Nothing Special   »   [go: up one dir, main page]

WO2012057000A1 - 硬質皮膜形成部材および硬質皮膜の形成方法 - Google Patents

硬質皮膜形成部材および硬質皮膜の形成方法 Download PDF

Info

Publication number
WO2012057000A1
WO2012057000A1 PCT/JP2011/074212 JP2011074212W WO2012057000A1 WO 2012057000 A1 WO2012057000 A1 WO 2012057000A1 JP 2011074212 W JP2011074212 W JP 2011074212W WO 2012057000 A1 WO2012057000 A1 WO 2012057000A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
hard film
film
thickness
hard
Prior art date
Application number
PCT/JP2011/074212
Other languages
English (en)
French (fr)
Inventor
山本 兼司
弘高 伊藤
Original Assignee
株式会社神戸製鋼所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2010244768A external-priority patent/JP5730536B2/ja
Priority claimed from JP2010244767A external-priority patent/JP5730535B2/ja
Application filed by 株式会社神戸製鋼所 filed Critical 株式会社神戸製鋼所
Priority to CN201180050474.1A priority Critical patent/CN103168113B/zh
Publication of WO2012057000A1 publication Critical patent/WO2012057000A1/ja
Priority to IL226024A priority patent/IL226024A/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/04Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material
    • C23C28/044Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material coatings specially adapted for cutting tools or wear applications
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/0641Nitrides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/40Coatings including alternating layers following a pattern, a periodic or defined repetition
    • C23C28/42Coatings including alternating layers following a pattern, a periodic or defined repetition characterized by the composition of the alternating layers
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/40Coatings including alternating layers following a pattern, a periodic or defined repetition
    • C23C28/44Coatings including alternating layers following a pattern, a periodic or defined repetition characterized by a measurable physical property of the alternating layer or system, e.g. thickness, density, hardness
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C30/00Coating with metallic material characterised only by the composition of the metallic material, i.e. not characterised by the coating process
    • C23C30/005Coating with metallic material characterised only by the composition of the metallic material, i.e. not characterised by the coating process on hard metal substrates

