the obtained (AlTiW) NO film-coated milling insert.
  • SEM scanning electron microscope
  • 41 indicates a WC-based cemented carbide substrate
  • 42 indicates an (AlTiW) NO film. Since FIG. 3 shows a low magnification, the modified layer is not visible.
  • Fig. 4 shows TiNxOy (the ratio of x and y is unknown) and T-N peaks
  • Fig. 5 shows W-O and W-N peaks
  • Fig. 6 shows Al-N peaks. From the X-ray photoelectron spectroscopy spectrum of FIG. 6, no Al—O bonds were observed, and only Al—N bonds were observed. Although the exact ratio of x and y in TiNxOy is unknown from the X-ray photoelectron spectrum of FIG. 4, the above EPMA analysis value of the (AlTiW) NO film (see the column of Example 1 in Table 3-2 described later). ) TiNxOy is a nitrided Ti oxide mainly composed of nitride. In FIG.
  • X-ray diffraction pattern of (AlTiW) NO film X-ray diffractometer (EMPYREAN made by Panalytical) is used to measure the crystal structure and crystal orientation of (AlTiW) NO film on the insert substrate for physical property measurement. Then, an X-ray diffraction pattern (FIG. 7) was obtained under the following conditions by irradiation with CuK ⁇ 1 rays (wavelength ⁇ : 0.15405 nm). Tube voltage: 45 kV Tube current: 40 mA Incident angle ⁇ : Fixed at 3 ° 2 ⁇ : 30-80 °
  • the (111) plane, (200) plane, (220) plane, (311) plane, and (222) plane are all X-ray diffraction peaks of the rock salt structure. Therefore, it can be seen that the (AlTiW) NO coating of Example 1 has a rock salt type single structure.
  • Table 1 shows the standard X-ray diffraction intensities I 0 and 2 ⁇ of TiN described in ICCD reference code 00-038-1420.
  • TiN has the same rock salt structure as (AlTiW) NO. Since the (AlTiW) NO film of the present invention corresponds to a solid solution in which a part of TiN Ti is replaced with Al and W and O is further added, the numerical values in Table 1 are expressed as standard X-ray diffraction intensity I 0 (hkl). Adopted.
  • the X-ray diffraction peak intensity ratio of each surface calculated from the X-ray diffraction intensity (measured value) of each surface and the (200) surface, which is the strongest peak surface of X-ray diffraction, from the X-ray diffraction pattern of FIG. Is shown in Table 2.
  • Table 2 the peak angle 2 ⁇ of the (AlTiW) NO film is shifted to a higher angle than in Table 1.Since other elements such as Al were added to TiN, distortion occurred in the (AlTiW) NO film. This is probably because
  • FIG. 8 shows a TEM photograph (magnification: 3,600,000 times, field of view: 30 nm ⁇ 30 nm) near the boundary (interface) of the WC-based cemented carbide substrate, the modified layer, and the (AlTiW) NO coating.
  • FIG. 9 (a) is a schematic diagram of FIG. In FIG.
  • the line L 1 indicates the boundary between the WC-based cemented carbide substrate 41 and the modified layer 43
  • the line L 2 indicates the boundary between the modified layer 43 and the (AlTiW) NO film 42
  • a number of parallel thin lines indicate crystal lattice fringes.
  • the portion of the boundary between the modified layer 43 and the (AlTiW) NO film 42 where the crystal lattice stripes are continuous was about 30% or more.
  • FIG. 9 (b) which corresponds to FIG. 9 (a)
  • dividing the area S of the modified layer 43 surrounded by a line L 1 and the line L 2 in the length L of the modified layer 43, in one field of view the average thickness D 1 of the reformed layer 43 is obtained.
  • the average thickness D 1 , D 2 , D 3 , D 4 , D 5 of the modified layer 43 in five different fields of view was obtained in the same manner, and an average value of these values [(D 1 + D 2 + D 3 + D 4 + D 5 ) / 5] is the average thickness Da of the modified layer 43.
  • the average thickness Da of the modified layer 43 obtained by this method was 6 nm.
  • nanobeam diffraction was performed at the center position in the thickness direction of the modified layer 43 (indicated by a circle A in FIG. 8) under the conditions of an acceleration voltage of 200 kV and a camera length of 50 cm.
  • the obtained diffraction image is shown in FIG.
  • nanobeam diffraction was performed under the same conditions at an arbitrary position of the (AlTiW) NO film (indicated by a circle B in FIG. 8).
  • the obtained diffraction image is shown in FIG. From FIG. 10, it was found that the modified layer by ion bombardment using a Ti 0.85 O 0.15 target has an Fcc structure. Further, from FIG. 11, it was found that the (AlTiW) NO film of the present invention also has an Fcc structure.
  • the modified layer 43 is a compound containing at least Ti, W, C, and O.
  • c- (111), c- (002), and c- (022) indicate diffraction spots having a rock salt structure
  • w- (010) indicates a diffraction spot having a wurtzite structure.
  • FIG. 16 is an SEM photograph (magnification: 3,000 times) showing the surface of the (AlTiW) NO film of the physical property measurement insert.
  • the amount of droplets generated on the surface of the (AlTiW) NO film of Example 1 is “6 pieces / field of view”. It can be seen that the number of droplets is very small compared to the surface of the (AlTiW) NO film of Comparative Example 19 described later (FIG. 17).
  • Cutting conditions Machining method High-feed continuous rolling Work material: 123 mm x 250 mm S50C square material Insert used: EDNW15T4TN-15 (for milling) Cutting tool: ASR5063-4 Cutting speed: 200 m / min Feed rate per tooth: 1.83 mm / tooth Axial depth of cut: 1.0 mm Radial depth of cut: 42.5 mm Cutting fluid: None (dry machining)
  • Table 3-1 shows the composition of the (AlTiW) NO film formation target used
  • Table 3-2 shows the composition of the (AlTiW) NO film, and results of measurement of crystal structure by X-ray diffraction and electron diffraction
  • WO bond Table 3-3 shows the presence or absence of tool and the tool life of each tool.
  • Examples 2 to 9 and Comparative Examples 1 to 9 A hard film was formed on each milling insert and evaluated in the same manner as in Example 1 except that the film forming target having the composition shown in Table 3-1 was used.
  • the composition of each target is shown in Table 3-1
  • the composition of each film is shown in Table 3-2
  • the measurement result of the crystal structure by X-ray diffraction and electron diffraction of each film is shown in Table 3-2.
  • the hard film-coated inserts of Comparative Examples 1 to 9 had a short life of 22 minutes or less.
  • the reason is as follows. That is, the hard coating of Comparative Example 1 was inferior in wear resistance because the wurtzite structure was the main structure.
  • the hard film of Comparative Example 1 did not have W—O bonds due to excessive Al content.
  • the hard coatings of Comparative Examples 2 and 3 were inferior in oxidation resistance and wear resistance because the Al content was too small (the Ti content was excessive).
  • the hard film of Comparative Example 4 had an amorphous structure due to an insufficient Ti content, and was inferior in wear resistance. Since the hard film of Comparative Example 5 had an excessive W content, the structure became amorphous and the wear resistance was poor.
  • the hard film of Comparative Example 6 was inferior in wear resistance because W-O bonds were not formed because the W content was too small.
  • the hard film of Comparative Example 7 since the O content was excessive, Ti was excessively oxidized and the wear resistance was poor.
  • the hard film of Comparative Example 8 had a low film strength because the O content was too small.
  • the target was (AlTiW) N, the obtained hard film had no W—O bond and was inferior in oxidation resistance and wear resistance.
  • Examples 10 and 11 and Comparative Examples 10 and 11 In order to investigate the influence of the substrate temperature on the (AlTiW) NO film, the substrate temperatures were 400 ° C. (Example 10), 540 ° C. (Example 11), 300 ° C. (Comparative Example 10), and 700 ° C. (Comparative Example 11), respectively.
  • (AlTiW) NO film was formed on each milling insert in the same manner as in Example 1 except that the above was evaluated.
  • the composition of each (AlTiW) NO film is shown in Table 4-1, and the measurement results of the crystal structure obtained by X-ray diffraction and electron diffraction, the presence or absence of WO bonding, and the tool life are shown in Table 4-2.
  • the tool life of Examples 10 and 11 was as long as 50 minutes or more, but the tool life of Comparative Examples 10 and 11 was as short as 19 to 20 minutes. This is because in Comparative Example 10, the substrate temperature was too low to form a W—O bond, and in Comparative Example 11, the substrate temperature was too high to maintain the rock salt structure.
  • Examples 12-14 and Comparative Examples 12 and 13 In order to investigate the influence of the DC bias voltage on the (AlTiW) NO film, a DC bias voltage of ⁇ 250 V was applied in Example 12, a DC bias voltage of ⁇ 150 V was applied in Example 13, and in Example 14, A -20V DC bias voltage was applied. In Comparative Example 12, a -300V DC bias voltage was applied. In Comparative Example 13, a -10V DC bias voltage was applied. An (AlTiW) NO film was formed and evaluated. The composition of each (AlTiW) NO film is shown in Table 5-1, and the measurement results of the crystal structure obtained by X-ray diffraction and electron diffraction, the presence or absence of WO bonding, and the tool life are shown in Table 5-2.
  • Example 15 In order to investigate the influence of the unipolar pulse bias voltage on the (AlTiW) NO film, in Example 15, a unipolar pulse bias voltage of ⁇ 250 V was applied, and in Example 16, a unipolar pulse bias voltage of ⁇ 150 V was applied. In Example 17, a -80 V unipolar pulse bias voltage is applied, in Example 18, a -20 V unipolar pulse bias voltage is applied, and in Comparative Example 14, a -300 V unipolar pulse bias voltage is applied. For 15, a (AlTiW) NO film was formed on each milling insert and evaluated in the same manner as in Example 1 except that a unipolar pulse bias voltage of ⁇ 10 V was applied.
  • the frequency of all unipolar pulse bias voltages was 30 kHz.
  • the composition of each (AlTiW) NO film is shown in Table 5-3, and the measurement results of the crystal structure obtained by X-ray diffraction and electron diffraction, the presence or absence of WO bonding, and the tool life are shown in Table 5-4.
  • Examples 19 and 20 and Comparative Examples 16 and 17 In order to investigate the influence of the frequency of the pulsed arc current on the (AlTiW) NO film, the frequencies were 2 kHz (Example 19), 14 kHz (Example 20), 0.5 kHz (Comparative Example 16), and 20 kHz ( A (AlTiW) NO film was formed on each milling insert and evaluated in the same manner as in Example 1 except that Comparative Example 17) was used.
  • the composition of each (AlTiW) NO film is shown in Table 6-1, and the measurement results of the crystal structure obtained by X-ray diffraction and electron diffraction, the presence or absence of WO bonding, and the tool life are shown in Table 6-2.
  • FIG. 17 is an SEM photograph showing the coating surface of Comparative Example 19.
  • the amount of droplets having a diameter of 1 ⁇ m or more measured on the SEM photograph of FIG. 17 in the same manner as in Example 1 was “17 pieces / field of view”.
  • each tool of Examples 26 and 27 had a long life of 50 minutes or more, but each tool of Comparative Examples 20 and 21 had a short life. This is because in Comparative Example 20, since the duty ratio D is too small, the arc discharge becomes unstable, and the WO coupling is not included in the film, and in Comparative Example 21, because the duty ratio D is excessive, This is because a large amount of oxide was formed on the target, arc discharge became unstable, and WO bonds were not included in the film.
  • Examples 28 and 29 In order to investigate the effect of the modified layer thickness on the crystal structure and tool life of the coating, the same Ti 0.85 O 0.15 target (atomic ratio) as in Example 1 was used, and the bombardment time was changed by changing the ion bombardment time.
  • the milling insert (AlTiW) in the same manner as in Example 1, except that the average thickness of the modified layer formed on the surface of the cemented carbide substrate was 2 nm (Example 28) and 9 nm (Example 29), respectively. A NO film was formed.
  • each (AlTiW) NO film is shown in Table 10-1, and the measurement results of the crystal structure obtained by X-ray diffraction and electron diffraction, the presence or absence of WO bond, the average thickness of the modified layer, and the tool life are shown in Table 10 Shown in -2.
  • Examples 30-33 By adjusting the film formation time, the average film thickness of the (AlTiW) NO film was 1 ⁇ m (Example 30), 6 ⁇ m (Example 31), 8 ⁇ m (Example 32), and 10 ⁇ m (Example 33), respectively.
  • an (AlTiW) NO film was formed on each milling insert and evaluated.
  • the composition of each (AlTiW) NO film is shown in Table 11-1, and the measurement results of the crystal structure obtained by X-ray diffraction and electron diffraction, the presence or absence of WO bonds, the average thickness of the film, and the tool life are shown in Table 11-2. Shown in As is apparent from Table 11-2, each of the hard film coated tools of Examples 30 to 33 had a long life of 40 minutes or more.
  • Examples 34-49 In order to investigate the lamination effect of the (AlTiW) NO film on the life of the film, as shown in Table 12-2, the film of composition A formed in the same manner as in Example 1 and each target of Table 12-1 were Each milling insert obtained by alternately laminating films of composition B formed in the same manner as in Example 1 except for use was evaluated in the same manner as in Example 1.
  • Table 12-1 shows the composition of each target used to form the film of composition B and the number of laminated films obtained, and Table 12 shows the composition of layers A and B constituting each (AlTiW) NO laminated film.
  • Table 12-3 shows the measurement results of the crystal structure obtained by X-ray diffraction and electron diffraction, the presence or absence of WO bonding, and the tool life.
  • each target having the composition shown in Table 13-1 was used between the same modified layer and the (AlTiW) NO film as in Example 1, and Table 13-1
  • an (AlTiW) NO film was formed on the milling insert and evaluated in the same manner as in Example 1 except that each intermediate layer was formed by physical vapor deposition under each film formation condition shown in Table 13-2.
  • Table 14-1 shows the composition of each (AlTiW) NO film
  • Table 14-2 shows the measurement results of the crystal structure obtained by X-ray diffraction and electron diffraction, the presence or absence of WO bonds, and the tool life.
  • Examples 50 to 61 at least one selected from the group consisting of elements 4a, 5a and 6a, Al and Si by physical vapor deposition between the WC-based cemented carbide substrate and the (AlTiW) NO film.
  • An intermediate layer (hard film) having an essential constituent element of at least one selected from the group consisting of B, O, C and N was formed, but as is clear from Table 14-2, The tool also had a tool life of more than 47 minutes.
  • Examples 62-66 Substrate cleaning Turning insert substrate made of WC-base cemented carbide having a composition containing 6% by mass of Co and the balance consisting of WC and inevitable impurities (CNMG120408 made by Hitachi Tool Co., Ltd.), and Example 1
  • the same insert substrate for measuring physical properties as above was set on the holder 8 of the AI apparatus shown in FIG. 1, and heated to 600 ° C. with a heater (not shown) simultaneously with evacuation. Thereafter, 500 sccm of argon gas was introduced to adjust the pressure in the decompression vessel 5 to 2.0 Pa, and a negative DC bias voltage of ⁇ 200 V was applied to each substrate to perform cleaning by etching of argon ion bombardment.
  • Oxygen gas was introduced into the AI furnace while gradually increasing the flow rate from 10 sccm to 500 sccm in 20 minutes at the initial stage of film formation, and was adjusted to 500 sccm at the end of film formation.
  • the atmospheric gas pressure during film formation was 3 Pa, and an (AlCr) NO film having a composition of (Al 0.52 Cr 0.48 ) 0.46 (N 0.42 O 0.58 ) 0.54 (atomic ratio) was coated to an average thickness of 0.5 ⁇ m.
  • Table 15 shows the composition of each (AlCr) NO film.
  • the tool life was defined as the shortest cutting time until the maximum wear width of the flank surface exceeded 0.30 mm, until the (AlTiW) NO film peeled, or until the (AlTiW) NO film chipped.
  • Tables 18-1 and 18-2 show the composition of each (AlTiW) NO film, the measurement results of the crystal structure obtained by X-ray diffraction and electron diffraction, the presence or absence of WO bonds, and the tool life, respectively.
  • Cutting conditions Work material: SUS630 Machining method: Continuous turning Tool shape: CNMG120408 Cutting speed: 140 m / min Feed: 0.23 mm / rotation Cutting depth: 1.5 mm Cutting fluid: Water-soluble cutting oil
  • Example 67 A turning insert in which an (AlCr) 2 O 3 film was not formed on an (AlTiW) NO film formed in the same manner as in Example 62 was evaluated.
  • Table 18-1 and Table 18-2 show the composition of the (AlTiW) NO film, the measurement results of the crystal structure obtained by X-ray diffraction and electron diffraction, the presence or absence of WO bonds, and the tool life, respectively.
  • Comparative Example 22 An (AlTiW) NO film-coated insert produced in the same manner as in Example 62 was evaluated except that the same (AlTiW) NO film as in Comparative Example 3 was formed.
  • the composition of the (AlTiW) NO film is shown in Table 18-1, and the measurement results of the crystal structure obtained by X-ray diffraction and electron diffraction, the presence or absence of WO bonds, and the tool life are shown in Table 18-2.
  • Example 68 (AlTiW) NO film was formed on the same WC-based cemented carbide substrate as in Example 1 except that the modified layer was not formed, and as a result of evaluation, the tool life was 31 minutes.
  • the (AlTiW) NO coating was formed on the layered WC-based cemented carbide substrate, but the tool life (23 minutes) was longer than that of Comparative Example 16 in which the frequency of the pulsed arc current applied to the target was 0.5 kHz.
  • Example 69 In the AI apparatus shown in FIG. 1, Ar ions were cleaned on the high feed milling insert base and the physical property measuring insert base made of the same WC-base cemented carbide as in Example 1 in the same manner as in Example 1. Next, the temperature of each substrate is set to 610 ° C., the flow rate of argon gas is set to 50 sccm, and the target 10 having a composition represented by Ti 0.8 B 0.2 in atomic ratio is connected to an arc discharge power source 11 for arc discharge evaporation. Located in source 13. A negative DC voltage of ⁇ 750 V is applied to each substrate by the bias power source 3 and an average thickness of 5 nm is improved by applying 80 A DC arc current from the arc discharge power source 11 to the surface of the target 10. A quality layer was formed. Thereafter, in the same manner as in Example 1, an (AlTiW) NO film was formed on the milling insert and evaluated. As a result, the tool life was 63 minutes, which was longer than Example 1 (55 minutes).
  • the tungsten oxide contained in the target of the present invention is WO 3
  • the present invention is not limited to this, and the tungsten oxide is WO 2 or the tungsten oxide is composed of WO 3 and WO 2.
  • the same advantageous effects as those of the above embodiment can be obtained.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Manufacturing & Machinery (AREA)
  • Ceramic Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Structural Engineering (AREA)
  • Physical Vapour Deposition (AREA)
  • Cutting Tools, Boring Holders, And Turrets (AREA)

