Nothing Special   »   [go: up one dir, main page]

WO2015019816A1 - 半導体パッケージの製造方法 - Google Patents

半導体パッケージの製造方法 Download PDF

Info

Publication number
WO2015019816A1
WO2015019816A1 PCT/JP2014/068974 JP2014068974W WO2015019816A1 WO 2015019816 A1 WO2015019816 A1 WO 2015019816A1 JP 2014068974 W JP2014068974 W JP 2014068974W WO 2015019816 A1 WO2015019816 A1 WO 2015019816A1
Authority
WO
WIPO (PCT)
Prior art keywords
grinding
resin sheet
semiconductor
sealing resin
semiconductor chip
Prior art date
Application number
PCT/JP2014/068974
Other languages
English (en)
French (fr)
Inventor
浩介 盛田
石坂 剛
豊田 英志
豪士 志賀
智絵 飯野
Original Assignee
日東電工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日東電工株式会社 filed Critical 日東電工株式会社
Publication of WO2015019816A1 publication Critical patent/WO2015019816A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/50Assembly of semiconductor devices using processes or apparatus not provided for in a single one of the subgroups H01L21/06 - H01L21/326, e.g. sealing of a cap to a base of a container
    • H01L21/56Encapsulations, e.g. encapsulation layers, coatings
    • H01L21/561Batch processing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/50Assembly of semiconductor devices using processes or apparatus not provided for in a single one of the subgroups H01L21/06 - H01L21/326, e.g. sealing of a cap to a base of a container
    • H01L21/56Encapsulations, e.g. encapsulation layers, coatings
    • H01L21/568Temporary substrate used as encapsulation process aid
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/6835Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/18High density interconnect [HDI] connectors; Manufacturing methods related thereto
    • H01L24/19Manufacturing methods of high density interconnect preforms
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/93Batch processes
    • H01L24/94Batch processes at wafer-level, i.e. with connecting carried out on a wafer comprising a plurality of undiced individual devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/93Batch processes
    • H01L24/95Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips
    • H01L24/96Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips the devices being encapsulated in a common layer, e.g. neo-wafer or pseudo-wafer, said common layer being separable into individual assemblies after connecting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/93Batch processes
    • H01L24/95Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips
    • H01L24/97Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips the devices being connected to a common substrate, e.g. interposer, said common substrate being separable into individual assemblies after connecting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/065Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L27/00
    • H01L25/0657Stacked arrangements of devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/50Multistep manufacturing processes of assemblies consisting of devices, each device being of a type provided for in group H01L27/00 or H01L29/00
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/6835Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support
    • H01L21/6836Wafer tapes, e.g. grinding or dicing support tapes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2221/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof covered by H01L21/00
    • H01L2221/67Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere
    • H01L2221/683Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L2221/68304Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support
    • H01L2221/68318Auxiliary support including means facilitating the separation of a device or wafer from the auxiliary support
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2221/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof covered by H01L21/00
    • H01L2221/67Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere
    • H01L2221/683Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L2221/68304Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support
    • H01L2221/68327Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support used during dicing or grinding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/0401Bonding areas specifically adapted for bump connectors, e.g. under bump metallisation [UBM]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/04105Bonding areas formed on an encapsulation of the semiconductor or solid-state body, e.g. bonding areas on chip-scale packages
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/12105Bump connectors formed on an encapsulation of the semiconductor or solid-state body, e.g. bumps on chip-scale packages
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • H01L2224/13001Core members of the bump connector
    • H01L2224/13099Material
    • H01L2224/131Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/13101Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of less than 400°C
    • H01L2224/13111Tin [Sn] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • H01L2224/13001Core members of the bump connector
    • H01L2224/13099Material
    • H01L2224/131Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/13138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/13144Gold [Au] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • H01L2224/13001Core members of the bump connector
    • H01L2224/13099Material
    • H01L2224/131Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/13138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/13147Copper [Cu] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16135Disposition the bump connector connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip
    • H01L2224/16145Disposition the bump connector connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being stacked
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/17Structure, shape, material or disposition of the bump connectors after the connecting process of a plurality of bump connectors
    • H01L2224/171Disposition
    • H01L2224/1718Disposition being disposed on at least two different sides of the body, e.g. dual array
    • H01L2224/17181On opposite sides of the body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/18High density interconnect [HDI] connectors; Manufacturing methods related thereto
    • H01L2224/19Manufacturing methods of high density interconnect preforms
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32135Disposition the layer connector connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip
    • H01L2224/32145Disposition the layer connector connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being stacked
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32225Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73201Location after the connecting process on the same surface
    • H01L2224/73203Bump and layer connectors
    • H01L2224/73204Bump and layer connectors the bump connector being embedded into the layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/81Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a bump connector
    • H01L2224/81001Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a bump connector involving a temporary auxiliary member not forming part of the bonding apparatus
    • H01L2224/81005Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a bump connector involving a temporary auxiliary member not forming part of the bonding apparatus being a temporary or sacrificial substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/83001Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector involving a temporary auxiliary member not forming part of the bonding apparatus
    • H01L2224/83005Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector involving a temporary auxiliary member not forming part of the bonding apparatus being a temporary or sacrificial substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/93Batch processes
    • H01L2224/94Batch processes at wafer-level, i.e. with connecting carried out on a wafer comprising a plurality of undiced individual devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/93Batch processes
    • H01L2224/95Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips
    • H01L2224/97Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips the devices being connected to a common substrate, e.g. interposer, said common substrate being separable into individual assemblies after connecting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2225/00Details relating to assemblies covered by the group H01L25/00 but not provided for in its subgroups
    • H01L2225/03All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00
    • H01L2225/04All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices not having separate containers
    • H01L2225/065All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices not having separate containers the devices being of a type provided for in group H01L27/00
    • H01L2225/06503Stacked arrangements of devices
    • H01L2225/06513Bump or bump-like direct electrical connections between devices, e.g. flip-chip connection, solder bumps
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2225/00Details relating to assemblies covered by the group H01L25/00 but not provided for in its subgroups
    • H01L2225/03All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00
    • H01L2225/04All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices not having separate containers
    • H01L2225/065All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices not having separate containers the devices being of a type provided for in group H01L27/00
    • H01L2225/06503Stacked arrangements of devices
    • H01L2225/06541Conductive via connections through the device, e.g. vertical interconnects, through silicon via [TSV]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2225/00Details relating to assemblies covered by the group H01L25/00 but not provided for in its subgroups
    • H01L2225/03All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00
    • H01L2225/04All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices not having separate containers
    • H01L2225/065All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices not having separate containers the devices being of a type provided for in group H01L27/00
    • H01L2225/06503Stacked arrangements of devices
    • H01L2225/06555Geometry of the stack, e.g. form of the devices, geometry to facilitate stacking
    • H01L2225/06568Geometry of the stack, e.g. form of the devices, geometry to facilitate stacking the devices decreasing in size, e.g. pyramidical stack
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/498Leads, i.e. metallisations or lead-frames on insulating substrates, e.g. chip carriers
    • H01L23/49827Via connections through the substrates, e.g. pins going through the substrate, coaxial cables
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/153Connection portion
    • H01L2924/1531Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface
    • H01L2924/15311Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface being a ball array, e.g. BGA
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation
    • H01L2924/1815Shape
    • H01L2924/1816Exposing the passive side of the semiconductor or solid-state body
    • H01L2924/18161Exposing the passive side of the semiconductor or solid-state body of a flip chip
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation
    • H01L2924/1815Shape
    • H01L2924/1816Exposing the passive side of the semiconductor or solid-state body
    • H01L2924/18162Exposing the passive side of the semiconductor or solid-state body of a chip with build-up interconnect
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/30Technical effects
    • H01L2924/35Mechanical effects
    • H01L2924/351Thermal stress
    • H01L2924/3511Warping