Definitions

  • the present invention relates to a hard film forming member obtained by coating a hard film on the surface of a cutting tool, a sliding member, a molding die, and the like, and a method for forming the hard film.
  • a hard film such as TiN, TiC, TiCN, TiAlN, TiAlCrN, TiAlCrCN, TiAlCrSiBCN, TiCrAlSiBN, CrAlSiBYN, and AlCrN is coated.
  • Patent Document 1 discloses a hard coating for a cutting tool that is made of TiAlCrCN and defines the atomic ratio of each element.
  • Patent Document 2 discloses a hard coating for a cutting tool that is made of TiAlCrSiBCN and defines the atomic ratio of each element. Further, these documents disclose a technique for forming a film by an arc ion plating method.
  • Patent Document 3 discloses (M) CrAlSiBYZ [wherein M is at least one element selected from Group 4A elements, Group 5A elements, Group 6A elements (excluding Cr) in the periodic table, and Z Is one of N, CN, NO or CNO] or CrAlSiBYZ [wherein Z is one of N, CN, NO or CNO], and M, Cr, Al, Si, B, A hard coating that defines the atomic ratio of Y is disclosed.
  • a hard film is disclosed in which these hard films are alternately laminated with different compositions, and the thickness of each layer is defined.
  • a technique for forming a film by an arc ion plating method is disclosed.
  • Patent Document 4 is composed of AlCrX [where X is any one of N, C, B, CN, BN, CBN, NO, CO, BO, CNO, BNO, or CBNO].
  • X is any one of N, C, B, CN, BN, CBN, NO, CO, BO, CNO, BNO, or CBNO].
  • a workpiece having a hard material layer (hard coating) with a defined atomic ratio is disclosed.
  • hard coatings composed of a single layer or multiple layers improve the oxidation resistance of the coating by defining the atomic ratio of predetermined elements.
  • performance in a member such as wear resistance. Further improvement is desired.
  • wear resistance compared to conventional hard coatings.
  • This invention is made
  • the inventors of the present invention combined a layer A having a predetermined component composition and a layer B having a predetermined component composition to form a laminated film, and 1 of the laminated structure of the A layer and the B layer.
  • a hard coating hereinafter referred to as a coating as appropriate
  • the wear resistance is improved by defining the thickness of the unit (that is, the lamination cycle). That is, the wear resistance is not sufficiently improved only by defining the atomic ratio of the predetermined element in each layer of the A layer and the B layer, and the wear resistance is not sufficiently improved only by defining the thickness of one unit.
  • the wear resistance is improved by simultaneously controlling the component composition of the film and the thickness of one unit.
  • the first hard coating member of the present invention is a hard coating formed member having a hard coating on a substrate
  • the layer A has a predetermined component composition in each of the layers A and B, so that the layer A has a high oxidation resistance, high hardness, and excellent wear resistance.
  • a film having high toughness and excellent oxidation resistance is a film having high toughness and excellent oxidation resistance.
  • the hardness of a film becomes high and abrasion resistance improves by prescribing
  • the film thickness of the entire film the film has excellent wear resistance and is difficult to peel from the substrate.
  • the first hard film forming member of the present invention has an integral intensity I (200) of diffraction lines from the (200) plane when the hard film is measured by X-ray diffraction of the ⁇ -2 ⁇ method ( It is preferably at least twice the integrated intensity I (111) of the diffraction line from the (111) plane. Further, it is preferable that the half width of the diffraction line from the (200) plane when the hard coating described above is measured by the X-ray diffraction of the ⁇ -2 ⁇ method is 0.7 or more. According to such a configuration, the wear resistance of the coating is further improved.
  • the method for forming a hard film in the first hard film forming member of the present invention is characterized in that the hard film is formed by an arc ion plating method or a sputtering method. Further, as described above, when the relationship between the integrated intensity of the diffraction lines is specified and the half width is a predetermined value, when the hard coating is formed by the arc ion plating method or the sputtering method, The bias voltage applied to the substrate is a negative voltage having an absolute value of 130 V or more.
  • the composition of the film can be accurately controlled by forming the film by the arc ion plating method or the sputtering method. Also, by setting the bias voltage applied to the base material to a negative voltage having an absolute value of 130 V or more, the integral of the diffraction line from the (200) plane when the film is measured by the X-ray diffraction of the ⁇ -2 ⁇ method.
  • the intensity I (200) is at least twice the integrated intensity I (111) of the diffraction line from the (111) plane, and the (200) plane when the film is measured by X-ray diffraction using the ⁇ -2 ⁇ method.
  • the half-value width of the diffraction line from is 0.7 ° or more.
  • the layer A is a film having high oxidation resistance, high hardness, and excellent wear resistance. It has been found that the characteristics can be further improved by controlling.
  • the crystal structure it is known that the crystal structure of the A layer is a mixed layer of a cubic structure and a hexagonal structure, and the hardness of the film is lowered and the oxidation resistance is also deteriorated.
  • a layer structure results in a film having high hardness and excellent oxidation resistance and improved wear resistance.
  • the wear resistance of the A layer in addition to the cubic single layer structure, the smaller the crystal grain size, the harder the hardness and the better the wear resistance.
  • these A layers with controlled crystal structure, crystal grain size, and crystal orientation are films with high oxidation resistance, high hardness, and excellent wear resistance, but when used as a single layer, There is a problem that peeling occurs due to poor adhesion to the material, resulting in poor wear resistance.
  • the B layer is a film excellent in oxidation resistance and high toughness, and a cubic single layer structure can be easily obtained, and the crystal orientation can be easily changed by a substrate bias.
  • the wear resistance is inferior to that of the A layer.
  • the present invention solves these problems, by defining the components of the A layer and the B layer, and by forming a two-layer film that forms the A layer of a predetermined thickness on the B layer of a predetermined thickness, Abrasion resistance could be improved. That is, the adhesion strength with the base material can be improved by using the B layer as a base, and the cutting performance can be dramatically improved as compared with the single layer film of only the A layer or the B layer. .
  • the B layer having the same crystal structure as that of the A layer as a base and controlling the crystal orientation of the B layer to (200) orientation, the consistency at the interface between the B layer and the A layer is improved. Utilizing this, it was possible to form the A layer while maintaining the crystal orientation of the B layer.
  • the layer A has a predetermined component composition in each of the layers A and B, so that the layer A has a high oxidation resistance, high hardness, and excellent wear resistance.
  • a film having high toughness and excellent oxidation resistance Is a film having high toughness and excellent oxidation resistance.
  • the hardness of a film becomes high and abrasion resistance improves.
  • an intermediate layer having a thickness of 0.5 ⁇ m or less is provided, the crystal matching of the hard coating is enhanced, the adhesion between the A layer and the B layer is improved, and the wear resistance is further improved.
  • the second hard film forming member of the present invention includes an intermediate layer having a thickness of 0.5 ⁇ m or less between the A layer and the B layer, and the intermediate layer has the same composition as the A layer. It is preferable that the layer which consists of, and the layer which consists of the same composition as the said B layer are laminated
  • the intermediate layer when an intermediate layer having a thickness of 0.5 ⁇ m or less is provided, the intermediate layer can be formed by using layers having the same composition as the A layer and the B layer as the two types of layers. It becomes easy.
  • the second hard film forming member of the present invention has an integral intensity I (200) of diffraction lines from the (200) plane when the hard film is measured by X-ray diffraction of the ⁇ -2 ⁇ method. It is preferably at least twice the integrated intensity I (111) of the diffraction line from the (111) plane. Further, it is preferable that the half width of the diffraction line from the (200) plane when the hard coating is measured by X-ray diffraction of the ⁇ -2 ⁇ method is 1 ° or more. According to such a configuration, the wear resistance of the coating is further improved.
  • the method for forming a hard film in the second hard film forming member of the present invention is characterized in that the hard film is formed by an arc ion plating method or a sputtering method. Further, as described above, when the relationship of the integrated intensity of diffraction lines is specified, the intermediate layer is formed when the A layer and the B layer are formed by the arc ion plating method or the sputtering method. In the case of forming the A layer, the B layer and the intermediate layer by an arc ion plating method or a sputtering method, the bias voltage applied to the substrate is a negative voltage having an absolute value of 70 V or more.
  • the bias voltage applied to the substrate is a negative voltage having an absolute value of 130 V or more. To do.
  • the film structure can be accurately controlled by forming the film by the arc ion plating method or the sputtering method.
  • the bias voltage applied to the substrate when forming the intermediate layer is set to a negative voltage having an absolute value of 70 V or more, so that the film is
  • the integrated intensity I (200) of the diffraction line from the (200) plane as measured by X-ray diffraction by the 2 ⁇ method is at least twice the integrated intensity I (111) of the diffraction line from the (111) plane. .
  • the film was measured by X-ray diffraction of the ⁇ -2 ⁇ method (200)
  • the half width of the diffraction line from the surface is 1 ° or more.
  • first and second hard film forming members according to the present invention have a hard film having a predetermined composition and structure, they have high hardness and excellent wear resistance. Moreover, according to the formation method of the hard film in the first and second hard film forming members, a hard film having high hardness and excellent wear resistance can be formed on the substrate.
  • FIG. 3 is an X-ray diffraction (XRD) pattern when the hard film in the first hard film forming member is measured by the X-ray diffraction of the ⁇ -2 ⁇ method. It is the schematic of the composite film-forming apparatus for performing film-forming.
  • (A) (b) It is sectional drawing which shows the 2nd hard film formation member which concerns on this invention. It is a X-ray diffraction (XRD) figure when the hard film in the second hard film forming member is measured by X-ray diffraction of the ⁇ -2 ⁇ method.
  • XRD X-ray diffraction
  • a first hard film forming member 10 is provided with a hard film (hereinafter referred to as a film as appropriate) 4 on a substrate 1.
  • the coating 4 includes an A layer 2 containing a predetermined amount of a predetermined element and a B layer 3 containing a predetermined amount of the predetermined element. Then, when the A layer 2 and the B layer 3 are alternately laminated, and a set of the laminated structure of the A layer 2 and the B layer 3 is one unit, the thickness (lamination cycle) of this unit is 10 to 50 nm. And the film 4 has a thickness of 1 to 5 ⁇ m.
  • the B layer 3 is first formed on the substrate 1, and the A layer 2 is formed on the B layer 3 to form a plurality of units. Further, an underlayer (not shown) may be provided between the B layer 3 of the hard coating 4 and the substrate 1. Note that “on the base material 1” means one surface, both surfaces, or the entire surface of the base material 1, and the coated parts differ depending on the type of tool. This will be specifically described below.
  • the substrate 1 examples include cemented carbide, iron-based alloy having metal carbide, cermet, high-speed tool steel, and the like.
  • the substrate 1 is not limited to these, and is applicable to members such as cutting tools such as chips, drills, and end mills, and jigs and tools such as presses, forging dies, molding dies, and punching punches. Anything is possible as long as it is possible.
  • This A layer 2 is a film having high oxidation resistance, high hardness, and excellent wear resistance.
  • Ti and Cr are elements to be added in order to keep the crystal structure of the A layer 2 in a high hardness phase. In order to exert this effect, it is necessary to add Ti and Cr in total in an atomic ratio of 0.2 or more. On the other hand, in order to ensure the addition amount of Al, Si, and Y, the total of Ti and Cr needs to be 0.55 or less.
  • the hardness increases.
  • the Cr amount must be 0.05 or more in atomic ratio. Therefore, the atomic ratio a of Ti and the atomic ratio b of Cr are 0.05 ⁇ a, 0.05 ⁇ b, and 0.2 ⁇ a + b ⁇ 0.55. A more preferable range is 0.2 ⁇ a + b ⁇ 0.5.
  • Al is an element that improves the oxidation resistance of the A layer 2.
  • Al In order to impart high oxidation resistance to the A layer 2, it is necessary to add Al in an atomic ratio of 0.4 or more.
  • the atomic ratio c of Al is set to 0.4 ⁇ c ⁇ 0.7.
  • a more preferable range is 0.45 ⁇ c ⁇ 0.6.
  • Si is an element that improves the oxidation resistance of the A layer 2.
  • Si In order to impart high oxidation resistance to the A layer 2, it is necessary to add Si in an atomic ratio of 0.02 or more. On the other hand, if it exceeds 0.2, the A layer 2 becomes soft and wear resistance decreases. Therefore, the atomic ratio d of Si is set to 0.02 ⁇ d ⁇ 0.2. A more preferable range is 0.05 ⁇ d ⁇ 0.15.
  • Y is an element added to further improve oxidation resistance.
  • the atomic ratio e of Y is set to 0 ⁇ e ⁇ 0.1.
  • a more preferable range is 0.02 ⁇ e ⁇ 0.05.
  • Ti, Cr, Al, Si, and N are essential components, and Y, B, and C are optional components. Therefore, combinations relating to the composition of the A layer 2 are TiCrAlSiY (BCN), TiCrAlSi ( BCN), TiCrAlSiY (CN), TiCrAlSiY (BN), TiCrAlSi (CN), TiCrAlSi (BN), TiCrAlSiYN, TiCrAlSiN, and the like.
  • This B layer 3 is a film having high toughness and excellent oxidation resistance.
  • Ti is an element added together with Cr in order to ensure the toughness of the B layer 3. In order to exert this effect, it is necessary to add Ti and Cr in a total atomic ratio of 0.25 or more. On the other hand, when the total exceeds 0.6, Al is relatively decreased and oxidation resistance is lowered. Therefore, 0.25 ⁇ f + g ⁇ 0.6. A more preferable range is 0.3 ⁇ f + g ⁇ 0.5. Since the B layer 3 does not need to be as hard as the A layer 2, Ti may be 0.
  • Cr is an element added to ensure the oxidation resistance and toughness of the B layer 3.
  • it is necessary to add 0.05 or more by atomic ratio.
  • Ti and Cr in total and 0.25 or more by atomic ratio.
  • the atomic ratio g of Cr is set to 0.05 ⁇ g and 0.25 ⁇ f + g ⁇ 0.6.
  • a more preferable range is 0.3 ⁇ f + g ⁇ 0.5.
  • Al: h (0.4 ⁇ h ⁇ 0.75, f + g + h 1)]
  • Al in order to impart a certain oxidation resistance to the B layer 3 as well, it is necessary to add Al in an atomic ratio of 0.4 or more.
  • the atomic ratio h of Al is set to 0.4 ⁇ h ⁇ 0.75.
  • a more preferable range is 0.5 ⁇ h ⁇ 0.7.
  • BCN TiCrAl
  • BCN CrAl
  • CN TiCrAl
  • BN TiCrAl
  • BN TiCrAlN
  • CrAlN TiCrAlN
  • the thickness of one unit that is, the lamination period
  • the hardness of the coating 4 increases and the wear resistance increases. improves.
  • the thickness of one unit is 10 to 50 nm. More preferably, it is 20 to 40 nm.
  • One unit means, for example, a set of the A layer 2 and the B layer 3 formed in close contact with the A layer 2, and in close contact with the A layer 2. It also refers to a set with the formed B layer 3. Therefore, the thickness of one unit is 10 to 50 nm in combination with any of the B layers 3 above and below the A layer 2.
  • the film thickness ratio of the A layer 2 and the B layer 3 is about 1: 1 as a guide, but there is almost no change in the performance such as hardness and wear resistance even if it changes from about 1: 5 to 5: 1. However, if it exceeds the range of 1: 5 to 5: 1, the performance tends to deteriorate. Therefore, the film thickness ratio between the A layer 2 and the B layer 3 is preferably 1: 5 to 5: 1. More preferably, it is 1: 3 to 3: 1.
  • the first layer on the substrate 1, that is, the layer that adheres to the substrate 1 is the B layer 3, and the A layer 2 is laminated on the B layer 3. And the order of lamination of the B layer 3 are not particularly specified. However, the first layer on the substrate 1 is preferably the B layer 3 having excellent toughness and adhesion.
  • the number of A layers 2 and B layers 3 may be the same or different.
  • the first hard film forming member 10 has an integral intensity I (200) of diffraction lines from the (200) plane when the hard film 4 is measured by the X-ray diffraction of the ⁇ -2 ⁇ method, from the (111) plane. It is preferable that the integrated intensity I (111) of the diffraction lines of the above is at least twice (that is, I (111) ⁇ 2 ⁇ I (200)).
  • the hard film forming member 10 has a full width half maximum (FWHM) of 0.7 when the hard film 4 is measured by X-ray diffraction of the ⁇ -2 ⁇ method. It is preferable that it is more than °.
  • these controls can be performed by setting the bias voltage applied to the substrate 1 when the coating 4 is formed to a negative voltage having an absolute value of 130 V or more. That is, by setting the bias voltage to ⁇ 130 V or less, the integrated intensity of diffraction lines when the film 4 is measured by the X-ray diffraction of the ⁇ -2 ⁇ method can have the above relationship, and the half of the diffraction lines can be obtained.
  • the value range can be the above value.
  • the intensity ratio of diffraction lines that is, the preferential orientation depends on the bias voltage applied to the substrate 1 during film formation. As the bias voltage increases, the (200) orientation becomes dominant, but the (200) plane is particularly excellent in wear resistance. And when the relationship becomes more than twice the strength of (111) in the strength ratio as the index, the wear resistance is improved. More preferably, it is 3 times or more.
  • Measurement by X-ray diffraction can be performed under the following conditions as an example.
  • the bias voltage applied to the substrate 1 is -150 V
  • the A layer 2 is made of (Ti0.2Cr0.2Al0.55Si0.03Y0.02) N
  • the B layer 3 is made of (Ti0.25Cr0.1Al0.65) N.
  • XRD X-ray diffraction
  • the integrated intensity and half width of each diffraction line can be calculated from the XRD figure (raw data) using, for example, spreadsheet software IgorPro. Specifically, each value is calculated by performing fitting using a Voigt function as a peak shape using the multi-peak fit package of the software.
  • the base material component is indicated by a thick line (reference numeral M in the figure) ).
  • the hard coating 4 is formed by an arc ion plating method or a sputtering method.
  • the film is formed by an arc ion plating (AIP) method using a solid evaporation source or A sputtering method is suitable.
  • AIP arc ion plating
  • the AIP method is particularly recommended because the ionization rate at the time of evaporation of the target atoms is high and a dense film can be formed by a bias voltage applied to the substrate.
  • the absolute value of the bias voltage applied to the substrate is 130 V when the film is formed by the arc ion plating method or the sputtering method. It is necessary to set the above negative voltage (the bias voltage is ⁇ 130 V or less).
  • the integral intensity ratio is I (111) ⁇ 2 ⁇ I (200) when the film is measured by X-ray diffraction using the ⁇ -2 ⁇ method.
  • Half width 0.7 ° or more. More preferably, it is ⁇ 140V or less. If the bias voltage is too large and negative, heating of the base material during film formation and a decrease in film formation rate occur. Therefore, the lower limit is preferably ⁇ 250V.
  • the base material 1 having a predetermined size is prepared by ultrasonic degreasing and cleaning as necessary (base material). Preparation step). Next, after the base material 1 is introduced into the film forming apparatus, the base material 1 is maintained at a predetermined temperature of 500 to 550 ° C. (base material heating step), and a film is formed on the base material by arc ion plating or sputtering. 4 is formed (film formation step). Thereby, the 1st hard film forming member 10 which has a predetermined composition and structure can be manufactured.
  • the composite film forming apparatus 100 is connected to a chamber 13 having an exhaust port 11 for evacuating, a gas supply port 12 for supplying a film forming gas and a rare gas, and an arc evaporation source 14.
  • a bias power source 20 for applying a negative bias voltage to the object to be processed through the support 19 between the chamber 13 and the chamber 13 is provided.
  • a heater 21, a discharge DC power source 42, a filament heating AC power source 23, and the like are provided.
  • UBM unbalanced magnetron sputtering
  • AIP arc ion plating
  • various alloy or metal targets are attached to the cathode (not shown) of the composite film forming apparatus 100, and further, a target object (not shown) is placed on a support base 19 on the rotating substrate stage 18. ), The substrate 1 is attached, and the inside of the chamber 13 is evacuated (exhausted to 5 ⁇ 10 3 Pa or less) to be in a vacuum state. Thereafter, the temperature of the object to be processed is heated to about 500 ° C. by the heater 21 in the chamber 13, and etching with Ar ions is performed for 5 minutes by an ion source by thermionic emission from the filament.
  • a laminated film by attaching targets having different compositions to a plurality of evaporation sources, placing an object to be processed on a rotating support base 19, and rotating the film during film formation.
  • the object to be processed on the support table 19 alternately passes in front of the evaporation source to which the target having a different composition is attached.
  • the film corresponding to the target composition of each evaporation source it is possible to form a laminated film by alternately forming.
  • each of the A layer 2 and the B layer 3, the thickness of one unit of the laminated structure, and the number of units depend on the input power (evaporation amount) to each evaporation source, the rotational speed and the rotational speed of the support base 19. Control. In addition, when the rotational speed of the support base 19 is faster, the thickness per layer becomes thinner and the thickness of one unit becomes thinner (that is, the stacking cycle becomes shorter).
  • the second hard film forming member 10a is provided with a hard film (hereinafter referred to as a film) 4a on the substrate 1a.
  • the coating 4a includes an A layer 2a containing a predetermined amount of a predetermined element and a B layer 3a containing a predetermined amount of the predetermined element. Then, the A layer 2a is laminated on the B layer 3a, the thickness of the A layer 2a is 0.5 to 5.0 ⁇ m, and the thickness of the B layer 3a is 0.05 to 3.0 ⁇ m. .
  • hard film formation member 10a ' Provided with the intermediate
  • “on the substrate 1a” refers to one or both surfaces of the substrate 1a, the entire surface, or the like, and the portions that are covered differ depending on the type of tool. This will be specifically described below.
  • Base material 1a, the A layer 2a, and the B layer 3a are the same as the base material 1, the A layer 2, and the B layer 3 in the first hard film forming member 10, respectively.
  • the first layer on the substrate 1a is the B layer 3a having excellent toughness and adhesion, and the A layer 2a having high hardness and excellent wear resistance is the outermost layer. Further, the interface between the B layer 3a and the A layer 2a is obtained by using the B layer 3a having the same crystal structure as that of the A layer 2a as a base and controlling the crystal orientation of the B layer 3a to (200) orientation.
  • the A layer 2a can be formed in a state in which the crystal orientation of the B layer 3a is maintained by utilizing the consistency in FIG. Thereby, cutting performance can be further improved.
  • the A layer 2a which is the cutting surface, has a thickness of less than 0.5 ⁇ m, so that the cutting life is shortened. Preferably it is 0.75 ⁇ m or more. On the other hand, if the thickness of the A layer 2a exceeds 5.0 ⁇ m, the internal stress of the A layer 2a increases and the A layer 2a is broken (chipped). Preferably it is 3.0 micrometers or less.
  • the thickness of the B layer 3a used as the underlayer is set to 0.05 ⁇ m or more. Preferably it is 0.1 micrometer or more.
  • the thickness of the B layer 3a exceeds 3.0 ⁇ m, the preferential orientation of the crystal changes from (200) to a more stable (111). Preferably it is 2.5 ⁇ m or less.
