WO2015186413A1 - 硬質皮膜、硬質皮膜被覆部材、それらの製造方法、及び硬質皮膜の製造に用いるターゲット - Google Patents
硬質皮膜、硬質皮膜被覆部材、それらの製造方法、及び硬質皮膜の製造に用いるターゲット Download PDFInfo
- Publication number
- WO2015186413A1 WO2015186413A1 PCT/JP2015/059456 JP2015059456W WO2015186413A1 WO 2015186413 A1 WO2015186413 A1 WO 2015186413A1 JP 2015059456 W JP2015059456 W JP 2015059456W WO 2015186413 A1 WO2015186413 A1 WO 2015186413A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- film
- altiw
- target
- substrate
- arc current
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/22—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
- C23C14/34—Sputtering
- C23C14/3407—Cathode assembly for sputtering apparatus, e.g. Target
- C23C14/3414—Metallurgical or chemical aspects of target preparation, e.g. casting, powder metallurgy
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F3/00—Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
- B22F3/12—Both compacting and sintering
- B22F3/14—Both compacting and sintering simultaneously
- B22F3/15—Hot isostatic pressing
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/622—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/64—Burning or sintering processes
- C04B35/645—Pressure sintering
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C1/00—Making non-ferrous alloys
- C22C1/04—Making non-ferrous alloys by powder metallurgy
- C22C1/05—Mixtures of metal powder with non-metallic powder
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C32/00—Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C32/00—Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ
- C22C32/0005—Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ with at least one oxide and at least one of carbides, nitrides, borides or silicides as the main non-metallic constituents
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/02—Pretreatment of the material to be coated
- C23C14/024—Deposition of sublayers, e.g. to promote adhesion of the coating
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/06—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
- C23C14/0641—Nitrides
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/06—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
- C23C14/0676—Oxynitrides
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/06—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
- C23C14/08—Oxides
- C23C14/081—Oxides of aluminium, magnesium or beryllium
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/06—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
- C23C14/08—Oxides
- C23C14/083—Oxides of refractory metals or yttrium
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/06—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
- C23C14/14—Metallic material, boron or silicon
- C23C14/16—Metallic material, boron or silicon on metallic substrates or on substrates of boron or silicon
- C23C14/165—Metallic material, boron or silicon on metallic substrates or on substrates of boron or silicon by cathodic sputtering
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/22—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
- C23C14/24—Vacuum evaporation
- C23C14/32—Vacuum evaporation by explosion; by evaporation and subsequent ionisation of the vapours, e.g. ion-plating
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/22—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
- C23C14/24—Vacuum evaporation
- C23C14/32—Vacuum evaporation by explosion; by evaporation and subsequent ionisation of the vapours, e.g. ion-plating
- C23C14/325—Electric arc evaporation
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/22—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
- C23C14/34—Sputtering
- C23C14/3435—Applying energy to the substrate during sputtering
- C23C14/345—Applying energy to the substrate during sputtering using substrate bias
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/22—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
- C23C14/34—Sputtering
- C23C14/3485—Sputtering using pulsed power to the target
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C30/00—Coating with metallic material characterised only by the composition of the metallic material, i.e. not characterised by the coating process
- C23C30/005—Coating with metallic material characterised only by the composition of the metallic material, i.e. not characterised by the coating process on hard metal substrates
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23B—TURNING; BORING
- B23B27/00—Tools for turning or boring machines; Tools of a similar kind in general; Accessories therefor
- B23B27/14—Cutting tools of which the bits or tips or cutting inserts are of special material
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/40—Metallic constituents or additives not added as binding phase
- C04B2235/402—Aluminium
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/65—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
- C04B2235/658—Atmosphere during thermal treatment
- C04B2235/6581—Total pressure below 1 atmosphere, e.g. vacuum
Definitions
- the present invention provides an (AlTiW) NO hard coating excellent in oxidation resistance and wear resistance, a member coated with an (AlTiW) NO hard coating, a manufacturing method thereof, and a target used for manufacturing an (AlTiW) NO hard coating. About.
- Japanese Patent No. 3877124 contains at least Al, Ti, Cr, N and O, the nonmetallic component is N w O 100-w (where w is 70 to 99 atomic%), and oxygen.
- An AlTiCrNO hard coating having a structure in which an A layer having a content of 1 to 10 atomic% and a B layer having an oxygen content of more than 10 atomic% and not more than 30 atomic% is disclosed.
- Patent No. 3877124 describes that the oxygen content of the AlTiCrNO film is adjusted by using a mixed gas of nitrogen and oxygen and adjusting the mixing ratio.
- the AlTiCrNO hard coating of Patent No. 3877124 does not have a WO bond, it cannot sufficiently meet the recent demand for high performance for cutting tools and the like.
- the method of Patent No. 3877124 uses an oxygen-containing atmosphere, even if a hard film containing W is formed instead of Cr, oxygen in the atmosphere preferentially reacts with Al to form Al. In addition to forming an oxide, it also reacts with Ti to form a Ti oxide, and the resulting AlTiWNO coating does not have sufficient oxidation resistance and wear resistance.
- Patent No. 4846519 contains Al, M component (one or more elements selected from Group 4a, 5a and 6a metals, Si, B and S), and Al nitride, Al nitride content is A target that is 5-30 mol% is disclosed.
- Patent No. 5471882 is made of a Ti—Al alloy containing 1 to 30 atomic% of Al, and Al is present in a solid solution state in Ti or an intermetallic compound with Ti. Discloses a sputter target having an average oxygen content of 1070 ppmw or less.
- the targets described in Japanese Patent Nos. 4846519 and 5471882 do not contain oxygen exceeding the inevitable impurity level, the oxygen of the film is introduced from oxygen gas in the film formation atmosphere. For this reason, similarly to the hard coating of Patent No. 3877124, the oxygen-containing hard coating obtained using the targets of Patent No. 4846519 and Patent No. 5471882 does not have sufficient oxidation resistance and wear resistance.
- JP 2009-220260 discloses a coated tool in which a carbide phase is formed on a WC-based cemented carbide substrate after forming a W-modified phase of bcc structure, and then a nitride hard film is formed thereon. Yes.
- Japanese Patent Application Laid-Open No. 2009-220260 describes that the W-modified phase is formed by ion bombardment using a film forming apparatus equipped with an arc discharge evaporation source. Specifically, a negative bias voltage P1 of ⁇ 1000 to ⁇ 600 V is applied to a substrate having a surface temperature of 800 to 860 ° C., and arc discharge evaporation is performed using an Ar gas containing hydrogen gas of 0.01 to 2 Pa.
- the substrate is irradiated with metal ions (Ti ions) evaporated from the source.
- metal ions Ti ions
- the nitride hard film obtained in JP-A-2009-220260 does not contain oxygen in an amount exceeding the inevitable impurity level, it does not have the target oxidation resistance and wear resistance.
- the three targets C1 (for example, Ti 100 ), C2 (for example, Al 70 Cr 30 ) and C3 (for example, Ti 75 Si 25 ) used for the manufacture of the nitride hard film disclosed in JP-A-2009-220260 also have inevitable impurity levels. Does not contain excess oxygen.
- JP 2008-533310 is a method for forming a hard coating composed of (Al x Cr 1-x ) y O z in an oxygen-containing atmosphere using an arc vapor deposition coating apparatus having a target electrode connected to a pulse power source. Is disclosed. However, in the method of JP-T-2008-533310, oxygen is introduced from the atmospheric gas without using a target containing oxygen in an amount exceeding the inevitable impurity level, so that the obtained hard coating has the target oxidation resistance and Does not have wear resistance.
- a first object of the present invention is to provide an (AlTiW) NO coating having an oxidation resistance and wear resistance superior to those of the conventional (AlTi) NO coating and having a long life.
- the second object of the present invention is a hard film coated member (cutting tool, which has an oxidation resistance and wear resistance superior to those of the conventional (AlTi) NO film, and has a long-life (AlTiW) NO film. Molds, etc.).
- a third object of the present invention is to provide a method for producing such an (AlTiW) NO coating and the hard coating-coated member.
- a fourth object of the present invention is to provide a target used for producing such an (AlTiW) NO film.
- the hard coating preferably has a rock salt type as a main structure and a wurtzite type as a substructure in an electron diffraction pattern.
- the hard coating member of the present invention is characterized in that the hard coating is formed on a substrate. Between the substrate and the hard coating, selected from B, O, C and N by at least one metal element selected from elements 4a, 5a and 6a, Al and Si by physical vapor deposition It is preferable that an intermediate layer essentially including at least one element is formed.
- a pulse arc current is applied to a target made of an AlTi alloy containing an Al nitride, Ti nitride, W nitride, and W oxide provided in an arc discharge evaporation source,
- the pulsed arc current has a maximum arc current value of 90 to 120 A, a minimum arc current value of 50 to 90 A, and a frequency of 2 to 15 kHz, and the maximum arc current value and the minimum arc current value are
- the difference is a substantially rectangular wave shape with a difference of 10 A or more, and has a duty ratio of 40 to 70%.
- the method for producing the hard film-coated member of the present invention is as follows.
- a DC bias voltage or a unipolar pulse bias voltage of ⁇ 270 to ⁇ 20 V is applied to the substrate,
- a pulse arc current is applied to a target made of an AlTi alloy containing Al nitride, Ti nitride, W nitride and W oxide provided in an arc discharge evaporation source,
- the pulsed arc current has a maximum arc current value of 90 to 120 A, a minimum arc current value of 50 to 90 A, and a frequency of 2 to 15 kHz, and the maximum arc current value and the minimum arc current value are
- the difference is a substantially rectangular wave shape with a difference of 10 A or more, and has a duty ratio of 40 to 70%.
- the target is (Al) p (AlN) q (Ti) r (TiN) s (WN) t (WOx) u (where p, q, r, s, t and u are atomic ratios of 0.59 ⁇ p ⁇ 0.8, 0.01 ⁇ q ⁇ 0.1, 0.04 ⁇ r ⁇ 0.35, 0.03, respectively.
- x is a number of 2 to 3 in terms of atomic ratio. preferable.
- the substrate is a WC-based cemented carbide
- the first modified layer applies a negative DC voltage of ⁇ 850 to ⁇ 500 V to the substrate maintained at a temperature of 400 to 700 ° C. in an argon gas atmosphere with a flow rate of 30 to 150 sccm, and an arc. 50 to 100 for a target having a composition represented by Ti e O 1-e (where e is an atomic ratio of Ti and 0.7 ⁇ e ⁇ 0.95) provided in the discharge evaporation source. It is formed by applying an arc current of A and bombarding the surface of the substrate with ions generated from the target.
- the second modified layer applies a negative DC voltage of ⁇ 1000 to ⁇ 600 V to the base body maintained at a temperature of 450 to 750 ° C. in an argon gas atmosphere with a flow rate of 30 to 150 sccm, and an arc. 50 to 100 A for a target having a composition represented by Ti f B 1-f (where f is an atomic ratio of Ti and 0.5 ⁇ f ⁇ 0.9) provided in the discharge evaporation source. And the surface of the substrate is bombarded with ions generated from the target.
- the (AlTiW) NO film with the same crystal structure is formed immediately above the modified layer, so that the adhesion force is higher than when the (AlTiW) NO film is formed directly on the WC-based cemented carbide without the modified layer. Increases significantly.
- the target sintered body is hot-pressed in a vacuum atmosphere with a mixed powder composed of AlTi alloy powder, AlN powder, TiN powder, WN powder, and WOx powder (for example, WO 3 and / or WO 2 powder). Is preferably obtained.
- the hard coating of the present invention is composed of polycrystalline grains of Al-rich (AlTiW) NO in which WO bonding is recognized without almost Al-O bonding by X-ray photoelectron spectroscopy, so that O is mainly bonded to Al.
- AlTiW Al-rich
- oxidation resistance and wear resistance are remarkably improved. Therefore, members (cutting tools, dies, etc.) having the hard coating of the present invention have a significantly longer life than before.
- the method of the present invention for producing the hard film introduces WO bonds from the target material containing O in the state of WOx to the hard film without containing oxygen gas in the atmosphere, so that the structure of the hard film is controlled. Can be carried out stably and efficiently, and its practicality is extremely high.
- the hard film covering member formed by forming the (AlTiW) NO film of the present invention on a cemented carbide substrate, a ceramic substrate such as cBN, sialon, a high-speed steel substrate, or a tool steel substrate is a conventional material.
- the oxidation resistance and wear resistance are remarkably improved, so that it is useful for cutting tools such as inserts, end mills and drills, and various dies.
- FIG. 2 is a scanning electron micrograph (magnification: 25,000 times) showing a cross section of the hard film-coated tool of Example 1.
- FIG. 2 is a graph showing an X-ray photoelectron spectroscopy spectrum showing the bonding state of Ti at three locations in the cross section of the (AlTiW) NO film of Example 1.
- FIG. 2 is a graph showing an X-ray photoelectron spectroscopy spectrum showing the bonding state of W at three cross sections of the (AlTiW) NO film of Example 1.
- FIG. 2 is a graph showing an X-ray photoelectron spectroscopy spectrum showing the bonding state of Al at three locations in the cross section of the (AlTiW) NO film of Example 1.
- FIG. 2 is a graph showing an X-ray diffraction pattern of the (AlTiW) NO film of Example 1.
- FIG. Transmission electron micrograph (magnification: 3,600,000 times) showing a cross section near the modified layer in the hard coated member (insert) of Example 1 having the modified layer between the WC-based cemented carbide substrate and the hard coating is there.
- FIG. 9 is a schematic view of the transmission electron micrograph of FIG. It is the schematic which shows the method of calculating
- FIG. 3 is a diagram showing the result of analyzing the crystal structure from the nanobeam diffraction image of the modified layer of Example 1.
- 2 is an example showing the result of analyzing the crystal structure from the nanobeam diffraction image of the (AlTiW) NO coating of Example 1.
- FIG. 2 is a graph showing a spectrum obtained by energy dispersive X-ray analysis of a cross section of the modified layer of Example 1.
- FIG. 2 is a photograph showing a limited-field diffraction image of the (AlTiW) NO film of Example 1.
- FIG. 20 is a scanning electron micrograph (magnification: 3,000 times) showing the surface of the (AlTiW) NO film of Comparative Example 19.
- AI method Al x Ti y W z ) a N (1-ab) O b
- the X-ray photoelectron spectroscopic spectrum of the hard coating shows that it has a WO bond substantially without an Al-O bond, and the X-ray diffraction pattern shows a rock salt type single structure.
