Nothing Special   »   [go: up one dir, main page]

WO2015030090A1 - 導電性フィルム、それを備えるタッチパネル及び表示装置、並びに導電性フィルムの評価方法 - Google Patents

導電性フィルム、それを備えるタッチパネル及び表示装置、並びに導電性フィルムの評価方法 Download PDF

Info

Publication number
WO2015030090A1
WO2015030090A1 PCT/JP2014/072518 JP2014072518W WO2015030090A1 WO 2015030090 A1 WO2015030090 A1 WO 2015030090A1 JP 2014072518 W JP2014072518 W JP 2014072518W WO 2015030090 A1 WO2015030090 A1 WO 2015030090A1
Authority
WO
WIPO (PCT)
Prior art keywords
pattern
conductive film
wiring
image data
conductive
Prior art date
Application number
PCT/JP2014/072518
Other languages
English (en)
French (fr)
Inventor
一央 岩見
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Priority to CN201480047181.1A priority Critical patent/CN105519249B/zh
Priority to JP2015534276A priority patent/JP6145510B2/ja
Priority to EP14839133.7A priority patent/EP3041331B1/en
Priority to KR1020167005017A priority patent/KR101834248B1/ko
Publication of WO2015030090A1 publication Critical patent/WO2015030090A1/ja
Priority to US15/053,021 priority patent/US9996177B2/en

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • G06F3/0445Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means using two or more layers of sensing electrodes, e.g. using two layers of electrodes separated by a dielectric layer
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/0412Digitisers structurally integrated in a display
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • G06F3/0446Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means using a grid-like structure of electrodes in at least two directions, e.g. using row and column electrodes
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K9/00Screening of apparatus or components against electric or magnetic fields
    • H05K9/0073Shielding materials
    • H05K9/0081Electromagnetic shielding materials, e.g. EMI, RFI shielding
    • H05K9/009Electromagnetic shielding materials, e.g. EMI, RFI shielding comprising electro-conductive fibres, e.g. metal fibres, carbon fibres, metallised textile fibres, electro-conductive mesh, woven, non-woven mat, fleece, cross-linked
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K9/00Screening of apparatus or components against electric or magnetic fields
    • H05K9/0073Shielding materials
    • H05K9/0094Shielding materials being light-transmitting, e.g. transparent, translucent
    • H05K9/0096Shielding materials being light-transmitting, e.g. transparent, translucent for television displays, e.g. plasma display panel
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2203/00Indexing scheme relating to G06F3/00 - G06F3/048
    • G06F2203/041Indexing scheme relating to G06F3/041 - G06F3/045
    • G06F2203/04112Electrode mesh in capacitive digitiser: electrode for touch sensing is formed of a mesh of very fine, normally metallic, interconnected lines that are almost invisible to see. This provides a quite large but transparent electrode surface, without need for ITO or similar transparent conductive material