Abstract

 (AlxTiyWz)aN(1-a-b)Ob(ただし、x、y、z、a及びbはそれぞれ原子比で0.6≦x≦0.8、0.05≦y≦0.38、0.02≦z≦0.2、x+y+z=1、0.2≦a≦0.8、及び0.02≦b≦0.10を満たす数字である。)で表される組成を有し、アークイオンプレーティング法により形成された硬質皮膜であって、X線光電子分光分析法で特定された結合状態に実質的にAl-O結合なしにW-O結合があり、かつX線回折パターンが岩塩型の単一構造を有する硬質皮膜。

Description

硬質皮膜、硬質皮膜被覆部材、それらの製造方法、及び硬質皮膜の製造に用いるターゲット
 本発明は、耐酸化性及び耐摩耗性に優れた(AlTiW)NO硬質皮膜、(AlTiW)NO硬質皮膜に被覆された部材、それらの製造方法、及び(AlTiW)NO硬質皮膜の製造に用いるターゲットに関する。
 被削材を高送りや高速で切削加工する工具や、過酷な成形条件に用いる金型等を長寿命化するために、耐酸化性及び耐摩耗性に優れた硬質皮膜を形成することが望まれており、種々の提案がされている。例えば、特許第3877124号は、少なくともAl、Ti、Cr、N及びOを含有し、非金属成分がNwO100-w(ただし、wは70~99原子%である。)であり、酸素含有量が1~10原子%のA層と、酸素含有量が10原子%超30原子%以下のB層とが積層された構造のAlTiCrNO硬質皮膜を開示している。特許第3877124号は、窒素と酸素の混合ガスを使用し、その混合比を調整することによりAlTiCrNO皮膜の酸素含有量を調整すると記載している。しかし、特許第3877124号のAlTiCrNO硬質皮膜はW-O結合を有さないので、切削工具等に対する昨今の過酷な高性能化のニーズに十分応えることができない。その上、特許第3877124号の方法は酸素含有雰囲気を用いているので、仮にCrの代わりにWを含有する硬質皮膜を形成したとしても、雰囲気中の酸素は優先的にAlと反応してAl酸化物を形成するだけでなく、Tiとも反応してTi酸化物も形成し、得られるAlTiWNO皮膜は十分な耐酸化性及び耐摩耗性を有さない。
 特許第4846519号は、Al、M成分(4a、5a及び6a族金属、Si、B及びSから選択された1種以上の元素)、及びAl窒化物を含有し、Al窒化物の含有量が5~30モル%であるターゲットを開示している。また、特許第5487182号は、Alを1~30原子%含有するTi-Al合金からなり、AlがTi中に固溶した状態又はTiとの金属間化合物の状態で存在し、Ti-Al合金の平均酸素含有量が1070 ppmw以下であるスパッタターゲットを開示している。しかし、特許第4846519号及び特許第5487182号に記載のターゲットは不可避的不純物レベルを超える量の酸素を含有しないので、皮膜の酸素は成膜雰囲気中の酸素ガスから導入される。このため、特許第3877124号の硬質皮膜と同様に、特許第4846519号及び特許第5487182号のターゲットを用いて得られる酸素含有硬質皮膜も十分な耐酸化性及び耐摩耗性を有さない。
 特開2009-220260号は、WC基超硬合金基材にbcc構造のW改質相を形成した後、炭化物相を形成し、その上に窒化物硬質皮膜を形成した被覆工具を開示している。特開2009-220260号は、W改質相をアーク放電式蒸発源を備えた成膜装置を用いるイオンボンバードメント処理により形成すると記載している。具体的には、800~860℃の表面温度の基材に-1000~-600 Vの負のバイアス電圧P1を印加し、0.01~2 Paの水素ガス含有Arガスを用いて、アーク放電式蒸発源から蒸発した金属イオン(Tiイオン)を基材に照射する。しかし、特開2009-220260号で得られる窒化物硬質皮膜は不可避的不純物レベルを超える量の酸素を含有しないので、目標の耐酸化性及び耐摩耗性を有さない。勿論、特開2009-220260号の窒化物硬質皮膜の製造に用いる3つのターゲットC1(例えばTi100)、C2(例えばAl70Cr30)及びC3(例えばTi75Si25)も不可避的不純物レベルを超える量の酸素を含有しない。
 特表2008-533310号は、パルス電源に接続されたターゲット電極を有するアーク蒸着コーティング装置を用いて、酸素含有雰囲気中で(AlxCr1-x)yOzからなる硬質皮膜を形成する方法を開示している。しかし、特表2008-533310号の方法では、不可避的不純物レベルを超える量の酸素を含有するターゲットを用いずに、雰囲気ガスから酸素を導入するので、得られる硬質皮膜は目標の耐酸化性及び耐摩耗性を有さない。
 従って、本発明の第一の目的は、従来の(AlTi)NO皮膜より優れた耐酸化性及び耐摩耗性を有し、長寿命である(AlTiW)NO皮膜を提供することである。
 本発明の第二の目的は、従来の(AlTi)NO皮膜より優れた耐酸化性及び耐摩耗性を有し、長寿命である(AlTiW)NO皮膜を形成した硬質皮膜被覆部材(切削工具、金型等)を提供することである。
 本発明の第三の目的は、かかる(AlTiW)NO皮膜及び前記硬質皮膜被覆部材を製造する方法を提供することである。
 本発明の第四の目的は、かかる(AlTiW)NO皮膜を製造するのに用いるターゲットを提供することである。
 本発明の硬質皮膜は、(AlxTiyWz)aN(1-a-b)Ob(ただし、x、y、z、a及びbはそれぞれ原子比で0.6≦x≦0.8、0.05≦y≦0.38、0.02≦z≦0.2、x+y+z=1、0.2≦a≦0.8、及び0.02≦b≦0.10を満たす数字である。)で表される組成を有し、アークイオンプレーティング法により形成された硬質皮膜であって、X線光電子分光分析法で特定された結合状態に実質的にAl-O結合なしにW-O結合があり、かつX線回折パターンが岩塩型の単一構造を有することを特徴とする。
 実用性の観点から、前記硬質皮膜は電子回折パターンでは岩塩型を主構造とし、ウルツ鉱型を副構造とするのが好ましい。
 本発明の硬質皮膜被覆部材は上記硬質皮膜を基体上に形成したことを特徴とする。前記基体と前記硬質皮膜との間に、物理蒸着法により、4a、5a及び6a族の元素、Al及びSiから選択された少なくとも一種の金属元素と、B、O、C及びNから選択された少なくとも一種の元素とを必須に含む中間層が形成されているのが好ましい。
 前記硬質皮膜被覆部材において、前記硬質皮膜上に原子比で、(AlhCri)c(NjOk)d(ただし、h=0.1~0.6、h+i=1、j=0.1~0.8、j+k=1、c=0.35~0.6、及びc+d=1である。)で表される組成を有する酸窒化物層が形成され、さらに前記酸窒化物層上に物理蒸着法により原子比で(AlmCrn)2O3(ただし、m=0.1~0.6、及びm+n=1である。)で表される組成を有する酸化物層が形成されると、さらに耐酸化性及び耐摩耗性が向上する。
 上記硬質皮膜をアークイオンプレーティング法により基体上に形成する本発明の方法は、
 窒化ガス雰囲気中で、400~550℃の温度に保持した前記基体上に前記硬質皮膜を形成する際に、前記基体に-270~-20 Vの直流バイアス電圧又はユニポーラパルスバイアス電圧を印加するとともに、アーク放電式蒸発源に備えられたAlの窒化物、Tiの窒化物、Wの窒化物及びWの酸化物を含有するAlTi合金からなるターゲットにパルスアーク電流を通電し、
 前記パルスアーク電流が、90~120 Aの最大アーク電流値、50~90 Aの最小アーク電流値、及び2~15 kHzの周波数を有するとともに、前記最大アーク電流値と前記最小アーク電流値との差が10 A以上のほぼ矩形波状であって、40~70%のデューティ比を有することを特徴とする。
 本発明の硬質皮膜被覆部材の製造方法は、
 窒化ガス雰囲気中で400~550℃の温度に保持した上記基体上に上記硬質皮膜を形成する際に、前記基体に-270~-20 Vの直流バイアス電圧又はユニポーラパルスバイアス電圧を印加するとともに、アーク放電式蒸発源に備えられたAlの窒化物、Tiの窒化物、Wの窒化物及びWの酸化物を含有するAlTi合金からなるターゲットにパルスアーク電流を通電し、
 前記パルスアーク電流が、90~120 Aの最大アーク電流値、50~90 Aの最小アーク電流値、及び2~15 kHzの周波数を有するとともに、前記最大アーク電流値と前記最小アーク電流値との差が10 A以上のほぼ矩形波状であって、40~70%のデューティ比を有することを特徴とする。
 実質的にAl-O結合なしにW-O結合を有するために優れた耐酸化性及び耐摩耗性を有する硬質皮膜を形成するために、前記ターゲットは、(Al)p(AlN)q(Ti)r(TiN)s(WN)t(WOx)u(ただし、p、q、r、s、t及びuはそれぞれ原子比で0.59≦p≦0.8、0.01≦q≦0.1、0.04≦r≦0.35、0.03≦s≦0.15、0.01≦t≦0.20、0.01≦u≦0.1、及びp+q+r+s+t+u=1を満たす数字であり、xは原子比で2~3の数字である。)で表される組成を有するのが好ましい。
 前記基体がWC基超硬合金の場合、前記硬質皮膜の形成前に基体表面にFcc構造の薄い改質層を形成するのが好ましい。第一の改質層は、流量が30~150 sccmのアルゴンガス雰囲気中で、400~700℃の温度に保持した前記基体に-850~-500 Vの負の直流電圧を印加するとともに、アーク放電式蒸発源に備えられた、TieO1-e(ただし、eはTiの原子比であり、0.7≦e≦0.95を満たす数字である。)で表される組成のターゲットに50~100 Aのアーク電流を通電し、もって前記基体の表面を前記ターゲットから発生したイオンによりボンバードすることにより形成される。第二の改質層は、流量が30~150 sccmのアルゴンガス雰囲気中で、450~750℃の温度に保持した前記基体に-1000~-600 Vの負の直流電圧を印加するとともに、アーク放電式蒸発源に備えられたTifB1-f(ただし、fはTiの原子比であり、0.5≦f≦0.9を満たす数字である。)で表される組成のターゲットに50~100 Aのアーク電流を通電し、もって前記基体の表面を前記ターゲットから発生したイオンによりボンバードすることにより形成される。いずれの場合も、改質層の直上に同一結晶構造の(AlTiW)NO皮膜を形成するので、改質層なしにWC基超硬合金直上に(AlTiW)NO皮膜を形成する場合より密着力が顕著に増大する。
 上記硬質皮膜の製造に用いるターゲットは、(Al)p(AlN)q(Ti)r(TiN)s(WN)t(WOx)u(ただし、p、q、r、s、t及びuはそれぞれ原子比で0.59≦p≦0.8、0.01≦q≦0.1、0.04≦r≦0.35、0.03≦s≦0.15、0.01≦t≦0.20、0.01≦u≦0.1、及びp+q+r+s+t+u=1を満たす数字であり、xは原子比で2~3の数字である。)により表される組成を有する焼結体からなることを特徴とする。
 前記ターゲットの焼結体は、AlTi合金粉末、AlN粉末、TiN粉末、WN粉末、及びWOx粉末(例えば、WO3及び/又はWO2の粉末)からなる混合粉末を真空雰囲気中でホットプレスすることにより得るのが好ましい。
 本発明の硬質皮膜は、X線光電子分光法でほぼAl-O結合がなしにW-O結合が認められるAlリッチな(AlTiW)NOの多結晶粒からなるので、Oが主としてAlに結合した従来の(AlTi)NO皮膜に比べて耐酸化性及び耐摩耗性が顕著に改善されている。そのため、本発明の硬質皮膜を有する部材(切削工具、金型等)は従来より著しく長寿命である。上記硬質皮膜を製造する本発明の方法は、雰囲気中に酸素ガスを含有させることなく、WOxの状態でOを含有するターゲット材から硬質皮膜にW-O結合を導入するので、硬質皮膜の組織の制御を安定的にかつ効率良く行うことができ、実用性が極めて高い。
 本発明の(AlTiW)NO皮膜を超硬合金製基体、cBN、サイアロン等のセラミックス製基体、高速度鋼製基体、又は工具鋼製基体の上に形成してなる硬質皮膜被覆部材は、従来のAlTiNO皮膜被覆部材に比べて、耐酸化性及び耐摩耗性が顕著に改善されているので、インサート、エンドミル、ドリル等の切削工具、及び各種金型に有用である。
本発明の硬質皮膜の形成に使用し得るアークイオンプレーティング装置の一例を示す正面図である。 本発明の硬質皮膜形成時にアーク放電式蒸発源に印加するパルスアーク電流波形の一例を示すグラフである。 実施例1の硬質皮膜被覆工具の断面を示す走査型電子顕微鏡写真(倍率:25,000倍)である。 実施例1の(AlTiW)NO皮膜の断面3ヶ所のTiの結合状態を示すX線光電子分光スペクトルを示すグラフである。 実施例1の(AlTiW)NO皮膜の断面3ヶ所のWの結合状態を示すX線光電子分光スペクトルを示すグラフである。 実施例1の(AlTiW)NO皮膜の断面3ヶ所のAlの結合状態を示すX線光電子分光スペクトルを示すグラフである。 実施例1の(AlTiW)NO皮膜のX線回折パターンを示すグラフである。 WC基超硬合金基体と硬質皮膜との間に改質層を有する実施例1の硬質皮膜被覆部材(インサート)における改質層近傍の断面を示す透過型電子顕微鏡写真(倍率:3,600,000倍)である。 図8の透過型電子顕微鏡写真の概略図である。 改質層の平均厚さを求める方法を示す概略図である。 実施例1の改質層のナノビーム回折像から結晶構造を解析した結果を示す図である。 実施例1の(AlTiW)NO皮膜のナノビーム回折像から結晶構造を解析した結果を示す一例である。 実施例1の改質層の断面のエネルギー分散型X線分析により得られたスペクトルを示すグラフである。 実施例1の(AlTiW)NO皮膜の制限視野回折像を示す写真である。 本発明の硬質皮膜被覆部材を構成するインサート基体の一例を示す斜視図である。 インサートを装着した刃先交換式回転工具の一例を示す概略図である。 実施例1の(AlTiW)NO皮膜の表面を示す走査型電子顕微鏡写真(倍率:3,000倍)である。 比較例19の(AlTiW)NO皮膜の表面を示す走査型電子顕微鏡写真(倍率:3,000倍)である。
[1] 硬質皮膜被覆部材
 本発明の硬質皮膜被覆部材は、基体上に、アークイオンプレーティング法(AI法)により、(AlxTiyWz)aN(1-a-b)Ob(ただし、x、y、z、a及びbはそれぞれ原子比で0.6≦x≦0.8、0.05≦y≦0.38、0.02≦z≦0.2、x+y+z=1、0.2≦a≦0.8、及び0.02≦b≦0.10を満たす数字である。)で表される組成を有する硬質皮膜を形成してなる。前記硬質皮膜のX線光電子分光スペクトルは実質的にAl-O結合を有さずにW-O結合を有することを示し、X線回折パターンは岩塩型の単一構造を有することを示す。
(A) 基体
 基体は耐熱性に富み、物理蒸着法を適用できる材質である必要がある。基体の材質として、例えば超硬合金、サーメット、高速度鋼、工具鋼又は立方晶窒化ホウ素を主成分とする窒化ホウ素焼結体(cBN)に代表されるセラミックスが挙げられる。強度、硬度、耐摩耗性、靱性及び熱安定性等の観点から、WC基超硬合金又はセラミックスが好ましい。WC基超硬合金は、炭化タングステン(WC)粒子と、Co又はCoを主体とする合金の結合相とからなり、結合相の含有量は1~13.5質量%が好ましく、3~13質量%がより好ましい。結合相の含有量が1質量%未満では基体の靭性が不十分になり、結合相が13.5質量%超では硬度(耐摩耗性)が不十分になる。焼結後のWC基超硬合金の未加工面、研磨加工面及び刃先処理加工面のいずれの表面にも本発明の(AlTiW)NO皮膜を形成できる。
(B) WC基超硬合金基体の改質層
 前記基体がWC基超硬合金の場合、基体表面に上記TiOターゲット又は上記TiBターゲットから発生したイオンを照射し、平均厚さ1~10 nmのFcc構造を有する改質層を形成するのが好ましい。WC基超硬合金は主成分のWCが六方晶構造を有するが、前記改質層は(AlTiW)NO皮膜と同じFcc構造を有し、両者の境界(界面)における結晶格子縞の30%以上、好ましくは50%以上、さらに好ましくは70%以上の部分が連続し、もって前記改質層を介してWC基超硬合金基体と(AlTiW)NO皮膜とが強固に密着する。
 TiOターゲットを用いたイオンボンバードにより得られる改質層は、主としてWC基超硬合金基体を構成するWC粒子内にOを僅かに含有させたFcc構造のW3O、及び/又はCo内にOを僅かに含有させたFcc構造のCoOからなり、高密度の薄層状に形成されるので破壊の起点になりにくい。TiBターゲットを用いたイオンボンバードにより得られる改質層もFcc構造を有し、高密度の薄層状に形成されるので破壊の起点になりにくい。改質層の平均厚さが1 nm未満では硬質皮膜の基体への密着力向上効果が十分に得られず、また10 nm超では逆に密着力を悪化させる。
(C) (AlTiW)NO皮膜
(1) 組成
 AI法により、基体上に被覆される本発明の(AlTiW)NO皮膜は、Al、Ti及びWを必須元素とする窒酸化物からなる。(AlTiW)NO皮膜の組成は、一般式:(AlxTiyWz)aN(1-a-b)Ob(原子比)により表される。x、y、z、a及びbはそれぞれ0.6≦x≦0.8、0.05≦y≦0.38、0.02≦z≦0.2、x+y+z=1、0.2≦a≦0.8、及び0.02≦b≦0.10を満たす数字である。本発明の(AlTiW)NO皮膜は、X線光電子分光法により特定されたW-O結合を有するがAl-O結合を実質的に有さず、またX線回折パターンで岩塩型の単一構造を有することを特徴とする。ここで、「Al-O結合を実質的に有さない」とは、(AlTiW)NO皮膜のX線光電子分光スペクトルに不可避的不純物レベルを超えるAl-O結合のピークが存在しないことを意味する。
 Al、Ti及びWの総計(x+y+z)を1として、Alの割合xが0.6未満では硬質皮膜の耐酸化性及び耐摩耗性は不十分であり、また0.8を超えるとウルツ鉱型構造が主構造となり、硬質皮膜の耐摩耗性が損なわれる。Alの割合xの好ましい範囲は0.6~0.75である。
 Al、Ti及びWの総計(x+y+z)を1として、Tiの割合yが0.05未満では基体と(AlTiW)NO皮膜との密着性が著しく損われ、また0.38を超えると硬質皮膜のAl含有量が減少するため、耐酸化性及び耐摩耗性が損なわれる。Tiの割合yの好ましい範囲は0.1~0.3である。
 Al、Ti及びWの総計(x+y+z)を1として、Wの割合zが0.02未満ではX線光電子分光スペクトルにおいてW-O結合が実質的に認められず、硬質皮膜の耐酸化性及び耐摩耗性が損われ、また0.2を超えると(AlTiW)NO皮膜がアモルファス化されて耐摩耗性が損なわれる。Wの割合zの好ましい範囲は0.05~0.15である。
 (AlTiW)NO皮膜中の金属成分(AlTiW)と、窒素及び酸素との総計を1として、金属成分(AlTiW)の割合aが0.2未満では(AlTiW)NO多結晶体の結晶粒界に不純物が取り込まれやすくなる。不純物は成膜装置の内部残留物に由来する。このような場合、(AlTiW)NO皮膜の接合強度が低下し、外部衝撃によって容易に(AlTiW)NO皮膜が破壊されてしまう。一方、金属成分(AlTiW)の割合aが0.8を超えると、金属成分(AlTiW)の比率が過多となって結晶歪が大きくなり、基体との密着力が低下して、(AlTiW)NO皮膜が剥離しやすくなる。金属成分(AlTiW)の割合aの好ましい範囲は0.25~0.75である。