- the substrate needs to be made of a material that has high heat resistance and can be applied to physical vapor deposition.
- the material of the substrate include cemented carbide, cermet, high speed steel, tool steel, and ceramics typified by a boron nitride sintered body (cBN) mainly composed of cubic boron nitride.
- cBN boron nitride sintered body
- WC-based cemented carbide or ceramic is preferred.
- the WC-based cemented carbide is composed of tungsten carbide (WC) particles and a binder phase of Co or an alloy mainly composed of Co.
- the binder phase content is preferably 1 to 13.5% by mass, and 3 to 13% by mass.
- the substrate has insufficient toughness, and if the binder phase exceeds 13.5% by mass, the hardness (wear resistance) becomes insufficient.
- the (AlTiW) NO coating of the present invention can be formed on any of the unprocessed surface, polished surface, and blade edge processed surface of the sintered WC-based cemented carbide.
- the substrate surface is irradiated with ions generated from the TiO target or the TiB target, and the average thickness is 1 to 10 nm. It is preferable to form a modified layer having an Fcc structure.
- the WC-based cemented carbide has a hexagonal crystal structure of WC as the main component, but the modified layer has the same Fcc structure as the (AlTiW) NO film, and more than 30% of the crystal lattice fringes at the boundary (interface) between them, Preferably, the portion of 50% or more, more preferably 70% or more is continuous, so that the WC-based cemented carbide substrate and the (AlTiW) NO film are firmly adhered via the modified layer.
- the modified layer obtained by ion bombardment using a TiO target is mainly composed of W 3 O of Fcc structure in which O is slightly contained in the WC particles constituting the WC-based cemented carbide substrate, and / or O in Co. It is made of Fcc-structured CoO containing a small amount of bismuth and is formed into a high-density thin layer, making it difficult to be the starting point of destruction.
- the modified layer obtained by ion bombardment using a TiB target also has an Fcc structure and is formed into a high-density thin layer, so it is unlikely to be a starting point for fracture. If the average thickness of the modified layer is less than 1 nm, the effect of improving the adhesion of the hard coating to the substrate cannot be sufficiently obtained, and if it exceeds 10 nm, the adhesion is worsened.
- (C) (AlTiW) NO film (1) Composition
- the (AlTiW) NO coating of the present invention coated on a substrate by the AI method is composed of a nitride oxide containing Al, Ti and W as essential elements.
- (AlTiW) Composition of NO coating has the general formula: represented by (Al x Ti y W z) a N (1-ab) O b ( atomic ratio).
- the (AlTiW) NO film of the present invention has a WO bond specified by X-ray photoelectron spectroscopy but substantially no Al-O bond, and has a rock salt type single structure in an X-ray diffraction pattern. It is characterized by that.
- substantially having no Al—O bond means that there is no Al—O bond peak exceeding the inevitable impurity level in the X-ray photoelectron spectrum of the (AlTiW) NO film. .
- the oxidation resistance and wear resistance of the hard coating are insufficient, and if it exceeds 0.8, the wurtzite structure is the main structure. Thus, the wear resistance of the hard coating is impaired.
- a preferable range of the ratio x of Al is 0.6 to 0.75.
- the Ti ratio y is less than 0.05, the adhesion between the substrate and the (AlTiW) NO coating is significantly impaired, and if it exceeds 0.38, the Al content of the hard coating is reduced. Therefore, oxidation resistance and wear resistance are impaired.
- a preferable range of the ratio y of Ti is 0.1 to 0.3.
- AlTiW When the total of the metal component (AlTiW), nitrogen and oxygen in the (AlTiW) NO film is 1, and the proportion a of the metal component (AlTiW) is less than 0.2, impurities are present at the grain boundaries of the (AlTiW) NO polycrystal It becomes easy to be taken in. Impurities are derived from the internal residue of the film forming apparatus. In such a case, the bonding strength of the (AlTiW) NO film is reduced, and the (AlTiW) NO film is easily destroyed by external impact.
- a preferable range of the ratio a of the metal component (AlTiW) is 0.25 to 0.75.
- the oxygen content b in the (AlTiW) NO film is less than 0.02 or more than 0.10, the oxidation resistance and wear resistance of the (AlTiW) NO film are low.
- a preferable range of the oxygen content b is 0.03 to 0.10.
- the (AlTiW) NO film of the present invention may contain C and / or B.
- the total amount of C and B is preferably 30 atomic percent or less of the NO content, and more preferably 10 atomic percent or less in order to maintain high wear resistance.
- the (AlTiW) NO film can be referred to as oxynitride carbide, oxynitride boride, or oxycarbonitride.
- the mechanism by which the (AlTiW) NO film of the present invention has higher oxidation resistance and wear resistance than the conventional one is considered as follows, taking an (AlTi) N film-coated cutting tool as an example.
- an (AlTi) N film-coated cutting tool a large amount of oxygen is taken in from the film surface during cutting, and Al near the film surface is preferentially oxidized to form an Al oxide layer.
- Ti also combines with oxygen to form a Ti oxide layer which is a very low density fragile layer under the Al oxide layer. This is because the free energy of formation of Al oxide is smaller than the free energy of formation of Ti oxide.
- the (AlTiW) NO film of the present invention W is present in the (AlTiW) NO film as a W—O bond and a W—N bond. It is presumed that a dense oxide of Al and W is formed in the (AlTiW) NO film satisfying this condition due to the ease of free energy of formation due to the heat generated during cutting.
- the (AlTiW) NO film containing a W—O bond is much denser than the conventional (AlTi) N film and the (AlTiW) NO film formed in an oxygen-containing atmosphere, and therefore suppresses oxygen diffusion.
- WO bonds that exist independently react preferentially with Al so there is no longer enough oxygen to react with Ti, and no fragile Ti oxide is formed. Continues to maintain resistance and wear resistance.
- the average thickness of the (AlTiW) NO film of the present invention is preferably from 0.5 to 15 ⁇ m, more preferably from 1 to 12 ⁇ m. With a film thickness in this range, the (AlTiW) NO film is prevented from peeling off from the substrate, and excellent oxidation resistance and wear resistance are exhibited. If the average thickness is less than 0.5 ⁇ m, the effect of the (AlTiW) NO film cannot be obtained sufficiently, and if the average thickness exceeds 15 ⁇ m, the residual stress becomes excessive and the (AlTiW) NO film tends to peel from the substrate. .
- the “thickness” of the non-flat (AlTiW) NO film means an average thickness.
- the (AlTiW) NO film of the present invention has a rock salt type single structure. Further, in the limited field diffraction pattern by the transmission electron microscope, the (AlTiW) NO film of the present invention has a rock salt structure as a main structure, and may have other structures (such as a wurtzite structure) as a substructure. . In a practical (AlTiW) NO film, it is preferable that the rock salt structure is the main structure and the wurtzite structure is the substructure.
- (D) laminating the hard coating of the present invention (AlTiW) NO coating, (Al x Ti y W z ) a N (1-ab) O b ( provided that, x, y, z, a and b are respectively atomic ratios 0.6 ⁇ x ⁇ 0.8, 0.05 ⁇ y ⁇ 0.38, 0.02 ⁇ z ⁇ 0.2, x + y + z 1, 0.2 ⁇ a ⁇ 0.8, and 0.02 ⁇ b ⁇ 0.10.
- at least two or more (AlTiW) NO films having different compositions may be alternately laminated. With such a laminated structure, wear resistance and oxidation resistance can be further enhanced.
- An intermediate layer that essentially contains at least one element selected from the group consisting of C and N may be formed.
- the intermediate layer is TiN or (TiAl) N, (TiAl) NC, (TiAl) NCO, (TiAlCr) N, (TiAlCr) NC, (TiAlCr) NCO, (TiAlNb) N, whose main structure is a rock salt structure.
- the intermediate layer may be a single layer or a stacked layer.
- the AI apparatus includes arc discharge evaporation sources 13 and 27 attached to the decompression vessel 5 via an insulator 14, and targets 10 attached to the arc discharge evaporation sources 13 and 27, respectively.
- 18, arc discharge power sources 11, 12 connected to the respective arc discharge evaporation sources 13, 27, a column 6 supported on the rotation axis of the decompression vessel 5 via the bearing portion 4, and a base body 7 are held.
- a holder 8 supported by the support 6, a drive unit 1 that rotates the support 6, and a bias power source 3 that applies a bias voltage to the base 7 are provided.
- the decompression vessel 5 is provided with a gas introduction part 2 and an exhaust port 17.
- the arc ignition mechanisms 16 and 16 are attached to the decompression vessel 5 via arc ignition mechanism bearing portions 15 and 15.
- the electrode 20 is attached to the decompression vessel 5 via insulators 19 and 19.
- a shielding plate 23 is provided in the decompression vessel 5 via a shielding plate bearing portion 21.
- the shielding plate 23 is moved, for example, vertically or horizontally by the shielding plate driving unit 22, and after the shielding plate 22 is not present in the space in the decompression vessel 5, (AlTiW) NO film is formed.
- the (AlTiW) NO film forming target of the present invention is (Al) p (AlN) q (Ti) r (TiN) s (WN) t (other than inevitable impurities) WOx) u (where p, q, r, s, t, and u are atomic ratios of 0.59 ⁇ p ⁇ 0.8, 0.01 ⁇ q ⁇ 0.1, 0.04 ⁇ r ⁇ 0.35, 0.03 ⁇ s ⁇ 0.15, 0.01 ⁇ t, respectively.
- (AlN), (TiN) and (WN) respectively mean (Al 1 N 1 ), (Ti 1 N 1 ) and (W 1 N 1 ) in atomic ratio, and (WOx) means in atomic ratio. It means (W 1 Ox).
- WOx is a main component of tungsten oxide and is mainly WO 3 and / or WO 2 , but W 2 O 5 , W 4 O 11 , W 1 O 1 , W 2 O 3 , W 4 O 3 , W At least one tungsten oxide of 5 O 9 , W 3 O 8 and W 5 O 14 may be contained. If p, q, r, s, t and u are not within the above ranges, the (AlTiW) NO film of the present invention cannot be obtained.
- the target contains (a) the amount of Al nitride, Ti nitride and W nitride in the above amount, thereby significantly reducing the amount of droplets generated during arc discharge.
- the reason why the generation amount of droplets is suppressed is that when the constituent elements of the target evaporate by arc discharge, the nitrogen derived from the nitride of each constituent element (Al, Ti and W) is ionized near the surface of the target. This is thought to be due to the effect of increasing the moving speed of the arc spot.
- the nitride of each constituent element (Al, Ti and W) is present in the immediate vicinity of the Al single phase, which apparently reduces the area of the low melting point Al single phase and concentrates arc discharge. Can be avoided and the amount of droplets can be reduced. This is because the nitride of each constituent element (Al, Ti and W) has a higher melting point than the Al single phase.
- AlTiW NO film with reduced droplets the growth of polycrystalline grains is not disrupted, so a high-density (AlTiW) NO film is formed, which is stronger than before.
- the main reason why the oxygen content can be reduced during the production of the target and during the formation of the (AlTiW) NO film is that a part of Al and Ti contained in the target is a chemically stable nitride. This is because oxidation of the raw material powder is suppressed by heat generated in the mixing process of the target raw material powder and the hot pressing process. By suppressing oxidation, the oxygen content of the target is greatly reduced, and the amount of oxygen released from the target during arc discharge is greatly reduced. As a result, unintentional mixing of oxygen into the (AlTiW) NO film is suppressed, and in particular, oxidation of Ti is significantly suppressed.
- the (AlTiW) NO film of the present invention has fewer droplets than the prior art due to the effect of suppressing oxidation during the film formation, the growth of (AlTiW) NO polycrystalline grains is not inhibited. Furthermore, since segregation of crystal grain boundaries is also suppressed, it has a healthy structure in which polycrystalline grains have grown.
- WOWOx in the above target is necessary to contain W-O bonds in the film.
- WOx in the target becomes W ions and O ions by the arc spot, reacts with each other instantaneously to form a W—O bond, and reaches the (AlTiW) NO film.
- WOx has electrical conductivity, it is possible to stably arc discharge.
- the (AlTiW) NO film forming target can be prepared as follows.
- a powder metallurgy method is used to fill an AlTi alloy powder, AlN powder, TiN powder, WN powder, and WOx powder (for example, WO 3 powder and / or WO 2 powder) in a ball mill hermetic container for several hours in an argon gas atmosphere ( Mix for example 5 hours).
- the average particle diameter of each powder is preferably 0.01 to 500 ⁇ m, and more preferably 0.1 to 100 ⁇ m.
- the average particle size of each powder is determined by observation with a scanning electron microscope (SEM).
- alumina balls with a purity of 99.999% or more for the media.
- the obtained mixed powder is put into a graphite mold of a vacuum hot press sintering apparatus and sintered.
- the degree of vacuum in the sintering apparatus is set to 1 to 10 ⁇ 10 ⁇ 3 Pa (for example, 7 ⁇ 10 ⁇ 3 Pa). It is preferable to perform pressing and sintering after the above.
- the press load is preferably set to 100 to 200 MPa (for example, 170 MPa).
- the sintering is preferably performed at a temperature of 520 to 580 ° C. (eg 550 ° C.) for several hours (eg 2 hours).
- the target material obtained by sintering is processed into a shape suitable for an AI device to obtain a target for (AlTiW) NO film formation.
- TiO target for modified layer formation is Ti e O 1-e (where e is the atomic ratio of Ti and 0.7 ⁇ e ⁇ 0.95, excluding inevitable impurities) It is a number to satisfy.
- e is the atomic ratio of Ti and 0.7 ⁇ e ⁇ 0.95, excluding inevitable impurities
- a preferable range of the atomic ratio e of Ti is 0.8 to 0.9.
- the TiO target for forming the modified layer is preferably produced by a hot press method.
- metal Ti powder is put into a WC-based cemented carbide mold of a hot press sintering apparatus, and the pressure is reduced to 1 to 20 volumes after vacuuming. Sintering is performed for several hours (for example, 2 hours) in an Ar gas atmosphere containing 5% (for example, 5% by volume) of oxygen gas.
- the obtained sintered body is processed into a shape suitable for an AI device to obtain a modified layer forming TiO target.