  • the intermediate layer 5 since the intermediate layer 5 is lower in hardness than the A layer 2a, if the thickness of the intermediate layer 5 exceeds 0.5 ⁇ m, the intermediate layer 5 becomes a starting point of cracking, resulting in chipping. .
  • the thickness of the intermediate layer 5 shall be 0.5 micrometer or less. Preferably it is 0.4 micrometer or less, More preferably, it is 0.3 micrometer or less.
  • the thickness is preferably 0.05 ⁇ m or more. More preferably, it is 0.07 ⁇ m or more.
  • the intermediate layer 5 may be a single layer or a film composed of two or more layers. As shown in FIG. 4B, in the intermediate layer 5, the Aa layer 22 having the same composition as the A layer 2a and the Bb layer 33 having the same composition as the B layer 3a are alternately stacked. preferable.
  • the composition of each layer of the intermediate layer 5 may be different from that of the A layer 2a and the B layer 3a, but it has the same composition from the viewpoint of eliminating the consistency of the crystal grain size and the replacement of the target during film formation. It is preferable to use one. Further, two types of layers having different compositions are alternately stacked, and when one set of the laminated structure of the two types of layers is defined as one unit, the thickness of the one unit is 0.005 to 0.04 ⁇ m.
  • the film is composed of two or more units.
  • the wear resistance of the coating 4a ′ is further improved.
  • the adhesiveness of A layer 2a and B layer 3a further improves by setting it as 2 units or more.
  • the Aa layer 22 is first formed on the B layer 3a, but the Bb layer 33 may be formed first on the B layer 3a.
  • the number of Aa layers 22 and Bb layers 33 may be the same or different.
  • one unit (stacking period) means, for example, a set of an Aa layer 22 and a Bb layer 33 formed in close contact with the Aa layer 22, and in close contact with the Aa layer 22.
  • One set with the formed Bb layer 33 is also referred to. Therefore, the thickness of one unit is preferably 0.005 to 0.04 ⁇ m in any combination with the upper and lower Bb layers 33 of the Aa layer 22.
  • the Aa layer 22 and the Bb layer 33 may have the same film thickness ratio, but as the Aa layer 22 approaches the A layer 2a, the thickness of the Aa layer 22 becomes Bb. Adhesion can be further increased by employing a structure that is thicker than the thickness of the layer 33.
  • the intermediate layer 5 may be a single layer film having a gradient composition that approaches the composition of the A layer 2a as it goes from the B layer 3a side to the A layer 2a side.
  • the second hard film forming member 10a (10a ') has an integrated intensity I (200) of diffraction lines from the (200) plane when the hard film 4a (4a') is measured by X-ray diffraction of the ⁇ -2 ⁇ method.
  • Is preferably at least twice the integrated intensity I (111) of the diffraction line from the (111) plane (that is, I (111) ⁇ 2 ⁇ I (200)).
  • the hard film forming member 10a (10a ') has a half-width (FWHM: Full) of a diffraction line from the (200) plane when the hard film 4a (4a') is measured by X-ray diffraction of the ⁇ -2 ⁇ method. It is preferable that Width Half Maximum) is 1 ° or more.
  • the preferential orientation of the film 4a (4a ′) is a negative bias having an absolute value of 70 V or more applied to the base material 1a when forming the A layer 2a, the B layer 3a and the intermediate layer 5, as will be described later.
  • This can be achieved by using the following voltage.
  • the half width of the diffraction line can be achieved by making the bias voltage applied when forming the A layer 2a a negative voltage having an absolute value of 130V or more. That is, by setting the bias voltage to ⁇ 70 V or less, the integrated intensity of diffraction lines when the hard coating 4a (4a ′) is measured by the X-ray diffraction of the ⁇ -2 ⁇ method can have the above relationship. Further, by setting the bias voltage to ⁇ 130 V or less, the half width of the diffraction line when the hard coating 4a (4a ′) is measured by the X-ray diffraction of the ⁇ -2 ⁇ method can be set to the above value.
  • the preferential orientation of the surface layer A layer 2a can be controlled by the preferential orientation of the base layer B layer 3a.
  • the preferential orientation of the B layer 3a depends on the composition of the B layer 3a and the base material 1a when the B layer 3a is formed.
  • a cubic single-layer structure and a (200) orientation can be used instead of the (111) orientation which is inherently stable.
  • the orientation can be controlled by a bias voltage applied to the substrate 1a when the B layer 3a is formed.
  • the (111) plane orientation becomes the (200) plane orientation. Furthermore, it is also important that the thickness of the B layer 3a is 3.0 ⁇ m or less because it becomes easy to obtain a stable (111) orientation as the thickness of the B layer 3a increases. On the other hand, in order to make the A layer 2a consistent with the B layer 3a, it is necessary not to be a mixed layer of a hexagonal crystal structure and a cubic structure, but to have a cubic structure alone. These structural changes can be controlled by a bias voltage applied to the substrate 1a during film formation. When the absolute value of the negative bias is low, a mixed layer is deposited.
  • the crystal orientation of the A layer 2a can be controlled by controlling the crystal orientation of the B layer 3a.
  • the (200) diffraction line is obtained from the X-ray diffraction result of the two-layer film.
  • the wear resistance is improved when the integrated intensity of is more than twice the integrated intensity of the (111) diffraction line. More preferably, it is 2.5 times or more.
  • the A layer 2a has a cubic single layer structure, and the wear resistance improves as the crystal grain size decreases.
  • the crystal grain size of the A layer 2a can be controlled by the value of the bias applied to the substrate 1a. The larger the absolute value of the negative bias, the finer the crystal grains.
  • the half width of the (200) plane diffraction line observed from the X-ray diffraction result can be used. If the half-value width of the diffraction line is 1.0 ° or more, the crystal grains are sufficiently refined, and as a result, the wear resistance is improved. More preferably, it is 1.2 ° or more.
  • the half width of the diffraction line tends to increase in a region where the bias voltage is ⁇ 130 V or less, but the increase saturates in the vicinity of 2.5 °.
  • the measurement by X-ray diffraction can be performed in the same manner as the X-ray diffraction in the first hard film forming member 10.
  • the bias voltage applied to the base material 1a when the A layer 2a is formed is -150V
  • the B layer 3a forms a two-layer film (each 1.5 ⁇ m) made of (Ti0.2Cr0.2Al0.6) N
  • the X-ray diffraction (XRD) pattern shown in FIG. 5 is obtained.
  • the integrated intensity and half width of each diffraction line can be calculated from the XRD figure (raw data) using, for example, spreadsheet software IgorPro.
  • each value is calculated by performing fitting using a Voigt function as a peak shape using the multi-peak fit package of the software. Since the diffraction line of the base material is also detected in the raw data at the time of fitting, separation of the diffraction component from the base material component and the film component is also carried out (the base material component is indicated by a thick line (reference numeral M in the figure) ).
  • the hard coating 4a (4a ′) can be formed in the same manner as the hard coating 4 in the first hard coating forming member 10.
  • the layer 5 in order to control both the orientation of the B layer 3a and the crystal structure of the A layer 2a to desired conditions, the A layer 2a, the B layer 3a, and the intermediate layer
  • the layer 5 it is necessary to set the absolute value of the bias voltage applied to the substrate to a negative voltage of 70 V or more (bias voltage of ⁇ 70 V or less) when forming the intermediate layer 5.
  • the integrated intensity ratio is I (111) ⁇ 2 ⁇ I (200 ) More preferably, it is ⁇ 90 V or less. If the bias voltage is too large and negative, heating of the substrate 1a during film formation and a decrease in the film formation rate occur. Therefore, the lower limit is preferably ⁇ 300V.
  • the half-value width of the diffraction line when the A layer 2a is provided, the negative value of the bias voltage applied to the substrate 1a is 130 V or more when the intermediate layer 5 is formed (the bias voltage is ⁇ 130 V or less). It is necessary to.
  • the half-value width is 1.0 ° or more. More preferably, it is ⁇ 140V or less. If the bias voltage is too large and negative, heating of the substrate 1a during film formation and a decrease in the film formation rate occur. Therefore, the lower limit is preferably ⁇ 300V.
  • the base material 1a having a predetermined size is prepared by ultrasonic degreasing and cleaning as necessary.
  • Base material preparation step Next, after introducing the substrate 1a into the film forming apparatus, the substrate 1a is held at a predetermined temperature of 500 to 550 ° C. (substrate heating step), and a film is formed on the substrate by arc ion plating or sputtering. 4a (4a ') is formed (film formation step). Thereby, the 2nd hard film forming member 10a (10a ') which has a predetermined composition and structure can be manufactured.
  • the same thing as what was used for manufacture of a 1st hard film formation member can be used for a film-forming apparatus, and the same operation is performed.
  • the thicknesses of the A layer 2a, the B layer 3a, the intermediate layer 5, and the layers 22 and 33 constituting the intermediate layer 5, the thickness of one unit of the laminated structure of the intermediate layer 5, and the number of units are as follows. Is controlled by the input power (evaporation amount), the rotation speed and the rotation speed of the support base 19.
  • the A layer 2 and the B layer 3 having a predetermined component composition have a laminated structure, and the thickness of one unit is within a predetermined range.
  • the wear resistance of the hard coating 4 can be improved.
  • the A layer 2a having a predetermined component composition is formed on the B layer 3a having a predetermined component composition, and the A layer 2a and the B layer 3a
  • the wear resistance of the hard coating 4a (4a ′) can be further improved.
  • the first and second hard film forming members coated with such a hard film having excellent wear resistance include, for example, cutting tools such as chips, drills, end mills, presses, forging dies, and molding. Examples include jigs and punching tools. In particular, it is suitable for a tool used for dry cutting.
  • Example A First hard film forming member
  • the A voltage and the B voltage having different compositions are formed so that the bias voltage during film formation is fixed to ⁇ 150 V and the thickness of one unit of the multilayer structure (lamination cycle) is 30 nm.
  • the effect of film composition on hardness and cutting performance was examined.
  • a target of various alloys or metals is attached to the cathode of the composite film forming apparatus, and further, a cutting tool (two-blade carbide end mill, ⁇ 10 mm) and hardness investigation that are ultrasonically degreased and washed in ethanol.
  • a mirror-finished carbide test piece (length 13 mm ⁇ width 13 mm ⁇ thickness 5 mm) was mounted on a support stage on a substrate stage. Then, the chamber was evacuated (evacuated to 5 ⁇ 10 ⁇ 3 Pa or less) to be in a vacuum state. Next, after the temperature of the object to be processed was heated to 500 ° C.
  • etching with Ar ions was carried out for 5 minutes by an ion source by thermionic emission from the filament. Thereafter, a mixed gas obtained by adding nitrogen gas or a gas containing carbon as necessary to nitrogen gas is introduced to a total pressure of 4 Pa, and the arc evaporation source (target diameter ⁇ 100 mm) is operated at a discharge current of 150 A to obtain a predetermined thickness. A film was formed.
  • the target of the composition of A layer and B layer was attached to a separate evaporation source, the substrate stage carrying a substrate was rotated in an apparatus, and only the target of B layer was mentioned above first.
  • a single layer was discharged for a short time in a predetermined atmosphere such as nitrogen gas, and a bias voltage of ⁇ 150 V was applied to the substrate to form a B layer having a predetermined thickness.
  • the target of layer A is discharged, the targets of layer A and layer B are simultaneously discharged, and the substrate stage is rotated while applying a bias voltage of ⁇ 150 V to the substrate.
  • a film (multilayer film) having a laminated structure laminated in order was formed on the substrate so as to have a total thickness of 3 ⁇ m.
  • the thickness of the A layer was about 15 nm
  • the thickness of the B layer was about 15 nm
  • one unit was 30 nm.
  • the thickness of each of the A layer and the B layer, the thickness of one unit of the laminated structure, and the number of units were controlled by the rotational speed and the rotational speed of the support base.
  • the component composition in the film was measured, and the hardness and abrasion resistance of the film were evaluated.
  • the component composition of the metal element in the A layer and the B layer was measured by EPMA (Electron Probe Micro Analyzer).
  • ⁇ Hardness> The hardness of the film was evaluated by examining the Vickers hardness of the film in a carbide end mill under the conditions of a load of 20 mN and a holding time of 15 seconds using a micro Vickers hardness meter. A sample having a hardness of 25 GPa or more was judged good, and a sample having a hardness of less than 25 GPa was judged defective.
  • Wear resistance was evaluated by conducting a cutting test under the following conditions and measuring the amount of wear at the boundary (flank wear amount (wear width)) after a certain distance. When the amount of wear (wear width) was less than 200 ⁇ m, the wear resistance was good, and when it was over 200 ⁇ m, the wear resistance was poor.
  • the coating composition was constant, and a coating having a thickness of 1 unit was formed for each sample, and the influence of the thickness of 1 unit on hardness and cutting performance was examined.
  • the film was formed by the same method as in the first example (conditions other than the thickness were the same as in the first example). At this time, the thickness of one unit was changed for each sample.
  • the component composition in the film was measured, and the hardness and abrasion resistance of the film were evaluated.
  • the measuring method of the component composition and the evaluation method of hardness and wear resistance are the same as in the first embodiment.
  • membrane was A layer "(Ti0.2Cr0.15Al0.55Si0.1) N" and B layer "(Ti0.2Cr0.2Al0.6) N".
  • the film composition and the thickness of one unit are made constant, the bias voltage at the time of film formation is changed, and the preferential orientation of the film by X-ray diffraction and the half width of the diffraction line on the hardness and cutting performance are affected. The impact was examined.
  • the film was formed by the same method as in the first example. At this time, the bias voltage was changed for each sample.
  • the thickness of one unit was 30 nm, the ratio of the thicknesses of the A layer and the B layer was 1: 1, and the total film thickness was 3 ⁇ m.
  • the component composition in the film was measured, and the preferential orientation of the film by X-ray diffraction and the half-value width of the diffraction line were examined. In addition, the hardness and abrasion resistance of the film were evaluated.
  • the measuring method of the component composition and the evaluation method of hardness and wear resistance are the same as in the first embodiment.
  • the component composition was A layer “(Ti0.2Cr0.15Al0.55Si0.1) N” and B layer “(Ti0.2Cr0.2Al0.6) N”.
  • the preferential orientation of the film and the half-value width of the diffraction line are the integrated intensity ratios of diffraction lines from the (111) plane and the (200) plane when the film is measured by X-ray diffraction using the ⁇ -2 ⁇ method (in the table, ( 200) / (111)), and the half-value width of the diffraction line from the (200) plane when the film was measured by X-ray diffraction using the ⁇ -2 ⁇ method.
  • the conditions for X-ray diffraction are shown below.
  • Example B Second hard film forming member
  • an intermediate layer in which two types of layers having the same composition as the A layer and the B layer are laminated is formed to a thickness of one unit (lamination cycle).
  • the film was fixed to 20 nm to form a 0.2 ⁇ m film, and an A layer was formed to a 1.5 ⁇ m film thereon.
  • the bias voltage at the time of film formation was fixed at ⁇ 150 V when the A layer and the intermediate layer were formed, and was fixed at ⁇ 100 V when the B layer was formed. In this way, A and B layers having different compositions were formed, and the influence of the coating composition on hardness and cutting performance was examined.
  • the intermediate layer was formed by laminating a layer having the same composition as that of the A layer and a layer having the same composition as that of the B layer in this order so as to be 10 nm each.
  • a target of various alloys or metals is attached to the cathode of the composite film forming apparatus, and further, a cutting tool (two-blade carbide end mill, ⁇ 10 mm) and hardness investigation that are ultrasonically degreased and washed in ethanol.
  • a mirror-finished carbide test piece (length 13 mm ⁇ width 13 mm ⁇ thickness 5 mm) was mounted on a support stage on a substrate stage. Then, the chamber was evacuated (evacuated to 5 ⁇ 10 ⁇ 3 Pa or less) to be in a vacuum state. Next, after the temperature of the object to be processed was heated to 500 ° C.
  • etching with Ar ions was carried out for 5 minutes by an ion source by thermionic emission from the filament. Thereafter, a mixed gas obtained by adding nitrogen gas or, if necessary, a gas containing carbon to nitrogen gas is introduced to a total pressure of 4 Pa, the arc evaporation source (target diameter ⁇ 100 mm) is operated at a discharge current of 150 A, and the substrate A film having a predetermined thickness was formed at a rotation speed of 3 rpm.
  • the target of the composition of A layer and B layer was attached to a separate evaporation source, the substrate stage carrying a substrate was rotated in an apparatus, and only the target of B layer was mentioned above first.
  • a discharge was performed alone in a predetermined atmosphere such as nitrogen gas, and a bias voltage of ⁇ 100 V was applied to the substrate to form a B layer having a predetermined thickness.
  • the target of layer A is discharged, the targets of layer A and layer B are simultaneously discharged in a predetermined atmosphere, and the substrate stage is rotated while applying a bias voltage of ⁇ 150 V to the substrate.
  • An intermediate layer having a predetermined thickness and composed of a layer having the same composition and a layer having the same composition as the B layer was formed.
  • the target of the A layer was discharged alone in a predetermined atmosphere, a bias voltage of ⁇ 150 V was applied to the substrate, and an A layer having a predetermined thickness was formed on the intermediate layer.
  • the thickness of each of the A layer and the B layer, the thickness of one unit of the laminated structure of the intermediate layer, and the number of units were controlled by the rotational speed and the rotational speed of the support base.
  • Example 1 of Example A The film composition, hardness, wear resistance, and cutting test conditions are the same as in Example 1 of Example A. These results are shown in Tables 5 and 6. In the table, those not satisfying the scope of the present invention are indicated by underlining the composition of each layer. However, those that do not contain essential components are not underlined.
  • the film composition was fixed, the thicknesses of the A layer and B layer were fixed to 1.5 ⁇ m, the thickness of the intermediate layer was changed, and the influence of the thickness of the intermediate layer on hardness and cutting performance was examined.
  • the film was formed by the same method as in the first example (conditions other than the intermediate layer were the same as in the first example).
  • the intermediate layer was formed by laminating a layer having the same composition as the A layer and a layer having the same composition as the B layer in this order.
  • the ratio of the thickness of each layer of the intermediate layer was 1: 1, and the thickness of one unit was fixed at 20 nm.
  • No. 51B is not provided with an intermediate layer.
  • the component composition in the film was measured, and the hardness and abrasion resistance of the film were evaluated.
  • the measuring method of the component composition and the evaluation method of hardness and wear resistance are the same as in the first embodiment.
  • membrane was A layer "(Ti0.2Cr0.15Al0.55Si0.1) N" and B layer "(Ti0.2Cr0.2Al0.6) N".
  • the coating composition was kept constant, and coatings having different thicknesses of the A layer and the B layer were formed for each sample, and the influence of the thicknesses of the A layer and the B layer on hardness and cutting performance was examined.
  • the preferential orientation of the film by X-ray diffraction was also examined.
  • an intermediate layer is provided.
  • the film was formed by the same method as in the first example (conditions other than the film thickness were the same as in the first example). At this time, the thicknesses of the A layer and the B layer were changed for each sample.
  • a single layer film composed of an A layer or a B layer was also formed.
  • the composition of the components in the film was measured, and the preferential orientation of the film was examined by X-ray diffraction. In addition, the hardness and abrasion resistance of the film were evaluated.
  • the measuring method of the component composition and the evaluation method of hardness and wear resistance are the same as in the first embodiment.
  • membrane was A layer "(Ti0.2Cr0.15Al0.55Si0.1) N" and B layer "(Ti0.2Cr0.2Al0.6) N".
  • the preferred orientation of the film is the integrated intensity ratio of diffraction lines from the (111) plane and the (200) plane when the film is measured by X-ray diffraction of the ⁇ -2 ⁇ method (in the table, (200) / (111) ).
  • the conditions for X-ray diffraction and the data processing method are the same as in the third example of Example A. These results are shown in Table 8. In the table, those not satisfying the range of the present invention and those whose integrated intensity ratio does not satisfy the preferable range of the present invention are indicated by underlining the numerical values.
  • the film composition, the thicknesses of the A layer and the B layer are made constant, the bias voltage at the time of film formation is changed, and the hardness and cutting performance are affected.
  • the effect of the full width at half maximum was examined.
  • the film was formed by the same method as in the first example. However, the intermediate layer was not provided, and the bias voltage when the A layer was formed was changed. That is, the B layer was formed to a thickness of 1.5 ⁇ m with a bias voltage of ⁇ 100 V, and the A layer was formed to 1.5 ⁇ m. At this time, the bias voltage when forming the A layer was changed for each sample.
  • the component composition in the film was measured, and the preferential orientation of the film by X-ray diffraction and the half-value width of the diffraction line were examined. In addition, the hardness and abrasion resistance of the film were evaluated.
  • the measuring method of the component composition and the evaluation method of hardness and wear resistance are the same as in the first embodiment.
  • the component composition was A layer “(Ti0.2Cr0.15Al0.55Si0.1) N” and B layer “(Ti0.2Cr0.2Al0.6) N”.
  • the preferential orientation of the film and the half-value width of the diffraction line are the integrated intensity ratios of diffraction lines from the (111) plane and the (200) plane when the film is measured by X-ray diffraction using the ⁇ -2 ⁇ method (in the table, ( 200) / (111)), and the half-value width of the diffraction line from the (200) plane when the film was measured by X-ray diffraction using the ⁇ -2 ⁇ method.
  • the X-ray diffraction conditions are the same as in the third example.
  • the bias voltage is ⁇ 75 V or less which is the preferable upper limit value of the present invention, and therefore, the integral intensity ratio satisfies the preferable range of the present invention.
  • the bias voltage is ⁇ 130 V or less which is the preferable upper limit value of the present invention, the half width satisfies the preferable range of the present invention. Therefore, the effect of improving hardness and wear resistance was good.
  • no. In 73B since the bias voltage exceeded ⁇ 130 V and further exceeded ⁇ 75 V, the integrated intensity ratio and the half-value width were less than the preferred lower limits of the present invention. No. Since the bias voltage of 74B to 76B exceeded ⁇ 130 V, the half width was less than the preferred lower limit of the present invention. Therefore, these were good in improving the hardness and wear resistance, but No. Slightly inferior to 77B-80B.
  • the hard coating of the present invention is useful for cutting tools such as chips, drills and end mills, and jigs and tools such as presses, forging dies, molding dies and punching punches, and greatly improves their wear resistance.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