Definitions

  • the present invention relates to a method for manufacturing a semiconductor package.
  • an electronic component fixed to a substrate, a temporary fixing material, or the like is sealed with a sealing resin, and the sealed product is packaged in units of electronic components as necessary.
  • the procedure of dicing is adopted.
  • a technique for reducing the thickness by grinding a sealing material after resin sealing has been proposed (for example, Patent Documents 1 and 2). Thinning by grinding is also important in the manufacturing process of thin semiconductor packages such as flip chip BGA (Ball Grid Array), flip chip SiP (System in Package), fan-in type wafer level package, and fan out type wafer level package. Become an element.
  • An object of the present invention is to provide a semiconductor package manufacturing method capable of suppressing the occurrence of warping after grinding a sealed object using a sealing resin sheet.
  • the present inventors have found that in a sealing body in which a semiconductor chip is resin-sealed, the shrinkage force during thermosetting of the sealing resin sheet remains, and this shrinkage force is ground after grinding. Moreover, the knowledge that warpage of the grinding body may occur due to continuous loading was also obtained. Based on this finding, the present inventors have further studied, and as a result, have found that the above-described problems can be solved by the following configuration, and have completed the present invention.
  • the present invention provides a sealing body forming step of forming a sealing body in which one or a plurality of semiconductor chips are embedded in a sealing resin sheet, and the sealing resin sheet of the sealing body is activated by the semiconductor chip.
  • the minimum height difference between the surface of the sealing resin sheet and the exposed surface of the semiconductor chip in the grinding body is set to 10 ⁇ m or more, and the sealing resin sheet is deeply ground with respect to the semiconductor chip.
  • region where the shrinkage force of the sealing resin sheet in a grinding body works can be narrowed, the shrinkage force loaded on the whole grinding body can be reduced, and the curvature of a grinding body can be suppressed.
  • the minimum height difference is less than 10 ⁇ m, narrowing of the region where the shrinkage force acts in the grinding body becomes insufficient, and the grinding body may be warped.
  • the Shore D hardness at 25 ° C. of the encapsulating resin sheet after the thermosetting treatment at 150 ° C. for 1 hour is 20 or more and 60 or less.
  • the storage elastic modulus in 25 degreeC of the said sealing resin sheet after performing a thermosetting process at 150 degreeC for 1 hour is 0.1 GPa or more and 3 GPa or less.
  • the difference in hardness is large when the hardness difference is large, and the difference is small when the hardness difference is small.
  • the hardness difference can be increased to increase the initial height difference in the grinding surface of the grinding body. The occurrence of warpage can be more efficiently suppressed.
  • the semiconductor chip flip chip connected to a semiconductor wafer may be embedded in the sealing resin sheet to form the sealing body, or the semiconductor fixed to a temporary fixing material
  • the sealing body may be formed by embedding a chip in the sealing resin sheet.
  • the former is suitable for a chip-on-wafer process in which semiconductor chips are aligned on a wafer to produce a semiconductor device, and the latter is suitable for a fan-out type wafer level package process. Even if the sealing body is formed in any form, warping of the grinding body can be suppressed, and variations in the manufacturing process of the semiconductor package can be increased.
  • the manufacturing method may further include a back surface grinding step of grinding the active surface side surface of the semiconductor chip of the grinding body after the grinding step.
  • the manufacturing method may further include a rewiring forming step of forming a rewiring on the active surface side surface of the semiconductor chip of the ground body after the grinding step or the backside grinding step.
  • a dicing step of dicing the ground body in units of a target semiconductor chip may be further included.
  • FIGS. 1A to 1G are cross-sectional views schematically showing one process of a method for manufacturing a semiconductor package according to an embodiment of the present invention.
  • a semiconductor chip is manufactured by sealing a semiconductor chip mounted on a semiconductor wafer with a sealing resin sheet.
  • the semiconductor package manufacturing method according to the first embodiment is suitable for a chip-on-wafer (COW) process.
  • COW chip-on-wafer
  • Chip mounting wafer preparation process In the chip mounting wafer preparation step, a semiconductor wafer 12A in which a plurality of semiconductor chips 13 are flip-chip connected is prepared (see FIG. 1A).
  • the semiconductor chip 13 can be formed by dicing a semiconductor wafer on which a predetermined circuit is formed by a known method.
  • a known device such as a flip chip bonder can be used for mounting the semiconductor chip 13 on the semiconductor wafer 12A.
  • flip chip connection is employed in which the active surface A1 on which the protruding electrode 13a of the semiconductor chip 13 is formed faces the semiconductor wafer 12A.
  • the semiconductor chip 13 and the semiconductor wafer 12A are electrically connected to each other through bump electrode electrodes 13a formed on the semiconductor chip 13 and through electrodes 12a provided on the semiconductor wafer 12A.
  • a TSV (Through Silicon Via) type electrode can be preferably used as the through-electrode 12a.
  • an underfill material 14 is filled between the semiconductor chip 13 and the semiconductor wafer 12A in order to reduce the difference in thermal expansion coefficient between the semiconductor chip 13 and the semiconductor wafer 12A, in particular, to prevent the occurrence of cracks or the like at the connection site.
  • a known material may be used as the underfill material 14.
  • the underfill material 14 may be arranged by injecting the liquid underfill material 14 between the semiconductor chips 13 after the semiconductor chip 13 is mounted on the semiconductor wafer 12A.
  • the semiconductor chip with the sheet-like underfill material 14 may be disposed. 13 or the semiconductor wafer 12A may be prepared, and the semiconductor chip 13 and the semiconductor wafer 12A may be connected to each other.
  • the sealing resin sheet 11 is laminated on the semiconductor wafer 12A so as to embed the semiconductor chip 13, and the semiconductor chip 13 is resin-sealed with the sealing resin sheet (see FIG. 1B).
  • the sealing resin sheet 11 functions as a sealing resin for protecting the semiconductor chip 13 and its accompanying elements from the external environment.
  • the method for laminating the sealing resin sheet 11 is not particularly limited, and a melt-kneaded product of the resin composition for forming the sealing resin sheet is extruded, and the extruded product is placed on the semiconductor wafer 12A and pressed.
  • the coating film is dried. Examples include a method of forming the sealing resin sheet 11 and transferring the sealing resin sheet 11 onto the semiconductor wafer 12A.
  • the sealing resin sheet 11 by adopting the sealing resin sheet 11, the semiconductor chip 13 can be embedded simply by sticking the semiconductor chip 13 on the semiconductor wafer 12 ⁇ / b> A, thereby improving the production efficiency of the semiconductor package. Can do.
  • the sealing resin sheet 11 can be laminated on the semiconductor wafer 12A by a known method such as hot pressing or laminator.
  • the temperature is, for example, 40 to 120 ° C., preferably 50 to 100 ° C.
  • the pressure is, for example, 50 to 2500 kPa, preferably 100 to 2000 kPa
  • the time is, for example, 0 3 to 10 minutes, preferably 0.5 to 5 minutes.
  • it is preferable to press under reduced pressure conditions for example, 10 to 2000 Pa).
  • the sealing resin sheet is thermally cured to form the sealing body 15 in which the semiconductor chip 13 is embedded in the sealing resin sheet 11 (see FIG. 1B).
  • the conditions for the thermosetting treatment of the sealing resin sheet are preferably 100 to 200 ° C., more preferably 120 to 180 ° C. as the heating temperature, and preferably 10 to 180 minutes, more preferably 30 to 120 minutes as the heating time. You may pressurize as needed. In the pressurization, preferably 0.1 MPa to 10 MPa, more preferably 0.5 MPa to 5 MPa can be employed.
  • the sealing resin sheet 11 of the sealing body 15 is ground so that the surface opposite to the active surface A of the semiconductor chip 13 is exposed to form a grinding body 16A (see FIG. 1C).
  • the semiconductor chip 13 may be ground together with the sealing resin sheet 11 as shown in FIG. 1C, or only the sealing resin sheet 11 may be ground. Grinding may be performed using a known grinding apparatus. A procedure for forming the grinding body 16A by grinding the surface of the sealing body while feeding the sealing body 15 while rotating a grinding tool such as a diamond tool can be suitably employed.
  • the minimum height difference between the surface 11S of the sealing resin sheet and the exposed surface 13S of the semiconductor chip in the grinding body 16A is 10 ⁇ m or more, preferably 20 ⁇ m or more.
  • the upper limit of the minimum height difference is preferably 50 ⁇ m or less, more preferably 40 ⁇ m or less from the viewpoint of the mechanical strength of the ground body.
  • the back surface grinding step In the back surface grinding step, the surface opposite to the grinding surface G1 of the grinding body 16A (that is, the back surface B1) is ground (see FIG. 1D). As a result, the exposed surface of the semiconductor wafer 12A is ground, and a thinned semiconductor wafer 12B can be obtained. What is necessary is just to change the thickness of the semiconductor wafer 12B after grinding according to the specification of the target package, for example, 25-200 ⁇ m is preferable, and 50-100 ⁇ m is more preferable. Grinding may be performed using a known grinding apparatus. A known back surface grinding tape can be used to fix the grinding body 16A.
  • this back grinding step can be omitted when a thin semiconductor wafer 12A having a desired thickness is used as a chip mounting wafer.
  • each process may be performed by attaching a support material for reinforcing the semiconductor wafer 12A to the semiconductor wafer 12A.
  • the contraction force applied to the grinding body 16B is reduced by setting the above-mentioned minimum height difference to 10 ⁇ m or more, so that the warping of the grinding body can be suppressed even after the support material is peeled off.
  • a rewiring forming step of forming the rewiring 19 on the surface B1 on the active surface A1 side of the semiconductor chip 13 of the grinding body 16B (see FIG. 1E).
  • the rewiring forming step after the thinned semiconductor wafer 12B is formed by back grinding, the rewiring 19 connected to the through electrode 12a of the semiconductor wafer 12B is formed on the grinding body 16B.
  • a metal seed layer is formed on the exposed semiconductor wafer 12B using a known method such as a vacuum film forming method, and the rewiring is performed by a known method such as a semi-additive method.
  • the wiring 19 can be formed.
  • an insulating layer such as polyimide or PBO may be formed on the rewiring 19 and the grinding body 16B.
  • bumping processing for forming bumps 17 on the formed rewiring 19 may be performed (see FIG. 1F).
  • the bumping process can be performed by a known method such as a solder ball or solder plating.
  • the material of the bump is not particularly limited.
  • tin-lead metal material tin-silver metal material, tin-silver-copper metal material, tin-zinc metal material, tin-zinc-bismuth metal material, etc.
  • Solders alloys
  • gold-based metal materials copper-based metal materials, and the like.
  • the grinding surface G1 (see FIG. 1C) of the grinding body 16A may be resin-sealed again.
  • the sealing method is not particularly limited, and a known liquid or film-like sealing resin may be applied or bonded to the grinding surface G1, dried, and cured. This step may be performed at any stage after the grinding step and before the dicing step.
  • the grinding body 16C may be diced through bump formation including elements such as the sealing resin sheet 11, the semiconductor wafer 12B, and the semiconductor chip 13 (see FIG. 1G).
  • the semiconductor package 18 can be obtained in units of the target semiconductor chip 13.
  • dicing is performed corresponding to one semiconductor chip, but dicing may be performed with two or more semiconductor chips as a unit. Dicing is usually performed after the grinding body 16 is fixed by a conventionally known dicing sheet.
  • the alignment of the cut portion may be performed by image recognition using direct illumination or indirect illumination.
  • a cutting method called full cut that cuts up to a dicing sheet can be adopted. It does not specifically limit as a dicing apparatus used at this process, A conventionally well-known thing can be used.
  • the expanding device when expanding a grinding body following a dicing process, this expansion can be performed using a conventionally well-known expanding apparatus.
  • the expanding device includes a donut-shaped outer ring that can push down the dicing sheet through the dicing ring, and an inner ring that has a smaller diameter than the outer ring and supports the dicing sheet.
  • a substrate mounting step of mounting the semiconductor package 18 obtained above on a separate substrate can be performed.
  • a known device such as a flip chip bonder or a die bonder can be used.
  • FIG. 2 is a cross-sectional view schematically showing a sealing resin sheet according to an embodiment of the present invention.
  • the sealing resin sheet 11 is typically provided in a state of being laminated on a support 11a such as a polyethylene terephthalate (PET) film. Note that a release treatment may be applied to the support 11a in order to easily peel off the sealing resin sheet 11.
  • PET polyethylene terephthalate
  • the resin composition for forming the sealing resin sheet is not particularly limited as long as it has the above-described characteristics and can be used for resin sealing of semiconductor chips.
  • the epoxy resin composition containing a component is mentioned as a preferable thing.
  • the C component may or may not be added as necessary.
  • the epoxy resin (component A) is not particularly limited.
  • Various epoxy resins such as an epoxy resin, a phenol novolac type epoxy resin, and a phenoxy resin can be used. These epoxy resins may be used alone or in combination of two or more.
  • the content of the epoxy resin (component A) is preferably set in the range of 1 to 10% by weight with respect to the entire epoxy resin composition.
  • the phenol resin (component B) is not particularly limited as long as it causes a curing reaction with the epoxy resin (component A).
  • a phenol novolak resin, a phenol aralkyl resin, a biphenyl aralkyl resin, a dicyclopentadiene type phenol resin, a cresol novolak resin, a resole resin, or the like is used. These phenolic resins may be used alone or in combination of two or more.
  • the total content of the epoxy resin and the phenol resin in the sealing resin sheet 11 is preferably 2.5% by weight or more, and more preferably 3.0% by weight or more. Adhesive force with respect to the semiconductor chip 13, the semiconductor wafer 12A, etc. is obtained favorably as it is 2.5 wt% or more.
  • the total content of the epoxy resin and the phenol resin in the sealing resin sheet 11 is preferably 20% by weight or less, and more preferably 10% by weight or less. Hygroscopicity can be reduced as it is 20 weight% or less.
  • the elastomer (component C) used together with the epoxy resin (component A) and the phenol resin (component B) gives the epoxy resin composition flexibility necessary for sealing a semiconductor chip with a sealing resin sheet.
  • the structure is not particularly limited as long as such an effect is exhibited.
  • various acrylic copolymers such as polyacrylates, styrene acrylate copolymers, butadiene rubber, styrene-butadiene rubber (SBR), ethylene-vinyl acetate copolymer (EVA), isoprene rubber, acrylonitrile rubber, etc. Polymers can be used.
  • the heat resistance and strength of the resulting sealing resin sheet can be improved. It is preferable to use an acrylic copolymer. These may be used alone or in combination of two or more.
  • the acrylic copolymer can be synthesized, for example, by radical polymerization of an acrylic monomer mixture having a predetermined mixing ratio by a conventional method.
  • a method for radical polymerization a solution polymerization method in which an organic solvent is used as a solvent or a suspension polymerization method in which polymerization is performed while dispersing raw material monomers in water are used.
  • the content of the elastomer (component C) is 15 to 30% by weight of the entire epoxy resin composition.
  • the content of the elastomer (component C) is less than 15% by weight, it becomes difficult to obtain the flexibility and flexibility of the sealing resin sheet 11, and it is also difficult to perform resin sealing while suppressing warping of the sealing resin sheet. It becomes.
  • the content exceeds 30% by weight, the melt viscosity of the sealing resin sheet 11 is increased, the embedding property of the semiconductor chip 13 is lowered, and the strength and heat resistance of the cured body of the sealing resin sheet 11 are reduced. There is a tendency to decrease.
  • the inorganic filler (component D) is not particularly limited, and various conventionally known fillers can be used.
  • the content of the inorganic filler (component D) is preferably 70 to 95% by weight of the entire epoxy resin composition, more preferably 75 to 92% by weight, and still more preferably 80 to 90% by weight.
  • the content of the inorganic filler (component D) is less than 50% by weight, the linear expansion coefficient of the cured product of the epoxy resin composition increases, and thus the warpage of the sealing resin sheet 11 tends to increase.
  • liquidity of the sealing resin sheet 11 will worsen when the said content exceeds 90 weight%, the tendency for adhesiveness with a semiconductor chip to fall is seen.
  • the curing accelerator (component E) is not particularly limited as long as it allows curing of the epoxy resin and the phenol resin, but from the viewpoint of curability and storage stability, triphenylphosphine or tetraphenylphosphonium tetraphenyl. Organic phosphorus compounds such as borates and imidazole compounds are preferably used. These curing accelerators may be used alone or in combination with other curing accelerators.
  • the content of the curing accelerator (component E) is preferably 0.1 to 5 parts by weight with respect to a total of 100 parts by weight of the epoxy resin (component A) and the phenol resin (component B).
  • the cyclic phosphazene oligomer represented by the above formula (3) is commercially available, for example, FP-100, FP-110 (above, Fushimi Pharmaceutical Co., Ltd.) and the like.
  • the content of the phosphazene compound includes the epoxy resin (component A), phenol resin (component B), elastomer (component D), curing accelerator (component E) and phosphazene compound (other components) contained in the epoxy resin composition. It is preferably 10 to 30% by weight of the total organic component containing. That is, when the content of the phosphazene compound is less than 10% by weight of the whole organic component, the flame retardancy of the sealing resin sheet 11 is reduced and the adherend (that is, the semiconductor wafer on which the semiconductor chip in the present embodiment is mounted). ), Etc., and the tendency to generate voids is observed. When the content exceeds 30% by weight of the whole organic component, tackiness is likely to occur on the surface of the sealing resin sheet 11, and the workability tends to be lowered, such as difficulty in alignment with the adherend.
  • the sealing resin sheet 11 having excellent flame retardancy while ensuring the flexibility necessary for sealing the sheet.
  • sufficient flame retardancy when only the metal hydroxide is used and sufficient flexibility can be obtained when only the phosphazene compound is used.
  • organic flame retardants are used from the viewpoint of the deformability of the sealing resin sheet at the time of molding the resin seal, the conformity to the unevenness of the adherend, and the adhesion to the semiconductor chip or the semiconductor wafer.
  • phosphazene flame retardants are preferably used.
  • the epoxy resin composition can be appropriately mixed with other additives such as pigments including carbon black as necessary.
  • an epoxy resin composition is prepared by mixing the above-described components.
  • the mixing method is not particularly limited as long as each component is uniformly dispersed and mixed.
  • a varnish in which each component is dissolved or dispersed in an organic solvent or the like is applied to form a sheet.
  • a kneaded material may be prepared by directly kneading each compounding component with a kneader or the like, and the kneaded material thus obtained may be extruded to form a sheet.
  • the above components A to E and, if necessary, each component of other additives are mixed using a known method such as a mixer, and then kneaded to prepare a kneaded product.
  • the method of melt kneading is not particularly limited, and examples thereof include a method of melt kneading with a known kneader such as a mixing roll, a pressure kneader, or an extruder.
  • the sealing resin sheet 11 can be obtained by molding the obtained kneaded material by extrusion molding. Specifically, the encapsulating resin sheet 11 can be formed by extrusion molding without cooling the kneaded product after melt-kneading while maintaining a high temperature state.
  • Such an extrusion method is not particularly limited, and examples thereof include a T-die extrusion method, a roll rolling method, a roll kneading method, a co-extrusion method, and a calendar molding method.
  • the extrusion temperature is not particularly limited as long as it is equal to or higher than the softening point of each component described above. However, considering the thermosetting property and moldability of the epoxy resin, for example, 40 to 150 ° C., preferably 50 to 140 ° C. Preferably, it is 70 to 120 ° C.
  • the sealing resin sheet 11 can be formed.
  • Temporal fixing material preparation process In the temporary fixing material preparing step, the temporary fixing material 2 in which the thermally expandable pressure-sensitive adhesive layer 2a is laminated on the support 2b is prepared (see FIG. 3A). In addition, it can replace with a thermally expansible adhesive layer, and can also use a radiation curing type adhesive layer. In the present embodiment, a temporary fixing material 2 including a thermally expandable pressure-sensitive adhesive layer will be described.
  • the heat-expandable pressure-sensitive adhesive layer 2a can be formed of a pressure-sensitive adhesive composition containing a polymer component and a foaming agent.
  • a polymer component particularly the base polymer
  • an acrylic polymer sometimes referred to as “acrylic polymer A”
  • acrylic polymer A examples include those using (meth) acrylic acid ester as a main monomer component.
  • Examples of the (meth) acrylic acid ester include (meth) acrylic acid alkyl esters (for example, methyl ester, ethyl ester, propyl ester, isopropyl ester, butyl ester, isobutyl ester, sec-butyl ester, t-butyl ester, Pentyl ester, isopentyl ester, hexyl ester, heptyl ester, octyl ester, 2-ethylhexyl ester, isooctyl ester, nonyl ester, decyl ester, isodecyl ester, undecyl ester, dodecyl ester, tridecyl ester, tetradecyl ester, Linear or branched alkyl ester having 1 to 30 carbon atoms, particularly 4 to 18 carbon atoms, of an alkyl group such as hexadecyl ester, oct
  • (Substituted or unsubstituted) amino group-containing monomers (meth) acrylic acid alkoxyalkyl monomers such as methoxyethyl (meth) acrylate and ethoxyethyl (meth) acrylate; N-vinylpyrrolidone, N -Methylvinylpyrrolidone, N-vinylpyridine, N-vinylpiperidone, N-vinylpyrimidine, N-vinylpiperazine, N-vinylpyrazine, N-vinylpyrrole, N-vinylimidazole, N-vinyloxazole, N-vinylmorpholine, N -Monomers having a nitrogen atom-containing ring such as vinylcaprolactam; N-vinylcarboxylic amides; Monomers containing sulfonic acid groups such as styrene sulfonic acid, allyl sulfonic acid, (meth) acryl
  • the acrylic polymer A can be obtained by polymerizing a single monomer or a mixture of two or more monomers.
  • the polymerization may be performed by any method such as solution polymerization (for example, radical polymerization, anionic polymerization, cationic polymerization), emulsion polymerization, bulk polymerization, suspension polymerization, photopolymerization (for example, ultraviolet (UV) polymerization). it can.
  • the weight average molecular weight of the acrylic polymer A is not particularly limited, but is preferably 350,000 to 1,000,000, more preferably about 450,000 to 800,000.
  • an external cross-linking agent can be appropriately used for the thermally expandable pressure-sensitive adhesive in order to adjust the adhesive force.
  • the external crosslinking method include a method of adding a so-called crosslinking agent such as a polyisocyanate compound, an epoxy compound, an aziridine compound, a melamine crosslinking agent, and reacting them.
  • a so-called crosslinking agent such as a polyisocyanate compound, an epoxy compound, an aziridine compound, a melamine crosslinking agent, and reacting them.
  • the amount used is appropriately determined depending on the balance with the base polymer to be cross-linked, and further depending on the intended use as an adhesive.
  • the amount of the external crosslinking agent used is generally 20 parts by weight or less (preferably 0.1 to 10 parts by weight) with respect to 100 parts by weight of the base polymer.
  • the heat-expandable pressure-sensitive adhesive layer 2a contains a foaming agent for imparting heat-expandability. Therefore, in a state where the grinding body 26 including the semiconductor chip 23 ground on the thermally expandable pressure-sensitive adhesive layer 2a of the temporary fixing material 2 is formed (see FIG. 3C), the temporary fixing material 2 is at least partially attached at any time. And the foaming agent contained in the heated thermally expandable pressure-sensitive adhesive layer 2a is foamed and / or expanded, so that the heat-expandable pressure-sensitive adhesive layer 2a is at least partially expanded.
  • the foaming agent used in the thermally expandable pressure-sensitive adhesive layer 2a is not particularly limited, and can be appropriately selected from known foaming agents.
  • a foaming agent can be used individually or in combination of 2 or more types.
  • thermally expandable microspheres can be suitably used.
  • the heat-expandable microsphere is not particularly limited, and can be appropriately selected from known heat-expandable microspheres (such as various inorganic heat-expandable microspheres and organic heat-expandable microspheres).
  • a microencapsulated foaming agent can be suitably used from the viewpoint of easy mixing operation.
  • thermally expandable microspheres include microspheres in which substances such as isobutane, propane, and pentane that are easily gasified and expanded by heating are encapsulated in an elastic shell.
  • the shell is often formed of a hot-melt material or a material that is destroyed by thermal expansion.
  • Examples of the substance forming the shell include vinylidene chloride-acrylonitrile copolymer, polyvinyl alcohol, polyvinyl butyral, polymethyl methacrylate, polyacrylonitrile, polyvinylidene chloride, and polysulfone.
  • Thermally expandable microspheres can be produced by a conventional method such as a coacervation method or an interfacial polymerization method.
  • thermally expandable microspheres include, for example, a series of “Matsumoto Microsphere F30” and “Matsumoto Microsphere F301D” (trade names “Matsumoto Microsphere F30”, manufactured by Matsumoto Yushi Seiyaku Co., Ltd.).
  • Commercially available products such as “051DU”, “053DU”, “551DU”, “551-20DU”, and “551-80DU” can be used.
  • a foaming agent other than the thermally expandable microsphere can also be used.
  • various foaming agents such as various inorganic foaming agents and organic foaming agents can be appropriately selected and used.
  • the inorganic foaming agent include ammonium carbonate, ammonium hydrogen carbonate, sodium hydrogen carbonate, ammonium nitrite, sodium borohydride, various azides and the like.
  • organic foaming agents include, for example, water; chlorofluorinated alkane compounds such as trichloromonofluoromethane and dichloromonofluoromethane; azobisisobutyronitrile, azodicarbonamide, and barium azodi.
  • Azo compounds such as carboxylate; hydrazine compounds such as p-toluenesulfonyl hydrazide, diphenylsulfone-3,3'-disulfonyl hydrazide, 4,4'-oxybis (benzenesulfonyl hydrazide), allyl bis (sulfonyl hydrazide); p- Semicarbazide compounds such as toluylenesulfonyl semicarbazide and 4,4′-oxybis (benzenesulfonyl semicarbazide); Triazole compounds such as 5-morpholyl-1,2,3,4-thiatriazole; N, N′-dinitrosope Data methylene terrorism lamin, N, N'-dimethyl -N, N'N-nitroso compounds such as dinitrosoterephthalamide, and the like.
  • a foaming agent having a foaming start temperature (thermal expansion start temperature) (T 0 ) in the range of 80 ° C. to 210 ° C. can be suitably used, preferably 90 ° C. to 200 ° C. (more The foaming start temperature is preferably from 95 ° C to 200 ° C, particularly preferably from 100 ° C to 170 ° C.
  • the foaming agent may foam due to heat during production or use of the sealing body or the grinding body, and handling properties and productivity are lowered.
  • the foaming agent that is, a method of thermally expanding the thermally expandable pressure-sensitive adhesive layer
  • it can be appropriately selected from known heat foaming methods.
  • the heat-expandable pressure-sensitive adhesive layer has an elastic modulus of 23 ° C. in a form not containing a foaming agent from the viewpoint of a balance between moderate adhesive force before heat treatment and lowering of adhesive force after heat treatment. It is preferably 5 ⁇ 10 4 Pa to 1 ⁇ 10 6 Pa at ⁇ 150 ° C., more preferably 5 ⁇ 10 4 Pa to 8 ⁇ 10 5 Pa, and particularly 5 ⁇ 10 4 Pa to 5 ⁇ 10 5 Pa. It is preferable that When the elastic modulus (temperature: 23 ° C.
  • the thermal expandability may be inferior and the peelability may be deteriorated.
  • the elastic modulus (temperature: 23 ° C. to 150 ° C.) of the thermally expandable pressure-sensitive adhesive layer in a form not containing a foaming agent is larger than 1 ⁇ 10 6 Pa, the initial adhesiveness may be inferior.
  • the thermally expansible adhesive layer of the form which does not contain a foaming agent is corresponded to the adhesive layer formed with the adhesive (The foaming agent is not contained). Therefore, the elastic modulus of the thermally expandable pressure-sensitive adhesive layer in a form not containing a foaming agent can be measured using a pressure-sensitive adhesive (no foaming agent is included).
  • the heat-expandable pressure-sensitive adhesive layer includes a pressure-sensitive adhesive capable of forming a pressure-sensitive adhesive layer having an elastic modulus at 23 ° C. to 150 ° C. of 5 ⁇ 10 4 Pa to 1 ⁇ 10 6 Pa, and a thermal expansion containing a foaming agent. It can be formed with an adhesive.
  • the modulus of elasticity of the thermally expandable pressure-sensitive adhesive layer in the form not containing the foaming agent is the heat-expandable pressure-sensitive adhesive layer in the form in which the foaming agent is not added (that is, the pressure-sensitive adhesive layer by the pressure-sensitive adhesive not containing the foaming agent).
  • a rheometric dynamic viscoelasticity measuring device “ARES” sample thickness: about 1.5 mm, ⁇ 7.9 mm parallel plate jig, in shear mode , Frequency: 1 Hz, rate of temperature increase: 5 ° C./min, strain: 0.1% (23 ° C.), 0.3% (150 ° C.) measured at 23 ° C. and 150 ° C. shear storage elasticity obtained
  • the value of the rate G ′ is assumed.
  • the elastic modulus of the thermally expandable pressure-sensitive adhesive layer can be controlled by adjusting the type of the base polymer of the pressure-sensitive adhesive, the crosslinking agent, the additive, and the like.
  • the degree of deformation of the heat-expandable pressure-sensitive adhesive layer by heat treatment is small, and the adhesive force is not easily lowered.
  • the thickness of the heat-expandable pressure-sensitive adhesive layer is too thick, cohesive failure is likely to occur in the heat-expandable pressure-sensitive adhesive layer after expansion or foaming by heat treatment, and adhesive residue may be generated in the grinding body 26. .
  • the thickness of the support 2b can be appropriately selected in consideration of the intended strength and handleability, and is preferably 100 to 5000 ⁇ m, more preferably 300 to 2000 ⁇ m.
  • the temporary fixing material 2 is obtained by forming the thermally expandable pressure-sensitive adhesive layer 2a on the support 2b.
  • the heat-expandable pressure-sensitive adhesive layer is formed into a sheet-like layer by mixing, for example, a pressure-sensitive adhesive, a foaming agent (such as heat-expandable microspheres), and a solvent or other additives as necessary. It can be formed using conventional methods.
  • the thermally expandable pressure-sensitive adhesive layer can be thermally expanded by heating.
  • an appropriate heating means such as a hot plate, a hot air dryer, a near infrared lamp, an air dryer or the like can be used.
  • the heating temperature during the heat treatment may be equal to or higher than the foaming start temperature (thermal expansion start temperature) of the foaming agent (thermally expansible microspheres, etc.) in the heat-expandable pressure-sensitive adhesive layer.
  • Typical heat treatment conditions are a temperature of 100 ° C. to 250 ° C., and a time of 1 second to 90 seconds (hot plate or the like) or 5 minutes to 15 minutes (hot air dryer or the like). Note that the heat treatment can be performed at an appropriate stage depending on the purpose of use. In some cases, an infrared lamp or heated water can be used as the heat source during the heat treatment.
  • the adhesion area can be increased, and the thermal expansion of the thermally expandable pressure-sensitive adhesive layer 2a is highly enhanced when the grinding body 26 after grinding is thermally peeled from the temporary fixing material 2 (see FIG.
  • the heat-expandable pressure-sensitive adhesive layer 2a can be preferentially and uniformly expanded in the thickness direction.
  • the rubbery organic elastic intermediate layer can be interposed on one side or both sides of the support 2b.
  • the rubbery organic elastic intermediate layer is preferably formed of natural rubber, synthetic rubber, or synthetic resin having rubber elasticity with a D-type Sure D-type hardness of 50 or less, particularly 40 or less based on ASTM D-2240. Even if it is essentially a hard polymer such as polyvinyl chloride, rubber elasticity can be manifested in combination with compounding agents such as plasticizers and softeners. Such a composition can also be used as a constituent material of the rubbery organic elastic intermediate layer.
  • the rubber-like organic elastic intermediate layer is, for example, a method (coating method) in which a coating liquid containing a rubber-like organic elastic layer forming material such as natural rubber, synthetic rubber, or synthetic resin having rubber elasticity is applied onto a substrate, A method in which a film made of a rubbery organic elastic layer forming material or a laminated film in which a layer made of the rubbery organic elastic layer forming material is previously formed on one or more thermally expandable pressure-sensitive adhesive layers is bonded to a substrate (dry Laminating method), and a forming method such as a method of co-extruding a resin composition containing a constituent material of a base material and a resin composition containing the rubber-like organic elastic layer forming material (co-extrusion method).
  • a coating liquid containing a rubber-like organic elastic layer forming material such as natural rubber, synthetic rubber, or synthetic resin having rubber elasticity is applied onto a substrate
  • the intermediate layer such as the rubbery organic elastic intermediate layer may be a single layer or may be composed of two or more layers.
  • various additives for example, a colorant, a thickener, an extender, a filler, a tackifier, a plasticizer, an anti-aging agent, an oxidation agent, etc.
  • An inhibitor for example, a surfactant, a cross-linking agent, etc.
  • semiconductor chip placement process In the semiconductor chip arrangement step, a plurality of semiconductor chips 23 are arranged on the temporary fixing material 2 such that the active surface A2 faces the temporary fixing material 2 (see FIG. 3A).
  • a known device such as a flip chip bonder or a die bonder can be used for arranging the semiconductor chip 23.
  • the layout and the number of arrangement of the semiconductor chips 23 can be appropriately set according to the shape and size of the temporary fixing material 2, the number of target packages produced, and the like, for example, a matrix of a plurality of rows and a plurality of columns. Can be arranged in a line.
  • the sealing resin sheet 21 is laminated on the temporary fixing material 2 so as to cover the plurality of semiconductor chips 23 and is resin-sealed (see FIG. 3B).
  • the same conditions as in the first embodiment can be adopted for the method of laminating the sealing resin sheet 21 on the temporary fixing material 2.
  • sealing body forming process In the sealing body forming step, the sealing resin sheet 21 is subjected to a thermosetting process to form the sealing body 25 (see FIG. 3B).
  • the conditions for the thermosetting treatment of the sealing resin sheet 21 can employ the same conditions as in the first embodiment.
  • the sealing resin sheet 21 of the sealing body 25 is ground so that the surface 23S opposite to the active surface A2 of the semiconductor chip 23 is exposed to form the grinding body 26 (see FIG. 3C). Grinding may be performed using a known grinding apparatus.
  • the minimum height difference between the surface 21S of the sealing resin sheet and the exposed surface 23S of the semiconductor chip in the grinding body 26 is 10 ⁇ m or more, preferably 20 ⁇ m or more, more preferably 30 ⁇ m or more.
  • the temporary fixing material 2 is heated to thermally expand the heat-expandable pressure-sensitive adhesive layer 2a, whereby peeling is performed between the heat-expandable pressure-sensitive adhesive layer 2a and the grinding body 26.
  • peeling is performed between the heat-expandable pressure-sensitive adhesive layer 2a and the grinding body 26.
  • a procedure of peeling at the interface between the support 2b and the heat-expandable pressure-sensitive adhesive layer 2a and then peeling at the interface between the heat-expandable pressure-sensitive adhesive layer 2a and the grinding body 26 is preferably employed. can do.
  • the heat-expandable pressure-sensitive adhesive layer 2a is heated and thermally expanded to reduce the adhesive force, thereby easily peeling at the interface between the heat-expandable pressure-sensitive adhesive layer 2a and the grinding body 26. It can be carried out.
  • the conditions for thermal expansion the conditions in the above-mentioned column “Thermal expansion method for thermally expandable pressure-sensitive adhesive layer” can be preferably employed.
  • the surface of the grinding body 26 may be cleaned by plasma treatment or the like prior to the rewiring forming step with the semiconductor chip 23 exposed.
  • an insulating layer such as polyimide or PBO may be formed on the rewiring 29 and the grinding body 26.
  • a bumping process for forming bumps 27 on the formed rewiring 29 may be performed (see FIG. 3F).
  • the bumping process can be performed by a known method such as a solder ball or solder plating.
  • the material of the bump 27 the same material as that of the first embodiment can be suitably used.
  • the grinding surface G2 (see FIG. 3C) of the grinding body 26 may be resin-sealed again in order to protect the exposed surface 23S of the semiconductor chip 23.
  • the sealing method is not particularly limited, and a known liquid or film-like sealing resin may be applied or bonded to the grinding surface G2, dried, and cured. This step may be performed at any stage after the grinding step and before the dicing step.
  • Epoxy resin Bisphenol F type epoxy resin (manufactured by Nippon Steel Chemical Co., Ltd., YSLV-80XY (epoxy equivalent 200 g / eq. Softening point 80 ° C.)) 286 parts
  • Phenol resin phenol resin having biphenylaralkyl skeleton (Maywa Kasei Co., Ltd.) Manufactured by MEH-7851-SS (hydroxyl equivalent: 203 g / eq., Softening point: 67 ° C.))
  • Curing accelerator Imidazole-based catalyst as a curing catalyst (manufactured by Shikoku Kasei Kogyo Co., Ltd., 2PHZ-PW) 6 parts
  • Elastomer Styrene-isobutylene-styrene triblock copolymer (manufactured by Kaneka Corporation, SIBSTAR 072T) 700 parts
  • Inorganic filler Spherical fused silica powder
  • Epoxy resin Bisphenol F type epoxy resin (manufactured by Nippon Steel Chemical Co., Ltd., YSLV-80XY (epoxy equivalent 200 g / eq. Softening point 80 ° C.)) 169 parts
  • Phenol resin phenol resin having biphenylaralkyl skeleton (Maywa Kasei Co., Ltd.) Manufactured by MEH-7851-SS (hydroxyl equivalent: 203 g / eq., Softening point: 67 ° C.)) 179 parts
  • Curing accelerator Imidazole-based catalyst as a curing catalyst (manufactured by Shikoku Kasei Kogyo Co., Ltd., 2PHZ-PW) 6 parts
  • Elastomer Styrene-isobutylene-styrene triblock copolymer (manufactured by Kaneka Corporation, SIBSTAR 072T) 152 parts
  • Inorganic filler spherical
  • a chip mounting interposer was prepared in which a semiconductor chip having the following specifications was flip-chip mounted on a silicon interposer, and the space between the chip and the interposer was sealed with a bisphenol A type epoxy thermosetting underfill material.
  • Each of the sealing resin sheets A to C was attached to the obtained chip mounting interposer by a vacuum press under the following heating and pressing conditions.
  • the encapsulating resin sheet was thermally cured in a hot air dryer at 180 ° C. for 1 hour to obtain an encapsulant.
  • the thickness of the semiconductor chip is reduced by grinding using a cutting apparatus (manufactured by DISCO Corporation, surface planar “DFS8910”) under the conditions of a peripheral speed of a grinding tool of 1000 m / min, a feed pitch of 100 ⁇ m, and a cutting depth of 10 ⁇ m.
  • the sealing body was thinned together with the semiconductor chip until the thickness became 100 ⁇ m, thereby producing a ground body.
  • the exposed surface of the silicon interposer of the obtained grinding body (the surface opposite to the surface on which the sealing resin sheet was bonded) was removed with a grinding device (“DGP8761” manufactured by DISCO) and the thickness of the silicon interposer was 100 ⁇ m. Grinded until
  • sputtering is performed in the order of chromium and copper to form a seed film (chrome layer thickness 20 nm, copper layer thickness 100 nm), and a rewiring layer having a predetermined wiring pattern is formed by electrolytic copper plating.
  • a semiconductor package was produced.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)
  • Grinding Of Cylindrical And Plane Surfaces (AREA)
  • Encapsulation Of And Coatings For Semiconductor Or Solid State Devices (AREA)
  • Dicing (AREA)

Abstract

 封止樹脂シートを用いた封止物を研削した後の反りの発生を抑制可能な半導体パッケージの製造方法を提供する。本発明は、一又は複数の半導体チップが封止樹脂シートに埋め込まれた封止体を形成する封止体形成工程、及び前記封止体の前記封止樹脂シートを前記半導体チップの活性面とは反対側の表面が露出するように研削して研削体を形成する研削工程を含み、前記研削体における前記封止樹脂シートの表面と前記半導体チップの露出面との最小高低差が10μm以上である半導体パッケージの製造方法である。

Description

半導体パッケージの製造方法
 本発明は、半導体パッケージの製造方法に関する。
 近年、電子機器の小型化、軽量化、高機能化の要求が高まっており、それに応じて電子機器を構成するパッケージについても小型化、薄型化、高密度実装が求められている。
 半導体パッケージの作製には、代表的に、基板や仮止め材等に固定された電子部品を封止樹脂にて封止し、必要に応じて封止物を電子部品単位のパッケージとなるようにダイシングするという手順が採用されている。このような過程の中で、上記要求に応えるべく、樹脂封止後に封止物を研削して薄型化を図る技術が提案されている(例えば、特許文献1、2等)。フリップチップBGA(Ball Grid Array)、フリップチップSiP(System in Package)、ファンイン型ウェハレベルパッケージ、ファンアウト型ウェハレベルパッケージ等の薄型半導体パッケージの製造工程においては、こうした研削による薄型化も重要な要素となる。
特許第3420748号 特許第3666576号
 しかしながら、研削後の封止物において反りが生じる場合があり、反りが生じた状態のまま半導体パッケージを作製すると、歩留りが低下したり、得られる半導体パッケージの信頼性が低下したりすることになる。この不具合は、上記特許文献1及び2の技術では認識されておらず、その解決が望まれている。
 本発明の目的は、封止樹脂シートを用いた封止物を研削した後の反りの発生を抑制可能な半導体パッケージの製造方法を提供することにある。
 本発明者らは、鋭意検討した結果、半導体チップを樹脂封止した封止体では、封止樹脂シートの熱硬化の際の収縮力が残存しており、この収縮力が研削後の研削体にも継続的に負荷されることにより研削体の反りが生じるのではないかとの知見を得た。この知見に基づき本発明者らはさらに検討を進めた結果、以下の構成により上記課題を解決できることを見出し、本発明を完成させた。
 すなわち、本発明は、一又は複数の半導体チップが封止樹脂シートに埋め込まれた封止体を形成する封止体形成工程、及び
 前記封止体の前記封止樹脂シートを前記半導体チップの活性面とは反対側の表面が露出するように研削して研削体を形成する研削工程
 を含み、
 前記研削体における前記封止樹脂シートの表面と前記半導体チップの露出面との最小高低差が10μm以上である半導体パッケージの製造方法である。
 当該製造方法では、研削体における封止樹脂シートの表面と半導体チップの露出面との最小高低差を10μm以上とし、半導体チップに対して封止樹脂シートがより深く研削された状態としている。これにより、研削体における封止樹脂シートの収縮力が働く領域を狭めることができ、研削体全体に負荷される収縮力を低減して研削体の反りを抑制することができる。上記最小高低差が10μm未満であると、研削体において収縮力が働く領域の狭小化が不十分となり、研削体の反りが生じる場合がある。
 150℃で1時間熱硬化処理を施した後の前記封止樹脂シートの25℃におけるショアD硬度が20以上60以下であることが好ましい。また、150℃で1時間熱硬化処理を施した後の前記封止樹脂シートの25℃における貯蔵弾性率が0.1GPa以上3GPa以下であることが好ましい。本発明者らの検討によると、研削体の研削面の段差の主因の1つは、封止体における封止樹脂シート(熱硬化処理後)の硬度と半導体チップの硬度との差(以下、単に「硬度差」ともいう。)であると推察される。すなわち、硬度差が大きいと段差も大きくなり、硬度差が小さいと段差も小さくなるという相関関係が成立すると考えられる。当該製造方法において、上記ショアD硬度又は上記貯蔵弾性率を上記範囲とすることにより、硬度差を大きくして研削体の研削面における上記最初高低差を大きくすることができ、その結果、研削体の反りの発生をより効率的に抑制させることができる。
 前記封止体形成工程において、半導体ウェハにフリップチップ接続された前記半導体チップを前記封止樹脂シートに埋め込んで前記封止体を形成してもよく、あるいは、仮固定材に固定された前記半導体チップを前記封止樹脂シートに埋め込んで前記封止体を形成してもよい。前者は半導体チップをウェハに整列させて半導体装置を作製するチップオンウェハプロセスに好適であり、後者はファンアウト型ウェハレベルパッケージのプロセスに好適である。いずれの形態で封止体を形成しても、研削体の反りを抑制することができ、半導体パッケージの作製プロセスのバリエーションを増加させることができる。
 当該製造方法は、前記研削工程後、前記研削体の前記半導体チップの活性面側の表面を研削する裏面研削工程をさらに含んでいてもよい。
 当該製造方法は、前記研削工程後又は前記裏面研削工程後、前記研削体の前記半導体チップの活性面側の表面に再配線を形成する再配線形成工程をさらに含んでいてもよい。
 当該製造方法では、前記半導体チップが複数用いられており、
 前記再配線形成工程後に、前記研削体を目的の半導体チップ単位でダイシングするダイシング工程をさらに含んでいてもよい。
本発明の一実施形態に係る半導体パッケージの製造方法の一工程を模式的に示す断面図である。 本発明の一実施形態に係る半導体パッケージの製造方法の一工程を模式的に示す断面図である。 本発明の一実施形態に係る半導体パッケージの製造方法の一工程を模式的に示す断面図である。 本発明の一実施形態に係る半導体パッケージの製造方法の一工程を模式的に示す断面図である。 本発明の一実施形態に係る半導体パッケージの製造方法の一工程を模式的に示す断面図である。 本発明の一実施形態に係る半導体パッケージの製造方法の一工程を模式的に示す断面図である。 本発明の一実施形態に係る半導体パッケージの製造方法の一工程を模式的に示す断面図である。 本発明の一実施形態に係る封止樹脂シートを模式的に示す断面図である。 本発明の別の一実施形態に係る半導体パッケージの製造方法の一工程を模式的に示す断面図である。 本発明の別の一実施形態に係る半導体パッケージの製造方法の一工程を模式的に示す断面図である。 本発明の別の一実施形態に係る半導体パッケージの製造方法の一工程を模式的に示す断面図である。 本発明の別の一実施形態に係る半導体パッケージの製造方法の一工程を模式的に示す断面図である。 本発明の別の一実施形態に係る半導体パッケージの製造方法の一工程を模式的に示す断面図である。 本発明の別の一実施形態に係る半導体パッケージの製造方法の一工程を模式的に示す断面図である。 本発明の別の一実施形態に係る半導体パッケージの製造方法の一工程を模式的に示す断面図である。 研削体の研削面における最小高低差を測定する手順を模式的に示す平面図である。
 本発明の半導体パッケージの製造方法の実施形態について、図面を参照しながら以下に説明する。ただし、図の一部又は全部において、説明に不要な部分は省略し、また説明を容易にするために拡大または縮小等して図示した部分がある。上下等の位置関係を示す用語は、単に説明を容易にするために用いられており、本発明の構成を限定する意図は一切ない。
<第1実施形態>
 [半導体パッケージの製造方法]
 封止樹脂シートを用いる本実施形態に係る半導体パッケージの製造方法について図1A~図1Gを参照しつつ説明する。図1A~図1Gはそれぞれ、本発明の一実施形態に係る半導体パッケージの製造方法の一工程を模式的に示す断面図である。第1実施形態では、半導体ウェハ上に搭載された半導体チップを封止樹脂シートにより樹脂封止して半導体パッケージを作製する。第1実施形態に係る半導体パッケージの製造方法は、チップ・オン・ウェハ(COW)プロセスに好適である。
 (チップ搭載ウェハ準備工程)
 チップ搭載ウェハ準備工程では、複数の半導体チップ13がフリップチップ接続された半導体ウェハ12Aを準備する(図1A参照)。半導体チップ13は、所定の回路が形成された半導体ウェハを公知の方法でダイシングして個片化することにより形成することができる。半導体チップ13の半導体ウェハ12Aへの搭載には、フリップチップボンダーなどの公知の装置を用いることができる。本実施形態では、半導体チップ13の突起電極13aが形成された活性面A1が半導体ウェハ12Aと対向するフリップチップ接続を採用している。半導体チップ13に形成されたバンプ等の突起電極13aと、半導体ウェハ12Aに設けられた貫通電極12aとを介して、半導体チップ13と半導体ウェハ12Aとが電気的に接続されている。貫通電極12aは、TSV(Through Silicon Via)形式の電極を好適に用いることができる。
 また、半導体チップ13と半導体ウェハ12Aとの間には両者の熱膨張率の差を緩和して特に接続部位におけるクラック等の発生を防止するためのアンダーフィル材14が充填されている。アンダーフィル材14としては公知のものを用いればよい。アンダーフィル材14の配置は、半導体チップ13の半導体ウェハ12Aへの搭載後、両者間に液状のアンダーフィル材14を注入させることにより行ってもよく、シート状のアンダーフィル材14付きの半導体チップ13又は半導体ウェハ12Aを用意した上で、半導体チップ13と半導体ウェハ12Aとを接続することにより行ってもよい。
 (封止工程)
 封止工程では、半導体チップ13を埋め込むように半導体ウェハ12Aへ封止樹脂シート11を積層し、半導体チップ13を上記封止樹脂シートで樹脂封止する(図1B参照)。この封止樹脂シート11は、半導体チップ13及びそれに付随する要素を外部環境から保護するための封止樹脂として機能する。
 封止樹脂シート11の積層方法としては特に限定されず、封止樹脂シートを形成するための樹脂組成物の溶融混練物を押出成形し、押出成形物を半導体ウェハ12A上に載置してプレスすることにより封止樹脂シート11の形成と積層とを一括にて行う方法や、封止樹脂シート11を形成するための樹脂組成物を離型処理シート上に塗布し、塗布膜を乾燥させて封止樹脂シート11を形成した上で、この封止樹脂シート11を半導体ウェハ12A上に転写する方法などが挙げられる。
 本実施形態では、上記封止樹脂シート11を採用することにより、半導体チップ13の被覆に半導体ウェハ12A上に貼り付けるだけで半導体チップ13を埋め込むことができ、半導体パッケージの生産効率を向上させることができる。この場合、熱プレスやラミネータなど公知の方法により封止樹脂シート11を半導体ウェハ12A上に積層することができる。熱プレス条件としては、温度が、例えば、40~120℃、好ましくは、50~100℃であり、圧力が、例えば、50~2500kPa、好ましくは、100~2000kPaであり、時間が、例えば、0.3~10分間、好ましくは、0.5~5分間である。また、封止樹脂シート11の半導体チップ13及び半導体ウェハ12Aへの密着性および追従性の向上を考慮すると、好ましくは、減圧条件下(例えば10~2000Pa)において、プレスすることが好ましい。
 (封止体形成工程)
 封止体形成工程では、上記封止樹脂シートを熱硬化処理して半導体チップ13が封止樹脂シート11に埋め込まれた封止体15を形成する(図1B参照)。封止樹脂シートの熱硬化処理の条件は、加熱温度として好ましくは100℃から200℃、より好ましくは120℃から180℃、加熱時間として好ましくは10分から180分、より好ましくは30分から120分の間、必要に応じて加圧しても良い。加圧の際は、好ましくは0.1MPaから10MPa、より好ましくは0.5MPaから5MPaを採用することができる。
 (研削工程)
 研削工程では、封止体15の封止樹脂シート11を半導体チップ13の活性面Aとは反対側の表面が露出するように研削して研削体16Aを形成する(図1C参照)。研削の際、図1Cに示すように封止樹脂シート11とともに半導体チップ13も研削してもよく、封止樹脂シート11のみを研削してもよい。研削は公知の研削装置を用いて行えばよい。ダイアモンドバイト等の研削バイトを回転させながら、そこに封止体15を送りつつ封止体表面を研削して研削体16Aを形成する手順を好適に採用することができる。
 研削体16Aにおける封止樹脂シートの表面11Sと半導体チップの露出面13Sとの最小高低差は10μm以上であり、好ましくは20μm以上である。研削面G1における最小高低差を上記範囲とすることにより、研削体16A、16B及び16C(図1C~図1F参照)における封止樹脂シート11の収縮力が働く領域を狭小化することができ、該研削体の反りを抑制することができる。なお、上記最小高低差の上限は研削体の機械的強度の観点から50μm以下が好ましく、40μm以下がより好ましい。
 (裏面研削工程)
 裏面研削工程では、研削体16Aの研削面G1とは反対側の面(すなわち、裏面B1)を研削する(図1D参照)。これにより、半導体ウェハ12Aの露出面を研削することになり、薄型化した半導体ウェハ12Bを得ることができる。研削後の半導体ウェハ12Bの厚さは目的とするパッケージの仕様により変更すればよく、例えば25~200μmが好ましく、50~100μmがより好ましい。研削は公知の研削装置を用いて行えばよい。研削体16Aの固定には公知の裏面研削用テープを用いることができる。
 なお、チップ搭載用のウェハとして、所望の厚さを有する薄型の半導体ウェハ12Aを用いる場合には、この裏面研削工程を省略することができる。この場合、半導体ウェハ12Aを補強するためのサポート材を半導体ウェハ12Aに貼り合わせて各工程を行えばよい。研削体16Bでは上記最小高低差を10μm以上として研削体16Bに負荷される収縮力を低減しているので、サポート材を剥離した後であっても研削体の反りを抑制することができる。
 (再配線形成工程)
 本実施形態ではさらに、研削体16Bの半導体チップ13の活性面A1側の面B1に再配線19を形成する再配線形成工程を含むことが好ましい(図1E参照)。再配線形成工程では、裏面研削による薄型化した半導体ウェハ12Bの形成後、半導体ウェハ12Bの貫通電極12aと接続する再配線19を研削体16B上に形成する。
 再配線の形成方法としては、例えば、露出している半導体ウェハ12B上へ真空成膜法などの公知の方法を利用して金属シード層を形成し、セミアディティブ法などの公知の方法により、再配線19を形成することができる。
 かかる後に、再配線19及び研削体16B上へポリイミドやPBOなどの絶縁層を形成してもよい。
 (バンプ形成工程)
 次いで、形成した再配線19上にバンプ17を形成するバンピング加工を行ってもよい(図1F参照)。バンピング加工は、半田ボールや半田メッキなど公知の方法で行うことができる。バンプの材質は特に限定されず、例えば、錫-鉛系金属材、錫-銀系金属材、錫-銀-銅系金属材、錫-亜鉛系金属材、錫-亜鉛-ビスマス系金属材等の半田類(合金)や、金系金属材、銅系金属材などが挙げられる。
 (チップ裏面保護工程)
 バンプ17を形成した後、半導体チップ13の露出面13Sを保護するために、研削体16Aの研削面G1(図1C参照)を再度樹脂封止してもよい。封止方法としては特に限定されず、公知の液状やフィルム状の封止樹脂を研削面G1に塗布ないし貼り合わせ、乾燥、硬化させればよい。なお、本工程は、研削工程後であってダイシング工程前であればいずれの段階で行ってもよい。
 (ダイシング工程)
 続いて、封止樹脂シート11、半導体ウェハ12B、及び半導体チップ13などの要素からなるバンプ形成を経た研削体16Cのダイシングを行ってもよい(図1G参照)。これにより、目的とする半導体チップ13単位での半導体パッケージ18を得ることができる。図1Gでは、1つの半導体チップに対応させてダイシングしているが、2つ以上の半導体チップを一単位としてダイシングを行ってもよい。ダイシングは、通常、従来公知のダイシングシートにより上記研削体16を固定した上で行う。切断箇所の位置合わせは直接照明又は間接照明を用いた画像認識により行ってもよい。
 本工程では、例えば、ダイシングシートまで切込みを行うフルカットと呼ばれる切断方式等を採用できる。本工程で用いるダイシング装置としては特に限定されず、従来公知のものを用いることができる。
 なお、ダイシング工程に続いて研削体のエキスパンドを行う場合、該エキスパンドは従来公知のエキスパンド装置を用いて行うことができる。エキスパンド装置は、ダイシングリングを介してダイシングシートを下方へ押し下げることが可能なドーナッツ状の外リングと、外リングよりも径が小さくダイシングシートを支持する内リングとを有している。このエキスパンド工程により、隣り合う半導体パッケージ18同士が接触して破損するのを防ぐことができる。
 (基板実装工程)
 必要に応じて、上記で得られた半導体パッケージ18を別途の基板(図示せず)に実装する基板実装工程を行うことができる。半導体パッケージ18の基板への実装には、フリップチップボンダーやダイボンダーなどの公知の装置を用いることができる。
 [封止樹脂シート]
 本実施形態に係る封止樹脂シートについて図2を参照しつつ説明する。図2は、本発明の一実施形態に係る封止樹脂シートを模式的に示す断面図である。封止樹脂シート11は、代表的に、ポリエチレンテレフタレート(PET)フィルム等の支持体11a上に積層された状態で提供される。なお、支持体11aには封止樹脂シート11の剥離を容易に行うために離型処理が施されていてもよい。
 また、150℃で1時間熱硬化処理を施した後の封止樹脂シート11の25℃におけるショアD硬度が20以上60以下であることが好ましく、30以上50以下であることがより好ましい。さらに、150℃で1時間熱硬化処理を施した後の封止樹脂シート11の25℃における貯蔵弾性率が0.1GPa以上3GPa以下であることが好ましく、0.5Pa以上2GPa以下であることがより好ましい。熱硬化処理後の封止樹脂シート11のショアD硬度や貯蔵弾性率を上記範囲とすることにより、硬度差を大きくすることができ、これにより上記最小高低差を大きくすることができる。その結果、研削体16Aにおける収縮力を低減して反りを抑制することができる。
 (封止樹脂シートを形成する樹脂組成物)
 封止樹脂シートを形成する樹脂組成物は、上述のような特性を好適に有し、半導体チップの樹脂封止に利用可能なものであれば、特に限定されないが、例えば以下のA成分からE成分を含有するエポキシ樹脂組成物が好ましいものとして挙げられる。なお、C成分は必要に応じて添加しても添加しなくてもよい。
  A成分:エポキシ樹脂
  B成分:フェノール樹脂
  C成分:エラストマー
  D成分:無機充填剤
  E成分:硬化促進剤
 (A成分)
 エポキシ樹脂(A成分)としては、特に限定されるものではない。例えば、トリフェニルメタン型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、ビフェニル型エポキシ樹脂、変性ビスフェノールA型エポキシ樹脂、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、変性ビスフェノールF型エポキシ樹脂、ジシクロペンタジエン型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、フェノキシ樹脂等の各種のエポキシ樹脂を用いることができる。これらエポキシ樹脂は単独で用いてもよいし2種以上併用してもよい。
 エポキシ樹脂の硬化後の靭性及びエポキシ樹脂の反応性を確保する観点からは、エポキシ当量150~250、軟化点もしくは融点が50~130℃の常温で固形のものが好ましく、中でも、信頼性の観点から、トリフェニルメタン型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、ビフェニル型エポキシ樹脂が好ましい。
 また、低応力性の観点から、アセタール基やポリオキシアルキレン基等の柔軟性骨格を有する変性ビスフェノールA型エポキシ樹脂が好ましく、アセタール基を有する変性ビスフェノールA型エポキシ樹脂は、液体状で取り扱いが良好であることから、特に好適に用いることができる。
 エポキシ樹脂(A成分)の含有量は、エポキシ樹脂組成物全体に対して1~10重量%の範囲に設定することが好ましい。
 (B成分)
 フェノール樹脂(B成分)は、エポキシ樹脂(A成分)との間で硬化反応を生起するものであれば特に限定されるものではない。例えば、フェノールノボラック樹脂、フェノールアラルキル樹脂、ビフェニルアラルキル樹脂、ジシクロペンタジエン型フェノール樹脂、クレゾールノボラック樹脂、レゾール樹脂、等が用いられる。これらフェノール樹脂は単独で用いてもよいし、2種以上併用してもよい。
 フェノール樹脂としては、エポキシ樹脂(A成分)との反応性の観点から、水酸基当量が70~250、軟化点が50~110℃のものを用いることが好ましく、中でも硬化反応性が高いという観点から、フェノールノボラック樹脂を好適に用いることができる。また、信頼性の観点から、フェノールアラルキル樹脂やビフェニルアラルキル樹脂のような低吸湿性のものも好適に用いることができる。
 エポキシ樹脂(A成分)とフェノール樹脂(B成分)の配合割合は、硬化反応性という観点から、エポキシ樹脂(A成分)中のエポキシ基1当量に対して、フェノール樹脂(B成分)中の水酸基の合計が0.7~1.5当量となるように配合することが好ましく、より好ましくは0.9~1.2当量である。
 封止樹脂シート11中のエポキシ樹脂及びフェノール樹脂の合計含有量は、2.5重量%以上が好ましく、3.0重量%以上がより好ましい。2.5重量%以上であると、半導体チップ13、半導体ウェハ12Aなどに対する接着力が良好に得られる。封止樹脂シート11中のエポキシ樹脂及びフェノール樹脂の合計含有量は、20重量%以下が好ましく、10重量%以下がより好ましい。20重量%以下であると、吸湿性を低減できる。
 (C成分)
 エポキシ樹脂(A成分)及びフェノール樹脂(B成分)とともに用いられるエラストマー(C成分)は、封止樹脂シートによる半導体チップの封止に必要な可撓性をエポキシ樹脂組成物に付与するものであり、このような作用を奏するものであれば特にその構造を限定するものではない。例えば、ポリアクリル酸エステル等の各種アクリル系共重合体、スチレンアクリレート系共重合体、ブタジエンゴム、スチレン-ブタジエンゴム(SBR)、エチレン-酢酸ビニルコポリマー(EVA)、イソプレンゴム、アクリロニトリルゴム等のゴム質重合体を用いることができる。中でも、エポキシ樹脂(A成分)へ分散させやすく、またエポキシ樹脂(A成分)との反応性も高いために、得られる封止樹脂シートの耐熱性や強度を向上させることができるという観点から、アクリル系共重合体を用いることが好ましい。これらは単独で用いてもよいし、2種以上併せて用いてもよい。
 なお、アクリル系共重合体は、例えば、所定の混合比にしたアクリルモノマー混合物を、定法によってラジカル重合することにより合成することができる。ラジカル重合の方法としては、有機溶剤を溶媒に行う溶液重合法や、水中に原料モノマーを分散させながら重合を行う懸濁重合法が用いられる。その際に用いる重合開始剤としては、例えば、2,2’-アゾビスイソブチロニトリル、2,2’-アゾビス-(2,4-ジメチルバレロニトリル)、2,2’-アゾビス-4-メトキシ-2,4-ジメチルバレロニトリル、その他のアゾ系又はジアゾ系重合開始剤、ベンゾイルパーオキサイド及びメチルエチルケトンパーオキサイド等の過酸化物系重合開始剤等が用いられる。なお、懸濁重合の場合は、例えばポリアクリルアミド、ポリビニルアルコールのような分散剤を加えることが望ましい。
 エラストマー(C成分)の含有量は、エポキシ樹脂組成物全体の15~30重量%である。エラストマー(C成分)の含有量が15重量%未満では、封止樹脂シート11の柔軟性及び可撓性を得るのが困難となり、さらには封止樹脂シートの反りを抑えた樹脂封止も困難となる。逆に上記含有量が30重量%を超えると、封止樹脂シート11の溶融粘度が高くなって半導体チップ13の埋まり込み性が低下するとともに、封止樹脂シート11の硬化体の強度及び耐熱性が低下する傾向がみられる。
 また、エラストマー(C成分)のエポキシ樹脂(A成分)に対する重量比率(C成分の重量/A成分の重量)は、3~4.7の範囲に設定することが好ましい。上記重量比率が3未満の場合は、封止樹脂シート11の流動性をコントロールすることが困難となり、4.7を超えると封止樹脂シート11の半導体チップ13への接着性が劣る傾向がみられるためである。
 (D成分)
 無機質充填剤(D成分)は、特に限定されるものではなく、従来公知の各種充填剤を用いることができ、例えば、石英ガラス、タルク、シリカ(溶融シリカや結晶性シリカ等)、アルミナ、窒化アルミニウム、窒化珪素、窒化ホウ素の粉末が挙げられる。これらは単独で用いてもよいし、2種以上併用してもよい。
 中でも、エポキシ樹脂組成物の硬化体の熱線膨張係数が低減することにより内部応力を低減し、その結果、半導体チップの封止後の封止樹脂シート11の反りを抑制できるという点から、シリカ粉末を用いることが好ましく、シリカ粉末の中でも溶融シリカ粉末を用いることがより好ましい。溶融シリカ粉末としては、球状溶融シリカ粉末、破砕溶融シリカ粉末が挙げられるが、流動性という観点から、球状溶融シリカ粉末を用いることが特に好ましい。中でも、平均粒径が0.1~30μmの範囲のものを用いることが好ましく、1~20μmの範囲のものを用いることが特に好ましい。
 なお、平均粒径は、母集団から任意に抽出される試料を用い、レーザー回折散乱式粒度分布測定装置を用いて測定することにより導き出すことができる。
 無機質充填剤(D成分)の含有量は、好ましくはエポキシ樹脂組成物全体の70~95重量%であり、より好ましくは75~92重量%であり、さらに好ましくは80~90重量%である。無機質充填剤(D成分)の含有量が50重量%未満では、エポキシ樹脂組成物の硬化体の線膨張係数が大きくなるために、封止樹脂シート11の反りが大きくなる傾向がみられる。一方、上記含有量が90重量%を超えると、封止樹脂シート11の柔軟性や流動性が悪くなるために、半導体チップとの接着性が低下する傾向がみられる。
 (E成分)
 硬化促進剤(E成分)は、エポキシ樹脂とフェノール樹脂の硬化を進行させるものであれば特に限定されるものではないが、硬化性と保存性の観点から、トリフェニルホスフィンやテトラフェニルホスホニウムテトラフェニルボレート等の有機リン系化合物や、イミダゾール系化合物が好適に用いられる。これら硬化促進剤は、単独で用いても良いし、他の硬化促進剤と併用しても構わない。
 硬化促進剤(E成分)の含有量は、エポキシ樹脂(A成分)及びフェノール樹脂(B成分)の合計100重量部に対して0.1~5重量部であることが好ましい。
 (その他の成分)
 また、エポキシ樹脂組成物には、A成分からE成分に加えて、難燃剤成分を加えてもよい。難燃剤組成分としては、例えば水酸化アルミニウム、水酸化マグネシウム、水酸化鉄、水酸化カルシウム、水酸化スズ、複合化金属水酸化物等の各種金属水酸化物を用いることができる。
 金属水酸化物の平均粒径としては、エポキシ樹脂組成物を加熱した際に適当な流動性を確保するという観点から、平均粒径が1~10μmであることが好ましく、さらに好ましくは2~5μmである。金属水酸化物の平均粒径が1μm未満では、エポキシ樹脂組成物中に均一に分散させることが困難となるとともに、エポキシ樹脂組成物の加熱時における流動性が十分に得られない傾向がある。また、平均粒径が10μmを超えると、金属水酸化物(E成分)の添加量あたりの表面積が小さくなるため、難燃効果が低下する傾向がみられる。
 また、難燃剤成分としては上記金属水酸化物のほか、ホスファゼン化合物を用いることができる。ホスファゼン化合物としては、例えばSPR-100、SA-100、SP-100(以上、大塚化学株式会社)、FP-100、FP-110(以上、株式会社伏見製薬所)等が市販品として入手可能である。
 少量でも難燃効果を発揮するという観点から、式(1)又は式(2)で表されるホスファゼン化合物が好ましく、これらホスファンゼン化合物に含まれるリン元素の含有率は、12重量%以上であることが好ましい。
Figure JPOXMLDOC01-appb-C000001
 
(式(1)中、nは3~25の整数であり、R及びRは同一又は異なって、アルコキシ基、フェノキシ基、アミノ基、水酸基及びアリル基からなる群より選択される官能基を有する1価の有機基である。)
Figure JPOXMLDOC01-appb-C000002
 
(式(2)中、n及びmは、それぞれ独立して3~25の整数である。R及びRは同一又は異なって、アルコキシ基、フェノキシ基、アミノ基、水酸基及びアリル基からなる群より選択される官能基を有する1価の有機基である。Rは、アルコキシ基、フェノキシ基、アミノ基、水酸基及びアリル基からなる群より選択される官能基を有する2価の有機基である。)
 また、安定性及びボイドの生成抑制という観点から、式(3)で表される環状ホスファゼンオリゴマーを用いることが好ましい。
Figure JPOXMLDOC01-appb-C000003
 
(式(3)中、nは3~25の整数であり、R及びRは同一又は異なって、水素、水酸基、アルキル基、アルコキシ基又はグリシジル基である。)
 上記式(3)で表される環状ホスファゼンオリゴマーは、例えばFP-100、FP-110(以上、株式会社伏見製薬所)等が市販品として入手可能である。
 ホスファゼン化合物の含有量は、エポキシ樹脂組成物中に含まれるエポキシ樹脂(A成分)、フェノール樹脂(B成分)、エラストマー(D成分)、硬化促進剤(E成分)及びホスファゼン化合物(その他の成分)を含む有機成分全体の10~30重量%であることが好ましい。すなわち、ホスファゼン化合物の含有量が、有機成分全体の10重量%未満では、封止樹脂シート11の難燃性が低下するとともに、被着体(すなわち、本実施形態における半導体チップを搭載した半導体ウェハ)等に対する凹凸追従性が低下し、ボイドが発生する傾向がみられる。上記含有量が有機成分全体の30重量%を超えると、封止樹脂シート11の表面にタックが生じやすくなり、被着体に対する位置合わせをしにくくなる等作業性が低下する傾向がみられる。
 また、上記金属水酸化物及びホスファゼン化合物を併用し、シート封止に必要な可撓性を確保しつつ、難燃性に優れた封止樹脂シート11を得ることもできる。両者を併用することにより、金属水酸化物のみを用いた場合の十分な難燃性と、ホスファゼン化合物のみを用いた場合は、十分な可撓性を得ることができる。
 上記難燃剤のうち、樹脂封止の成型時における封止樹脂シートの変形性、被着体の凹凸への追従性、半導体チップや半導体ウェハへの密着性の点から有機系難燃剤を用いるのが望ましく、特にホスファゼン系難燃剤が好適に用いられる。
 なお、エポキシ樹脂組成物は、上記の各成分以外に必要に応じて、カーボンブラックをはじめとする顔料等、他の添加剤を適宜配合することができる。
 (封止樹脂シートの作製方法)
 封止樹脂シートの作製方法を以下に説明する。まず、上述の各成分を混合することによりエポキシ樹脂組成物を調製する。混合方法は、各成分が均一に分散混合される方法であれば特に限定するものではない。その後、例えば、各成分を有機溶剤等に溶解又は分散したワニスを塗工してシート状に形成する。あるいは、各配合成分を直接ニーダー等で混練することにより混練物を調製し、このようにして得られた混練物を押し出してシート状に形成してもよい。
 ワニスを用いる具体的な作製手順としては、上記A~E成分及び必要に応じて他の添加剤を常法に準じて適宜混合し、有機溶剤に均一に溶解あるいは分散させ、ワニスを調製する。ついで、上記ワニスをポリエステル等の支持体上に塗布し乾燥させることにより封止樹脂シート11を得ることができる。そして必要により、封止樹脂シートの表面を保護するためにポリエステルフィルム等の剥離シートを貼り合わせてもよい。剥離シートは封止時に剥離する。
 上記有機溶剤としては、特に限定されるものではなく従来公知の各種有機溶剤、例えばメチルエチルケトン、アセトン、シクロヘキサノン、ジオキサン、ジエチルケトン、トルエン、酢酸エチル等を用いることができる。これらは単独で用いてもよいし、2種以上併せて用いてもよい。また通常、ワニスの固形分濃度が30~60重量%の範囲となるように有機溶剤を用いることが好ましい。
 有機溶剤乾燥後のシートの厚みは、特に制限されるものではないが、厚みの均一性と残存溶剤量の観点から、通常、5~100μmに設定することが好ましく、より好ましくは20~70μmである。
 一方、混練を用いる場合には、上記A~E成分及び必要に応じて他の添加剤の各成分をミキサーなど公知の方法を用いて混合し、その後、溶融混練することにより混練物を調製する。溶融混練する方法としては、特に限定されないが、例えば、ミキシングロール、加圧式ニーダー、押出機などの公知の混練機により、溶融混練する方法などが挙げられる。混練条件としては、温度が、上記した各成分の軟化点以上であれば特に制限されず、例えば30~150℃、エポキシ樹脂の熱硬化性を考慮すると、好ましくは40~140℃、さらに好ましくは60~120℃であり、時間が、例えば1~30分間、好ましくは5~15分間である。これによって、混練物を調製することができる。
 得られる混練物を押出成形により成形することにより、封止樹脂シート11を得ることができる。具体的には、溶融混練後の混練物を冷却することなく高温状態のままで、押出成形することで、封止樹脂シート11を形成することができる。このような押出方法としては、特に制限されず、Tダイ押出法、ロール圧延法、ロール混練法、共押出法、カレンダー成形法などが挙げられる。押出温度としては、上記した各成分の軟化点以上であれば、特に制限されないが、エポキシ樹脂の熱硬化性および成形性を考慮すると、例えば40~150℃、好ましくは、50~140℃、さらに好ましくは70~120℃である。以上により、封止樹脂シート11を形成することができる。
 このようにして得られた封止樹脂シートは、必要により所望の厚みとなるように積層して使用してもよい。すなわち、封止樹脂シートは、単層構造にて使用してもよいし、2層以上の多層構造に積層してなる積層体として使用してもよい。
<第2実施形態>
 以下、本発明の一実施形態である第2実施形態について説明する。図3A~図3Gはそれぞれ、本発明の別の一実施形態に係る半導体パッケージの製造方法の一工程を模式的に示す断面図である。第1実施形態では、半導体ウェハにフリップチップ接続された半導体チップを封止樹脂シートにて樹脂封止しているが、第2実施形態では、半導体チップを半導体ウェハではなく仮固定材に仮固定した状態で樹脂封止を行う。この第2実施形態は、いわゆるFan-out(ファンアウト)型ウェハレベルパッケージ(WLP)と呼称される半導体パッケージの製造に好適である。
 [仮固定材準備工程]
 仮固定材準備工程では、支持体2b上に熱膨張性粘着剤層2aが積層された仮固定材2を準備する(図3A参照)。なお、熱膨張性粘着剤層に代えて、放射線硬化型粘着剤層を用いることもできる。本実施形態では、熱膨張性粘着剤層を備える仮固定材2について説明する。
 (熱膨張性粘着剤層)
 熱膨張性粘着剤層2aは、ポリマー成分と、発泡剤とを含む粘着剤組成物により形成することができる。ポリマー成分(特にベースポリマー)としては、アクリル系ポリマー(「アクリルポリマーA」と称する場合がある)を好適に用いることができる。アクリルポリマーAとしては、(メタ)アクリル酸エステルを主モノマー成分として用いたものが挙げられる。前記(メタ)アクリル酸エステルとしては、例えば、(メタ)アクリル酸アルキルエステル(例えば、メチルエステル、エチルエステル、プロピルエステル、イソプロピルエステル、ブチルエステル、イソブチルエステル、sec-ブチルエステル、t-ブチルエステル、ペンチルエステル、イソペンチルエステル、ヘキシルエステル、ヘプチルエステル、オクチルエステル、2-エチルヘキシルエステル、イソオクチルエステル、ノニルエステル、デシルエステル、イソデシルエステル、ウンデシルエステル、ドデシルエステル、トリデシルエステル、テトラデシルエステル、ヘキサデシルエステル、オクタデシルエステル、エイコシルエステル等のアルキル基の炭素数1~30、特に炭素数4~18の直鎖状又は分岐鎖状のアルキルエステル等)及び(メタ)アクリル酸シクロアルキルエステル(例えば、シクロペンチルエステル、シクロヘキシルエステル等)などが挙げられる。これらの(メタ)アクリル酸エステルは単独で又は2種以上を併用してもよい。
 なお、前記アクリルポリマーAは、凝集力、耐熱性、架橋性などの改質を目的として、必要に応じて、前記(メタ)アクリル酸エステルと共重合可能な他の単量体成分に対応する単位を含んでいてもよい。このような単量体成分として、例えば、アクリル酸、メタクリル酸、イタコン酸、マレイン酸、フマル酸、クロトン酸、カルボキシエチルアクリレートなどのカルボキシル基含有モノマー;無水マレイン酸、無水イコタン酸などの酸無水物基含有モノマー;(メタ)アクリル酸ヒドロキシエチル、(メタ)アクリル酸ヒドロキシプロピル、(メタ)アクリル酸ヒドロキシブチルなどのヒドロキシル基含有モノマー;(メタ)アクリルアミド、N,N-ジメチル(メタ)アクリルアミド、N-ブチル(メタ)アクリルアミド、N-メチロール(メタ)アクリルアミド、N-メチロールプロパン(メタ)アクリルアミドなどの(N-置換又は無置換)アミド系モノマー;酢酸ビニル、プロピオン酸ビニルなどのビニルエステル系モノマー;スチレン、α-メチルスチレンなどのスチレン系モノマー;ビニルメチルエーテル、ビニルエチルエーテルなどのビニルエーテル系モノマー;アクリロニトリル、メタクリロニトリルなどのシアノアクリレート系モノマー;(メタ)アクリル酸グリシジルなどのエポキシ基含有アクリル系モノマー;エチレン、プロピレン、イソプレン、ブタジエン、イソブチレンなどのオレフィン又はジエン系モノマー;(メタ)アクリル酸アミノエチル、(メタ)アクリル酸N,N-ジメチルアミノエチル、(メタ)アクリル酸t-ブチルアミノエチルなどの(置換又は無置換)アミノ基含有モノマー;(メタ)アクリル酸メトキシエチル、(メタ)アクリル酸エトキシエチルなどの(メタ)アクリル酸アルコキシアルキル系モノマー;N-ビニルピロリドン、N-メチルビニルピロリドン、N-ビニルピリジン、N-ビニルピペリドン、N-ビニルピリミジン、N-ビニルピペラジン、N-ビニルピラジン、N-ビニルピロール、N-ビニルイミダゾール、N-ビニルオキサゾール、N-ビニルモルホリン、N-ビニルカプロラクタムなどの窒素原子含有環を有するモノマー;N-ビニルカルボン酸アミド類;スチレンスルホン酸、アリルスルホン酸、(メタ)アクリルアミドプロパンスルホン酸、スルホプロピル(メタ)アクリレートなどのスルホン酸基含有モノマー;2-ヒドロキシエチルアクリロイルホスフェートなどのリン酸基含有モノマー;N-シクロヘキシルマレイミド、N-イソプロピルマレイミド、N-ラウリルマレイミド、N-フェニルマレイミドなどのマレイミド系モノマー;N-メチルイタコンイミド、N-エチルイタコンイミド、N-ブチルイタコンイミド、N-オクチルイタコンイミド、N-2-エチルヘキシルイタコンイミド、N-シクロヘキシルイタコンイミド、N-ラウリルイタコンイミドなどのイタコンイミド系モノマー;N-(メタ)アクリロイルオキシメチレンスクシンイミド、N-(メタ)アクルロイル-6-オキシヘキサメチレンスクシンイミド、N-(メタ)アクリロイル-8-オキシオクタメチレンスクシンイミドなどのスクシンイミド系モノマー;(メタ)アクリル酸ポリエチレングリコール、(メタ)アクリル酸ポリプロピレングリコールなどのグリコール系アクリルエステルモノマー;(メタ)アクリル酸テトラヒドロフルフリルなどの酸素原子含有複素環を有するモノマー;フッ素系(メタ)アクリレートなどのフッ素原子を含有するアクリル酸エステル系モノマー;シリコーン系(メタ)アクリレートなどのケイ素原子を含有するアクリル酸エステル系モノマー;ヘキサンジオールジ(メタ)アクリレート、(ポリ)エチレングリコールジ(メタ)アクリレート、(ポリ)プロピレングリコールジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート、ペンタエリスリトールジ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、エポキシアクリレート、ポリエステルアクリレート、ウレタンアクリレート、ジビニルベンゼン、ブチルジ(メタ)アクリレート、ヘキシルジ(メタ)アクリレートなどの多官能モノマー等が挙げられる。
 前記アクリルポリマーAは、単一モノマー又は2種以上のモノマー混合物を重合に付すことにより得られる。重合は、溶液重合(例えば、ラジカル重合、アニオン重合、カチオン重合など)、乳化重合、塊状重合、懸濁重合、光重合(例えば、紫外線(UV)重合など)等の何れの方式で行うこともできる。
 アクリルポリマーAの重量平均分子量は、特に制限されないが、好ましくは35万~100万、更に好ましくは45万~80万程度である。
 また、熱膨張性粘着剤には、粘着力を調整するため、外部架橋剤を適宜に用いることもできる。外部架橋方法の具体的手段としては、ポリイソシアネート化合物、エポキシ化合物、アジリジン化合物、メラミン系架橋剤等のいわゆる架橋剤を添加し反応させる方法が挙げられる。外部架橋剤を使用する場合、その使用量は、架橋すべきベースポリマーとのバランスにより、さらには、粘着剤としての使用用途によって適宜決定される。外部架橋剤の使用量は、一般的には、前記ベースポリマー100重量部に対して、20重量部以下(好ましくは0.1重量部~10重量部)である。
 熱膨張性粘着剤層2aは、前述のように、熱膨張性を付与するための発泡剤を含有している。そのため、仮固定材2の熱膨張性粘着剤層2a上に研削された半導体チップ23を含む研削体26が形成された状態で(図3C参照)、任意な時に仮固定材2を少なくとも部分的に加熱して、該加熱された熱膨張性粘着剤層2aの部分に含有されている発泡剤を発泡及び/又は膨張させることにより、熱膨張性粘着剤層2aが少なくとも部分的に膨張し、この熱膨張性粘着剤層2aの少なくとも部分的な膨張により、該膨張した部分に対応した粘着面(研削体26との界面)が凹凸状に変形して、該熱膨張性粘着剤層2aと研削体26との接着面積が減少し、これにより、両者間の接着力が減少し、研削体26を仮固定材2から剥離させることができる(図3D参照)。
 (発泡剤)
 熱膨張性粘着剤層2aにおいて用いられている発泡剤としては、特に制限されず、公知の発泡剤から適宜選択することができる。発泡剤は単独で又は2種以上組み合わせて使用することができる。発泡剤としては、熱膨張性微小球を好適に用いることができる。
 (熱膨張性微小球)
 熱膨張性微小球としては、特に制限されず、公知の熱膨張性微小球(種々の無機系熱膨張性微小球や、有機系熱膨張性微小球など)から適宜選択することができる。熱膨張性微小球としては、混合操作が容易である観点などより、マイクロカプセル化されている発泡剤を好適に用いることができる。このような熱膨張性微小球としては、例えば、イソブタン、プロパン、ペンタンなどの加熱により容易にガス化して膨張する物質を、弾性を有する殻内に内包させた微小球などが挙げられる。前記殻は、熱溶融性物質や熱膨張により破壊する物質で形成される場合が多い。前記殻を形成する物質として、例えば、塩化ビニリデン-アクリロニトリル共重合体、ポリビニルアルコール、ポリビニルブチラール、ポリメチルメタクリレート、ポリアクリロニトリル、ポリ塩化ビニリデン、ポリスルホンなどが挙げられる。
 熱膨張性微小球は、慣用の方法、例えば、コアセルベーション法や、界面重合法などにより製造できる。なお、熱膨張性微小球には、例えば、松本油脂製薬株式会社製の商品名「マツモトマイクロスフェアー」のシリーズ(例えば、商品名「マツモトマイクロスフェアーF30」、同「マツモトマイクロスフェアーF301D」、同「マツモトマイクロスフェアーF50D」、同「マツモトマイクロスフェアーF501D」、同「マツモトマイクロスフェアーF80SD」、同「マツモトマイクロスフェアーF80VSD」など)の他、エクスパンセル社製の商品名「051DU」、同「053DU」、同「551DU」、同「551-20DU」、同「551-80DU」などの市販品を使用することができる。
 なお、発泡剤として熱膨張性微小球を用いた場合、該熱膨張性微小球の粒径(平均粒子径)としては、熱膨張性粘着剤層の厚みなどに応じて適宜選択することができる。熱膨張性微小球の平均粒子径としては、例えば、100μm以下(好ましくは80μm以下、さらに好ましくは1μm~50μm、特に1μm~30μm)の範囲から選択することができる。なお、熱膨張性微小球の粒径の調整は、熱膨張性微小球の生成過程で行われていてもよく、生成後、分級などの手段により行われてもよい。熱膨張性微小球としては、粒径が揃えられていることが好ましい。
 (その他の発泡剤)
 本実施形態では、発泡剤としては、熱膨張性微小球以外の発泡剤も用いることもできる。このような発泡剤としては、種々の無機系発泡剤や有機系発泡剤などの各種発泡剤を適宜選択して使用することができる。無機系発泡剤の代表的な例としては、例えば、炭酸アンモニウム、炭酸水素アンモニウム、炭酸水素ナトリウム、亜硝酸アンモニウム、水酸化ホウ素ナトリウム、各種アジド類などが挙げられる。
 また、有機系発泡剤の代表的な例としては、例えば、水;トリクロロモノフルオロメタン、ジクロロモノフルオロメタンなどの塩フッ化アルカン系化合物;アゾビスイソブチロニトリル、アゾジカルボンアミド、バリウムアゾジカルボキシレートなどのアゾ系化合物;パラトルエンスルホニルヒドラジド、ジフェニルスルホン-3,3´-ジスルホニルヒドラジド、4,4´-オキシビス(ベンゼンスルホニルヒドラジド)、アリルビス(スルホニルヒドラジド)などのヒドラジン系化合物;p-トルイレンスルホニルセミカルバジド、4,4´-オキシビス(ベンゼンスルホニルセミカルバジド)などのセミカルバジド系化合物;5-モルホリル-1,2,3,4-チアトリアゾールなどのトリアゾール系化合物;N,N´-ジニトロソペンタメチレンテロラミン、N,N´-ジメチル-N,N´-ジニトロソテレフタルアミドなどのN-ニトロソ系化合物などが挙げられる。
 本実施形態では、加熱処理により、熱膨張性粘着剤層の接着力を効率よく且つ安定して低下させるため、体積膨張率が5倍以上、なかでも7倍以上、特に10倍以上となるまで破裂しない適度な強度を有する発泡剤が好ましい。
 発泡剤(熱膨張性微小球など)の配合量は、熱膨張性粘着剤層の膨張倍率や接着力の低下性などに応じて適宜設定しうるが、一般には熱膨張性粘着剤層を形成するベースポリマー100重量部に対して、例えば1重量部~150重量部(好ましくは10重量部~130重量部、さらに好ましくは25重量部~100重量部)である。
 本実施形態では、発泡剤としては、発泡開始温度(熱膨張開始温度)(T)が80℃~210℃の範囲のものを好適に用いることができ、好ましくは90℃~200℃(より好ましくは95℃~200℃、特に好ましくは100℃~170℃)の発泡開始温度を有するものである。発泡剤の発泡開始温度が80℃より低いと、封止体ないし研削体の製造時や使用時の熱により発泡剤が発泡してしまう場合があり、取り扱い性や生産性が低下する。一方、発泡剤の発泡開始温度が210℃を超える場合には、仮固定材の支持体や封止樹脂に過度の耐熱性が必要となり、取り扱い性、生産性やコスト面で好ましくない。なお、発泡剤の発泡開始温度(T)は、熱膨張性粘着剤層の発泡開始温度(T)に相当する。
 なお、発泡剤を発泡させる方法(すなわち、熱膨張性粘着剤層を熱膨張させる方法)としては、公知の加熱発泡方法から適宜選択して採用することができる。
 本実施形態では、熱膨張性粘着剤層は、加熱処理前の適度な接着力と加熱処理後の接着力の低下性のバランスの点から、発泡剤を含有しない形態での弾性率が23℃~150℃において5×10Pa~1×10Paであることが好ましく、さらに好ましくは5×10Pa~8×10Paであり、特に5×10Pa~5×10Paであることが好適である。熱膨張性粘着剤層の発泡剤を含有しない形態での弾性率(温度:23℃~150℃)が5×10Pa未満であると熱膨張性が劣り、剥離性が低下する場合がある。また、熱膨張性粘着剤層の発泡剤を含有しない形態での弾性率(温度:23℃~150℃)が1×10Paより大きい場合、初期接着性が劣る場合がある。
 なお、発泡剤を含有しない形態の熱膨張性粘着剤層は、粘着剤(発泡剤は含まれていない)により形成された粘着剤層に相当する。従って、熱膨張性粘着剤層の発泡剤を含有していない形態での弾性率は、粘着剤(発泡剤は含まれていない)を用いて測定することができる。なお、熱膨張性粘着剤層は、23℃~150℃における弾性率が5×10Pa~1×10Paである粘着剤層を形成可能な粘着剤と、発泡剤とを含む熱膨張性粘着剤により形成することができる。