- (C) Modified layer forming TiB target The modified layer forming TiB target, except for inevitable impurities, is Ti f B 1-f (where f is the atomic ratio of Ti, 0.5 ⁇ f ⁇ 0.9 It is a number to satisfy. If the atomic ratio f of Ti is less than 0.5, a modified layer having an Fcc structure cannot be obtained, and if it exceeds 0.9, a decarburized phase is formed, and a modified layer having an Fcc structure cannot be obtained.
- a preferable range of the atomic ratio f of Ti is 0.7 to 0.9.
- the TiB target for forming the modified layer is also preferably produced by a hot press method.
- TiB powder is put into a WC-based cemented carbide mold of a hot press sintering apparatus, and 1 to 10 ⁇ 10 ⁇ 3 Pa (for example, 7 ⁇ 10 -3 Pa) in an atmosphere reduced in pressure for several hours (for example, 2 hours).
- the obtained sintered body is processed into a shape suitable for the AI device to obtain a modified layer forming TiB target.
- arc discharge evaporation sources 13 and 27 are respectively a TiO target or TiB target 10 for forming a modified layer of cathode material, and (AlTiW) NO.
- a target for film formation for example, Al—AlN—Ti—TiN—WN—WO 3 alloy
- a direct current arc current is applied to the target 10 from the arc discharge power supplies 11 and 12 under the conditions described below.
- a pulsed arc current is passed through.
- the arc discharge evaporation sources 13 and 27 are provided with magnetic field generating means (a structure having an electromagnet and / or a permanent magnet and a yoke), and there are several in the vicinity of the base 7 on which the (AlTiW) NO film is formed.
- a magnetic field distribution with a gap magnetic flux density of 10 G (for example, 10 to 50 G) is formed.
- the target for forming an (AlTiW) NO film of the present invention contains a small amount of low-melting metal Al.
- the arc spot tends to stay in the Al part in the process of forming the NO film.
- a large melting portion is generated in the staying portion, and droplets in the melting portion adhere to the surface of the substrate. These droplets are called droplets and roughen the surface of the (AlTiW) NO film.
- the droplets cause the growth of the (AlTiW) NO polycrystalline grains and become the starting point of film destruction, and the desired (AlTiW) NO film cannot be obtained.
- the (AlTiW) NO film of the present invention was suppressed while suppressing the formation of oxides on the target for forming the (AlTiW) NO film and the formation of droplets. It was found that a pulsed arc current must be applied to the (AlTiW) NO film forming target attached to the arc discharge evaporation source under predetermined conditions in order to form the film.
- (E) Bias power source As shown in FIG. 1, a DC voltage or a pulse bias voltage is applied to the substrate 7 from the bias power source 3.
- the inside of the vacuum vessel 5 is 1 to 5 ⁇ 10 ⁇ 2 Pa (for example, 1.5 ⁇ 10 ⁇ 2 Pa).
- the substrate 7 is heated to a temperature of 250 to 650 ° C. by a heater (not shown).
- a heater not shown
- the substrate 7 can take various shapes such as a solid type end mill or insert.
- argon gas is introduced into the decompression vessel 5 to obtain an argon gas atmosphere of 0.5 to 10 Pa (for example, 2 Pa).
- a DC bias voltage or a pulse bias voltage of ⁇ 250 to ⁇ 150 V is applied to the substrate 7 from the bias power source 3, and the surface of the substrate 7 is bombarded with argon gas and cleaned.
- the substrate temperature is less than 250 ° C, there is no etching effect by argon gas, and if it exceeds 650 ° C, the etching effect by argon gas is saturated and industrial productivity is lowered.
- the substrate temperature is measured by a thermocouple embedded in the substrate (the same applies hereinafter).
- the pressure of the argon gas in the decompression vessel 5 is outside the range of 0.5 to 10 Pa, the bombardment process with the argon gas becomes unstable.
- the DC bias voltage or pulse bias voltage is less than ⁇ 250 ⁇ V, arcing occurs in the substrate, and when it exceeds ⁇ 150 ⁇ V, the cleaning effect by bombard etching cannot be sufficiently obtained.
- Modified layer formation step Ion bombardment to the WC-based cemented carbide substrate 7 using the modified layer forming TiO target is performed in an argon gas atmosphere with a flow rate of 30 to 150 sccm after the substrate 7 is cleaned. Then, a modified layer is formed on the surface of the substrate 7.
- An arc current (DC current) of 50 to 100 A is applied to the surface of the TiO target attached to the arc discharge evaporation source 13 from the arc discharge power supply 11.
- the substrate 7 is heated to a temperature of 400 to 700 ° C., and a DC bias voltage of ⁇ 850 to ⁇ 500 V is applied to the substrate 7 from the bias power source 3.
- Ti ions and O ions are irradiated onto the surface of the WC-based cemented carbide substrate 7 by ion bombardment using the TiO target.
- the temperature of the substrate 7 is less than 400 ° C., a modified layer having an Fcc structure is not formed, and when it exceeds 700 ° C., Ti oxide having a rutile structure is deposited, thereby impairing the adhesion of the hard film.
- the flow rate of argon gas in the decompression vessel 5 is less than 30 sccm, the energy of Ti ions incident on the substrate 7 is too strong, and a decarburized layer is formed on the surface of the substrate 7, thereby impairing the adhesion of the hard coating. If it exceeds 150 sccm, the energy of Ti ions etc. will weaken and the modified layer will not be formed.
- the arc current is less than 50 A, the arc discharge becomes unstable, and if it exceeds 100 A, a large number of droplets are formed on the surface of the substrate 7 and the adhesion of the hard coating is impaired.
- the DC bias voltage is less than ⁇ 850 V, the energy of Ti ions and the like is too strong to form a decarburized layer on the surface of the substrate 7, and when it exceeds ⁇ 500 V, a modified layer is not formed on the substrate surface.
- the ion bombardment to the WC-based cemented carbide substrate 7 using the modified layer forming TiB target heats the substrate 7 to a temperature of 450 to 750 ° C., and further applies ⁇ 1000 to ⁇ 600 V from the bias power source 3 to the substrate 7.
- the point of applying the direct current bias voltage is different from the case of ion bombardment using the modified layer forming TiO target.
- Ti ions and B ions are irradiated onto the surface of a WC-based cemented carbide substrate by ion bombardment using a TiB target.
- the modified layer having the Fcc structure is not formed.
- the DC bias voltage is less than -1000 V, a decarburized layer is formed on the surface of the substrate 7, and when it exceeds -600 V, the effect of ion bombardment is substantially absent.
- (C) (AlTiW) NO film formation step An (AlTiW) NO film is formed on the substrate 7 (if a modified layer is formed).
- a nitriding gas is used, and a pulsed arc current is applied to the surface of the target 18 attached to the arc discharge evaporation source 27 from the arc discharge power source 12 under the conditions described later.
- a DC bias voltage or a pulse bias voltage is applied from the bias power source 3 to the substrate 7 controlled to a predetermined temperature.
- Substrate temperature It is necessary to set the substrate temperature to 400 to 550 ° C. when the (AlTiW) NO film is formed.
- (AlTiW) NO does not crystallize sufficiently, so that the (AlTiW) NO film does not have sufficient wear resistance, and causes an increase in residual stress and causes film peeling.
- the substrate temperature exceeds 550 ° C., the rock salt structure becomes unstable, and the wear resistance and oxidation resistance of the (AlTiW) NO coating are impaired.
- the substrate temperature is preferably 400 to 540 ° C.
- nitriding gas for forming the (AlTiW) NO film on the substrate 7 nitrogen gas, a mixed gas of ammonia gas and hydrogen gas, or the like can be used.
- the pressure of the nitriding gas is preferably 2 to 6 Pa. If the pressure of the nitriding gas is less than 2 Pa, the formation of nitride is insufficient, and if it exceeds 6 Pa, the effect of adding the nitriding gas is saturated.
- a DC bias voltage or a unipolar pulse bias voltage is applied to the substrate.
- the DC bias voltage should be negative -270 to -20 V. If it is less than ⁇ 270 V, arcing or reverse sputtering occurs on the substrate, and no WO bond is formed. On the other hand, if it exceeds ⁇ 20 V, the effect of applying a bias voltage cannot be obtained, and a WO bond is not formed.
- a preferred range for the DC bias voltage is -250 to -50 V.
- the negative bias voltage (negative peak value excluding the steep rise from zero to the negative side) should be -270 to -20V. Outside this range, the (AlTiW) NO film of the present invention cannot be obtained.
- the preferred range of negative bias voltage is -250 to -50 V.
- the frequency of the unipolar pulse bias voltage is preferably 20 to 50 kHz, and more preferably 30 to 40 kHz.
- Pulsed arc current (AlTiW)
- the target 18 for (AlTiW) NO film formation is used.
- the pulse arc current is a substantially rectangular pulse wave having at least two stages, as schematically shown in FIG. 2 (waveform waveform of the pulse arc current of Example 1), for example.
- t min is the energization time on the minimum value A min side in the stable region of the pulse arc current
- t max is the energization time on the maximum value A max side in the stable region of the pulse arc current.
- the stable region on the maximum value A max side is a steep rising portion (from the final position P 4 on the A min side to the start position on the A max side except to P 1), and from the start position P 1 of a max side final position P 2 of a max side, the energizing time from the position P 1 to the position P 2 and the t max. Since the pulse current waveform of A max side is decreased gradually toward the position P 2 from the position P 1, the pulsed arc current waveform value 95 A of the position P 2 to the A max.
- a min side of the start position P 3 was set, and the energization time from the position P 3 to the position P 4 was set to t min . Since the pulse current waveform of A min side are decreased gradually toward the position P 4 from the position P 3, the pulsed arc current waveform value 65 A of the position P 4 was A min.
- a min is 50 to 90 A, preferably 50 to 80 A. It is. When A min is less than 50 A, arc discharge does not occur and film formation is impossible. On the other hand, when A min exceeds 90 A, the number of droplets increases and the oxidation resistance of the film is impaired.
- a max is 90 to 120 A, preferably 90 to 110 A. When A max is out of the range of 90 to 120 A, the number of droplets increases and the oxidation resistance of the film is impaired.
- the difference ⁇ A between A max and A min is 10 A or more, preferably 10 to 60 A, and more preferably 20 to 55 A. If ⁇ A is less than 10 A, droplets increase and the oxidation resistance of the film is impaired.
- the duty ratio D is 40 to 70%, preferably 45 to 65%. If the duty ratio D is outside the range of 40 to 70%, the arc discharge becomes unstable, and the rock salt structure of the (AlTiW) NO film becomes unstable or the number of droplets increases.
- the waveform of the pulse arc current is not limited to the two stages shown in FIG. 2, and may be three or more stages (for example, 3 to 10 stages) as long as it has a stable region of at least A max and A min .
- the frequency of the pulse arc current is 2 to 15 kHz, preferably 2 to 14 kHz. If the frequency of the pulsed arc current is outside the range of 2 to 15 kHz, the arc discharge is not stable or a large amount of oxide is formed on the surface of the (AlTiW) NO film forming target.
- Stable arc discharge can be obtained by applying a pulsed arc current under conditions within the above optimal range. That is, stagnation in the Al portion of the arc spot and oxide formation on the target surface for (AlTiW) NO film formation are suppressed, so the AlTiWO alloy is uniformly melted and evaporated to form on the substrate (AlTiW) The composition of the NO film is stable.
- the (AlTiW) NO of the present invention forms a WO bond with almost no Al oxide or Ti oxide formed. A film is formed.
- WOx evaporates by the arc spot and instantly ionizes to generate W ions and O ions, which react with each other instantaneously. As a result, it is thought that the formation of Al oxide and Ti oxide is suppressed by forming a W—O bond in the film.
- the present invention will be described in more detail with reference to the following examples, but the present invention is of course not limited thereto.
- the target composition is a value measured by chemical analysis unless otherwise specified.
- the insert is used as the base of the hard coating.
- the present invention is of course not limited thereto, and can be applied to cutting tools other than the insert (end mill, drill, etc.) or a die. .
- Example 1 Substrate cleaning High-feed milling insert base made of WC-base cemented carbide containing 6.0% by mass of Co and the balance consisting of WC and inevitable impurities (Hitachi Tool Co., Ltd. having the shape shown in Fig. 14) EDNW15T4TN-15 (manufactured by Hitachi Chemical Co., Ltd.) and an insert base for measuring physical properties (SNMN120408 manufactured by Hitachi Tool Co., Ltd.) are set on the holder 8 of the AI device shown in FIG. Heated to 600 ° C.
- argon gas was introduced at a flow rate of 500 sccm to adjust the pressure in the decompression vessel 5 to 2.0 Pa, and a negative DC bias voltage of ⁇ 200 V was applied to each substrate to perform etching by argon ion bombardment.
- the substrate was cleaned.
- Sccm means a flow rate (cc / min) at 1 atm and 25 ° C.
- (AlTiW) NO film The substrate temperature was set to 450 ° C., 800 sccm of nitrogen gas was introduced, and the pressure in the vacuum vessel 5 was adjusted to 3.1 Pa.
- a target composed of an Al-AlN-Ti-TiN-WN-WO 3 alloy having a composition represented by the atomic ratio (Al) 0.63 (AlN) 0.07 (Ti) 0.10 (TiN) 0.10 (WN) 0.03 (WO 3 ) 0.07 18 is arranged in an arc discharge evaporation source 27 to which an arc discharge power source 12 is connected.
- a negative DC voltage of ⁇ 80 V is applied to each substrate by the bias power source 3, and a substantially arc-shaped pulsed arc current is applied to the surface of the target 18 from the arc discharge power source 12, and the atomic ratio (Al 0.71 Ti 0.20 A film having a thickness of 3 ⁇ m having a composition represented by W 0.09 ) 0.48 N 0.44 O 0.08 was formed.
- the film composition was measured with the electron probe microanalyzer EPMA (JXA-8500F manufactured by JEOL Ltd.) under the conditions of an acceleration voltage of 10 kV, an irradiation current of 0.05 A, and a beam diameter of 0.5 ⁇ m. .
- the measurement conditions for EPMA are the same in other examples.
- the minimum value A min of the pulse arc current is 65 A
- the maximum value A max is 95 A
- the duty ratio D was 50%.
- FIG. 3 is a scanning electron microscope (SEM) photograph (magnification: 25,000 times) showing a cross-sectional structure of the obtained (AlTiW) NO film-coated milling insert.
- SEM scanning electron microscope
- 41 indicates a WC-based cemented carbide substrate
- 42 indicates an (AlTiW) NO film. Since FIG. 3 shows a low magnification, the modified layer is not visible.