 本発明は、基材上に、組成がTiCrAlSi(B)(ただし、a、b、c、d、e、u、v、wは所定量の原子比)を満足するA層と、組成がTiCrAl(B)(ただし、f、g、h、x、y、zは所定量の原子比)を満足するB層とが交互に積層され、A層とB層の1組の積層構造を1単位としたときに、この1単位の厚さが10~50nmであり、かつ硬質皮膜の膜厚が1~5μmである第1の硬質皮膜形成部材を提供する。また、本発明は、厚さが0.5μm以下の中間層を介してまたは中間層を介さずに、前記B層の上に前記A層が積層され、A層の厚さが0.5~5.0μmであり、B層の厚さが0.05~3.0μmである第2の硬質皮膜形成部材を提供する。

Description

硬質皮膜形成部材および硬質皮膜の形成方法
 本発明は、切削工具、摺動部材、および成型用金型等の表面に硬質皮膜を被覆した硬質皮膜形成部材および硬質皮膜の形成方法に関する。
 従来、超硬合金、サーメット、高速度工具鋼等を基材とするチップ、ドリル、エンドミル等の切削工具や、プレス、鍛造金型、打ち抜きパンチ等の治工具における耐摩耗性を向上させることを目的に、TiN、TiC、TiCN、TiAlN、TiAlCrN、TiAlCrCN、TiAlCrSiBCN、TiCrAlSiBN、CrAlSiBYN、AlCrN等の硬質皮膜をコーティングすることが行われている。
 例えば、特許文献1には、TiAlCrCNからなり、各元素の原子比を規定した切削工具用硬質皮膜が開示されている。また、特許文献2には、TiAlCrSiBCNからなり、各元素の原子比を規定した切削工具用硬質皮膜が開示されている。さらにこれらの文献には、アークイオンプレーティング法により成膜する技術が開示されている。
 さらに特許文献3には、(M)CrAlSiBYZ[但し、Mは、周期律表第4A族元素、5A族元素、6A族元素(Crを除く)から選択される少なくとも1種の元素であり、Zは、N、CN、NOまたはCNOのいずれかを示す]や、CrAlSiBYZ[但し、Zは、N、CN、NOまたはCNOのいずれかを示す]からなり、M、Cr、Al、Si、B、Yの原子比を規定した硬質皮膜が開示されている。また、これらの硬質皮膜を相互に異なる組成で交互に積層し、各層の膜厚を規定した硬質皮膜が開示されている。さらに、アークイオンプレーティング法により成膜する技術が開示されている。
 そして特許文献4には、AlCrX[但し、Xは、N、C、B、CN、BN、CBN、NO、CO、BO、CNO、BNOまたはCBNOのいずれかを示す]からなり、Al、Crの原子比を規定した硬質材料層(硬質皮膜)を有する工作物が開示されている。
日本国特開2003-71610号公報 日本国特開2003-71611号公報 日本国特開2008-7835号公報 日本国特表2006-524748号公報
 これらの単層や多層からなる硬質皮膜においては、所定元素の原子比を規定することで皮膜の耐酸化性を向上させている。しかし、例えばドライ加工を行なう切削工具に適用される場合等、硬質皮膜を形成した部材を、より高い耐酸化性を必要とされる環境下において使用するために、耐摩耗性等の部材における性能をさらに向上させることが望まれている。また、近年の被削材の高硬度化や切削速度の高速度化に伴い、従来の硬質皮膜に比べ、耐摩耗性をさらに向上させた硬質皮膜が求められている。
 本発明はかかる事情に鑑みてなされたものであり、耐摩耗性に優れた硬質皮膜形成部材および硬質皮膜の形成方法を提供することを課題とする。
 本発明者らは鋭意研究した結果、所定の成分組成を有するA層と、所定の成分組成を有するB層とを組み合わせて積層膜とし、かつ、このA層とB層との積層構造の1単位の厚さ(すなわち、積層周期)を規定することで、硬質皮膜(以下、適宜、皮膜という)の耐摩耗性を向上させることができることを見出した。すなわち、A層およびB層の各層において所定元素の原子比を規定しただけでは耐摩耗性が十分に向上せず、また、1単位の厚さを規定しただけでも耐摩耗性が十分に向上しない。しかしながら、皮膜の成分組成と1単位の厚さとを同時に制御することで、耐摩耗性が向上することを見出した。
 すなわち本発明の第1の硬質皮膜形成部材は、基材上に硬質皮膜を備えた硬質皮膜形成部材であって、前記硬質皮膜は、組成がTiCrAlSi(B)からなり、前記a、b、c、d、e、u、v、wが原子比であるときに、0.05≦a、0.05≦b、0.2≦a+b≦0.55、0.4≦c≦0.7、0.02≦d≦0.2、0≦e≦0.1、0≦u≦0.1、0≦v≦0.3、a+b+c+d+e=1、u+v+w=1、を満足するA層と、組成がTiCrAl(B)からなり、前記f、g、h、x、y、zが原子比であるときに、0≦f、0.05≦g、0.25≦f+g≦0.6、0.4≦h≦0.75、0≦x≦0.1、0≦y≦0.3、f+g+h=1、x+y+z=1、を満足するB層とを備え、前記A層と前記B層が交互に積層され、前記A層と前記B層の1組の積層構造を1単位としたときに、この1単位の厚さが10~50nmであり、かつ前記硬質皮膜の膜厚が1~5μmであることを特徴とする。 
 このような構成によれば、A層およびB層の各層において所定の成分組成とすることで、A層においては、高耐酸化性、高硬度であり、耐摩耗性に優れる皮膜となり、B層においては、高靭性であり、かつ耐酸化性に優れる皮膜となる。そして、このA層とB層との積層構造の1単位の厚さを規定することで、皮膜の硬度が高くなり、耐摩耗性が向上する。さらに、皮膜全体の膜厚を規定することで、耐摩耗性に優れるとともに、基材から剥離しにくい皮膜となる。
 また、本発明の第1の硬質皮膜形成部材は、前記硬質皮膜をθ-2θ法のX線回折にて測定したときの(200)面からの回折線の積分強度I(200)が、(111)面からの回折線の積分強度I(111)の2倍以上であることが好ましい。また、前記記載の硬質皮膜をθ-2θ法のX線回折にて測定したときの(200)面からの回折線の半値幅が0.7以上であることが好ましい。
 これらのような構成によれば、皮膜の耐摩耗性がさらに向上する。
 本発明の第1の硬質皮膜形成部材における硬質皮膜の形成方法は、前記硬質皮膜をアークイオンプレーティング法またはスパッタリング法で形成することを特徴とする。また、前記したように、回折線の積分強度の関係を規定し、また半値幅を所定の値とする場合には、前記硬質皮膜をアークイオンプレーティング法またはスパッタリング法で形成するときに、前記基材に印加するバイアス電圧を絶対値が130V以上の負の電圧とする。
 皮膜をアークイオンプレーティング法またはスパッタリング法で形成することで、皮膜の組成を正確に制御することができる。また、基材に印加するバイアス電圧を絶対値が130V以上の負の電圧とすることで、皮膜をθ-2θ法のX線回折にて測定したときの(200)面からの回折線の積分強度I(200)が、(111)面からの回折線の積分強度I(111)の2倍以上となり、また、皮膜をθ-2θ法のX線回折にて測定したときの(200)面からの回折線の半値幅が0.7°以上となる。
 また、本発明者らは鋭意研究した結果、A層は高耐酸化性、高硬度で耐摩耗性に優れる皮膜であるが、成分組成に加え、結晶構造、結晶の優先配向性、結晶粒サイズを制御することでさらに特性を向上させられることを見出した。結晶構造に関しては、A層の結晶構造は、立方晶構造と六方晶構造の混合層となった場合には皮膜の硬さが低下し耐酸化性も劣化することがわかっており、立方晶単層構造とすることで高硬度かつ耐酸化性に優れる皮膜となり耐摩耗性が向上する。A層の耐摩耗性向上には立方晶単層構造であることに加えて、結晶粒サイズについても小さい方が硬さは向上し、耐摩耗性についても向上する。さらに、立方晶構造は、一般的には(111)面に優先配向しやすいが、(200)面に優先配向させることで、より切削性能が向上することを見出した。成分組成に加え、これら結晶構造、結晶粒サイズ、結晶配向性を制御したA層は高耐酸化性、高硬度で耐摩耗性にさらに優れる皮膜であるが、単層で用いた場合には基材との密着性が悪いことから剥離が発生し、結果として耐摩耗性が悪くなるという問題がある。
 一方で、B層は耐酸化性、高靱性に優れる皮膜であり、立方晶単層構造が容易に得られると共に、結晶配向性も基板バイアスにより容易に変化させることが可能な皮膜である。しかし、単独で用いた場合には耐摩耗性がA層より劣るという問題がある。本発明はこれら問題点を解決したものであり、A層およびB層の成分を規定し、所定厚さのB層の上に所定厚さのA層を形成する2層皮膜とすることで、耐摩耗性を向上させることができた。すなわち、下地としてB層を用いたことで基材との密着強度を向上させることができ、A層あるいはB層のみの単層の皮膜に比べ、飛躍的に切削性能を向上させることができた。さらに、結晶構造がA層と同じ立方晶構造であるB層を下地として用い、B層の結晶配向性を(200)配向に制御することで、B層とA層の界面での整合性を利用して、B層の結晶配向性を保った状態でA層を形成することを可能とした。
 すなわち本発明の第2の硬質皮膜形成部材は、基材上に硬質皮膜を備えた硬質皮膜形成部材であって、前記硬質皮膜は、組成がTiCrAlSi(B)からなり、前記a、b、c、d、e、u、v、wが原子比であるときに、0.05≦a、0.05≦b、0.2≦a+b≦0.55、0.4≦c≦0.7、0.02≦d≦0.2、0≦e≦0.1、0≦u≦0.1、0≦v≦0.3、a+b+c+d+e=1、u+v+w=1、を満足するA層と、組成がTiCrAl(B)からなり、前記f、g、h、x、y、zが原子比であるときに、0≦f、0.05≦g、0.25≦f+g≦0.6、0.4≦h≦0.75、0≦x≦0.1、0≦y≦0.3、f+g+h=1、x+y+z=1、を満足するB層とを備え、厚さが0.5μm以下の中間層を介してまたは中間層を介さずに前記B層の上に前記A層が積層され、前記A層の厚さが0.5~5.0μmであり、前記B層の厚さが0.05~3.0μmであることを特徴とする。 
 このような構成によれば、A層およびB層の各層において所定の成分組成とすることで、A層においては、高耐酸化性、高硬度であり、耐摩耗性に優れる皮膜となり、B層においては、高靭性であり、かつ耐酸化性に優れる皮膜となる。そして、所定厚さのB層の上に所定厚さのA層を備えることで、皮膜の硬度が高くなり、耐摩耗性が向上する。
 また、厚さが0.5μm以下の中間層を備える場合には、硬質皮膜の結晶整合性が高まるとともに、A層とB層との密着性が向上し、耐摩耗性がさらに向上する。
 また、本発明の第2の硬質皮膜形成部材は、前記A層と前記B層との間に、厚さが0.5μm以下の中間層を備え、前記中間層は、前記A層と同じ組成からなる層と、前記B層と同じ組成からなる層が交互に積層されていることが好ましい。 
 このような構成によれば、厚さが0.5μm以下の中間層を備える場合において、2種類の層として、A層およびB層と同じ組成からなる層を用いることで、中間層の形成が容易となる。
 また、本発明の第2の硬質皮膜形成部材は、前記硬質皮膜をθ-2θ法のX線回折にて測定したときの(200)面からの回折線の積分強度I(200)が、(111)面からの回折線の積分強度I(111)の2倍以上であることが好ましい。また、前記硬質皮膜をθ-2θ法のX線回折にて測定したときの(200)面からの回折線の半値幅が1°以上であることが好ましい。
 これらのような構成によれば、皮膜の耐摩耗性がさらに向上する。
 本発明の第2の硬質皮膜形成部材における硬質皮膜の形成方法は、前記硬質皮膜をアークイオンプレーティング法またはスパッタリング法で形成することを特徴とする。また、前記したように、回折線の積分強度の関係を規定する場合には、前記A層、前記B層をアークイオンプレーティング法またはスパッタリング法で形成するときに、前記中間層を形成する場合には前記A層、前記B層および前記中間層をアークイオンプレーティング法またはスパッタリング法で形成するときに、前記基材に印加するバイアス電圧を絶対値が70V以上の負の電圧とする。また半値幅を所定の値とする場合には、前記A層をアークイオンプレーティング法またはスパッタリング法で形成するときに、前記基材に印加するバイアス電圧を絶対値が130V以上の負の電圧とする。
 皮膜をアークイオンプレーティング法またはスパッタリング法で形成することで、皮膜の構造を正確に制御することができる。また、A層、B層および、中間層を形成する場合には中間層を成膜する時に基材に印加するバイアス電圧を絶対値が70V以上の負の電圧とすることで、皮膜をθ-2θ法のX線回折にて測定したときの(200)面からの回折線の積分強度I(200)が、(111)面からの回折線の積分強度I(111)の2倍以上となる。また、A層を成膜する時に基材に印加するバイアス電圧を絶対値が130V以上の負の電圧とすることで、皮膜をθ-2θ法のX線回折にて測定したときの(200)面からの回折線の半値幅が1°以上となる。
 本発明に係る第1、第2の硬質皮膜形成部材は、所定の組成および構造を有する硬質皮膜を備えているため、硬度が高く、耐摩耗性に優れたものとなる。
 また、第1、第2の硬質皮膜形成部材における硬質皮膜の形成方法によれば、硬度が高く、耐摩耗性に優れた硬質皮膜を基材上に形成することができる。
本発明に係る第1の硬質皮膜形成部材を示す断面図である。 第1の硬質被膜形成部材における硬質皮膜をθ-2θ法のX線回折にて測定したときのX線回折(XRD)図形である。 成膜を行うための複合成膜装置の概略図である。 (a)、(b)本発明に係る第2の硬質皮膜形成部材を示す断面図である。 第2の硬質被膜形成部材における硬質皮膜をθ-2θ法のX線回折にて測定したときのX線回折(XRD)図形である。
 次に、図面を参照して本発明に係る硬質皮膜形成部材および硬質皮膜の形成方法について詳細に説明する。
≪第1の硬質皮膜形成部材≫
 図1に示すように、本発明に係る第1の硬質皮膜形成部材10は、基材1上に硬質皮膜(以下、適宜、皮膜という)4を備えたものである。この皮膜4は、所定の元素を所定量含有するA層2と、所定の元素を所定量含有するB層3とを備える。そして、A層2とB層3が交互に積層され、A層2とB層3の1組の積層構造を1単位としたときに、この1単位の厚さ(積層周期)が10~50nmであり、かつ皮膜4の膜厚が1~5μmとして構成したものである。本実施形態では、基材1上に最初にB層3が形成され、このB層3の上にA層2が形成されて、複数の単位を形成している。また、硬質皮膜4のB層3と基材1との間に下地層(図示省略)を備えていてもよい。なお、「基材1上」とは、基材1の片面や両面、あるいは表面全体等をいい、工具の種類に応じて被覆されている部位は異なる。
 以下、具体的に説明する。
<基材>
 基材1としては、超硬合金、金属炭化物を有する鉄基合金、サーメット、高速度工具鋼等が挙げられる。しかし、基材1としては、これらに限定されるものではなく、チップ、ドリル、エンドミル等の切削工具や、プレス、鍛造金型、成型用金型、打ち抜きパンチ等の治工具等の部材に適用できるものであれば、どのようなものでもよい。
<A層>
 A層2は、組成がTiCrAlSi(B)からなり、前記a、b、c、d、e、u、v、wが原子比であるときに、「0.05≦a」(金属元素中、以下同じ)、「0.05≦b」、「0.2≦a+b≦0.55」、「0.4≦c≦0.7」、「0.02≦d≦0.2」、「0≦e≦0.1」、「0≦u≦0.1」、「0≦v≦0.3」、「a+b+c+d+e=1」、「u+v+w=1」を満足する層である。このA層2は、高耐酸化性、高硬度であり、耐摩耗性に優れる皮膜である。
[Ti:a(0.05≦a、0.2≦a+b≦0.55、a+b+c+d+e=1)]
[Cr:b(0.05≦b、0.2≦a+b≦0.55、a+b+c+d+e=1)]
 TiおよびCrは、A層2の結晶構造を高硬度相に保つために、添加する元素である。この効果を発揮するには、TiとCrを合計で、原子比で0.2以上添加する必要がある。一方、Al、Si、Yの添加量を確保するために、TiとCrの合計が0.55以下である必要がある。また、異なる格子定数の窒化物(例えば、TiN:0.424nm、CrN:0.414nm、AlN:0.412nm)を組合せると硬さが上昇するが、この効果を発揮させるには、Ti量およびCr量は、原子比で各々0.05以上であることが必要である。したがって、Tiの原子比a、および、Crの原子比bは、0.05≦a、0.05≦b、かつ、0.2≦a+b≦0.55とする。より好適な範囲は、0.2≦a+b≦0.5である。 
[Al:c(0.4≦c≦0.7、a+b+c+d+e=1)] 