Definitions

  • the present invention relates to a conductive film, a touch panel and a display device including the conductive film, and a method for evaluating the conductive film, and more specifically, a mesh formed in a mesh shape in which a plurality of openings (cells) are arranged by a plurality of thin metal wires.
  • a wiring pattern hereinafter also referred to as a mesh pattern
  • the present invention relates to a conductive film having a mesh pattern wiring excellent in the visibility of moire and noise, a touch panel and a display device including the conductive film, and a method for evaluating the conductive film .
  • a conductive film installed on a display unit of a display device for example, a conductive film for electromagnetic shielding, a conductive film for touch panel, and the like (for example, Patent Documents 1 and 2 and 3).
  • a conductive film for electromagnetic shielding for example, Patent Documents 1 and 2 and 3
  • the conductive film (sensor) includes a first conductive portion (electrode) and a second conductive portion (electrode) extending in directions orthogonal to each other.
  • an insulating transparent substrate is interposed between the first conductive portion and the second conductive portion.
  • These 1st electroconductive parts and 2nd electroconductive parts consist of the mesh formed by making a metal fine wire (wire) cross
  • An opening (space) surrounded by intersecting metal thin wires is also called a cell, and the cell generally has a polygonal shape or an indefinite shape.
  • the mesh is usually a regular wiring pattern in which a plurality of cells having the same shape are repeatedly connected, that is, a fixed pattern. It is known that such a regular wiring pattern easily causes moiré (interference fringes) due to interference with, for example, a pixel arrangement pattern (for example, a black matrix (hereinafter also referred to as BM) pattern) of a display.
  • a pixel arrangement pattern for example, a black matrix (hereinafter also referred to as BM) pattern
  • BM black matrix
  • An irregular wiring pattern that is, a random pattern. With such a random pattern, it is known that noise granularity (roughness) is easily recognized, and the transmittance is smaller than that of a regular pattern.
  • Patent Document 1 a relative distance (moire) between spectral peaks of a pixel arrangement pattern and a wiring pattern, for example, a BM pattern in which a predetermined pixel is regularly repeated and a regular wiring pattern (see FIGS. 2 and 6).
  • Frequency is higher than a predetermined spatial frequency, so that the generation of moire can be suppressed and an electromagnetic wave shielding pattern that can avoid an increase in surface resistivity and a deterioration in transparency can be automatically selected. ing.
  • Patent Document 2 relating to the applicant's application, as a transparent conductive film having a mesh pattern including a plurality of polygonal meshes (for example, random patterns: see FIG. 2 and FIG. 14), An average intensity on a spatial frequency band side higher than a predetermined spatial frequency, for example, a spatial frequency whose human visual response characteristic corresponds to 5% of the maximum response is higher than an average intensity on a spatial frequency band side lower than the predetermined spatial frequency.
  • a transparent conductive film in which a mesh pattern is formed to be large is disclosed.
  • Patent Document 3 the width of a conductive fine pattern element such as a regular mesh pattern (see FIG. 2, FIG. 11, FIG. 25, etc.) or a random pattern including cells having a random shape (see FIG. 23) is set to 1.
  • a conductive fine pattern element such as a regular mesh pattern (see FIG. 2, FIG. 11, FIG. 25, etc.) or a random pattern including cells having a random shape (see FIG. 23) is set to 1.
  • the conductive micropattern elements are made more difficult to see, and by providing a structure that obscures or reduces the visibility of the conductive micropattern elements, the conductive micropattern elements are made hard to see.
  • Patent Document 3 also discloses a pseudo-random variation in the conductive micropattern as one of such structures.
  • Patent Document 1 provides a wiring pattern with excellent visibility by controlling the moire frequency only from the frequency information of the BM (black matrix) / wiring pattern of the display.
  • the determination of whether or not moiré is visually recognized depends only on the frequency, even if the frequency is determined that moiré is not visually recognized, human perception of moiré is not only the frequency but also the intensity. Therefore, there is a case where moire is visually recognized depending on strength, and there is a problem that visibility of moire is not sufficiently improved.
  • Patent Document 1 when the technique disclosed in Patent Document 1 is applied to a conductive film for a touch panel, since it is pressed by a human finger or the like, subtle distortion occurs between the BM / wiring patterns, which facilitates visual recognition of moire due to strength. There is also a problem that the visibility of moire is not sufficiently improved.
  • Patent Document 2 regarding the center-of-gravity spectrum of each mesh of the mesh pattern of the transparent conductive film, an average intensity in a medium to high spatial frequency band higher than a predetermined spatial frequency, in which the response characteristic of human vision rapidly decreases, is obtained.
  • the average intensity in a low spatial frequency band with high human visual response characteristics the noise feeling visually felt by humans is reduced, but the noise feeling of the mesh pattern of the transparent conductive film itself is reduced.
  • the moire generated between the BM pattern of the display and the mesh pattern of the transparent conductive film is suppressed, and the visibility of the moire cannot be improved.
  • the present invention solves the above-mentioned problems of the prior art, can suppress the occurrence of moire regardless of the viewing distance of the display screen of the display unit, and even visibility of moire that cannot be avoided in principle. It is an object to provide a conductive film capable of improving the visibility of moire and noise, and hence the visibility of a display screen, a touch panel and a display device including the same, and a method for evaluating the conductive film. And In addition, the present invention is particularly large when a transparent conductive film having wiring is used as an electrode for a touch panel, when the conductive film is visually recognized by being superimposed on the black matrix of the display unit of the display device, regardless of the observation distance.
  • An object of the present invention is to provide a conductive film that can be shown and can greatly improve the visibility of display on the touch panel, a touch panel and a display device including the conductive film, and a method for evaluating the conductive film. Furthermore, in the present invention, when designing the conductive part of the conductive film having the first and second conductive parts (electrodes) respectively disposed on both main surfaces, the first and second conductive parts are particularly designed.
  • the present inventor has already calculated the spatial frequency peak of the pixel matrix and mesh pattern of the display as one technique that can greatly improve the visibility of the moire of the display screen of the display device (display),
  • Japanese Patent Application No. 2013-020775 proposes a conductive film.
  • the present inventor has conducted further intensive research. As a result, the moire caused by the interference between the regular mesh pattern and the BM pattern of the display is reduced.
  • the inventor of the present invention has a design concept of a mesh pattern design method with excellent moire visibility using the conventional technique to make the spatial frequency of the moire as high as possible.
  • the problem of this technology is simply that the moire caused by the interference between the regular mesh pattern and the BM pattern of the display is shifted from the human visual sensitivity.
  • the mesh pattern with higher regularity and the mesh pattern with lower regularity differing in the regularity variation of the openings (cells) of the mesh pattern on both sides of the conductive film, respectively.
  • the moire generated by the former is avoided by the mask effect due to the latter low-visibility noise (noise granularity) component. Knowing that the visibility of moire can be improved even when it is not possible, has led to the present invention A.
  • the conductive film according to the first aspect of the present invention is a conductive film installed on a display unit of a display device, comprising a transparent substrate and both surfaces of the transparent substrate.
  • Each of the first and second conductive portions formed in a mesh shape in which a plurality of openings are arranged by a plurality of fine metal wires, respectively. 1 and 2
  • the first and second wiring patterns each have at least first and second patterns having different spectral variations in the two-dimensional Fourier space of the transmittance image data, respectively.
  • the first and second wiring patterns are superimposed on the pixel array pattern of the display unit as a combined wiring pattern, and the combined pattern of the pixel array pattern and the combined wiring pattern is a combined pattern.
  • the conductive film according to the first aspect of the present invention is a conductive film installed on a display unit of a display device, comprising a transparent substrate and both surfaces of the transparent substrate.
  • Each of the first and second conductive portions formed in a mesh shape in which a plurality of openings are arranged by a plurality of fine metal wires, respectively. 1 and 2
  • the first and second wiring patterns each have at least first and second patterns having different spectral variations in the two-dimensional Fourier space of the transmittance image data, respectively.
  • the first and second wiring patterns are superimposed on the pixel array pattern of the display unit as a combined wiring pattern, and the first pattern is in the two-dimensional Fourier space of the transmittance image data.
  • the touchscreen which concerns on the 2nd aspect of this invention is characterized by including the electroconductive film which concerns on the said 1st aspect.
  • the display apparatus which concerns on the 3rd aspect of this invention is equipped with a display unit and the electroconductive film which concerns on the said 1st aspect installed on this display unit. It is characterized by that.
  • the evaluation method of the electroconductive film which concerns on the 4th aspect of this invention is an evaluation method of the electroconductive film installed on the display unit of a display apparatus, Comprising: Comprises a transparent substrate and first and second wiring patterns formed in a mesh shape in which a plurality of openings are arranged by a plurality of fine metal wires, which are respectively formed on both surfaces of the transparent substrate.
  • Each of the second wiring patterns has at least first and second patterns having different spectral variations in the two-dimensional Fourier space of the transmittance image data, and each of the first and second wiring patterns.
  • transmittance image data and the transmittance image data of the pixel arrangement pattern of the display unit in which the first and second wiring patterns are superimposed as a combined wiring pattern is obtained from the acquired pixel array pattern and the respective transmittance image data of the first and second wiring patterns, and the obtained composition
  • Two-dimensional Fourier transform is performed on the transmittance image data of each of the pattern, the pixel array pattern, and the composite wiring pattern, and the plurality of spectra in the two-dimensional Fourier space of the composite pattern transmittance image data and the transmittance image data of the pixel array pattern
  • a plurality of spectra in the two-dimensional Fourier space and a plurality of spectra in the two-dimensional Fourier space of the transmittance image data of the combined wiring pattern are obtained, and from the plurality of spectra of the combined pattern, the plurality of spectra of the pixel array pattern and the combined wiring Except for multiple spectra of the pattern, Obtain
  • the total value of the moire and noise spectra is lower than the spatial frequency of the pixel arrangement pattern (in accordance with the display resolution of the display unit). It is preferable that the spectrum is obtained by summing only all the spectra having the moire frequency equal to or lower than the maximum moire frequency specified. Further, the total value of the moire and noise spectra is obtained by subtracting the second total value obtained by summing up all of the plurality of spectra of the composite wiring pattern from the first total value thus obtained. It is preferable to be required. Further, when the quantitative value is E as a common logarithmic value, the predetermined range is preferably E ⁇ 2.150, more preferably E ⁇ 2.0425. Yes.
  • the first pattern has a standard deviation of the spectrum in the two-dimensional Fourier space of the transmittance image data of ⁇ 5.0 or more
  • the second pattern has a spectrum of the transmittance image data in the two-dimensional Fourier space.
  • the standard deviation of is preferably less than ⁇ 5.0.
  • a 1st pattern is a regular pattern and a 2nd pattern is an irregular pattern.
  • the openings are formed by crossing thin metal wires, and the regular pattern is a fixed pattern formed in a mesh shape so that a plurality of openings having the same shape are connected.
  • the regular pattern is preferably a random pattern formed in a mesh shape so as to include a plurality of openings having different shapes in plan view.
  • the first conductive portion having the first wiring pattern is formed on the upper surface of the transparent substrate, and the second conductive portion having the second wiring pattern is formed on the lower surface of the transparent substrate.
  • the pattern is a first pattern
  • the second wiring pattern is a second pattern
  • the width of the second wiring pattern is larger than the width of the first wiring pattern.
  • the moire frequency is given by the difference between the peak frequency of the combined wiring pattern and the peak frequency of the pixel array pattern.
  • the moire intensity is given by the product of the peak intensity of the combined wiring pattern and the peak intensity of the pixel array pattern. It is preferred that
  • strength of a spectrum are normalized by the area of the transmittance
  • the pixel array pattern is preferably a black matrix pattern.
  • the line width of the fine metal wire forming the second pattern is preferably 1 to 5 ⁇ m.
  • the average pitch between the openings forming the second pattern is preferably in the range of 100 to 500 ⁇ m.
  • the line width of the fine metal wire forming the first pattern is preferably 1 to 5 ⁇ m.
  • the opening forming the first pattern preferably has a diamond shape.
  • the metal fine wire which forms a 1st pattern, and the metal fine wire which forms a 2nd pattern consist of silver.
  • the occurrence of moire can be suppressed regardless of the viewing distance of the display screen of the display unit, and the visibility of moire that cannot be avoided in principle is further improved by the noise effect.
  • the visibility of moire and noise, and hence the visibility of the display screen can be greatly improved.
  • the conductive film is visually recognized by being superimposed on the black matrix of the display unit of the display device regardless of the observation distance.
  • the first and second conductive portions are particularly designed when designing the conductive portions of the conductive film having the first and second conductive portions (electrodes) disposed on both main surfaces, respectively. Since the wiring pattern arranged in the portion can be a mixed mesh pattern composed of mesh patterns with different regularity variations, the design of the wiring pattern can be facilitated.
  • the opening (cell) that forms one of the first and second conductive portions (electrodes) facing each other through the insulating transparent substrate is made a random pattern,
  • a cell that forms one of the remaining patterns is made as a standard pattern, it is possible to suppress the occurrence of moire based on having an electrode that forms a random pattern, and noise granularity based on having an electrode that forms a standard pattern. Is difficult to visually recognize, and sufficient transmittance can be exhibited.
  • FIG. 1 It is a fragmentary sectional view showing typically an example of a conductive film concerning a 1st embodiment of the present invention. It is a top view which shows typically an example of the wiring pattern of one electroconductive part of the electroconductive film shown in FIG. It is a top view which shows typically an example of the wiring pattern of the other electroconductive part of the electroconductive film shown in FIG. (A) And (B) is a top view which shows typically the other example of the wiring pattern of the one electroconductive part of the electroconductive film shown in FIG. 1, respectively. (A) And (B) is a top view which shows typically the other example of the wiring pattern of the other electroconductive part of the electroconductive film shown in FIG. 1, respectively.
  • FIG. 1 It is a schematic explanatory drawing showing an example of the one part pixel arrangement pattern of the display unit to which the electroconductive film which concerns on this invention is applied. It is a schematic sectional drawing of one Example of the display apparatus incorporating the electroconductive film shown in FIG. (A) And (C) is a typical partial expansion explanatory view showing an example of a pixel arrangement pattern of a display unit to which a conductive film concerning the present invention is applied, respectively, (B) and (D) are respectively 4A and 4C are schematic explanatory diagrams of pixel arrangement patterns when only G channel sub-pixels are used. (A)-(H) are typical partial enlarged explanatory views showing another example of the pixel arrangement pattern of the display unit to which the conductive film according to the present invention is applied.
  • FIG. 11 is the elements on larger scale which show typically the synthetic
  • FIG. 12 is a graph schematically showing the relationship between the spectrum of moire generated by interference between the combined wiring pattern shown in FIG. 12A and the pixel array pattern shown in FIG. 11A, the resolution of the display, and the spectrum of the pixel array pattern. .
  • FIG. 21 It is a schematic plan view which shows another example of the cell of the 1st electroconductive part (electrode) shown in FIG. It is a schematic plan view which shows an example of the cell of the 2nd electroconductive part (electrode) formed in the electroconductive film shown in FIG. It is a schematic plan view which shows the overlap part of the 1st electroconductive part (electrode) shown in FIG. 21 and the 2nd electroconductive part (electrode) shown in FIG. It is a schematic longitudinal cross-sectional view of the electroconductive film which concerns on another embodiment from the electroconductive film shown in FIG. It is a schematic longitudinal cross-sectional view of the electroconductive film for evaluation.
  • a display device having a conductive part having a wiring pattern such as a liquid crystal display (LCD), a plasma display panel (PDP), an organic EL display (OELD), and an inorganic EL display
  • LCD liquid crystal display
  • PDP plasma display panel
  • OELD organic EL display
  • Any conductive film may be used as long as it is installed on the display unit.
  • a conductive film for electromagnetic wave shielding may be used.
  • FIG. 1 is a partial cross-sectional view schematically showing an example of a conductive film according to the first embodiment of the present invention.
  • FIGS. 2 and 3 are one and the other of the conductive film shown in FIG. 1, respectively. It is a top view which shows typically an example of the wiring pattern of the electroconductive part.
  • the conductive film 10 of this embodiment is installed on a display unit of a display device, and suppresses the occurrence of moire with respect to a black matrix (BM) of the display unit.
  • BM black matrix
  • the first protective layer 20a bonded via the first adhesive layer 18a and the other surface (the lower surface in FIG. 1) of the transparent substrate 12 are formed on the entire surface so as to cover the fine metal wires 14.
  • a plurality of thin metal wires 14 Ranaru has a second conductive portion (electrode) 16b, and a second protective layer 20b which is adhered via a second adhesive layer 18b over substantially the entire surface of the second conductive portion 16b.
  • first conductive portion 16a and the second conductive portion 16b are simply referred to as the conductive portion 16
  • first adhesive layer 18a and the second adhesive layer 18b are simply referred to as the adhesive layer 18.
  • the first protective layer 20a and the second protective layer 20b are simply referred to as the protective layer 20 when collectively referred to.
  • the transparent substrate 12 is made of a material having insulating properties and high translucency, and examples thereof include materials such as resin, glass, and silicon.
  • the resin include PET (Polyethylene Terephthalate), PMMA (Polymethyl methacrylate), PP (polypropylene), PS (polystyrene) and the like.
  • the metal thin wire 14 is not particularly limited as long as it is a metal thin wire having high conductivity, and examples thereof include a wire made of gold (Au), silver (Ag), or copper (Cu).
  • the line width of the fine metal wire 14 is preferably narrower from the viewpoint of visibility, but may be, for example, 30 ⁇ m or less.
  • the line width of the fine metal wire 14 is preferably 0.1 ⁇ m or more and 15 ⁇ m or less, more preferably 1 ⁇ m or more and 9 ⁇ m or less, and further preferably 2 ⁇ m or more and 7 ⁇ m or less.
  • the conductive portion 16 (16a, 16b) has a wiring pattern 24 (24a, 24b) formed by mesh wiring 21 (21a, 21b) in which a plurality of fine metal wires 14 are arranged in a mesh shape.
  • the wiring pattern 24 (24a, 24b) is a mesh pattern in which openings (cells) 22 (22a, 22b) having a predetermined shape formed by intersecting a plurality of fine metal wires 14 with each other are arranged. It is.
  • the first conductive portion 16a includes a conductive layer 28a having a fine metal wire 14 and a mesh-shaped wiring pattern 24a formed by openings (cells) 22a between adjacent fine metal wires 14 (see FIG. 1).
  • the wiring pattern 24a is a regular wiring pattern in which a plurality of rhombic openings 22a having the same shape are regularly repeated, a so-called fixed pattern.
  • the second conductive portion 16b is composed of a conductive layer 28b (see FIG. 1) having a fine metal wire 14 and a mesh-like wiring pattern 24b formed by the opening 22b between the adjacent fine metal wires 14, and the wiring pattern 24b is As shown in FIG. 3, the wiring pattern is an irregular wiring pattern in which a plurality of openings 22b having different shapes in a plan view are connected, that is, a so-called random pattern.
  • the wiring pattern 24a is a regular pattern in which the mesh shape of the opening 22a is a rhombus.
  • the wiring pattern 24b has a mesh shape of the opening 22b.
  • the random pattern is an indefinite shape, but the present invention is not limited to this, and the wiring pattern 24a and the wiring pattern 24b are regular patterns such as the shape of the openings (cells) 22 (22a, 22b) and repetition. It is sufficient that one is a mesh pattern with higher regularity and one is a mesh pattern with higher regularity and the other is a mesh pattern with lower regularity.
  • a mesh pattern with higher regularity tends to have a specific peak in the two-dimensional Fourier space of the transmittance image data.
  • the standard deviation of the spectrum in the two-dimensional Fourier space is preferably ⁇ 5.0 or more, and the mesh pattern with lower regularity (hereinafter referred to as “low regularity”).
  • the pattern is less likely to have a specific peak in the two-dimensional Fourier space of the transmittance image data, so the variation is small.
  • the standard deviation of the spectrum obtained is preferably less than ⁇ 5.0.
  • the regularity pattern of the high regularity pattern and the low regularity pattern are different, and these combined wiring patterns have the best moire visibility with respect to a predetermined pixel array (BM) pattern of the display device described later.
  • BM pixel array
  • the shape of the opening 22 may be any shape. That is, the opening 22 of the wiring pattern 24 may be any polygonal shape having at least three sides, a circle, an ellipse, or a closed indefinite shape, and may have the same mesh shape but a different mesh shape.
  • the wiring pattern 24 may have a break (break) in the side of the fine metal wire 14 (mesh wiring 21) constituting the opening 22.
  • the shape of the mesh-like wiring pattern having such a break the shape of the mesh-like wiring pattern of the conductive film described in Japanese Patent Application No. 2012-276175 related to the application of the present applicant can be applied.
  • the highly regular pattern used as the wiring pattern 24a is a regular wiring pattern in which the shape of the opening 22a is the same, and is configured by an array of openings 22a having the same regularity. More preferably, in addition to the rhombus pattern in which the rhombic openings 22a shown in FIG. 2 are regularly arranged, square openings are regularly arranged as in the wiring pattern 24a shown in FIGS. For example, a square lattice pattern regularly arranged, and a regular hexagon pattern in which square hexagonal openings are regularly arranged can be used. Further, the low regularity pattern used as the wiring pattern 24b is more preferably a wiring pattern in which the shape of the opening 22b is different and randomized by the arrangement of the openings 22 having different shapes.
  • the opening portions 22 having different shapes are randomly arranged as in the wiring pattern 24b shown in FIGS. 5A and 5B, for example.
  • a random pattern etc. can be mentioned.
  • a random pattern for example, a random pattern created by using a stained glass function of Photoshop (registered trademark) manufactured by Adobe, Inc. can be used.
  • a more regular wiring pattern 24 a is arranged on the first conductive portion 16 a on the upper side (observation side) of the transparent substrate 12 in FIG.
  • the wiring pattern 24b having lower regularity is disposed on the second conductive portion 16b on the lower side (display side)
  • the present invention is not limited to this, and conversely, the upper side of the transparent substrate 12 in FIG.
  • a wiring pattern 24b having lower regularity is disposed on the first conductive portion 16a on the (observation side), and a wiring pattern 24a having higher regularity is provided on the second conductive portion 16b on the lower side (display side) of the transparent substrate 12. May be arranged.
  • the first conductive portion 16a and the second conductive portion 16b only need to have at least one layer of wiring patterns 24a and 24b, respectively, and may include other wiring pattern layers. That is, it is only necessary that at least one layer of wiring patterns 24a and 24b be arranged in the first conductive portion 16a and the second conductive portion 16b, respectively.
  • each part of the first conductive part 16a and the second conductive part 16b is arranged at a predetermined interval from the conductive parts 16a and 16b, and these conductive parts You may be comprised with the dummy electrode part which consists of the metal fine wire 14 under the state electrically insulated from the parts 16a and 16b.
  • each mesh wiring 21 (21a, 21b) of the first conductive part 16a and the second conductive part 16b can be arranged correspondingly, so that one of the transparent substrates 12 (for example, The scattering by the fine metal wires on the upper or lower surface in FIG. 1 can be controlled, and the electrode visibility can be improved.
  • the first protective layer 20a is adhered to substantially the entire surface of the conductive layer 28a including the first conductive portion 16a by the first adhesive layer 18a so as to cover the fine metal wires 14 of the first conductive portion 16a.
  • the second protective layer 20b is bonded to substantially the entire surface of the conductive layer 28b made of the second conductive portion 16b by the second adhesive layer 18b so as to cover the fine metal wires 14 of the second conductive portion 16b.
  • examples of the material of the adhesive layer 18 include a wet laminate adhesive, a dry laminate adhesive, or a hot melt adhesive, but the first adhesive layer 18a.
  • the material of and the material of the second adhesive layer 18b may be the same or different.
  • the protective layer 20 (the first protective layer 20a and the second protective layer 20b) is made of a material having high translucency including resin, glass, and silicon, like the transparent substrate 12, but the first protective layer 20a The material and the material of the second protective layer 20b may be the same or different.
  • Both the refractive index n1 of the first protective layer 20a and the refractive index n2 of the second protective layer 20b are preferably equal to or close to the refractive index n0 of the transparent substrate 12.
  • the relative refractive index nr1 of the transparent substrate 12 with respect to the first protective layer 20a and the relative refractive index nr2 of the transparent substrate 12 with respect to the second protective layer 20b are both close to 1.
  • the refractive index in this specification means a refractive index in light having a wavelength of 589.3 nm (sodium D-line).
  • ISO 14782: 1999 is an international standard.
  • the relative refractive index nr1 and the relative refractive index nr2 may be in the range of 0.86 to 1.15, more preferably 0.91 to 1.08.
  • the conductive film 10 of the first embodiment of the present invention described above is applied to, for example, the touch panel 44 (see FIG. 7) of the display unit 30 (display unit) schematically shown in part in FIG.
  • a mesh wiring pattern metal mesh pattern
  • two types of mesh patterns having different pattern regularity variations that is, a highly regular pattern And a low regularity pattern.
  • a highly regular pattern preferably a regular mesh pattern, interferes with a black matrix (hereinafter also referred to as BM) of a display device (display) as in the prior art to generate moire.
  • BM black matrix
  • a low regularity pattern preferably an irregular mesh pattern, interferes with the BM and generates noise.
  • the high frequency moire generated in the high regularity pattern is less likely to be visually recognized due to the mask effect due to the noise component of the low regularity pattern.
  • the moiré due to interference between the regular mesh pattern and the BM, and the irregularity Since the balance of the noise due to the interference between the mesh pattern and the BM is important, in the present invention, the characteristics of each pattern are preferably quantified and the image quality finally obtained is defined by the numerical value.
  • a composite wiring pattern of two types of mesh patterns having different pattern regularity variations is optimized in terms of moiré visibility with respect to the pixel arrangement (BM) pattern of the display unit 30. It has a composite wiring pattern.
  • the fact that the BM (pixel array) pattern is optimized in terms of moiré visibility means that a predetermined BM pattern is inevitably generated due to interference with a highly regular pattern. It refers to a combination of a high regularity pattern and a low regularity pattern, or a combined wiring pattern that can make moiré difficult to visually recognize due to a mask effect due to noise components generated simultaneously with interference with the low regularity pattern.
  • an order from the least perceived combination (synthetic wiring pattern) to a combination that is difficult to perceive (synthetic wiring pattern) can be added. It is also possible to determine a combination of one wiring pattern (synthetic wiring pattern) where the moire is hardly perceived.
  • the optimization of the moire visibility of the composite wiring pattern for a predetermined BM pattern will be described later.
  • the conductive film of the present invention is basically configured as described above.
  • FIG. 6 is a schematic explanatory view schematically showing an example of a partial pixel arrangement pattern of a display unit to which the conductive film of the present invention is applied.
  • the display unit 30 includes a plurality of pixels 32 arranged in a matrix to form a predetermined pixel arrangement pattern.
  • One pixel 32 includes three subpixels (a red subpixel 32r, a green subpixel 32g, and a blue subpixel 32b) arranged in the horizontal direction.
  • One subpixel has a rectangular shape that is vertically long in the vertical direction, and the three subpixels 32r, 32g, and 32b have the same or similar rectangular shape.
  • the horizontal arrangement pitch of pixels 32 (horizontal pixel pitch Ph) and the vertical arrangement pitch of pixels 32 (vertical pixel pitch Pv) are substantially the same.
  • a shape (see a shaded area 36) formed by one pixel 32 and a black matrix (BM) 34 (pattern material) surrounding the one pixel 32 is a square.
  • the aspect ratio of one pixel 32 is not 1, but the length in the horizontal direction (horizontal)> the length in the vertical direction (vertical).
  • the shape of one sub-pixel is a rectangular shape, but the present invention is not limited to this.
  • the shape is notched at the end shown in FIG. 8C, or a vertically elongated band that is bent or bent at a predetermined angle, or may be a vertically elongated band that is curved,
  • the end may have a notch, and the notch may have any shape, for example, various shapes as shown in FIGS. 9A to 9H. It may be any shape as long as it is a conventionally known pixel shape.
  • the shape of the sub-pixels 32r, 32g, and 32b of one pixel 32 may be the same shape or may be different for each sub-pixel.
  • the pixel pitch (horizontal and vertical pixel pitches Ph and Pv) may be any pitch as long as it corresponds to the resolution of the display unit 30. For example, the pitch in the range of 84 ⁇ m to 264 ⁇ m can be increased.
  • the pixel arrangement pattern constituted by the sub-pixels 32r, 32g, and 32b of each of the plurality of pixels 32 is defined by the BM pattern 38 of the BM 34 that surrounds the sub-pixels 32r, 32g, and 32b, respectively.
  • Moire generated when the display unit 30 and the conductive film 10 are superimposed is generated by interference between the BM pattern 38 of the BM 34 of the display unit 30 and the synthetic wiring pattern (wiring patterns 24a and 24b) of the conductive film 10. Therefore, strictly speaking, the BM pattern 38 is an inverted pattern of the pixel array pattern, but here, it is treated as representing the same pattern.
  • the display unit 30 illustrated in FIG. 6 may be configured by a display panel such as a liquid crystal panel, a plasma panel, an organic EL panel, or an inorganic EL panel.
  • the display device 40 includes a display unit 30 (see FIG. 6) that can display a color image and / or a monochrome image, and a touch panel that detects a contact position from the input surface 42 (arrow Z1 direction side). 44 and a housing 46 that accommodates the display unit 30 and the touch panel 44. The user can access the touch panel 44 through a large opening provided on one surface of the housing 46 (arrow Z1 direction side).
  • the touch panel 44 is electrically connected to the conductive film 10 via the cover member 48 laminated on one surface (arrow Z1 direction side) of the conductive film 10 and the cable 50.
  • Connected flexible substrate 52 and detection control unit 54 disposed on flexible substrate 52.
  • the conductive film 10 is bonded to one surface (arrow Z1 direction side) of the display unit 30 via an adhesive layer 56.
  • the conductive film 10 is disposed on the display screen with the other main surface side (second conductive portion 16b side) facing the display unit 30.
  • the cover member 48 exhibits a function as the input surface 42 by covering one surface of the conductive film 10.
  • the material of the cover member 48 may be glass or a resin film, for example. You may make it closely_contact
  • the flexible substrate 52 is an electronic substrate having flexibility. In the illustrated example, it is fixed to the inner wall of the side surface of the housing 46, but the arrangement position may be variously changed.
  • the detection control unit 54 captures a change in electrostatic capacitance between the contact body 58 and the conductive film 10 when the contact body 58 that is a conductor contacts (or approaches) the input surface 42, and the contact position An electronic circuit for detecting (or a proximity position) is configured.
  • the display device to which the conductive film of the present invention is applied is basically configured as described above.
  • FIG. 10 is a flowchart showing an example of a method for evaluating a conductive film of the present invention.
  • the method for evaluating a wiring pattern of a conductive film according to the present invention is a fast Fourier transform between a BM (pixel array) pattern of a display unit of a display device and a combination of two wiring patterns having different variations of the conductive film (synthetic wiring pattern).
  • BM pattern and the combined wiring pattern are excluded except for all the plurality of spectra (having frequencies and intensities) in the two-dimensional Fourier space and all the plurality of spectra (having frequencies and intensities) in the two-dimensional Fourier space of the combined array pattern.
  • Extract multiple spectra with only moire and noise due to interference A total value of all the plurality of spectra that have been output is obtained, and an extraction quantitative value of moire and noise is calculated from this total value, and there are two variations that form a composite wiring pattern in which the calculated quantitative value is within a predetermined range.
  • a combination of two types of wiring patterns is evaluated and determined as a combination of two types of wiring patterns that are optimized so that moire is not visually recognized.
  • FFT is generally used to extract the spectrum (frequency / intensity) of moire and noise, but depending on the method of use, the spectrum (frequency / intensity) of the object is large. In order to change, the following procedures are specified.
  • each image of the BM pattern and the two types of wiring patterns (transmittance image data: 0-1) is created. That is, as shown in FIG. 10, in step S10, the transmittance image data of the BM pattern 38 (BM34) (see FIG. 11A) of the display unit 30 of the display device 40 shown in FIG.
  • the transmission pattern data of the wiring patterns 24a and 24b are created and acquired.
  • the transmittance image data of the BM pattern 38 and the transmittance image data of the wiring patterns 24a and 24b are prepared or stored in advance, the prepared or stored You may make it acquire from.
  • the BM pattern 38 of the display unit 30 is, for example, a pattern composed of RGB sub-pixels 32r, 32g, and 32b per pixel 32 as shown in FIGS. 6, 8A, and 8C.
  • the rate image data is preferably 0.
  • the image data of the BM 34, that is, the transmittance image data of the BM pattern 38 is not limited to a simple rectangular shape as shown in FIG. 6 and FIG.
  • the BM 34 having no rectangular opening may be used, and a BM pattern having an arbitrary BM opening may be designated and used.
  • the BM pattern 38 is not limited to the simple rectangular shape shown in FIGS. 6 and 11A, and as shown in FIGS.
  • a band-shaped opening bent at a predetermined angle per pixel 32 has a substantially rectangular (notched) opening (subpixels 32r, 32g and 32b). It may be a pattern composed of RGB sub-pixels 32r, 32g, and 32b, or may have a curved strip-shaped opening or a bowl-shaped opening.
  • the wiring pattern 24a having higher regularity among the two types of wiring patterns having different variations of the conductive film 10 is, for example, as shown in FIG. 2 and FIG.
  • a rhombus pattern inclined at a predetermined angle with respect to the horizontal line, for example, an angle of less than 45 ° [deg] can be used.
  • the shape of the opening 22a of the wiring pattern 24a is any.
  • a square (tetragonal lattice) or a regular hexagon as shown in FIGS. 4A and 4B may be used, and the square lattice may be a square lattice inclined by 45 ° [deg]. Of course it is good.
  • the wiring pattern 24b having a lower regularity among the two types of wiring patterns having different variations of the conductive film 10 is formed of, for example, openings 22b having different shapes as shown in FIGS. 3 and 11C.
  • the shape of the opening 22b of the wiring pattern 24b may be any shape.
  • FIGS. Of course, it may be a random shape as shown.
  • the resolution is, for example, 12700 dpi, which is a high resolution
  • the size of the transmittance image data is defined, for example, the pixel size is 9944 (pixels) X 9944 (226 x 44 (number of repetitions)) (pixel).
  • the size of the image data is an integer multiple of the size of the image data (BM pattern 38) of the BM 34 that is closest to, for example, 10000 ⁇ 10000. This is because, when the respective image sizes are integrated, the error is minimized when 2DFFT (two-dimensional fast Fourier transform) is performed if the image data is periodic.