 (AlTiW)NO皮膜中の酸素含有量bが0.02未満又は0.10超であると、(AlTiW)NO皮膜の耐酸化性及び耐摩耗性は低い。酸素含有量bの好ましい範囲は0.03~0.10である。
 本発明の(AlTiW)NO皮膜はC及び/又はBを含有しても良い。その場合、C及びBの合計量はNO含有量の30原子%以下であるのが好ましく、高い耐摩耗性を保持するために10原子%以下がより好ましい。C及び/又はBを含有する場合、(AlTiW)NO皮膜は、窒酸炭化物、窒酸硼化物又は窒酸炭硼化物と呼ぶことができる。
 本発明の(AlTiW)NO皮膜が従来より高い耐酸化性及び耐摩耗性を有するメカニズムは、(AlTi)N皮膜被覆切削工具を例にとると、以下のように考えられる。従来の(AlTi)N皮膜被覆切削工具では、切削加工時に皮膜表面から多量の酸素が取り込まれて皮膜表面付近のAlが優先的に酸化され、Al酸化物層が形成される。この際、Tiも同時に酸素と結合してAl酸化物層の下に非常に低密度な脆弱層であるTi酸化物層が形成される。これは、Al酸化物の生成自由エネルギーがTi酸化物の生成自由エネルギーより小さいことによる。このように脆弱なTi酸化物層は切削加工中の皮膜破壊の起点となり、容易に破壊されてAl酸化物層とともに脱落する。このようにAl酸化物層の形成とTi酸化物層を起点とする皮膜の脱落を繰り返して皮膜は損傷していく。この問題は、単にWを導入した(AlTiW)N皮膜でも、さらに従来の方法に従って雰囲気中の酸素を導入した(AlTiW)NO皮膜でも発生することが分った。後述するように、(AlTiW)NO皮膜が優れた耐酸化性及び耐摩耗性を有するためには、単に所定量のOを含有すれば良い訳ではなく、OがWに結合しAlに実質的に結合していないことが必要である。
 本発明の(AlTiW)NO皮膜では、WはW-O結合及びW-N結合として(AlTiW)NO皮膜に存在する。この条件を満たす(AlTiW)NO皮膜内に、切削加工時に発生する熱により、生成自由エネルギーの容易さからAl及びWの緻密な酸化物が形成されると推定される。W-O結合を含む(AlTiW)NO皮膜は、従来の(AlTi)N皮膜及び酸素含有雰囲気中で形成した(AlTiW)NO皮膜より非常に緻密であるので、酸素の拡散を抑制する。すなわち、切削加工に際し、独立して存在するW-O結合は優先的にAlと反応するため、もはやTiと反応するほどの酸素は存在せず、もって脆弱なTi酸化物は形成されないので、優れた耐酸化性及び耐摩耗性を保持し続ける。
(2) 膜厚
 本発明の(AlTiW)NO皮膜の平均厚さは0.5~15μmが好ましく、1~12μmがより好ましい。この範囲の膜厚により、基体から(AlTiW)NO皮膜が剥離するのが抑制され、優れた耐酸化性及び耐摩耗性が発揮される。平均厚さが0.5μm未満では(AlTiW)NO皮膜の効果が十分に得られず、また平均厚さが15μmを超えると残留応力が過大になり、(AlTiW)NO皮膜が基体から剥離しやすくなる。ここで、平坦ではない(AlTiW)NO皮膜の「厚さ」は平均厚さを意味する。
(3) 結晶構造
 X線回折パターンでは、本発明の(AlTiW)NO皮膜は岩塩型の単一構造からなる。また透過型電子顕微鏡による制限視野回折パターンでは、本発明の(AlTiW)NO皮膜は岩塩型構造が主構造であり、副構造としてその他の構造(ウルツ鉱型構造等)を有していても良い。実用性のある(AlTiW)NO皮膜では、岩塩型構造を主構造とし、ウルツ鉱型構造を副構造とするのが好ましい。
(D) 積層硬質皮膜
 本発明の(AlTiW)NO皮膜は、(AlxTiyWz)aN(1-a-b)Ob(ただし、x、y、z、a及びbはそれぞれ原子比で、0.6≦x≦0.8、0.05≦y≦0.38、0.02≦z≦0.2、x+y+z=1、0.2≦a≦0.8、及び0.02≦b≦0.10を満たす数字である。)で表される組成範囲内において、相互に異なる組成を有する少なくとも二種以上の(AlTiW)NO皮膜を交互に積層して構成しても良い。かかる積層構造により耐摩耗性及び耐酸化性をさらに高めることができる。
(E) 中間層
 基体と(AlTiW)NO皮膜との間に、物理蒸着法により、4a、5a及び6a族の元素、Al及びSiからなる群から選ばれた少なくとも一種の元素と、B、O、C及びNからなる群から選ばれた少なくとも一種の元素とを必須に含む中間層を形成しても良い。中間層は、TiN、又は岩塩型構造を主構造とする(TiAl)N、(TiAl)NC、(TiAl)NCO、(TiAlCr)N、(TiAlCr)NC、(TiAlCr)NCO、(TiAlNb)N、(TiAlNb)NC、(TiAlNb)NCO、(TiAlW)N及び(TiAlW)NC、(TiSi)N、(TiB)N、TiCN、Al2O3、Cr2O3、(AlCr)2O3、(AlCr)N、(AlCr)NC及び(AlCr)NCOからなる群から選ばれた少なくとも一種からなるのが好ましい。中間層は単層でも積層でも良い。
[2] 成膜装置
 (AlTiW)NO皮膜の形成にはAI装置を使用することができ、改質層及び中間層の形成にはAI装置又はその他の物理蒸着装置(スパッタリング装置等)を使用することができる。AI装置は、例えば図1に示すように、絶縁物14を介して減圧容器5に取り付けられたアーク放電式蒸発源13,27と、各アーク放電式蒸発源13,27に取り付けられたターゲット10,18と、各アーク放電式蒸発源13,27に接続したアーク放電用電源11,12と、軸受け部4を介して減圧容器5における回転軸線に支持された支柱6と、基体7を保持するために支柱6に支持された保持具8と、支柱6を回転させる駆動部1と、基体7にバイアス電圧を印加するバイアス電源3とを具備する。減圧容器5には、ガス導入部2及び排気口17が設けられている。アーク点火機構16,16は、アーク点火機構軸受部15,15を介して減圧容器5に取り付けられている。電極20は絶縁物19,19を介して減圧容器5に取り付けられている。ターゲット10と基体7との間には、遮蔽板軸受け部21を介して減圧容器5に遮蔽板23が設けられている。図1には図示していないが、遮蔽板23は遮蔽板駆動部22により例えば上下又は左右方向へ移動し、遮蔽板22が減圧容器5内の空間に存在しない状態にされた後に本発明の(AlTiW)NO皮膜の形成が行われる。
(A) (AlTiW)NO皮膜形成用ターゲット
 本発明の(AlTiW)NO皮膜形成用ターゲットは、不可避的不純物以外、(Al)p(AlN)q(Ti)r(TiN)s(WN)t(WOx)u(ただし、p、q、r、s、t、及びuはそれぞれ原子比で0.59≦p≦0.8、0.01≦q≦0.1、0.04≦r≦0.35、0.03≦s≦0.15、0.01≦t≦0.20、0.01≦u≦0.1、及びp+q+r+s+t+u=1を満たす数字であり、xは原子比で2~3の数字である。)で表される組成を有する。ここで、(AlN)、(TiN)及び(WN)はそれぞれ原子比で(Al1N1)、(Ti1N1)及び(W1N1)を意味し、(WOx)は原子比で(W1Ox)を意味する。WOxは酸化タングステンの主要構成成分であって主にWO3及び/又はWO2であるが、W2O5、W4O11、W1O1、W2O3、W4O3、W5O9、W3O8及びW5O14の少なくとも一種の酸化タングステンを含有しても良い。p、q、r、s、t及びuがそれぞれ上記範囲内でないと、本発明の(AlTiW)NO皮膜は得られない。前記ターゲットは、金属Al及び金属Tiの他に、(a) 上記量のAl窒化物、Ti窒化物及びW窒化物を含有することにより、アーク放電時のドロップレット発生量を大幅に低減するとともに、ターゲットから放出される酸素量を抑制でき、また(b) 上記量のW酸化物を含有することにより、(AlTiW)NO皮膜中に独立してW-O結合を導入することができる。p、q、r、s、t、及びuはそれぞれ原子比で0.59≦p≦0.75、0.01≦q≦0.10、0.05≦r≦0.25、0.05≦s≦0.15、0.01≦t≦0.15、0.01≦u≦0.10、及びp+q+r+s+t+u=1を満たす数字であるのが好ましい。
 ドロップレットの発生量が抑えられる理由は、アーク放電によって上記ターゲットの構成元素が蒸発する際に、各構成元素(Al、Ti及びW)の窒化物由来の窒素がターゲットの表面近傍でイオン化してアークスポットの移動速度を高める作用があるためと考えられる。また、蒸発面において、Al単独相のごく近傍に各構成元素(Al、Ti及びW)の窒化物が存在することにより、見かけ上低融点のAl単独相の面積が減少し、アーク放電の集中を回避して、ドロップレット量を減少させることができる。これは、各構成元素(Al、Ti及びW)の窒化物がAl単独相より高融点であることによる。その結果、巨大なドロップレットの発生が抑制される。ドロップレットを低減した(AlTiW)NO皮膜では多結晶粒の成長が分断されないため、高密度の(AlTiW)NO皮膜が形成され、従来より高強度になる。
 上記ターゲットの作製時及び(AlTiW)NO皮膜の形成時に酸素含有量を低減できる主な理由は、前記ターゲットに含まれるAl及びTiの一部を化学的に安定な窒化物としたことにより、前記ターゲット用原料粉末の混合工程及びホットプレス工程等で発生する熱により前記原料粉末が酸化されるのが抑制されるからである。酸化の抑制により、前記ターゲットの酸素含有量が大きく低減され、アーク放電時に前記ターゲットから放出される酸素量が大きく減少する。その結果、(AlTiW)NO皮膜中への酸素の意図しない混入が抑制され、特にTiの酸化が顕著に抑制される。本発明の(AlTiW)NO皮膜はかかる成膜時の酸化抑制効果により、従来に比べてドロップレットが少ないので、(AlTiW)NO多結晶粒の成長が阻害されない。さらに結晶粒界の偏析も抑制されるため、多結晶粒が成長した健全な組織を有する。
 上記ターゲット中のWOxは皮膜中にW-O結合を含有させるのに必要である。前記ターゲット中のWOxはアークスポットによりWイオン及びOイオンとなり、瞬時に相互に反応し合いW-O結合が生成し、(AlTiW)NO皮膜中に到達する。また、WOxは導電性を有するので、安定してアーク放電することができる。
 (AlTiW)NO皮膜形成用ターゲットは次のように作製することができる。粉末冶金法によりAlTi合金粉末、AlN粉末、TiN粉末、WN粉末、及びWOx粉末(例えば、WO3粉末及び/又はWO2粉末)をボールミルの密閉容器に充填し、アルゴンガス雰囲気中で数時間(例えば5時間)混合する。緻密かつ高密度の焼結体を得るために、各粉末の平均粒径は、0.01~500μmにするのが好ましく、0.1~100μmにするのが更に好ましい。各粉末の平均粒径は走査型電子顕微鏡(SEM)観察により求める。組成の偏りや不純物の混入を防止するために、純度99.999%以上のアルミナボールをメディアに使用するのが好ましい。得られた混合粉末を真空ホットプレス焼結装置のグラファイト製金型内に投入し、焼結を行う。焼結装置内の雰囲気中に含まれる微量の酸素が前記ターゲットに混入するのを防止するために、焼結装置内の真空度を1~10×10-3 Pa(例えば7×10-3 Pa)にしてからプレス及び焼結を行うのが好ましい。プレス荷重は100~200 MPa(例えば170 MPa)に設定するのが好ましい。また焼結時にAlが溶解するのを回避するために、焼結は520~580℃(例えば550℃)の温度で数時間(例えば2時間)行うのが好ましい。焼結により得られたターゲット材をAI装置に適した形状に加工し、(AlTiW)NO皮膜形成用ターゲットとする。
(B) 改質層形成用TiOターゲット
 改質層形成用TiOターゲットは、不可避的不純物を除いて、TieO1-e(ただし、eはTiの原子比であり、0.7≦e≦0.95を満たす数字である。)で表される組成を有する。Tiの原子比eが0.7未満では酸素が過多になり、Fcc構造の改質層が得られず、また0.95超では酸素が過少になり、やはりFcc構造の改質層が得られない。Tiの原子比eの好ましい範囲は0.8~0.9である。
 改質層形成用TiOターゲットはホットプレス法により作製するのが好ましい。作製工程で前記ターゲット内に酸素を意図的に取り込むために、例えばホットプレス焼結装置のWC基超硬合金製金型内に金属Ti粉末を投入し、真空に減圧した後、1~20体積%(例えば5体積%)の酸素ガスを含有するArガス雰囲気内で数時間(例えば2時間)焼結する。得られた焼結体をAI装置に適した形状に加工し、改質層形成用TiOターゲットとする。
(C) 改質層形成用TiBターゲット
 改質層形成用TiBターゲットは、不可避的不純物を除いて、TifB1-f(ただし、fはTiの原子比であり、0.5≦f≦0.9を満たす数字である。)で表される組成を有する。Tiの原子比fが0.5未満ではFcc構造の改質層が得られず、また0.9超では脱炭相が形成されて、やはりFcc構造の改質層が得られない。Tiの原子比fの好ましい範囲は0.7~0.9である。
 改質層形成用TiBターゲットもホットプレス法により作製するのが好ましい。作製工程で酸素が混入するのを極力抑制するため、例えばホットプレス焼結装置のWC基超硬合金製金型内にTiB粉末を投入し、1~10×10-3Pa(例えば7×10-3 Pa)に減圧した雰囲気内で数時間(例えば2時間)焼結する。得られた焼結体をAI装置に適した形状に加工し、改質層形成用TiBターゲットとする。
(D) アーク放電式蒸発源及びアーク放電用電源
 図1に示すように、アーク放電式蒸発源13、27はそれぞれ陰極物質の改質層形成用TiOターゲット又はTiBターゲット10、及び(AlTiW)NO皮膜形成用ターゲット(例えば、Al-AlN-Ti-TiN-WN-WO3合金)18を備え、アーク放電用電源11、12から、後述の条件でターゲット10に直流アーク電流を通電し、ターゲット18にパルスアーク電流を通電する。図示していないが、アーク放電式蒸発源13、27に磁場発生手段(電磁石及び/又は永久磁石とヨークとを有する構造体)を設け、(AlTiW)NO皮膜を形成する基体7の近傍に数十G(例えば、10~50 G)の空隙磁束密度の磁場分布を形成する。
 従来のAlTi合金ターゲットに比べて本発明の(AlTiW)NO皮膜形成用ターゲット(例えば、Al-AlN-Ti-TiN-WN-WO3合金)は低融点の金属Alを少量含むので、やはり(AlTiW)NO皮膜を形成する過程でアークスポットがAlの部分で滞留しやすい。アークスポットが滞留すると、その滞留部分に大きな溶解部が生じ、その溶解部の液滴が基体の表面に付着する。この液滴はドロップレットと呼ばれ、(AlTiW)NO皮膜の表面を荒らす。ドロップレットは(AlTiW)NO多結晶粒の成長の分断を引き起こすとともに、皮膜破壊の起点となり、所望の(AlTiW)NO皮膜が得られない。
 この問題を解決するべく種々検討した結果、(AlTiW)NO皮膜形成用ターゲット上に酸化物が形成されるのを抑制するとともに、ドロップレットの形成を抑制しつつ本発明の(AlTiW)NO皮膜を形成するために、アーク放電式蒸発源に装着した(AlTiW)NO皮膜形成用ターゲットに所定の条件でパルスアーク電流を通電する必要があることが分かった。
(E) バイアス電源
 図1に示すように、基体7にバイアス電源3から直流電圧又はパルスバイアス電圧を印加する。
[3] 成膜条件
 実質的にAl-O結合なしにW-O結合を有する本発明の(AlTiW)NO皮膜は、AI法において上記(AlTiW)NO皮膜形成用ターゲットにパルスアーク電流を所定条件で通電することにより製造できる。本発明の(AlTiW)NO皮膜の成膜条件を工程ごとに以下詳述する。
(A) 基体のクリーニング工程
 図1に示すAI装置の保持具8上に基体7をセットした後、減圧容器5内を1~5×10-2 Pa(例えば、1.5×10-2Pa)の真空に保持しながら、ヒーター(図示省略)により基体7を250~650℃の温度に加熱する。図1では円柱体で示されているが、基体7はソリッドタイプのエンドミル又はインサート等の種々の形状を取り得る。その後、アルゴンガスを減圧容器5内に導入して0.5~10 Pa(例えば2 Pa)のアルゴンガス雰囲気とする。この状態で基体7にバイアス電源3により-250~-150 Vの直流バイアス電圧又はパルスバイアス電圧を印加して基体7の表面をアルゴンガスによりボンバードして、クリーニングする。
 基体温度が250℃未満ではアルゴンガスによるエッチング効果がなく、また650℃超ではアルゴンガスによるエッチング効果が飽和して工業生産性が低下する。基体温度は基体に埋め込んだ熱電対により測定する(以下同様)。減圧容器5内のアルゴンガスの圧力が0.5~10 Paの範囲外であると、アルゴンガスによるボンバード処理が不安定となる。直流バイアス電圧又はパルスバイアス電圧が-250 V未満では基体にアーキングの発生が起こり、-150 V超ではボンバードのエッチングによるクリーニング効果が十分に得られない。
(B) 改質層形成工程
 改質層形成用TiOターゲットを用いたWC基超硬合金基体7へのイオンボンバードは、基体7のクリーニング後に、流量が30~150 sccmのアルゴンガス雰囲気内で行い、基体7の表面に改質層を形成する。アーク放電式蒸発源13に取り付けた前記TiOターゲットの表面にアーク放電用電源11から50~100 Aのアーク電流(直流電流)を通電する。基体7は400~700℃の温度に加熱し、さらにバイアス電源3から基体7に-850~-500 Vの直流バイアス電圧を印加する。前記TiOターゲットを用いたイオンボンバードによりTiイオン及びOイオンがWC基超硬合金基体7の表面に照射される。
 基体7の温度が400℃未満ではFcc構造の改質層が形成されず、また700℃超ではルチル型構造のTi酸化物などが析出し、硬質皮膜の密着性を損なう。減圧容器5内のアルゴンガスの流量が30 sccm未満では基体7に入射するTiイオン等のエネルギーが強すぎて、基体7の表面に脱炭層が形成され、硬質皮膜の密着性を損なう。150 sccm超ではTiイオン等のエネルギーが弱まり改質層が形成されない。
 アーク電流が50 A未満ではアーク放電が不安定になり、また100 A超では基体7の表面にドロップレットが多数形成されて、硬質皮膜の密着性を損なう。直流バイアス電圧が-850 V未満ではTiイオン等のエネルギーが強すぎて基体7の表面に脱炭層が形成され、また-500 V超では基体表面に改質層が形成されない。
 改質層形成用TiBターゲットを用いたWC基超硬合金基体7へのイオンボンバードは、基体7を450~750℃の温度に加熱し、さらにバイアス電源3から基体7に-1000~-600 Vの直流バイアス電圧を印加する点が前記改質層形成用TiOターゲットを用いたイオンボンバードの場合と異なる。TiBターゲットを用いたイオンボンバードによりTiイオン及びBイオンがWC基超硬合金基体の表面に照射される。基体7の温度が450~750℃の範囲外ではFcc構造の改質層が形成されない。直流バイアス電圧が-1000 V未満では基体7の表面に脱炭層が形成され、また-600 V超ではイオンボンバードの効果が実質的にない。