 Alは、A層2の耐酸化性を向上させる元素である。A層2に高い耐酸化性を付与するためには、Alを原子比で0.4以上添加する必要がある。一方、0.7を超えると、A層2が軟質化し、耐摩耗性が低下する。したがって、Alの原子比cは、0.4≦c≦0.7とする。より好適な範囲は、0.45≦c≦0.6である。
[Si:d(0.02≦d≦0.2、a+b+c+d+e=1)]
 Siは、A層2の耐酸化性を向上させる元素である。A層2に高い耐酸化性を付与するためには、Siを原子比で0.02以上添加する必要がある。一方、0.2を超えると、A層2が軟質化し、耐摩耗性が低下する。したがって、Siの原子比dは、0.02≦d≦0.2とする。より好適な範囲は、0.05≦d≦0.15である。
[Y:e(0≦e≦0.1、a+b+c+d+e=1)] 
 Yは、耐酸化性を更に高める場合に添加する元素である。ただし、原子比で0.1を超えるとA層2が軟質化し、耐摩耗性が低下する。したがって、Yの原子比eは、0≦e≦0.1とする。より好適な範囲は、0.02≦e≦0.05である。 
[B:u、C:v、N:w(0≦u≦0.1、0≦v≦0.3、u+v+w=1)] 
 BおよびCは、添加によりA層2を高硬度化させることができる。ただし、Bが原子比で0.1を超えると、A層2が非晶質化し、硬さが低下する。また、Cが原子比で0.3を超えると、A層2中に遊離Cが生じA層2が軟質化し、かつ耐酸化性が低下する。したがって、B、Cは、原子比で、各々0.1、0.3以下添加しても良い。Nは、金属元素と結合して、本発明における皮膜4の骨格をなす窒化物を形成する役割を果たすことから0.6以上は必要である。 
 前記のとおり、Ti、Cr、Al、Si、Nは必須の成分であり、Y、B、Cは任意の成分であることから、A層2の組成に関する組み合わせは、TiCrAlSiY(BCN)、TiCrAlSi(BCN)、TiCrAlSiY(CN)、TiCrAlSiY(BN)、TiCrAlSi(CN)、TiCrAlSi(BN)、TiCrAlSiYN、TiCrAlSiN等が挙げられる。
<B層> 
 B層3は、組成がTiCrAl(B)からなり、前記f、g、h、x、y、zが原子比であるときに、「0≦f」、「0.05≦g」、「0.25≦f+g≦0.6」、「0.4≦h≦0.75」、「0≦x≦0.1」、「0≦y≦0.3」、「f+g+h=1」、「x+y+z=1」を満足する層である。このB層3は、高靭性であり、かつ耐酸化性に優れる皮膜である。 
[Ti:f(0≦f、0.25≦f+g≦0.6、f+g+h=1)]
 Tiは、B層3の靱性を確保するために、Crとともに添加する元素である。この効果を発揮するには、TiとCrを合計で、原子比で0.25以上添加する必要がある。一方、合計で0.6を超えると相対的にAlが少なくなり耐酸化性が低下する。したがって、0.25≦f+g≦0.6とする。より好適な範囲は、0.3≦f+g≦0.5である。なお、B層3は、A層2ほど高硬度化させる必要が無いことから、Tiは0であっても良い。Tiを添加せずにCrのみを添加した場合、すなわちB層がCrAl(B)の場合、Tiを含む場合と比べて硬さは変わらないが、CrはTiに比べて耐酸化性が良いことから、ドライの高速切削では耐摩耗性が向上する。
[Cr:g(0.05≦g、0.25≦f+g≦0.6、f+g+h=1)]
 Crは、B層3の耐酸化性および靱性を確保するために添加する元素である。耐酸化性確保の効果を発揮するには、原子比で0.05以上添加する必要がある。また、靱性確保の効果を発揮するには、TiとCrを合計で、原子比で0.25以上添加する必要がある。一方、合計で0.6を超えると相対的にAlが少なくなり耐酸化性が低下する。したって、Crの原子比gは、0.05≦g、かつ、0.25≦f+g≦0.6とする。より好適な範囲は、0.3≦f+g≦0.5である。
[Al:h(0.4≦h≦0.75、f+g+h=1)]
 B層3に関しても一定の耐酸化性を付与するために、Alを原子比で0.4以上添加することが必要である。一方、0.75を超えると、B層3が軟質化し、耐摩耗性が低下する。したがって、Alの原子比hは、0.4≦h≦0.75とする。より好適な範囲は、0.5≦h≦0.7である。 
[B:x、C:y、N:z(0≦x≦0.1、0≦y≦0.3、x+y+z=1)] 
 BおよびCは、添加によりB層3を高硬度化させることができる。ただし、Bが原子比で0.1を超えると、B層3が非晶質化し、硬さが低下する。また、Cが原子比で0.3を超えると、B層3中に遊離Cが生じB層3が軟質化し、かつ耐酸化性が低下する。したがって、B、Cは、原子比で、各々0.1、0.3以下添加しても良い。Nは、金属元素と結合して、本発明における皮膜4の骨格をなす窒化物を形成する役割を果たすことから0.6以上は必要である。 
 前記のとおり、Cr、Al、Nは必須の成分であり、Ti、B、Cは任意の成分であることから、B層3の組成に関する組み合わせは、TiCrAl(BCN)、CrAl(BCN)、TiCrAl(CN)、TiCrAl(BN)、CrAl(CN)、CrAl(BN)、TiCrAlN、CrAlN等が挙げられる。
<積層構造>
[1単位の厚さ:10~50nm]
 1層のA層2と、1層のB層3の積層構造である1単位の厚さ(すなわち積層周期)が10~50nmであるときに、皮膜4の硬さが大きくなり耐摩耗性が向上する。前記のとおり、A層2およびB層3の組成を規定した場合であっても、1単位の厚さが10nm未満、または、50nmを超えると、皮膜4の耐摩耗性が向上しない。したがって、1単位の厚さは、10~50nmとする。より好ましくは、20~40nmである。なお、1単位(積層周期)とは、例えばA層2と、このA層2の上に密着して形成されたB層3との1組の他、このA層2の下に密着して形成されたB層3との1組のこともいう。したがって、A層2の上下のいずれのB層3との組み合わせでも、1単位の厚さは10~50nmとする。
[皮膜の膜厚:1~5μm]
 皮膜4の膜厚(すなわち、総膜厚)については、1μm未満では耐摩耗性の向上効果が小さい。一方、5μmを超えると、PVD(Physical Vapor Deposition(物理気相成長または物理蒸着))法で成膜された皮膜特有の残留圧縮応力により、基材1から皮膜4が剥離する。したがって、皮膜4の膜厚は、1~5μmとする。
[その他]
 A層2とB層3の膜厚比は、ほぼ1:1を目安とするが、1:5~5:1程度まで変化しても硬度や耐摩耗性等の性能にほとんど変化は無い。ただし、1:5~5:1の範囲を超えると、性能が低下しやすくなる。したがって、A層2とB層3の膜厚比は、1:5~5:1が好ましい。さらに好ましくは、1:3~3:1である。また、ここでは、基材1上の第一層、すなわち、基材1に接着する層はB層3とし、B層3の上にA層2が積層されたものとしているが、A層2とB層3との積層の順番は特に規定されるものではない。しかしながら、基材1上の第一層は、靱性ならびに密着性に優れるB層3である方が好ましい。なお、A層2とB層3の数は、同じであっても異なっていてもよい。 
<皮膜の優先配向および回折線の半値幅>
 第1の硬質皮膜形成部材10は、硬質皮膜4をθ-2θ法のX線回折にて測定したときの(200)面からの回折線の積分強度I(200)が、(111)面からの回折線の積分強度I(111)の2倍以上(すなわち、I(111)×2≦I(200))であることが好ましい。また、硬質皮膜形成部材10は、硬質皮膜4をθ-2θ法のX線回折にて測定したときの(200)面からの回折線の半値幅(FWHM:Full Width Half Maximum)が0.7°以上であることが好ましい。
 これらの制御については、後記するように、皮膜4の形成の際に基材1に印加するバイアス電圧を絶対値が130V以上の負の電圧とすることにより行なうことができる。すなわちバイアス電圧を-130V以下とすることで、皮膜4をθ-2θ法のX線回折にて測定したときの回折線の積分強度を前記の関係とすることができ、また、回折線の半値幅を前記の値とすることができる。
[優先配向(積分強度の関係):I(111)×2≦I(200)]
 回折線の強度比、すなわち優先配向は成膜時に基材1に印加するバイアス電圧に依存する。バイアス電圧が増加するに伴い、(200)配向が優勢となるが、特に耐摩耗性は(200)面が優れる。そして、その指標となる強度比でその関係が(111)の強度の2倍以上になるときに、耐摩耗性が向上する。より好適には3倍以上である。
[半値幅:0.7°以上]
 基材1に印加するバイアス電圧の値により、配向だけではなく皮膜4の結晶状態も変化する。具体的には皮膜4の結晶粒径が変化し、その指標として、より強く観察される(200)面回折線の半値幅を使用することが出来る。回折線の半値幅が0.7°以上で耐摩耗性がより向上する。より好適には0.9°以上である。回折線の半値幅は、バイアス電圧が-130V以下の値の領域で増加する傾向があるが、その増加は2°付近で飽和する。
 X線回折による測定は、一例として、以下の条件で行なうことができる。
 使用装置:理学電気製RINT-ULTIMA PC、測定方法:θ-2θ、X線源:Cukα(グラファイトモノクロメータ使用)、励起電圧-電流:40kV-40mA、発散スリット:1°、発散縦制限スリット:10.00mm、散乱スリット:1°、受光スリット:0.15mm、モノクロ受光スリット:なし
 そして、基材1に印加するバイアス電圧を-150Vとして、A層2が(Ti0.2Cr0.2Al0.55Si0.03Y0.02)N、B層3が(Ti0.25Cr0.1Al0.65)Nからなる多層膜(各15nm、1単位の厚さは30nm、総膜厚は3μm)を形成した場合には、図2に示すX線回折(XRD)図形となる。各回折線の積分強度および半値幅は、このXRD図形(生データ)から、例えば表計算ソフトIgorProを用いて算出することができる。具体的には、当該ソフトのMulti-peak fit packageを用いて、ピーク形状としてVoigt関数を用いてフィッティングを行うことで各値を算出する。フィッティング時には生データには基材の回折線も検出されることから、基材成分と皮膜成分との回折成分の分離も実施している(基材成分は、図中、太線(符号Mの部分)で示している)。
≪第1の硬質皮膜形成部材における硬質皮膜の形成方法≫
 硬質皮膜4は、アークイオンプレーティング法またはスパッタリング法で形成する。
 皮膜の形成方法としては、A層2、B層3のように多くの元素を含有する層の組成を正確に制御するために、固体の蒸発源を使用したアークイオンプレーティング(AIP)法あるいはスパッタリング法が適している。中でもAIP法は、ターゲット原子の蒸発時のイオン化率が高く、基材に印加したバイアス電圧により緻密な皮膜を形成することができることから特に推奨される。
 ただし、皮膜の優先配向および回折線の半値幅を前記の条件とする場合には、皮膜をアークイオンプレーティング法またはスパッタリング法で形成するときに、基材に印加するバイアス電圧を絶対値が130V以上の負の電圧(バイアス電圧を-130V以下)とする必要がある。バイアス電圧を-130V以下として成膜することで、前記したように、皮膜をθ-2θ法のX線回折にて測定したときに、積分強度比がI(111)×2≦I(200)、半値幅:0.7°以上となる。より好ましくは-140V以下である。なお、バイアス電圧が大きな負の値となりすぎると、成膜中の基材の加熱や成膜レートの低下が生じることから、下限値は-250Vが好ましい。
 すなわち、基材1上に皮膜4を形成して第1の硬質皮膜形成部材10を製造するには、まず所定サイズの基材1を必要に応じて超音波脱脂洗浄して準備する(基材準備工程)。次に、この基材1を成膜装置に導入した後、基材1を500~550℃の所定温度に保持し(基材加熱工程)、アークイオンプレーティングまたはスパッタリング法で基材上に皮膜4を形成する(皮膜形成工程)。これにより、所定の組成、構造を有する第1の硬質皮膜形成部材10を製造することができる。
 次に、基材1への成膜方法の一例として、複合成膜装置を使用した場合について、図3を参照して説明するが、成膜方法としては、これに限定されるものではない。
 図3に示すように、複合成膜装置100は、真空排気する排気口11と、成膜ガスおよび希ガスを供給するガス供給口12とを有するチャンバー13と、アーク式蒸発源14に接続されたアーク電源15と、スパッタ蒸発源16に接続されたスパッタ電源17と、成膜対象である被処理体(図示省略)を支持する基材ステージ18上の支持台19と、この支持台19と前記チャンバー13との間で支持台19を通して被処理体に負のバイアス電圧を印加するバイアス電源20とを備えている。また、その他、ヒータ21、放電用直流電源42、フィラメント加熱用交流電源23等を備えている。
 なお、アーク式蒸発源14を用いることにより、アークイオンプレーティング(AIP)蒸発、スパッタ蒸発源16を用いることにより、アンバランスド・マグネトロン・スパッタリング(UBM)蒸発を行うことができる。
 まず、複合成膜装置100のカソード(図示省略)に、各種合金、あるいは金属のターゲット(図示省略)を取り付け、さらに、回転する基材ステージ18上の支持台19上に被処理体(図示省略)として基材1を取り付け、チャンバー13内を真空引き(5×10Pa以下に排気)し、真空状態にする。その後、チャンバー13内にあるヒータ21で被処理体の温度を約500℃に加熱し、フィラメントからの熱電子放出によるイオン源により、Arイオンによるエッチングを5分間実施する。その後、アーク式蒸発源14により、φ100mmのターゲットを用い、アーク電流150Aとし、全圧力4PaのN雰囲気にて、また炭素を含有する場合には、Nガスに炭素を含有するガスを加えた雰囲気中にてアークイオンプレーティングを実施する。B(ホウ素)を含有する場合にはターゲット中にBを含有させる。
 また、複数の蒸発源に異なる組成のターゲットを取り付け、回転する支持台19上に被処理体を載せて、成膜中に回転させることによって積層膜を形成することができる。支持台19上の被処理体は基材ステージ18の回転に伴い、異なる組成のターゲットを取り付けた蒸発源の前を交互に通過するが、そのときに各々の蒸発源のターゲット組成に対応した皮膜が交互に形成されることで、積層膜を形成することが可能である。また、A層2、B層3の各々の厚み、積層構造の1単位の厚さ、単位数は、各蒸発源への投入電力(蒸発量)や、支持台19の回転速度、回転数にて制御する。なお、支持台19の回転速度が速い方が1層あたりの厚みは薄くなり、1単位の厚さは薄くなる(すなわち積層周期は短くなる)。
≪第2の硬質皮膜形成部材≫
 図4(a)に示すように、本発明に係る第2の硬質皮膜形成部材10aは、基材1a上に硬質皮膜(以下、適宜、皮膜という)4aを備えたものである。この皮膜4aは、所定の元素を所定量含有するA層2aと、所定の元素を所定量含有するB層3aとを備える。そして、B層3aの上にA層2aが積層され、A層2aの厚さを0.5~5.0μm、B層3aの厚さを0.05~3.0μmとして構成したものである。また、図4(b)に示すように、A層2aとB層3aとの間に中間層5を備える硬質皮膜形成部材10a´としてもよい。また、硬質皮膜4a´のB層3aと基材1aとの間に下地層(図示省略)を備えていてもよい。なお、「基材1a上」とは、基材1aの片面や両面、あるいは表面全体等をいい、工具の種類に応じて被覆されている部位は異なる。
 以下、具体的に説明する。
<基材、A層及びB層>
 基材1a、A層2a及びB層3aは、それぞれ第1の硬質皮膜形成部材10における基材1、A層2及びB層3と同じである。
<積層構造>
[B層の上にA層が積層]
 基材1a上の第一層は、靱性ならびに密着性に優れるB層3aとし、高硬度であり、耐摩耗性に優れるA層2aを最表層とする。さらに、結晶構造がA層2aと同じ立方晶構造であるB層3aを下地として用い、B層3aの結晶配向性を(200)配向に制御することで、B層3aとA層2aの界面での整合性を利用して、B層3aの結晶配向性を保った状態でA層2aを形成することができる。これにより、切削性能をさらに向上させることができる。
[A層の厚さ:0.5~5.0μm]
 切削面であるA層2aは、厚さが0.5μm未満では切削寿命が短くなるため、0.5μm以上とする。好ましくは0.75μm以上である。一方、A層2aの厚さが5.0μmを超えるとA層2aの内部応力が大きくなり、A層2aの破壊(チッピング)が発生することから、5.0μm以下とする。好ましくは3.0μm以下である。
[B層の厚さ:0.05~3.0μm]
 下地層として用いるB層3aは、厚さが0.05μm未満では基材1aとの密着性の確保や配向性の制御が困難となる。また、皮膜にチッピングが発生する。そのため、0.05μm以上とする。好ましくは0.1μm以上である。一方、B層3aの厚さが3.0μmを超えると、結晶の優先配向性が(200)から、より安定な(111)に変化してしまうため、3.0μm以下とする。好ましくは2.5μm以下である。
<中間層>
 図4(b)に示すように、A層2aとB層3aとの間に厚さが0.5μm以下の中間層5を備える硬質皮膜形成部材10a´としてもよい。この2層膜は中間層5が無い場合でも十分に切削時の耐摩耗性が向上するが、A層2aとB層3aとの界面に厚さが0.5μm以下の中間層5を設けることで、硬質皮膜4a´の結晶整合性を高めるとともに、A層2aとB層3aとの密着性を向上させることができ、結果としてより一層切削時の耐摩耗性が向上する。ここで、中間層5はA層2aよりも硬さが低いことから、中間層5の厚さが0.5μmを超えると中間層5がクラック発生の基点となり、結果としてチッピングが発生してしまう。このため、中間層5を設ける場合には、中間層5の厚さは0.5μm以下とする。好ましくは0.4μm以下、さらに好ましくは0.3μm以下である。一方、中間層5が薄すぎる場合には中間層5の効果が出ないため、0.05μm以上であることが好ましい。より好ましくは0.07μm以上である。 
 中間層5は単層であってもよいが、2層以上からなる皮膜であってもよい。また、図4(b)に示すように、中間層5は、A層2aと同じ組成からなるAa層22と、B層3aと同じ組成からなるBb層33が交互に積層されていることが好ましい。中間層5の各々の層の組成については、A層2aやB層3aと異なるものでも良いが、結晶粒サイズの整合性や成膜時のターゲットの交換の手間を省く観点から同一の組成のものを用いることが好ましい。さらには、異なる組成の2種類の層が交互に積層され、前記2種類の層の1組の積層構造を1単位としたときに、この1単位の厚さが0.005~0.04μmであり、かつ2単位以上の皮膜から構成されていることが好ましい。中間層5をこのような構成とすることで、皮膜4a´の耐摩耗性がさらに向上する。また、2単位以上とすることで、A層2aとB層3aとの密着性がさらに向上する。
 なお、ここでは、Aa層22が最初にB層3a上に形成されているが、B層3a上に最初にBb層33が形成されてもよい。また、Aa層22とBb層33の数は、同じであっても異なっていてもよい。また、1単位(積層周期)とは、例えばAa層22と、このAa層22の上に密着して形成されたBb層33との1組の他、このAa層22の下に密着して形成されたBb層33との1組のこともいう。したがって、Aa層22の上下のいずれのBb層33との組み合わせでも、1単位の厚さは0.005~0.04μmとすることが好ましい。また中間層5の構成としてAa層22、Bb層33の膜厚比についてもAa層22、Bb層33が同一の膜厚でも良いが、A層2aに近づくにつれてAa層22の厚さがBb層33の厚さよりも厚くなる構造とすることでさらに密着性を上げることも出来る。また、中間層5についてはB層3a側からA層2a側に行くに従ってA層2aの組成に近づけて行く傾斜組成を持った単層膜としても良い。
<皮膜の優先配向および回折線の半値幅>
 第2の硬質皮膜形成部材10a(10a´)は、硬質皮膜4a(4a´)をθ-2θ法のX線回折にて測定したときの(200)面からの回折線の積分強度I(200)が、(111)面からの回折線の積分強度I(111)の2倍以上(すなわち、I(111)×2≦I(200))であることが好ましい。また、硬質皮膜形成部材10a(10a´)は、硬質皮膜4a(4a´)をθ-2θ法のX線回折にて測定したときの(200)面からの回折線の半値幅(FWHM:Full Width Half Maximum)が1°以上であることが好ましい。
 上記の皮膜4a(4a´)の優先配向は、後記するように、A層2a、B層3aおよび中間層5の形成の際に基材1aに印加するバイアス電圧を絶対値が70V以上の負の電圧にすることにより達成できる。また、上記の回折線の半値幅は、A層2aの形成の際に印加するバイアス電圧を絶対値が130V以上の負の電圧とすることにより達成することができる。すなわちバイアス電圧を-70V以下とすることで、硬質皮膜4a(4a´)をθ-2θ法のX線回折にて測定したときの回折線の積分強度を前記の関係とすることができる。また、バイアス電圧を-130V以下とすることで、硬質皮膜4a(4a´)をθ-2θ法のX線回折にて測定したときの回折線の半値幅を前記の値とすることができる。
[優先配向(積分強度の関係):I(111)×2≦I(200)]
 立方晶の優先配向性を(200)面配向とすることで切削特性が向上する。表面層であるA層2aの優先配向性は下地層であるB層3aの優先配向性によって制御でき、B層3aの優先配向性はB層3aの組成とB層3a形成時に基材1aに印加するバイアス電圧の組み合わせによって立方晶単層構造かつ本来は安定である(111)配向ではなく(200)配向とすることができる。配向性はB層3a形成時に基材1aに印加するバイアス電圧によって制御することができる。負のバイアス電圧(以下、適宜、負バイアスという)の絶対値が増加するに伴い、(111)面配向に対し(200)面配向となる。さらにB層3aの膜厚についても厚くなると安定な(111)配向になりやすくなるために3.0μm以下にすることも重要である。一方で、A層2aについてもB層3aと整合性を持たせるためには六方晶と立方晶構造の混合層ではなく、立方晶単独の構造とする必要がある。これら構造の変化は成膜時に基材1aに印加するバイアス電圧により制御することができる。なお、負バイアスの絶対値が低い場合には混合層が析出してしまう。また、B層3aの結晶配向を制御することでA層2aの結晶配向も制御でき、2層膜の(200)配向性の評価として、2層膜のX線回折結果から(200)回折線の積分強度が、(111)回折線の積分強度に対して2倍以上になるときに耐摩耗性が向上する。より好ましくは2.5倍以上である。
[半値幅:1°以上]
 A層2aについては立方晶単層構造とすると共に、結晶粒サイズが小さくなるほど耐摩耗性が向上する。A層2aの結晶粒サイズは、基材1aに印加するバイアスの値により制御することができる。負バイアスの絶対値が大きいほど、結晶粒が微細化する。具体的な皮膜の結晶粒径の指標として、X線回折結果から観察される(200)面回折線の半値幅を使用することが出来る。回折線の半値幅が1.0°以上となれば結晶粒の微細化が十分に進み、結果として耐摩耗性が向上する。より好ましくは1.2°以上である。回折線の半値幅は、バイアス電圧が-130V以下の値の領域で増加する傾向があるが、その増加は2.5°付近で飽和する。
 尚、X線回折による測定は、第1の硬質皮膜形成部材10におけるX線回折と同様にして行うことができる。
 そして、A層2a形成時に基材1aに印加するバイアス電圧を-150Vとして、A層2aが(Ti0.2Cr0.2Al0.55Si0.05)N、B層3a形成時に基材1aに印加するバイアス電圧を-100Vとして、B層3aが(Ti0.2Cr0.2Al0.6)Nからなる2層膜(各1.5μm)を形成した場合には、図5に示すX線回折(XRD)図形となる。各回折線の積分強度および半値幅は、このXRD図形(生データ)から、例えば表計算ソフトIgorProを用いて算出することができる。具体的には、当該ソフトのMulti-peak fit packageを用いて、ピーク形状としてVoigt関数を用いてフィッティングを行うことで各値を算出する。フィッティング時には生データには基材の回折線も検出されることから、基材成分と皮膜成分との回折成分の分離も実施している(基材成分は、図中、太線(符号Mの部分)で示している)。
≪第2の硬質皮膜形成部材における硬質皮膜の形成方法≫
 硬質皮膜4a(4a´)は、第1の硬質皮膜形成部材10における硬質皮膜4と同様にして形成することができる。
 ただし、皮膜4a(4a´)の優先配向については、B層3aの配向性、A層2aの結晶構造の両者を所望の条件に制御するめには、A層2a、B層3a、および、中間層5を設ける場合には中間層5の成膜時に、基材に印加するバイアス電圧の絶対値を70V以上の負の電圧(バイアス電圧を-70V以下)とする必要がある。バイアス電圧を-70V以下として成膜することで、前記したように、皮膜4をθ-2θ法のX線回折にて測定したときに、積分強度比がI(111)×2≦I(200)となる。より好ましくは-90V以下である。なお、バイアス電圧が大きな負の値となりすぎると、成膜中の基材1aの加熱や成膜レートの低下が生じることから、下限値は-300Vが好ましい。
 回折線の半値幅については、A層2aを設ける場合には中間層5の成膜時に、基材1aに印加するバイアス電圧の絶対値を130V以上の負の電圧(バイアス電圧を-130V以下)とする必要がある。バイアス電圧を-130V以下として成膜することで、前記したように、皮膜4aをθ-2θ法のX線回折にて測定したときに、半値幅:1.0°以上となる。より好ましくは-140V以下である。なお、バイアス電圧が大きな負の値となりすぎると、成膜中の基材1aの加熱や成膜レートの低下が生じることから、下限値は-300Vが好ましい。
 すなわち、基材1a上に皮膜4aを形成して第2の硬質皮膜形成部材10a(10a´)を製造するには、まず所定サイズの基材1aを必要に応じて超音波脱脂洗浄して準備する(基材準備工程)。次に、この基材1aを成膜装置に導入した後、基材1aを500~550℃の所定温度に保持し(基材加熱工程)、アークイオンプレーティングまたはスパッタリング法で基材上に皮膜4a(4a´)を形成する(皮膜形成工程)。これにより、所定の組成、構造を有する第2の硬質皮膜形成部材10a(10a´)を製造することができる。
 尚、成膜装置には第1の硬質皮膜形成部材の製造に用いたものと同じものを使用でき、同様の操作を行う。但し、A層2a、B層3a、中間層5、中間層5を構成する層22,33の各々の厚み、中間層5の積層構造の1単位の厚さ、単位数は、各蒸発源への投入電力(蒸発量)や、支持台19の回転速度、回転数にて制御する。
 以上説明したように、第1の硬質皮膜形成部材10では、所定の成分組成を有するA層2とB層3とを積層構造とするとともに、1単位の厚さを所定範囲とすることで、硬質皮膜4の耐摩耗性を向上させることができる。また、第2の硬質皮膜形成部材10a(10´)では、所定の成分組成を有するB層3aの上に所定の成分組成を有するA層2aを形成するとともに、A層2aおよびB層3aの厚さを所定範囲とすることで、硬質皮膜4a(4a´)の耐摩耗性を向上させることができる。さらに、A層2aとB層3aとの間に、所定の厚さの中間層5を設けることで、硬質皮膜4a(4a´)の耐摩耗性をより向上させることができる。
 従って、このような耐摩耗性に優れる硬質皮膜をコーティングした第1、第2の硬質皮膜形成部材としては、一例として、チップ、ドリル、エンドミル等の切削工具や、プレス、鍛造金型、成型用金型、打ち抜きパンチ等の治工具が挙げられる。特に、ドライでの切削加工に用いる工具に適している。
 以下、本発明に係る実施例について説明する。本発明は以下の実施例に限定されるものでない。
 本実施例においては、図3に示す複合成膜装置を用いて、皮膜を形成した。
≪実施例A:第1の硬質皮膜形成部材≫
[第1実施例]
 第1実施例では、成膜時のバイアス電圧を-150Vに固定し、積層構造の1単位の厚さ(積層周期)が30nmとなるように、各々組成の異なるA層、B層を形成し、硬さや切削性能に及ぼす皮膜組成の影響について検討した。
 まず、複合成膜装置のカソードに、各種合金、あるいは金属のターゲットを取り付け、さらに、エタノール中にて超音波脱脂洗浄した、切削工具(2枚刃超硬エンドミル、φ10mm)ならびに硬さ調査用の鏡面の超硬試験片(縦13mm×横13mm×厚さ5mm)を基材ステージ上の支持台上に取り付けた。そしてチャンバー内を真空引き(5×10-3Pa以下に排気)し、真空状態にした。次に、ヒータで被処理体の温度を500℃に加熱した後、フィラメントからの熱電子放出によるイオン源により、Arイオンによるエッチングを5分間実施した。その後、窒素ガスや、必要に応じて炭素を含有するガスを窒素ガスに加えた混合ガスを導入して全圧力4Paとし、アーク蒸発源(ターゲット径φ100mm)を放電電流150Aで運転して所定厚さの皮膜を形成した。
 なお、積層膜の形成については、A層およびB層の組成のターゲットを別々の蒸発源に取り付け、基材を搭載した基材ステージを装置内で回転させ、まずB層のターゲットのみ、前記した窒素ガス等の所定の雰囲気中で単独で短時間放電させ、基材にバイアス電圧を-150V印加し、所定厚さのB層を形成した。その後、A層のターゲットを放電させ、A層およびB層のターゲットを同時放電させ、基材にバイアス電圧を-150V印加しながら基材ステージを回転させることで、B層とA層とがこの順に積層した積層構造を有する皮膜(多層膜)を基材上に合計厚さ3μmとなるように形成した。また、A層の厚みは約15nm、B層の厚みは約15nmとし、1単位を30nmとした。A層、B層の各々の厚み、積層構造の1単位の厚さ、単位数は、支持台の回転速度、回転数にて制御した。
 成膜終了後、皮膜中の成分組成を測定すると共に、皮膜の硬さ、耐摩耗性について評価を行った。
<皮膜組成> 
 A層およびB層中の金属元素の成分組成を、EPMA(Electron Probe Micro Analyzer)により測定した。 
<硬さ>
 皮膜の硬さは、超硬エンドミルにおける皮膜のビッカース硬さを、マイクロビッカース硬度計において、荷重20mN、保持時間15秒の条件で調べることにより評価した。硬さが25GPa以上のものを良好、25GPa未満のものを不良とした。
<耐摩耗性>
 耐摩耗性は、以下の条件にて切削試験を実施し、一定距離経過後の境界部摩耗量(フランク摩耗量(摩耗幅))を測定することにより評価した。摩耗量(摩耗幅)が200μm未満のものを耐摩耗性が良好、200μmを超えるものを耐摩耗性が不良とした。
[切削試験条件] 
被削材:SKD61(HRC57) 
切削速度:400m/分 
深さ切込み:5mm 
径方向切込み:0.6mm 
送り:0.06mm/刃 
評価条件:100m切削後のフランク摩耗(境界部)
 これらの結果を表1、2に示す。なお、表中、本発明の範囲を満たさないものは、各層の組成に下線を引いて示す。ただし、必須の成分を含有しないものについては、下線で示していない。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 表1、2に示すように、No.1A~26Aは、皮膜(A層およびB層)の組成が本発明の範囲を満足しているため、硬さ、耐摩耗性が良好であった。
 一方、No.27A~49Aは、本発明の範囲を満足していないため、硬さ、耐摩耗性が不良であった。なお、No.50Aは、切削中に皮膜が基材から剥離した。具体的には、以下のとおりである。
 No.27Aは、A層においてAl量が下限値未満であった。No.28Aは、A層においてTiとCrの合計量が下限値未満であり、Al量が上限値を超えた。No.29Aは、A層においてSiを含有しなかった。No.30Aは、A層においてSi量が上限値を超えた。No.31Aは、A層においてTi、Crを含有せず、Al量が上限値を超えた。No.32Aは、A層においてCrを含有せず、Al量が上限値を超えた。No.33Aは、A層においてTiを含有せず、Al量が上限値を超えた。
 No.34Aは、A層においてTiとCrの合計量が下限値未満であった。No.35Aは、A層においてTiとCrの合計量が上限値を超え、Al量が下限値未満であった。No.36Aは、A層においてY量が上限値を超えた。No.37Aは、A層においてB量が上限値を超えた。No.38Aは、A層においてC量が上限値を超えた。No.39Aは、B層においてTiとCrの合計量が上限値を超え、Al量が下限値未満であった。No.40Aは、B層においてTiとCrの合計量が下限値未満であり、Al量が上限値を超えた。No.41A、42Aは、B層において、Crを含有しなかった。
 No.43Aは、A層においてTiとCrの合計量が上限値を超え、Cr、Alを含有しなかった。No.44Aは、B層においてTiとCrの合計量が上限値を超え、Cr、Alを含有しなかった。No.45Aは、B層においてTiとCrの合計量が上限値を超え、Alを含有しなかった。No.46Aは、A層においてCrを含有せず、Alが上限値を超え、B層においてTiとCrの合計量が上限値を超え、Cr、Alを含有しなかった。No.47Aは、A層においてTiを含有せず、Alが上限値を超え、B層においてTiとCrの合計量が上限値を超え、Alを含有しなかった。No.48Aは、B層においてB量が上限値を超えた。No.49Aは、B層においてC量が上限値を超えた。No.50Aは、B層においてSiを含有していた。そのため、密着性が低下した。
[第2実施例]
 第2実施例では、皮膜組成を一定とし、サンプルごとに1単位の厚さの異なる皮膜を形成し、硬さや切削性能に及ぼす1単位の厚さの影響について検討した。
 皮膜の形成は、第1実施例と同様の方法で行った(厚さ以外の条件は第1実施例と同様である)。この際、サンプルごとに1単位の厚さを変化させた。
 成膜終了後、皮膜中の成分組成を測定すると共に、皮膜の硬さ、耐摩耗性について評価を行った。成分組成の測定方法、硬さおよび耐摩耗性の評価方法は、前記第1実施例と同様である。なお、皮膜中の成分組成は、A層「(Ti0.2Cr0.15Al0.55Si0.1)N」、B層「(Ti0.2Cr0.2Al0.6)N」であった。
 これらの結果を表3に示す。なお、表中、本発明の範囲を満たさないものは、数値に下線を引いて示す。
Figure JPOXMLDOC01-appb-T000003
 表3に示すように、No.51A~55Aは、A層とB層の積層構造の1単位の厚さが本発明の範囲を満足しているため、硬さ、耐摩耗性が良好であった。一方、No.56Aは、1単位の厚さが下限値未満のため、硬さ、耐摩耗性が不良であった。No.57A、58Aは、1単位の厚さが上限値を超えるため、硬さ、耐摩耗性が不良であった。
[第3実施例]
 第3実施例では、皮膜組成および1単位の厚さを一定とし、皮膜形成時のバイアス電圧を変化させ、硬さや切削性能に及ぼす、X線回折による皮膜の優先配向および回折線の半値幅の影響について検討した。
 皮膜の形成は、第1実施例と同様の方法で行った。この際、サンプルごとにバイアス電圧を変化させた。なお、1単位の厚さは30nm、A層とB層の厚さの比率は1:1、総膜厚は3μmとした。
 成膜終了後、皮膜中の成分組成を測定すると共に、X線回折による皮膜の優先配向、回折線の半値幅を調べた。また、皮膜の硬さ、耐摩耗性について評価を行った。成分組成の測定方法、硬さおよび耐摩耗性の評価方法は、前記第1実施例と同様である。なお、成分組成は、A層「(Ti0.2Cr0.15Al0.55Si0.1)N」、B層「(Ti0.2Cr0.2Al0.6)N」であった。 
 皮膜の優先配向、回折線の半値幅は、皮膜をθ-2θ法のX線回折にて測定したときの(111)面および(200)面からの回折線の積分強度比(表中、(200)/(111)と記す)、および、皮膜をθ-2θ法のX線回折にて測定したときの(200)面からの回折線の半値幅を調べた。 
 X線回折の条件を以下に示す。 
[X線回折装置]
使用装置:理学電気製RINT-ULTIMA PC 
測定方法:θ-2θ 
X線源:Cukα(グラファイトモノクロメータ使用) 
励起電圧-電流:40kV-40mA 
発散スリット:1° 
発散縦制限スリット:10.00mm 
散乱スリット:1° 
受光スリット:0.15mm 
モノクロ受光スリット:なし
 そして、各サンプルについてXRD図形(生データ)から、表計算ソフトIgorProを用いて、生データの回折線についてフィッティングを行った後に各回折線の積分強度を求めた。具体的には、当該ソフトのMulti-peak fit Packageを用いて、ピーク形状としてVoigt関数を用いてフィッティングを行うことで値を算出した。
 これらの結果を表4に示す。なお、表中、本発明の好ましい範囲を満たさないものは、数値に下線を引いて示す。 
Figure JPOXMLDOC01-appb-T000004
 表4に示すように、No.61A~63Aは、バイアス電圧が本発明の好ましい上限値である-130V以下であるため、硬さ、耐摩耗性の向上効果が良好であった。
 一方、No.59A、60Aは、硬さ、耐摩耗性の向上効果は良好であったものの、バイアス電圧が本発明の好ましい上限値である-130Vを超えるため、No.61A~63Aに比べるとやや劣った。
≪実施例B:第2の硬質皮膜形成部材≫
[第1実施例]
 第1実施例では、B層を1.5μm成膜した後に、それぞれA層およびB層と同じ組成からなる2種類の層を積層した中間層を積層構造の1単位の厚さ(積層周期)が20nmとなるように固定して0.2μm成膜し、その上にA層を1.5μm成膜した。成膜時のバイアス電圧は、A層および中間層の成膜の際には-150V、B層の成膜の際には-100Vに固定して成膜した。このようにして、各々組成の異なるA、B層を形成し、硬さや切削性能に及ぼす皮膜組成の影響を検討した。なお、中間層は、A層と同一の組成の層と、B層と同一の組成の層を各々10nmとなるように、この順で積層することにより形成した。
 まず、複合成膜装置のカソードに、各種合金、あるいは金属のターゲットを取り付け、さらに、エタノール中にて超音波脱脂洗浄した、切削工具(2枚刃超硬エンドミル、φ10mm)ならびに硬さ調査用の鏡面の超硬試験片(縦13mm×横13mm×厚さ5mm)を基材ステージ上の支持台上に取り付けた。そしてチャンバー内を真空引き(5×10-3Pa以下に排気)し、真空状態にした。次に、ヒータで被処理体の温度を500℃に加熱した後、フィラメントからの熱電子放出によるイオン源により、Arイオンによるエッチングを5分間実施した。その後、窒素ガスや、必要に応じて炭素を含有するガスを窒素ガスに加えた混合ガスを導入して全圧力4Paとし、アーク蒸発源(ターゲット径φ100mm)を放電電流150Aで運転し、基板の回転速度を3rpmとして所定厚さの皮膜を形成した。
 なお、積層膜の形成については、A層およびB層の組成のターゲットを別々の蒸発源に取り付け、基材を搭載した基材ステージを装置内で回転させ、まずB層のターゲットのみ、前記した窒素ガス等の所定の雰囲気中で単独で放電させ、基材にバイアス電圧を-100V印加し、所定厚さのB層を形成した。その後、A層のターゲットを放電させ、A層およびB層のターゲットを所定の雰囲気中で同時放電させ、基材にバイアス電圧を-150V印加しながら基材ステージを回転させることで、A層と同一の組成の層と、B層と同一の組成の層からなる所定厚さの積層構造の中間層を形成した。その後、A層のターゲットのみ所定の雰囲気中で単独で放電させて、基材にバイアス電圧を-150V印加し、中間層の上に所定厚さのA層を形成した。A層、B層の各々の厚み、中間層の積層構造の1単位の厚さ、単位数は、支持台の回転速度、回転数にて制御した。
 成膜終了後、皮膜中の成分組成を測定すると共に、皮膜の硬さ、耐摩耗性について評価を行った。
 皮膜組成、硬さ、耐摩耗性及び切削試験条件は、実施例Aの第1実施例と同様である。
 これらの結果を表5、6に示す。なお、表中、本発明の範囲を満たさないものは、各層の組成に下線を引いて示す。ただし、必須の成分を含有しないものについては、下線で示していない。
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
 表5、6に示すように、No.1B~26Bは、皮膜(A層およびB層)の組成が本発明の範囲を満足しているため、硬さ、耐摩耗性が良好であった。
 一方、No.27B~49Bは、本発明の範囲を満足していないため、硬さおよび耐摩耗性のいずれか一つ以上が不良であった。なお、No.50Bは、チッピングの発生により、フランク摩耗量を測定することができなかった。具体的には、以下のとおりである。
 No.27Bは、A層においてAl量が下限値未満であった。No.28Bは、A層においてTiとCrの合計量が下限値未満であり、Al量が上限値を超えた。No.29Bは、A層においてSiを含有しなかった。No.30Bは、A層においてSi量が上限値を超えた。No.31Bは、A層においてTi、Crを含有せず、Al量が上限値を超えた。No.32Bは、A層においてCrを含有せず、Al量が上限値を超えた。No.33Bは、A層においてTiを含有せず、Al量が上限値を超えた。
 No.34Bは、A層においてTiとCrの合計量が下限値未満であった。No.35Bは、A層においてTiとCrの合計量が上限値を超え、Al量が下限値未満であった。No.36Bは、A層においてY量が上限値を超えた。No.37Bは、A層においてB量が上限値を超えた。No.38Bは、A層においてC量が上限値を超えた。No.39Bは、B層においてTiとCrの合計量が上限値を超え、Al量が下限値未満であった。No.40Bは、B層においてTiとCrの合計量が下限値未満であり、Al量が上限値を超えた。No.41B、42Bは、B層において、Crを含有しなかった。
 No.43Bは、A層においてTiとCrの合計量が上限値を超え、Cr、Alを含有しなかった。No.44Bは、B層においてTiとCrの合計量が上限値を超え、Cr、Alを含有しなかった。No.45Bは、B層においてTiとCrの合計量が上限値を超え、Alを含有しなかった。No.46Bは、A層においてCrを含有せず、Alが上限値を超え、B層においてTiとCrの合計量が上限値を超え、Cr、Alを含有しなかった。No.47Bは、A層においてTiを含有せず、Alが上限値を超え、B層においてTiとCrの合計量が上限値を超え、Alを含有しなかった。No.48Bは、B層においてB量が上限値を超えた。No.49Bは、B層においてC量が上限値を超えた。No.50Bは、B層においてSiを含有していた。そのため、チッピングが発生した。
[第2実施例]
 皮膜組成を一定とし、A層、B層の膜厚をそれぞれ1.5μmに固定し、中間層の厚さを変化させ、硬さや切削性能に及ぼす中間層の厚さの影響について検討した。
 皮膜の形成は、第1実施例と同様の方法で行った(中間層以外の条件は第1実施例と同様である)。なお、中間層は、A層と同一の組成の層と、B層と同一の組成の層をこの順で積層することにより形成した。また、中間層の各層の厚さの比率は1:1とし、1単位の厚さは、20nm、に固定した。なお、No.51Bは、中間層を設けていない。
 成膜終了後、皮膜中の成分組成を測定すると共に、皮膜の硬さ、耐摩耗性について評価を行った。成分組成の測定方法、硬さおよび耐摩耗性の評価方法は、前記第1実施例と同様である。なお、皮膜中の成分組成は、A層「(Ti0.2Cr0.15Al0.55Si0.1)N」、B層「(Ti0.2Cr0.2Al0.6)N」であった。
 これらの結果を表7に示す。なお、表中、本発明の範囲を満たさないものは、数値に下線を引いて示す。
Figure JPOXMLDOC01-appb-T000007
 表7に示すように、No.51B~55Bは、中間層の厚さが本発明の範囲を満足しているため、硬さ、耐摩耗性が良好であった。一方、No.56Bは、中間層の厚さが上限値を超えるため、チッピングが発生し、フランク摩耗量を測定することができなかった。
[第3実施例]
 第3実施例では、皮膜組成を一定とし、サンプルごとにA層とB層の厚さの異なる皮膜を形成し、硬さや切削性能に及ぼすA層とB層の厚さの影響について検討した。また、X線回折による皮膜の優先配向についても調べた。なお、ここでは中間層を設けている。
 皮膜の形成は、第1実施例と同様の方法で行った(膜厚以外の条件は第1実施例と同様である)。この際、サンプルごとにA層とB層の厚さを変化させた。なお、比較例としてA層あるいはB層からなる単層膜についても成膜した。
 成膜終了後、皮膜中の成分組成を測定すると共に、X線回折による皮膜の優先配向を調べた。また、皮膜の硬さ、耐摩耗性について評価を行った。成分組成の測定方法、硬さおよび耐摩耗性の評価方法は、前記第1実施例と同様である。なお、皮膜中の成分組成は、A層「(Ti0.2Cr0.15Al0.55Si0.1)N」、B層「(Ti0.2Cr0.2Al0.6)N」であった。
 皮膜の優先配向は、皮膜をθ-2θ法のX線回折にて測定したときの(111)面および(200)面からの回折線の積分強度比(表中、(200)/(111)と記す)を調べた。
 尚、X線回折の条件及びデータ処理方法は、実施例Aの第3実施例と同様である。
 これらの結果を表8に示す。なお、表中、本発明の範囲を満たさないもの、および、積分強度比が本発明の好ましい範囲を満たさないものは、数値に下線を引いて示す。 
Figure JPOXMLDOC01-appb-T000008
 表8に示すように、No.57B~66Bは、A層とB層の厚さが本発明の範囲を満足しているため、硬さ、耐摩耗性が良好であった。また、積分強度比が本発明の好ましい範囲を満たした。一方、No.67Bは、B層を設けず、No.69Bは、B層の厚さが下限値未満のため、チッピングが発生し、フランク摩耗量を測定することができなかった。No.70Bは、B層の厚さ、No.72Bは、A層の厚さが上限値を超えたため、チッピングが発生し、フランク摩耗量を測定することができなかった。No.68Bは、A層を設けず、No.71Bは、A層の厚さが下限値未満のため、耐摩耗性が不良であった。No.69B、70Bは、積分強度比が本発明の好ましい下限値未満となった。
[第4実施例]
 第4実施例では、皮膜組成、A層およびB層の厚さを一定とし、皮膜形成時のバイアス電圧を変化させ、硬さや切削性能に及ぼす、X線回折による皮膜の優先配向および回折線の半値幅の影響について検討した。
 皮膜の形成は、第1実施例と同様の方法で行った。ただし、中間層は設けず、またA層の形成時のバイアス電圧を変化させた。すなわち、B層を、バイアス電圧を-100Vとして1.5μm成膜した上に、A層を1.5μm成膜した。この際、サンプルごとに、A層形成時のバイアス電圧を変化させた。
 成膜終了後、皮膜中の成分組成を測定すると共に、X線回折による皮膜の優先配向、回折線の半値幅を調べた。また、皮膜の硬さ、耐摩耗性について評価を行った。成分組成の測定方法、硬さおよび耐摩耗性の評価方法は、前記第1実施例と同様である。なお、成分組成は、A層「(Ti0.2Cr0.15Al0.55Si0.1)N」、B層「(Ti0.2Cr0.2Al0.6)N」であった。 
 皮膜の優先配向、回折線の半値幅は、皮膜をθ-2θ法のX線回折にて測定したときの(111)面および(200)面からの回折線の積分強度比(表中、(200)/(111)と記す)、および、皮膜をθ-2θ法のX線回折にて測定したときの(200)面からの回折線の半値幅を調べた。
 X線回折の条件は、第3実施例と同様である。
 そして、各サンプルについてXRD図形(生データ)から、表計算ソフトIgorProを用いて、生データの回折線についてフィッティングを行った後に各回折線の積分強度および半値幅を求めた。具体的には、当該ソフトのMulti-peak fit Packageを用いて、ピーク形状としてVoigt関数を用いてフィッティングを行うことで値を算出した。
 これらの結果を表9に示す。なお、表中、本発明の好ましい範囲を満たさないものは、数値に下線を引いて示す。 
Figure JPOXMLDOC01-appb-T000009
 表9に示すように、No.77B~80Bは、バイアス電圧が本発明の好ましい上限値である-75V以下であるため、積分強度比が本発明の好ましい範囲を満たした。また、バイアス電圧が本発明の好ましい上限値である-130V以下であるため、半値幅が本発明の好ましい範囲を満たした。よって、硬さ、耐摩耗性の向上効果が良好であった。
 一方、No.73Bは、バイアス電圧が-130Vを超え、さらに-75Vを超えたため、積分強度比および半値幅が本発明の好ましい下限値未満となった。No.74B~76Bは、バイアス電圧が-130Vを超えたため、半値幅が本発明の好ましい下限値未満となった。よってこれらは、硬さ、耐摩耗性の向上効果は良好であったものの、No.77B~80Bに比べるとやや劣った。
 以上、本発明について実施の形態および実施例を示して詳細に説明したが、本発明の趣旨は前記した内容に限定されることなく、その権利範囲は特許請求の範囲の記載に基づいて広く解釈しなければならない。なお、本発明の内容は、前記した記載に基づいて広く改変・変更等することが可能であることはいうまでもない。
 本出願は、2010年10月29日出願の日本特許出願(特願2010-244767)、2010年10月29日出願の日本特許出願(特願2010-244768)に基づくものであり、その内容はここに参照として取り込まれる。
 本発明の硬質皮膜は、チップ、ドリル、エンドミル等の切削工具や、プレス、鍛造金型、成型用金型、打ち抜きパンチ等の治工具に有用であり、これらの耐摩耗性を大きく改善する。
1、1a 基材 
2、2a A層 
3、3a B層 
4、4a、4a´ 硬質皮膜 
10 第1の硬質皮膜形成部材
10a、10a´ 第2の硬質皮膜形成部材
22 Aa層
33 Bb層