- Fig. 4 shows TiNxOy (the ratio of x and y is unknown) and T-N peaks
- Fig. 5 shows W-O and W-N peaks
- Fig. 6 shows Al-N peaks. From the X-ray photoelectron spectroscopy spectrum of FIG. 6, no Al—O bonds were observed, and only Al—N bonds were observed. Although the exact ratio of x and y in TiNxOy is unknown from the X-ray photoelectron spectrum of FIG. 4, the above EPMA analysis value of the (AlTiW) NO film (see the column of Example 1 in Table 3-2 described later). ) TiNxOy is a nitrided Ti oxide mainly composed of nitride. In FIG.
- X-ray diffraction pattern of (AlTiW) NO film X-ray diffractometer (EMPYREAN made by Panalytical) is used to measure the crystal structure and crystal orientation of (AlTiW) NO film on the insert substrate for physical property measurement. Then, an X-ray diffraction pattern (FIG. 7) was obtained under the following conditions by irradiation with CuK ⁇ 1 rays (wavelength ⁇ : 0.15405 nm). Tube voltage: 45 kV Tube current: 40 mA Incident angle ⁇ : Fixed at 3 ° 2 ⁇ : 30-80 °
- the (111) plane, (200) plane, (220) plane, (311) plane, and (222) plane are all X-ray diffraction peaks of the rock salt structure. Therefore, it can be seen that the (AlTiW) NO coating of Example 1 has a rock salt type single structure.
- Table 1 shows the standard X-ray diffraction intensities I 0 and 2 ⁇ of TiN described in ICCD reference code 00-038-1420.
- TiN has the same rock salt structure as (AlTiW) NO. Since the (AlTiW) NO film of the present invention corresponds to a solid solution in which a part of TiN Ti is replaced with Al and W and O is further added, the numerical values in Table 1 are expressed as standard X-ray diffraction intensity I 0 (hkl). Adopted.
- the X-ray diffraction peak intensity ratio of each surface calculated from the X-ray diffraction intensity (measured value) of each surface and the (200) surface, which is the strongest peak surface of X-ray diffraction, from the X-ray diffraction pattern of FIG. Is shown in Table 2.
- Table 2 the peak angle 2 ⁇ of the (AlTiW) NO film is shifted to a higher angle than in Table 1.Since other elements such as Al were added to TiN, distortion occurred in the (AlTiW) NO film. This is probably because
- FIG. 8 shows a TEM photograph (magnification: 3,600,000 times, field of view: 30 nm ⁇ 30 nm) near the boundary (interface) of the WC-based cemented carbide substrate, the modified layer, and the (AlTiW) NO coating.
- FIG. 9 (a) is a schematic diagram of FIG. In FIG.
- the line L 1 indicates the boundary between the WC-based cemented carbide substrate 41 and the modified layer 43
- the line L 2 indicates the boundary between the modified layer 43 and the (AlTiW) NO film 42
- a number of parallel thin lines indicate crystal lattice fringes.
- the portion of the boundary between the modified layer 43 and the (AlTiW) NO film 42 where the crystal lattice stripes are continuous was about 30% or more.
- FIG. 9 (b) which corresponds to FIG. 9 (a)
- dividing the area S of the modified layer 43 surrounded by a line L 1 and the line L 2 in the length L of the modified layer 43, in one field of view the average thickness D 1 of the reformed layer 43 is obtained.
- the average thickness D 1 , D 2 , D 3 , D 4 , D 5 of the modified layer 43 in five different fields of view was obtained in the same manner, and an average value of these values [(D 1 + D 2 + D 3 + D 4 + D 5 ) / 5] is the average thickness Da of the modified layer 43.
- the average thickness Da of the modified layer 43 obtained by this method was 6 nm.
- nanobeam diffraction was performed at the center position in the thickness direction of the modified layer 43 (indicated by a circle A in FIG. 8) under the conditions of an acceleration voltage of 200 kV and a camera length of 50 cm.
- the obtained diffraction image is shown in FIG.
- nanobeam diffraction was performed under the same conditions at an arbitrary position of the (AlTiW) NO film (indicated by a circle B in FIG. 8).
- the obtained diffraction image is shown in FIG. From FIG. 10, it was found that the modified layer by ion bombardment using a Ti 0.85 O 0.15 target has an Fcc structure. Further, from FIG. 11, it was found that the (AlTiW) NO film of the present invention also has an Fcc structure.
- the modified layer 43 is a compound containing at least Ti, W, C, and O.
- c- (111), c- (002), and c- (022) indicate diffraction spots having a rock salt structure
- w- (010) indicates a diffraction spot having a wurtzite structure.
- FIG. 16 is an SEM photograph (magnification: 3,000 times) showing the surface of the (AlTiW) NO film of the physical property measurement insert.
- the amount of droplets generated on the surface of the (AlTiW) NO film of Example 1 is “6 pieces / field of view”. It can be seen that the number of droplets is very small compared to the surface of the (AlTiW) NO film of Comparative Example 19 described later (FIG. 17).
- Cutting conditions Machining method High-feed continuous rolling Work material: 123 mm x 250 mm S50C square material Insert used: EDNW15T4TN-15 (for milling) Cutting tool: ASR5063-4 Cutting speed: 200 m / min Feed rate per tooth: 1.83 mm / tooth Axial depth of cut: 1.0 mm Radial depth of cut: 42.5 mm Cutting fluid: None (dry machining)
- Table 3-1 shows the composition of the (AlTiW) NO film formation target used
- Table 3-2 shows the composition of the (AlTiW) NO film, and results of measurement of crystal structure by X-ray diffraction and electron diffraction
- WO bond Table 3-3 shows the presence or absence of tool and the tool life of each tool.
- Examples 2 to 9 and Comparative Examples 1 to 9 A hard film was formed on each milling insert and evaluated in the same manner as in Example 1 except that the film forming target having the composition shown in Table 3-1 was used.
- the composition of each target is shown in Table 3-1
- the composition of each film is shown in Table 3-2
- the measurement result of the crystal structure by X-ray diffraction and electron diffraction of each film is shown in Table 3-2.
- the hard film-coated inserts of Comparative Examples 1 to 9 had a short life of 22 minutes or less.
- the reason is as follows. That is, the hard coating of Comparative Example 1 was inferior in wear resistance because the wurtzite structure was the main structure.
- the hard film of Comparative Example 1 did not have W—O bonds due to excessive Al content.
- the hard coatings of Comparative Examples 2 and 3 were inferior in oxidation resistance and wear resistance because the Al content was too small (the Ti content was excessive).
- the hard film of Comparative Example 4 had an amorphous structure due to an insufficient Ti content, and was inferior in wear resistance. Since the hard film of Comparative Example 5 had an excessive W content, the structure became amorphous and the wear resistance was poor.
- the hard film of Comparative Example 6 was inferior in wear resistance because W-O bonds were not formed because the W content was too small.
- the hard film of Comparative Example 7 since the O content was excessive, Ti was excessively oxidized and the wear resistance was poor.
- the hard film of Comparative Example 8 had a low film strength because the O content was too small.
- the target was (AlTiW) N, the obtained hard film had no W—O bond and was inferior in oxidation resistance and wear resistance.
- Examples 10 and 11 and Comparative Examples 10 and 11 In order to investigate the influence of the substrate temperature on the (AlTiW) NO film, the substrate temperatures were 400 ° C. (Example 10), 540 ° C. (Example 11), 300 ° C. (Comparative Example 10), and 700 ° C. (Comparative Example 11), respectively.
- (AlTiW) NO film was formed on each milling insert in the same manner as in Example 1 except that the above was evaluated.
- the composition of each (AlTiW) NO film is shown in Table 4-1, and the measurement results of the crystal structure obtained by X-ray diffraction and electron diffraction, the presence or absence of WO bonding, and the tool life are shown in Table 4-2.
- the tool life of Examples 10 and 11 was as long as 50 minutes or more, but the tool life of Comparative Examples 10 and 11 was as short as 19 to 20 minutes. This is because in Comparative Example 10, the substrate temperature was too low to form a W—O bond, and in Comparative Example 11, the substrate temperature was too high to maintain the rock salt structure.
- Examples 12-14 and Comparative Examples 12 and 13 In order to investigate the influence of the DC bias voltage on the (AlTiW) NO film, a DC bias voltage of ⁇ 250 V was applied in Example 12, a DC bias voltage of ⁇ 150 V was applied in Example 13, and in Example 14, A -20V DC bias voltage was applied. In Comparative Example 12, a -300V DC bias voltage was applied. In Comparative Example 13, a -10V DC bias voltage was applied. An (AlTiW) NO film was formed and evaluated. The composition of each (AlTiW) NO film is shown in Table 5-1, and the measurement results of the crystal structure obtained by X-ray diffraction and electron diffraction, the presence or absence of WO bonding, and the tool life are shown in Table 5-2.
- Example 15 In order to investigate the influence of the unipolar pulse bias voltage on the (AlTiW) NO film, in Example 15, a unipolar pulse bias voltage of ⁇ 250 V was applied, and in Example 16, a unipolar pulse bias voltage of ⁇ 150 V was applied. In Example 17, a -80 V unipolar pulse bias voltage is applied, in Example 18, a -20 V unipolar pulse bias voltage is applied, and in Comparative Example 14, a -300 V unipolar pulse bias voltage is applied. For 15, a (AlTiW) NO film was formed on each milling insert and evaluated in the same manner as in Example 1 except that a unipolar pulse bias voltage of ⁇ 10 V was applied.
- the frequency of all unipolar pulse bias voltages was 30 kHz.
- the composition of each (AlTiW) NO film is shown in Table 5-3, and the measurement results of the crystal structure obtained by X-ray diffraction and electron diffraction, the presence or absence of WO bonding, and the tool life are shown in Table 5-4.
- Examples 19 and 20 and Comparative Examples 16 and 17 In order to investigate the influence of the frequency of the pulsed arc current on the (AlTiW) NO film, the frequencies were 2 kHz (Example 19), 14 kHz (Example 20), 0.5 kHz (Comparative Example 16), and 20 kHz ( A (AlTiW) NO film was formed on each milling insert and evaluated in the same manner as in Example 1 except that Comparative Example 17) was used.
- the composition of each (AlTiW) NO film is shown in Table 6-1, and the measurement results of the crystal structure obtained by X-ray diffraction and electron diffraction, the presence or absence of WO bonding, and the tool life are shown in Table 6-2.
- FIG. 17 is an SEM photograph showing the coating surface of Comparative Example 19.
- the amount of droplets having a diameter of 1 ⁇ m or more measured on the SEM photograph of FIG. 17 in the same manner as in Example 1 was “17 pieces / field of view”.
- each tool of Examples 26 and 27 had a long life of 50 minutes or more, but each tool of Comparative Examples 20 and 21 had a short life. This is because in Comparative Example 20, since the duty ratio D is too small, the arc discharge becomes unstable, and the WO coupling is not included in the film, and in Comparative Example 21, because the duty ratio D is excessive, This is because a large amount of oxide was formed on the target, arc discharge became unstable, and WO bonds were not included in the film.
- Examples 28 and 29 In order to investigate the effect of the modified layer thickness on the crystal structure and tool life of the coating, the same Ti 0.85 O 0.15 target (atomic ratio) as in Example 1 was used, and the bombardment time was changed by changing the ion bombardment time.
- the milling insert (AlTiW) in the same manner as in Example 1, except that the average thickness of the modified layer formed on the surface of the cemented carbide substrate was 2 nm (Example 28) and 9 nm (Example 29), respectively. A NO film was formed.
- each (AlTiW) NO film is shown in Table 10-1, and the measurement results of the crystal structure obtained by X-ray diffraction and electron diffraction, the presence or absence of WO bond, the average thickness of the modified layer, and the tool life are shown in Table 10 Shown in -2.
- Examples 30-33 By adjusting the film formation time, the average film thickness of the (AlTiW) NO film was 1 ⁇ m (Example 30), 6 ⁇ m (Example 31), 8 ⁇ m (Example 32), and 10 ⁇ m (Example 33), respectively.
- an (AlTiW) NO film was formed on each milling insert and evaluated.
- the composition of each (AlTiW) NO film is shown in Table 11-1, and the measurement results of the crystal structure obtained by X-ray diffraction and electron diffraction, the presence or absence of WO bonds, the average thickness of the film, and the tool life are shown in Table 11-2. Shown in As is apparent from Table 11-2, each of the hard film coated tools of Examples 30 to 33 had a long life of 40 minutes or more.
- Examples 34-49 In order to investigate the lamination effect of the (AlTiW) NO film on the life of the film, as shown in Table 12-2, the film of composition A formed in the same manner as in Example 1 and each target of Table 12-1 were Each milling insert obtained by alternately laminating films of composition B formed in the same manner as in Example 1 except for use was evaluated in the same manner as in Example 1.
- Table 12-1 shows the composition of each target used to form the film of composition B and the number of laminated films obtained, and Table 12 shows the composition of layers A and B constituting each (AlTiW) NO laminated film.
- Table 12-3 shows the measurement results of the crystal structure obtained by X-ray diffraction and electron diffraction, the presence or absence of WO bonding, and the tool life.
- each target having the composition shown in Table 13-1 was used between the same modified layer and the (AlTiW) NO film as in Example 1, and Table 13-1
- an (AlTiW) NO film was formed on the milling insert and evaluated in the same manner as in Example 1 except that each intermediate layer was formed by physical vapor deposition under each film formation condition shown in Table 13-2.
- Table 14-1 shows the composition of each (AlTiW) NO film
- Table 14-2 shows the measurement results of the crystal structure obtained by X-ray diffraction and electron diffraction, the presence or absence of WO bonds, and the tool life.
- Examples 50 to 61 at least one selected from the group consisting of elements 4a, 5a and 6a, Al and Si by physical vapor deposition between the WC-based cemented carbide substrate and the (AlTiW) NO film.
- An intermediate layer (hard film) having an essential constituent element of at least one selected from the group consisting of B, O, C and N was formed, but as is clear from Table 14-2, The tool also had a tool life of more than 47 minutes.