  • 2DFFT two-dimensional fast Fourier transform
  • the sub-pixel 32g of the BM 34 of the display unit (display) 30 illustrated in FIG. 11A is, for example, 112 dpi, and the size of the opening is, for example, 28 (pixels) ⁇ 77 (pixels).
  • Such transmittance image data of the BM pattern 38 is created.
  • the wiring patterns 24a and 24b are mesh patterns shown in FIGS. 11B and 11C, respectively.
  • the image resolution thereof is, for example, 12700 dpi, which is the same as the resolution of the BM pattern 38, and the pixel size is, for example, It is 9944 (pixels) ⁇ 9944 (pixels), which is the same as the BM pattern 38.
  • the line width of the fine metal wires 14 of the wiring patterns 24a and 24b is, for example, 4 ⁇ m.
  • the regular mesh pattern shown in FIG. 11B is a rhombus pattern, and the pitch (p: see FIG.
  • the irregular mesh pattern shown in FIG. 11C is a random pattern, and such a random pattern is obtained by, for example, using the stained glass function of Photoshop (registered trademark) manufactured by Adobe. It was created.
  • the transmittance image data of the wiring patterns 24a and 24b shown in FIGS. 11B and 11C obtained in this way are integrated to obtain image data obtained by multiplying the transmittances of the combined wiring pattern shown in FIG. It is done. Thereafter, the image data obtained by multiplying the transmittances of the two combined wiring patterns shown in FIG. 12A thus obtained and the transmittance image data of the BM pattern 38 are integrated, and 3 3 shown in FIG. Image data obtained by multiplying each transmittance of the person's composite pattern is obtained.
  • the image data obtained by multiplying each transmittance of the composite pattern shown in FIG. 12B thus obtained includes the moiré spatial frequency including noise.
  • step S12 two-dimensional fast Fourier transform (2DFFT (base 2)) is performed on the various transmittance image data created in procedure 1. That is, as shown in FIG. 10, in step S12, the transmittance image data of the BM pattern 38 created in step S10, the image data obtained by multiplying the transmittances of the combined wiring patterns of the two types of wiring patterns 24a and 24b, and 2DFFT (base 2) processing is performed on each of the image data obtained by multiplying each transmittance of the combined pattern of the BM pattern 38 and the combined wiring pattern, and the transmittance image data of the BM pattern 38, the two types of wiring patterns 24a, and The two-dimensional Fourier spectrum of the image data multiplied by each transmittance of the composite wiring pattern 24b and the image data multiplied by each transmittance of the synthetic pattern of the BM pattern 38 and the synthetic wiring pattern (a plurality of 2DFFT spectra in Fourier space ( Frequency and intensity).
  • 2DFFT base 2DFFT
  • FIG. 13A schematically shows a plurality of spectral peaks and noise components of the spectrum in the two-dimensional Fourier space of the image data multiplied by the respective transmittances of the composite wiring pattern obtained here.
  • the straight line indicated by the arrow indicates the vector direction of the fundamental frequency of the wiring pattern 24a which is a regular pattern.
  • the plurality of spectral peaks of the spectrum shown in FIG. 13A are mainly due to the regular wiring pattern 24a, and the noise components localized in the circle shown in FIG. This is due to the irregular wiring pattern 24b.
  • FIG. 13B schematically shows spectral peaks of a plurality of spectra in the two-dimensional Fourier space of the transmittance image data of the BM pattern 38 thus obtained.
  • the spectrum frequency and spectrum intensity of each spectrum peak of the BM pattern 38 and the wiring pattern 24a of the combined wiring pattern are calculated and acquired as follows.
  • the peak may be calculated by taking into account the BM pattern 38 and the wiring pattern 24a of the combined wiring pattern, and the frequency peak is obtained from the basic frequency of the BM pattern 38 and the wiring pattern 24a. This is because the transmittance image data to be subjected to the 2DFFT process is a discrete value, and the spectral frequency depends on the reciprocal of the image size. Since the frequency peak position can be expressed by combining independent two-dimensional fundamental frequency vector components, as a matter of course, as shown in FIGS. 13A and 13B, the obtained peak position has a lattice shape. .
  • the obtained spectral intensity is preferably normalized by the image area (image size).
  • image size image size
  • (convolution) is performed, a spectrum obtained by mixing the moire spectrum, the 2DFFT spectrum of the combined wiring pattern, and the 2DFFT spectrum of the BM pattern 38 is obtained.
  • a plurality of spectra in the two-dimensional Fourier space obtained by 2DFFT of the image data multiplied by each transmittance of the obtained composite pattern includes a moire spectrum, a 2DFFT spectrum of the composite wiring pattern, and a 2DFFT of the BM pattern 38.
  • a spectrum will be included. Therefore, the 2DFFT spectrum of the composite pattern includes a plurality of moire spectra including noise.
  • step S14 image data obtained by multiplying each transmittance of the combined pattern of the BM pattern 38 calculated in step S12 and the combined wiring pattern of the two types of wiring patterns 24a and 24b (FIG. 12).
  • the absolute value of the 2D FFT spectrum of (see (A)) is normalized by the image size (4944 ⁇ 4944) as described above, and then summed within the image region, and the total value of the 2D FFT spectrum (absolute value) of the composite pattern To get.
  • the total value of the 2DFFT spectrum of the composite pattern thus obtained includes the moire spectrum, the 2DFFT spectrum of the composite wiring pattern, and the 2DFFT spectrum of the BM pattern 38.
  • the 2DFFT spectrum of the combined wiring pattern and the 2DFFT spectrum of the BM pattern 38 are excluded from the total value of the 2DFFT spectrum of the combined pattern, and only the moire spectrum (frequency and intensity) including noise is extracted.
  • the spectral intensity of moire is handled as an absolute value.
  • the total value of only the moire (moire / noise) spectrum including the noise extracted in this way is obtained.
  • the common logarithm value of the total value of only the moire / noise spectrum thus obtained is obtained, and the moiré / noise extraction quantitative value (common logarithm) is obtained.
  • a specific method for obtaining the total value of only the moire / noise spectrum from the total value of the 2D FFT spectrum of the composite pattern will be described later.
  • this corresponds to the relative distance between the peak positions on the frequency coordinates of the respective frequency peaks.
  • a plurality of differences between frequency peaks that are values of the above, that is, moire frequencies are also obtained. Therefore, when there are a large number of spectral peaks of both two-dimensional Fourier spectra, the frequency of the moire to be obtained becomes large and the strength of the moire to be obtained becomes large.
  • the peak of the 2DFFT spectrum of the BM pattern 38 (see FIG. 13B) and the combined wiring pattern, particularly the rule It is necessary to remove the 2DFFT spectrum peak (see FIG. 13A) of the wiring pattern 24a, which is a typical mesh pattern.
  • the removal of the peak of the 2DFFT spectrum of the BM pattern 38 can be performed as follows.
  • the highest spatial frequency (fundamental frequency) that can be displayed on the display is determined with respect to the resolution. For this reason, moire having a frequency higher than the highest spatial frequency is not displayed on the display, and thus does not need to be an object of evaluation in the present invention. Therefore, the maximum frequency of moire can be defined in accordance with the display resolution.
  • the spectrum peak of the BM pattern 38 is not included in the total value of the spectrum including moire. This indicates that due to the pixel mask effect of the BM pattern 38, the moire frequency necessary for quantifying the moire visibility can be limited to a pixel size or less. From the above, the total value of the spectrum including the moire obtained by removing the peak of the 2DFFT spectrum of the BM pattern 38 (BM pattern peak removal total value) can be obtained from the total value of the 2DFFT spectrum of the composite pattern.
  • the maximum frequency of moire to be considered in the present invention can be 1000 / (2p) when the pixel pitch of the BM pattern 38 of the display is p ( ⁇ m), for example.
  • the moire frequency to be evaluated in the present invention is determined according to the display resolution.
  • the removal of the peak of the 2DFFT spectrum of the combined wiring pattern (wiring pattern 24a) from the total value of the 2DFFT spectrum of the combined pattern can be performed as follows.
  • the peak of the spectrum of the synthetic wiring pattern (wiring pattern 24a) included in the 2DFFT spectrum of the synthetic pattern is shown by the spectrum of the synthetic wiring pattern shown in FIG. 13 (A) and (a) in FIG. 13 (B). This is expressed by a convolution integral (convolution) of the center value of the spectrum of the BM pattern 38 (the value of the origin of the uv coordinates (average value)).
  • the spectrum intensity of the spectrum peak of the composite wiring pattern is the sum total of the spectrum peak of each composite wiring pattern and the center value of the spectrum of the BM pattern 38 shown by (a) in FIG. It becomes.
  • the integrated total value of the combined wiring pattern is an integrated total value that is equal to or lower than the fundamental frequency of the BM pattern in the 2DFFT spectrum of the combined wiring pattern. Therefore, this integrated total value may be divided from the total value of the 2DFFT spectrum of the image data multiplied by each transmittance of the composite pattern shown in FIG. Therefore, by dividing the total sum value from the total BM pattern peak removal value, the total value of only the moire / noise spectrum can be obtained.
  • the removal of the 2DFFT spectrum peak of the BM pattern 38 and the removal of the 2DFFT spectrum peak of the combined wiring pattern (wiring pattern 24a) from the total value of the 2DFFT spectrum of the combined pattern may be performed first. good.
  • the common logarithm value of the total value of only the moire / noise spectrum thus obtained can be obtained, and the moire / noise extraction quantitative value (common logarithm) can be obtained.
  • the wiring pattern is evaluated based on the moiré quantitative value.
  • the moire / noise extraction quantitative value common logarithm
  • the combined wiring pattern that is, the wiring pattern.
  • the combination of 24a and 24b is evaluated as a combination of the optimized wiring patterns 24a and 24b of the conductive film 10 of the present invention, and is set as a combination of the optimized wiring patterns 24a and 24b.
  • the conductive film 10 is evaluated as being.
  • the reason why the quantitative value of moire is limited to a predetermined range is that interference between one of the more regular mesh patterns and the BM pattern out of two types of wiring patterns with different variations.
  • the moiré caused by the noise is also visually recognized by the mask effect due to noise caused by the other less regular mesh pattern, and the observed moiré may be anxious for the user to view or due to the less regular mesh pattern. This is because noise becomes conspicuous and is a concern for the user who sees it. This is because if the moiré quantitative value is within a predetermined range, even if the observation distance changes and moire occurs, the mask effect due to noise does not bother much.
  • the predetermined range depends on the properties of the conductive film and the display device, specifically, the line widths of the thin metal wires 14 of the wiring patterns 24a and 24b of the two conductive layers 16 (16a and 16b), and the openings. It is appropriately set according to the shape of the portion 22 (22a, 22b), its size (pitch, etc.), angle, etc., and the shape of the BM pattern 38, its size (pitch, etc.), arrangement angle, etc.
  • E the quantitative value of moire is E
  • E it is preferable that E ⁇ 2.150 (true number 10 ⁇ 2.150 ) in common logarithm, and more preferably E ⁇ 2.150 in common logarithm. 20425 (10 ⁇ 2.20425 in the true number).
  • moire evaluation indices are obtained from simulation samples and actual samples for a large number of combinations of the wiring patterns 24a and 24b, and three researchers are responsible for interference between the wiring patterns 24a and 24b and the BM pattern 38.
  • the quantitative value E of the moire is a common logarithm and E ⁇ 2.150, the highly regular wiring pattern (24a) and the BM pattern (38) If the moire generated by the interference is masked by noise due to the low regularity wiring pattern (24b), becomes difficult to be visually recognized, is at a level that is hardly noticed, and is a common logarithm, if E ⁇ 2.0425, the noise This is because there is also a mask effect due to the above, and it is a level that does not matter at all. Therefore, in the present invention, the moiré quantitative value E is specified as a common logarithm, preferably E ⁇ 2.150, more preferably E ⁇ 2.0425.
  • the conductive film wiring evaluation method of the present invention is completed, and generation of moire is suppressed even when superimposed on the BM pattern of the display unit of the display device. Regardless, it is possible to produce the conductive film of the present invention having two types of optimized wiring patterns with excellent moiré visibility and different regularity.
  • FIG. 17 is an exploded perspective view of a main part of the touch panel 200 of the present invention including the conductive film according to the second embodiment of the present invention.
  • the touch panel 200 includes a sensor body 202 and a control circuit (IC circuit or the like) (not shown).
  • the sensor body 202 is laminated on the second sheet body 110B and the laminated conductive film (conductive film) 112 configured by laminating the first sheet body 110A and the second sheet body 110B in this order from below. And a protective layer 206. That is, in the sensor body 202, the first sheet body 110A, the second sheet body 110B, and the protective layer 206 are laminated from below.
  • the sensor body 202 (the laminated conductive film 112 and the protective layer 206) is disposed on the display panel 210 in the display device 208 such as a liquid crystal display, for example.
  • the sensor unit 212 of the touch position arranged in the area corresponding to the display screen 210a of the display panel 210 and the terminal arranged in the area corresponding to the outer peripheral part of the display panel 210 And a wiring portion 214 (a so-called frame).
  • the first sheet body 110A has a first conductive pattern 118A as a first conductive portion (first electrode) 116A formed on one main surface of the first transparent base 114A that is an insulating layer.
  • the second sheet 110B has a second conductive pattern 118B (second conductive portion (second electrode) 116B) formed on one main surface of the insulating second transparent base 114B.
  • the thickness of the first transparent substrate 114A and the second transparent substrate 114B is preferably 20 to 350 ⁇ m or less, more preferably 30 to 250 ⁇ m, and particularly preferably 40 to 200 ⁇ m.
  • the first transparent substrate 114A and the second transparent substrate 114B include a plastic film, a plastic plate, and a glass plate.
  • raw materials for the plastic film and the plastic plate include polyesters such as polyethylene terephthalate (PET) and polyethylene naphthalate (PEN); polyethylene (PE), polypropylene (PP), polystyrene, polyethylene vinyl acetate (EVA), and the like.
  • PET polyethylene terephthalate
  • PEN polyethylene naphthalate
  • PE polyethylene
  • PP polypropylene
  • EVA polystyrene
  • EVA polyethylene vinyl acetate
  • Polyolefins vinyl resins; in addition, polycarbonate (PC), polyamide, polyimide, acrylic resin, triacetyl cellulose (TAC),
  • PET melting point: 258 ° C.
  • PEN melting point: 269 ° C.
  • PE melting point: 135 ° C.
  • PP melting point: 163 ° C.
  • polystyrene melting point: 230 ° C.
  • polyvinyl chloride melting point: 180 ° C.
  • polyvinylidene chloride melting point: 212 ° C.
  • TAC melting point: 290 ° C.
  • PET is preferable from the viewpoints of light transmittance and processability. Since the conductive films such as the first sheet body 110A and the second sheet body 110B used for the laminated conductive film 112 are required to be transparent, the transparency of the first transparent substrate 114A and the second transparent substrate 114B is high. It is preferable.
  • the first conductive pattern 118A has a plurality of strip-like patterns each extending in the first direction (x direction / longitudinal direction).
  • the first conductive pattern 118A has a predetermined width direction dimension (electrode width W1) in the second direction (direction perpendicular to the first direction: y direction), and a plurality of the first conductive patterns 118A are arranged in parallel along the y direction.
  • Each first conductive pattern 118A is formed by crossing thin wires 120 (wires) made of silver, copper, molybdenum, an alloy containing one or more of these, or conductive fibers, or the like. Along with this intersection, a plurality of spaces (openings) surrounded by the thin lines 120, that is, cells 122A are formed.
  • the shapes of the plurality of cells 122A are different from each other as shown in FIG. 20, and the regularity (unification) is low.
  • the mesh pattern of the first conductive pattern 118A formed by the thin line 120 is random.
  • the cells 122a and 122f have a trapezoidal shape, and the cells 122b and 122e have an octagonal shape.
  • the cell 122d has a shape that is bent when the cells 122b and 122f enter a rectangle with a curved corner.
  • the random mesh pattern of the first conductive pattern 118A may have a standard deviation of 2DFFT spectrum of less than ⁇ 5.0. Another example of the cell 122A is shown in FIG.
  • the cell 122A indicated by hatching includes a thin line 120p that connects the vertex C1 and the vertex C2 with a straight line, a thin line 120q that connects the vertex C2 and the vertex C3 with a straight line, a thin line 120r that connects the vertex C3 and the vertex C4 with a straight line, It is formed by a thin line 120s connecting the vertex C4 and the vertex C1 with a straight line, and forms a polygonal shape.
  • the other cells have a polygonal shape.
  • the width direction dimension (line width) of the thin wire 120 is not particularly limited, and can be set to 10 ⁇ m or less, for example, but preferably 5 ⁇ m or less. .
  • the combination of the random shape of the cell 122A and the small width of the fine line 120 improves the moire and noise granularity and improves the visibility.
  • the line width is more preferably 3 ⁇ m or less.
  • the line width of the thin line 120 is preferably 1 ⁇ m or more. From the above, the line width of the cells forming the random pattern is preferably 1 to 5 ⁇ m. Thereby, the noise granularity is reduced and the transmittance is improved.
  • the interval between adjacent cells 122A that is, the average cell pitch (distance between the centers of gravity of adjacent cells) is preferably in the range of 100 to 500 ⁇ m.
  • the average cell pitch in the random pattern can be obtained as the diameter of the smallest circle containing one cell 122A.
  • the transmittance can be improved by setting the average cell pitch within such a range.
  • the average cell pitch is more preferably in the range of 100 to 300 ⁇ m. This further contributes to an improvement in transmittance.
  • one end portion of each first conductive pattern 118A is electrically connected to the first terminal wiring pattern 142a formed by the thin wire 120 via the first connection portion 140a.
  • the second conductive pattern 118B formed on one main surface of the second transparent substrate 114B (see FIG. 19) constituting the second sheet body 110B has a second direction (y direction) as shown in FIG. ) Has a plurality of strip-shaped patterns.
  • the plurality of second conductive patterns 118B are arranged along the first direction (x direction). That is, in the laminated conductive film 112, as shown in FIG. 19, the first conductive pattern 118A and the second conductive pattern 118B face each other through the insulating first transparent base 114B.
  • the width direction dimension (electrode width W2) in the x direction of the second conductive pattern 118B is preferably set smaller than the electrode width W1 of the first conductive pattern 118A, but the electrode width W1 and the electrode width W2 are set. May be made equivalent.
  • each second conductive pattern 118B is formed when the thin wires 120 intersect each other. Along with this intersection, a space (opening) surrounded by the thin line 120, that is, a cell 122B is formed.
  • the cell 122 ⁇ / b> B preferably has a rhombus shape having the same length of four sides and two obtuse angles and two acute angles.
  • the obtuse crossing angle ⁇ in a diagonal relationship is the same angle exceeding 90 °
  • the acute crossing angle ⁇ is the same angle less than 90 °.
  • the intersection angle ⁇ which is an acute angle, is preferably 70 ° or less.
  • is preferably in the range of 30 ° to 70 °, more preferably in the range of 45 ° to 70 °.
  • the cell 122B is not limited to the horizontally long rhombus illustrated in FIG. 22, but may be a vertically long rhombus.
  • preferred width dimension (line width) W L of the thin line 120 is a 4 ⁇ m or less, more preferably 2 ⁇ m or less.
  • the width dimension W L of the fine wire 120 is preferably 1 ⁇ m or more. From the above, it is preferable that the line width of the cell forming the fixed pattern is 1 to 5 ⁇ m. Thereby, the appearance of moire and electrodes is improved, and the visibility is improved. Also, detection sensitivity is ensured.
  • the interval between adjacent cells 122B is preferably 300 ⁇ m or less. This case is also effective in reducing the appearance of moire and silver thin lines.
  • the standard pattern of the second conductive pattern 118B may have a standard deviation of 2DFFT spectrum of ⁇ 5.0 or more.
  • each second conductive pattern 118B is electrically connected to the second terminal wiring pattern 142b by the thin wire 120 through the second connection portion 140b.
  • the first sheet body 110 ⁇ / b> A applied to the touch panel 200 has the above-described multiple first conductive patterns 118 ⁇ / b> A arranged in a portion corresponding to the sensor unit 212.
  • a plurality of first terminal wiring patterns 142a are arranged by the thin wires 120 led out from the connection part 140a.
  • a plurality of first terminals 216 a are arranged at the central portion in the length direction at the peripheral portion of one long side of the first sheet body 110 ⁇ / b> A in the terminal wiring portion 214. Are arranged in the length direction. Further, a plurality of first connection portions 140a (for example, odd-numbered second connection portions 140a) along one short side of the sensor portion 212 (short side closest to one short side of the first sheet body 110A: y direction).
  • first connection parts 140a (for example, even-numbered ones) along the other short side of sensor part 212 (the short side closest to the other short side of first sheet body 110A: y direction) Are connected in a straight line.
  • first conductive patterns 118A are connected to the corresponding odd-numbered first connection portions 140a, and even-numbered first conductive patterns 118A are respectively corresponding even-numbered even numbers. It is connected to the first first connection part 140a.
  • the first terminal wiring pattern 142a derived from the odd-numbered first connection part 140a and the first terminal wiring pattern 142a derived from the even-numbered first connection part 140a are on one long side of the first sheet body 110A. They are routed toward a substantially central portion and are electrically connected to the corresponding first terminals 216a. Accordingly, for example, the first and second first terminal wiring patterns 142a are routed with substantially the same length.
  • the 2n-1th and 2nth first terminal wiring patterns 142a are , Each will be routed with approximately the same length.
  • the first terminal 216a at the central portion in the length direction of one long side of the first sheet body 110A, it is possible to suppress a local signal transmission delay as described above. This leads to an increase in response speed.
  • the outer shape of the second sheet body 110B has a rectangular shape when viewed from above, and the outer shape of the sensor unit 212 also has a rectangular shape.
  • the terminal wiring portions 214 a plurality of second terminals 216b are arranged in the lengthwise central portion of the peripheral portion on the one long side of the second sheet 110B in the length direction of the one long side. Is formed.
  • a plurality of second connection portions 140b are linearly arranged along one long side of sensor portion 212 (long side closest to one long side of second sheet body 110B: x direction).
  • the second terminal wiring pattern 142b led out from each second connection portion 140b is routed toward the substantially central portion of one long side of the second sheet body 110B, and electrically connected to the corresponding second terminal 216b. It is connected.
  • the second terminal wiring patterns 142b connected to the second connection portions 140b corresponding to both sides of one long side in the sensor unit 212 are routed with substantially the same length. Thereby, the delay of local signal transmission can be suppressed. This also contributes to an increase in response speed.
  • the first terminal wiring pattern 142a may be derived in the same manner as the second terminal wiring pattern 142b described above.
  • the second terminal wiring pattern 142b may be derived from the first terminal wiring pattern 142a described above. The same may be applied.
  • the laminated conductive film 112 is configured by laminating a second sheet 110B on a first sheet 110A.
  • the protective layer 206 is formed on the second sheet body 110B.
  • an adhesive (OCA) 130 as an adhesive sheet is also disposed between the upper end surface of the second sheet body 110B and the lower end surface of the protective layer 206.
  • seat body 110B. are connected to a control circuit for controlling scanning, for example.
  • a self-capacitance method or a mutual capacitance method can be preferably employed. That is, in the self-capacitance method, a voltage signal for touch position detection is sequentially supplied to the first conductive pattern 118A, and a voltage signal for touch position detection is sequentially supplied to the second conductive pattern 118B. Supply. Since the fingertip is in contact with or close to the upper surface of the protective layer 206, the capacitance between the first conductive pattern 118A and the second conductive pattern 118B facing the touch position and GND (ground) increases. The waveforms of the transmission signals from 118A and the second conductive pattern 118B are different from the waveforms of the transmission signals from the other conductive patterns. Therefore, the control circuit calculates the touch position based on the transmission signal supplied from the first conductive pattern 118A and the second conductive pattern 118B.
  • a voltage signal for touch position detection is sequentially supplied to the first conductive pattern 118A, and sensing (detection of a transmission signal) is sequentially performed on the second conductive pattern 118B.
  • sensing detection of a transmission signal
  • the stray capacitance of the finger is added in parallel to the parasitic capacitance between the first conductive pattern 118A and the second conductive pattern 118B facing the touch position.
  • the waveform of the transmission signal from the second conductive pattern 118B is different from the waveform of the transmission signal from the other second conductive pattern 118B. Therefore, in the control circuit, the touch position is calculated based on the order of the first conductive patterns 118A to which the voltage signal is supplied and the transmission signal from the supplied second conductive pattern 118B.
  • the first conductive pattern 118A and the second conductive pattern 118B can be preferably formed by a microcontact printing patterning method or a silver salt method in order to obtain a pattern having a narrow line width.
  • a silver salt method that does not use an exhausting stamp is more preferable.
  • the microcontact printing patterning method is a method for obtaining a pattern having a narrow line width by using the microcontact printing method.
  • the microcontact printing method is a method for producing a monomolecular film pattern by using an elastic polydimethylsiloxane stamp and bringing a thiol solution into contact with a gold substrate as an ink (by Whitesedes, Angew. Chem. Int. Ed., 1998, volume 37, page 550).
  • a typical process of the microcontact printing patterning method is as follows, for example. That is, first, the substrate is coated with a metal (eg, silver is sputter coated onto a PET substrate). Next, masking of the monomolecular film is stamped using a microcontact printing method on a metal coated substrate. Thereafter, the metal coated on the substrate is removed by etching except for the pattern under masking. Specific operations and the like for the above are described in detail in paragraph [0104] of JP-T-2012-519329.
  • the silver salt method is to obtain a pattern of fine lines 120 having a mesh shape by exposing and developing a photosensitive material having a photosensitive silver salt-containing layer.
  • the specific work and the like are described in detail in paragraphs [0163] to [0241] of Japanese Patent Laid-Open No. 2009-4348.
  • the characteristics of the touch panel 200 thus obtained are as follows: the touch panel A in which both the first conductive pattern and the second conductive pattern are fixed patterns (diamond shape), and both the first conductive pattern and the second conductive pattern are random patterns.
  • Table 1 collectively shows the characteristics of a touch panel B. As can be seen from Table 1, the touch panel 200 has less moiré and better visibility than the touch panel A, and has less moire and noise granularity and better transmittance than the touch panel B. .
  • the touch panel 200 having favorable characteristics can be obtained by using the first conductive pattern 118A as a random pattern and the second conductive pattern 118B as a fixed pattern.
  • the first and second conductive portions are designed. Since the wiring pattern arranged in the part can be a mixed mesh pattern composed of mesh patterns with different regularity variations, such as a mixed pattern with a random pattern and a regular pattern, the wiring pattern can be easily designed. be able to.
  • the present invention is not particularly limited to the above-described embodiment, and various modifications can be made without departing from the gist of the present invention.
  • the lower first conductive pattern 118A is a random pattern
  • the upper second conductive pattern 118B is a fixed pattern.
  • the lower first conductive pattern 118A is a fixed pattern.
  • the second conductive pattern 118B above the pattern may be a random pattern.
  • the laminated conductive film 112 is formed by forming the first conductive pattern 118A on one main surface of the first transparent substrate 114A and forming the second conductive pattern 118B on one main surface of the second transparent substrate 114B. It is not limited to (refer FIG.18 and FIG.19). That is, as shown in FIG. 24, the first conductive pattern 118A is formed on one main surface of the first transparent substrate 114A, and the second conductive pattern 118B is formed on the other main surface of the first transparent substrate 114A. It may be. In this case, the second transparent substrate 114B does not exist, the first transparent substrate 114A is stacked on the first conductive pattern 118A, and the second conductive pattern 118B is stacked on the first transparent substrate 114A.
  • first conductive pattern 118A and the second conductive pattern 118B may be formed on the same main surface of the first transparent substrate 114A.
  • first conductive pattern 118A and the second conductive pattern 118B are insulated from each other through an insulating portion such as a space or a dummy pattern.
  • the cell 122B (or the cell 122A) is not limited to the rhombus shape, and may be, for example, a shape including a parallelogram (excluding the rhombus), a polygon, and an arc.
  • the use of the laminated conductive film 112 is not particularly limited to the sensor body 202 of the touch panel 200, and can be used for various electrodes such as inorganic EL elements, organic EL elements, and solar cells. It is. Furthermore, in addition to electrodes, the present invention can also be applied to a transparent heating element (for example, a vehicle defroster) that generates heat when an electric current is passed, and an electromagnetic wave shielding material that blocks electromagnetic waves.
  • a transparent heating element for example, a vehicle defroster
  • an electromagnetic wave shielding material that blocks electromagnetic waves.
  • the BM pattern 38 shown in FIG. 11A is combined with the irregular pattern shown in FIG. 16A in combination with the wiring pattern 24b and the regular pattern shown in FIG. 16C in combination with the wiring pattern 24a.
  • the wiring patterns 24a and 24b are changed to various combinations having different pattern regularities, and simulation patterns and actual samples are used.
  • the combination of 24a and 24b and the BM pattern 38 were superimposed to obtain a quantitative value of moire, and three researchers conducted visual sensory evaluation of moire caused by interference between the two superimposed.
  • the sensory evaluation results are made in three stages of ⁇ (1), ⁇ (2), and ⁇ (3), and when it is evaluated that everyone is not interested, ⁇ (1) If all of them evaluate that they are hardly interested, or if at least one researcher evaluates that they are not interested, and the remaining researchers evaluate that they are hardly interested, then the evaluation will be “almost not interested” If there is a researcher who evaluates as ⁇ (2) and evaluates that even one person is interested in seeing moire, it was evaluated as ⁇ (3) as an evaluation of “I'm interested”.
  • the BM pattern 38 used in the present embodiment is a rectangular pattern shown in FIG. 11A, the resolution is 12700 dpi, the image size is 9944 (pixels) ⁇ 9944 (pixels), and the G filter
  • the sub-pixel 32g was 112 dpi, its shape was rectangular (rectangular), and its size was 28 (pixels) ⁇ 77 (pixels).
  • Regular patterns used as the wiring pattern 24a are shown in Table 2 as rule parameters 25, 27, 30 and 45.
  • the rule parameter 25 has a pitch (p) as shown in FIG. Was a regular rhombus pattern having a diagonal ( ⁇ ) of 25 ° [deg].
  • the regular patterns shown in Table 2 as rule parameters 25 (0.0284), 27 (0.018622), 30 (0.019424) and 45 (0.008493) are also shown in FIG. As shown in the figure, the standard deviation of the spectrum was -5 (-5.000) or more.
  • the irregular patterns used as the wiring pattern 24b are shown as irregular parameters 40 (0.070993), 42 (0.015673), 44 (0.01072) and 46 (0.006503) in Table 2.
  • the irregular parameters 40 and 44 were random patterns shown in FIGS. 16A and 16B, respectively.
  • the irregular patterns shown as irregular parameters 40, 42, 44 and 46 in Table 2 all have a spectral standard deviation of less than ⁇ 5 ( ⁇ 5.000). Met.
  • the line width of the fine metal wires 14 of the wiring patterns 24a and 24b was 4 ⁇ m.
  • the moiré quantitative value E is a common logarithm and is superimposed if E ⁇ 2.150. Even if the moire caused by the interference between the wiring pattern (24a) and the BM pattern (38) is visually recognized, it is at a level ( ⁇ (2)) that is hardly noticed by the mask effect due to noise, and E is the common logarithm. If it is within the range of ⁇ -2.20425, it can be seen that there is a masking effect due to noise, and the level ( ⁇ (1)) is not concerned at all.
  • the conductive film of the present invention having two types of wiring patterns with different regularities satisfying the above range in the above moire quantitative values can be used regardless of the observation distance, even if the display resolution is different. Even if the moiré is inevitable in principle, the visibility can be improved by the mask effect due to noise, and the visibility can be greatly improved. From the above, the effect of the present invention is clear.
  • a combination of wiring patterns having various pattern shapes is prepared in advance, and the conductive pattern combination optimized by the evaluation method of the present invention is used.
  • the film can be determined, but if the quantitative value of the moire of one combination of wiring patterns is out of the predetermined range, the transmittance image data of at least one wiring pattern of the combination of wiring patterns is used as a new wiring. Updating the pattern transmittance image data and applying the above-described evaluation method of the present invention to repeatedly obtain the moiré quantitative value to determine a conductive film having an optimized combination of wiring patterns You can also.
  • the new wiring pattern to be updated may be prepared in advance or may be newly created.
  • a regular wiring pattern or an irregular wiring pattern at least one of the rotation angle, pitch, and pattern width of the transmittance image data is set. It may be changed, or the shape and size of the opening of the wiring pattern may be changed. Furthermore, in the case of an irregular wiring pattern, not only the shape and size of the opening but also the repeating pattern of the opening (cell) may be given randomness.
  • Electrode pattern 1 Each cell has a rhombus having a side length of 0.4 mm, an angle of 60 °, and a line width of 5.0 ⁇ m.
  • Electrode pattern 2 Each cell has a rhombus with a side length of 0.4 mm, an angle of 60 °, and a line width of 2.0 ⁇ m. In the case of electrode patterns 1 and 2, the cells (diamonds) are arranged so as not to overlap.
  • Electrode pattern 3 Each cell is composed of polygons with random shapes, and R is in the range of 200 to 500 ⁇ m, where R is the diameter of the smallest circle containing each polygon. The line width is 5.0 ⁇ m.
  • Electrode pattern 4 Each cell is composed of polygons whose shapes are random, and R is in the range of 200 to 500 ⁇ m, where R is the diameter of the smallest circle containing each polygon.
  • the line width is 2.0 ⁇ m.
  • Example 1 The laminated conductive sheet 150 for evaluation in which the electrode pattern 2 (diamond) as the lower electrode 152 and the electrode pattern 4 (random) as the upper electrode 156 are combined is referred to as Example 1.
  • the lower electrode 152 is electrode pattern 4 (random)
  • the upper electrode 156 is electrode pattern 2 (diamond)
  • the lower electrode 152 is electrode pattern 1 (diamond)
  • the upper electrode 156 is electrode pattern 4
  • Example 3 was taken as (random).
  • Example 4 is one in which the lower electrode 152 is an electrode pattern 2 (diamond) and the upper electrode 156 is an electrode pattern 3 (random).
  • both the lower electrode 152 and the upper electrode 156 have rhombic electrode patterns (Comparative Example 1), and the lower electrode 152 and the upper electrode 156 have both electrode patterns random (Comparative Example 2).
  • Comparative Example 1 both the lower electrode 152 and the upper electrode 156 are made of the electrode pattern 2
  • Comparative Example 2 both the lower electrode 152 and the upper electrode 156 are made of the electrode pattern 4.
  • the transmittance was measured for Examples 1 to 4 and Comparative Examples 1 and 2 using a transmittance measuring device sold by Murakami Color Research Laboratory. Furthermore, in Examples 1 to 4 and Comparative Examples 1 and 2, when the electrode pattern design and work are performed, the work time is within 8 hours, and a relatively long time of 8 hours to 20 hours is required. However, the evaluation was made with a case where it was within the allowable range as ⁇ , and a case where a very long time of 20 hours or more was required as x.
  • the conductive film according to the present invention has been described with reference to various embodiments and examples.
  • the present invention is not limited to the above-described embodiments and examples.
  • various improvements and design changes may be made without departing from the scope of the present invention.
  • conductive film 12 transparent substrate 14 metal fine wire (metal fine wire) 16, 16a, 16b Conductive part 18, 18a, 18b Adhesive layer 20, 20a, 20b Protective layer 21, 21a, 21b Mesh wiring 22, 22a, 22b Opening 24, 24a, 24b Wiring pattern 28, 28a, 28b Conductive layer 30 Display unit 32 Pixels 32r, 32g, 32b Sub-pixel 34 Black matrix (BM) 38 BM pattern 40 Display device 44 Touch panel 110A First sheet body 110B Second sheet body 112 Laminated conductive film (conductive film) 114A First transparent substrate 114B Second transparent substrate 118A First conductive pattern 118B Second conductive pattern 120 Fine wire 122A, 122B Cell 130, 154, 158 Adhesive (OCA) 150 laminated conductive sheet 152 for evaluation lower electrode 156 upper electrode 200 touch panel 202 sensor body 206 protective layer 208 display device 210 display panel 214 terminal wiring portion