 熱膨張性粘着剤層の発泡剤を含有しない形態での弾性率は、発泡剤が添加されていない形態の熱膨張性粘着剤層(すなわち、発泡剤が含まれていない粘着剤による粘着剤層)(サンプル)を作製し、レオメトリック社製動的粘弾性測定装置「ARES」を用いて、サンプル厚さ:約1.5mmで、φ7.9mmパラレルプレートの治具を用い、剪断モードにて、周波数:1Hz、昇温速度:5℃/分、歪み:0.1%(23℃)、0.3%(150℃)にて測定し、23℃および150℃で得られた剪断貯蔵弾性率G´の値とする。
 熱膨張性粘着剤層の弾性率は、粘着剤のベースポリマーの種類、架橋剤、添加剤などを調節することによりコントロールすることができる。
 熱膨張性粘着剤層の厚さは、特に制限されず、接着力の低減性などにより適宜に選択することができ、例えば、5μm~300μm(好ましくは20μm~150μm)程度である。ただし、発泡剤として熱膨張性微小球が用いられている場合、熱膨張性粘着剤層の厚さは、含まれている熱膨張性微小球の最大粒径よりも厚いことが好ましい。熱膨張性粘着剤層の厚さが薄すぎると、熱膨張性微小球の凹凸により表面平滑性が損なわれ、加熱前(未発泡状態)の接着性が低下する。また、加熱処理による熱膨張性粘着剤層の変形度が小さく、接着力が円滑に低下しにくくなる。一方、熱膨張性粘着剤層の厚さが厚すぎると、加熱処理による膨張乃至発泡後に、熱膨張性粘着剤層に凝集破壊が生じやすくなり、研削体26に糊残りが発生する場合がある。
 なお、熱膨張性粘着剤層は単層、複層の何れであってもよい。
 本実施形態では、熱膨張性粘着剤層には、各種添加剤(例えば、着色剤、増粘剤、増量剤、充填剤、粘着付与剤、可塑剤、老化防止剤、酸化防止剤、界面活性剤、架橋剤など)が含まれていても良い。
 (支持体)
 支持体2bは、仮固定材2の強度母体となる薄板状部材である。支持体2bの材料としては取り扱い性や耐熱性等を考慮して適宜選択すればよく、例えばSUS等の金属材料、ポリイミド、ポリアミドイミド、ポリエーテルエーテルケトン、ポリエーテルサルフォン等のプラスチック材料、ガラス、シリコンウェハ等を用いることができる。これらの中でも、耐熱性や強度、再利用可能性等の観点から、ガラス、シリコンウェハ、SUSプレートが好ましい。
 支持体2bの厚さは目的とする強度や取り扱い性を考慮して適宜選択することができ、好ましくは100~5000μmであり、より好ましくは300~2000μmである。
 (仮固定材の形成方法)
 仮固定材2は、支持体2b上に熱膨張性粘着剤層2aを形成することにより得られる。熱膨張性粘着剤層は、例えば、粘着剤と、発泡剤(熱膨張性微小球など)と、必要に応じて溶媒やその他の添加剤などとを混合して、シート状の層に形成する慣用の方法を利用し形成することができる。具体的には、例えば、粘着剤、発泡剤(熱膨張性微小球など)、および必要に応じて溶媒やその他の添加剤を含む混合物を、支持体2b上に塗布する方法、適当なセパレータ(剥離紙など)上に前記混合物を塗布して熱膨張性粘着剤層を形成し、これを支持体2b上に転写(移着)する方法などにより、熱膨張性粘着剤層を形成することができる。
 (熱膨張性粘着剤層の熱膨張方法)
 本実施形態では、熱膨張性粘着剤層は、加熱により熱膨張させることができる。加熱処理方法としては、例えば、ホットプレート、熱風乾燥機、近赤外線ランプ、エアードライヤーなどの適宜な加熱手段を利用して行うことができる。加熱処理時の加熱温度は、熱膨張性粘着剤層中の発泡剤(熱膨張性微小球など)の発泡開始温度(熱膨張開始温度)以上であればよいが、加熱処理の条件は、発泡剤(熱膨張性微小球など)の種類等による接着面積の減少性、支持体、半導体チップを含む研削体等の耐熱性、加熱方法(熱容量、加熱手段等)などにより適宜設定できる。一般的な加熱処理条件としては、温度100℃~250℃で、1秒間~90秒間(ホットプレートなど)または5分間~15分間(熱風乾燥機など)である。なお、加熱処理は使用目的に応じて適宜な段階で行うことができる。また、加熱処理時の熱源としては、赤外線ランプや加熱水を用いることができる場合もある。
 (中間層)
 本実施形態では、熱膨張性粘着剤層2aと支持体2bとの間に、密着力の向上や加熱後の剥離性の向上等を目的とした中間層が設けられていても良い(図示せず)。中でも、中間層としてゴム状有機弾性中間層が設けられていることが好ましい。このように、ゴム状有機弾性中間層を設けることにより、半導体チップ23を仮固定材2に接着する際に(図3A参照)、熱膨張性粘着剤層2aの表面を半導体チップ23の表面形状に良好に追従させて、接着面積を大きくすることができるとともに、仮固定材2から研削加工後の研削体26を加熱剥離させる際に、熱膨張性粘着剤層2aの加熱膨張を高度に(精度よく)コントロールし、熱膨張性粘着剤層2aを厚さ方向へ優先的に且つ均一に膨張させることができる。
 なお、ゴム状有機弾性中間層は、支持体2bの片面又は両面に介在させることができる。
 ゴム状有機弾性中間層は、例えば、ASTM D-2240に基づくD型シュアーD型硬度が、50以下、特に40以下の天然ゴム、合成ゴム又はゴム弾性を有する合成樹脂により形成することが好ましい。なお、ポリ塩化ビニルなどのように本質的には硬質系ポリマーであっても、可塑剤や柔軟剤等の配合剤との組み合わせによりゴム弾性が発現しうる。このような組成物も、前記ゴム状有機弾性中間層の構成材料として使用できる。
 ゴム状有機弾性中間層は、例えば、前記天然ゴム、合成ゴム又はゴム弾性を有する合成樹脂などのゴム状有機弾性層形成材を含むコーティング液を基材上に塗布する方式(コーティング法)、前記ゴム状有機弾性層形成材からなるフィルム、又は予め1層以上の熱膨張性粘着剤層上に前記ゴム状有機弾性層形成材からなる層を形成した積層フィルムを基材と接着する方式(ドライラミネート法)、基材の構成材料を含む樹脂組成物と前記ゴム状有機弾性層形成材を含む樹脂組成物とを共押出しする方式(共押出し法)などの形成方法により形成することができる。
 なお、ゴム状有機弾性中間層は、天然ゴムや合成ゴム又はゴム弾性を有する合成樹脂を主成分とする粘着性物質で形成されていてもよく、また、かかる成分を主体とする発泡フィルム等で形成されていてもよい。発泡は、慣用の方法、例えば、機械的な攪拌による方法、反応生成ガスを利用する方法、発泡剤を使用する方法、可溶性物質を除去する方法、スプレーによる方法、シンタクチックフォームを形成する方法、焼結法などにより行うことができる。
 ゴム状有機弾性中間層等の中間層の厚さは、例えば、5μm~300μm、好ましくは20μm~150μm程度である。なお、中間層が、例えば、ゴム状有機弾性中間層である場合、ゴム状有機弾性中間層の厚さが薄すぎると、加熱発泡後の3次元的構造変化を形成することができず、剥離性が悪化する場合がある。
 ゴム状有機弾性中間層等の中間層は単層であってもよく、2以上の層で構成されていてもよい。
 なお、中間層には、仮固定材の作用効果を損なわない範囲で、各種添加剤(例えば、着色剤、増粘剤、増量剤、充填剤、粘着付与剤、可塑剤、老化防止剤、酸化防止剤、界面活性剤、架橋剤など)が含まれていても良い。
 (半導体チップ配置工程)
 半導体チップ配置工程では、上記仮固定材2上に複数の半導体チップ23をその活性面A2が仮固定材2に対向するように配置する(図3A参照)。半導体チップ23の配置には、フリップチップボンダーやダイボンダーなどの公知の装置を用いることができる。
 半導体チップ23の配置のレイアウトや配置数は、仮固定材2の形状やサイズ、目的とするパッケージの生産数などに応じて適宜設定することができ、例えば、複数行で、かつ複数列のマトリックス状に整列させて配置することができる。
 (封止工程)
 封止工程では、複数の半導体チップ23を覆うように封止樹脂シート21を仮固定材2上へ積層して樹脂封止する(図3B参照)。封止樹脂シート21の仮固定材2上への積層方法は、第1実施形態と同様の条件を採用することができる。
 (封止体形成工程)
 封止体形成工程では、上記封止樹脂シート21に熱硬化処理を施して封止体25を形成する(図3B参照)。封止樹脂シート21の熱硬化処理の条件は、第1実施形態と同様の条件を採用することができる。
 (研削工程)
 研削工程では、封止体25の封止樹脂シート21を半導体チップ23の活性面A2とは反対側の表面23Sが露出するように研削して研削体26を形成する(図3C参照)。研削は公知の研削装置を用いて行えばよい。
 研削体26における封止樹脂シートの表面21Sと半導体チップの露出面23Sとの最小高低差は10μm以上であり、好ましくは20μm以上であり、より好ましくは30μm以上である。研削面G2における最小高低差を上記範囲とすることにより、研削体26に作用する封止樹脂シート21による収縮力を低減することができ、研削体26の反りを防止することができる。
 (熱膨張性粘着剤層剥離工程)
 熱膨張性粘着剤層剥離工程では、仮固定材2を加熱して熱膨張性粘着剤層2aを熱膨張させることにより、熱膨張性粘着剤層2aと研削体26との間で剥離を行う(図3D参照)。あるいは、支持体2bと熱膨張性粘着剤層2aとの界面で剥離を行い、その後、熱膨張性粘着剤層2aと研削体26との界面で熱膨張による剥離を行うという手順も好適に採用することができる。いずれも場合であっても、熱膨張性粘着剤層2a加熱して熱膨張させその粘着力を低下させることで、熱膨張性粘着剤層2aと研削体26との界面での剥離を容易に行うことができる。熱膨張の条件としては、上述の「熱膨張性粘着剤層の熱膨張方法」の欄の条件を好適に採用することができる。
 本工程では、半導体チップ23が露出した状態で、再配線形成工程に先だってプラズマ処理などにより研削体26の表面をクリーニングしてもよい。
 (再配線形成工程)
 本実施形態ではさらに、研削体26の半導体チップ23の活性面A2側の面B2に再配線29を形成する再配線形成工程を含むことが好ましい。再配線形成工程では、上記熱膨張性粘着剤層2aの剥離後、上記露出した半導体チップ23と接続する再配線29を研削体26上に形成する(図3E参照)。
 再配線の形成方法としては、例えば、露出している半導体チップ23上へ真空成膜法などの公知の方法を利用して金属シード層を形成し、セミアディティブ法などの公知の方法により、再配線29を形成することができる。
 かかる後に、再配線29及び研削体26上へポリイミドやPBOなどの絶縁層を形成してもよい。
 (バンプ形成工程)
 次いで、形成した再配線29上にバンプ27を形成するバンピング加工を行ってもよい(図3F参照)。バンピング加工は、半田ボールや半田メッキなど公知の方法で行うことができる。バンプ27の材質は、第1実施形態と同様の材質を好適に用いることができる。
 (チップ裏面保護工程)
 バンプ27を形成した後、半導体チップ23の露出面23Sを保護するために、研削体26の研削面G2(図3C参照)を再度樹脂封止してもよい。封止方法としては特に限定されず、公知の液状やフィルム状の封止樹脂を研削面G2に塗布ないし貼り合わせ、乾燥、硬化させればよい。なお、本工程は、研削工程後であってダイシング工程前であればいずれの段階で行ってもよい。
 (ダイシング工程)
 最後に、半導体チップ23、封止樹脂シート21及び再配線29などの要素からなる積層体のダイシングを行う(図3G参照)。これにより、チップ領域の外側に配線を引き出した半導体パッケージ28を半導体チップ単位で得ることができる。ダイシング方法は、第1実施形態と同様の方法を採用することができる。
 以下に、この発明の好適な実施例を例示的に詳しく説明する。ただし、この実施例に記載されている材料や配合量等は、特に限定的な記載がない限りは、この発明の範囲をそれらのみに限定する趣旨のものではない。また、部とあるのは、重量部を意味する。
[実施例1]
 (封止樹脂シートの作製)
 以下の成分をミキサーにてブレンドし、2軸混練機により120℃で2分間溶融混練し、続いてTダイから押出しすることにより、厚さ500μmの封止樹脂シートAを作製した。
 エポキシ樹脂:ビスフェノールF型エポキシ樹脂(新日鐵化学(株)製、YSLV-80XY(エポキシ当量200g/eq.軟化点80℃))        286部
 フェノール樹脂:ビフェニルアラルキル骨格を有するフェノール樹脂(明和化成社製、MEH-7851-SS(水酸基当量203g/eq.、軟化点67℃))
      303部
 硬化促進剤:硬化触媒としてのイミダゾール系触媒(四国化成工業(株)製、2PHZ-PW)                                  6部
 エラストマー:スチレン-イソブチレン-スチレントリブロック共重合体((株)カネカ製、SIBSTAR 072T)                  700部
 無機充填剤:球状溶融シリカ粉末(電気化学工業社製、FB-9454、平均粒子径20μm)                              600部
 シランカップリング剤:エポキシ基含有シランカップリング剤(信越化学工業(株)製、KBM-403)                           5部
 カーボンブラック(三菱化学(株)製、#20)                   5部
[実施例2]
 (封止樹脂シートの作製)
 以下の成分をミキサーにてブレンドし、2軸混練機により120℃で2分間溶融混練し、続いてTダイから押出しすることにより、厚さ500μmの封止樹脂シートCを作製した。
 固形エポキシ樹脂(日本化薬(株)製、EPPN-501-HY)         100部
 フェノール樹脂:ビフェニルアラルキル骨格を有するフェノール樹脂(明和化成社製、MEH-7851-SS(水酸基当量203g/eq.、軟化点67℃))
       60部
 硬化促進剤:硬化触媒としてのイミダゾール系触媒(四国化成工業(株)製、2PHZ-PW)                                3部
 アクリル共重合体(BA(ブチルアクリレート):AN(アクリロニトリル):GMA(グリシジルメタクリレート)=85:8:7重量%からなる重量平均分子量が800,000の共重合体)                   100部
 無機充填剤:球状溶融シリカ粉末(電気化学工業社製、FB-9454、平均粒子径20μm)                              180部
 カーボンブラック(三菱化学(株)製、#20)                   1部
[比較例1]
 (封止樹脂シートの作製)
 以下の成分をミキサーにてブレンドし、2軸混練機により120℃で2分間溶融混練し、続いてTダイから押出しすることにより、厚さ500μmの封止樹脂シートBを作製した。
 エポキシ樹脂:ビスフェノールF型エポキシ樹脂(新日鐵化学(株)製、YSLV-80XY(エポキシ当量200g/eq.軟化点80℃))        169部
 フェノール樹脂:ビフェニルアラルキル骨格を有するフェノール樹脂(明和化成社製、MEH-7851-SS(水酸基当量203g/eq.、軟化点67℃))
      179部
 硬化促進剤:硬化触媒としてのイミダゾール系触媒(四国化成工業(株)製、2PHZ-PW)                                6部
 エラストマー:スチレン-イソブチレン-スチレントリブロック共重合体((株)カネカ製、SIBSTAR 072T)                  152部
 無機充填剤:球状溶融シリカ粉末(電気化学工業社製、FB-9454、平均粒子径20μm)                             2400部
 シランカップリング剤:エポキシ基含有シランカップリング剤(信越化学工業(株)製、KBM-403)                           5部
 カーボンブラック(三菱化学(株)製、#20)                   5部
 難燃剤:ホスファゼン化合物((株)伏見製薬所製、FP-100)         89部
 (封止樹脂シートの貯蔵弾性率の測定)
 貯蔵弾性率の測定は、固体粘弾性測定装置(レオメトリックサイエンティック社製:形式:RSA-III)を用いて行った。具体的には、各封止樹脂シートを150℃で1時間加熱して熱硬化させ、この硬化物からサンプルサイズを長さ400mm×幅2mm×厚さ80μmとして測定試料を得た後、測定試料をフィルム引っ張り測定用治具にセットし-50~300℃の温度域での貯蔵弾性率及び損失弾性率を、周波数1Hz、昇温速度10℃/min、歪み0.05%の条件下で測定し、25℃での貯蔵弾性率(E’)を読み取ることにより得た。
 (封止樹脂シートのショアD硬度の測定)
 各封止樹脂シートを2mm厚となるようにラミネータを用いて積層し、この積層体を150℃で1時間加熱して熱硬化させた後、JIS K 7215に準拠し、硬度計((株)ミツトヨ製、プラスチック用硬度計)を用いて、25℃での測定値を読み取ることで得た。
 (半導体パッケージの作製)
 以下の仕様の半導体チップがシリコンインターポーザーにフリップチップ実装され、チップ-インターポーザー間がビスフェノールA型エポキシ系熱硬化性アンダーフィル材で封止されたチップ実装インターポーザーを準備した。
 <半導体チップ>
 半導体チップサイズ:7.3mm□(厚さ400μm)
 バンプ材質:Cu 30μm、Sn-Ag 15μm厚み
 バンプ数:544バンプ
 バンプピッチ:50μm
 チップ数:16個(4個×4個)
 <シリコンインターポーザー>
 直径:8インチ
 厚さ:730μm
 電極:スルーシリコンビア(径:30μm)
 得られたチップ実装インターポーザー上に、以下に示す加熱加圧条件下、封止樹脂シートA~Cのそれぞれを真空プレスにより貼付けた。
 <貼り付け条件>
 温度:90℃
 加圧力:0.5MPa
 真空度:2000Pa
 プレス時間:3分
 大気圧に開放した後、熱風乾燥機中、180℃、1時間の条件で封止樹脂シートを熱硬化させ、封止体を得た。次いで、切削装置((株)DISCO製、サーフェスプレーナー「DFS8910」)を用いた研削により、研削バイトの周速度1000m/min、送りピッチ100μm、切り込み深さ10μmの条件で、半導体チップの厚さが100μmとなるまで封止体を半導体チップ共々薄化することで、研削体を作製した。
 得られた研削体のシリコンインターポーザーの露出面(封止樹脂シートを貼り合わせた面とは反対側の面)を研削装置(DISCO製、「DGP8761」)によりシリコンインターポーザーの厚さが100μmとなるまで研削した。
 シリコンインターポーザーの研削面にポリアミック酸(3,4’,3,4’-ビフェニルテトラカルボン酸二無水物と4,4’-ジアミノジフェニルエーテル、パラフェニレンジアミンを反応して得たもの)を塗布し、熱硬化させて、厚さ10μmのポリイミド層を形成した。スルーシリコンビアに対応する位置に、レーザー加工によって開口を形成し、該ビアを露出させた。開口を含むポリイミド層表面に、めっきによって金膜、ニッケル膜を順次形成した。さらに、クロム、銅の順にスパッタリングを施して、種膜(クロム層の厚さ20nm、銅層の厚さ100nm)を形成し、電解銅めっきにより所定の配線パターンを有する再配線層を形成することにより半導体パッケージを作製した。
 (研削面の最小高低差の測定)
 実施例及び比較例の半導体パッケージを用い、触針式表面形状測定器(「Dektak 8」、アルバック株式会社製)を用いて半導体パッケージの研削面における封止樹脂シートの表面と半導体チップの露出面との最小高低差を測定した。具体的には、図4に示すように、マトリックス状に配置されている半導体チップ13の各行及び各列を含むように表面を行ごと及び列ごとに1回スキャニングすることにより研削面の表面形状を求め、この表面形状に基づき最小高低差を算出した。
 (半導体パッケージの反りの評価)
 実施例及び比較例の半導体パッケージを用い、図4に示すように、半導体チップのマトリックスの2本の対角線に沿って表面を2回スキャニングすることにより各対角線に沿った表面形状を求め、計4点のウェハ端部の高さの平均と中央部の高さの差の絶対値を表面反り量として算出した。半導体パッケージの表面反り量が1.5mm以下である場合を「○」、1.5mmを超えた場合を「×」として評価した。それぞれの結果を表1に示す。
Figure JPOXMLDOC01-appb-T000004
 
 表1からも明らかなように、実施例1及び2では、研削後の最小高低差が10μm以上であったことから、半導体パッケージの反りが抑制されており、歩留まり良く高信頼性の半導体パッケージを作製可能であることが分かる。一方、比較例1の半導体パッケージでは、最小高低差が10μm未満であったことから、半導体パッケージに反りが生じ、歩留まり及び信頼性の点で劣る結果となった。
    11、21  封止樹脂シート
    11S、21S  (研削後の)封止樹脂シートの表面
    12A  (研削前の)半導体ウェハ
    12B  (研削後の)半導体ウェハ
    13、23  半導体チップ
    13S、23S  (研削後の)半導体チップの露出面
    15、25  封止体
    16A、16B、16C、26  研削体
    18、28  半導体パッケージ
    19、29  再配線

Claims (9)

  1.  一又は複数の半導体チップが封止樹脂シートに埋め込まれた封止体を形成する封止体形成工程、及び
     前記封止体の前記封止樹脂シートを前記半導体チップの活性面とは反対側の表面が露出するように研削して研削体を形成する研削工程
     を含み、
     前記研削体における前記封止樹脂シートの表面と前記半導体チップの露出面との最小高低差が10μm以上である半導体パッケージの製造方法。
  2.  150℃で1時間熱硬化処理を施した後の前記封止樹脂シートの25℃におけるショアD硬度が20以上60以下である請求項1に記載の半導体パッケージの製造方法。
  3.  150℃で1時間熱硬化処理を施した後の前記封止樹脂シートの25℃における貯蔵弾性率が0.1GPa以上3GPa以下である請求項1又は2に記載の半導体パッケージの製造方法。
  4.  前記封止体形成工程において、半導体ウェハにフリップチップ接続された前記半導体チップを前記封止樹脂シートに埋め込んで前記封止体を形成する請求項1~3のいずれか1項に記載の半導体パッケージの製造方法。
  5.  前記封止体形成工程において、仮固定材に固定された前記半導体チップを前記封止樹脂シートに埋め込んで前記封止体を形成する請求項1~3のいずれか1項に記載の半導体パッケージの製造方法。
  6.  前記研削工程後、前記研削体の前記半導体チップの活性面側の表面を研削する裏面研削工程をさらに含む請求項1~5のいずれか1項に記載の半導体装置の製造方法。
  7.  前記研削工程後、前記研削体の前記半導体チップの活性面側の表面に再配線を形成する再配線形成工程をさらに含む請求項1~5のいずれか1項に記載の半導体パッケージの製造方法。
  8.  前記裏面研削工程後、前記研削体の前記半導体チップの活性面側の表面に再配線を形成する再配線形成工程をさらに含む請求項6に記載の半導体パッケージの製造方法。
  9.  前記半導体チップが複数用いられており、
     前記再配線形成工程後に、前記研削体を目的の半導体チップ単位でダイシングするダイシング工程をさらに含む請求項7又は8に記載の半導体パッケージの製造方法。
PCT/JP2014/068974 2013-08-07 2014-07-17 半導体パッケージの製造方法 WO2015019816A1 (ja)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2013-164355 2013-08-07
JP2013164355 2013-08-07
JP2014126129A JP2015053469A (ja) 2013-08-07 2014-06-19 半導体パッケージの製造方法
JP2014-126129 2014-06-19

Publications (1)

Publication Number Publication Date
WO2015019816A1 true WO2015019816A1 (ja) 2015-02-12

Family

ID=52461155

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/068974 WO2015019816A1 (ja) 2013-08-07 2014-07-17 半導体パッケージの製造方法

Country Status (3)

Country Link
JP (1) JP2015053469A (ja)
TW (1) TW201513196A (ja)
WO (1) WO2015019816A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106206383A (zh) * 2016-09-05 2016-12-07 江苏纳沛斯半导体有限公司 薄膜形成方法和半导体结构

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6224188B1 (ja) 2016-08-08 2017-11-01 太陽インキ製造株式会社 半導体封止材
CN109690759B (zh) * 2016-09-08 2020-05-22 住友电木株式会社 半导体装置的制造方法
JP7257731B2 (ja) * 2016-12-28 2023-04-14 日東電工株式会社 樹脂シート
JP7012489B2 (ja) 2017-09-11 2022-01-28 ローム株式会社 半導体装置
KR20240023441A (ko) * 2021-07-30 2024-02-21 가부시키가이샤 무라타 세이사쿠쇼 적층 세라믹 콘덴서, 회로 모듈, 및 회로 모듈의 제조 방법

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004208326A (ja) * 2000-03-17 2004-07-22 Matsushita Electric Ind Co Ltd 電気素子内蔵モジュール及びその製造方法
WO2007060812A1 (ja) * 2005-11-22 2007-05-31 Sony Corporation 半導体装置および半導体装置の製造方法
JP2008524867A (ja) * 2004-12-22 2008-07-10 ゼネラル・エレクトリック・カンパニイ 硬化性封止剤組成物、該組成物を含むデバイス及び関連方法
JP2009256466A (ja) * 2008-04-16 2009-11-05 Sekisui Chem Co Ltd 電子部品用接着剤
JP2012119599A (ja) * 2010-12-03 2012-06-21 Shin Etsu Chem Co Ltd ウエハモールド材及び半導体装置の製造方法
JP2012227441A (ja) * 2011-04-21 2012-11-15 Sumitomo Bakelite Co Ltd 半導体装置の製造方法および半導体装置
JP2014015490A (ja) * 2012-07-05 2014-01-30 Nitto Denko Corp 封止樹脂シート、電子部品パッケージの製造方法及び電子部品パッケージ

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004208326A (ja) * 2000-03-17 2004-07-22 Matsushita Electric Ind Co Ltd 電気素子内蔵モジュール及びその製造方法
JP2008524867A (ja) * 2004-12-22 2008-07-10 ゼネラル・エレクトリック・カンパニイ 硬化性封止剤組成物、該組成物を含むデバイス及び関連方法
WO2007060812A1 (ja) * 2005-11-22 2007-05-31 Sony Corporation 半導体装置および半導体装置の製造方法
JP2009256466A (ja) * 2008-04-16 2009-11-05 Sekisui Chem Co Ltd 電子部品用接着剤
JP2012119599A (ja) * 2010-12-03 2012-06-21 Shin Etsu Chem Co Ltd ウエハモールド材及び半導体装置の製造方法
JP2012227441A (ja) * 2011-04-21 2012-11-15 Sumitomo Bakelite Co Ltd 半導体装置の製造方法および半導体装置
JP2014015490A (ja) * 2012-07-05 2014-01-30 Nitto Denko Corp 封止樹脂シート、電子部品パッケージの製造方法及び電子部品パッケージ

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106206383A (zh) * 2016-09-05 2016-12-07 江苏纳沛斯半导体有限公司 薄膜形成方法和半导体结构

Also Published As

Publication number Publication date
JP2015053469A (ja) 2015-03-19
TW201513196A (zh) 2015-04-01

Similar Documents

Publication Publication Date Title
JP5961055B2 (ja) 封止樹脂シート、電子部品パッケージの製造方法及び電子部品パッケージ
JP5943898B2 (ja) 熱硬化性樹脂シート及び電子部品パッケージの製造方法
WO2015019817A1 (ja) 半導体パッケージの製造方法
JP5837381B2 (ja) 半導体装置の製造方法
WO2015019816A1 (ja) 半導体パッケージの製造方法
JP6484061B2 (ja) 電子部品パッケージの製造方法
WO2015015979A1 (ja) 半導体装置の製造方法、及び、封止用シート
JP2016219619A (ja) 接着シート、ダイシングテープ一体型接着シート、フィルム、半導体装置の製造方法および半導体装置
JP2015082563A (ja) 半導体装置の製造方法、シート状樹脂組成物及びダイシングテープ一体型シート状樹脂組成物
WO2015076088A1 (ja) 両面セパレータ付き封止用シート、及び、半導体装置の製造方法
WO2014196296A1 (ja) 半導体装置の製造方法
WO2015060106A1 (ja) 半導体パッケージの製造方法
JP6041933B2 (ja) 熱硬化性樹脂シート及び電子部品パッケージの製造方法
WO2015015980A1 (ja) 半導体装置の製造方法
WO2016031579A1 (ja) 半導体装置の製造方法及び封止用シート
WO2015033867A1 (ja) 半導体装置の製造方法
JP2014107392A (ja) 半導体装置の製造方法
JP2015126129A (ja) 電子部品パッケージの製造方法
WO2015053081A1 (ja) 半導体装置の製造方法
JP2015126131A (ja) 電子部品パッケージの製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14834952

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14834952

Country of ref document: EP

Kind code of ref document: A1