- Examples 62-66 Substrate cleaning Turning insert substrate made of WC-base cemented carbide having a composition containing 6% by mass of Co and the balance consisting of WC and inevitable impurities (CNMG120408 made by Hitachi Tool Co., Ltd.), and Example 1
- the same insert substrate for measuring physical properties as above was set on the holder 8 of the AI apparatus shown in FIG. 1, and heated to 600 ° C. with a heater (not shown) simultaneously with evacuation. Thereafter, 500 sccm of argon gas was introduced to adjust the pressure in the decompression vessel 5 to 2.0 Pa, and a negative DC bias voltage of ⁇ 200 V was applied to each substrate to perform cleaning by etching of argon ion bombardment.
- Oxygen gas was introduced into the AI furnace while gradually increasing the flow rate from 10 sccm to 500 sccm in 20 minutes at the initial stage of film formation, and was adjusted to 500 sccm at the end of film formation.
- the atmospheric gas pressure during film formation was 3 Pa, and an (AlCr) NO film having a composition of (Al 0.52 Cr 0.48 ) 0.46 (N 0.42 O 0.58 ) 0.54 (atomic ratio) was coated to an average thickness of 0.5 ⁇ m.
- Table 15 shows the composition of each (AlCr) NO film.
- the tool life was defined as the shortest cutting time until the maximum wear width of the flank surface exceeded 0.30 mm, until the (AlTiW) NO film peeled, or until the (AlTiW) NO film chipped.
- Tables 18-1 and 18-2 show the composition of each (AlTiW) NO film, the measurement results of the crystal structure obtained by X-ray diffraction and electron diffraction, the presence or absence of WO bonds, and the tool life, respectively.
- Cutting conditions Work material: SUS630 Machining method: Continuous turning Tool shape: CNMG120408 Cutting speed: 140 m / min Feed: 0.23 mm / rotation Cutting depth: 1.5 mm Cutting fluid: Water-soluble cutting oil
- Example 67 A turning insert in which an (AlCr) 2 O 3 film was not formed on an (AlTiW) NO film formed in the same manner as in Example 62 was evaluated.
- Table 18-1 and Table 18-2 show the composition of the (AlTiW) NO film, the measurement results of the crystal structure obtained by X-ray diffraction and electron diffraction, the presence or absence of WO bonds, and the tool life, respectively.
- Comparative Example 22 An (AlTiW) NO film-coated insert produced in the same manner as in Example 62 was evaluated except that the same (AlTiW) NO film as in Comparative Example 3 was formed.
- the composition of the (AlTiW) NO film is shown in Table 18-1, and the measurement results of the crystal structure obtained by X-ray diffraction and electron diffraction, the presence or absence of WO bonds, and the tool life are shown in Table 18-2.
- Example 68 (AlTiW) NO film was formed on the same WC-based cemented carbide substrate as in Example 1 except that the modified layer was not formed, and as a result of evaluation, the tool life was 31 minutes.
- the (AlTiW) NO coating was formed on the layered WC-based cemented carbide substrate, but the tool life (23 minutes) was longer than that of Comparative Example 16 in which the frequency of the pulsed arc current applied to the target was 0.5 kHz.
- Example 69 In the AI apparatus shown in FIG. 1, Ar ions were cleaned on the high feed milling insert base and the physical property measuring insert base made of the same WC-base cemented carbide as in Example 1 in the same manner as in Example 1. Next, the temperature of each substrate is set to 610 ° C., the flow rate of argon gas is set to 50 sccm, and the target 10 having a composition represented by Ti 0.8 B 0.2 in atomic ratio is connected to an arc discharge power source 11 for arc discharge evaporation. Located in source 13. A negative DC voltage of ⁇ 750 V is applied to each substrate by the bias power source 3 and an average thickness of 5 nm is improved by applying 80 A DC arc current from the arc discharge power source 11 to the surface of the target 10. A quality layer was formed. Thereafter, in the same manner as in Example 1, an (AlTiW) NO film was formed on the milling insert and evaluated. As a result, the tool life was 63 minutes, which was longer than Example 1 (55 minutes).
- the tungsten oxide contained in the target of the present invention is WO 3
- the present invention is not limited to this, and the tungsten oxide is WO 2 or the tungsten oxide is composed of WO 3 and WO 2.
- the same advantageous effects as those of the above embodiment can be obtained.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Organic Chemistry (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Manufacturing & Machinery (AREA)
- Ceramic Engineering (AREA)
- Inorganic Chemistry (AREA)
- Structural Engineering (AREA)
- Physical Vapour Deposition (AREA)
- Cutting Tools, Boring Holders, And Turrets (AREA)
Abstract
Description
窒化ガス雰囲気中で、400~550℃の温度に保持した前記基体上に前記硬質皮膜を形成する際に、前記基体に-270~-20 Vの直流バイアス電圧又はユニポーラパルスバイアス電圧を印加するとともに、アーク放電式蒸発源に備えられたAlの窒化物、Tiの窒化物、Wの窒化物及びWの酸化物を含有するAlTi合金からなるターゲットにパルスアーク電流を通電し、
前記パルスアーク電流が、90~120 Aの最大アーク電流値、50~90 Aの最小アーク電流値、及び2~15 kHzの周波数を有するとともに、前記最大アーク電流値と前記最小アーク電流値との差が10 A以上のほぼ矩形波状であって、40~70%のデューティ比を有することを特徴とする。
窒化ガス雰囲気中で400~550℃の温度に保持した上記基体上に上記硬質皮膜を形成する際に、前記基体に-270~-20 Vの直流バイアス電圧又はユニポーラパルスバイアス電圧を印加するとともに、アーク放電式蒸発源に備えられたAlの窒化物、Tiの窒化物、Wの窒化物及びWの酸化物を含有するAlTi合金からなるターゲットにパルスアーク電流を通電し、
前記パルスアーク電流が、90~120 Aの最大アーク電流値、50~90 Aの最小アーク電流値、及び2~15 kHzの周波数を有するとともに、前記最大アーク電流値と前記最小アーク電流値との差が10 A以上のほぼ矩形波状であって、40~70%のデューティ比を有することを特徴とする。
本発明の硬質皮膜被覆部材は、基体上に、アークイオンプレーティング法(AI法)により、(AlxTiyWz)aN(1-a-b)Ob(ただし、x、y、z、a及びbはそれぞれ原子比で0.6≦x≦0.8、0.05≦y≦0.38、0.02≦z≦0.2、x+y+z=1、0.2≦a≦0.8、及び0.02≦b≦0.10を満たす数字である。)で表される組成を有する硬質皮膜を形成してなる。前記硬質皮膜のX線光電子分光スペクトルは実質的にAl-O結合を有さずにW-O結合を有することを示し、X線回折パターンは岩塩型の単一構造を有することを示す。
基体は耐熱性に富み、物理蒸着法を適用できる材質である必要がある。基体の材質として、例えば超硬合金、サーメット、高速度鋼、工具鋼又は立方晶窒化ホウ素を主成分とする窒化ホウ素焼結体(cBN)に代表されるセラミックスが挙げられる。強度、硬度、耐摩耗性、靱性及び熱安定性等の観点から、WC基超硬合金又はセラミックスが好ましい。WC基超硬合金は、炭化タングステン(WC)粒子と、Co又はCoを主体とする合金の結合相とからなり、結合相の含有量は1~13.5質量%が好ましく、3~13質量%がより好ましい。結合相の含有量が1質量%未満では基体の靭性が不十分になり、結合相が13.5質量%超では硬度(耐摩耗性)が不十分になる。焼結後のWC基超硬合金の未加工面、研磨加工面及び刃先処理加工面のいずれの表面にも本発明の(AlTiW)NO皮膜を形成できる。
前記基体がWC基超硬合金の場合、基体表面に上記TiOターゲット又は上記TiBターゲットから発生したイオンを照射し、平均厚さ1~10 nmのFcc構造を有する改質層を形成するのが好ましい。WC基超硬合金は主成分のWCが六方晶構造を有するが、前記改質層は(AlTiW)NO皮膜と同じFcc構造を有し、両者の境界(界面)における結晶格子縞の30%以上、好ましくは50%以上、さらに好ましくは70%以上の部分が連続し、もって前記改質層を介してWC基超硬合金基体と(AlTiW)NO皮膜とが強固に密着する。
(1) 組成
AI法により、基体上に被覆される本発明の(AlTiW)NO皮膜は、Al、Ti及びWを必須元素とする窒酸化物からなる。(AlTiW)NO皮膜の組成は、一般式:(AlxTiyWz)aN(1-a-b)Ob(原子比)により表される。x、y、z、a及びbはそれぞれ0.6≦x≦0.8、0.05≦y≦0.38、0.02≦z≦0.2、x+y+z=1、0.2≦a≦0.8、及び0.02≦b≦0.10を満たす数字である。本発明の(AlTiW)NO皮膜は、X線光電子分光法により特定されたW-O結合を有するがAl-O結合を実質的に有さず、またX線回折パターンで岩塩型の単一構造を有することを特徴とする。ここで、「Al-O結合を実質的に有さない」とは、(AlTiW)NO皮膜のX線光電子分光スペクトルに不可避的不純物レベルを超えるAl-O結合のピークが存在しないことを意味する。
本発明の(AlTiW)NO皮膜の平均厚さは0.5~15μmが好ましく、1~12μmがより好ましい。この範囲の膜厚により、基体から(AlTiW)NO皮膜が剥離するのが抑制され、優れた耐酸化性及び耐摩耗性が発揮される。平均厚さが0.5μm未満では(AlTiW)NO皮膜の効果が十分に得られず、また平均厚さが15μmを超えると残留応力が過大になり、(AlTiW)NO皮膜が基体から剥離しやすくなる。ここで、平坦ではない(AlTiW)NO皮膜の「厚さ」は平均厚さを意味する。
X線回折パターンでは、本発明の(AlTiW)NO皮膜は岩塩型の単一構造からなる。また透過型電子顕微鏡による制限視野回折パターンでは、本発明の(AlTiW)NO皮膜は岩塩型構造が主構造であり、副構造としてその他の構造(ウルツ鉱型構造等)を有していても良い。実用性のある(AlTiW)NO皮膜では、岩塩型構造を主構造とし、ウルツ鉱型構造を副構造とするのが好ましい。
本発明の(AlTiW)NO皮膜は、(AlxTiyWz)aN(1-a-b)Ob(ただし、x、y、z、a及びbはそれぞれ原子比で、0.6≦x≦0.8、0.05≦y≦0.38、0.02≦z≦0.2、x+y+z=1、0.2≦a≦0.8、及び0.02≦b≦0.10を満たす数字である。)で表される組成範囲内において、相互に異なる組成を有する少なくとも二種以上の(AlTiW)NO皮膜を交互に積層して構成しても良い。かかる積層構造により耐摩耗性及び耐酸化性をさらに高めることができる。