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Human Computer Interaction (AREA)
  • General Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Plasma & Fusion (AREA)
  • Textile Engineering (AREA)
  • Electromagnetism (AREA)
  • Shielding Devices Or Components To Electric Or Magnetic Fields (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)
  • Non-Insulated Conductors (AREA)

Abstract

 透明基体の両面に形成される第1及び第2の配線パターンは、それぞれ、異なる第1及び第2のパターンを少なくとも有し、合成配線パターンとして表示ユニットの画素配列パターンに重畳され、画素配列パターンと合成配線パターンとの合成パターンは、その透過率画像データの2次元フーリエ空間における複数のスペクトルから、画素配列パターン、及び合成配線パターンの透過率画像データの2次元フーリエ空間における複数のスペクトルを除き、画素配列パターンと合成配線パターンとの干渉によるモアレ及びノイズのみの複数のスペクトルを抽出して、抽出された全ての複数のスペクトルの合計値を求め、この合計値から算出したモアレ及びノイズの抽出定量値が所定範囲内である。

Description

導電性フィルム、それを備えるタッチパネル及び表示装置、並びに導電性フィルムの評価方法
 本発明は、導電性フィルム、それを備えるタッチパネル及び表示装置、並びに導電性フィルムの評価方法に関し、詳しくは、複数の金属細線により複数の開口部(セル)を配列したメッシュ状に形成されたメッシュ状配線パターン(以下、メッシュパターンともいう)の設計において、モアレ及びノイズの視認性に優れたメッシュパターンの配線を持つ導電性フィルム、それを備えるタッチパネル及び表示装置、並びに導電性フィルムの評価方法に関する。
 表示装置(以下、ディスプレイともいう)の表示ユニット上に設置される導電性フィルムとして、例えば電磁波シールド用の導電性フィルムやタッチパネル用の導電性フィルム等が挙げられる(例えば、特許文献1、2及び3参照)。
 タッチパネルでは、その表面が物体(例えば、指)から押圧された際に、導電性フィルム(センサ)によってその押圧位置を検出する。この導電性フィルム(センサ)には、互いに直交する方向に延在する第1の導電部(電極)及び第2の導電部(電極)が含まれる。
 これらの第1の導電部と第2の導電部の間には、通常絶縁性の透明基体が介在している。
 これらの第1の導電部及び第2の導電部は、金属細線(線材)を交差させることで形成されたメッシュからなる。交差した金属細線によって囲繞される開口部(空間)は、セルとも呼称され、このセルは、一般的には、多角形状や不定形状を成す。
 ここで、セルが四角形等の所定の同一形状をなす場合、メッシュは、通常、複数個の同一形状のセルが繰り返して連なる規則的な配線パターン、即ち、定型パターンとなる。このような規則的な配線パターンでは、例えばディスプレイの画素配列パターン(例えば、ブラックマトリックス(以下、BMともいう)パターン)と干渉してモアレ(干渉縞)が発生しやすいことが知られている。
 一方、セルの形状が、不定形状を成す場合や、種々の形状からなる場合には、セル形状に規則性(統一性)がなく、メッシュは、通常、同一形状のセルを繰り返すことができないので、不規則な配線パターン、即ち、ランダムパターンとなる。このようなランダムパターンでは、ノイズ粒状感(ざらつき感)が視認され易くなり、また、定型パターンに比して透過率が小さいことが知られている。
 ところで、本出願人の出願に係る特許文献1では、例えばディスプレイのBMパターン等の画素配列パターン、及び、例えば電磁波シールドパターン等の配線パターンのそれぞれのパターンデータの2次元フーリエスペクトル(2DFFTSp)のスペクトルピーク間の相対距離(例えばモアレの周波数に相当するともいうことができる)が、所定の空間周波数、例えば8cm-1を超えている配線パターンデータによって生成される配線パターンを自動的に選定することを開示している。
 なお、特許文献1では、上述の相対距離が所定の空間周波数を超えていない場合には、配線パターンデータの回転角度、ピッチ、パターン幅のいずれか1つ以上を変化させて、新たな配線パターンデータを生成することを、上述の相対距離が所定の空間周波数を超えるまで繰り返すことも開示している。
 こうして、特許文献1では、画素配列パターン及び配線パターン、例えば、所定画素が規則的に繰り返されるBMパターン及び規則的な配線パターン(その図2及び図6参照)のスペクトルピーク間の相対距離(モアレの周波数)を所定の空間周波数より高周波にすることにより、モアレの発生を抑止でき、表面抵抗率の増大や透明性の劣化をも回避することができる電磁波シールドパターンを自動的に選定できるようにしている。
 一方、本出願人の出願に係る特許文献2では、多角形状のメッシュを複数備えるメッシュパターン(例えば、ランダムパターン:図2および図14参照)を有する透明導電膜として、各メッシュの重心スペクトルに関して、所定の空間周波数、例えば人間の視覚応答特性が最大応答の5%に相当する空間周波数よりも高い空間周波数帯域側における平均強度が、所定の空間周波数よりも低い空間周波数帯域側における平均強度よりも大きくなるように、メッシュパターンが形成されている透明導電膜を開示している。
 こうして、特許文献2では、ランダムパターンに起因するノイズ粒状感を低減可能であり、観察対象物の視認性を大幅に向上できるとともに、断裁後にも安定した通電性能を有する透明導電膜を提供できるとしている。
 特許文献3では、規則的なメッシュパターン(図2、図11、および図25等参照)や、ランダムな形状のセルを含むランダムパターン(図23参照)等の導電性微小パターン要素の幅を1~10μmに低減することによって、導電性微小パターン要素をより見え難くすると共に、導電性微小パターン要素の可視性を不明瞭化又は低減する構造を設けることによって導電性微小パターン要素を見え難くしている。特許文献3では、このような構造の1つとして導電性微小パターンにおける擬似ランダムな変動も開示している。
特開2009-117683号公報 特開2011-216379号公報 特表2011-517355号公報
 ところで、特許文献1では、導電性フィルムの配線パターンを生成するに当たって、ディスプレイのBM(ブラックマトリックス)/配線パターンの周波数情報のみからモアレ周波数を制御し、視認性に優れた配線パターンを提供しているが、モアレが視認される/されないの判定を周波数のみに依存しているため、モアレが視認されないと判定される周波数の場合であっても、人のモアレの知覚は、周波数のみならず強度にも影響を受けるため、強度によってはモアレが視認される場合があり、モアレの視認性が十分に向上されないという問題があった。特に、特許文献1に開示の技術をタッチパネル用の導電性フィルムに適用する場合、人の指等によって押圧されるため、BM/配線パターン間に微妙な歪みが生じ、強度によるモアレの視認が助長されるという問題もあり、モアレの視認性の向上が十分でないという問題があった。
 また、特許文献2では、透明導電膜のメッシュパターンの各メッシュの重心スペクトルに関し、人間の視覚の応答特性が急激に低下する、所定の空間周波数よりも高い中~高空間周波数帯域における平均強度を、人間の視覚の応答特性の高い低空間周波数帯域における平均強度より高くすることで、人間にとって視覚的に感じられるノイズ感を減少させているが、透明導電膜のメッシュパターン自体のノイズ感の減少を図るに過ぎず、ディスプレイのBMパターンと透明導電膜のメッシュパターンとの間に生じるモアレを抑制し、モアレの視認性を向上させることにはつながらないという問題があった。
 また、特許文献3では、導電性微小パターンが規則的なメッシュパターンである場合には、導電性微小パターン要素を配置する透明基材と異なる透明基材に上記構造を設けて、導電性微小パターン要素の可視性を不明瞭化又は低減するに過ぎないし、導電性微小パターン要素に擬似ランダムな変動を持たせることにより、導電性微小パターン要素の可視性の不明瞭化又は低減を図っているが、擬似ランダムな変動とモアレの抑制との対応が十分に開示されておらず、導電性微小パターン要素に擬似ランダムな変動の持たせ方によっては、モアレの視認性を十分に向上させることにはつながらないという問題があった。
 ところで、ランダムパターン等の不規則な配線パターンでは、ノイズ、即ちノイズ粒状感(ざらつき感)が視認され易くなり、また、定型パターン等の規則的な配線パターンに比して透過率が小さいという不都合があると言う問題があった。即ち、規則的な配線パターンを採用するとノイズ粒状感が視認し難く、かつ透過率が大きくなるもののモアレの発生を抑制することが容易ではなく、一方、不規則な配線パターンを採用すると、モアレ(干渉縞)の発生が抑制されるものの、ノイズ粒状感が視認し易くなり、かつ透過率が小さくなるという二律背反の関係があるという問題があった。
 また、仮に、ディスプレイBMパターンとメッシュパターンの干渉によるモアレは、位置あわせ(ディスプレイBMパターンとメッシュパターンの空間周波数特性を完全に一致させる)ことを行わない限り、原理的に発生してしまうという問題があった。
 また、タッチセンサ(ディスプレイ+タッチパネル)の観察距離が予め設定された観察距離では、モアレの視認性が十分に向上された状態であっても、観察距離が変化すると、モアレが視認されてしまうケースがあるという問題もあった。
 本発明は、上記従来技術の問題点を解消し、表示ユニットの表示画面の観察距離によらず、モアレの発生を抑止でき、更には原理的に避けることのできないモアレであってもその視認性を改善でき、モアレ及びノイズの視認性、従って表示画面の視認性を大幅に向上させることができる導電性フィルム、それを備えるタッチパネル及び表示装置、並びに導電性フィルムの評価方法を提供することを目的とする。
 また、本発明は、特に、配線を有する透明導電性フィルムをタッチパネル用電極として用いる場合、観察距離によらず、表示装置の表示ユニットのブラックマトリックスに導電性フィルムを重畳して視認する際に大きな画質障害となるモアレの発生を抑止しながらも、更には原理的に避けることのできないモアレであってもその視認性を改善でき、ノイズ粒状感を視認し難くし、しかも、十分な透過率を示すことができ、タッチパネル上の表示の視認性を大幅に向上させることができる導電性フィルム、それを備えるタッチパネル及び表示装置、並びに導電性フィルムの評価方法を提供することを目的とする。
 更に、本発明は、特に、両主面にそれぞれ配置される第1及び第2の導電部(電極)を持つ導電性フィルムの導電部を設計する際に、第1及び第2の導電部に配置される配線パターンを、規則性のバラツキの異なるメッシュパターンからなる混合メッシュパターンとすることにより、配線パターンの設計を容易にすることができる導電性フィルム、それを備えるタッチパネル及び表示装置、並びに導電性フィルムの評価方法を提供することを目的とする。
 ところで、本発明者は、表示装置(ディスプレイ)の表示画面のモアレの視認性を大幅に向上させることができる1つの技術として、既に、ディスプレイの画素マトリックス及びメッシュパターンの空間周波数ピークを算出し、各々の空間周波数ピーク差分、ピーク強度積算値で得られるモアレの二次元周波数スペクトル及び強度と、視覚伝達関数との畳み込みにより算出された評価値が所定値以下であることを満たす配線パターンを持つ導電性フィルムを特願2013-020775号明細書に提案している。
 しかしながら、上記目的を達成する更なる技術の達成のために、本発明者は、更に鋭意研究を重ねた結果、規則的なメッシュパターンとディスプレイのBMパターンとの干渉によるモアレを、人間の視覚感度からずれるように発生させることにより、モアレ視認性に優れたメッシュパターンを設計することが可能であるが、しかし、ディスプレイのBMパターンとメッシュパターンとの干渉によるモアレは、位置あわせ(ディスプレイのBMパターンとメッシュパターンの空間周波数特性を完全に一致させること)を行わない限り、原理的に発生してしまうことを知見した。
 また、本発明者は、従来技術を用いたモアレ視認性に優れたメッシュパターン設計方法の設計概念は、モアレの空間周波数ができるだけ高周波となるようにすることであるが、しかし、どれだけ高周波にしようと、観察距離をタッチセンサ(ディスプレイ+タッチパネル)に近づけると、モアレが視認されてしまうケースがあることを知見した。
 その結果、本発明者は、これらの知見に基づいて、この技術の課題は、単に、規則的なメッシュパターンとディスプレイのBMパターンとの干渉によるモアレを、人間の視覚感度からずれるように高周波側で発生させることではなく、導電性フィルムの両面に、それぞれ、メッシュパターンのメッシュの開口部(セル)の規則性のバラツキの異なる規則性のより高いメッシュパターンと規則性のより低いメッシュパターンを、例えば、規則的な配線パターンと不規則な配線パターンを混合して用いることにより、後者の視認性の低いノイズ(ノイズ粒状性)成分によるマスク効果で、前者によって発生するモアレ、特に原理的に避けることのできない場合であってもモアレの視認性を改善することができることを知見し、本発明に至ったものである。
 上記技術的課題を達成するために、本発明の第1の態様に係る導電性フィルムは、表示装置の表示ユニット上に設置される導電性フィルムであって、透明基体と、この透明基体の両面にそれぞれ形成される第1及び第2の導電部と、を有し、第1及び第2の導電部は、それぞれ、複数の金属細線により複数の開口部を配列したメッシュ状に形成された第1及び第2の配線パターンを有し、第1及び第2の配線パターンは、それぞれ、その透過率画像データの2次元フーリエ空間におけるスペクトルのばらつきが異なる第1及び第2のパターンを少なくとも有し、第1及び第2の配線パターンは、合成配線パターンとして表示ユニットの画素配列パターンに重畳されており、画素配列パターンと合成配線パターンとの合成パターンは、合成パターンの透過率画像データの2次元フーリエ空間における複数のスペクトルから、画素配列パターンの透過率画像データの2次元フーリエ空間における複数のスペクトル及び合成配線パターンの透過率画像データの2次元フーリエ空間における複数のスペクトルを除き、画素配列パターンと合成配線パターンの第1及び第2の配線パターンとの干渉によるモアレ及びノイズのみの複数のスペクトルを抽出して、抽出された全ての複数のスペクトルの合計値を求め、この合計値から算出したモアレ及びノイズの抽出定量値が所定範囲内であることを特徴とする。
 上記技術的課題を達成するために、本発明の第1の態様に係る導電性フィルムは、表示装置の表示ユニット上に設置される導電性フィルムであって、透明基体と、この透明基体の両面にそれぞれ形成される第1及び第2の導電部と、を有し、第1及び第2の導電部は、それぞれ、複数の金属細線により複数の開口部を配列したメッシュ状に形成された第1及び第2の配線パターンを有し、第1及び第2の配線パターンは、それぞれ、その透過率画像データの2次元フーリエ空間におけるスペクトルのばらつきが異なる第1及び第2のパターンを少なくとも有し、第1及び第2の配線パターンは、合成配線パターンとして表示ユニットの画素配列パターンに重畳されており、第1のパターンは、その透過率画像データの2次元フーリエ空間におけるスペクトルの標準偏差が-5.0以上であり、第2のパターンは、その透過率画像データの2次元フーリエ空間におけるスペクトルの標準偏差が-5.0未満であることを特徴とする。
 また、上記目的を達成するために、本発明の第2の態様に係るタッチパネルは、上記第1の態様に係る導電性フィルムを含むことを特徴とする。
 また、上記目的を達成するために、本発明の第3の態様に係る表示装置は、表示ユニットと、この表示ユニットの上に設置される、上記第1の態様に係る導電性フィルムとを備えることを特徴とする。
 また、上記目的を達成するために、本発明の第4の態様に係る導電性フィルムの評価方法は、表示装置の表示ユニット上に設置される導電性フィルムの評価方法であって、導電性フィルムは、透明基体と、この透明基体の両面にそれぞれ形成される、複数の金属細線により複数の開口部を配列したメッシュ状に形成された第1及び第2の配線パターンを有し、第1及び第2の配線パターンは、それぞれ、その透過率画像データの2次元フーリエ空間におけるスペクトルのばらつきが異なる第1及び第2のパターンを少なくとも有するものであり、第1及び第2の配線パターンのそれぞれの透過率画像データと、第1及び第2の配線パターンが合成配線パターンとして重畳される、表示ユニットの画素配列パターンの透過率画像データとを取得し、取得された画素配列パターン、並びに第1及び第2の配線パターンのそれぞれの透過率画像データから、画素配列パターンと合成配線パターンとの合成パターンの透過率画像データを求め、求められた合成パターン、画素配列パターン、及び合成配線パターンのそれぞれの透過率画像データの2次元フーリエ変換を行い、合成パターンの透過率画像データの2次元フーリエ空間における複数のスペクトル、画素配列パターンの透過率画像データの2次元フーリエ空間における複数のスペクトル、及び合成配線パターンの透過率画像データの2次元フーリエ空間における複数のスペクトルを求め、合成パターンの複数のスペクトルから、画素配列パターンの複数のスペクトル、及び合成配線パターンの複数のスペクトルを除いて、画素配列パターンと合成配線パターンの第1及び第2の配線パターンとの干渉によるモアレ及びノイズのみの複数のスペクトルの合計値を求め、こうして得られた合計値からモアレ及びノイズの抽出定量値を算出し、こうして算出されたモアレ及びノイズの抽出定量値が所定範囲内である導電性フィルムを評価することを特徴とする。
 上記第1の態様、第2の態様、第3の態様及び第4の態様において、モアレ及びノイズのスペクトルの合計値は、画素配列パターンの空間周波数より低い周波数(表示ユニットの表示解像度に応じて規定されるモアレの最高周波数以下のモアレの周波数)を持つスペクトルのみを全て合計して求められたものであることが好ましい。また、モアレ及びノイズのスペクトルの合計値は、こうして先に求められた第1の合計値から、合成配線パターンの複数のスペクトルの全てを合計して求められた第2の合計値を引き算して求められることが好ましい。
 また、定量値を常用対数値でEとする時、所定範囲は、E<-2.150であることが好ましく、更に、E<-2.20425であることがより好ましい。
い。
 また、第1のパターンは、その透過率画像データの2次元フーリエ空間におけるスペクトルの標準偏差が-5.0以上であり、第2のパターンは、その透過率画像データの2次元フーリエ空間におけるスペクトルの標準偏差が-5.0未満であることが好ましい。
 また、第1のパターンは、規則的パターンであり、第2のパターンは、不規則パターンであることが好ましい。
 また、開口部は、金属細線同士が交差することで形成されるものであり、規則的パターンは、複数個の同一形状の開口部が連なるようにメッシュ状に形成された定型パターンであり、不規則パターンは、平面視で、形状が互いに異なる開口部を複数個含むようにメッシュ状に形成されたランダムパターンであることが好ましい。
 また、第1の配線パターンを有する第1の導電部は、透明基体の上面に形成され、第2の配線パターンを有する第2の導電部は、透明基体の下面に形成され、第1の配線パターンは、第1のパターンからなり、第2の配線パターンは、第2のパターンからなり、第2の配線パターンの幅は、第1の配線パターンの幅より大きいことが好ましい。
 また、モアレの周波数は、合成配線パターンのピーク周波数と画素配列パターンのピーク周波数との差分で与えられ、モアレの強度は、合成配線パターンのピーク強度と画素配列パターンのピーク強度との積で与えられることが好ましい。
 また、透過率画像データ及びスペクトルの強度は、合成パターンの透過率画像の面積で規格化されたものであることが好ましい。
 また、画素配列パターンは、ブラックマトリックスパターンであることが好ましい。
 また、第2のパターンを形成する金属細線の線幅は、1~5μmであることが好ましい。
 また、第2のパターンを形成する開口部同士の平均ピッチは、100~500μmの範囲内であることが好ましい。
 また、第1のパターンを形成する金属細線の線幅は、1~5μmであることが好ましい。
 また、第1のパターンを形成する開口部は、菱形をなすことが好ましい。
 また、第1のパターンを形成する金属細線、及び第2のパターンを形成する金属細線は、銀からなることが好ましい。
 以上説明したように、本発明によれば、表示ユニットの表示画面の観察距離によらず、モアレの発生を抑止でき、更には原理的に避けることのできないモアレの視認性をノイズ効果によってより改善でき、その結果、モアレ及びノイズの視認性、従って表示画面の視認性を大幅に向上させることができる。
 また、本発明によれば、特に、配線を有する透明導電性フィルムをタッチパネル用電極として用いる場合、観察距離によらず、表示装置の表示ユニットのブラックマトリックスに導電性フィルムを重畳して視認する際に大きな画質障害となるモアレの発生を抑止しながらも、更には原理的に避けることのできないモアレであってもその視認性を改善でき、ノイズ粒状感を視認し難くし、しかも、十分な透過率を示すことができ、タッチパネル上の表示の視認性を大幅に向上させることができる。
 また、本発明によれば、特に、両主面にそれぞれ配置される第1及び第2の導電部(電極)を持つ導電性フィルムの導電部を設計する際に、第1及び第2の導電部に配置される配線パターンを、規則性のバラツキの異なるメッシュパターンからなる混合メッシュパターンとすることができるので、配線パターンの設計を容易にすることができる。
 また、本発明によれば、特に、絶縁性透明基体を介して互いに対向する第1及び第2の導電部(電極)の中の一方を形成する開口部(セル)をランダムパターンとするとともに、残余の一方を形成するセルを定型パターンとすることにより、ランダムパターンをなす電極を有することに基づいてモアレの発生を抑制し得、かつ、定型パターンをなす電極を有することに基づいてノイズ粒状感を視認し難く、かつ十分な透過率を示すようにすることができる。
本発明の第1の実施形態に係る導電性フィルムの一例を模式的に示す部分断面図である。 図1に示す導電性フィルムの一方の導電部の配線パターンの一例を模式的に示す平面図である。 図1に示す導電性フィルムの他方の導電部の配線パターンの一例を模式的に示す平面図である。 (A)及び(B)は、それぞれ図1に示す導電性フィルムの一方の導電部の配線パターンの他の例を模式的に示す平面図である。 (A)及び(B)は、それぞれ図1に示す導電性フィルムの他方の導電部の配線パターンの他の例を模式的に示す平面図である。 本発明に係る導電性フィルムが適用される表示ユニットの一部の画素配列パターンの一例を表す概略説明図である。 図1に示す導電性フィルムを組み込んだ表示装置の一実施例の概略断面図である。 (A)及び(C)は、それぞれ本発明に係る導電性フィルムが適用される表示ユニットの画素配列パターンの一例を表す模式的部分拡大説明図であり、(B)及び(D)は、それぞれ、(A)及び(C)において、Gチャネルの副画素のみ利用するときの画素配列パターンの模式的説明図である。 (A)~(H)は、それぞれ本発明に係る導電性フィルムが適用される表示ユニットの画素配列パターンの別の一例を表す模式的部分拡大説明図である。 本発明に係る導電性フィルムの配線評価方法の一例を示すフローチャートである。 (A)は、本発明に係る導電性フィルムが適用される表示ユニットの画素配列パターンの一例を模式的に示す部分拡大図であり、(B)及び(C)は、それぞれ(A)の画素配列パターンに重畳される導電性フィルムの配線パターンの一例を模式的に示す部分拡大図である。 (A)は、図11(B)及び(C)に示す配線パターンの合成配線パターンを模式的に示す部分拡大図であり、(B)は、(A)に示す合成配線パターンと図11(A)に示す画素配列パターンとの合成パターンを異なる縮尺で模式的に示す概略説明図である。 (A)及び(B)は、それぞれ図12(A)に示す合成配線パターン及び図11(A)に示す画素配列パターンの各透過率画像データの2次元フーリエスペクトルを模式的に示すグラフである。 図12(A)に示す合成配線パターンと図11(A)に示す画素配列パターンとの干渉によって生じるモアレのスペクトルとディスプレイの解像度及び画素配列パターンのスペクトルとの関係を模式的に示すグラフである。 実施例において用いられる導電性フィルムの配線パターンの2次元フーリエ空間におけるスペクトル分布の標準偏差を示すグラフである。 (A)、(B)及び(C)は、それぞれ実施例において用いられる導電性フィルムの配線パターンの一例を示す概略説明図である。 本発明の第2の実施形態に係る導電性フィルムを具備するタッチパネルの要部分解斜視図である。 図17に示すタッチパネルを構成する導電性フィルムの要部分解斜視図である。 図18に示す導電性フィルムの概略縦断面図である。 図19に示す導電性フィルムに形成された第1の導電部(電極)のセルの一例を示す概略平面図である。 図19に示す第1の導電部(電極)のセルの別の一例を示す概略平面図である。 図19に示す導電性フィルムに形成された第2の導電部(電極)のセルの一例を示す概略平面図である。 図21に示す第1の導電部(電極)と図22に示す第2の導電部(電極)との重なり部分を示す概略平面図である。 図19に示す導電性フィルムとは別の実施形態に係る導電性フィルムの概略縦断面図である。 評価用導電性フィルムの概略縦断面図である。
 以下に、本発明に係る導電性フィルム及び導電性フィルムの評価方法を添付の図面に示す好適な実施形態を参照して詳細に説明する。
 以下では、本発明に係る導電性フィルムについて、タッチパネル用の導電性フィルムを代表例として説明するが、本発明は、これに限定されず、透明基体の両面に配置される規則性のバラツキの異なる配線パターンを持つ導電部を有するものであり、液晶ディスプレイ(LCD:Liquid Crystal Display)やプラズマディスプレイ(PDP:Plasma Display Panel)や有機ELディスプレイ(OELD:Organic ElectroLuminescence Display)や無機ELディスプレイ等の表示装置の表示ユニット上に設置される導電性フィルムであれば、どのようなものでも良く、例えば、電磁波シールド用の導電性フィルム等であっても良いのはもちろんである。
 図1は、本発明の第1の実施形態に係る導電性フィルムの一例を模式的に示す部分断面図であり、図2及び図3は、それぞれ、図1に示す導電性フィルムの一方及び他方の導電部の配線パターンの一例を模式的に示す平面図である。
 これらの図に示すように、本実施形態の導電性フィルム10は、表示装置の表示ユニット上に設置されるもので、表示ユニットのブラックマトリックス(BM:Black Matrix)に対してモアレの発生の抑止の点で優れた配線パターン、特に、BMパターンに重畳した際にBMパターンに対してモアレの視認性の点で最適化された配線パターンを持つ導電性フィルムであり、透明基体12と、透明基体12の一方の面(図1中上側の面)に形成され、複数の金属製の細線(以下、金属細線という)14からなる第1導電部(電極)16aと、第1導電部16aの略全面に、金属細線14を被覆するように、第1接着層18aを介して接着された第1保護層20aと、透明基体12の他方の面(図1中下側の面)に形成され、複数の金属製の細線14からなる第2導電部(電極)16bと、第2導電部16bの略全面に第2接着層18bを介して接着された第2保護層20bとを有する。
 なお、以下では、第1導電部16a及び第2導電部16bを総称する際には単に導電部16といい、第1接着層18a及び第2接着層18bを総称する際には単に接着層18といい、第1保護層20a及び第2保護層20bを総称する際には単に保護層20という。
 透明基体12は、絶縁性を有し、かつ透光性が高い材料からなり、例えば、樹脂、ガラス、シリコン等の材料を挙げることができる。樹脂としては、例えば、PET(Polyethylene Terephthalate)、PMMA(Polymethyl methacrylate)、PP(polypropylene)、PS(polystyrene)等が挙げられる。
 金属細線14は、導電性の高い金属製の細線であれば特に制限的ではなく、例えば、金(Au)、銀(Ag)又は銅(Cu)の線材等からなるものを挙げることができる。金属細線14の線幅は、視認性の点からは細い方が好ましいが、例えば、30μm以下であれば良い。なお、タッチパネル用途では、金属細線14の線幅は0.1μm以上15μm以下が好ましく、1μm以上9μm以下がより好ましく、2μm以上7μm以下がさらに好ましい。
 導電部16(16a,16b)は、複数の金属細線14をメッシュ状に配列したメッシュ配線21(21a,21b)によって形成される配線パターン24(24a,24b)を有する。配線パターン24(24a,24b)は、詳細には、複数の金属細線14同士を互いに交差させて形成された所定の形状の開口部(セル)22(22a,22b)が配列されたメッシュのパターンである。
 第1導電部16aは、図2に示すように、金属細線14と、隣接する金属細線14間の開口部(セル)22aとによるメッシュ形状の配線パターン24aとを有する導電層28a(図1参照)からなり、配線パターン24aは、同一形状の菱形の開口部22aが複数個規則的に繰り返される規則的な配線パターン、いわゆる定型パターンである。
 一方、第2導電部16bは、金属細線14と、隣接する金属細線14間の開口部22bとによるメッシュ形状の配線パターン24bとを有する導電層28b(図1参照)からなり、配線パターン24bは、図3に示すように、平面視で互いに形状が異なる開口部22bが複数個繋がった不規則な配線パターン、いわゆるランダムパターンである。
 なお、図2に示す例においては、配線パターン24aは、開口部22aのメッシュ形状が菱形である定型パターンであり、図3に示す例においては、配線パターン24bは、開口部22bのメッシュ形状が不定形状であるランダムパターンであるが、本発明はこれに限定されず、配線パターン24a及び配線パターン24bは、開口部(セル)22(22a,22b)の形状や繰り返しの等のパターンの規則性のバラツキの異なるメッシュパターンであり、一方が、規則性のより高いメッシュパターンであり、一方が、規則性のより低いメッシュパターンであれば良い。