(C) (AlTiW)NO皮膜の成膜工程
 基体7の上(改質層を形成した場合はその上)に(AlTiW)NO皮膜を形成する。この際、窒化ガスを使用し、アーク放電式蒸発源27に取り付けたターゲット18の表面にアーク放電用電源12から後述の条件でパルスアーク電流を通電する。同時に、所定温度に制御した基体7にバイアス電源3から直流バイアス電圧又はパルスバイアス電圧を印加する。
(1) 基体温度
 (AlTiW)NO皮膜の成膜時に基体温度を400~550℃にする必要がある。基体温度が400℃未満では(AlTiW)NOが十分に結晶化しないため、(AlTiW)NO皮膜が十分な耐摩耗性を有さず、また残留応力の増加により皮膜剥離の原因となる。一方、基体温度が550℃超では岩塩型構造が不安定になり、(AlTiW)NO皮膜の耐摩耗性及び耐酸化性が損なわれる。基体温度は400~540℃が好ましい。
(2) 窒化ガスの種類及び圧力
 基体7に(AlTiW)NO皮膜を形成するための窒化ガスとして、窒素ガス、アンモニアガスと水素ガスとの混合ガス等を使用することができる。窒化ガスの圧力は2~6 Paにするのが好ましい。窒化ガスの圧力が2 Pa未満では窒化物の生成が不十分となり、6 Pa超では窒化ガスの添加効果が飽和する。
(3) 基体に印加するバイアス電圧
 (AlTiW)NO皮膜を形成するために、基体に直流バイアス電圧又はユニポーラパルスバイアス電圧を印加する。直流バイアス電圧は負の-270~-20 Vにする。-270V未満では基体上にアーキングが発生したり逆スパッタ現象が発生し、W-O結合が形成されない。一方、-20 V超ではバイアス電圧の印加効果が得られず、W-O結合が形成されない。直流バイアス電圧の好ましい範囲は-250~-50 Vである。
 ユニポーラパルスバイアス電圧の場合、負バイアス電圧(ゼロから負側への立ち上がりの急峻な部分を除いた負のピーク値)は-270~-20 Vにする。この範囲を外れると本発明の(AlTiW)NO皮膜が得られない。負バイアス電圧の好ましい範囲は-250~-50 Vである。ユニポーラパルスバイアス電圧の周波数は好ましくは20~50 kHzであり、より好ましくは30~40 kHzである。
(4) パルスアーク電流
 (AlTiW)NO皮膜の形成時のアーク放電を安定化するとともに、ドロップレットの発生及びターゲット表面の酸化物形成を抑制するために、(AlTiW)NO皮膜形成用ターゲット18にパルスアーク電流を通電する。パルスアーク電流は、例えば図2(実施例1のパルスアーク電流の通電波形)に概略的に示すように、少なくとも2段階のほぼ矩形状のパルス波である。周期Tにおいて、tminはパルスアーク電流の安定領域における最小値Amin側の通電時間であり、tmaxはパルスアーク電流の安定領域における最大値Amax側の通電時間である。
 図2に示すように、パルスアーク電流波形の1パルス(周期T)において、最大値Amax側の安定領域は、急峻な立ち上がり部分(Amin側の最終位置P4からAmax側の開始位置P1まで)を除いた、Amax側の開始位置P1からAmax側の最終位置P2までとし、位置P1から位置P2までの通電時間をtmaxとした。Amax側のパルス電流波形は位置P1から位置P2に向かってなだらかに減少しているので、位置P2のパルスアーク電流波形値95 AをAmaxとした。最小値Amin側の安定領域は、急峻な急峻な立ち下がり部分(Amax側の最終位置P2からAmin側の開始位置P3まで)を除いた、Amin側の開始位置P3からAmin側の最終位置P4までとし、位置P3から位置P4までの通電時間をtminとした。Amin側のパルス電流波形は位置P3から位置P4に向かってなだらかに減少していることから、位置P4のパルスアーク電流波形値65 AをAminとした。
 (AlTiW)NO皮膜の形成時のアーク放電を安定化するとともに、ドロップレットの発生及びターゲット表面の酸化物形成を抑制するために、Aminは50~90 Aであり、好ましくは50~80 Aである。Aminが50 A未満ではアーク放電が起こらず、成膜できない。一方、Aminが90 A超ではドロップレットが増加し、皮膜の耐酸化性が損なわれる。Amaxは90~120 Aであり、好ましくは90~110 Aである。Amaxが90~120 Aの範囲外であると、同様にドロップレットが増加し、皮膜の耐酸化性が損なわれる。
 AmaxとAminとの差ΔAは10 A以上であり、好ましくは10~60 Aであり、より好ましくは20~55 Aである。ΔAが10 A未満であるとドロップレットが増加し、皮膜の耐酸化性が損なわれる。
 パルスアーク電流におけるtmaxとtminとの割合は、下記式:
 D=[tmin/(tmin+tmax)]×100%
(ただし、tminはパルスアーク電流の最小値Aminの安定領域における通電時間であり、tmaxはパルスアーク電流の最大値Amaxの安定領域における通電時間である。)で定義されるデューティ比Dで表す。
 デューティ比Dは40~70%であり、好ましくは45~65%である。デューティ比Dが40~70%の範囲外であると、アーク放電が不安定になり、(AlTiW)NO皮膜の岩塩型構造が不安定になるか、ドロップレットが増加する。ただし、パルスアーク電流の波形は図2に示す2段階に限定されず、少なくともAmax及びAminの安定領域を有する波形であれば3段階以上(例えば3~10段階)でも良い。
 パルスアーク電流の周波数は2~15 kHzであり、好ましくは2~14 kHzである。パルスアーク電流の周波数が2~15 kHzの範囲外であると、アーク放電が安定しないか、(AlTiW)NO皮膜形成用ターゲットの表面に酸化物が多量に形成される。
 上記最適範囲内の条件でパルスアーク電流を通電することにより、安定したアーク放電が得られる。すなわち、アークスポットのAl部分での停滞や、(AlTiW)NO皮膜形成用ターゲット表面の酸化物形成が抑制されるから、AlTiWO合金は均一に溶融、蒸発し、基体上に形成される(AlTiW)NO皮膜の組成が安定する。
 雰囲気ガスに酸素ガスを導入せずにWOxを含む(AlTiW)NO皮膜形成用ターゲットを用いると、Al酸化物及びTi酸化物をほとんど形成せずにW-O結合を形成した本発明の(AlTiW)NO皮膜が形成される。(AlTiW)NO皮膜の形成工程において、WOxはアークスポットにより蒸発して瞬時にイオン化し、Wイオン及びOイオンが生成され、瞬時にお互いに反応し合う。その結果、皮膜中にW-O結合を形成することによりAl酸化物及びTi酸化物の生成を抑制すると考えられる。これに対して、酸素ガスを導入した雰囲気中で(AlTiW)NO皮膜を形成すると、Wよりはるかに酸化されやすいAl及びTiは雰囲気中の酸素と優先的に反応し、皮膜中に多量のAl酸化物及びTi酸化物が形成されるが、W-O結合は形成されない。Al酸化物及びTi酸化物を有すると(AlTiW)NO皮膜は十分な耐酸化性及び耐摩耗性を有さない。
 本発明を以下の実施例によりさらに詳細に説明するが、本発明は勿論それらに限定されない。以下の実施例及び比較例において、ターゲット組成は特に断りがなければ化学分析による測定値である。また、実施例では硬質皮膜の基体としてインサートを用いたが、勿論本発明はそれらに限定される訳ではなく、インサート以外の切削工具(エンドミル、ドリル等)又は金型等にも適用可能である。
実施例1
(1) 基体のクリーニング
 6.0質量%のCoを含有し、残部がWC及び不可避的不純物からなる組成を有するWC基超硬合金製の高送りミーリングインサート基体(図14に示す形状を有する日立ツール株式会社製のEDNW15T4TN-15)、及び物性測定用インサート基体(日立ツール株式会社製のSNMN120408)を、図1に示すAI装置の保持具8上にセットし、真空排気と同時にヒーター(図示省略)で600℃まで加熱した。その後、アルゴンガスを500 sccmの流量で導入して減圧容器5内の圧力を2.0 Paに調整するとともに、各基体に負の直流バイアス電圧-200 Vを印加してアルゴンイオンのボンバードによるエッチングにより各基体のクリーニングを行った。なお、「sccm」は1 atm及び25℃における流量(cc/分)を意味する。
(2) TiOターゲットを用いた改質層の形成
 基体温度を600℃に保持したまま、アルゴンガスの流量を50 sccmとし、原子比でTi0.85O0.15で表される組成のTiOターゲット10をアーク放電用電源11が接続されたアーク放電式蒸発源13に配置した。バイアス電源3により各基体に-700 Vの負の直流電圧を印加するとともに、ターゲット10の表面にアーク放電用電源11から直流のアーク電流を80 A通電し、各基体表面に改質層を形成した。
(3) (AlTiW)NO皮膜の形成
 基体温度を450℃に設定し、窒素ガスを800 sccm導入して減圧容器5内の圧力を3.1 Paに調整した。原子比で(Al)0.63(AlN)0.07(Ti)0.10(TiN)0.10(WN)0.03(WO3)0.07で表される組成のAl-AlN-Ti-TiN-WN-WO3合金からなるターゲット18を、アーク放電用電源12が接続されたアーク放電式蒸発源27に配置した。
 バイアス電源3により各基体に-80 Vの負の直流電圧を印加するとともに、ターゲット18の表面にアーク放電用電源12からほぼ矩形波状のパルスアーク電流を通電し、原子比で(Al0.71Ti0.20W0.09)0.48N0.44O0.08で表される組成を有する厚さ3μmの皮膜を形成した。皮膜組成は、皮膜の厚さ方向中心位置を電子プローブマイクロ分析装置EPMA(日本電子株式会社製JXA-8500F)により、加速電圧10 kV、照射電流0.05 A、及びビーム径0.5μmの条件で測定した。なお、EPMAの測定条件は他の例でも同じである。図2に示すように、パルスアーク電流の最小値Aminは65 Aで、最大値Amaxは95 Aであり、周波数は5 kHz(周期T=2.0×10-4秒/パルス)であり、デューティ比Dは50%であった。
 図3は、得られた(AlTiW)NO皮膜被覆ミーリングインサートの断面組織を示す走査型電子顕微鏡(SEM)写真(倍率:25,000倍)である。図3において、41はWC基超硬合金基体を示し、42は(AlTiW)NO皮膜を示す。なお、図3は低倍率であるので、改質層は見えない。
(4) (AlTiW)NO皮膜におけるTi、W及びAlの結合状態
 X線光電子分光装置(PHI社製Quantum2000型)を用いて、アルゴンイオンによるエッチングにより(AlTiW)NO皮膜の表面から前記皮膜の総厚における厚さ方向1/6の位置(表面側)を露出させた後、AlKα1線(波長λ:0.833934 nm)を照射して、Ti、W及びAlの結合状態を示すスペクトルを得た。さらに(AlTiW)NO皮膜を表面から前記皮膜の総厚における厚さ方向1/2の位置(中央部)及び5/6の位置(基体側)までエッチングし、同様にTi、W及びAlの結合状態を示すスペクトルを得た。各厚さ方向位置におけるTi、W及びAlの結合状態を示すスペクトルを示す図4~図6において、横軸は結合エネルギー(eV)であり、縦軸はC/S (count per second)である。Ti、W及びAlの結合状態はいずれも3箇所の測定位置でほぼ同じであることが分った。
 図4はTiNxOy(xとyの比率は不明)及びT-Nのピークを示し、図5はW-O及びW-Nのピークを示し、図6はAl-Nのピークを示す。図6のX線光電子分光スペクトルからAl-O結合は観察されず、Al-N結合のみ観察された。図4のX線光電子分光スペクトルからTiNxOyにおけるxとyの正確な比率は不明であるが、(AlTiW)NO皮膜の上記EPMA分析値(後述の表3-2中実施例1の欄を参照。)からTiNxOyは窒化物を主体とするTiの窒酸化物であることが分かる。図5において35.7~36.0 eV及び37.4 eVにピークを持つ2つのW-Oピークが重なっているため、図5にはなだらかなW-Oピークとして表れている。また、図5に32.8 eV及び34.8 eVに2つのW-Nピークが観察された。図4~図6から、(AlTiW)NO皮膜中にW-Oが独立して存在し、かつTi及びAlの酸化が抑制されていることが分かる。
(5) (AlTiW)NO皮膜のX線回折パターン
 物性測定用インサート基体上の(AlTiW)NO皮膜の結晶構造及び結晶配向を測定するために、X線回折装置(Panalytical社製のEMPYREAN)を使用し、CuKα1線(波長λ:0.15405 nm)を照射して以下の条件でX線回折パターン(図7)を得た。
 管電圧:45 kV
 管電流:40 mA
 入射角ω:3°に固定
 2θ:30~80°
 図7において、(111)面、(200)面、(220)面、(311)面、及び(222)面はいずれも岩塩型構造のX線回折ピークである。従って、実施例1の(AlTiW)NO皮膜は岩塩型の単一構造であることが分かる。
 表1は、ICCDリファレンスコード00-038-1420に記載されているTiNの標準X線回折強度I0及び2θを示す。TiNは(AlTiW)NOと同じ岩塩型構造を有する。本発明の(AlTiW)NO皮膜はTiNのTiの一部をAl及びWで置換し、さらにOを添加した固溶体に相当するので、標準X線回折強度I0(hkl)として表1の数値を採用した。
Figure JPOXMLDOC01-appb-T000001
 図7のX線回折パターンから、各面のX線回折強度(実測値)、及びX線回折の最強ピーク面である(200)面を基準にして算出した各面のX線回折ピーク強度比を表2に示す。表2で(AlTiW)NO皮膜のピーク角度2θが表1より高角度側にシフトしているのは、TiNにAl等の他の元素が添加されたため、(AlTiW)NO皮膜内に歪が発生したためであると考えられる。
Figure JPOXMLDOC01-appb-T000002
(6) 改質層及び(AlTiW)NO皮膜のミクロ構造
 物性測定用インサートの(AlTiW)NO皮膜の断面を透過型電子顕微鏡(TEM、日本電子株式会社製JEM-2100)により観察した。WC基超硬合金基体、改質層及び(AlTiW)NO皮膜の境界(界面)付近のTEM写真(倍率3,600,000倍、視野:30 nm×30 nm)を図8に示す。図9(a) は図8の概略図である。図9(a) において、線L1はWC基超硬合金基体41と改質層43との境界を示し、線L2は改質層43と(AlTiW)NO皮膜42との境界を示し、多数の平行な細線は結晶格子縞を示す。図9(a) から明らかなように、改質層43と(AlTiW)NO皮膜42との境界のうち、結晶格子縞が連続している部分は約30%以上あった。
 図9(a) に相当する図9(b) において、線L1及び線L2により囲まれた改質層43の面積Sを改質層43の長さLで割ると、1つの視野における改質層43の平均厚さD1が求められる。同じ方法で異なる5つの視野における改質層43の平均厚さD1、D2、D3、D4、D5を求め、これらを平均した値[(D1+D2+D3+D4+D5)/5]を改質層43の平均厚さDaとする。この方法により求めた改質層43の平均厚さDaは6 nmであった。
 JEM-2100を用いて、改質層43のほぼ厚さ方向中央位置(図8に丸Aで示す)において、200 kVの加速電圧及び50 cmのカメラ長の条件でナノビーム回折を行った。得られた回折像を図10に示す。また(AlTiW)NO皮膜の任意の位置(図8に丸Bで示す)において、同一条件でナノビーム回折を行った。得られた回折像を図11に示す。図10から、Ti0.85O0.15ターゲットを用いたイオンボンバードによる改質層はFcc構造であることが分かった。また図11から、本発明の(AlTiW)NO皮膜も同様にFcc構造であることが分かった。
 図8に丸Aで示す改質層43の厚さ方向中央位置において、組成の定性分析をJEM-2100に付属するUTW型Si(Li)半導体検出器を用いてビーム径1 nmの条件で行った。得られたスペクトルを図12に示す。図12において、横軸はkeVであり、縦軸はCounts(積算強度)である。図12から、改質層43は少なくともTi、W、C及びOを含む化合物であることが分かる。
 透過型電子顕微鏡(TEM、JEM-2100)を用いて、200 kVの加速電圧及び50 cmのカメラ長の条件で、物性測定用インサートの(AlTiW)NO皮膜の制限視野回折パターン(図13)を得た。c-(111)、c-(002)及びc-(022)は岩塩型構造の回折スポットを示し、w-(010)はウルツ鉱型構造の回折スポットを示す。図13のTEMの制限視野回折パターンから、物性測定用インサートの(AlTiW)NO皮膜は岩塩型構造を主構造とし、ウルツ鉱型構造を副構造とすることが分かる。
(7) ドロップレットの測定
 図16は、物性測定用インサートの(AlTiW)NO皮膜の表面を示すSEM写真(倍率:3,000倍)である。このSEM写真の縦35μm×横40μmの視野において、直径1μm以上のドロップレットをカウントした結果、実施例1の(AlTiW)NO皮膜の表面のドロップレットの発生量は「6個/視野」であり、後述の比較例19の(AlTiW)NO皮膜の表面(図17)に比べてドロップレットが非常に少ないことが分かる。
(8) 工具寿命の測定
 図15に示すように、(AlTiW)NO皮膜を被覆した4つの高送りミーリングインサート30を、刃先交換式回転工具(日立ツール株式会社製ASR5063-4)40の工具本体36の先端部38に止めねじ37で装着した。工具40の刃径は63 mmであった。下記の転削条件で切削加工を行い、倍率100倍の光学顕微鏡で単位時間ごとにサンプリングしたインサート30の逃げ面を観察し、逃げ面の摩耗幅又はチッピング幅が0.3 mm以上になったときの加工時間を工具寿命と判定した。
切削加工条件
  加工方法:      高送り連続転削加工
  被削材:       123 mm×250 mmのS50C角材
  使用インサート:   EDNW15T4TN-15(ミーリング用)
  切削工具:      ASR5063-4
  切削速度:      200 m/分
  1刃当たりの送り量: 1.83 mm/刃
  軸方向の切り込み量: 1.0 mm
  半径方向の切り込み量:42.5 mm
  切削液:       なし(乾式加工)
 使用した(AlTiW)NO皮膜形成用ターゲットの組成を表3-1に示し、(AlTiW)NO皮膜の組成を表3-2に示し、X線回折及び電子回折による結晶構造の測定結果、W-O結合の有無、及び各工具の工具寿命を表3-3に示す。
実施例2~9、及び比較例1~9
 表3-1に示す組成の皮膜形成用ターゲットを使用した以外実施例1と同様にして各ミーリングインサートに硬質皮膜を形成し、評価した。各ターゲットの組成を表3-1に示し、各皮膜の組成を表3-2に示し、各皮膜のX線回折及び電子回折による結晶構造の測定結果、W-O結合の有無、及び各工具の工具寿命を表3-3に示す。
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
注:(1)単一構造。
  (2)主構造。
 
 表3-3から明らかなように、実施例1~9の硬質皮膜にはW-O結合が形成されていた。またX線光電子分光スペクトルにより、実施例1~9の各硬質皮膜はAl-O結合を実質的に含有しないことを確認した。そのため、実施例1~9の各硬質皮膜被覆インサートは35分以上と長寿命であった。
 これに対し、比較例1~9の硬質皮膜被覆インサートは寿命が22分以下と短かった。この理由は以下の通りである。すなわち、比較例1の硬質皮膜は、ウルツ鉱型構造が主構造であるために、耐摩耗性に劣っていた。比較例1の硬質皮膜はAl含有量が過多のため、W-O結合を有さなかった。比較例2及び3の硬質皮膜は、Al含有量が過少(Ti含有量が過多)であるので、耐酸化性及び耐摩耗性に劣っていた。比較例4の硬質皮膜は、Ti含有量が過少であるために組織がアモルファス化し、耐摩耗性に劣っていた。比較例5の硬質皮膜は、W含有量が過多であるために組織がアモルファス化し、耐摩耗性に劣っていた。比較例6の硬質皮膜は、W含有量が過少であるためにW-O結合が形成されず、耐摩耗性に劣っていた。比較例7の硬質皮膜は、O含有量が過多であるためにTiが過剰に酸化され、耐摩耗性に劣っていた。比較例8の硬質皮膜は、O含有量が過少であるので皮膜強度が低かった。比較例9ではターゲットが(AlTiW)Nであるため、得られた硬質皮膜はW-O結合を有さず、耐酸化性及び耐摩耗性に劣っていた。
実施例10及び11、及び比較例10及び11
 (AlTiW)NO皮膜に対する基体温度の影響を調べるために、基体温度をそれぞれ400℃(実施例10)、540℃(実施例11)、300℃(比較例10)、及び700℃(比較例11)にした以外、実施例1と同様にして各ミーリングインサートに(AlTiW)NO皮膜を形成し、評価した。各(AlTiW)NO皮膜の組成を表4-1に示し、X線回折及び電子回折により求めた結晶構造の測定結果、W-O結合の有無、及び工具寿命を表4-2に示す。
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
注:(1)単一構造。
  (2)主構造。
 
 表4-2から明らかなように、実施例10及び11の工具寿命は50分以上と長かったが、比較例10及び11の工具寿命は19分~20分と短かった。この理由は、比較例10では基体温度が低すぎるためにW-O結合が形成されず、比較例11では基体温度が高すぎて岩塩型構造が保持できなかったためである。
実施例12~14、及び比較例12及び13
 (AlTiW)NO皮膜に及ぼす直流バイアス電圧の影響を調べるために、実施例12では-250Vの直流バイアス電圧を印加し、実施例13では-150 Vの直流バイアス電圧を印加し、実施例14では-20Vの直流バイアス電圧を印加し、比較例12では-300Vの直流バイアス電圧を印加し、比較例13では-10Vの直流バイアス電圧を印加した以外、実施例1と同様にして各ミーリングインサートに(AlTiW)NO皮膜を形成し、評価した。各(AlTiW)NO皮膜の組成を表5-1に示し、X線回折及び電子回折により求めた結晶構造の測定結果、W-O結合の有無、及び工具寿命を表5-2に示す。
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000009
注:(1)単一構造。
  (2)主構造。
 
実施例15~18、及び比較例14及び15
 (AlTiW)NO皮膜に及ぼすユニポーラパルスバイアス電圧の影響を調べるために、実施例15では-250 Vのユニポーラパルスバイアス電圧を印加し、実施例16では-150 Vのユニポーラパルスバイアス電圧を印加し、実施例17では-80 Vのユニポーラパルスバイアス電圧を印加し、実施例18では-20 Vのユニポーラパルスバイアス電圧を印加し、比較例14では-300 Vのユニポーラパルスバイアス電圧を印加し、比較例15では-10 Vのユニポーラパルスバイアス電圧を印加した以外、実施例1と同様にして各ミーリングインサートに(AlTiW)NO皮膜を形成し、評価した。いずれのユニポーラパルスバイアス電圧も周波数は30 kHzであった。各(AlTiW)NO皮膜の組成を表5-3に示し、X線回折及び電子回折により求めた結晶構造の測定結果、W-O結合の有無、及び工具寿命を表5-4に示す。
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000011
注:(1)単一構造。
  (2)主構造。
 
 表5-2、表5-4から明らかなように、実施例12~18の各工具寿命は42分以上と長かったが、比較例12~15の工具寿命は22分~28分と短かった。この理由は、比較例13及び比較例15ではバイアス電圧が高すぎたため、(AlTiW)NO皮膜の結晶化が促進されずに密着力不足になり、耐摩耗性に劣ったためである。また比較例12及び14ではバイアス電圧が低すぎたためにアーキングが発生し、(AlTiW)NO皮膜が劣化したためである。
実施例19及び20、及び比較例16及び17
 (AlTiW)NO皮膜に及ぼすパルスアーク電流の周波数の影響を調べるために、周波数をそれぞれ2 kHz(実施例19)、14 kHz(実施例20)、0.5 kHz(比較例16)、及び20 kHz(比較例17)とした以外、実施例1と同様にして各ミーリングインサートに(AlTiW)NO皮膜を形成し、評価した。各(AlTiW)NO皮膜の組成を表6-1に示し、X線回折及び電子回折により求めた結晶構造の測定結果、W-O結合の有無、及び工具寿命を表6-2に示す。
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000013
注:(1)単一構造。
  (2)主構造。
 
 表6-2から明らかなように、実施例19及び20の工具寿命は45分以上と長かったが、比較例16及び17の工具寿命は22分~23分と短かった。この理由は、比較例16ではターゲット上に酸化物が多量に形成され、成膜時のアーク放電が不安定になって皮膜組成の偏りが生じると同時に皮膜内にW-O結合が形成されなかったためであり、比較例17では周波数が高すぎてアーク放電が不安定になり、皮膜内にW-O結合が形成されなかったためである。
実施例21~25、比較例18及び19
 (AlTiW)NO皮膜に及ぼすパルスアーク電流のAmin、Amax及びΔA(=Amax-Amin)の影響を調べるために、表7に示すようにAmin、Amax及びΔAを変化させた以外、実施例1と同様にして各ミーリングインサートに(AlTiW)NO皮膜を形成し、評価した。各(AlTiW)NO皮膜の組成を表8-1に示し、X線回折及び電子回折により求めた結晶構造の測定結果、W-O結合の有無、及び工具寿命を表8-2に示す。
Figure JPOXMLDOC01-appb-T000014
注:(1) デューティ比。
  (2) ΔA=Amax-Amin。
Figure JPOXMLDOC01-appb-T000015
Figure JPOXMLDOC01-appb-T000016
注:(1)単一構造。
  (2)主構造。
 
 表7及び表8から明らかなように、Amin=50~90 A、Amax=90~120 A及びΔA=10~55 Aの範囲内で形成した実施例21~25の(AlTiW)NO皮膜はいずれもW-O結合を含んでおり、各工具は長寿命であった。これに対し、比較例18及び19の各工具は短寿命であった。これは、比較例18ではAmin、Amax及びΔAがいずれも本発明の範囲外であったためであり、比較例19ではパルスでないアーク電流の通電によりターゲット上に酸化物が多量に形成され、アーク放電が不安定になって皮膜組成の偏りが生じるとともに、皮膜内にW-O結合が形成されなかったためである。また、比較例18及び19では皮膜表面にドロップレットが多数形成されていたのも、短寿命の理由である。図17は比較例19の皮膜表面を示すSEM写真である。図17のSEM写真上で実施例1と同様に測定した直径1μm以上のドロップレットの発生量は「17個/視野」であった。
実施例26及び27、及び比較例20及び21
 (AlTiW)NO皮膜に及ぼすパルスアーク電流におけるAminのデューティ比Dの影響を調べるために、デューティ比Dを、実施例26では40%とし、実施例27では65%とし、比較例20では10%とし、比較例21では90%とした以外、実施例1と同様にして各ミーリングインサートに(AlTiW)NO皮膜を形成し、評価した。各(AlTiW)NO皮膜の組成を表9-1に示し、X線回折及び電子回折により求めた結晶構造の測定結果、W-O結合の有無、及び工具寿命を表9-2に示す。
Figure JPOXMLDOC01-appb-T000017
Figure JPOXMLDOC01-appb-T000018
注:(1)単一構造。
  (2)主構造。
 
 表9-2から明らかなように、実施例26及び27の各工具は50分以上と長寿命であったが、比較例20及び21の各工具は短寿命であった。これは、比較例20ではデューティ比Dが過小なことからアーク放電が不安定になり、皮膜内にW-O結合が含まれなかったためであり、また比較例21ではデューティ比Dが過大なことから、ターゲット上に酸化物が多量に形成され、アーク放電が不安定になり、皮膜内にW-O結合が含まれなかったためである。
実施例28及び29
 皮膜の結晶構造及び工具寿命に及ぼす改質層の厚さの影響を調べるために、実施例1と同じTi0.85O0.15ターゲット(原子比)を使用し、イオンボンバード時間を変更することによりWC基超硬合金基体の表面に形成した改質層の平均厚さをそれぞれ2 nm(実施例28)及び9 nm(実施例29)とした以外、実施例1と同様にしてミーリングインサートに(AlTiW)NO皮膜を形成した。各(AlTiW)NO皮膜の組成を表10-1に示し、X線回折及び電子回折により求めた結晶構造の測定結果、W-O結合の有無、改質層の平均厚さ、及び工具寿命を表10-2に示す。
Figure JPOXMLDOC01-appb-T000019
Figure JPOXMLDOC01-appb-T000020
注:(1)単一構造。
  (2)主構造。
 
 表10-2から明らかなように、実施例28及び29の各工具は45分以上と長寿命であった。
実施例30~33
 成膜時間を調整することにより(AlTiW)NO皮膜の平均膜厚をそれぞれ1μm(実施例30)、6μm(実施例31)、8μm(実施例32)及び10μm(実施例33)とした以外、実施例1と同様にして各ミーリングインサートに(AlTiW)NO皮膜を形成し、評価した。各(AlTiW)NO皮膜の組成を表11-1に示し、X線回折及び電子回折により求めた結晶構造の測定結果、W-O結合の有無、皮膜の平均厚さ、及び工具寿命を表11-2に示す。表11-2から明らかなように、実施例30~33の各硬質皮膜被覆工具は40分以上と長寿命であった。
Figure JPOXMLDOC01-appb-T000021
Figure JPOXMLDOC01-appb-T000022
注:(1)単一構造。
  (2)主構造。
 
実施例34~49
 皮膜の寿命に及ぼす(AlTiW)NO皮膜の積層化効果を調べるために、表12-2に示すように、実施例1と同様に形成した組成Aの皮膜と、表12-1の各ターゲットを使用した以外は実施例1と同様に形成した組成Bの皮膜とを交互に積層した各ミーリングインサートを実施例1と同様に評価した。組成Bの皮膜の形成に使用した各ターゲットの組成と得られた積層皮膜の積層数を表12-1に示し、各(AlTiW)NO積層皮膜を構成するA層及びB層の組成を表12-2に示し、X線回折及び電子回折により求めた結晶構造の測定結果、W-O結合の有無、及び工具寿命を表12-3に示す。
Figure JPOXMLDOC01-appb-T000023
Figure JPOXMLDOC01-appb-T000024
Figure JPOXMLDOC01-appb-T000025
注:(1)単一構造。
  (2)主構造。
 
 表12-3から明らかなように、実施例34~49の各工具は40分以上と長寿命であった。
実施例50~61
 皮膜の寿命に及ぼす中間層の影響を調べるために、実施例1と同じ改質層及び(AlTiW)NO皮膜の間に、表13-1に示す組成の各ターゲットを使用し、表13-1及び表13-2に示す各成膜条件で物理蒸着法により各中間層を形成した以外、実施例1と同様にしてミーリングインサートに(AlTiW)NO皮膜を形成し、評価した。表14-1に各(AlTiW)NO皮膜の組成を示し、表14-2にX線回折及び電子回折により求めた結晶構造の測定結果、W-O結合の有無、及び工具寿命を示す。
Figure JPOXMLDOC01-appb-T000026
注:(1) アーク放電式蒸発源のアーク電流。
  (2) 直流バイアス電源による負バイアス電圧のピーク値。
 
Figure JPOXMLDOC01-appb-T000027
注:(3) 実施例1と同様にX線回折測定した結果、
岩塩型の単一構造であった。
 
Figure JPOXMLDOC01-appb-T000028
Figure JPOXMLDOC01-appb-T000029
注:(1)単一構造。
  (2)主構造。
 
 実施例50~61では、WC基超硬合金基体と(AlTiW)NO皮膜との間に、物理蒸着法により、4a、5a及び6a族の元素、Al及びSiからなる群から選ばれた少なくとも一種の金属元素と、B、O、C及びNからなる群から選ばれた少なくとも一種とを必須構成元素とする中間層(硬質皮膜)を形成したが、表14-2から明らかなようにいずれの工具も47分以上の工具寿命を有していた。
実施例62~66
(1) 基体のクリーニング
 6質量%のCoを含有し、残部がWC及び不可避的不純物からなる組成のWC基超硬合金製の旋削インサート基体(日立ツール株式会社製のCNMG120408)、及び実施例1と同じ物性測定用インサート基体を図1に示すAI装置の保持具8上にセットし、真空排気と同時にヒーター(図示省略)で600℃に加熱した。その後、アルゴンガスを500 sccm導入して減圧容器5内の圧力を2.0 Paに調整し、各基体に-200 Vの負の直流バイアス電圧を印加してアルゴンイオンボンバードのエッチングによるクリーニングを行った。
(2) TiOターゲットを用いた改質層の形成
 クリーニングした各基体上に、実施例1と同様にして改質層を形成した。
(3) (AlTiW)NO皮膜の形成
 改質層を形成した各基体上に、実施例1と同様にして(AlTiW)NO皮膜を形成した。
(4) (AlCr)NO皮膜の形成
 AlCrターゲット(Al:50原子%、Cr:50原子%)を使用し、各(AlTiW)NO皮膜の上に以下の条件で(AlCr)NO皮膜を形成した。基体温度600℃で、直流アーク電流を120 Aとし、各基体に-40 Vのユニポーラパルスバイアス電圧(周波数20 kHz)を5分間印加した。窒素ガスは成膜初期に700 sccm流し、5分間で200 sccmまで流量を徐々に下げ、成膜終期では200 sccmとした。酸素ガスは成膜初期に10 sccmから20分間で500 sccmまで徐々に流量を上げながらAI炉内に導入し、成膜終期では500 sccmとした。成膜時の雰囲気ガス圧力は3 Paとし、(Al0.52Cr0.48)0.46(N0.42O0.58)0.54(原子比)の組成を有する(AlCr)NO皮膜を0.5μmの平均厚さに被覆した。表15は各(AlCr)NO皮膜の組成を示す。
Figure JPOXMLDOC01-appb-T000030
Figure JPOXMLDOC01-appb-T000031
(5) (AlCr)2O3皮膜の形成
 その後連続して、各(AlCr)NO皮膜上に上層として、表16-2に示す各AlCrターゲットを使用し、表16-1及び表16-2に示す各条件で(AlCr)2O3皮膜を1.5μmの平均厚さで形成した。(AlCr)2O3皮膜の組成及び結晶構造を表17に示す。
Figure JPOXMLDOC01-appb-T000032
Figure JPOXMLDOC01-appb-T000033
Figure JPOXMLDOC01-appb-T000034
(6) 工具寿命の評価
 得られた各(AlTiW)NO皮膜上に順次(AlCr)NO皮膜及び(AlCr)2O3皮膜を形成し、硬質皮膜被覆旋削インサートを得た。得られた各インサートを取り付けた各旋削工具により、以下の条件で旋削加工を行い、皮膜の剥離状況、逃げ面の摩耗、及びチッピング等を調べた。(AlTiW)NO皮膜、(AlCr)NO皮膜及び(AlCr)2O3皮膜の剥離の有無は、旋削加工の単位時間ごとにサンプリングしたインサートに皮膜剥離があるか否かを光学顕微鏡(倍率:100倍)で観察することにより調べた。旋削加工において、逃げ面の最大摩耗幅が0.30 mmを超えるまで、(AlTiW)NO皮膜が剥離するまで、又は(AlTiW)NO皮膜がチッピングするまでのうち最も短い切削加工時間を工具寿命とした。各(AlTiW)NO皮膜の組成、X線回折及び電子回折により求めた結晶構造の測定結果、W-O結合の有無、及び工具寿命をそれぞれ表18-1及び表18-2に示す。
切削加工条件
  被削材:  SUS630
  加工方法: 連続旋削加工
  工具形状: CNMG120408
  切削速度: 140 m/分
  送り:   0.23 mm/回転
  切り込み: 1.5 mm
  切削液:  水溶性切削油
実施例67
 実施例62と同様にして形成した(AlTiW)NO皮膜の上に(AlCr)2O3皮膜を形成しなかった旋削インサートを評価した。(AlTiW)NO皮膜の組成、X線回折及び電子回折により求めた結晶構造の測定結果、W-O結合の有無、及び工具寿命をそれぞれ表18-1及び表18-2に示す。
比較例22
 比較例3と同じ(AlTiW)NO皮膜を形成した以外実施例62と同様にして作製した(AlTiW)NO皮膜被覆インサートを評価した。(AlTiW)NO皮膜の組成を表18-1に示し、X線回折及び電子回折により求めた結晶構造の測定結果、W-O結合の有無、及び工具寿命を表18-2に示す。
Figure JPOXMLDOC01-appb-T000035
Figure JPOXMLDOC01-appb-T000036
注:(1)単一構造。
  (2)主構造。
 
 表18-2から明らかなように、実施例1と同じ(AlTiW)NO皮膜の上に(AlCr)2O3上層を形成した実施例62~66の各インサートの工具寿命は38分以上と長く、また(AlCr)2O3上層を形成しなかった実施例67の旋削インサートの工具寿命は実施例62~66より劣るが比較例22より長かった。
実施例68
 改質層を形成しない以外実施例1と同じWC基超硬合金基体に、実施例1と同様にして(AlTiW)NO皮膜を形成し、評価した結果、工具寿命は31分であり、改質層を形成したWC基超硬合金基体に(AlTiW)NO皮膜を形成したが、ターゲットに通電するパルスアーク電流の周波数を0.5 kHzとした比較例16の工具寿命(23分)より長かった。
実施例69
 図1のAI装置において、実施例1と同じWC基超硬合金製の高送りミーリングインサート基体及び物性測定用インサート基体に、実施例1と同様にArイオンのクリーニングを行った。次に、各基体の温度を610℃とし、アルゴンガスの流量を50 sccmとし、原子比でTi0.8B0.2で表される組成のターゲット10をアーク放電用電源11が接続されたアーク放電式蒸発源13に配置した。バイアス電源3により各基体に、-750 Vの負の直流電圧を印加するとともに、ターゲット10の表面にアーク放電用電源11から直流のアーク電流を80 A通電することにより平均厚さ5 nmの改質層を形成した。以降は実施例1と同様にしてミーリングインサートに(AlTiW)NO皮膜を形成し、評価した。その結果、工具寿命は63分と実施例1(55分)より長かった。
 上記実施例では、本発明のターゲットに含まれる酸化タングステンがWO3の場合を記載したがこれに限定されず、酸化タングステンがWO2であるか、又は酸化タングステンがWO3とWO2とからなる本発明のターゲットの場合にも上記実施例とほぼ同様の有利な効果を奏することができる。
  1:駆動部
  2:ガス導入部
  3:バイアス電源
  4:軸受け部
  5:減圧容器
  6:下部保持具(支柱)
  7:基体
  8:上部保持具
  10:陰極物質(ターゲット)
  11、12:アーク放電用電源
  13、27:アーク放電式蒸発源
  14:アーク放電式蒸発源固定用絶縁物
  15:アーク点火機構軸受部
  16:アーク点火機構
  17:排気口
  18:陰極物質(ターゲット)
  19:電極固定用絶縁物
  20:電極
  21:遮蔽板軸受け部
  22:遮蔽板駆動部
  23:遮蔽板
  30:ミーリング用インサート
  35:インサートの主切刃
  36:工具本体
  37:インサート用止めねじ
  38:工具本体の先端部
  40:刃先交換式回転工具
  41:WC基超硬合金基体
  42:(AlTiW)NO皮膜
  43:改質層

Claims (13)