Claims (14)

  1.  基材上に硬質皮膜を備えた硬質皮膜形成部材であって、
     前記硬質皮膜は、組成がTiCrAlSi(B)からなり、前記a、b、c、d、e、u、v、wが原子比であるときに、
    0.05≦a
    0.05≦b
    0.2≦a+b≦0.55
    0.4≦c≦0.7
    0.02≦d≦0.2
    0≦e≦0.1
    0≦u≦0.1
    0≦v≦0.3
    a+b+c+d+e=1
    u+v+w=1
    を満足するA層と、
     組成がTiCrAl(B)からなり、前記f、g、h、x、y、zが原子比であるときに、
    0≦f
    0.05≦g
    0.25≦f+g≦0.6
    0.4≦h≦0.75
    0≦x≦0.1
    0≦y≦0.3
    f+g+h=1
    x+y+z=1
    を満足するB層とを備え、
     前記A層と前記B層が交互に積層され、前記A層と前記B層の1組の積層構造を1単位としたときに、この1単位の厚さが10~50nmであり、
     かつ前記硬質皮膜の膜厚が1~5μmであることを特徴とする硬質皮膜形成部材。
  2.  前記硬質皮膜をθ-2θ法のX線回折にて測定したときの(200)面からの回折線の積分強度I(200)が、(111)面からの回折線の積分強度I(111)の2倍以上であることを特徴とする請求項1に記載の硬質皮膜形成部材。
  3.  前記硬質皮膜をθ-2θ法のX線回折にて測定したときの(200)面からの回折線の半値幅が0.7°以上であることを特徴とする請求項1または請求項2に記載の硬質皮膜形成部材。
  4.  基材上に硬質皮膜を備えた硬質皮膜形成部材であって、
     前記硬質皮膜は、組成がTi Cr Al Si Y (B C Nw )からなり、前記a、b、c、d、e、u、v、wが原子比であるときに、
    0.05≦a
    0.05≦b
    0.2≦a+b≦0.55
    0.4≦c≦0.7
    0.02≦d≦0.2
    0≦e≦0.1
    0≦u≦0.1
    0≦v≦0.3
    a+b+c+d+e=1
    u+v+w=1
    を満足するA層と、
     組成がTi Cr Al (B C N )からなり、前記f、g、h、x、y、zが原子比であるときに、
    0≦f
    0.05≦g
    0.25≦f+g≦0.6
    0.4≦h≦0.75
    0≦x≦0.1
    0≦y≦0.3
    f+g+h=1
    x+y+z=1
    を満足するB層とを備え、
     厚さが0.5μm以下の中間層を介してまたは中間層を介さずに前記B層の上に前記A層が積層され、前記A層の厚さが0.5~5.0μmであり、前記B層の厚さが0.05~3.0μmであることを特徴とする硬質皮膜形成部材。
  5.  前記A層と前記B層との間に、厚さが0.5μm以下の中間層を備え、
     前記中間層は、前記A層と同じ組成からなる層と、前記B層と同じ組成からなる層が交互に積層されていることを特徴とする請求項4に記載の硬質皮膜形成部材。
  6.  前記硬質皮膜をθ-2θ法のX線回折にて測定したときの(200)面からの回折線の積分強度I(200)が、(111)面からの回折線の積分強度I(111)の2倍以上であることを特徴とする請求項4に記載の硬質皮膜形成部材。
  7.  前記硬質皮膜をθ-2θ法のX線回折にて測定したときの(200)面からの回折線の積分強度I(200)が、(111)面からの回折線の積分強度I(111)の2倍以上であることを特徴とする請求項5に記載の硬質皮膜形成部材。
  8.  前記硬質皮膜をθ-2θ法のX線回折にて測定したときの(200)面からの回折線の半値幅が1°以上であることを特徴とする請求項4から請求項7のいずれか一項に記載の硬質皮膜形成部材。
  9.  請求項1に記載の硬質皮膜形成部材を作製するための硬質皮膜の形成方法であって、前記硬質皮膜をアークイオンプレーティング法またはスパッタリング法で形成することを特徴とする硬質皮膜の形成方法。
  10.  請求項2または請求項3に記載の硬質皮膜形成部材を作製するための硬質皮膜の形成方法であって、前記硬質皮膜をアークイオンプレーティング法またはスパッタリング法で形成するときに、前記基材に印加するバイアス電圧を絶対値が130V以上の負の電圧とすることを特徴とする硬質皮膜の形成方法。
  11.  請求項4または請求項5に記載の硬質皮膜形成部材を作製するための硬質皮膜の形成方法であって、前記硬質皮膜をアークイオンプレーティング法またはスパッタリング法で形成することを特徴とする硬質皮膜の形成方法。
  12.  請求項6に記載の硬質皮膜形成部材を作製するための硬質皮膜の形成方法であって、前記A層、前記B層および、前記中間層を形成する場合にはさらに前記中間層をアークイオンプレーティング法またはスパッタリング法で形成するときに、前記基材に印加するバイアス電圧を絶対値が70V以上の負の電圧とすることを特徴とする硬質皮膜の形成方法。
  13.  請求項7に記載の硬質皮膜形成部材を作製するための硬質皮膜の形成方法であって、前記A層、前記B層および前記中間層をアークイオンプレーティング法またはスパッタリング法で形成するときに、前記基材に印加するバイアス電圧を絶対値が70V以上の負の電圧とすることを特徴とする硬質皮膜の形成方法。
  14.  請求項8に記載の硬質皮膜形成部材を作製するための硬質皮膜の形成方法であって、前記A層をアークイオンプレーティング法またはスパッタリング法で形成するときに、前記基材に印加するバイアス電圧を絶対値が130V以上の負の電圧とすることを特徴とする硬質皮膜の形成方法。
     
PCT/JP2011/074212 2010-10-29 2011-10-20 硬質皮膜形成部材および硬質皮膜の形成方法 WO2012057000A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201180050474.1A CN103168113B (zh) 2010-10-29 2011-10-20 硬质皮膜形成部件以及硬质皮膜的形成方法
IL226024A IL226024A (en) 2010-10-29 2013-04-28 Part coated in hard film and method of production

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2010244768A JP5730536B2 (ja) 2010-10-29 2010-10-29 硬質皮膜形成部材および硬質皮膜の形成方法
JP2010-244767 2010-10-29
JP2010-244768 2010-10-29
JP2010244767A JP5730535B2 (ja) 2010-10-29 2010-10-29 硬質皮膜形成部材および硬質皮膜の形成方法

Publications (1)

Publication Number Publication Date
WO2012057000A1 true WO2012057000A1 (ja) 2012-05-03

Family

ID=45993712

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/074212 WO2012057000A1 (ja) 2010-10-29 2011-10-20 硬質皮膜形成部材および硬質皮膜の形成方法

Country Status (3)

Country Link
CN (1) CN103168113B (ja)
IL (1) IL226024A (ja)
WO (1) WO2012057000A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104870684A (zh) * 2012-12-27 2015-08-26 韩国冶金株式会社 切削工具用多层薄膜和包含其的切削工具

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015186413A1 (ja) * 2014-06-02 2015-12-10 三菱日立ツール株式会社 硬質皮膜、硬質皮膜被覆部材、それらの製造方法、及び硬質皮膜の製造に用いるターゲット
BR112019008376A2 (pt) * 2016-10-25 2019-07-09 Osg Corp revestimento rígido e elemento revestido com o mesmo
KR102343014B1 (ko) * 2017-09-27 2021-12-24 교세라 가부시키가이샤 피복 공구 및 이것을 구비한 절삭 공구
CN110578122A (zh) * 2019-10-18 2019-12-17 天津职业技术师范大学(中国职业培训指导教师进修中心) 一种AlTiN/AlTiSiN多层纳米复合涂层的制备工艺

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003071611A (ja) * 2001-06-19 2003-03-12 Kobe Steel Ltd 切削工具用硬質皮膜およびその製造方法並びに硬質皮膜形成用ターゲット

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ATE441737T1 (de) * 2000-12-28 2009-09-15 Kobe Steel Ltd Target zur bildung einer hartschicht

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003071611A (ja) * 2001-06-19 2003-03-12 Kobe Steel Ltd 切削工具用硬質皮膜およびその製造方法並びに硬質皮膜形成用ターゲット

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104870684A (zh) * 2012-12-27 2015-08-26 韩国冶金株式会社 切削工具用多层薄膜和包含其的切削工具

Also Published As

Publication number Publication date
CN103168113B (zh) 2015-01-07
CN103168113A (zh) 2013-06-19
IL226024A (en) 2017-07-31
IL226024A0 (en) 2013-06-27

Similar Documents

Publication Publication Date Title
JP5730535B2 (ja) 硬質皮膜形成部材および硬質皮膜の形成方法
JP4373897B2 (ja) 硬質皮膜被覆部材及びその被覆方法
WO2014025057A1 (ja) 被覆工具
JP2019025591A (ja) 被覆切削工具
JP4388582B2 (ja) 硬質皮膜層及びその形成方法
JP6491031B2 (ja) 積層型硬質皮膜および切削工具
JP3963354B2 (ja) 被覆切削工具
WO2012057000A1 (ja) 硬質皮膜形成部材および硬質皮膜の形成方法
US10583494B2 (en) Coated drill
JP5730536B2 (ja) 硬質皮膜形成部材および硬質皮膜の形成方法
JP5559131B2 (ja) 硬質皮膜および硬質皮膜被覆工具
CN112543818B (zh) 硬质被膜和硬质被膜被覆构件
WO2015125898A1 (ja) 硬質皮膜およびその形成方法
JP5035980B2 (ja) 高速ミーリング加工で硬質被覆層がすぐれた耐摩耗性を発揮する表面被覆切削工具およびその製造方法
CN112840062B (zh) 硬质被膜和硬质被膜被覆构件
JP5035979B2 (ja) 高速ミーリング加工で硬質被覆層がすぐれた耐摩耗性を発揮する表面被覆切削工具およびその製造方法
JP2019084671A (ja) 硬質被覆層が優れた耐チッピング性、耐摩耗性を発揮する表面切削工具
WO2020026390A1 (ja) 硬質被膜および硬質被膜被覆部材
WO2020026389A1 (ja) 硬質被膜および硬質被膜被覆部材
CN112805109A (zh) 切削工具及其制造方法
JP5975342B2 (ja) 表面被覆切削工具
JP2019171482A (ja) 表面被覆切削工具
JP2019171483A (ja) 表面被覆切削工具
JP5975343B2 (ja) 表面被覆切削工具
CN112839759A (zh) 切削工具及其制造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11836136

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 226024

Country of ref document: IL

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11836136

Country of ref document: EP

Kind code of ref document: A1