 ここで、規則性のより高いメッシュパターン(以下、高規則性パターンという)は、その透過率画像データの2次元フーリエ空間において、特定のピークを持ち易いので、バラツキが大きくなり、高規則性パターンとしては、2次元フーリエ空間におけるスペクトル(2次元フーリエ変換して得られたスペクトル)の標準偏差が、-5.0以上であるのが好ましく、規則性のより低いメッシュパターン(以下、低規則性パターンという)は、その透過率画像データの2次元フーリエ空間において、特定のピークを持ち難いので、バラツキは小さくなり、低規則性パターンとしては、2次元フーリエ空間におけるスペクトル(2次元フーリエ変換して得られたスペクトル)の標準偏差が、-5.0未満であるのが好ましい。
 なお、高規則性パターン及び低規則性パターンは、パターンの規則性のバラツキが異なり、これらの合成配線パターンが、後述する表示装置の所定の画素配列(BM)パターンに対してモアレ視認性が最適化された配線パターンを構成できれば、それらの開口部22の形状は如何なるものであっても良い。即ち、配線パターン24の開口部22は、少なくとも3辺を有する多角形状や円や楕円や閉じた不定形状であれば如何なるものでも良く、また、同一メッシュ形状であっても、異なるメッシュ形状であっても良く、例えば、正三角形、二等辺三角形等の三角形や、正方形(正方格子)、長方形等の四角形(矩形)や、五角形や、六角形(正六角形)等の、同一又は異なる多角形等を挙げることができる。即ち、高規則性パターン及び低規則性パターンは、パターンの規則性のバラツキの高低に差があり、所定のBMパターンに対してモアレ視認性が最適化された合成配線パターンを形成できれば良い。
 また、配線パターン24には、開口部22を構成する金属細線14の辺(メッシュ配線21)に断線(ブレーク)が入っていてもよい。このようなブレークのあるメッシュ状配線パターンの形状としては、本出願人の出願に係る特願2012-276175号明細書に記載の導電性フィルムのメッシュ状配線パターンの形状を適用することができる。
 なお、配線パターン24aとして用いられる高規則性パターンとしては、開口部22aの形状が同一形状であり、規則性のある同一形状の開口部22aの配列によって構成される定型の配線パターンであるのがより好ましく、図2に示す菱形の開口部22aが規則的に配列された菱形パターンに加え、例えば、図4(A)及び(B)に示す配線パターン24aのように、正方形の開口部が規則的に配列された正方格子パターンや、正方六角形の開口部が規則的に配列された正六角形パターン等を挙げることができる。
 また、配線パターン24bとして用いられる低規則性パターンとしては、開口部22bの形状が異なる形状であり、異なる形状の開口部22の配列によってランダム化された配線パターンであるのがより好ましく、図3に示す異なる多角形状の開口部22bが配列されたランダムパターンに加え、例えば、図5(A)及び(B)に示す配線パターン24bのように、異なる形状の開口部22がランダムに配列されたランダムパターン等を挙げることができる。このようなランダムパターンとしては、例えば、アドべ(Adobe)社製フォトショップ(Photoshop)(登録商標)のステンドグラス機能を用いて作成したランダムパターン等も用いることができる。
 図1に示す実施の形態導電性フィルム10では、図1中、透明基体12の上側(観察側)の第1導電部16aに、より規則性の高い配線パターン24aを配置し、透明基体12の下側(ディスプレイ側)の第2導電部16bに、より規則性の低い配線パターン24bを配置しているが、本発明はこれに限定されず、逆に、図1中、透明基体12の上側(観察側)の第1導電部16aに、より規則性の低い配線パターン24bを配置し、透明基体12の下側(ディスプレイ側)の第2導電部16bに、より規則性の高い配線パターン24aを配置しても良い。
 また、第1導電部16a及び第2導電部16bには、それぞれ少なくとも1層の配線パターン24a及び24bが配置されていれば良く、その他の配線パターンの層を含んでいても良い。即ち、第1導電部16a及び第2導電部16bには、それぞれ少なくとも1層の配線パターン24a及び24bが配置されていればよい。
 なお、本実施形態の導電性フィルム10においては、第1導電部16a及び第2導電部16bの少なくとも1部が、これらの導電部16a及び16bから所定間隔だけ離間して配置され、これらの導電部16a及び16bと電気的に絶縁された状態下にある、金属細線14からなるダミー電極部で構成されていても良い。このようなダミー電極部を設けることにより、第1導電部16aと第2導電部16bの各メッシュ配線21(21a、21b)を対応して配置することができるので、透明基体12の一方(例えば、図1の上側又は下側)の面での金属細線による散乱を制御することができ、電極視認性を改善することができる。
 上述したように、第1保護層20aは、第1導電部16aの金属細線14を被覆するように、第1接着層18aによって第1導電部16aからなる導電層28aの略全面に接着されている。また、第2保護層20bは、第2導電部16bの金属細線14を被覆するように、第2接着層18bによって第2導電部16bからなる導電層28bの略全面に接着されている。
 ここで、接着層18(第1接着層18a及び第2接着層18b)の材料としては、ウェットラミネート接着剤、ドライラミネート接着剤、又はホットメルト接着剤等が挙げられるが、第1接着層18aの材質と第2接着層18bの材質とは、同一であってもよいし、異なってもよい。
 また、保護層20(第1保護層20a及び第2保護層20b)は、透明基体12と同様に、樹脂、ガラス、シリコンを含む透光性が高い材料からなるが、第1保護層20aの材質と第2保護層20bの材質とは、同一であってもよいし、異なってもよい。
 第1保護層20aの屈折率n1及び第2保護層20bの屈折率n2は、いずれも、透明基体12の屈折率n0に等しいか、これに近い値であるのが好ましい。この場合、第1保護層20aに対する透明基体12の相対屈折率nr1及び第2保護層20bに対する透明基体12の相対屈折率nr2は、共に1に近い値となる。
 ここで、本明細書における屈折率は、波長589.3nm(ナトリウムのD線)の光における屈折率を意味し、例えば樹脂では、国際標準規格であるISO 14782:1999(JIS K 7105に対応)で定義される。また、第1保護層20aに対する透明基体12の相対屈折率nr1は、nr1=(n1/n0)で定義され、第2保護層20bに対する透明基体12の相対屈折率nr2は、nr2=(n2/n0)で定義される。
 ここで、相対屈折率nr1及び相対屈折率nr2は、0.86以上1.15以下の範囲にあればよく、より好ましくは、0.91以上1.08以下である。
 なお、相対屈折率nr1及び相対屈折率nr2の範囲をこの範囲に限定して、透明基体12と保護層20(20a、20b)との部材間の光の透過率を制御することにより、モアレの視認性をより向上させ、改善することができる。
 上述した本発明の第1の実施形態の導電性フィルム10は、例えば、図6に一部を模式的に示す表示ユニット30(表示部)のタッチパネル44(図7参照)に適用されるが、タッチパネル44のタッチセンサを構成するために必要な金属細線14によるメッシュ配線のパターン(メタルメッシュパターン)を構成する際に、パターンの規則性のバラツキの異なる2種のメッシュパターン、即ち高規則性パターンと低規則性パターンを利用するものである。ここで、高規則性パターン、好ましくは、規則的なメッシュパターンは、従来技術同様に、表示装置(ディスプレイ)のブラックマトリックス(以下、BMともいう)と干渉してモアレを発生させる。一方、低規則性パターン、好ましくは、不規則なメッシュパターンは、BMと干渉して、ノイズを発生させる。本発明の導電性フィルムでは、両者のパターンを混合することで、高規則性パターンで発生する高周波のモアレは、低規則性パターンのノイズ成分によるマスク効果で、モアレが視認されにくくしている。本発明のように、モアレをマスクすることで視認されるモアレを改善する場合、モアレの視認性をより最適化する際には、規則的なメッシュパターンとBMの干渉によるモアレ、及び不規則なメッシュパターンとBMの干渉によるノイズのバランスが重要となるため、本発明では、好ましくは、それぞれのパターンの特徴を数値化し、最終的に得られる画質を数値で規定している。
 本発明の導電性フィルム10は、パターンの規則性のバラツキの異なる2種のメッシュパターンの合成配線パターンが、表示ユニット30の画素配列(BM)パターンに対してモアレ視認性の点で最適化された合成配線パターンを持つものである。なお、本発明では、BM(画素配列)パターンに対してモアレ視認性の点で最適化されたとは、所定のBMパターンに対して、高規則性パターンとの干渉で不可避的に発生する高周波のモアレを、低規則性パターンとの干渉で同時に生じるノイズ成分によるマスク効果で視認しにくくすることができる高規則性パターンと低規則性パターンとの1群の組み合わせ又は合成配線パターンを言う。なお、本発明では、最適化された2以上の1群の組み合わせ又は合成配線パターンにおいても、最も知覚されない組み合わせ(合成配線パターン)から知覚されにくい組み合わせ(合成配線パターン)まで序列を付けることができ、最もモアレが知覚されない1つの配線パターンの組み合わせ(合成配線パターン)を決定することもできる。
 なお、所定のBMパターンに対する合成配線パターンのモアレ視認性の最適化については、後述する。
 本発明の導電性フィルムは、基本的に以上のように構成される。
 図6は、本発明の導電性フィルムが適用される表示ユニットの一部の画素配列パターンの一例を模式的に表す概略説明図である。
 図6にその一部を示すように、表示ユニット30には、複数の画素32がマトリクス状に配列されて所定の画素配列パターンが構成されている。1つの画素32は、3つの副画素(赤色副画素32r、緑色副画素32g及び青色副画素32b)が水平方向に配列されて構成されている。1つの副画素は、垂直方向に縦長とされた長方形状とされており、3つの副画素32r、32g及び32bは、同一、もしくは同様の長方形状とされている。画素32の水平方向の配列ピッチ(水平画素ピッチPh)と画素32の垂直方向の配列ピッチ(垂直画素ピッチPv)は略同じとされている。つまり、1つの画素32とこの1つの画素32を囲むブラックマトリックス(BM)34(パターン材)にて構成される形状(網掛けにて示す領域36を参照)は正方形となっている。また、1つの画素32のアスペクト比は1ではなく、水平方向(横)の長さ>垂直方向(縦)の長さとなっている。
 なお、図示例では、1つの副画素(32r、32g、32b)の形状は、長方形状であるが、本発明はこれに限定されず、例えば、図8(A)に示す端部に切り欠きのある長方形状であっても良いし、図8(C)示すように、所定角度で屈曲した、又は折れ曲がった縦長の帯状であっても良く、若しくは湾曲した縦長の帯状であっても良く、また、端部に切り欠きがあっても良いし、その切り欠きの形状もどのような形状であっても良く、例えば、図9(A)~(H)に示すような種々の形状であっても良いし、従来公知の画素形状であればどのような形状でも良い。また、1つの画素32の副画素32r、32g、32bの形状は、同一形状であっても、副画素毎に異なっていても良い。
 また、画素ピッチ(水平及び垂直画素ピッチPh、Pv)も、表示ユニット30の解像度に応じたピッチであれば、如何なるピッチでも良く、例えば、84μm~264μmの範囲内のピッチを上げることができる。
 図6から明らかなように、複数の画素32の各々の副画素32r、32g及び32bによって構成される画素配列パターンは、これらの副画素32r、32g及び32bをそれぞれ囲むBM34のBMパターン38によって規定され、表示ユニット30と導電性フィルム10とを重畳した時に発生するモアレは、表示ユニット30のBM34のBMパターン38と導電性フィルム10の合成配線パターン(配線パターン24a及び24b)との干渉によって発生するので、厳密には、BMパターン38は、画素配列パターンの反転パターンであるが、ここでは、同様のパターンを表すものとして扱う。
 上記したBM34によって構成されるBMパターン38を有する表示ユニット30の表示パネル上に、例えば、導電性フィルム10を配置する場合、導電性フィルム10の配線パターン24は、BM(画素配列)パターン38に対してモアレ視認性の点で最適化されているので、画素32の配列周期と、導電性フィルム10の金属細線14の配線配列との間における空間周波数の干渉が殆どなく、モアレの発生が抑制されることになる。
 なお、図6に示す表示ユニット30は、液晶パネル、プラズマパネル、有機ELパネル、無機ELパネル等の表示パネルで構成されてもよい。
 次に、本発明の導電性フィルムを組み込んだ表示装置について、図7を参照しながら説明する。図7では、表示装置40として、本実施の形態に係る導電性フィルム10を組み込んだ投影型静電容量方式のタッチパネルを代表例に挙げて説明するが、本発明はこれに限定されないことは言うまでもない。
 図7に示すように、表示装置40は、カラー画像及び/又はモノクロ画像を表示可能な表示ユニット30(図6参照)と、入力面42(矢印Z1方向側)からの接触位置を検出するタッチパネル44と、表示ユニット30及びタッチパネル44を収容する筐体46とを有する。筐体46の一面(矢印Z1方向側)に設けられた大きな開口部を介して、ユーザは、タッチパネル44にアクセス可能である。
 タッチパネル44は、上記した導電性フィルム10(図1参照)の他、導電性フィルム10の一面(矢印Z1方向側)に積層されたカバー部材48と、ケーブル50を介して導電性フィルム10に電気的に接続されたフレキシブル基板52と、フレキシブル基板52上に配置された検出制御部54とを備える。
 表示ユニット30の一面(矢印Z1方向側)には、接着層56を介して、導電性フィルム10が接着されている。導電性フィルム10は、他方の主面側(第2導電部16b側)を表示ユニット30に対向させて、表示画面上に配置されている。
 カバー部材48は、導電性フィルム10の一面を被覆することで、入力面42としての機能を発揮する。また、接触体58(例えば、指やスタイラスペン)による直接的な接触を防止することで、擦り傷の発生や、塵埃の付着等を抑止可能であり、導電性フィルム10の導電性を安定させることができる。
 カバー部材48の材質は、例えば、ガラス、樹脂フィルムであってもよい。カバー部材48の一面(矢印Z2方向側)を酸化珪素等でコートした状態で、導電性フィルム10の一面(矢印Z1方向側)に密着させてもよい。また、擦れ等による損傷を防止するため、導電性フィルム10及びカバー部材48を貼り合わせて構成してもよい。
 フレキシブル基板52は、可撓性を備える電子基板である。本図示例では、筐体46の側面内壁に固定されているが、配設位置は種々変更してもよい。検出制御部54は、導体である接触体58を入力面42に接触する(又は近づける)際、接触体58と導電性フィルム10との間での静電容量の変化を捉えて、その接触位置(又は近接位置)を検出する電子回路を構成する。
 本発明の導電性フィルムが適用される表示装置は、基本的に以上のように構成される。
 次に、本発明において、表示装置の所定のBMパターンに対する導電性フィルムの配線パターンの組み合わせ(合成配線パターン)のモアレ視認性の及び最適化の手順について説明する。即ち、本発明の導電性フィルムにおいて、表示装置の所定のBMパターンに対してモアレが人間の視覚に知覚されないように最適化された合成配線パターン(配線パターンの組み合わせ)を評価して決定する手順について説明する。
 図10は、本発明の導電性フィルムの評価方法の一例を示すフローチャートである。
 本発明の導電性フィルムの配線パターンの評価方法は、表示装置の表示ユニットのBM(画素配列)パターンと導電性フィルムのバラツキの異なる2種の配線パターンの組み合わせ(合成配線パターン)との高速フーリエ変換(FFT)を用いた周波数解析により得られるBMパターンと導電性フィルムの合成配線パターンとの合成パターンの2次元フーリエ空間における複数の全てのスペクトル(周波数・強度を持つ)から、BMパターンの2次元フーリエ空間における複数の全てのスペクトル(周波数・強度を持つ)および合成配列パターンの2次元フーリエ空間における複数の全てのスペクトル(周波数・強度を持つ)を除いて、BMパターンと合成配線パターンとの干渉によるモアレ及びノイズのみの複数のスペクトルを抽出して、抽出された全ての複数のスペクトルの合計値を求め、この合計値からモアレ及びノイズの抽出定量値を算出し、算出された定量値が所定範囲内である合成配線パターンを形成するバラツキの異なる2種の配線パターンの組み合わせを、モアレが視認されないように最適化された2種の配線パターンの組み合わせとして評価し、決定するものである。
 なお、図7に示す構成の表示装置40の、メタルメッシュによる導電性フィルム10を用いるタッチパネル44において、最終的に観察者の目に届く光は、BM34からの放射光と、導電性フィルム10の透過率との積算で表される。従って、周波数空間(フーリエ空間)上では、畳み込み積分を行っていることと等価である。このため、この本発明法では、モアレ及びノイズのスペクトル(周波数/強度)の抽出のために一般的にFFTが利用されるが、利用方法によっては、対象物のスペクトル(周波数/強度)が大きく変化するため、以下の手順を規定している。
 本発明法においては、まず、手順1として、BMパターン及び2種の配線パターンの各画像(透過率画像データ:0-1)の作成を行う。即ち、図10に示すように、ステップS10において、図7に示す表示装置40の表示ユニット30のBMパターン38(BM34)(図11(A)参照)の透過率画像データと、導電性フィルム10の配線パターン24a及び24b(金属細線14)(図11(B)および(C)参照)の透過率画像データとを作成して、取得する。なお、予め、BMパターン38の透過率画像データと、配線パターン24a及び24bの各透過率画像データとが準備されている、若しくは蓄えられている場合には、準備された、若しくは蓄えられた中から取得するようにしても良い。
 表示ユニット30のBMパターン38は、例えば、図6、図8(A)及び(C)に示すように、1画素32当たり、RGBの3色の副画素32r、32g及び32bからなるパターンとすることができるが、単色を利用し、例えば、図11(A)、図8(B)及び(D)に示すように、Gチャネルの副画素32gのみ利用するときは、R及びBチャネルの透過率画像データは0とするのが好ましい。本発明において、BM34の画像データ、即ちBMパターン38の透過率画像データとしては、図6及び図11(A)に示すように、単純な矩形状のものに限定されず、使用可能なBMパターンであればBM34の長方形の開口を持たないものでも良く、任意のBM開口を持つBMパターンを指定して用いても良い。例えば、BMパターン38は、上述したように、図6及び図11(A)に示す単純な矩形状のものに限定されず、図8(A)及び(B)に示されるように、BM34の略長方形(切欠あり)の開口(副画素32r、32g及び32b)を持つものや、図8(C)および(D)に示すように、1画素32当たり、所定角度で屈曲した帯状の開口を持つ、RGBの3色の副画素32r、32g及び32bからなるパターンであっても良いし、湾曲した帯状の開口を持つものや鉤状の開口を持つものであっても良い。
 一方、導電性フィルム10のバラツキの異なる2種の配線パターンの内の規則性のより高い配線パターン24aは、例えば、図2及び図11(B)に示すように、配線となる金属細線14が水平線に対して所定角度、例えば、45°[deg]未満の角度傾いた菱形パターンとすることができるが、上述したように、配線パターン24aの開口部22aの形状は、どのようなものであっても良く、例えば、図4(A)及び(B)に示すような正方形(正方格子)や正六角形であっても良く、正方格子も、45°[deg]傾いた正方格子であっても良いのはもちろんである。
 他方、導電性フィルム10のバラツキの異なる2種の配線パターンの内の規則性のより低い配線パターン24bは、例えば、図3及び図11(C)に示すように、異なる形状の開口部22bの配列からなるランダムパターンとすることができるが、上述したように、配線パターン24bの開口部22bの形状は、どのようなものであっても良く、例えば、図5(A)及び(B)に示すようなランダム形状であっても良いのはもちろんである。
 なお、ここでは、BMパターン38の透過率画像データを作成する際に、その解像度を例えば、高解像度である12700dpiとし、透過率画像データのサイズを規定し、例えば、画素サイズを9944(画素)×9944(226×44(繰り返し数))(画素)とする。ここで、画像データのサイズは、例えば、10000×10000に最も近い、BM34の画像データ(BMパターン38)のサイズの整数倍であれば十分である。これは、それぞれの画像サイズを積算した際に、画像データが周期的な方が、2DFFT(2次元高速フーリエ変換)を行う際に、誤差が最小になるためである。なお、図11(A)に示す表示ユニット(ディスプレイ)30のBM34の副画素32gは、例えば、112dpiであり、開口部のサイズは、例えば、28(画素)×77(画素)である。
 このようなBMパターン38の透過率画像データが作成される。
 続いて、配線パターン24a及び24bの透過率画像データを作成する。これらの2種の画像データが用意され、最終的に両者の積算が行われる。配線パターン24a及び24bは、それぞれ、図11(B)および(C)に示すメッシュパターンであり、その画像解像度は、例えば、BMパターン38の解像度と同じ、12700dpiであり、画素サイズは、例えば、BMパターン38と同じ、9944(画素)×9944(画素)である。配線パターン24a及び24bの金属細線14の線幅は、例えば、4μmである。
 図11(B)に示す規則的なメッシュパターンは菱形パターンであり、ピッチ(p:図2参照)は、斜辺(p:図2参照)を示し、例えば、252μmであり、対角(θ:図2参照)は、例えば、50°[deg]である。
 図11(C)に示す不規則なメッシュパターンはランダムパターンであり、このようなランダムパターンは、例えば、アドべ(Adobe)社製フォトショップ(Photoshop)(登録商標)のステンドグラス機能を用いて作成したものである。
 こうして得られた図11(B)および(C)に示す配線パターン24a及び24bの透過率画像データが積算され、図12(A)に示す合成配線パターンの各透過率を掛けた画像データが求められる。
 その後、こうして得られた図12(A)に示す2者の合成配線パターンの各透過率を掛けた画像データとBMパターン38の透過率画像データとが積算され、図12(B)に示す3者の合成パターンの各透過率を掛けた画像データが求められる。こうして求められた図12(B)に示す合成パターンの各透過率を掛けた画像データは、ノイズを含むモアレの空間周波数を含むことになる。
 次に、手順2として、手順1で作成した種々の透過率画像データに対して、2次元高速フーリエ変換(2DFFT(基底2))を行う。即ち、図10に示すように、ステップS12において、ステップS10で作成したBMパターン38の透過率画像データ、2種の配線パターン24a及び24bの合成配線パターンの各透過率を掛けた画像データ、並びにBMパターン38と合成配線パターンとの合成パターンの各透過率を掛けた画像データの各々に対して2DFFT(基底2)処理を行い、BMパターン38の透過率画像データ、2種の配線パターン24a及び24bの合成配線パターンの各透過率を掛けた画像データ、並びにBMパターン38と合成配線パターンとの合成パターンの各透過率を掛けた画像データの2次元フーリエスペクトル(フーリエ空間における複数の2DFFTスペクトル(周波数及び強度)を算出する。
 ここで得られる合成配線パターンの各透過率を掛けた画像データの2次元フーリエ空間におけるスペクトルの複数のスペクトルピーク及びノイズ成分を、図13(A)に模式的に示す。なお、図13(A)において、矢印で指す直線は、規則的なパターンである配線パターン24aの基本周波数のベクトル方向を示す。ここで、図13(A)に示すスペクトルの複数のスペクトルピークは、主として、規則的な配線パターン24aによるものであり、図13(A)に示す円内に局在するノイズ成分は、主として、不規則な配線パターン24bによるものである。
 また、こうして得られるBMパターン38の透過率画像データの2次元フーリエ空間における複数のスペクトルのスペクトルピークを、図13(B)に模式的に示す。
 ここでは、BMパターン38及び合成配線パターンの配線パターン24aの各スペクトルピークのスペクトル周波数及びスペクトル強度は、以下のようにして算出して取得する。
 まず、スペクトル周波数の取得において、ピークの算出には、BMパターン38及び合成配線パターンの配線パターン24aを考慮すれば良く、BMパターン38及び配線パターン24aの基本周波数から周波数ピークを求める。これは、2DFFT処理を行う透過率画像データは離散値であるため、スペクトル周波数が、画像サイズの逆数に依存してしまうからである。周波数ピーク位置は、独立した2次元基本周波数ベクトル成分を元に組み合わせて表すことができるので、当然ながら、図13(A)及び(B)に示すように、得られるピーク位置は格子状となる。
 ここで、得られたスペクトル強度は、画像面積(画像サイズ)で規格化するのが好ましい。上述した例では、4944×4944で規格化しておくのが好ましい(パーセバルの定理)。
 なお、合成配線パターンの不規則な配線パターン24bの各スペクトルは、特定のピークを持ちにくいので、図13(A)に示すように、uv平面上に原点を中心とする所定範囲(所定半径の円)内に強度の小さいノイズ成分として分布する。
 ここで、図13(A)に模式的に示す2種の配線パターン24a及び24bの合成配線パターンの2DFFTスペクトルと、図13(B)に模式的に示すBMパターン38の2DFFTスペクトルとの畳み込み積分(コンボリューション)を行うと、モアレのスペクトル、合成配線パターンの2DFFTスペクトル、及びBMパターン38の2DFFTスペクトルが混合されたスペクトルが得られる。
 換言すれば、得られる合成パターンの各透過率を掛けた画像データの2DFFTによって得られる2次元フーリエ空間における複数のスペクトルには、モアレのスペクトル、合成配線パターンの2DFFTスペクトル、及びBMパターン38の2DFFTスペクトルが含まれることになる。したがって、合成パターンの2DFFTスペクトルには、ノイズを含むモアレの複数のスペクトルも含まれている。
 次に、手順3として、モアレの定量化を行い、ノイズを含むモアレの抽出定量値を算出する。即ち、図10に示すように、ステップS14において、ステップS12で算出したBMパターン38と2種の配線パターン24a及び24bの合成配線パターンとの合成パターンの各透過率を掛けた画像データ(図12(A)参照)の2DFFTスペクトルの絶対値を、上述したように、画像サイズ(4944×4944)で規格化した後に、画像領域内で合計し、合成パターンの2DFFTスペクトル(絶対値)の合計値を取得する。
 こうして得られた合成パターンの2DFFTスペクトルの合計値には、上述したように、モアレのスペクトル、合成配線パターンの2DFFTスペクトル、及びBMパターン38の2DFFTスペクトルが含まれる。
 このため、次に、合成パターンの2DFFTスペクトルの合計値から、合成配線パターンの2DFFTスペクトル、及びBMパターン38の2DFFTスペクトルを除き、ノイズを含むモアレのスペクトル(周波数及び強度)のみを抽出する。なお、ここでも、モアレのスペクトル強度を、絶対値として取り扱う。
 こうして抽出されたノイズを含むモアレ(モアレ/ノイズ)のスペクトルのみの合計値を求める。
 こうして得られたモアレ/ノイズのスペクトルのみの合計値の常用対数値を求め、モアレ/ノイズ抽出定量値(常用対数)を得る。
 なお、合成パターンの2DFFTスペクトルの合計値から、モアレ/ノイズのスペクトルのみの合計値を求める具体的な方法については、後述する。
 ところで、実空間においては、モアレは、本来、合成配線パターンの配線パターン24aとBMパターン38との透過率画像データの掛け算によって起こるため、周波数空間においては、両者の畳み込み積分(コンボリューション)を行うことになる。しかしながら、ステップS12において、BMパターン38及び合成配線パターン(配線パターン24a)の両2次元フーリエスペクトルのピークスペクトル(周波数及び強度)が算出されているので、両者のそれぞれの周波数ピーク同士の差分(差の絶対値)を求め、求められた差分をモアレの周波数とし、両者の組み合わせた2組のベクトル強度の積を求め、求められた積をモアレの強度(絶対値)とすることで、モアレのスペクトルを求めることができる。
 ここで、図13(A)及び(B)にそれぞれ示す合成配線パターン(配線パターン24a)及びBMパターン38の両者の2次元フーリエスペクトルの強度特性のそれぞれの周波数ピーク同士の差分は、両者の2次元フーリエスペクトルの強度特性を重ね合わせて得られる強度特性において、両者のそれぞれの周波数ピークの周波数座標上のピーク位置間の相対距離に相当する。
 なお、合成配線パターン(配線パターン24a)及びBMパターン38の両者の2次元フーリエスペクトルのスペクトルピークは、図13(A)及び(B)にそれぞれ示すように、それぞれ複数存在するので、その相対距離の値である周波数ピーク同士の差分、即ちモアレの周波数も複数求められることになる。したがって、両2次元フーリエスペクトルのスペクトルピークが多数存在すると、求めるモアレの周波数も多数となり、求めるモアレの強度も多数となる。
 ここで、合成パターンの2DFFTスペクトルの合計値から、モアレ/ノイズのスペクトルのみの合計値を求めるには、BMパターン38の2DFFTスペクトルのピーク(図13(B)参照)及び合成配線パターン、特に規則的なメッシュパターンである配線パターン24aの2DFFTスペクトルのピーク(図13(A)参照)を除去する必要がある。
 まず、BMパターン38の2DFFTスペクトルのピークの除去は、以下のようにして行うことができる。