基体と(AlTiW)NO皮膜との間に、物理蒸着法により、4a、5a及び6a族の元素、Al及びSiからなる群から選ばれた少なくとも一種の元素と、B、O、C及びNからなる群から選ばれた少なくとも一種の元素とを必須に含む中間層を形成しても良い。中間層は、TiN、又は岩塩型構造を主構造とする(TiAl)N、(TiAl)NC、(TiAl)NCO、(TiAlCr)N、(TiAlCr)NC、(TiAlCr)NCO、(TiAlNb)N、(TiAlNb)NC、(TiAlNb)NCO、(TiAlW)N及び(TiAlW)NC、(TiSi)N、(TiB)N、TiCN、Al2O3、Cr2O3、(AlCr)2O3、(AlCr)N、(AlCr)NC及び(AlCr)NCOからなる群から選ばれた少なくとも一種からなるのが好ましい。中間層は単層でも積層でも良い。
(AlTiW)NO皮膜の形成にはAI装置を使用することができ、改質層及び中間層の形成にはAI装置又はその他の物理蒸着装置(スパッタリング装置等)を使用することができる。AI装置は、例えば図1に示すように、絶縁物14を介して減圧容器5に取り付けられたアーク放電式蒸発源13,27と、各アーク放電式蒸発源13,27に取り付けられたターゲット10,18と、各アーク放電式蒸発源13,27に接続したアーク放電用電源11,12と、軸受け部4を介して減圧容器5における回転軸線に支持された支柱6と、基体7を保持するために支柱6に支持された保持具8と、支柱6を回転させる駆動部1と、基体7にバイアス電圧を印加するバイアス電源3とを具備する。減圧容器5には、ガス導入部2及び排気口17が設けられている。アーク点火機構16,16は、アーク点火機構軸受部15,15を介して減圧容器5に取り付けられている。電極20は絶縁物19,19を介して減圧容器5に取り付けられている。ターゲット10と基体7との間には、遮蔽板軸受け部21を介して減圧容器5に遮蔽板23が設けられている。図1には図示していないが、遮蔽板23は遮蔽板駆動部22により例えば上下又は左右方向へ移動し、遮蔽板22が減圧容器5内の空間に存在しない状態にされた後に本発明の(AlTiW)NO皮膜の形成が行われる。
本発明の(AlTiW)NO皮膜形成用ターゲットは、不可避的不純物以外、(Al)p(AlN)q(Ti)r(TiN)s(WN)t(WOx)u(ただし、p、q、r、s、t、及びuはそれぞれ原子比で0.59≦p≦0.8、0.01≦q≦0.1、0.04≦r≦0.35、0.03≦s≦0.15、0.01≦t≦0.20、0.01≦u≦0.1、及びp+q+r+s+t+u=1を満たす数字であり、xは原子比で2~3の数字である。)で表される組成を有する。ここで、(AlN)、(TiN)及び(WN)はそれぞれ原子比で(Al1N1)、(Ti1N1)及び(W1N1)を意味し、(WOx)は原子比で(W1Ox)を意味する。WOxは酸化タングステンの主要構成成分であって主にWO3及び/又はWO2であるが、W2O5、W4O11、W1O1、W2O3、W4O3、W5O9、W3O8及びW5O14の少なくとも一種の酸化タングステンを含有しても良い。p、q、r、s、t及びuがそれぞれ上記範囲内でないと、本発明の(AlTiW)NO皮膜は得られない。前記ターゲットは、金属Al及び金属Tiの他に、(a) 上記量のAl窒化物、Ti窒化物及びW窒化物を含有することにより、アーク放電時のドロップレット発生量を大幅に低減するとともに、ターゲットから放出される酸素量を抑制でき、また(b) 上記量のW酸化物を含有することにより、(AlTiW)NO皮膜中に独立してW-O結合を導入することができる。p、q、r、s、t、及びuはそれぞれ原子比で0.59≦p≦0.75、0.01≦q≦0.10、0.05≦r≦0.25、0.05≦s≦0.15、0.01≦t≦0.15、0.01≦u≦0.10、及びp+q+r+s+t+u=1を満たす数字であるのが好ましい。
改質層形成用TiOターゲットは、不可避的不純物を除いて、TieO1-e(ただし、eはTiの原子比であり、0.7≦e≦0.95を満たす数字である。)で表される組成を有する。Tiの原子比eが0.7未満では酸素が過多になり、Fcc構造の改質層が得られず、また0.95超では酸素が過少になり、やはりFcc構造の改質層が得られない。Tiの原子比eの好ましい範囲は0.8~0.9である。
改質層形成用TiBターゲットは、不可避的不純物を除いて、TifB1-f(ただし、fはTiの原子比であり、0.5≦f≦0.9を満たす数字である。)で表される組成を有する。Tiの原子比fが0.5未満ではFcc構造の改質層が得られず、また0.9超では脱炭相が形成されて、やはりFcc構造の改質層が得られない。Tiの原子比fの好ましい範囲は0.7~0.9である。
図1に示すように、アーク放電式蒸発源13、27はそれぞれ陰極物質の改質層形成用TiOターゲット又はTiBターゲット10、及び(AlTiW)NO皮膜形成用ターゲット(例えば、Al-AlN-Ti-TiN-WN-WO3合金)18を備え、アーク放電用電源11、12から、後述の条件でターゲット10に直流アーク電流を通電し、ターゲット18にパルスアーク電流を通電する。図示していないが、アーク放電式蒸発源13、27に磁場発生手段(電磁石及び/又は永久磁石とヨークとを有する構造体)を設け、(AlTiW)NO皮膜を形成する基体7の近傍に数十G(例えば、10~50 G)の空隙磁束密度の磁場分布を形成する。
図1に示すように、基体7にバイアス電源3から直流電圧又はパルスバイアス電圧を印加する。
実質的にAl-O結合なしにW-O結合を有する本発明の(AlTiW)NO皮膜は、AI法において上記(AlTiW)NO皮膜形成用ターゲットにパルスアーク電流を所定条件で通電することにより製造できる。本発明の(AlTiW)NO皮膜の成膜条件を工程ごとに以下詳述する。
図1に示すAI装置の保持具8上に基体7をセットした後、減圧容器5内を1~5×10-2 Pa(例えば、1.5×10-2Pa)の真空に保持しながら、ヒーター(図示省略)により基体7を250~650℃の温度に加熱する。図1では円柱体で示されているが、基体7はソリッドタイプのエンドミル又はインサート等の種々の形状を取り得る。その後、アルゴンガスを減圧容器5内に導入して0.5~10 Pa(例えば2 Pa)のアルゴンガス雰囲気とする。この状態で基体7にバイアス電源3により-250~-150 Vの直流バイアス電圧又はパルスバイアス電圧を印加して基体7の表面をアルゴンガスによりボンバードして、クリーニングする。
改質層形成用TiOターゲットを用いたWC基超硬合金基体7へのイオンボンバードは、基体7のクリーニング後に、流量が30~150 sccmのアルゴンガス雰囲気内で行い、基体7の表面に改質層を形成する。アーク放電式蒸発源13に取り付けた前記TiOターゲットの表面にアーク放電用電源11から50~100 Aのアーク電流(直流電流)を通電する。基体7は400~700℃の温度に加熱し、さらにバイアス電源3から基体7に-850~-500 Vの直流バイアス電圧を印加する。前記TiOターゲットを用いたイオンボンバードによりTiイオン及びOイオンがWC基超硬合金基体7の表面に照射される。
基体7の上(改質層を形成した場合はその上)に(AlTiW)NO皮膜を形成する。この際、窒化ガスを使用し、アーク放電式蒸発源27に取り付けたターゲット18の表面にアーク放電用電源12から後述の条件でパルスアーク電流を通電する。同時に、所定温度に制御した基体7にバイアス電源3から直流バイアス電圧又はパルスバイアス電圧を印加する。
(AlTiW)NO皮膜の成膜時に基体温度を400~550℃にする必要がある。基体温度が400℃未満では(AlTiW)NOが十分に結晶化しないため、(AlTiW)NO皮膜が十分な耐摩耗性を有さず、また残留応力の増加により皮膜剥離の原因となる。一方、基体温度が550℃超では岩塩型構造が不安定になり、(AlTiW)NO皮膜の耐摩耗性及び耐酸化性が損なわれる。基体温度は400~540℃が好ましい。
基体7に(AlTiW)NO皮膜を形成するための窒化ガスとして、窒素ガス、アンモニアガスと水素ガスとの混合ガス等を使用することができる。窒化ガスの圧力は2~6 Paにするのが好ましい。窒化ガスの圧力が2 Pa未満では窒化物の生成が不十分となり、6 Pa超では窒化ガスの添加効果が飽和する。
(AlTiW)NO皮膜を形成するために、基体に直流バイアス電圧又はユニポーラパルスバイアス電圧を印加する。直流バイアス電圧は負の-270~-20 Vにする。-270V未満では基体上にアーキングが発生したり逆スパッタ現象が発生し、W-O結合が形成されない。一方、-20 V超ではバイアス電圧の印加効果が得られず、W-O結合が形成されない。直流バイアス電圧の好ましい範囲は-250~-50 Vである。
(AlTiW)NO皮膜の形成時のアーク放電を安定化するとともに、ドロップレットの発生及びターゲット表面の酸化物形成を抑制するために、(AlTiW)NO皮膜形成用ターゲット18にパルスアーク電流を通電する。パルスアーク電流は、例えば図2(実施例1のパルスアーク電流の通電波形)に概略的に示すように、少なくとも2段階のほぼ矩形状のパルス波である。周期Tにおいて、tminはパルスアーク電流の安定領域における最小値Amin側の通電時間であり、tmaxはパルスアーク電流の安定領域における最大値Amax側の通電時間である。
D=[tmin/(tmin+tmax)]×100%
(ただし、tminはパルスアーク電流の最小値Aminの安定領域における通電時間であり、tmaxはパルスアーク電流の最大値Amaxの安定領域における通電時間である。)で定義されるデューティ比Dで表す。
(1) 基体のクリーニング
6.0質量%のCoを含有し、残部がWC及び不可避的不純物からなる組成を有するWC基超硬合金製の高送りミーリングインサート基体(図14に示す形状を有する日立ツール株式会社製のEDNW15T4TN-15)、及び物性測定用インサート基体(日立ツール株式会社製のSNMN120408)を、図1に示すAI装置の保持具8上にセットし、真空排気と同時にヒーター(図示省略)で600℃まで加熱した。その後、アルゴンガスを500 sccmの流量で導入して減圧容器5内の圧力を2.0 Paに調整するとともに、各基体に負の直流バイアス電圧-200 Vを印加してアルゴンイオンのボンバードによるエッチングにより各基体のクリーニングを行った。なお、「sccm」は1 atm及び25℃における流量(cc/分)を意味する。
基体温度を600℃に保持したまま、アルゴンガスの流量を50 sccmとし、原子比でTi0.85O0.15で表される組成のTiOターゲット10をアーク放電用電源11が接続されたアーク放電式蒸発源13に配置した。バイアス電源3により各基体に-700 Vの負の直流電圧を印加するとともに、ターゲット10の表面にアーク放電用電源11から直流のアーク電流を80 A通電し、各基体表面に改質層を形成した。
基体温度を450℃に設定し、窒素ガスを800 sccm導入して減圧容器5内の圧力を3.1 Paに調整した。原子比で(Al)0.63(AlN)0.07(Ti)0.10(TiN)0.10(WN)0.03(WO3)0.07で表される組成のAl-AlN-Ti-TiN-WN-WO3合金からなるターゲット18を、アーク放電用電源12が接続されたアーク放電式蒸発源27に配置した。
X線光電子分光装置(PHI社製Quantum2000型)を用いて、アルゴンイオンによるエッチングにより(AlTiW)NO皮膜の表面から前記皮膜の総厚における厚さ方向1/6の位置(表面側)を露出させた後、AlKα1線(波長λ:0.833934 nm)を照射して、Ti、W及びAlの結合状態を示すスペクトルを得た。さらに(AlTiW)NO皮膜を表面から前記皮膜の総厚における厚さ方向1/2の位置(中央部)及び5/6の位置(基体側)までエッチングし、同様にTi、W及びAlの結合状態を示すスペクトルを得た。各厚さ方向位置におけるTi、W及びAlの結合状態を示すスペクトルを示す図4~図6において、横軸は結合エネルギー(eV)であり、縦軸はC/S (count per second)である。Ti、W及びAlの結合状態はいずれも3箇所の測定位置でほぼ同じであることが分った。
物性測定用インサート基体上の(AlTiW)NO皮膜の結晶構造及び結晶配向を測定するために、X線回折装置(Panalytical社製のEMPYREAN)を使用し、CuKα1線(波長λ:0.15405 nm)を照射して以下の条件でX線回折パターン(図7)を得た。
管電圧:45 kV
管電流:40 mA
入射角ω:3°に固定
2θ:30~80°
物性測定用インサートの(AlTiW)NO皮膜の断面を透過型電子顕微鏡(TEM、日本電子株式会社製JEM-2100)により観察した。WC基超硬合金基体、改質層及び(AlTiW)NO皮膜の境界(界面)付近のTEM写真(倍率3,600,000倍、視野:30 nm×30 nm)を図8に示す。図9(a) は図8の概略図である。図9(a) において、線L1はWC基超硬合金基体41と改質層43との境界を示し、線L2は改質層43と(AlTiW)NO皮膜42との境界を示し、多数の平行な細線は結晶格子縞を示す。図9(a) から明らかなように、改質層43と(AlTiW)NO皮膜42との境界のうち、結晶格子縞が連続している部分は約30%以上あった。
図16は、物性測定用インサートの(AlTiW)NO皮膜の表面を示すSEM写真(倍率:3,000倍)である。このSEM写真の縦35μm×横40μmの視野において、直径1μm以上のドロップレットをカウントした結果、実施例1の(AlTiW)NO皮膜の表面のドロップレットの発生量は「6個/視野」であり、後述の比較例19の(AlTiW)NO皮膜の表面(図17)に比べてドロップレットが非常に少ないことが分かる。
図15に示すように、(AlTiW)NO皮膜を被覆した4つの高送りミーリングインサート30を、刃先交換式回転工具(日立ツール株式会社製ASR5063-4)40の工具本体36の先端部38に止めねじ37で装着した。工具40の刃径は63 mmであった。下記の転削条件で切削加工を行い、倍率100倍の光学顕微鏡で単位時間ごとにサンプリングしたインサート30の逃げ面を観察し、逃げ面の摩耗幅又はチッピング幅が0.3 mm以上になったときの加工時間を工具寿命と判定した。
加工方法: 高送り連続転削加工
被削材: 123 mm×250 mmのS50C角材
使用インサート: EDNW15T4TN-15(ミーリング用)
切削工具: ASR5063-4
切削速度: 200 m/分
1刃当たりの送り量: 1.83 mm/刃
軸方向の切り込み量: 1.0 mm
半径方向の切り込み量:42.5 mm
切削液: なし(乾式加工)
表3-1に示す組成の皮膜形成用ターゲットを使用した以外実施例1と同様にして各ミーリングインサートに硬質皮膜を形成し、評価した。各ターゲットの組成を表3-1に示し、各皮膜の組成を表3-2に示し、各皮膜のX線回折及び電子回折による結晶構造の測定結果、W-O結合の有無、及び各工具の工具寿命を表3-3に示す。
(AlTiW)NO皮膜に対する基体温度の影響を調べるために、基体温度をそれぞれ400℃(実施例10)、540℃(実施例11)、300℃(比較例10)、及び700℃(比較例11)にした以外、実施例1と同様にして各ミーリングインサートに(AlTiW)NO皮膜を形成し、評価した。各(AlTiW)NO皮膜の組成を表4-1に示し、X線回折及び電子回折により求めた結晶構造の測定結果、W-O結合の有無、及び工具寿命を表4-2に示す。
(AlTiW)NO皮膜に及ぼす直流バイアス電圧の影響を調べるために、実施例12では-250Vの直流バイアス電圧を印加し、実施例13では-150 Vの直流バイアス電圧を印加し、実施例14では-20Vの直流バイアス電圧を印加し、比較例12では-300Vの直流バイアス電圧を印加し、比較例13では-10Vの直流バイアス電圧を印加した以外、実施例1と同様にして各ミーリングインサートに(AlTiW)NO皮膜を形成し、評価した。各(AlTiW)NO皮膜の組成を表5-1に示し、X線回折及び電子回折により求めた結晶構造の測定結果、W-O結合の有無、及び工具寿命を表5-2に示す。
(AlTiW)NO皮膜に及ぼすユニポーラパルスバイアス電圧の影響を調べるために、実施例15では-250 Vのユニポーラパルスバイアス電圧を印加し、実施例16では-150 Vのユニポーラパルスバイアス電圧を印加し、実施例17では-80 Vのユニポーラパルスバイアス電圧を印加し、実施例18では-20 Vのユニポーラパルスバイアス電圧を印加し、比較例14では-300 Vのユニポーラパルスバイアス電圧を印加し、比較例15では-10 Vのユニポーラパルスバイアス電圧を印加した以外、実施例1と同様にして各ミーリングインサートに(AlTiW)NO皮膜を形成し、評価した。いずれのユニポーラパルスバイアス電圧も周波数は30 kHzであった。各(AlTiW)NO皮膜の組成を表5-3に示し、X線回折及び電子回折により求めた結晶構造の測定結果、W-O結合の有無、及び工具寿命を表5-4に示す。
(AlTiW)NO皮膜に及ぼすパルスアーク電流の周波数の影響を調べるために、周波数をそれぞれ2 kHz(実施例19)、14 kHz(実施例20)、0.5 kHz(比較例16)、及び20 kHz(比較例17)とした以外、実施例1と同様にして各ミーリングインサートに(AlTiW)NO皮膜を形成し、評価した。各(AlTiW)NO皮膜の組成を表6-1に示し、X線回折及び電子回折により求めた結晶構造の測定結果、W-O結合の有無、及び工具寿命を表6-2に示す。