  1.  (AlxTiyWz)aN(1-a-b)Ob(ただし、x、y、z、a及びbはそれぞれ原子比で0.6≦x≦0.8、0.05≦y≦0.38、0.02≦z≦0.2、x+y+z=1、0.2≦a≦0.8、及び0.02≦b≦0.10を満たす数字である。)で表される組成を有し、アークイオンプレーティング法により形成された硬質皮膜であって、
     X線光電子分光分析法で特定された結合状態に実質的にAl-O結合なしにW-O結合があり、かつX線回折パターンが岩塩型の単一構造を有することを特徴とする硬質皮膜。
  2.  請求項1に記載の硬質皮膜において、前記硬質皮膜の電子回折パターンが岩塩型を主構造とし、ウルツ鉱型を副構造とすることを特徴とする硬質皮膜。
  3.  請求項1又は2に記載の硬質皮膜を基体上に形成したことを特徴とする硬質皮膜被覆部材。
  4.  請求項3に記載の硬質皮膜被覆部材において、前記基体と前記硬質皮膜との間に、物理蒸着法により、4a、5a及び6a族の元素、Al及びSiから選択された少なくとも一種の金属元素と、B、O、C及びNから選択された少なくとも一種の元素とを必須に含む中間層を形成したことを特徴とする硬質皮膜被覆部材。
  5.  請求項3又は4に記載の硬質皮膜被覆部材において、前記硬質皮膜上に原子比で、(AlhCri)c(NjOk)d(ただし、h=0.1~0.6、h+i=1、j=0.1~0.8、j+k=1、c=0.35~0.6、及びc+d=1である。)で表される組成を有する酸窒化物層が形成され、さらに前記酸窒化物層上に物理蒸着法により原子比で、(AlmCrn)2O3(ただし、m=0.1~0.6、及びm+n=1である。)で表される組成を有する酸化物層が形成されたことを特徴とする硬質皮膜被覆部材。
  6.  (AlxTiyWz)aN(1-a-b)Ob(ただし、x、y、z、a及びbはそれぞれ原子比で0.6≦x≦0.8、0.05≦y≦0.38、0.02≦z≦0.2、x+y+z=1、0.2≦a≦0.8、及び0.02≦b≦0.10を満たす数字である。)で表される組成を有し、X線光電子分光分析法で特定された結合状態に実質的にAl-O結合なしにW-O結合があり、かつX線回折パターンが岩塩型の単一構造を有する硬質皮膜をアークイオンプレーティング法により基体上に形成する方法であって、
     窒化ガス雰囲気中で400~550℃の温度に保持した前記基体上に前記硬質皮膜を形成する際に、前記基体に-270~-20 Vの直流バイアス電圧又はユニポーラパルスバイアス電圧を印加するとともに、アーク放電式蒸発源に備えられたAlの窒化物、Tiの窒化物、Wの窒化物及びWの酸化物を含有するAlTi合金からなるターゲットにパルスアーク電流を通電し、
     前記パルスアーク電流が、90~120 Aの最大アーク電流値、50~90 Aの最小アーク電流値、及び2~15 kHzの周波数を有するとともに、前記最大アーク電流値と前記最小アーク電流値との差が10 A以上のほぼ矩形波状であって、40~70%のデューティ比を有することを特徴とする方法。
  7.  請求項6に記載の硬質皮膜の製造方法において、前記ターゲットの組成が、(Al)p(AlN)q(Ti)r(TiN)s(WN)t(WOx)u(ただし、p、q、r、s、t及びuはそれぞれ原子比で0.59≦p≦0.8、0.01≦q≦0.1、0.04≦r≦0.35、0.03≦s≦0.15、0.01≦t≦0.20、0.01≦u≦0.1、及びp+q+r+s+t+u=1を満たす数字であり、xは原子比で2~3の数字である。)で表される組成を有することを特徴とする方法。
  8.  (AlxTiyWz)aN(1-a-b)Ob(ただし、x、y、z、a及びbはそれぞれ原子比で0.6≦x≦0.8、0.05≦y≦0.38、0.02≦z≦0.2、x+y+z=1、0.2≦a≦0.8、及び0.02≦b≦0.10を満たす数字である。)で表される組成を有し、X線光電子分光分析法で特定された結合状態に実質的にAl-O結合なしにW-O結合があり、かつX線回折パターンが岩塩型の単一構造を有する硬質皮膜を基体上に有する硬質皮膜被覆部材をアークイオンプレーティング法により製造する方法であって、
     窒化ガス雰囲気中で400~550℃の温度に保持した前記基体上に前記硬質皮膜を形成する際に、前記基体に-270~-20 Vの直流バイアス電圧又はユニポーラパルスバイアス電圧を印加するとともに、アーク放電式蒸発源に備えられたAlの窒化物、Tiの窒化物、Wの窒化物及びWの酸化物を含有するAlTi合金からなるターゲットにパルスアーク電流を通電し、
     前記パルスアーク電流が、90~120 Aの最大アーク電流値、50~90 Aの最小アーク電流値、及び2~15 kHzの周波数を有するとともに、前記最大アーク電流値と前記最小アーク電流値との差が10 A以上のほぼ矩形波状であって、40~70%のデューティ比を有することを特徴とする方法。
  9.  請求項8に記載の硬質皮膜被覆部材の製造方法において、前記ターゲットの組成が、(Al)p(AlN)q(Ti)r(TiN)s(WN)t(WOx)u(ただし、p、q、r、s、t、及びuはそれぞれ原子比で0.59≦p≦0.8、0.01≦q≦0.1、0.04≦r≦0.35、0.03≦s≦0.15、0.01≦t≦0.20、0.01≦u≦0.1、及びp+q+r+s+t+u=1を満たす数字であり、xは原子比で2~3の数字である。)で表される組成を有することを特徴とする方法。
  10.  請求項8又は9に記載の硬質皮膜被覆部材の製造方法において、前記基体がWC基超硬合金であり、前記硬質皮膜の形成前に、流量が30~150 sccmのアルゴンガス雰囲気中で、400~700℃の温度に保持した前記基体に-850~-500 Vの負の直流電圧を印加するとともに、アーク放電式蒸発源に備えられたTieO1-e(ただし、eはTiの原子比であり、0.7≦e≦0.95を満たす数字である。)で表される組成のターゲットに50~100 Aのアーク電流を通電し、もって前記基体の表面を前記ターゲットから発生したイオンによりボンバードすることを特徴とする方法。
  11.  請求項8又は9に記載の硬質皮膜被覆部材の製造方法において、前記基体がWC基超硬合金であり、前記硬質皮膜の形成前に、流量が30~150 sccmのアルゴンガス雰囲気中で、450~750℃の温度に保持した前記基体に-1000~-600 Vの負の直流電圧を印加するとともに、アーク放電式蒸発源に備えられたTifB1-f(ただし、fはTiの原子比であり、0.5≦f≦0.9を満たす数字である。)で表される組成のターゲットに50~100 Aのアーク電流を通電し、もって前記基体の表面を前記ターゲットから発生したイオンによりボンバードすることを特徴とする方法。
  12.  請求項1又は2に記載の硬質皮膜の製造に用いるターゲットにおいて、(Al)p(AlN)q(Ti)r(TiN)s(WN)t(WOx)u(ただし、p、q、r、s、t、及びuはそれぞれ原子比で0.59≦p≦0.8、0.01≦q≦0.1、0.04≦r≦0.35、0.03≦s≦0.15、0.01≦t≦0.20、0.01≦u≦0.1、及びp+q+r+s+t+u=1を満たす数字であり、xは原子比で2~3の数字である。)により表される組成を有する焼結体からなることを特徴とするターゲット。
  13.  請求項12に記載のターゲットにおいて、前記焼結体がAlTi合金粉末、AlN粉末、TiN粉末、WN粉末、及びWO3粉末及び/又はWO2粉末からなる混合粉末を真空ホットプレスすることにより得られることを特徴とするターゲット。
PCT/JP2015/059456 2014-06-02 2015-03-26 硬質皮膜、硬質皮膜被覆部材、それらの製造方法、及び硬質皮膜の製造に用いるターゲット WO2015186413A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2016504819A JP5967329B2 (ja) 2014-06-02 2015-03-26 硬質皮膜、硬質皮膜被覆部材、それらの製造方法、及び硬質皮膜の製造に用いるターゲット及びその製造方法
KR1020167033943A KR101907052B1 (ko) 2014-06-02 2015-03-26 경질 피막, 경질 피막 피복 부재, 이들의 제조 방법, 및 경질 피막의 제조에 사용하는 타깃
CA2950701A CA2950701A1 (en) 2014-06-02 2015-03-26 Hard coating, hard-coated member, their production methods, and target used for producing hard coating
US15/315,464 US10287672B2 (en) 2014-06-02 2015-03-26 Hard coating, hard-coated member, their production methods, and target used for producing hard coating
CN201580028242.4A CN106460151B (zh) 2014-06-02 2015-03-26 硬质皮膜、硬质皮膜被覆部件、它们的制造方法、以及用于制造硬质皮膜的靶
EP15803758.0A EP3150740B1 (en) 2014-06-02 2015-03-26 Rigid coating film, member coated with rigid coating film, production processes therefor, and target for use in producing rigid coating film

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-114107 2014-06-02
JP2014114107 2014-06-02

Publications (1)

Publication Number Publication Date
WO2015186413A1 true WO2015186413A1 (ja) 2015-12-10

Family

ID=54766494

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/059456 WO2015186413A1 (ja) 2014-06-02 2015-03-26 硬質皮膜、硬質皮膜被覆部材、それらの製造方法、及び硬質皮膜の製造に用いるターゲット

Country Status (7)

Country Link
US (1) US10287672B2 (ja)
EP (1) EP3150740B1 (ja)
JP (1) JP5967329B2 (ja)
KR (1) KR101907052B1 (ja)
CN (1) CN106460151B (ja)
CA (1) CA2950701A1 (ja)
WO (1) WO2015186413A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019035219A1 (ja) * 2017-08-15 2019-02-21 三菱日立ツール株式会社 被覆切削工具
WO2019035220A1 (ja) * 2017-08-15 2019-02-21 三菱日立ツール株式会社 被覆切削工具
JP2021192930A (ja) * 2020-06-08 2021-12-23 住友電気工業株式会社 切削工具

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10335909B2 (en) * 2017-04-04 2019-07-02 Sakai Display Products Corporation Vapor deposition apparatus, vapor deposition method and method of manufacturing organic EL display apparatus
WO2019190393A1 (en) * 2018-03-28 2019-10-03 Agency For Science, Technology And Research A semiconductor and method for forming a semiconductor
JP6927431B2 (ja) 2018-05-30 2021-09-01 株式会社Moldino 被覆切削工具及びその製造方法
WO2020194899A1 (ja) * 2019-03-22 2020-10-01 株式会社Moldino 被覆切削工具
CN114875360B (zh) * 2022-05-24 2024-03-22 河南科技学院 一种抗高温氧化的NiAl/AlSiON多层复合涂层及制备方法
CN114934258B (zh) * 2022-05-24 2024-03-22 河南科技学院 一种SiAlON涂层的制备方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009167498A (ja) * 2008-01-18 2009-07-30 Hitachi Tool Engineering Ltd 硬質皮膜被覆部材及び硬質皮膜被覆部材の製造方法
JP2012166321A (ja) * 2011-02-16 2012-09-06 Sumitomo Electric Hardmetal Corp 表面被覆切削工具

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE59106090D1 (de) * 1991-01-21 1995-08-31 Balzers Hochvakuum Beschichtetes hochverschleissfestes Werkzeug und physikalisches Beschichtungsverfahren zur Beschichtung von hochverschleissfesten Werkzeugen.
JP3451877B2 (ja) * 1997-03-10 2003-09-29 三菱マテリアル株式会社 耐摩耗性のすぐれた表面被覆超硬合金製切削工具
JP3877124B2 (ja) 2000-03-09 2007-02-07 日立ツール株式会社 硬質皮膜被覆部材
JP5065565B2 (ja) 2000-04-20 2012-11-07 株式会社東芝 スパッタターゲット
US7368182B2 (en) * 2004-02-12 2008-05-06 Hitachi Tool Engineering, Ltd. Hard coating and its formation method, and hard-coated tool
US9997338B2 (en) 2005-03-24 2018-06-12 Oerlikon Surface Solutions Ag, Pfäffikon Method for operating a pulsed arc source
PT1864313E (pt) 2005-03-24 2013-02-21 Oerlikon Trading Ag Gerador de plasma sob vácuo
JP2007046103A (ja) * 2005-08-10 2007-02-22 Hitachi Tool Engineering Ltd 硬質皮膜
JP5096715B2 (ja) * 2006-09-21 2012-12-12 株式会社神戸製鋼所 硬質皮膜および硬質皮膜被覆工具
JP4846519B2 (ja) 2006-10-23 2011-12-28 日立ツール株式会社 窒化物含有ターゲット材
JP5098726B2 (ja) 2008-02-22 2012-12-12 日立ツール株式会社 被覆工具及び被覆工具の製造方法
JP5438665B2 (ja) * 2010-02-16 2014-03-12 株式会社神戸製鋼所 硬質皮膜被覆部材、および、冶工具、並びに、ターゲット
CN102821897B (zh) * 2010-03-29 2015-08-05 京瓷株式会社 切削工具
WO2012057000A1 (ja) * 2010-10-29 2012-05-03 株式会社神戸製鋼所 硬質皮膜形成部材および硬質皮膜の形成方法
JP5629291B2 (ja) 2012-07-23 2014-11-19 株式会社神戸製鋼所 硬質皮膜および硬質皮膜形成用ターゲット

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009167498A (ja) * 2008-01-18 2009-07-30 Hitachi Tool Engineering Ltd 硬質皮膜被覆部材及び硬質皮膜被覆部材の製造方法
JP2012166321A (ja) * 2011-02-16 2012-09-06 Sumitomo Electric Hardmetal Corp 表面被覆切削工具

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019035219A1 (ja) * 2017-08-15 2019-02-21 三菱日立ツール株式会社 被覆切削工具
WO2019035220A1 (ja) * 2017-08-15 2019-02-21 三菱日立ツール株式会社 被覆切削工具
CN110691662A (zh) * 2017-08-15 2020-01-14 三菱日立工具株式会社 包覆切削工具
JPWO2019035220A1 (ja) * 2017-08-15 2020-08-06 株式会社Moldino 被覆切削工具
JPWO2019035219A1 (ja) * 2017-08-15 2020-08-06 株式会社Moldino 被覆切削工具
US10974323B2 (en) 2017-08-15 2021-04-13 Moldino Tool Engineering, Ltd. Coated cutting tool
JP2021192930A (ja) * 2020-06-08 2021-12-23 住友電気工業株式会社 切削工具
JP7409233B2 (ja) 2020-06-08 2024-01-09 住友電気工業株式会社 切削工具
JP7574906B2 (ja) 2020-06-08 2024-10-29 住友電気工業株式会社 切削工具

Also Published As

Publication number Publication date
JPWO2015186413A1 (ja) 2017-04-20
CA2950701A1 (en) 2015-12-10
KR20170003627A (ko) 2017-01-09
EP3150740A4 (en) 2017-10-25
US10287672B2 (en) 2019-05-14
JP5967329B2 (ja) 2016-08-10
EP3150740A1 (en) 2017-04-05
CN106460151A (zh) 2017-02-22
KR101907052B1 (ko) 2018-10-11
CN106460151B (zh) 2018-11-13
US20170088937A1 (en) 2017-03-30
EP3150740B1 (en) 2018-09-05

Similar Documents

Publication Publication Date Title
JP5967329B2 (ja) 硬質皮膜、硬質皮膜被覆部材、それらの製造方法、及び硬質皮膜の製造に用いるターゲット及びその製造方法
JP6428899B2 (ja) Wc基超硬合金基体の改質方法
JP4112836B2 (ja) 切削工具用硬質皮膜を形成するためのターゲット
JP5234926B2 (ja) 硬質皮膜および硬質皮膜形成用ターゲット
JP6311700B2 (ja) 硬質皮膜、硬質皮膜被覆部材、及びそれらの製造方法
JP6421733B2 (ja) 硬質皮膜、硬質皮膜被覆部材、及びそれらの製造方法
JP4062582B2 (ja) 切削工具用硬質皮膜およびその製造方法並びに硬質皮膜形成用ターゲット
JP6927431B2 (ja) 被覆切削工具及びその製造方法
JP5250706B2 (ja) 耐摩耗性に優れた硬質皮膜
WO2018230212A1 (ja) 表面被覆切削工具
JP4616213B2 (ja) 切削工具用硬質皮膜
JP6930446B2 (ja) 硬質皮膜、硬質皮膜被覆工具及びその製造方法
JP2018162505A (ja) 硬質皮膜、硬質皮膜被覆工具、及びそれらの製造方法
JP2006225703A (ja) 硬質皮膜、積層型硬質皮膜およびその製造方法
JP5629291B2 (ja) 硬質皮膜および硬質皮膜形成用ターゲット
JP2017179465A (ja) 硬質皮膜、硬質皮膜被覆部材、及びそれらの製造方法
WO2023191078A1 (ja) 被覆工具および切削工具
JP2020152983A (ja) 被覆切削工具及びその製造方法
JP5321361B2 (ja) 表面被覆切削工具

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15803758

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016504819

Country of ref document: JP

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2015803758

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015803758

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2950701

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 15315464

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20167033943

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: IDP00201609093

Country of ref document: ID