 ここで、表示装置においては、ディスプレイ解像度が決まっているため、ディスプレイが表示できる最高の空間周波数(基本周波数)はその解像度に対して決まる。このため、この最高の空間周波数より高い周波数を持つモアレは、このディスプレイで表示されないことになるので、本発明における評価の対象とする必要はない。従って、ディスプレイ解像度に合わせてモアレの最高周波数を規定することができる。
 即ち、図14に示すように、モアレを含むスペクトル和を算出する際、BMパターン38の空間周波数より低いスペクトルのみの和を求めることができることを示している。こうすることで、モアレを含むスペクトルの合計値には、BMパターン38のスペクトルピークは含まれなくなる。これは、BMパターン38の画素マスク効果により、モアレ視認性を定量化する際に必要なモアレの周波数を、画素サイズ以下に限定することができることを示している。
 以上から、合成パターンの2DFFTスペクトルの合計値から、BMパターン38の2DFFTスペクトルのピークを除去したモアレを含むスペクトルの合計値(BMパターンピーク除去合計値)を求めることができる。
 なお、本発明において考慮すべきモアレの最高周波数は、ディスプレイのBMパターン38の画素ピッチを、例えば、p(μm)とする時、1000/(2p)とすることができる。こうして、本発明では、両2次元フーリエスペクトルのスペクトルピークから求められたモアレの周波数及び強度の中で、本発明における評価の対象とするモアレは、モアレの周波数が、ディスプレイ解像度に応じて規定されるモアレの最高周波数1000/(2p)以下の周波数を持つモアレとすることができる。
 次に、合成パターンの2DFFTスペクトルの合計値からの合成配線パターン(配線パターン24a)の2DFFTスペクトルのピークの除去は、以下のようにして行うことができる。
 合成パターンの2DFFTスペクトルの中に含まれる合成配線パターン(配線パターン24a)のスペクトルのピークは、図13(A)に示す合成配線パターンのスペクトルと、図13(B)中の(a)で示されるBMパターン38のスペクトルの中心値(uv座標の原点の値(平均値))の畳み込み積分(コンボリューション)で表される。このため、合成配線パターンのスペクトルピークのスペクトル強度は、各々の合成配線パターンのスペクトルピークと、図13(B)中の(a)で示されるBMパターン38のスペクトルの中心値との積算合計値となる。なお、この合成配線パターンの積算合計値は、合成配線パターンの2DFFTスペクトルの内の、BMパターンの基本周波数以下の積算合計値となる。
 したがって、この積算合計値を、図12に示す合成パターンの各透過率を掛けた画像データの2DFFTスペクトルの合計値から除算すれば良い。
 したがって、上記のBMパターンピーク除去合計値から、この積算合計値を除算すれば、モアレ/ノイズのスペクトルのみの合計値を求めることができる。
 なお、合成パターンの2DFFTスペクトルの合計値からの、上述したBMパターン38の2DFFTスペクトルのピークの除去及び合成配線パターン(配線パターン24a)の2DFFTスペクトルのピークの除去は、いずれを先に行っても良い。
 こうして求められたモアレ/ノイズのスペクトルのみの合計値の常用対数値を求め、モアレ/ノイズ抽出定量値(常用対数)を得ることができる。
 次に、手順4として、モアレの定量値に基づいて配線パターンの評価を行う。
 図10に示すように、ステップS16において、ステップS14で得られたモアレ/ノイズ抽出定量値(常用対数)(モアレの定量値)が、所定範囲内にあれば、当該合成配線パターン、即ち配線パターン24a及び24bの組み合わせは、本発明の導電性フィルム10の最適化された配線パターン24a及び24bの組み合わせであると評価し、最適化された配線パターン24a及び24bの組み合わせとして設定し、本発明の導電性フィルム10であるとして評価する。
 なお、モアレの定量値を、所定範囲内に限定する理由は、所定範囲から外れると、2種のバラツキの異なる配線パターンの内の一方のより規則性の高いメッシュパターンとBMパターンのとの干渉によって生じたモアレが、他方のより規則性の低いメッシュパターンによるノイズによるマスク効果によっても視認され、視認されたモアレが目視するユーザにとって気になるものとなったり、より規則性の低いメッシュパターンによるノイズが目立つようになり、目視するユーザにとって気になるものとなるからである。モアレの定量値が、所定範囲内では、観察距離が変わったりして、モアレが生じたとしても、ノイズによるマスク効果によりあまり気にならないからである。
 ここで、所定範囲は、導電性フィルム及び表示装置の性状に応じて、具体的には、2つの導電層16(16a,16b)の配線パターン24a及び24bの金属細線14の線幅や、開口部22(22a,22b)の形状やそのサイズ(ピッチ等)や角度等、及びBMパターン38の形状やそのサイズ(ピッチ等)や配置角度等に応じて適宜設定されるものであるが、例えば、モアレの定量値をEとする時、常用対数で、E<-2.150(真数で10-2.150)であるのが好ましく、より好ましくは、常用対数で、E<-2.20425(真数で10-2.20425)である。
 なお、詳しくは後述するが、配線パターン24a及び24bの多数の組み合わせについて、シミュレーションサンプル及び実サンプルでモアレの評価指標を求め、3名の研究員が配線パターン24a及び24bとBMパターン38との干渉によるモアレを目視による官能評価を行ったところ、モアレの定量値Eが、常用対数で、E<-2.150であれば、規則性の高い配線パターン(24a)とBMパターン(38)のとの干渉によって生じたモアレが規則性の低い配線パターン(24b)によるノイズによってマスクされ、視認され難くなり、殆ど気にならないレベル以上であり、常用対数で、E<-2.20425であれば、ノイズによるマスク効果もあり、全く気にならないレベルであるからである。
 したがって、本発明では、モアレの定量値Eを、常用対数で、好ましくは、E<-2.150に、より好ましくは、E<-2.20425に特定している。
 こうして、本発明の導電性フィルムの配線評価方法は終了し、表示装置の表示ユニットのBMパターンに重畳してもモアレの発生が抑止され、異なる解像度の表示装置に対しても、また、観察距離によらず、モアレの視認性に優れた、最適化された2種の規則性の異なる配線パターンを持つ本発明の導電性フィルムを作製することができる。
 次に、本発明の第2の実施形態に係る導電性フィルムおよびタッチパネルついて説明する。なお、ここで、数値範囲を示す「~」は、その前後に記載される数値を下限値及び上限値として含む意味として使用される。また、本発明の第2の実施形態においても、本発明の第1の実施形態の適用事項を適用可能であり、逆に、本発明の第1の実施形態においても、本発明の第2の実施形態の適用事項を適用可能なことは勿論である。
 図17は、本発明の第2の実施形態に係る導電性フィルムを具備する本発明のタッチパネル200の要部分解斜視図である。このタッチパネル200は、センサ本体202と、図示しない制御回路(IC回路等)とを有する。
 センサ本体202は、第1シート体110Aと第2シート体110Bとが下方からこの順序で積層されて構成された積層導電性フィルム(導電性フィルム)112と、第2シート体110B上に積層された保護層206とを有する。すなわち、センサ本体202においては、下方から、第1シート体110A、第2シート体110B、保護層206が積層されている。
 センサ本体202(積層導電性フィルム112及び保護層206)は、例えば、液晶ディスプレイ等の表示装置208における表示パネル210上に配置される。センサ本体202は、上面から視認したときに、表示パネル210の表示画面210aに対応した領域に配されたタッチ位置のセンサ部212と、表示パネル210の外周部分に対応する領域に配された端子配線部214(いわゆる額縁)とを有する。
 ここで、積層導電性フィルム112につき、要部を拡大した図18及び図19を参照して説明する。
 第1シート体110Aは、絶縁層である第1透明基体114Aの一主面上に形成された第1の導電部(第1電極)116Aとしての第1導電パターン118Aを有する。第2シート体110Bも同様に、絶縁性の第2透明基体114Bの一主面上に形成された第2導電パターン118B(第2の導電部(第2電極)116B)を有する。
 第1透明基体114A及び第2透明基体114Bの厚みは20~350μm以下が好ましく、30~250μmが一層好ましく、40~200μmが特に好ましい。
 第1透明基体114A及び第2透明基体114Bとしては、プラスチックフイルム、プラスチック板、ガラス板等を挙げることができる。
 上記プラスチックフイルム及びプラスチック板の原料としては、例えば、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)等のポリエステル類;ポリエチレン(PE)、ポリプロピレン(PP)、ポリスチレン、ポリエチレンビニルアセテート(EVA)等のポリオレフィン類;ビニル系樹脂;その他、ポリカーボネート(PC)、ポリアミド、ポリイミド、アクリル樹脂、トリアセチルセルロース(TAC)、シクロオレフィンポリマー(COP)等を用いることができる。
 第1透明基体114A及び第2透明基体114Bとしては、PET(融点:258℃)、PEN(融点:269℃)、PE(融点:135℃)、PP(融点:163℃)、ポリスチレン(融点:230℃)、ポリ塩化ビニル(融点:180℃)、ポリ塩化ビニリデン(融点:212℃)やTAC(融点:290℃)等の融点が約290℃以下であるプラスチックフイルム、又はプラスチック板が好ましく、特に光透過性や加工性等の観点から、PETが好ましい。積層導電性フィルム112に使用される第1シート体110A及び第2シート体110Bのような導電性フィルムは透明性が要求されるため、第1透明基体114A及び第2透明基体114Bの透明度は高いことが好ましい。
 本実施の形態の場合、第1導電パターン118Aは、図18に示すように、それぞれ第1方向(x方向/長手方向)に延びる複数の帯状のパターンを有する。第1導電パターン118Aは、第2方向(第1方向と直交する方向:y方向)に向かう所定の幅方向寸法(電極幅W1)を有するとともに、複数個が該y方向に沿って並列配置されている。
 各第1導電パターン118Aは、銀、銅、モリブデン、これらの中の1種以上を含む合金、又は導電性繊維等からなる細線120(線材)同士が交差することにより形成される。この交差に伴って、細線120によって囲繞される空間(開口部)、すなわち、セル122Aが複数個形成される。
 複数個のセル122Aの形状は、図20に示すように互いに異なり、且つ規則性(統一性)が低い。換言すれば、細線120によって形成される第1導電パターン118Aのメッシュパターンはランダムである。例えば、セル122a、122fは、台形形状であり、セル122b、セル122eは、八角形形状である。また、セル122dは、隅部が湾曲した長方形に対してセル122b、122fが進入することで折曲された形状を呈している。ここで、第1導電パターン118Aのランダムメッシュパターンは、2DFFTスペクトルの標準偏差が、-5.0未満であるのが良い。
 セル122Aの別の一例を図21に示す。この場合、ハッチングで示したセル122Aは、頂点C1及び頂点C2を直線で結ぶ細線120pと、頂点C2及び頂点C3を直線で結ぶ細線120qと、頂点C3及び頂点C4を直線で結ぶ細線120rと、頂点C4及び頂点C1を直線で結ぶ細線120sとで形成され、多角形形状をなしている。その他のセル(セル122A)も同様に、多角形形状を呈している。
 図20又は図21に示したいずれの例においても、細線120の幅方向寸法(線幅)は、特に限定されるものではなく、例えば、10μm以下に設定することができるが、5μm以下が好ましい。セル122Aの形状がランダムであることと、細線120の線幅がこのように小さいこととが相俟って、モアレ及びノイズ粒状感が改善されて視認性が良好となる。線幅は、3μm以下とすることが一層好ましい。なお、タッチパネル200の検出感度を確保するべく、細線120の線幅は1μm以上であることが好ましい。
 以上から、ランダムパターンを形成するセルの線幅は、1~5μmであることが好ましい。これにより、ノイズ粒状感が低減されるとともに透過率が向上する。
 さらに、隣接するセル122A同士の間隔、すなわち、平均セルピッチ(隣接セルの重心間距離)は、100~500μmの範囲内であることが好ましい。ここで、ランダムパターンにおける平均セルピッチは、1個のセル122Aを内包する最小の円の直径として求めることができる。
 平均セルピッチをこのような範囲内に設定することにより、透過率を向上させることができる。なお、平均セルピッチは、100~300μmの範囲内であることが一層好ましい。これにより、更に透過率の向上に寄与する。図18に示すように、各第1導電パターン118Aの一方の端部は、第1結線部140aを介して細線120による第1端子配線パターン142aに電気的に接続されている。
 一方、第2シート体110Bを構成する第2透明基体114B(図19参照)の一主面上に形成された第2導電パターン118Bは、図18に示すように、それぞれ第2方向(y方向)に延びる複数の帯状のパターンを有する。これら複数の第2導電パターン118Bは、第1方向(x方向)に沿って配列されている。すなわち、積層導電性フィルム112では、図19に示すように、絶縁性の第1透明基体114Bを介して第1導電パターン118Aと第2導電パターン118Bが対向する。
 なお、第2導電パターン118Bのx方向に向かう幅方向寸法(電極幅W2)は、第1導電パターン118Aの電極幅W1に比して小さく設定することが好ましいが、電極幅W1と電極幅W2を同等にするようにしてもよい。
 各第2導電パターン118Bも第1導電パターン118Aと同様に、細線120同士が交差することにより形成される。この交差に伴って、細線120によって囲繞される空間(開口部)、すなわち、セル122Bが形成される。
 この場合、セル122Bは、図22に示すように、4辺の長さが等しく、且つ2つの鈍角と2つの鋭角を有する菱形形状をなすことが好ましい。勿論、対角関係にある鈍角の交差角度αは、90°超の同一角度であり、鋭角の交差角度βは、90°未満の同一角度である。
 鋭角である交差角度βは、70°以下であることが好ましい。この場合、モアレを低減するのに有効である。ただし、βが過度に小さい場合にもモアレが発生し易くなる。これを回避するべく、βは、30°~70°の範囲内、さらには45°~70°の範囲内とすることが好ましい。
 セル122Bは、図22に例示した横長の菱形に限定されるものではなく、縦長の菱形であってもよいことは勿論である。
 セル122Bにおいて、細線120の好ましい幅方向寸法(線幅)Wは4μm以下であり、一層好ましくは2μm以下である。これにより細線120による導電パターンのモアレ及び銀細線見えが改善され、視認性が良好となる(すなわち、細線120を視認し難くなる)。なお、タッチパネル200の検出感度を確保するべく、細線120の幅方向寸法Wは1μm以上であることが好ましい。
 以上から、定型パターンを形成するセルの線幅は、1~5μmであることが好ましい。これにより、モアレ及び電極の見えが改善され、視認性が良好となる。また、検出感度も確保される。
 さらに、隣接するセル122B同士の間隔、すなわち、セルピッチ(隣接セルの重心間距離)は、300μm以下であることが好ましい。この場合も、モアレ及び銀細線見えを低減するのに有効である。
 ここで、第2導電パターン118Bの定型パターンは、2DFFTスペクトルの標準偏差が、-5.0以上であるのが良い。
 図18に示すように、各第2導電パターン118Bの一方の端部は、第2結線部140bを介して細線120による第2端子配線パターン142bに電気的に接続されている。
 タッチパネル200に適用した第1シート体110Aは、図18に示すように、センサ部212に対応した部分に、上述した多数の第1導電パターン118Aが配列され、端子配線部214には各第1結線部140aから導出された細線120による複数の第1端子配線パターン142aが配列されている。
 図17の例では、端子配線部214のうち、第1シート体110Aの一方の長辺側の周縁部には、その長さ方向中央部分に、複数の第1端子216aが前記一方の長辺の長さ方向に配列形成されている。また、センサ部212の一方の短辺(第1シート体110Aの一方の短辺に最も近い短辺:y方向)に沿って複数の第1結線部140a(例えば奇数番目の第2結線部140a)が直線状に配列され、センサ部212の他方の短辺(第1シート体110Aの他方の短辺に最も近い短辺:y方向)に沿って複数の第1結線部140a(例えば偶数番目の第2結線部140a)が直線状に配列されている。
 複数の第1導電パターン118Aのうち、例えば奇数番目の第1導電パターン118Aが、それぞれ対応する奇数番目の第1結線部140aに接続され、偶数番目の第1導電パターン118Aが、それぞれ対応する偶数番目の第1結線部140aに接続されている。奇数番目の第1結線部140aから導出された第1端子配線パターン142a並びに偶数番目の第1結線部140aから導出された第1端子配線パターン142aは、第1シート体110Aの一方の長辺における略中央部に向かって引き回され、それぞれ対応する第1端子216aに電気的に接続されている。従って、例えば第1番目と第2番目の第1端子配線パターン142aは、略同じ長さにて引き回され、以下同様に、第2n-1番目と第2n番目の第1端子配線パターン142aは、それぞれ略同じ長さにて引き回されることになる。このように、第1シート体110Aの一方の長辺の長さ方向中央部分に第1端子216aを形成することで、上記と同様に局所的な信号伝達の遅延を抑制することができる。これは、応答速度の高速化につながる。
 一方、第2シート体110Bの外形は、上面から見て長方形状を有し、センサ部212の外形も長方形状を有する。端子配線部214のうち、第2シート体110Bの一方の長辺側の周縁部には、その長さ方向中央部分に、複数の第2端子216bが前記一方の長辺の長さ方向に配列形成されている。また、センサ部212の一方の長辺(第2シート体110B一方の長辺に最も近い長辺:x方向)に沿って複数の第2結線部140bが直線状に配列されている。各第2結線部140bから導出された第2端子配線パターン142bは、第2シート体110Bの一方の長辺における略中央部に向かって引き回され、それぞれ対応する第2端子216bに電気的に接続されている。
 従って、センサ部212における一方の長辺の両側に対応する各第2結線部140bに接続された第2端子配線パターン142bは、略同じ長さにて引き回されることになる。これにより、局所的な信号伝達の遅延を抑制することができる。このことも、応答速度の高速化に寄与する。
 なお、第1端子配線パターン142aの導出形態を上述した第2端子配線パターン142bと同様にしてもよいし、逆に、第2端子配線パターン142bの導出形態を上述した第1端子配線パターン142aと同様にしてもよい。
 積層導電性フィルム112は、図19に示すように、第1シート体110Aに第2シート体110Bが積層されて構成される。この際、第1シート体110Aの上端面(即ち、第1導電パターン118A及び第1透明基体114A上)と、第2シート体110Bの下端面との間には、粘着シートとして貼付された粘着剤(OCAとも指称される)130が配置される。このようにして形成された積層導電性フィルム112において、第1導電パターン118Aと第2導電パターン118Bが重なった箇所(重なり部分)の一例を、平面図として図23に示す。
 この積層導電性フィルム112をタッチパネル200として使用する場合は、第2シート体110B上に保護層206を形成する。なお、第2シート体110Bの上端面と保護層206の下端面との間にも、粘着シートとしての粘着剤(OCA)130が配置される。そして、第1シート体110Aの多数の第1導電パターン118Aから導出された第1端子配線パターン142aと、第2シート体110Bの多数の第2導電パターン118Bから導出された第2端子配線パターン142bとを、例えば、スキャンをコントロールする制御回路に接続する。
 タッチ位置の検出方式としては、自己容量方式や相互容量方式を好ましく採用することができる。すなわち、自己容量方式であれば、第1導電パターン118Aに対して順番にタッチ位置検出のための電圧信号を供給し、第2導電パターン118Bに対して順番にタッチ位置検出のための電圧信号を供給する。指先が保護層206の上面に接触又は近接させることで、タッチ位置に対向する第1導電パターン118A及び第2導電パターン118BとGND(グランド)間の容量が増加することから、当該第1導電パターン118A及び第2導電パターン118Bからの伝達信号の波形が他の導電パターンからの伝達信号の波形と異なった波形となる。従って、制御回路では、第1導電パターン118A及び第2導電パターン118Bから供給された伝達信号に基づいてタッチ位置を演算する。
 一方、相互容量方式の場合は、例えば第1導電パターン118Aに対して順番にタッチ位置検出のための電圧信号を供給し、第2導電パターン118Bに対して順番にセンシング(伝達信号の検出)を行う。指先が保護層206の上面に接触又は近接させることで、タッチ位置に対向する第1導電パターン118Aと第2導電パターン118B間の寄生容量に対して並列に指の浮遊容量が加わることから、当該第2導電パターン118Bからの伝達信号の波形が他の第2導電パターン118Bからの伝達信号の波形と異なった波形となる。従って、制御回路では、電圧信号を供給している第1導電パターン118Aの順番と、供給された第2導電パターン118Bからの伝達信号に基づいてタッチ位置を演算する。
 このような自己容量方式又は相互容量方式のタッチ位置の検出方法を採用することで、保護層206の上面に同時に2つの指先を接触又は近接させても、各タッチ位置を検出することが可能となる。なお、投影型静電容量方式の検出回路に関する先行技術文献として、米国特許第4,582,955号明細書、米国特許第4,686,332号明細書、米国特許第4,733,222号明細書、米国特許第5,374,787号明細書、米国特許第5,543,588号明細書、米国特許第7,030,860号明細書、米国特許出願公開第2004/0155871号明細書等がある。
 第1導電パターン118A及び第2導電パターン118Bは、線幅の狭いパターンを得るために、好適にはマイクロコンタクト印刷パターニング法又は銀塩法によって形成することができる。大量のランダムパターンを繰り返し得るためには、消耗するスタンプを用いない銀塩法がより好ましい。
 マイクロコンタクト印刷パターニング法とは、マイクロコンタクト印刷法を利用して線幅が狭いパターンを得る方法である。ここで、マイクロコンタクト印刷法は、弾力性のあるポリジメチルシロキサンのスタンプを用い、チオール溶液をインキとして金基材に接触させて単分子膜のパターンを作製する方法である(Whitesedes著、Angew.Chem.Int.Ed.,1998年第37巻第550頁参照)。
 マイクロコンタクト印刷パターニング法の代表的なプロセスは、例えば、以下の通りである。すなわち、先ず、基材に金属がコーティングされる(例えば、銀が、PET基材にスパッタコーティングされる)。
 次に、単分子膜のマスキングが、金属がコーティングされた基材にマイクロコンタクト印刷法を用いてスタンピングされる。その後、マスキング下のパターンを除いて、基材にコーティングされた金属がエッチングにより除去される。
 以上につき、その具体的な作業等は、特表2012-519329号公報の段落[0104]に詳述されている。
 一方、銀塩法は、感光性銀塩含有層を有する感光材料を露光・現像することにより、メッシュ状をなす細線120のパターンを得るものである。その具体的な作業等は、特開2009-4348号公報の段落[0163]~[0241]に詳述されている。
 このようにして得られるタッチパネル200の特性を、第1導電パターン及び第2導電パターンの双方が定型パターン(菱形形状)であるタッチパネルA、第1導電パターン及び第2導電パターンの双方がランダムパターンであるタッチパネルBの特性とともに一括して表1に示す。この表1から分かるように、タッチパネル200は、タッチパネルAに比してモアレが低減し且つ視認性に優れるとともに、タッチパネルBに比してモアレ及びノイズ粒状感が低減し且つ透過率が良好である。
 すなわち、第1導電パターン118Aをランダムパターンとする一方で第2導電パターン118Bを定型パターンとすることにより、諸特性が良好なタッチパネル200を得ることができる。
 また、本発明を用いて、両主面にそれぞれ配置される第1及び第2の導電部(電極)を持つ導電性フィルムの導電部を設計する際に、特に、第1及び第2の導電部に配置される配線パターンを、ランダムパターン及び定型パターンとの混合パターンのように、規則性のバラツキの異なるメッシュパターンからなる混合メッシュパターンとすることができるので、配線パターンの設計を容易にすることができる。
Figure JPOXMLDOC01-appb-T000001
 本発明は、上記した実施の形態に特に限定されるものではなく、本発明の主旨を逸脱しない範囲で種々の変更が可能である。
 例えば、この実施の形態では、下方の第1導電パターン118Aをランダムパターン、上方の第2導電パターン118Bを定型パターンとするようにしているが、その逆に、下方の第1導電パターン118Aを定型パターン、上方の第2導電パターン118Bをランダムパターンとするようにしてもよい。
 さらに、積層導電性フィルム112は、第1透明基体114Aの一主面に第1導電パターン118Aを形成し、第2透明基体114Bの一主面に第2導電パターン118Bを形成して積層するもの(図18及び図19参照)に限定されるものではない。すなわち、図24に示すように、第1透明基体114Aの一主面に第1導電パターン118Aが形成され、且つ該第1透明基体114Aの他主面に第2導電パターン118Bが形成されたものであってもよい。この場合、第2透明基体114Bが存在せず、第1導電パターン118A上に第1透明基体114Aが積層され、第1透明基体114A上に第2導電パターン118Bが積層された形態となる。
 さらにまた、第1導電パターン118Aと第2導電パターン118Bは、第1透明基体114Aの同一主面上に形成されてもよい。この場合、第1導電パターン118Aと第2導電パターン118Bとは、スペースやダミーパターン等の絶縁部を介して互いに絶縁された形態となる。
 そして、セル122B(又はセル122A)は菱形形状に限定されるものではなく、例えば、平行四辺形(菱形を除く)、多角形、円弧を含む形状であってもよい。
 いずれの場合においても、積層導電性フィルム112の用途は、タッチパネル200のセンサ本体202に特に限定されるものではなく、無機EL素子、有機EL素子、あるいは太陽電池等の各種電極に用いることも可能である。さらに、電極以外にも、電流を流すことで発熱する透明発熱体(例えば、車両のデフロスタ)、電磁波を遮断する電磁波シールド材にも適用可能である。
 以下に、本発明を実施例に基づいて具体的に説明する。
 なお、以下の実施例に示される材料、使用量、割合、処理内容、処理手順等は、本発明の主旨を逸脱しない限り適宜変更することができる。すなわち、本発明の範囲は以下に示す具体例に限定的に解釈されるべきものではない。
(第1実施例)
 図11(A)に示すBMパターン38に対して、図16(A)に示す不規則パターンを配線パターン24b及び図16(C)に示す規則的なパターンを配線パターン24aとの組み合わせとする合成配線パターンを持つ本発明の第1の実施形態の導電性フィルム10について、配線パターン24a及び24bの組み合わせを、パターンの規則性の異なる種々の組み合わせに変えて、シミュレーションサンプル及び実サンプルで、配線パターン24a及び24bの組み合わせとBMパターン38とを重畳し、モアレの定量値を求めると共に、3名の研究員が、重畳された両者の干渉によって生じるモアレを目視で官能評価した。
 ここで、官能評価結果は、○(1)、△(2)、×(3)の3段階で行い、全員が気にならないと評価した場合は、「気にならない」評価として○(1)と評価し、全員がほとんど気にならないと評価した場合又は少なくとも1名の研究員が気にならないと評価しかつ残りの研究員がほとんど気にならないと評価する場合は、「ほとんど気にならない」評価として△(2)と評価し、1名でもモアレが視認されて気になると評価する研究員がいる場合は、「気になる」評価として×(3)と評価した。
 本実施例において用いられるBMパターン38は、図11(A)に示す矩形状パターンであり、その解像度は、12700dpiであり、画像サイズは9944(画素)×9944(画素)であり、Gフィルタの副画素32gは、112dpiであり、その形状は、矩形(長方形)であり、そのサイズは、28(画素)×77(画素)であった。
 配線パターン24aとして用いられる規則的なパターンは、表2に規則パラメータ25、27、30及び45として示されており、規則パラメータ25は、図16(C)に示されるように、ピッチ(p)が252μmであり、対角(θ)が25°[deg]である定型の菱形パターンであった。
 表2に規則パラメータ25(0.0284)、27(0.018622)、30(0.014924)及び45(0.008493)として示されている規則的なパターンは、図15にも示されているように、いずれもスペクトルの標準偏差が-5(-5.000)以上であった。
 配線パターン24bとして用いられる不規則パターンは、表2に不規則パラメータ40(0.017093)、42(0.015673)、44(0.01072)及び46(0.006503)として示されており、不規則パラメータ40及び44は、それぞれ図16(A)及び(B)に示されるランダムパターンであった。
 表2に不規則パラメータ40、42、44及び46として示されている不規則パターンは、図15にも示されているように、いずれもスペクトルの標準偏差が-5(-5.000)未満であった。
 また、配線パターン24a及び24bの金属細線14の線幅は、4μmであった。
 表2においては、不規則パラメータ40、42、44及び46の不規則パターンのそれぞれに対して、規則パラメータ25、27、30及び45の規則パターンをそれぞれ組み合せて、合計16の組み合わせに対して、BMパターン38に重畳した時のモアレの定量値を求め、また、目視による可能評価を行った。
 その結果を表2に示す。
Figure JPOXMLDOC01-appb-T000002