(AlTiW)NO皮膜に及ぼすパルスアーク電流のAmin、Amax及びΔA(=Amax-Amin)の影響を調べるために、表7に示すようにAmin、Amax及びΔAを変化させた以外、実施例1と同様にして各ミーリングインサートに(AlTiW)NO皮膜を形成し、評価した。各(AlTiW)NO皮膜の組成を表8-1に示し、X線回折及び電子回折により求めた結晶構造の測定結果、W-O結合の有無、及び工具寿命を表8-2に示す。
(AlTiW)NO皮膜に及ぼすパルスアーク電流におけるAminのデューティ比Dの影響を調べるために、デューティ比Dを、実施例26では40%とし、実施例27では65%とし、比較例20では10%とし、比較例21では90%とした以外、実施例1と同様にして各ミーリングインサートに(AlTiW)NO皮膜を形成し、評価した。各(AlTiW)NO皮膜の組成を表9-1に示し、X線回折及び電子回折により求めた結晶構造の測定結果、W-O結合の有無、及び工具寿命を表9-2に示す。
皮膜の結晶構造及び工具寿命に及ぼす改質層の厚さの影響を調べるために、実施例1と同じTi0.85O0.15ターゲット(原子比)を使用し、イオンボンバード時間を変更することによりWC基超硬合金基体の表面に形成した改質層の平均厚さをそれぞれ2 nm(実施例28)及び9 nm(実施例29)とした以外、実施例1と同様にしてミーリングインサートに(AlTiW)NO皮膜を形成した。各(AlTiW)NO皮膜の組成を表10-1に示し、X線回折及び電子回折により求めた結晶構造の測定結果、W-O結合の有無、改質層の平均厚さ、及び工具寿命を表10-2に示す。
成膜時間を調整することにより(AlTiW)NO皮膜の平均膜厚をそれぞれ1μm(実施例30)、6μm(実施例31)、8μm(実施例32)及び10μm(実施例33)とした以外、実施例1と同様にして各ミーリングインサートに(AlTiW)NO皮膜を形成し、評価した。各(AlTiW)NO皮膜の組成を表11-1に示し、X線回折及び電子回折により求めた結晶構造の測定結果、W-O結合の有無、皮膜の平均厚さ、及び工具寿命を表11-2に示す。表11-2から明らかなように、実施例30~33の各硬質皮膜被覆工具は40分以上と長寿命であった。
皮膜の寿命に及ぼす(AlTiW)NO皮膜の積層化効果を調べるために、表12-2に示すように、実施例1と同様に形成した組成Aの皮膜と、表12-1の各ターゲットを使用した以外は実施例1と同様に形成した組成Bの皮膜とを交互に積層した各ミーリングインサートを実施例1と同様に評価した。組成Bの皮膜の形成に使用した各ターゲットの組成と得られた積層皮膜の積層数を表12-1に示し、各(AlTiW)NO積層皮膜を構成するA層及びB層の組成を表12-2に示し、X線回折及び電子回折により求めた結晶構造の測定結果、W-O結合の有無、及び工具寿命を表12-3に示す。
皮膜の寿命に及ぼす中間層の影響を調べるために、実施例1と同じ改質層及び(AlTiW)NO皮膜の間に、表13-1に示す組成の各ターゲットを使用し、表13-1及び表13-2に示す各成膜条件で物理蒸着法により各中間層を形成した以外、実施例1と同様にしてミーリングインサートに(AlTiW)NO皮膜を形成し、評価した。表14-1に各(AlTiW)NO皮膜の組成を示し、表14-2にX線回折及び電子回折により求めた結晶構造の測定結果、W-O結合の有無、及び工具寿命を示す。
(1) 基体のクリーニング
6質量%のCoを含有し、残部がWC及び不可避的不純物からなる組成のWC基超硬合金製の旋削インサート基体(日立ツール株式会社製のCNMG120408)、及び実施例1と同じ物性測定用インサート基体を図1に示すAI装置の保持具8上にセットし、真空排気と同時にヒーター(図示省略)で600℃に加熱した。その後、アルゴンガスを500 sccm導入して減圧容器5内の圧力を2.0 Paに調整し、各基体に-200 Vの負の直流バイアス電圧を印加してアルゴンイオンボンバードのエッチングによるクリーニングを行った。
クリーニングした各基体上に、実施例1と同様にして改質層を形成した。
改質層を形成した各基体上に、実施例1と同様にして(AlTiW)NO皮膜を形成した。
AlCrターゲット(Al:50原子%、Cr:50原子%)を使用し、各(AlTiW)NO皮膜の上に以下の条件で(AlCr)NO皮膜を形成した。基体温度600℃で、直流アーク電流を120 Aとし、各基体に-40 Vのユニポーラパルスバイアス電圧(周波数20 kHz)を5分間印加した。窒素ガスは成膜初期に700 sccm流し、5分間で200 sccmまで流量を徐々に下げ、成膜終期では200 sccmとした。酸素ガスは成膜初期に10 sccmから20分間で500 sccmまで徐々に流量を上げながらAI炉内に導入し、成膜終期では500 sccmとした。成膜時の雰囲気ガス圧力は3 Paとし、(Al0.52Cr0.48)0.46(N0.42O0.58)0.54(原子比)の組成を有する(AlCr)NO皮膜を0.5μmの平均厚さに被覆した。表15は各(AlCr)NO皮膜の組成を示す。
その後連続して、各(AlCr)NO皮膜上に上層として、表16-2に示す各AlCrターゲットを使用し、表16-1及び表16-2に示す各条件で(AlCr)2O3皮膜を1.5μmの平均厚さで形成した。(AlCr)2O3皮膜の組成及び結晶構造を表17に示す。
得られた各(AlTiW)NO皮膜上に順次(AlCr)NO皮膜及び(AlCr)2O3皮膜を形成し、硬質皮膜被覆旋削インサートを得た。得られた各インサートを取り付けた各旋削工具により、以下の条件で旋削加工を行い、皮膜の剥離状況、逃げ面の摩耗、及びチッピング等を調べた。(AlTiW)NO皮膜、(AlCr)NO皮膜及び(AlCr)2O3皮膜の剥離の有無は、旋削加工の単位時間ごとにサンプリングしたインサートに皮膜剥離があるか否かを光学顕微鏡(倍率:100倍)で観察することにより調べた。旋削加工において、逃げ面の最大摩耗幅が0.30 mmを超えるまで、(AlTiW)NO皮膜が剥離するまで、又は(AlTiW)NO皮膜がチッピングするまでのうち最も短い切削加工時間を工具寿命とした。各(AlTiW)NO皮膜の組成、X線回折及び電子回折により求めた結晶構造の測定結果、W-O結合の有無、及び工具寿命をそれぞれ表18-1及び表18-2に示す。
被削材: SUS630
加工方法: 連続旋削加工
工具形状: CNMG120408
切削速度: 140 m/分
送り: 0.23 mm/回転
切り込み: 1.5 mm
切削液: 水溶性切削油
実施例62と同様にして形成した(AlTiW)NO皮膜の上に(AlCr)2O3皮膜を形成しなかった旋削インサートを評価した。(AlTiW)NO皮膜の組成、X線回折及び電子回折により求めた結晶構造の測定結果、W-O結合の有無、及び工具寿命をそれぞれ表18-1及び表18-2に示す。
比較例3と同じ(AlTiW)NO皮膜を形成した以外実施例62と同様にして作製した(AlTiW)NO皮膜被覆インサートを評価した。(AlTiW)NO皮膜の組成を表18-1に示し、X線回折及び電子回折により求めた結晶構造の測定結果、W-O結合の有無、及び工具寿命を表18-2に示す。
改質層を形成しない以外実施例1と同じWC基超硬合金基体に、実施例1と同様にして(AlTiW)NO皮膜を形成し、評価した結果、工具寿命は31分であり、改質層を形成したWC基超硬合金基体に(AlTiW)NO皮膜を形成したが、ターゲットに通電するパルスアーク電流の周波数を0.5 kHzとした比較例16の工具寿命(23分)より長かった。
図1のAI装置において、実施例1と同じWC基超硬合金製の高送りミーリングインサート基体及び物性測定用インサート基体に、実施例1と同様にArイオンのクリーニングを行った。次に、各基体の温度を610℃とし、アルゴンガスの流量を50 sccmとし、原子比でTi0.8B0.2で表される組成のターゲット10をアーク放電用電源11が接続されたアーク放電式蒸発源13に配置した。バイアス電源3により各基体に、-750 Vの負の直流電圧を印加するとともに、ターゲット10の表面にアーク放電用電源11から直流のアーク電流を80 A通電することにより平均厚さ5 nmの改質層を形成した。以降は実施例1と同様にしてミーリングインサートに(AlTiW)NO皮膜を形成し、評価した。その結果、工具寿命は63分と実施例1(55分)より長かった。
2:ガス導入部
3:バイアス電源
4:軸受け部
5:減圧容器
6:下部保持具(支柱)
7:基体
8:上部保持具
10:陰極物質(ターゲット)
11、12:アーク放電用電源
13、27:アーク放電式蒸発源
14:アーク放電式蒸発源固定用絶縁物
15:アーク点火機構軸受部
16:アーク点火機構
17:排気口
18:陰極物質(ターゲット)
19:電極固定用絶縁物
20:電極
21:遮蔽板軸受け部
22:遮蔽板駆動部
23:遮蔽板
30:ミーリング用インサート
35:インサートの主切刃
36:工具本体
37:インサート用止めねじ
38:工具本体の先端部
40:刃先交換式回転工具
41:WC基超硬合金基体
42:(AlTiW)NO皮膜
43:改質層
Claims (13)
- (AlxTiyWz)aN(1-a-b)Ob(ただし、x、y、z、a及びbはそれぞれ原子比で0.6≦x≦0.8、0.05≦y≦0.38、0.02≦z≦0.2、x+y+z=1、0.2≦a≦0.8、及び0.02≦b≦0.10を満たす数字である。)で表される組成を有し、アークイオンプレーティング法により形成された硬質皮膜であって、
X線光電子分光分析法で特定された結合状態に実質的にAl-O結合なしにW-O結合があり、かつX線回折パターンが岩塩型の単一構造を有することを特徴とする硬質皮膜。 - 請求項1に記載の硬質皮膜において、前記硬質皮膜の電子回折パターンが岩塩型を主構造とし、ウルツ鉱型を副構造とすることを特徴とする硬質皮膜。
- 請求項1又は2に記載の硬質皮膜を基体上に形成したことを特徴とする硬質皮膜被覆部材。
- 請求項3に記載の硬質皮膜被覆部材において、前記基体と前記硬質皮膜との間に、物理蒸着法により、4a、5a及び6a族の元素、Al及びSiから選択された少なくとも一種の金属元素と、B、O、C及びNから選択された少なくとも一種の元素とを必須に含む中間層を形成したことを特徴とする硬質皮膜被覆部材。
- 請求項3又は4に記載の硬質皮膜被覆部材において、前記硬質皮膜上に原子比で、(AlhCri)c(NjOk)d(ただし、h=0.1~0.6、h+i=1、j=0.1~0.8、j+k=1、c=0.35~0.6、及びc+d=1である。)で表される組成を有する酸窒化物層が形成され、さらに前記酸窒化物層上に物理蒸着法により原子比で、(AlmCrn)2O3(ただし、m=0.1~0.6、及びm+n=1である。)で表される組成を有する酸化物層が形成されたことを特徴とする硬質皮膜被覆部材。
- (AlxTiyWz)aN(1-a-b)Ob(ただし、x、y、z、a及びbはそれぞれ原子比で0.6≦x≦0.8、0.05≦y≦0.38、0.02≦z≦0.2、x+y+z=1、0.2≦a≦0.8、及び0.02≦b≦0.10を満たす数字である。)で表される組成を有し、X線光電子分光分析法で特定された結合状態に実質的にAl-O結合なしにW-O結合があり、かつX線回折パターンが岩塩型の単一構造を有する硬質皮膜をアークイオンプレーティング法により基体上に形成する方法であって、
窒化ガス雰囲気中で400~550℃の温度に保持した前記基体上に前記硬質皮膜を形成する際に、前記基体に-270~-20 Vの直流バイアス電圧又はユニポーラパルスバイアス電圧を印加するとともに、アーク放電式蒸発源に備えられたAlの窒化物、Tiの窒化物、Wの窒化物及びWの酸化物を含有するAlTi合金からなるターゲットにパルスアーク電流を通電し、
前記パルスアーク電流が、90~120 Aの最大アーク電流値、50~90 Aの最小アーク電流値、及び2~15 kHzの周波数を有するとともに、前記最大アーク電流値と前記最小アーク電流値との差が10 A以上のほぼ矩形波状であって、40~70%のデューティ比を有することを特徴とする方法。 - 請求項6に記載の硬質皮膜の製造方法において、前記ターゲットの組成が、(Al)p(AlN)q(Ti)r(TiN)s(WN)t(WOx)u(ただし、p、q、r、s、t及びuはそれぞれ原子比で0.59≦p≦0.8、0.01≦q≦0.1、0.04≦r≦0.35、0.03≦s≦0.15、0.01≦t≦0.20、0.01≦u≦0.1、及びp+q+r+s+t+u=1を満たす数字であり、xは原子比で2~3の数字である。)で表される組成を有することを特徴とする方法。
- (AlxTiyWz)aN(1-a-b)Ob(ただし、x、y、z、a及びbはそれぞれ原子比で0.6≦x≦0.8、0.05≦y≦0.38、0.02≦z≦0.2、x+y+z=1、0.2≦a≦0.8、及び0.02≦b≦0.10を満たす数字である。)で表される組成を有し、X線光電子分光分析法で特定された結合状態に実質的にAl-O結合なしにW-O結合があり、かつX線回折パターンが岩塩型の単一構造を有する硬質皮膜を基体上に有する硬質皮膜被覆部材をアークイオンプレーティング法により製造する方法であって、
窒化ガス雰囲気中で400~550℃の温度に保持した前記基体上に前記硬質皮膜を形成する際に、前記基体に-270~-20 Vの直流バイアス電圧又はユニポーラパルスバイアス電圧を印加するとともに、アーク放電式蒸発源に備えられたAlの窒化物、Tiの窒化物、Wの窒化物及びWの酸化物を含有するAlTi合金からなるターゲットにパルスアーク電流を通電し、
前記パルスアーク電流が、90~120 Aの最大アーク電流値、50~90 Aの最小アーク電流値、及び2~15 kHzの周波数を有するとともに、前記最大アーク電流値と前記最小アーク電流値との差が10 A以上のほぼ矩形波状であって、40~70%のデューティ比を有することを特徴とする方法。 - 請求項8に記載の硬質皮膜被覆部材の製造方法において、前記ターゲットの組成が、(Al)p(AlN)q(Ti)r(TiN)s(WN)t(WOx)u(ただし、p、q、r、s、t、及びuはそれぞれ原子比で0.59≦p≦0.8、0.01≦q≦0.1、0.04≦r≦0.35、0.03≦s≦0.15、0.01≦t≦0.20、0.01≦u≦0.1、及びp+q+r+s+t+u=1を満たす数字であり、xは原子比で2~3の数字である。)で表される組成を有することを特徴とする方法。
- 請求項8又は9に記載の硬質皮膜被覆部材の製造方法において、前記基体がWC基超硬合金であり、前記硬質皮膜の形成前に、流量が30~150 sccmのアルゴンガス雰囲気中で、400~700℃の温度に保持した前記基体に-850~-500 Vの負の直流電圧を印加するとともに、アーク放電式蒸発源に備えられたTieO1-e(ただし、eはTiの原子比であり、0.7≦e≦0.95を満たす数字である。)で表される組成のターゲットに50~100 Aのアーク電流を通電し、もって前記基体の表面を前記ターゲットから発生したイオンによりボンバードすることを特徴とする方法。
- 請求項8又は9に記載の硬質皮膜被覆部材の製造方法において、前記基体がWC基超硬合金であり、前記硬質皮膜の形成前に、流量が30~150 sccmのアルゴンガス雰囲気中で、450~750℃の温度に保持した前記基体に-1000~-600 Vの負の直流電圧を印加するとともに、アーク放電式蒸発源に備えられたTifB1-f(ただし、fはTiの原子比であり、0.5≦f≦0.9を満たす数字である。)で表される組成のターゲットに50~100 Aのアーク電流を通電し、もって前記基体の表面を前記ターゲットから発生したイオンによりボンバードすることを特徴とする方法。
- 請求項1又は2に記載の硬質皮膜の製造に用いるターゲットにおいて、(Al)p(AlN)q(Ti)r(TiN)s(WN)t(WOx)u(ただし、p、q、r、s、t、及びuはそれぞれ原子比で0.59≦p≦0.8、0.01≦q≦0.1、0.04≦r≦0.35、0.03≦s≦0.15、0.01≦t≦0.20、0.01≦u≦0.1、及びp+q+r+s+t+u=1を満たす数字であり、xは原子比で2~3の数字である。)により表される組成を有する焼結体からなることを特徴とするターゲット。
- 請求項12に記載のターゲットにおいて、前記焼結体がAlTi合金粉末、AlN粉末、TiN粉末、WN粉末、及びWO3粉末及び/又はWO2粉末からなる混合粉末を真空ホットプレスすることにより得られることを特徴とするターゲット。
Priority Applications (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016504819A JP5967329B2 (ja) | 2014-06-02 | 2015-03-26 | 硬質皮膜、硬質皮膜被覆部材、それらの製造方法、及び硬質皮膜の製造に用いるターゲット及びその製造方法 |
KR1020167033943A KR101907052B1 (ko) | 2014-06-02 | 2015-03-26 | 경질 피막, 경질 피막 피복 부재, 이들의 제조 방법, 및 경질 피막의 제조에 사용하는 타깃 |
CA2950701A CA2950701A1 (en) | 2014-06-02 | 2015-03-26 | Hard coating, hard-coated member, their production methods, and target used for producing hard coating |
US15/315,464 US10287672B2 (en) | 2014-06-02 | 2015-03-26 | Hard coating, hard-coated member, their production methods, and target used for producing hard coating |
CN201580028242.4A CN106460151B (zh) | 2014-06-02 | 2015-03-26 | 硬质皮膜、硬质皮膜被覆部件、它们的制造方法、以及用于制造硬质皮膜的靶 |
EP15803758.0A EP3150740B1 (en) | 2014-06-02 | 2015-03-26 | Rigid coating film, member coated with rigid coating film, production processes therefor, and target for use in producing rigid coating film |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014-114107 | 2014-06-02 | ||
JP2014114107 | 2014-06-02 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2015186413A1 true WO2015186413A1 (ja) | 2015-12-10 |
Family
ID=54766494
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2015/059456 WO2015186413A1 (ja) | 2014-06-02 | 2015-03-26 | 硬質皮膜、硬質皮膜被覆部材、それらの製造方法、及び硬質皮膜の製造に用いるターゲット |
Country Status (7)
Country | Link |
---|---|
US (1) | US10287672B2 (ja) |
EP (1) | EP3150740B1 (ja) |
JP (1) | JP5967329B2 (ja) |
KR (1) | KR101907052B1 (ja) |
CN (1) | CN106460151B (ja) |
CA (1) | CA2950701A1 (ja) |
WO (1) | WO2015186413A1 (ja) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2019035219A1 (ja) * | 2017-08-15 | 2019-02-21 | 三菱日立ツール株式会社 | 被覆切削工具 |
WO2019035220A1 (ja) * | 2017-08-15 | 2019-02-21 | 三菱日立ツール株式会社 | 被覆切削工具 |
JP2021192930A (ja) * | 2020-06-08 | 2021-12-23 | 住友電気工業株式会社 | 切削工具 |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10335909B2 (en) * | 2017-04-04 | 2019-07-02 | Sakai Display Products Corporation | Vapor deposition apparatus, vapor deposition method and method of manufacturing organic EL display apparatus |
WO2019190393A1 (en) * | 2018-03-28 | 2019-10-03 | Agency For Science, Technology And Research | A semiconductor and method for forming a semiconductor |
JP6927431B2 (ja) | 2018-05-30 | 2021-09-01 | 株式会社Moldino | 被覆切削工具及びその製造方法 |
WO2020194899A1 (ja) * | 2019-03-22 | 2020-10-01 | 株式会社Moldino | 被覆切削工具 |
CN114875360B (zh) * | 2022-05-24 | 2024-03-22 | 河南科技学院 | 一种抗高温氧化的NiAl/AlSiON多层复合涂层及制备方法 |
CN114934258B (zh) * | 2022-05-24 | 2024-03-22 | 河南科技学院 | 一种SiAlON涂层的制备方法 |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009167498A (ja) * | 2008-01-18 | 2009-07-30 | Hitachi Tool Engineering Ltd | 硬質皮膜被覆部材及び硬質皮膜被覆部材の製造方法 |
JP2012166321A (ja) * | 2011-02-16 | 2012-09-06 | Sumitomo Electric Hardmetal Corp | 表面被覆切削工具 |
Family Cites Families (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE59106090D1 (de) * | 1991-01-21 | 1995-08-31 | Balzers Hochvakuum | Beschichtetes hochverschleissfestes Werkzeug und physikalisches Beschichtungsverfahren zur Beschichtung von hochverschleissfesten Werkzeugen. |
JP3451877B2 (ja) * | 1997-03-10 | 2003-09-29 | 三菱マテリアル株式会社 | 耐摩耗性のすぐれた表面被覆超硬合金製切削工具 |
JP3877124B2 (ja) | 2000-03-09 | 2007-02-07 | 日立ツール株式会社 | 硬質皮膜被覆部材 |
JP5065565B2 (ja) | 2000-04-20 | 2012-11-07 | 株式会社東芝 | スパッタターゲット |
US7368182B2 (en) * | 2004-02-12 | 2008-05-06 | Hitachi Tool Engineering, Ltd. | Hard coating and its formation method, and hard-coated tool |
US9997338B2 (en) | 2005-03-24 | 2018-06-12 | Oerlikon Surface Solutions Ag, Pfäffikon | Method for operating a pulsed arc source |
PT1864313E (pt) | 2005-03-24 | 2013-02-21 | Oerlikon Trading Ag | Gerador de plasma sob vácuo |
JP2007046103A (ja) * | 2005-08-10 | 2007-02-22 | Hitachi Tool Engineering Ltd | 硬質皮膜 |
JP5096715B2 (ja) * | 2006-09-21 | 2012-12-12 | 株式会社神戸製鋼所 | 硬質皮膜および硬質皮膜被覆工具 |
JP4846519B2 (ja) | 2006-10-23 | 2011-12-28 | 日立ツール株式会社 | 窒化物含有ターゲット材 |
JP5098726B2 (ja) | 2008-02-22 | 2012-12-12 | 日立ツール株式会社 | 被覆工具及び被覆工具の製造方法 |
JP5438665B2 (ja) * | 2010-02-16 | 2014-03-12 | 株式会社神戸製鋼所 | 硬質皮膜被覆部材、および、冶工具、並びに、ターゲット |
CN102821897B (zh) * | 2010-03-29 | 2015-08-05 | 京瓷株式会社 | 切削工具 |
WO2012057000A1 (ja) * | 2010-10-29 | 2012-05-03 | 株式会社神戸製鋼所 | 硬質皮膜形成部材および硬質皮膜の形成方法 |
JP5629291B2 (ja) | 2012-07-23 | 2014-11-19 | 株式会社神戸製鋼所 | 硬質皮膜および硬質皮膜形成用ターゲット |
-
2015
- 2015-03-26 CN CN201580028242.4A patent/CN106460151B/zh not_active Expired - Fee Related
- 2015-03-26 US US15/315,464 patent/US10287672B2/en not_active Expired - Fee Related
- 2015-03-26 EP EP15803758.0A patent/EP3150740B1/en active Active
- 2015-03-26 CA CA2950701A patent/CA2950701A1/en not_active Abandoned
- 2015-03-26 KR KR1020167033943A patent/KR101907052B1/ko active IP Right Grant
- 2015-03-26 JP JP2016504819A patent/JP5967329B2/ja active Active
- 2015-03-26 WO PCT/JP2015/059456 patent/WO2015186413A1/ja active Application Filing
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009167498A (ja) * | 2008-01-18 | 2009-07-30 | Hitachi Tool Engineering Ltd | 硬質皮膜被覆部材及び硬質皮膜被覆部材の製造方法 |
JP2012166321A (ja) * | 2011-02-16 | 2012-09-06 | Sumitomo Electric Hardmetal Corp | 表面被覆切削工具 |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2019035219A1 (ja) * | 2017-08-15 | 2019-02-21 | 三菱日立ツール株式会社 | 被覆切削工具 |
WO2019035220A1 (ja) * | 2017-08-15 | 2019-02-21 | 三菱日立ツール株式会社 | 被覆切削工具 |
CN110691662A (zh) * | 2017-08-15 | 2020-01-14 | 三菱日立工具株式会社 | 包覆切削工具 |
JPWO2019035220A1 (ja) * | 2017-08-15 | 2020-08-06 | 株式会社Moldino | 被覆切削工具 |
JPWO2019035219A1 (ja) * | 2017-08-15 | 2020-08-06 | 株式会社Moldino | 被覆切削工具 |
US10974323B2 (en) | 2017-08-15 | 2021-04-13 | Moldino Tool Engineering, Ltd. | Coated cutting tool |
JP2021192930A (ja) * | 2020-06-08 | 2021-12-23 | 住友電気工業株式会社 | 切削工具 |
JP7409233B2 (ja) | 2020-06-08 | 2024-01-09 | 住友電気工業株式会社 | 切削工具 |
JP7574906B2 (ja) | 2020-06-08 | 2024-10-29 | 住友電気工業株式会社 | 切削工具 |
Also Published As
Publication number | Publication date |
---|---|
JPWO2015186413A1 (ja) | 2017-04-20 |
CA2950701A1 (en) | 2015-12-10 |
KR20170003627A (ko) | 2017-01-09 |
EP3150740A4 (en) | 2017-10-25 |
US10287672B2 (en) | 2019-05-14 |
JP5967329B2 (ja) | 2016-08-10 |
EP3150740A1 (en) | 2017-04-05 |
CN106460151A (zh) | 2017-02-22 |
KR101907052B1 (ko) | 2018-10-11 |
CN106460151B (zh) | 2018-11-13 |
US20170088937A1 (en) | 2017-03-30 |
EP3150740B1 (en) | 2018-09-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5967329B2 (ja) | 硬質皮膜、硬質皮膜被覆部材、それらの製造方法、及び硬質皮膜の製造に用いるターゲット及びその製造方法 | |
JP6428899B2 (ja) | Wc基超硬合金基体の改質方法 | |
JP4112836B2 (ja) | 切削工具用硬質皮膜を形成するためのターゲット | |
JP5234926B2 (ja) | 硬質皮膜および硬質皮膜形成用ターゲット | |
JP6311700B2 (ja) | 硬質皮膜、硬質皮膜被覆部材、及びそれらの製造方法 | |
JP6421733B2 (ja) | 硬質皮膜、硬質皮膜被覆部材、及びそれらの製造方法 | |
JP4062582B2 (ja) | 切削工具用硬質皮膜およびその製造方法並びに硬質皮膜形成用ターゲット | |
JP6927431B2 (ja) | 被覆切削工具及びその製造方法 | |
JP5250706B2 (ja) | 耐摩耗性に優れた硬質皮膜 | |
WO2018230212A1 (ja) | 表面被覆切削工具 | |
JP4616213B2 (ja) | 切削工具用硬質皮膜 | |
JP6930446B2 (ja) | 硬質皮膜、硬質皮膜被覆工具及びその製造方法 | |
JP2018162505A (ja) | 硬質皮膜、硬質皮膜被覆工具、及びそれらの製造方法 | |
JP2006225703A (ja) | 硬質皮膜、積層型硬質皮膜およびその製造方法 | |
JP5629291B2 (ja) | 硬質皮膜および硬質皮膜形成用ターゲット | |
JP2017179465A (ja) | 硬質皮膜、硬質皮膜被覆部材、及びそれらの製造方法 | |
WO2023191078A1 (ja) | 被覆工具および切削工具 | |
JP2020152983A (ja) | 被覆切削工具及びその製造方法 | |
JP5321361B2 (ja) | 表面被覆切削工具 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 15803758 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2016504819 Country of ref document: JP Kind code of ref document: A |
|
REEP | Request for entry into the european phase |
Ref document number: 2015803758 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2015803758 Country of ref document: EP |
|
ENP | Entry into the national phase |
Ref document number: 2950701 Country of ref document: CA |
|
WWE | Wipo information: entry into national phase |
Ref document number: 15315464 Country of ref document: US |
|
ENP | Entry into the national phase |
Ref document number: 20167033943 Country of ref document: KR Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: IDP00201609093 Country of ref document: ID |