 
 上記の表2から、BMパターンと、規則性の異なる2種の配線パターンとの組み合わせにおいて、モアレの定量値Eが、常用対数で、E<-2.150の範囲内であれば、重畳された配線パターン(24a)とBMパターン(38)のとの干渉によって生じたモアレが視認されても、ノイズによるマスク効果で殆ど気にならないレベル(△(2))以上であり、常用対数でE<-2.20425の範囲内であれば、ノイズによるマスク効果もあり、全く気にならないレベル(○(1))であることが分かる。
 以上から、上記のモアレ定量値が、上記範囲を満足する規則性の異なる2種の配線パターンを持つ本発明の導電性フィルムは、ディスプレイの解像度が異なっていても、観察距離によらず、モアレの発生を抑止でき、原理的に避けることのできないモアレであってもノイズによるマスク効果によりその視認性を改善でき、視認性を大幅に向上させることができる。
 以上から、本発明の効果は明らかである。
 なお、本発明では、上述した実施例のように、予め、種々のパターン形状の配線パターンの組み合わせを準備しておいて、本発明の評価方法によって最適化された配線パターンの組み合わせを持つ導電性フィルムを決定することができるが、配線パターンの1つの組み合わせのモアレの定量値が、所定範囲外である場合には、配線パターンの組み合わせの少なくとも一方の配線パターンの透過率画像データを新たな配線パターンの透過率画像データに更新して、上述した本発明の評価方法を適用してモアレの定量値を求めることを繰り返して、最適化された配線パターンの組み合わせを持つ導電性フィルムを決定することもできる。
 ここで、更新される新たな配線パターンは、予め準備されたものであっても、新たに作成されたものであっても良い。なお、新たに作成され場合には、規則的な配線パターンであっても、不規則な配線パターンであっても、その透過率画像データの回転角度、ピッチ、パターン幅のいずれか1つ以上を変化させても良いし、配線パターンの開口部の形状やサイズを変更するようにしても良い。更には、不規則な配線パターン場合には、開口部の形状やサイズのみならず、開口部(セル)の繰り返しパターンにランダム性を持たせても良い。
(第2実施例)
(ハロゲン化銀感光材料)
 水媒体中のAg150gに対してゼラチン10.0gを含む、球相当径平均0.1μmの沃臭塩化銀粒子(I=0.2モル%、Br=40モル%)を含有する乳剤を調製した。
 この乳剤中に対し、濃度が10-7(モル/モル銀)になるようにKRhBr及びKIrClを添加し、臭化銀粒子にRhイオンとIrイオンをドープした。この乳剤にNaPdClを添加し、さらに塩化金酸とチオ硫酸ナトリウムを用いて金硫黄増感を行った後、ゼラチン硬膜剤と共に、銀の塗布量が10g/mとなるように基体(ここでは、ともにポリエチレンテレフタレート(PET))上に塗布した。この際、Ag/ゼラチン体積比は2/1とした。
 幅30cmのPET支持体に25cmの幅で20m分塗布を行い、塗布の中央部24cmを残すように両端を3cmずつ切り落としてロール状のハロゲン化銀感光材料を得た。
(露光)
 露光のパターンについて、後述する電極パターン1~4のパターンのフォトマスクを作製し、これを介して高圧水銀ランプを光源とした平行光を用いて露光した。
(現像処理)
・現像液1L処方
   ハイドロキノン            20g
   亜硫酸ナトリウム           50g
   炭酸カリウム             40g
   エチレンジアミン・四酢酸        2g
   臭化カリウム              3g
   ポリエチレングリコール2000     1g
   水酸化カリウム             4g
   pH              10.3に調整
・定着液1L処方
   チオ硫酸アンモニウム液(75%)  300ml
   亜硫酸アンモニウム・1水塩      25g
   1,3-ジアミノプロパン・四酢酸    8g
   酢酸                  5g
   アンモニア水(27%)         1g
   pH               6.2に調整
 上記処理剤を用いて露光した感材に対し、富士フィルム社製の自動現像機FG-710PTSを用い、現像:35℃で30秒、定着:34℃で23秒、水洗:5L/分の流水中で20秒という条件下で処理を施した。
 なお、電極パターン1~4は下記の通りである。
 電極パターン1:各セルが、一辺の長さが0.4mm、角度が60°、線幅が5.0μmである菱形。
 電極パターン2:各セルが、一辺の長さが0.4mm、角度が60°、線幅が2.0μmである菱形。
 電極パターン1、2の場合、各セル(菱形)が重ならないように並んでいる。
 電極パターン3:各セルが、形状がランダムな多角形からなり、個々の多角形を内包する最小の円の直径をRとしたとき、Rが200~500μmの範囲内。線幅は5.0μm。
 電極パターン4:各セルが、形状がランダムな多角形からなり、個々の多角形を内包する最小の円の直径をRとしたとき、Rが200~500μmの範囲内。線幅は2.0μm。
 これら4種の電極パターンを露光機にセットして、マスクと同一の線幅になるように露光を行い、電極パターン1から電極パターン4のいずれかからなる電極を有する導電シートを作製した。
 これらの導電シートの中から2枚を選定し、図25に示す評価用積層導電シート150を作製した。ここで、図25中の参照符号152、154、156、158、160は、それぞれ、下方電極、OCA、上方電極、OCA、ガラスを表す。
 下方電極152として電極パターン2(菱形)、上方電極156として電極パターン4(ランダム)を組み合わせた評価用積層導電シート150を実施例1とする。また、下方電極152を電極パターン4(ランダム)、上方電極156を電極パターン2(菱形)としたものを実施例2とし、下方電極152を電極パターン1(菱形)、上方電極156を電極パターン4(ランダム)としたものを実施例3とする。さらに、下方電極152を電極パターン2(菱形)、上方電極156を電極パターン3(ランダム)としたものを実施例4とする。
 比較のため、下方電極152及び上方電極156の双方の電極パターンを菱形としたもの(比較例1)と、下方電極152及び上方電極156の双方の電極パターンをランダムとしたもの(比較例2)を作製した。すなわち、比較例1は、下方電極152及び上方電極156の双方が電極パターン2からなり、一方、比較例2は、下方電極152及び上方電極156の双方が電極パターン4からなる。
(評価)
 以上の実施例1~4及び比較例1、2を、AUO製のLCDパネル「B156XW04」を白色点灯させた状態で該LCDパネル上に載置し、LCDパネルから30cm~50cm離れた箇所で目視にて観察を行った。
 その際、さざ波状など特定のパターンが観察される「モアレ」、ちらつきや粒状に感じられる「ノイズ」、電極パターンそのものの視認性について、気にならない程度ものを○、若干気になるが許容できるレベルを△、許容できないレベルを×として評価を行った。
 さらに、村上色彩技術研究所から販売されている透過率測定器を用い、実施例1~4及び比較例1、2について透過率を測定した。
 さらにまた、実施例1~4及び比較例1、2につき、電極パターン設計及び作業を行う上で作業時間が8時間以内である場合を○、8時間~20時間と比較的長時間を必要とするが、許容範囲内である場合を△、20時間以上と非常に長時間を必要とするものを×として評価を行った。
 以上の評価結果を、表3に併せて示す。この表3から、ランダムパターンの電極と菱形パターンの電極を組み合わせることにより、モアレが低減し且つノイズが少なく、さらに、電極パターンが視認し難い導電シートが効率よく得られることが明らかである。
Figure JPOXMLDOC01-appb-T000003
 以上に、本発明に係る導電性フィルム、それを備える表示装置及び導電性フィルムの評価方法について種々の実施形態及び実施例を挙げて説明したが、本発明は、上述の実施形態及び実施例に限定されず、本発明の要旨を逸脱しないかぎり、種々の改良や設計の変更を行っても良いことはもちろんである。
10 導電性フィルム
12 透明基体
14 金属製の細線(金属細線)
16、16a、16b 導電部
18、18a、18b 接着層
20、20a、20b 保護層
21、21a、21b メッシュ配線
22、22a、22b 開口部
24、24a、24b 配線パターン
28、28a、28b 導電層
30 表示ユニット
32 画素
32r、32g、32b 副画素
34 ブラックマトリックス(BM)
38 BMパターン
40 表示装置
44 タッチパネル
110A 第1シート体
110B 第2シート体
112 積層導電性フィルム(導電性フィルム)
114A 第1透明基体
114B 第2透明基体
118A 第1導電パターン
118B 第2導電パターン
120 細線
122A、122B セル
130、154、158 粘着剤(OCA)
150 評価用積層導電シート
152 下方電極
156 上方電極
200 タッチパネル
202 センサ本体
206 保護層
208 表示装置
210 表示パネル
214 端子配線部

Claims (20)

  1.  表示装置の表示ユニット上に設置される導電性フィルムであって、
     透明基体と、
     この透明基体の両面にそれぞれ形成される第1及び第2の導電部と、を有し、
     前記第1及び第2の導電部は、それぞれ、複数の金属細線により複数の開口部を配列したメッシュ状に形成された第1及び第2の配線パターンを有し、
     前記第1及び第2の配線パターンは、それぞれ、その透過率画像データの2次元フーリエ空間におけるスペクトルのばらつきが異なる第1及び第2のパターンを少なくとも有し、
     前記第1及び第2の配線パターンは、合成配線パターンとして前記表示ユニットの画素配列パターンに重畳されており、
     前記画素配列パターンと前記合成配線パターンとの合成パターンは、前記合成パターンの透過率画像データの2次元フーリエ空間における複数のスペクトルから、前記画素配列パターンの透過率画像データの2次元フーリエ空間における複数のスペクトル及び前記合成配線パターンの透過率画像データの2次元フーリエ空間における複数のスペクトルを除き、前記画素配列パターンと前記合成配線パターンの前記第1及び第2の配線パターンとの干渉によるモアレ及びノイズのみの複数のスペクトルを抽出して、抽出された全ての複数のスペクトルの合計値を求め、この合計値から算出したモアレ及びノイズの抽出定量値が所定範囲内であることを特徴とする導電性フィルム。
  2.  前記モアレ及びノイズのスペクトルの合計値は、前記画素配列パターンの空間周波数より低い周波数を持つスペクトルのみを全て合計して求められたものである請求項1に記載の導電性フィルム。
  3.  前記定量値を常用対数値でEとする時、前記所定範囲は、E<-2.150である請求項1又は2に記載の導電性フィルム。
  4.  前記定量値を常用対数値でEとする時、前記所定範囲は、E<-2.20425である請求項3に記載の導電性フィルム。
  5.  前記第1のパターンは、その透過率画像データの2次元フーリエ空間におけるスペクトルの標準偏差が-5.0以上であり、
     前記第2のパターンは、その透過率画像データの2次元フーリエ空間におけるスペクトルの標準偏差が-5.0未満である請求項1~4のいずれか1項に記載の導電性フィルム。
  6.  前記第1のパターンは、規則的パターンであり、
     前記第2のパターンは、不規則パターンである請求項1~5のいずれか1項に記載の導電性フィルム。
  7.  前記開口部は、金属細線同士が交差することで形成されるものであり、
     前記規則的パターンは、複数個の同一形状の前記開口部が連なるようにメッシュ状に形成された定型パターンであり、
     前記不規則パターンは、平面視で、形状が互いに異なる前記開口部を複数個含むようにメッシュ状に形成されたランダムパターンである請求項6に記載の導電性フィルム。
  8.  前記第1の配線パターンを有する前記第1の導電部は、前記透明基体の上面に形成され、
     前記第2の配線パターンを有する前記第2の導電部は、前記透明基体の下面に形成され、
     前記第1の配線パターンは、前記第1のパターンからなり、
     前記第2の配線パターンは、前記第2のパターンからなり、
     前記第2の配線パターンの幅は、前記第1の配線パターンの幅より大きい請求項1~7のいずれか1項に記載の導電性フィルム。
  9.  前記モアレ及びノイズの周波数は、前記合成配線パターンのピーク周波数と前記画素配列パターンのピーク周波数との差分で与えられ、前記モアレ及びノイズの強度は、前記合成配線パターンのピーク強度と前記画素配列パターンのピーク強度との積で与えられる請求項1~8のいずれか1項に記載の導電性フィルム。
  10.  前記透過率画像データ及び前記スペクトルの強度は、前記合成パターンの透過率画像の面積で規格化されたものである請求項1~9のいずれか1項に記載の導電性フィルム。
  11.  前記画素配列パターンは、前記ブラックマトリックスパターンである請求項1~10のいずれか1項に記載の導電性フィルム。
  12.  前記第2のパターンを形成する前記金属細線の線幅は、1~5μmである請求項1~11のいずれか1項に記載の導電性フィルム。
  13.  前記第2のパターンを形成する前記開口部同士の平均ピッチは、100~500μmの範囲内である請求項1~12のいずれか1項に記載の導電性フィルム。
  14.  前記第1のパターンを形成する前記金属細線の線幅は、1~5μmである請求項1~13のいずれか1項に記載の導電性フィルム。
  15.  前記第1のパターンを形成する前記開口部は、菱形をなす請求項1~14のいずれか1項に記載の導電性フィルム。
  16.  前記第1のパターンを形成する前記金属細線、及び前記第2のパターンを形成する前記金属細線は、銀からなる請求項1~15のいずれか1項に記載の導電性フィルム。
  17.  請求項1~16のいずれか1項に記載の導電性フィルムを含むことを特徴とするタッチパネル。
  18.  表示ユニットと、
     この表示ユニットの上に設置される、請求項1~16のいずれか1項に記載の導電性フィルムとを備えることを特徴とする表示装置。
  19.  表示装置の表示ユニット上に設置される導電性フィルムの評価方法であって、
     前記導電性フィルムは、透明基体と、この透明基体の両面にそれぞれ形成される、複数の金属細線により複数の開口部を配列したメッシュ状に形成された第1及び第2の配線パターンを有し、
     前記第1及び第2の配線パターンは、それぞれ、その透過率画像データの2次元フーリエ空間におけるスペクトルのばらつきが異なる第1及び第2のパターンを少なくとも有するものであり、
     前記第1及び第2の配線パターンのそれぞれの透過率画像データと、前記第1及び第2の配線パターンが合成配線パターンとして重畳される、前記表示ユニットの画素配列パターンの透過率画像データとを取得し、
     取得された前記画素配列パターン、並びに前記第1及び第2の配線パターンのそれぞれの透過率画像データから、前記画素配列パターンと前記合成配線パターンとの合成パターンの透過率画像データを求め、
     求められた前記合成パターン、前記画素配列パターン、及び前記合成配線パターンのそれぞれの透過率画像データの2次元フーリエ変換を行い、前記合成パターンの透過率画像データの2次元フーリエ空間における複数のスペクトル、前記画素配列パターンの透過率画像データの2次元フーリエ空間における複数のスペクトル、及び前記合成配線パターンの透過率画像データの2次元フーリエ空間における複数のスペクトルを求め、
     前記合成パターンの複数のスペクトルから、前記画素配列パターンの複数のスペクトル、及び前記合成配線パターンの複数のスペクトルを除いて、前記画素配列パターンと前記合成配線パターンの前記第1及び第2の配線パターンとの干渉によるモアレ及びノイズのみの複数のスペクトルの合計値を求め、
     こうして得られた合計値からモアレ及びノイズの抽出定量値を算出し、
     こうして算出された前記モアレ及びノイズの抽出定量値が所定範囲内である導電性フィルムを評価することを特徴とする導電性フィルムの評価方法。
  20.  表示装置の表示ユニット上に設置される導電性フィルムであって、
     透明基体と、
     この透明基体の両面にそれぞれ形成される第1及び第2の導電部と、を有し、
     前記第1及び第2の導電部は、それぞれ、複数の金属細線により複数の開口部を配列したメッシュ状に形成された第1及び第2の配線パターンを有し、
     前記第1及び第2の配線パターンは、それぞれ、その透過率画像データの2次元フーリエ空間におけるスペクトルのばらつきが異なる第1及び第2のパターンを少なくとも有し、
     前記第1及び第2の配線パターンは、合成配線パターンとして前記表示ユニットの画素配列パターンに重畳されており、
     前記第1のパターンは、その透過率画像データの2次元フーリエ空間におけるスペクトルの標準偏差が-5.0以上であり、
     前記第2のパターンは、その透過率画像データの2次元フーリエ空間におけるスペクトルの標準偏差が-5.0未満であることを特徴とする導電性フィルム。
PCT/JP2014/072518 2013-08-30 2014-08-28 導電性フィルム、それを備えるタッチパネル及び表示装置、並びに導電性フィルムの評価方法 WO2015030090A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201480047181.1A CN105519249B (zh) 2013-08-30 2014-08-28 导电性膜、触摸屏、显示装置、以及导电性膜的评价方法
JP2015534276A JP6145510B2 (ja) 2013-08-30 2014-08-28 導電性フィルム、それを備えるタッチパネル及び表示装置、並びに導電性フィルムの評価方法
EP14839133.7A EP3041331B1 (en) 2013-08-30 2014-08-28 Electrically conductive film, touch panel and display device employing same, and evaluation method for electrically conductive film
KR1020167005017A KR101834248B1 (ko) 2013-08-30 2014-08-28 도전성 필름, 그것을 구비하는 터치 패널 및 표시 장치, 및 도전성 필름의 평가 방법
US15/053,021 US9996177B2 (en) 2013-08-30 2016-02-25 Conductive film, touch panel and display device employing same, and evaluation method for electrically conductive film

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-180708 2013-08-30
JP2013180708 2013-08-30

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/053,021 Continuation US9996177B2 (en) 2013-08-30 2016-02-25 Conductive film, touch panel and display device employing same, and evaluation method for electrically conductive film

Publications (1)

Publication Number Publication Date
WO2015030090A1 true WO2015030090A1 (ja) 2015-03-05

Family

ID=52586639

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/072518 WO2015030090A1 (ja) 2013-08-30 2014-08-28 導電性フィルム、それを備えるタッチパネル及び表示装置、並びに導電性フィルムの評価方法

Country Status (7)

Country Link
US (1) US9996177B2 (ja)
EP (1) EP3041331B1 (ja)
JP (1) JP6145510B2 (ja)
KR (1) KR101834248B1 (ja)
CN (1) CN105519249B (ja)
TW (1) TWI634464B (ja)
WO (1) WO2015030090A1 (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016158850A1 (ja) * 2015-03-31 2016-10-06 富士フイルム株式会社 導電性フィルム、これを備える表示装置及び導電性フィルムの評価方法
WO2016174986A1 (ja) * 2015-04-30 2016-11-03 凸版印刷株式会社 導電性フィルム、タッチパネル、および、表示装置
JP2016212518A (ja) * 2015-04-30 2016-12-15 凸版印刷株式会社 導電性フィルム、タッチパネル、および、表示装置
TWI582660B (zh) * 2015-12-02 2017-05-11 Wei-Long Huang A touch panel that eliminates the Murray effect
JP2017130112A (ja) * 2016-01-21 2017-07-27 凸版印刷株式会社 導電性フィルム、タッチパネル、および、表示装置
WO2019065234A1 (ja) * 2017-09-26 2019-04-04 東レ株式会社 電極付き基板の製造方法
WO2019116754A1 (ja) * 2017-12-13 2019-06-20 富士フイルム株式会社 導電性部材、タッチパネルおよび表示装置
TWI711952B (zh) * 2015-10-16 2020-12-01 日商富士軟片股份有限公司 導電性膜及具備其的顯示裝置

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5809117B2 (ja) * 2011-10-05 2015-11-10 富士フイルム株式会社 導電シート、タッチパネル、表示装置
JP6463133B2 (ja) * 2013-02-05 2019-01-30 富士フイルム株式会社 導電性フイルムを備える表示装置
WO2015030090A1 (ja) * 2013-08-30 2015-03-05 富士フイルム株式会社 導電性フィルム、それを備えるタッチパネル及び表示装置、並びに導電性フィルムの評価方法
KR102226601B1 (ko) 2014-12-02 2021-03-15 삼성디스플레이 주식회사 터치 패널 및 그 제조방법
KR20160086495A (ko) * 2015-01-09 2016-07-20 삼성디스플레이 주식회사 터치 스크린 패널 및 이를 구비하는 표시 장치
KR102476212B1 (ko) 2015-11-23 2022-12-13 삼성디스플레이 주식회사 터치 스크린 일체형 표시장치
CN107562249B (zh) * 2016-07-01 2024-04-30 瀚宇彩晶股份有限公司 触控显示装置
WO2019021835A1 (ja) * 2017-07-27 2019-01-31 富士フイルム株式会社 タッチパネル用導電部材およびタッチパネル
USD878060S1 (en) * 2017-09-06 2020-03-17 Jaguar Land Rover Limited Template for a vehicle
CN107463296B (zh) * 2017-09-21 2024-03-29 京东方科技集团股份有限公司 一种显示面板、触摸屏及显示装置
US10592028B2 (en) * 2018-03-30 2020-03-17 Sharp Kabushiki Kaisha Touch sensor feedlines for display
CN108427520A (zh) * 2018-04-02 2018-08-21 业成科技(成都)有限公司 触控面板与其制造方法
CN109920356B (zh) * 2019-04-30 2022-07-01 北京京东方显示技术有限公司 一种用于评估黑矩阵的阈值曲线的拟合方法、黑矩阵的评估方法
TWI710841B (zh) * 2019-09-24 2020-11-21 行政院原子能委員會核能研究所 電致變色裝置及其製備方法
US11157122B1 (en) * 2020-06-03 2021-10-26 Futuretech Capital, Inc. Method to design low visibility metal mesh touch sensor

Citations (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4582955A (en) 1984-03-23 1986-04-15 Pencept, Inc. Digitizing tablet system including a tablet having a grid structure made of two orthogonal sets of parallel uniformly sized and spaced U shaped loops of conductive material
US4686332A (en) 1986-06-26 1987-08-11 International Business Machines Corporation Combined finger touch and stylus detection system for use on the viewing surface of a visual display device
JPS62186498U (ja) * 1986-05-19 1987-11-27
US4733222A (en) 1983-12-27 1988-03-22 Integrated Touch Arrays, Inc. Capacitance-variation-sensitive touch sensing array system
JPH0648284U (ja) * 1992-11-30 1994-06-28 セントラル硝子株式会社 電磁遮蔽構造
US5374787A (en) 1992-06-08 1994-12-20 Synaptics, Inc. Object position detector
US5543588A (en) 1992-06-08 1996-08-06 Synaptics, Incorporated Touch pad driven handheld computing device
JP2003243882A (ja) * 2002-02-15 2003-08-29 Dainippon Printing Co Ltd 電磁波遮蔽シートおよびその製造方法
US20040155871A1 (en) 2003-02-10 2004-08-12 N-Trig Ltd. Touch detection for a digitizer
US7030860B1 (en) 1999-10-08 2006-04-18 Synaptics Incorporated Flexible transparent touch sensing system for electronic devices
JP2008047777A (ja) * 2006-08-18 2008-02-28 Dainippon Printing Co Ltd 電磁波遮蔽フィルタ、複合フィルタ、及びディスプレイ
JP2009004348A (ja) 2006-09-28 2009-01-08 Fujifilm Corp 自発光表示装置、透明導電性フイルム、透明導電性フイルムの製造方法、エレクトロルミネッセンス素子、太陽電池用透明電極及び電子ペーパー用透明電極
JP2009117683A (ja) 2007-11-08 2009-05-28 Fujifilm Corp 電磁波シールドフィルムの製造装置、電磁波シールドフィルムの製造方法及びパターン生成方法
JP2011517355A (ja) 2008-02-28 2011-06-02 スリーエム イノベイティブ プロパティズ カンパニー 低可視性導電体を有するタッチスクリーンセンサ
JP2011216379A (ja) 2010-03-31 2011-10-27 Fujifilm Corp 透明導電膜
JP2012519329A (ja) 2009-02-26 2012-08-23 スリーエム イノベイティブ プロパティズ カンパニー 低視認性の重ね合わせられた微小パターンを有する、タッチスクリーンセンサ及びパターン基材
JP2013020775A (ja) 2011-07-10 2013-01-31 Kazuhiko Yamaoka 照明装置とそれに用いられるベースユニット及びサテライトユニット
JP2013054619A (ja) * 2011-09-06 2013-03-21 Fujifilm Corp 導電シート、タッチパネル及び表示装置
JP2013077591A (ja) * 2011-09-29 2013-04-25 Dainippon Printing Co Ltd 積層体および画像表示装置

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007166310A (ja) * 2005-12-14 2007-06-28 Canon Inc 画像評価方法、画像処理設計方法および画像評価装置、画像処理設計装置
JP2009016700A (ja) * 2007-07-09 2009-01-22 Toray Ind Inc 網目状金属微粒子積層基板及び透明導電性基板の製造方法
US8284332B2 (en) * 2008-08-01 2012-10-09 3M Innovative Properties Company Touch screen sensor with low visibility conductors
JP5352905B2 (ja) * 2009-05-28 2013-11-27 ルネサスエレクトロニクス株式会社 半導体装置およびそれを用いたタッチセンサ
KR101742108B1 (ko) * 2011-07-11 2017-06-15 후지필름 가부시키가이샤 도전 시트, 터치 패널, 표시 장치, 및 이 도전 시트의 제조 방법
KR20130027747A (ko) * 2011-09-08 2013-03-18 삼성전기주식회사 터치패널
JP5781886B2 (ja) * 2011-10-05 2015-09-24 富士フイルム株式会社 導電シート、タッチパネル及び表示装置
JP5779535B2 (ja) * 2012-03-30 2015-09-16 富士フイルム株式会社 導電性フイルム、それを備える表示装置及び導電性フイルムのパターンの決定方法
JP5795746B2 (ja) * 2012-03-30 2015-10-14 富士フイルム株式会社 導電性フイルム、それを備える表示装置及び導電性フイルムのパターンの決定方法
JP5859411B2 (ja) * 2012-09-07 2016-02-10 富士フイルム株式会社 導電性フイルム、それを備える表示装置及びタッチパネル、並びに導電性フイルムのパターンの決定方法
KR101709631B1 (ko) * 2012-12-18 2017-02-23 후지필름 가부시키가이샤 도전성 필름, 그것을 구비하는 표시 장치 및 도전성 필름의 패턴의 결정 방법
JP6463133B2 (ja) * 2013-02-05 2019-01-30 富士フイルム株式会社 導電性フイルムを備える表示装置
WO2015030090A1 (ja) * 2013-08-30 2015-03-05 富士フイルム株式会社 導電性フィルム、それを備えるタッチパネル及び表示装置、並びに導電性フィルムの評価方法

Patent Citations (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4733222A (en) 1983-12-27 1988-03-22 Integrated Touch Arrays, Inc. Capacitance-variation-sensitive touch sensing array system
US4582955A (en) 1984-03-23 1986-04-15 Pencept, Inc. Digitizing tablet system including a tablet having a grid structure made of two orthogonal sets of parallel uniformly sized and spaced U shaped loops of conductive material
JPS62186498U (ja) * 1986-05-19 1987-11-27
US4686332A (en) 1986-06-26 1987-08-11 International Business Machines Corporation Combined finger touch and stylus detection system for use on the viewing surface of a visual display device
US5374787A (en) 1992-06-08 1994-12-20 Synaptics, Inc. Object position detector
US5543588A (en) 1992-06-08 1996-08-06 Synaptics, Incorporated Touch pad driven handheld computing device
JPH0648284U (ja) * 1992-11-30 1994-06-28 セントラル硝子株式会社 電磁遮蔽構造
US7030860B1 (en) 1999-10-08 2006-04-18 Synaptics Incorporated Flexible transparent touch sensing system for electronic devices
JP2003243882A (ja) * 2002-02-15 2003-08-29 Dainippon Printing Co Ltd 電磁波遮蔽シートおよびその製造方法
US20040155871A1 (en) 2003-02-10 2004-08-12 N-Trig Ltd. Touch detection for a digitizer
JP2008047777A (ja) * 2006-08-18 2008-02-28 Dainippon Printing Co Ltd 電磁波遮蔽フィルタ、複合フィルタ、及びディスプレイ
JP2009004348A (ja) 2006-09-28 2009-01-08 Fujifilm Corp 自発光表示装置、透明導電性フイルム、透明導電性フイルムの製造方法、エレクトロルミネッセンス素子、太陽電池用透明電極及び電子ペーパー用透明電極
JP2009117683A (ja) 2007-11-08 2009-05-28 Fujifilm Corp 電磁波シールドフィルムの製造装置、電磁波シールドフィルムの製造方法及びパターン生成方法
JP2011517355A (ja) 2008-02-28 2011-06-02 スリーエム イノベイティブ プロパティズ カンパニー 低可視性導電体を有するタッチスクリーンセンサ
JP2012519329A (ja) 2009-02-26 2012-08-23 スリーエム イノベイティブ プロパティズ カンパニー 低視認性の重ね合わせられた微小パターンを有する、タッチスクリーンセンサ及びパターン基材
JP2011216379A (ja) 2010-03-31 2011-10-27 Fujifilm Corp 透明導電膜
JP2013020775A (ja) 2011-07-10 2013-01-31 Kazuhiko Yamaoka 照明装置とそれに用いられるベースユニット及びサテライトユニット
JP2013054619A (ja) * 2011-09-06 2013-03-21 Fujifilm Corp 導電シート、タッチパネル及び表示装置
JP2013077591A (ja) * 2011-09-29 2013-04-25 Dainippon Printing Co Ltd 積層体および画像表示装置

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
See also references of EP3041331A4 *
WHITESIDES, ANGEW. CHEM. INT. ED., vol. 37, 1998, pages 550

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10437399B2 (en) 2015-03-31 2019-10-08 Fujifilm Corporation Conductive film, display device having the same, and method of evaluating conductive film
JP2016194827A (ja) * 2015-03-31 2016-11-17 富士フイルム株式会社 導電性フィルム、これを備える表示装置及び導電性フィルムの評価方法
WO2016158850A1 (ja) * 2015-03-31 2016-10-06 富士フイルム株式会社 導電性フィルム、これを備える表示装置及び導電性フィルムの評価方法
KR20170128394A (ko) * 2015-03-31 2017-11-22 후지필름 가부시키가이샤 도전성 필름, 이것을 구비하는 표시 장치 및 도전성 필름의 평가 방법
CN107407991A (zh) * 2015-03-31 2017-11-28 富士胶片株式会社 导电性膜、具备其的显示装置及导电性膜的评价方法
CN107407991B (zh) * 2015-03-31 2020-06-16 富士胶片株式会社 导电性膜、具备其的显示装置及导电性膜的评价方法
KR101975304B1 (ko) 2015-03-31 2019-05-07 후지필름 가부시키가이샤 도전성 필름, 이것을 구비하는 표시 장치 및 도전성 필름의 평가 방법
US10649605B2 (en) 2015-03-31 2020-05-12 Fujifilm Corporation Conductive film, and display device having the same
WO2016174986A1 (ja) * 2015-04-30 2016-11-03 凸版印刷株式会社 導電性フィルム、タッチパネル、および、表示装置
JP2016212518A (ja) * 2015-04-30 2016-12-15 凸版印刷株式会社 導電性フィルム、タッチパネル、および、表示装置
TWI711952B (zh) * 2015-10-16 2020-12-01 日商富士軟片股份有限公司 導電性膜及具備其的顯示裝置
TWI582660B (zh) * 2015-12-02 2017-05-11 Wei-Long Huang A touch panel that eliminates the Murray effect
JP2017130112A (ja) * 2016-01-21 2017-07-27 凸版印刷株式会社 導電性フィルム、タッチパネル、および、表示装置
WO2019065234A1 (ja) * 2017-09-26 2019-04-04 東レ株式会社 電極付き基板の製造方法
WO2019116754A1 (ja) * 2017-12-13 2019-06-20 富士フイルム株式会社 導電性部材、タッチパネルおよび表示装置
JPWO2019116754A1 (ja) * 2017-12-13 2020-11-19 富士フイルム株式会社 導電性部材、タッチパネルおよび表示装置
US11073956B2 (en) 2017-12-13 2021-07-27 Fujifilm Corporation Conductive member, touch panel, and display device

Also Published As

Publication number Publication date
CN105519249B (zh) 2018-07-13
KR20160036600A (ko) 2016-04-04
EP3041331A4 (en) 2016-08-10
EP3041331A1 (en) 2016-07-06
US20160170541A1 (en) 2016-06-16
TWI634464B (zh) 2018-09-01
EP3041331B1 (en) 2019-06-12
TW201508591A (zh) 2015-03-01
US9996177B2 (en) 2018-06-12
JP6145510B2 (ja) 2017-06-14
KR101834248B1 (ko) 2018-03-05
JPWO2015030090A1 (ja) 2017-03-02
CN105519249A (zh) 2016-04-20

Similar Documents

Publication Publication Date Title
JP6145510B2 (ja) 導電性フィルム、それを備えるタッチパネル及び表示装置、並びに導電性フィルムの評価方法
US9736933B2 (en) Conductive sheet including mesh pattern having improved visibility for observation, and touch panel and display device including the same
JP6001089B2 (ja) 表示装置及び導電性フイルムのパターンの決定方法
TWI634462B (zh) 顯示裝置及導電性膜的評價方法
JP5859411B2 (ja) 導電性フイルム、それを備える表示装置及びタッチパネル、並びに導電性フイルムのパターンの決定方法
JP6307468B2 (ja) 導電性フィルム、これを備える表示装置及び導電性フィルムの評価方法
CN107850960B (zh) 触摸面板用导电片、触摸面板及带触摸面板的显示装置
EP3364275B1 (en) Conductive film and display device provided with same
JP6038294B2 (ja) 導電性フィルム、それを備える表示装置及び導電性フィルムの配線パターンの評価及び決定方法
WO2013146022A1 (ja) 導電性フィルム、それを備える表示装置及び導電性フィルムのパターンの決定方法
JP2016194827A5 (ja)
JP5806559B2 (ja) 導電シート、タッチパネル及び表示装置
JP6175545B2 (ja) 導電シート、タッチパネル、表示装置
WO2015029734A1 (ja) 導電シート及びタッチパネル

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14839133

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015534276

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20167005017

Country of ref document: KR

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2014839133

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014839133

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE