Nothing Special   »   [go: up one dir, main page]

WO2015001871A1 - 非水電解液二次電池及びその製造方法 - Google Patents

非水電解液二次電池及びその製造方法 Download PDF

Info

Publication number
WO2015001871A1
WO2015001871A1 PCT/JP2014/063941 JP2014063941W WO2015001871A1 WO 2015001871 A1 WO2015001871 A1 WO 2015001871A1 JP 2014063941 W JP2014063941 W JP 2014063941W WO 2015001871 A1 WO2015001871 A1 WO 2015001871A1
Authority
WO
WIPO (PCT)
Prior art keywords
negative electrode
positive electrode
aqueous electrolyte
electrode
sodium
Prior art date
Application number
PCT/JP2014/063941
Other languages
English (en)
French (fr)
Inventor
宏司 鬼塚
広規 近藤
憲樹 村岡
佐野 秀樹
Original Assignee
トヨタ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by トヨタ自動車株式会社 filed Critical トヨタ自動車株式会社
Priority to US14/392,275 priority Critical patent/US20160294006A1/en
Priority to CN201480037129.8A priority patent/CN105340121A/zh
Priority to KR1020167002496A priority patent/KR20160027088A/ko
Priority to EP14820014.0A priority patent/EP3018751A4/en
Publication of WO2015001871A1 publication Critical patent/WO2015001871A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0567Liquid materials characterised by the additives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0587Construction or manufacture of accumulators having only wound construction elements, i.e. wound positive electrodes, wound negative electrodes and wound separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/485Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • H01M4/622Binders being polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/027Negative electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a non-aqueous electrolyte secondary battery and a method for manufacturing the same. Note that this international application claims priority based on Japanese Patent Application No. 2013-139150 filed on July 2, 2013, the entire contents of which are incorporated herein by reference. ing.
  • Lithium ion secondary batteries and other non-aqueous electrolyte secondary batteries are becoming increasingly important as power sources for vehicles or for personal computers and mobile terminals.
  • a lithium ion secondary battery that is lightweight and obtains a high energy density is preferable as a high-output power source mounted on a vehicle.
  • a part of the non-aqueous electrolyte is decomposed during charging, and the decomposition product is formed on the surface of the negative electrode active material (for example, natural graphite particles).
  • a film that is, a SEI (Solid Electrolyte Interface) film may be formed.
  • the SEI film plays a role of protecting the negative electrode active material, but is formed by consuming charge carriers (for example, lithium ions) in the non-aqueous electrolyte. That is, since the charge carriers are fixed in the SEI film, the charge carriers can no longer contribute to the battery capacity. For this reason, the formation of a large amount of the SEI film causes a decrease in capacity retention rate (deterioration of cycle characteristics).
  • Patent Document 1 describes a non-aqueous electrolyte for a secondary battery containing lithium bis (oxalato) borate (Li [B (C 2 O 4 ) 2 ]) as an additive.
  • a sodium component for example, sodium salt
  • a sodium component is contained as an inevitable impurity in the electrode body of a non-aqueous electrolyte secondary battery including a positive electrode and a negative electrode.
  • the sodium component is dissolved in the non-aqueous electrolyte.
  • the nonaqueous electrolytic solution containing lithium bis (oxalato) borate described in Patent Document 1 is injected into the electrode body, sodium ions (Na + ) in the nonaqueous electrolytic solution are [B (C 2 O 4 ). 2] - to spread faster than.
  • the electrode body is an electrode body formed by laminating or winding a rectangular positive electrode and negative electrode
  • sodium ions tend to gather at the center in the width direction perpendicular to the longitudinal direction of the electrode body. That is, the concentration of sodium ions is high at the center in the width direction.
  • [B (C 2 O 4 ) 2 ] ⁇ diffuses into the central portion where the sodium ion concentration is high.
  • sodium ions and [B (C 2 O 4 ) 2 ] ⁇ are actively associated, and Na [B (C 2 O 4 ) 2 ] is precipitated. It tends to be.
  • the present invention has been created to solve the above-described conventional problems, and the object thereof is to suppress deposition of a substance derived from a charge carrier by forming a film having a preferable aspect on the surface of the negative electrode active material.
  • the non-aqueous electrolyte secondary battery and its manufacturing method are provided.
  • the present invention provides a method for producing a non-aqueous electrolyte secondary battery. That is, the manufacturing method disclosed herein includes a step of preparing a positive electrode including a positive electrode active material and a negative electrode including a negative electrode active material, wherein at least one of the prepared positive electrode and the negative electrode is an inevitable impurity.
  • a sodium (Na) component is contained as the electrode; the electrode containing the sodium (Na) component of the positive electrode and the negative electrode is washed with a non-aqueous electrolyte to remove at least a part of the sodium (Na) component.
  • a step of performing a discharge to a predetermined discharge voltage including.
  • non-aqueous electrolyte secondary battery includes a non-aqueous electrolyte (typically, an electrolyte containing a supporting salt (supporting electrolyte) in a non-aqueous solvent (organic solvent)).
  • Battery typically, an electrolyte containing a supporting salt (supporting electrolyte) in a non-aqueous solvent (organic solvent)).
  • secondary battery refers to a battery that can be repeatedly charged and discharged, and is a term that includes a so-called chemical battery such as a lithium ion secondary battery and a physical battery such as an electric double layer capacitor.
  • sodium (Na) component is a term including a case where sodium exists alone (typically in an ionic state) and a case where it exists as a compound containing Na as a constituent element. is there.
  • an electrode containing a sodium (Na) component as an unavoidable impurity of the positive electrode and the negative electrode is washed with the non-aqueous electrolyte, thereby At least a part of the contained sodium (Na) component is removed, an electrode body is produced using the positive electrode and / or the negative electrode after removal, and lithium bis (oxalato) is contained in a battery case containing the produced electrode body.
  • the electrode body is produced using the positive electrode and / or the negative electrode after removing at least a part of the sodium (Na) component, the non-aqueous solution containing lithium bis (oxalato) borate in the electrode body.
  • the electrolytic solution is impregnated, the sodium component dissolved in the nonaqueous electrolytic solution is reduced. Thereby, the raise of the sodium ion concentration in the center part of an electrode body can be suppressed.
  • the coating produced on the surface of the negative electrode active material by the decomposition of [B (C 2 O 4 ) 2 ] has a suppressed variation in the coating amount (preferably a uniform coating in the width direction). Can be.
  • a non-aqueous electrolyte secondary battery including an electrode body in which variation in the coating amount is suppressed, current is prevented from being concentrated locally during charge and discharge, so that a substance derived from a charge carrier (for example, metallic lithium) Precipitation is suppressed.
  • a charge carrier for example, metallic lithium
  • C is defined as the dissolution amount [mmol / L] of sodium ions dissolved from the electrode body in the non-aqueous electrolyte to which the lithium bis (oxalato) borate is added.
  • the sodium (Na) component is added so that C / D, which is a ratio when the addition amount [mmol / L] of lithium bis (oxalato) borate is D, is less than 0.1. Remove.
  • the positive electrode and / or the negative electrode in the removing step, is immersed in a nonaqueous electrolytic solution containing at least a lithium salt, and then no lithium salt is contained.
  • the positive electrode and the negative electrode are washed with a non-aqueous electrolyte. According to this structure, it can suppress that an impurity is contained in the positive electrode after washing
  • a separator disposed between the positive electrode and the negative electrode is further prepared, and the removal step is performed on the separator.
  • the electrode body is prepared using the separator after the removal step and the positive electrode and / or the negative electrode that have undergone the removal step. According to this configuration, since the electrode body is manufactured using the separator after the sodium (Na) component is removed, the sodium component dissolved in the nonaqueous electrolytic solution is reduced. Thereby, the variation in the coating amount in the width direction of the electrode body can be further suppressed.
  • a lithium transition metal composite oxide is used as the positive electrode active material. Since lithium transition metal composite oxides tend to contain a large amount of sodium (Na) component as an unavoidable impurity, when impregnated with a non-aqueous electrolyte containing lithium bis (oxalato) borate, Na is formed at the center of the electrode body. [B (C 2 O 4 ) 2 ] can be precipitated in large amounts. For this reason, when a lithium transition metal composite oxide is used, the effect of adopting the configuration of the present invention in which an electrode containing a sodium (Na) component as an inevitable impurity is previously washed with a non-aqueous electrolyte is particularly effective. Can be done.
  • styrene butadiene rubber is used as the binder contained in the negative electrode. Since the negative electrode containing styrene butadiene rubber tends to contain a large amount of sodium (Na) component as an unavoidable impurity, when impregnated with a non-aqueous electrolyte containing lithium bis (oxalato) borate, Na is formed at the center of the electrode body. [B (C 2 O 4 ) 2 ] can be precipitated in large amounts.
  • the electrode body is an electrode body in which a positive electrode formed in a sheet shape and a negative electrode formed in a sheet shape are overlapped, and the electrode body A wound electrode body wound in the longitudinal direction is used.
  • the nonaqueous electrolytic solution is impregnated from the both end portions in the width direction of the wound electrode body toward the center portion. For this reason, the concentration of the sodium component tends to increase at the center of the wound electrode body.
  • the effect of adopting the configuration of the present invention in which an electrode containing a sodium (Na) component as an unavoidable impurity is previously washed with a nonaqueous electrolytic solution can be exhibited particularly.
  • the non-aqueous electrolyte secondary battery disclosed here includes an electrode body including a positive electrode and a negative electrode, and a non-aqueous electrolyte.
  • the negative electrode includes a negative electrode current collector and a negative electrode mixture layer including at least a negative electrode active material formed on the surface of the negative electrode current collector.
  • a film containing at least boron (B) and sodium (Na) is formed on the surface of the negative electrode active material in the negative electrode mixture layer, and is included in the film per unit area of the negative electrode mixture layer.
  • the amount [ ⁇ g / cm 2] and a of natrium (Na), a / B the amount [ ⁇ g / cm 2] is the ratio when the B of boron (B) is less than 0.1.
  • a coating containing at least boron and sodium is formed on the surface of the negative electrode active material in the negative electrode mixture layer, and the ratio A between the amount A of sodium and the amount B of boron is A. / B is less than 0.1. For this reason, the coating produced on the surface of the negative electrode active material is in a state where variation in the amount of coating is suppressed (preferably in a state where the coating is uniform in the width direction of the electrode body).
  • non-aqueous electrolyte secondary battery including an electrode body in which variation in the coating amount is suppressed, current is prevented from being concentrated locally during charge and discharge, so that a substance derived from a charge carrier (for example, metallic lithium) Precipitation is suppressed.
  • a charge carrier for example, metallic lithium
  • Such a non-aqueous electrolyte secondary battery can be suitably manufactured by the manufacturing method of the present invention described above.
  • the positive electrode includes a positive electrode current collector, and a positive electrode composite material including at least a positive electrode active material formed on a surface of the positive electrode current collector And the positive electrode active material is a lithium transition metal composite oxide.
  • the negative electrode includes a binder in the negative electrode mixture layer, and the binder is styrene butadiene rubber.
  • the electrode body further includes a separator disposed between the positive electrode and the negative electrode.
  • the non-aqueous electrolyte contains lithium bis (oxalato) borate.
  • any non-aqueous electrolyte secondary battery disclosed herein or a non-aqueous electrolyte secondary battery obtained by any of the manufacturing methods disclosed herein.
  • the coating containing at least boron and sodium is formed in a preferable state (with little or no variation in coating amount) on the surface of the negative electrode active material, the deposition of a substance derived from the charge carrier (for example, metallic lithium) Can be prevented and a non-aqueous electrolyte secondary battery excellent in battery performance can be obtained.
  • a drive power source typically automobiles, particularly automobiles equipped with electric motors such as hybrid cars, electric cars, and fuel cell cars.
  • non-aqueous electrolyte secondary batteries for example, 40 to 80 batteries obtained by any of the manufacturing methods disclosed herein are typically connected in series.
  • a vehicle including the battery pack as a driving power source is provided.
  • FIG. 1 is a perspective view schematically showing the outer shape of a nonaqueous electrolyte secondary battery according to an embodiment of the present invention.
  • FIG. 2 is a cross-sectional view taken along line II-II in FIG.
  • FIG. 3 is a cross-sectional view schematically showing the structure of a wound electrode body according to an embodiment of the present invention.
  • FIG. 4 is a flowchart for explaining a method of manufacturing a nonaqueous electrolyte secondary battery according to an embodiment of the present invention.
  • FIG. 5 is a side view schematically showing a vehicle (automobile) provided with the nonaqueous electrolyte secondary battery according to the present invention.
  • a method for producing a lithium ion secondary battery will be described in detail as an example. Is not intended to be limited to such types of secondary batteries.
  • the present invention can also be applied to a non-aqueous electrolyte secondary battery using other metal ions (for example, magnesium ions) as a charge carrier.
  • the manufacturing method of the non-aqueous electrolyte secondary battery (lithium ion secondary battery) disclosed herein includes a positive / negative electrode preparation step (S10), a Na component removal step (S20), and an electrode.
  • a body production process (S30), an assembly production process (S40), an injection process (S50), and a charge / discharge process (S60) are included.
  • the positive and negative electrode preparation step (S10) will be described.
  • a positive electrode including a positive electrode active material and a negative electrode including a negative electrode active material are prepared.
  • the method further includes preparing a separator disposed between the positive electrode and the negative electrode.
  • the positive electrode of the lithium ion secondary battery disclosed herein includes a positive electrode current collector and a positive electrode mixture layer including at least a positive electrode active material formed on the surface of the positive electrode current collector.
  • the positive electrode mixture layer may contain an optional component such as a conductive material and a binder (binder) in addition to the positive electrode active material.
  • the positive electrode current collector aluminum or an aluminum alloy mainly composed of aluminum is used as in the case of the positive electrode current collector used for the positive electrode of a conventional lithium ion secondary battery.
  • the shape of the positive electrode current collector may vary depending on the shape or the like of the lithium ion secondary battery, and is not particularly limited, and may be various forms such as a foil shape, a sheet shape, a rod shape, and a plate shape.
  • the positive electrode active material examples include materials capable of inserting and extracting lithium ions, and include lithium-containing compounds (for example, lithium transition metal composite oxides) containing a lithium element and one or more transition metal elements.
  • lithium-containing compounds for example, lithium transition metal composite oxides
  • lithium nickel composite oxide for example, LiNiO 2
  • lithium cobalt composite oxide for example, LiCoO 2
  • lithium manganese composite oxide for example, LiMn 2 O 4
  • lithium nickel cobalt manganese composite oxide for example, LiNi 1).
  • LiNi 1.1 lithium nickel composite oxide
  • LiCoO 2 lithium manganese composite oxide
  • LiMn 2 O 4 lithium manganese composite oxide
  • a polyanionic compound for example, LiFePO 4 whose general formula is represented by LiMPO 4, LiMVO 4, or Li 2 MSiO 4 (wherein M is at least one element of Co, Ni, Mn, and Fe), etc. 4 , LiMnPO 4 , LiFeVO 4 , LiMnVO 4 , Li 2 FeSiO 4 , Li 2 MnSiO 4 , Li 2 CoSiO 4 ) may be used as the positive electrode active material.
  • the positive electrode active material may be manufactured by various methods.
  • the case where the positive electrode active material is a lithium nickel cobalt manganese composite oxide will be described as an example.
  • a hydroxide containing Ni, Co, and Mn at a target molar ratio for example, Ni 1/3 Co 1/3 NiCoMn composite hydroxide represented by Mn 1/3 (OH) 2 is prepared, mixed and fired so that the molar ratio of the hydroxide to the lithium source becomes the target value, thereby lithium nickel cobalt Manganese composite oxide can be obtained.
  • the NiCoMn composite hydroxide can be preferably prepared by, for example, a coprecipitation method. The firing is typically performed in an oxidizing atmosphere (for example, in the air).
  • the firing temperature is preferably 700 ° C to 1000 ° C.
  • the lithium nickel cobalt manganese composite oxide produced as described above has a sodium component as an impurity. It tends to contain a large amount of (for example, Na 2 SO 4 ).
  • the conductive material is not limited to a specific conductive material as long as it is conventionally used in this type of lithium ion secondary battery.
  • carbon materials such as carbon powder and carbon fiber can be used.
  • the carbon powder various carbon blacks (for example, acetylene black, furnace black, ketjen black, etc.), carbon powders such as graphite powder can be used.
  • acetylene black (AB) is a preferable carbon powder.
  • Such conductive materials can be used singly or in appropriate combination of two or more.
  • the same binder as that used for the positive electrode of a general lithium ion secondary battery can be appropriately employed.
  • a solvent-based paste-like composition a paste-like composition includes a slurry-like composition and an ink-like composition
  • a polyfluoride is used as the composition for forming the positive electrode mixture layer.
  • Polymer materials that dissolve in an organic solvent (non-aqueous solvent) such as vinylidene chloride (PVDF) and polyvinylidene chloride (PVDC) can be used.
  • PVDF vinylidene chloride
  • PVDC polyvinylidene chloride
  • a water-soluble (soluble in water) polymer material or a water-dispersible (water-dispersible) polymer material can be preferably used.
  • polytetrafluoroethylene PTFE
  • CMC carboxymethyl cellulose
  • SBR styrene butadiene rubber
  • the polymer material illustrated above may be used as a thickener or other additives in the above composition in addition to being used as a binder.
  • the “solvent-based paste composition” is a concept indicating a composition in which the dispersion medium of the positive electrode active material is mainly an organic solvent (non-aqueous solvent).
  • organic solvent for example, N-methyl-2-pyrrolidone (NMP) can be used.
  • aqueous paste-like composition is a concept indicating a composition using water or a mixed solvent mainly containing water as a dispersion medium of the positive electrode active material.
  • a solvent other than water constituting such a mixed solvent one or more organic solvents (lower alcohol, lower ketone, etc.) that can be uniformly mixed with water can be appropriately selected and used.
  • the positive electrode disclosed herein can be suitably manufactured, for example, generally by the following procedure.
  • a paste-like composition for forming a positive electrode mixture layer is prepared by dispersing, in an organic solvent, the above-described positive electrode active material, conductive material, and a binder that is soluble in an organic solvent.
  • the positive electrode produced in this way can contain a sodium (Na) component as an unavoidable impurity.
  • the sodium (Na) component as an unavoidable impurity means an element that can be dissolved in the non-aqueous electrolyte. The same applies hereinafter unless otherwise specified.
  • the negative electrode of the lithium ion secondary battery disclosed herein includes a negative electrode current collector and a negative electrode mixture layer including at least a negative electrode active material formed on the surface of the negative electrode current collector.
  • the negative electrode mixture layer can contain optional components such as a binder and a thickener as needed in addition to the negative electrode active material.
  • a conductive member made of a metal having good conductivity is preferably used, like the current collector used in the negative electrode of a conventional lithium ion secondary battery.
  • copper, nickel, or an alloy mainly composed of them can be used.
  • the shape of the negative electrode current collector can be the same as the shape of the positive electrode current collector.
  • a particulate (or spherical, scale-like) carbon material including a graphite structure (layered structure) at least partially, a lithium transition metal composite oxide (for example, a lithium titanium composite oxide such as Li 4 Ti 5 O 12 ), Lithium transition metal composite nitride, etc.
  • the carbon material include natural graphite, artificial graphite (artificial graphite), non-graphitizable carbon (hard carbon), graphitizable carbon (soft carbon), and the like.
  • the average particle diameter (median diameter d50) of the negative electrode active material is, for example, in the range of about 1 ⁇ m to 50 ⁇ m (usually 5 ⁇ m to 30 ⁇ m). It can be easily measured by a particle size distribution measuring apparatus based on a scattering method, and the surface of the negative electrode active material may be coated with an amorphous carbon film.
  • a negative electrode active material that is at least partially coated with an amorphous carbon film can be obtained by mixing the material with pitch and baking.
  • binder those similar to the binder used for the negative electrode of a general lithium ion secondary battery can be appropriately employed.
  • a water-soluble polymer material or a water-dispersible polymer material can be preferably used.
  • the water dispersible polymer include rubbers such as styrene butadiene rubber (SBR); polyethylene oxide (PEO), vinyl acetate copolymer and the like. Since styrene-butadiene rubber uses sodium hydroxide as a neutralizing agent, it can contain a sodium component as an impurity.
  • a water-soluble or water-dispersible polymer can be used as the thickener.
  • the water-soluble polymer include cellulose polymers such as carboxymethylcellulose (CMC), methylcellulose (MC), cellulose acetate phthalate (CAP), and hydroxypropylmethylcellulose (HPMC); polyvinyl alcohol (PVA); .
  • CMC carboxymethylcellulose
  • MC methylcellulose
  • CAP cellulose acetate phthalate
  • HPMC hydroxypropylmethylcellulose
  • PVA polyvinyl alcohol
  • the same materials as those mentioned as the binder can be appropriately employed.
  • the negative electrode disclosed here can be suitably manufactured, for example, generally by the following procedure.
  • a paste-like composition for forming a negative electrode mixture layer is prepared by dispersing the above-described negative electrode active material and other optional components (binder, thickener, etc.) in an appropriate solvent (for example, water).
  • a negative electrode comprising a negative electrode current collector and a negative electrode mixture layer formed on the negative electrode current collector by applying the prepared composition to the negative electrode current collector, drying, and then compressing (pressing) the negative electrode current collector.
  • the negative electrode produced in this way can contain a sodium (Na) component as an unavoidable impurity.
  • a conventionally known separator can be used without particular limitation.
  • a porous sheet made of resin a microporous resin sheet
  • a porous polyolefin resin sheet such as polyethylene (PE) or polypropylene (PP) is preferred.
  • PE polyethylene
  • PP polypropylene
  • a PE sheet, a PP sheet, a sheet having a three-layer structure (PP / PE / PP structure) in which PP layers are laminated on both sides of the PE layer, and the like can be suitably used. Since many separators contain a sodium component as a plasticizer, when the separator is impregnated with a non-aqueous electrolyte, the sodium component dissolves in the non-aqueous electrolyte.
  • the Na component removal step (S20)
  • the Na component removing step at least a part of the sodium (Na) component is obtained by washing an electrode containing a sodium (Na) component as an impurity among the positive electrode and the negative electrode with a nonaqueous electrolytic solution. Remove.
  • the method further includes removing at least a portion of the sodium (Na) component by washing a separator that includes the sodium (Na) component as an impurity.
  • non-aqueous electrolyte a non-aqueous electrolyte obtained by dissolving a supporting salt (typically a lithium salt) in an appropriate organic solvent (non-aqueous solvent) can be used.
  • organic solvent aprotic solvents such as carbonates, esters, ethers, nitriles, sulfones and lactones can be used.
  • carbonates such as ethylene carbonate (EC), propylene carbonate (PC), diethyl carbonate (DEC), dimethyl carbonate (DMC), and ethyl methyl carbonate (EMC) are exemplified.
  • Such organic solvents can be used alone or in combination of two or more.
  • the supporting salt for example, LiPF 6, LiClO 4, LiAsF 6, Li (CF 3 SO 2) 2 N, LiBF 4, lithium salts such as LiCF 3 SO 3 is illustrated.
  • These supporting salts can be used alone or in combination of two or more. LiPF 6 is particularly preferable.
  • Cleaning the electrode and the separator containing the sodium (Na) component as the impurity can be suitably performed, for example, generally by the following procedure.
  • an electrode or separator containing a Na component (at least one of a positive electrode and a negative electrode, preferably both a positive electrode and a negative electrode, more preferably all of a positive electrode, a negative electrode, and a separator) is added to a suitable non-aqueous electrolyte (for example, EC and DMC).
  • EC and DMC suitable non-aqueous electrolyte
  • 1 mol / L LiPF 6 dissolved as a lithium salt in a mixed solvent having a volume ratio of 3 to 4: 3 of the catalyst and EMC is immersed for about 10 to 24 hours.
  • the electrode or separator is taken out from the non-aqueous electrolyte, and the surface of the electrode or separator is washed with a suitable organic solvent (for example, EMC) and dried.
  • a suitable organic solvent for example, EMC
  • an electrode body is produced using the positive electrode and / or the negative electrode that have undergone the Na component removal step.
  • the electrode body is produced by further using a separator that has undergone the Na component removal step.
  • An electrode body (for example, a stacked electrode body or a wound electrode body) of a lithium ion secondary battery disclosed herein includes a positive electrode, a negative electrode, and a separator interposed between the positive electrode and the negative electrode. Yes.
  • the positive electrode formed in a sheet shape, the negative electrode formed in a sheet shape, and a wound electrode body (a wound electrode body) including the separator sheet will be described as an example. It is not intended to be limited to.
  • FIG. 2 shows a wound electrode body 50 according to the present embodiment.
  • the wound electrode body 50 has a sheet-like positive electrode 64 and a sheet-like negative electrode 84 stacked in a longitudinal direction with a total of two long separator sheets 90 interposed therebetween. It is a flat wound electrode body 50 produced by turning and then crushing and ablating the obtained wound body from the side surface direction.
  • FIG. 2 shows a wound electrode body 50 according to the present embodiment.
  • the wound electrode body 50 has a sheet-like positive electrode 64 and a sheet-like negative electrode 84 stacked in a longitudinal direction with a total of two long separator sheets 90 interposed therebetween. It is a flat wound electrode body 50 produced by turning and then crushing and ablating the obtained wound body from the side surface direction.
  • FIG. 1 shows a wound electrode body 50 according to the present embodiment.
  • the positive electrode mixture layer non-formed portion of the positive electrode 64 that is, the portion where the positive electrode current collector 62 is exposed without forming the positive electrode mixture layer 66
  • the negative electrode composite material layer non-formed portion 84 ie, the portion where the negative electrode current collector layer 82 is not formed and the negative electrode current collector 82 is exposed
  • 64 and the negative electrode 84 are overlapped with a slight shift in the width direction. As a result, as shown in FIG.
  • the electrode mixture layer non-formed portions 63 and 83 of the positive electrode 64 and the negative electrode 84 are respectively wound core portions (that is, the positive electrode 64
  • the positive electrode composite material layer 66, the negative electrode composite material layer 86 of the negative electrode 84, and the two separator sheets 90 are closely wound around).
  • a positive electrode terminal 60 (for example, made of aluminum) is joined to the positive electrode mixture layer non-formed portion 63 to electrically connect the positive electrode 64 and the positive electrode terminal 60 of the wound electrode body 50 formed in the flat shape.
  • a negative electrode terminal 80 (for example, made of nickel) is joined to the negative electrode mixture layer non-forming portion 83 to electrically connect the negative electrode 84 and the negative electrode terminal 80.
  • the positive and negative electrode terminals 60 and 80 and the positive and negative electrode current collectors 62 and 82 can be joined by, for example, ultrasonic welding, resistance welding, or the like.
  • non-aqueous electrolyte solution to which lithium bis (oxalato) borate described later is added is injected into an electrode body manufactured using the positive electrode, negative electrode, and separator that have undergone the Na component removal step, non-aqueous electrolysis is performed from the electrode body.
  • the dissolution amount [mmol / L] C of sodium ions dissolved in the liquid is, for example, 0.001 mmol / L or less (for example, 0.0001 mmol to 0.001 mmol).
  • the battery case 15 of the present embodiment is a battery case made of metal (for example, made of aluminum, and also preferably made of resin or laminate film), and the upper end is open.
  • a case body (exterior case) 30 having a flat bottomed box shape (typically a rectangular parallelepiped shape) and a lid body 25 that closes the opening 20 of the case body 30 are provided.
  • the lid body 25 is formed with an inlet 45 for injecting a non-aqueous electrolyte described later into the wound electrode body 50 housed in the case body 30 (battery case 15).
  • the injection port 45 is sealed with a sealing plug 48 after an injection step (S50) described later.
  • the lid 25 is provided with a safety valve 40 for discharging the gas generated inside the battery case 15 to the outside of the battery case 15 when the battery is abnormal. ing.
  • the wound electrode body 50 is accommodated in the case main body 30 in a posture in which the wound axis of the wound electrode body 50 is inclined sideways (that is, the direction in which the opening 20 is positioned in the lateral direction with respect to the wound axis). Thereafter, the opening portion 20 of the case body 30 is sealed with the lid body 25, thereby producing the assembly 70.
  • the lid 25 and the case body 30 are joined by welding or the like.
  • nonaqueous electrolytic solution used in the injection step examples include nonaqueous electrolytic solutions in which a supporting salt is dissolved in an appropriate organic solvent, and the same ones used in the Na component removing step. It is preferable to appropriately employ the same one used in the Na component removal step.
  • the concentration of the supporting salt is not particularly limited, but if it is too low, the amount of charge carriers (typically lithium ions) contained in the non-aqueous electrolyte is insufficient, and the ionic conductivity tends to decrease. On the other hand, if the concentration is extremely high, the viscosity of the non-aqueous electrolyte increases in a temperature range below room temperature (for example, 0 ° C.
  • the concentration of the supporting salt is, for example, 0.1 mol / L or more (for example, 0.8 mol / L or more) and preferably 2 mol / L or less (for example, 1.5 mol / L or less).
  • the addition amount D of lithium bis (oxalato) borate is appropriately determined depending on the configuration of the electrode body (for example, the composite density of the negative electrode composite layer, the porosity of the negative electrode composite layer, etc.).
  • the amount of sodium ion dissolved [mmol / L] dissolved from the above electrode body in the non-aqueous electrolyte to which lithium bis (oxalato) borate was added is C, and the amount of lithium bis (oxalato) borate added [mmol / L
  • the above Na so that C / D which is a ratio when L] is D is smaller than 0.1 (usually 0.0001 or more and 0.05 or less, for example 0.0001 or more and 0.007 or less). It is preferable to remove the sodium (Na) component from the electrode and separator containing the Na component in the component removal step.
  • the assembly 70 is charged to a predetermined charging voltage, thereby forming a film derived from lithium bis (oxalato) borate on the surface of the negative electrode active material in the negative electrode mixture layer 86.
  • the assembly 70 is charged at a charging rate of approximately 0.1 C to 1 C to at least a predetermined voltage (for example, 3.7 V to 4.1 V) at which the LiBOB is decomposed.
  • a predetermined voltage for example, 3.7 V to 4.1 V
  • [B (C 2 O 4 ) 2 ] dispersed well in the width direction of the electrode body is decomposed, and the coating derived from [B (C 2 O 4 ) 2 ] is in the negative electrode mixture layer 86.
  • It is formed on the surface of the negative electrode active material in a preferable state that is, a film formed on the surface of the negative electrode active material in the width direction perpendicular to the longitudinal direction of the negative electrode mixture layer 86 is a state in which unevenness of the coating amount is suppressed).
  • the battery is discharged to a predetermined voltage (for example, 3 V to 3.2 V) at a discharge rate of about 0.1 C to 1 C. Moreover, it is preferable to repeat the said charging / discharging several times (for example, 3 times).
  • a usable battery that is, a lithium ion secondary battery (non-aqueous electrolyte secondary battery) 10.
  • “1C” means the amount of current that can charge the battery capacity (Ah) predicted from the theoretical capacity of the positive electrode in one hour.
  • lithium ion secondary battery (nonaqueous electrolyte secondary battery) 10 manufactured by the manufacturing method disclosed herein will be described.
  • the lithium ion secondary battery 10 includes a stacked or wound electrode body 50 (here, a wound electrode body) 50 including a positive electrode 64 and a negative electrode 84, and a non-aqueous electrolyte. And.
  • the non-aqueous electrolyte of this embodiment LiBOB that was not decomposed in the charge / discharge step remains, but in the charge / discharge step, all of LiBOB is decomposed and LiBOB remains in the non-aqueous electrolyte. You don't have to.
  • the negative electrode 84 includes a negative electrode current collector 82, and a negative electrode mixture layer 86 including at least a negative electrode active material (for example, natural graphite particles) formed on the surface of the negative electrode current collector 82, It has.
  • a film that is derived from the LiBOB and includes at least boron (B) and sodium (Na) is formed on the surface of the negative electrode active material contained in the negative electrode mixture layer 86.
  • A the amount of sodium (Na) contained in the coating per unit area of the negative-electrode mixture layer 86 [ ⁇ g / cm 2]
  • B the amount of boron (B) and B
  • the ratio A / B is smaller than 0.1 (usually 0.0001 or more and 0.05 or less, for example 0.0001 or more and 0.039 or less).
  • a / B is typically measured based on the coating film per unit area including the center of the negative electrode mixture layer 86 in the width direction.
  • the amount of sodium (Na) contained in the coating per unit area of the negative electrode mixture layer 86 is, for example, 10 ⁇ g / cm 2 (for example, 7 ⁇ g / cm 2 ) or less.
  • the amount of sodium (Na) contained in the coating [ ⁇ g / cm 2 ] and the amount of boron (B) [ ⁇ g / cm 2 ] were analyzed by ICP (high frequency inductively coupled plasma) emission analysis, ion chromatography, etc. Can be grasped by doing. Further, the variation in the coating amount formed on the surface of the negative electrode active material can be grasped from the analysis result of mapping data by TOF-SIMS (time-of-flight secondary ion mass spectrometer).
  • ICP high frequency inductively coupled plasma
  • the coating formed on the surface of the negative electrode active material in the negative electrode mixture layer Contained a large amount of sodium, and a film containing sodium was locally generated in a large amount in the central portion of the negative electrode mixture layer.
  • the coating formed on the surface of the negative electrode active material in the negative electrode mixture layer 86 of the lithium ion secondary battery 10 disclosed here contains only a small amount of sodium.
  • the unevenness of the film is small in the width direction (in the preferred embodiment, the film is uniformly formed along the width direction).
  • the lithium ion secondary battery (nonaqueous electrolyte secondary battery) 10 showing a high capacity retention rate can be obtained.
  • the weight ratio with respect to Kureha Co., Ltd. was 90: 8: 2 was 90: 2, and these materials were dispersed in NMP to prepare a paste-like composition for forming a positive electrode mixture layer.
  • This composition was applied to a positive electrode current collector (aluminum foil) having a thickness of 15 ⁇ m.
  • the composition is dried in a vacuum at 120 ° C. for 6 hours, and subjected to a rolling process using a roll press, thereby producing a positive electrode sheet A having a positive electrode mixture layer formed on the positive electrode current collector.
  • the coating amount of the composition was adjusted so that the theoretical capacity of the positive electrode was 350 mAh.
  • the length of the positive electrode sheet A in the longitudinal direction was 50 cm, and the length in the width direction was 5.4 cm.
  • ⁇ Positive electrode sheet B> The positive electrode sheet A produced above was washed to remove sodium components as impurities (Na component removal step). That is, the positive electrode sheet A was immersed in the nonaqueous electrolytic solution A for 24 hours.
  • As the non-aqueous electrolyte A 1 mol / L LiPF 6 was dissolved in a mixed solvent having a volume ratio of ethylene carbonate (EC), dimethyl carbonate (DMC), and ethyl methyl carbonate (EMC) of 3: 4: 3. I used something. Thereafter, the positive electrode sheet A was taken out from the nonaqueous electrolytic solution A, washed with EMC three times and dried. The positive electrode sheet A after washing was designated as a positive electrode sheet B.
  • EC ethylene carbonate
  • DMC dimethyl carbonate
  • EMC ethyl methyl carbonate
  • a positive electrode sheet C was produced in the same manner as the positive electrode sheet A except that was used.
  • ⁇ Positive electrode sheet D> In the same manner as the positive electrode sheet B, the produced positive electrode sheet C was washed to remove sodium components as impurities. The positive electrode sheet C after washing was designated as a positive electrode sheet D.
  • ⁇ Positive electrode sheet E> The same as the positive electrode sheet A except that LiMn 2 O 4 (manufactured by Toda Kogyo Co., Ltd.) was used instead of LiNi 1/3 Co 1/3 Mn 1/3 O 2 (manufactured by Toda Kogyo Co., Ltd.) as the positive electrode active material. Thus, a positive electrode sheet E was produced.
  • ⁇ Positive electrode sheet F> In the same manner as the positive electrode sheet B, the produced positive electrode sheet E was washed to remove sodium components as impurities. The positive electrode sheet E after washing was designated as a positive electrode sheet F.
  • the coating amount of the composition was adjusted so that the ratio between the theoretical capacity of the positive electrode and the theoretical capacity of the negative electrode was 1 (positive electrode): 1.8 (negative electrode).
  • the length of the negative electrode sheet A in the longitudinal direction was 52 cm, and the length in the width direction was 5.6 cm.
  • ⁇ Negative electrode sheet B> In the same manner as the positive electrode sheet B, the above-prepared negative electrode sheet A was washed to remove sodium components as impurities. The negative electrode sheet A after washing was designated as negative electrode sheet B.
  • a negative electrode sheet C was prepared in the same manner as the negative electrode sheet A except that natural graphite particles (manufactured by Hitachi Chemical Co., Ltd.) were used instead of the spherical graphite particles (manufactured by Hitachi Chemical Co., Ltd.) as the negative electrode active material.
  • ⁇ Negative electrode sheet D> In the same manner as the positive electrode sheet B, the prepared negative electrode sheet C was washed to remove sodium components as impurities. The negative electrode sheet C after washing was designated as a negative electrode sheet D.
  • the dissolution amount (Na + dissolution amount) [mmol / L] of sodium ions dissolved in the non-aqueous electrolyte A from the positive electrode sheet A produced above was measured.
  • the positive electrode sheet A was immersed in 5 ml of the nonaqueous electrolytic solution A for 24 hours. After immersion for 24 hours, the non-aqueous electrolyte A is filtered through a 0.2 ⁇ m microporous membrane filter, and the amount of sodium ions dissolved in the non-aqueous electrolyte A by ICP (high frequency inductively coupled plasma) emission analysis was measured.
  • ICP high frequency inductively coupled plasma
  • the amount of dissolved sodium ions was 0.0003 mmol / L or less, and it was confirmed that the sodium component as an impurity was almost removed. Further, from the positive electrode sheets A, C, and E, it was confirmed that the amount of sodium ions dissolved in the non-aqueous electrolyte differs when the positive electrode active material to be used is different. That is, it was confirmed that the sodium component contained in the positive electrode sheet differs depending on the positive electrode active material used. Similarly, from the negative electrode sheets A and C, it was confirmed that the amount of sodium ions dissolved in the nonaqueous electrolytic solution was different when the negative electrode active material used was different.
  • Example 1 [Production of lithium ion secondary battery (non-aqueous electrolyte secondary battery)] ⁇ Example 1>
  • the positive electrode mixture layer was peeled 5 cm in the longitudinal direction from one end in the longitudinal direction of the positive electrode sheet B to expose the positive electrode current collector, and an aluminum positive electrode terminal was ultrasonically welded to the exposed positive electrode current collector.
  • the negative electrode mixture layer was peeled 2 cm in the longitudinal direction from one end in the longitudinal direction of the negative electrode sheet B to expose the negative electrode current collector, and a nickel negative electrode terminal was attached to the exposed negative electrode current collector by ultrasonic welding.
  • the positive electrode sheet B and the negative electrode sheet B to which each terminal was attached were wound through two separator sheets B to prepare a wound electrode body (electrode body manufacturing step).
  • the electrode assembly was housed in a cylindrical stainless steel battery case to produce an assembly according to Example 1 (assembly preparation step).
  • LiBOB lithium bis (oxalato) borate
  • injection step 3.7 ml of a non-aqueous electrolyte to which lithium bis (oxalato) borate (LiBOB) was added was injected into the battery case of the assembly according to Example 1 (injection step).
  • the addition amount D of LiBOB was 0.074 mmol / L.
  • the non-aqueous electrolyte a solution in which 1.1 mol / L LiPF 6 was dissolved in a mixed solvent having a volume ratio of EC, DMC, and EMC of 3: 4: 3 was used. After the injection, charging / discharging of the assembly according to Example 1 was repeated 5 cycles.
  • the charge / discharge conditions for one cycle are: charge at a constant current and constant voltage up to 4.1 V at a charge rate of 0.2 C (70 mA) under a temperature condition of 25 ° C., and after a pause of 10 minutes, 0.2 C (70 mA)
  • the battery was discharged at a constant current up to 3 V at a discharge rate of 10 minutes and rested for 10 minutes. (Preliminary charging process).
  • the lithium ion secondary battery which concerns on Example 1 provided with the negative electrode by which the film derived from lithium bis (oxalato) borate was formed in the surface of a negative electrode active material was produced.
  • Example 2 to Example 11 As shown in Tables 2 and 3, the lithium ion secondary batteries according to Examples 2 to 11 were used in Example 1 using the positive electrode sheets A to F, the negative electrode sheets A to D, and the separator sheets A and B. It was produced in the same manner as the lithium ion secondary battery according to the above.
  • Na + dissolution amount C is the total value of Na + dissolution amount of each sheet.
  • the amount of coating in the width direction of the negative electrode sheet was small because the Na + dissolution amount C was small relative to the amount of LiBOB added. There was no variation. As a result, since current was prevented from being concentrated locally during charging / discharging, precipitation of metallic lithium in the central portion in the width direction of the negative electrode sheet was not confirmed. In the lithium ion secondary batteries according to Examples 1 to 5, it was confirmed that the deposition rate of metal lithium was suppressed, so that the capacity retention rate was kept high. In particular, it was confirmed that the lithium ion secondary battery according to Example 1 has a high capacity retention rate.
  • the Na + dissolution amount C is larger than the amount of LiBOB added (C / D ⁇ 0.229), so the coating amount in the width direction of the negative electrode sheet There was a variation. As a result, it was confirmed that metallic lithium was deposited on the surface of the negative electrode sheet. It was confirmed that the capacity retention rate was also reduced because metallic lithium was deposited. From the above, when C / D (Na + dissolution amount C / LiBOB addition amount D) is smaller than 0.1 (usually 0.05 or less, for example 0.07 or less), in the lithium ion secondary battery, It was confirmed that precipitation of metallic lithium was suppressed and a high capacity retention rate was realized.
  • the coating amount did not vary in the width direction of the negative electrode sheet, and the amount of sodium in the coating was less than the amount of boron in the coating.
  • the lithium ion secondary battery according to Example 6 it was confirmed that metallic lithium was deposited and the capacity retention rate was low. In such a battery, the coating amount varied in the width direction of the negative electrode sheet, and the amount of sodium in the coating was larger than the amount of boron in the coating.
  • the non-aqueous electrolyte secondary battery according to the present invention or the non-aqueous electrolyte secondary battery obtained by the manufacturing method is particularly excellent in vehicles such as automobiles because the deposition of substances derived from charge carriers is suppressed and the capacity retention rate is excellent. It can be suitably used as a power source for a motor (electric motor) mounted on the motor. Therefore, as schematically shown in FIG. 5, the present invention provides a vehicle (typically) having such a lithium ion secondary battery 10 (typically, a battery pack 200 formed by connecting a plurality of such batteries 10 in series) as a power source. Is provided with an automobile, particularly an automobile equipped with an electric motor such as a hybrid vehicle, an electric vehicle, and a fuel vehicle.
  • an electric motor such as a hybrid vehicle, an electric vehicle, and a fuel vehicle.
  • Lithium ion secondary battery non-aqueous electrolyte secondary battery
  • Battery Case Opening 25 Lid
  • Case Body Safety Valve 45 Inlet 48 Sealing Plug 50 Winding Electrode Body 60
  • Positive Terminal 62
  • Positive Electrode Current Collector 63
  • Positive Electrode Mixing Layer Non-Forming Portion 64
  • Positive Electrode 66
  • Positive Electrode Mixing Layer 70
  • Assembly 80
  • Negative electrode terminal 82
  • Negative electrode current collector 83
  • Negative electrode composite material layer non-formed portion 84
  • Negative electrode 86 Negative electrode composite material layer 90 Separator sheet 100 Vehicle (automobile) 200 batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Composite Materials (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

 本発明によって提供される非水電解液二次電池10は、正極64及び負極84を含む電極体50と、非水電解液と、を備えている。負極84は、負極集電体82と、該負極集電体82の表面上に形成された少なくとも負極活物質を含む負極合材層86と、を備えている。負極合材層86中の負極活物質の表面には、ホウ素(B)とナトリウム(Na)とを少なくとも含む被膜が形成されており、負極合材層86の単位面積当たりの被膜に含まれるナトリウム(Na)の量[μg/cm]をAとし、ホウ素(B)の量[μg/cm]をBとしたときの比であるA/Bは、0.1よりも小さい。

Description

非水電解液二次電池及びその製造方法
 本発明は、非水電解液二次電池とその製造方法に関する。
 なお、本国際出願は2013年7月2日に出願された日本国特許出願第2013-139150号に基づく優先権を主張しており、その出願の全内容は本明細書中に参照として組み入れられている。
 リチウムイオン二次電池その他の非水電解液二次電池は、車両搭載用電源あるいはパソコンや携帯端末等の電源として重要性がますます高まっている。特に、軽量で高エネルギー密度が得られるリチウムイオン二次電池は、車両搭載用高出力電源として好ましい。
 ところで、リチウムイオン二次電池等の非水電解液二次電池では、充電の際に非水電解液の一部が分解され、負極活物質(例えば天然黒鉛粒子)の表面にその分解物からなる被膜、即ちSEI(Solid Electrolyte Interface)膜が形成され得る。SEI膜は負極活物質を保護する役割を果たすが、非水電解液中の電荷担体(例えばリチウムイオン)を消費して形成される。即ち、電荷担体がSEI膜中に固定されるので、電荷担体はもはや電池容量に寄与できなくなる。このため、SEI膜が多量に形成されることは、容量維持率の低下(サイクル特性の低下)の要因となる。
 かかる問題に対応すべく、SEI膜に代えて負極活物質の表面に予め安定的な被膜を形成するために、非水電解液中に各種の添加剤を含有させることが行われている。例えば特許文献1には、添加剤としてリチウムビス(オキサラト)ボレート(Li[B(C])を含有する二次電池用非水電解液が記載されている。
日本国特許出願公開2005-259592号公報
 ところで、正極及び負極を備える非水電解液二次電池の電極体には、不可避の不純物としてナトリウム成分(例えばナトリウム塩)が含まれている。このため、ナトリウム成分を含む電極体に非水電解液を含浸させると、ナトリウム成分が非水電解液中に溶解する。上記特許文献1に記載のリチウムビス(オキサラト)ボレートを含有する非水電解液を上記電極体に注入した場合、非水電解液中のナトリウムイオン(Na)は[B(Cよりも速く拡散する。このことから、例えば、電極体が長方形状の正極及び負極を積層若しくは捲回してなる電極体である場合、ナトリウムイオンは電極体の長手方向に直交する幅方向の中央部に集まる傾向にある。即ち、上記幅方向の中央部ではナトリウムイオンの濃度が高くなる。そして、ナトリウムイオン濃度の高い上記中央部に[B(Cが拡散する。このため、電極体の上記幅方向の中央部において、ナトリウムイオンと[B(Cとの会合が活発に行われ、Na[B(C]が析出しがちである。この結果、電極体の中央部には非水電解液中に溶解している[B(Cの他にNa[B(C]が多量に析出しやすいため、電極体の上記幅方向の両端部よりも中央部に[B(C]が多量に存在することとなり、[B(C]の分解によって生成される被膜量にバラツキが生じ得る。このように、電極体の上記幅方向の中央部の負極活物質の表面には[B(C]の分解によって生成される被膜が多量に存在するため、該中央部の抵抗は両端部と比較して大きくなる。従って、充放電を繰り返し行った場合、電極体の中央部には電荷担体に由来する物質(例えば金属リチウム等の金属)が析出してしまう虞がある。
 本発明は、上述した従来の課題を解決すべく創出されたものであり、その目的は、負極活物質の表面により好ましい態様の被膜を形成することによって、電荷担体に由来する物質の析出が抑制された非水電解液二次電池及びその製造方法を提供することである。
 上記目的を実現すべく、本発明により、非水電解液二次電池を製造する方法が提供される。即ちここで開示される製造方法は、正極活物質を含む正極及び負極活物質を含む負極を準備する工程、ここで、準備した上記正極及び上記負極のうち少なくともいずれか一方には不可避的な不純物としてナトリウム(Na)成分が含まれている;上記正極及び上記負極のうち前記ナトリウム(Na)成分を含む電極を非水電解液で洗浄して、上記ナトリウム(Na)成分の少なくとも一部を除去する工程;上記除去工程を経た正極及び/又は負極(正極及び負極、若しくは、正極又は負極)を用いて電極体を作製する工程;上記電極体が電池ケース内に収容された組立体を作製する工程;リチウムビス(オキサラト)ボレートが添加された非水電解液を上記電池ケース内に注入する工程;上記組立体に対して所定の充電電圧まで充電を行った後、所定の放電電圧まで放電を行う工程;を包含する。
 なお、本明細書において「非水電解液二次電池」とは、非水電解液(典型的には、非水溶媒(有機溶媒)中に支持塩(支持電解質)を含む電解液)を備えた電池をいう。
 また、本明細書において「二次電池」とは、繰り返し充放電可能な電池一般をいい、リチウムイオン二次電池等のいわゆる化学電池ならびに電気二重層キャパシタ等の物理電池を包含する用語である。
 また、本明細書において「ナトリウム(Na)成分」とは、ナトリウム単独(典型的にはイオンの状態)で存在する場合と、構成元素としてNaを含む化合物として存在する場合とを包含する用語である。
 本発明によって提供される非水電解液二次電池の製造方法では、正極及び負極のうち不可避的な不純物としてナトリウム(Na)成分を含む電極を非水電解液で洗浄することによって、該電極に含まれているナトリウム(Na)成分の少なくとも一部を除去し、除去後の正極及び/又は負極を用いて電極体を作製し、作製された電極体を収容する電池ケース内にリチウムビス(オキサラト)ボレートが添加された非水電解液を注入する。
 このように、ナトリウム(Na)成分の少なくとも一部が除去された後の正極及び/又は負極を用いて電極体を作製しているため、該電極体にリチウムビス(オキサラト)ボレートを含む非水電解液を含浸させた場合、非水電解液中に溶解するナトリウム成分は減少する。これにより、電極体の中央部におけるナトリウムイオン濃度の上昇を抑制することができる。電極体の中央部では、Na[B(C]の析出が抑制され、電極体の幅方向において[B(C]が良好に分散([B(Cの状態で溶解或いはNa[B(C]の状態で溶解)する。このため、[B(C]の分解によって負極活物質の表面に生成される被膜は、その被膜量のバラツキが抑制された状態(好ましくは幅方向に被膜が均一な状態)となり得る。被膜量のバラツキが抑制された電極体を備える非水電解液二次電池では、充放電時に電流が局所的に集中することが防止されるため、電荷担体に由来する物質(例えば金属リチウム)の析出が抑制される。
 ここで開示される製造方法の好適な一態様では、上記リチウムビス(オキサラト)ボレートが添加された非水電解液中に上記電極体から溶解するナトリウムイオンの溶解量[mmol/L]をCとし、上記リチウムビス(オキサラト)ボレートの添加量[mmol/L]をDとしたときの比であるC/Dが0.1よりも小さくなるように、上記除去工程において上記ナトリウム(Na)成分を除去する。
 かかる構成によると、非水電解液中でナトリウムイオンと[B(Cとが会合しないか、或いは会合してもNa[B(C]として非水電解液中で溶解する。このため、電極体の中央部ではNa[B(C]の析出が抑制され、電極体の幅方向において[B(C]が良好な状態で分散するので、B[(C]の分解によって生成される被膜は、その被膜量のバラツキが抑制された状態(好ましくは幅方向に被膜が均一な状態)となり得る。
 ここで開示される製造方法の好適な他の一態様では、上記除去工程では、リチウム塩を少なくとも含む非水電解液中に上記正極及び/又は上記負極を浸漬させた後、リチウム塩を含まない非水電解液を用いて該正極及び該負極を洗浄する。
 かかる構成によると、洗浄後の正極及び洗浄後の負極、若しくは洗浄後の正極又は洗浄後の負極に不純物が含まれることを抑制することができる。
 ここで開示される製造方法の好適な他の一態様では、上記準備工程において、上記正極と上記負極との間に配置されるセパレータをさらに準備し、該セパレータに対して上記除去工程を実施し、該除去工程後のセパレータと、上記除去工程を経た正極及び/又は負極とを用いて上記電極体を作製する。
 かかる構成によると、ナトリウム(Na)成分が除去された後のセパレータを用いて電極体を作製しているため、非水電解液中に溶解するナトリウム成分は減少する。これにより、電極体の幅方向において被膜量のバラツキがさらに抑制された状態となり得る。
 ここで開示される製造方法の好適な他の一態様では、上記正極活物質として、リチウム遷移金属複合酸化物を用いる。
 リチウム遷移金属複合酸化物は、不可避的な不純物としてナトリウム(Na)成分を多く含む傾向にあるため、リチウムビス(オキサラト)ボレートを含む非水電解液に含浸させると、電極体の中央部にNa[B(C]が多量に析出し得る。このため、リチウム遷移金属複合酸化物を用いた場合、不可避的な不純物としてナトリウム(Na)成分を含む電極を非水電解液で予め洗浄するという本発明の構成を採用することによる効果が特に発揮され得る。
 ここで開示される製造方法の好適な他の一態様では、上記負極に含まれる結着剤としてスチレンブタジエンゴムを用いる。
 スチレンブタジエンゴムを含む負極は、不可避的な不純物としてナトリウム(Na)成分を多く含む傾向にあるため、リチウムビス(オキサラト)ボレートを含む非水電解液に含浸させると、電極体の中央部にNa[B(C]が多量に析出し得る。このため、スチレンブタジエンゴムを用いた場合、不可避的な不純物としてナトリウム(Na)成分を含む電極を非水電解液で予め洗浄するという本発明の構成を採用することによる効果が特に発揮され得る。
 ここで開示される製造方法の好適な他の一態様では、上記電極体として、シート状に形成された正極とシート状に形成された負極とが重ね合わされた電極体であって該電極体の長手方向に捲回された捲回電極体を用いる。
 かかる構成の捲回電極体では、捲回電極体の幅方向の両端部から中央部に向けて非水電解液が含浸する。このため捲回電極体の中央部ではナトリウム成分の濃度が高くなる傾向にある。従って、捲回電極体を用いた場合、不可避的な不純物としてナトリウム(Na)成分を含む電極を非水電解液で予め洗浄するという本発明の構成を採用することによる効果が特に発揮され得る。
 また、本発明によると、上記目的を実現する他の側面として、非水電解液二次電池が提供される。即ちここで開示される非水電解液二次電池は、正極及び負極を含む電極体と、非水電解液と、を備えている。上記負極は、負極集電体と、該負極集電体の表面上に形成された少なくとも負極活物質を含む負極合材層と、を備えている。上記負極合材層中の上記負極活物質の表面には、ホウ素(B)とナトリウム(Na)とを少なくとも含む被膜が形成されており、上記負極合材層の単位面積当たりの上記被膜に含まれるナトリウム(Na)の量[μg/cm]をAとし、ホウ素(B)の量[μg/cm]をBとしたときの比であるA/Bは、0.1よりも小さい。
 かかる非水電解液二次電池では、負極合材層中の負極活物質の表面にホウ素とナトリウムとを少なくとも含む被膜が形成されており、上記ナトリウムの量Aとホウ素の量Bとの比A/Bが0.1よりも小さい。このため、負極活物質の表面に生成された被膜は、その被膜量のバラツキが抑制された状態(好ましくは電極体の幅方向に被膜が均一な状態)である。被膜量のバラツキが抑制された電極体を備える非水電解液二次電池では、充放電時に電流が局所的に集中することが防止されるため、電荷担体に由来する物質(例えば金属リチウム)の析出が抑制される。かかる非水電解液二次電池は、上述した本発明の製造方法によって好適に製造することができる。
 ここで開示される非水電解液二次電池の好適な一態様では、上記正極は、正極集電体と、該正極集電体の表面上に形成された少なくとも正極活物質を含む正極合材層と、を備えており、上記正極活物質は、リチウム遷移金属複合酸化物である。好適な他の一態様では、上記負極は、上記負極合材層中に結着剤を含んでおり、上記結着剤は、スチレンブタジエンゴムである。また、好適な他の一態様では、上記電極体は、上記正極と上記負極との間に配置されたセパレータをさらに備えている。また、好適な他の一態様では、上記非水電解液は、リチウムビス(オキサラト)ボレートを含む。
 上述のように、ここで開示されるいずれかの非水電解液二次電池或いはここで開示されるいずれかの製造方法により得られた非水電解液二次電池(例えばリチウムイオン二次電池)では、ホウ素とナトリウムとを少なくとも含む被膜が負極活物質の表面に好ましい状態(被膜量のバラツキがない或いは少ない状態)で形成されているため、電荷担体に由来する物質(例えば金属リチウム)の析出が防止され電池性能に優れる非水電解液二次電池となり得る。このため、車両(典型的には自動車、特にハイブリッド自動車、電気自動車、燃料電池自動車のような電動機を備える自動車)の駆動電源として用いることができる。また、本発明の他の側面として、ここで開示されるいずれかの製造方法により得られた非水電解液二次電池(複数個(例えば40~80個)の電池が典型的には直列に接続された組電池の形態であり得る。)を駆動電源として備える車両を提供する。
図1は、本発明の一実施形態に係る非水電解液二次電池の外形を模式的に示す斜視図である。 図2は、図1中のII‐II線に沿う断面図である。 図3は、本発明の一実施形態に係る捲回電極体の構造を模式的に示す断面図である。 図4は、本発明の一実施形態に係る非水電解液二次電池の製造方法を説明するためのフローチャートである。 図5は、本発明に係る非水電解液二次電池を備えた車両(自動車)を模式的に示す側面図である。
 以下、本発明の好適な実施形態を説明する。なお、本明細書において特に言及している事項以外の事柄であって本発明の実施に必要な事項は、当該分野における従来技術に基づく当業者の設計事項として把握され得る。本発明は、本明細書に開示されている内容と当該分野における技術常識とに基づいて実施することができる。
 ここで開示される非水電解液二次電池を製造する方法の好適な実施形態の一つとして、リチウムイオン二次電池を製造する方法を例にして詳細に説明するが、本発明の適用対象をかかる種類の二次電池に限定することを意図したものではない。例えば、他の金属イオン(例えばマグネシウムイオン)を電荷担体とする非水電解液二次電池にも適用することができる。
 ここで開示される非水電解液二次電池(リチウムイオン二次電池)の製造方法は、図4に示すように、正負極準備工程(S10)と、Na成分除去工程(S20)と、電極体作製工程(S30)と、組立体作製工程(S40)と、注入工程(S50)と、充放電工程(S60)と、を包含する。
≪正負極準備工程(S10)≫
 まず、正負極準備工程(S10)について説明する。本実施形態においては、正負極準備工程として、正極活物質を含む正極及び負極活物質を含む負極を準備する。好適な一実施形態においては、上記正極と上記負極との間に配置されるセパレータをさらに準備することを包含する。
 ここで開示されるリチウムイオン二次電池の正極は、正極集電体と、該正極集電体の表面上に形成された少なくとも正極活物質を含む正極合材層と、を備えている。正極合材層は、正極活物質の他に、導電材、結着剤(バインダ)等の任意の成分を必要に応じて含有し得る。
 上記正極集電体としては、従来のリチウムイオン二次電池の正極に用いられている正極集電体と同様、アルミニウム又はアルミニウムを主体とするアルミニウム合金が用いられる。正極集電体の形状は、リチウムイオン二次電池の形状等に応じて異なり得るため、特に制限はなく、箔状、シート状、棒状、板状等の種々の形態であり得る。
 上記正極活物質としては、リチウムイオンを吸蔵及び放出可能な材料であって、リチウム元素と一種または二種以上の遷移金属元素を含むリチウム含有化合物(例えばリチウム遷移金属複合酸化物)が挙げられる。例えば、リチウムニッケル複合酸化物(例えばLiNiO)、リチウムコバルト複合酸化物(例えばLiCoO)、リチウムマンガン複合酸化物(例えばLiMn)、或いは、リチウムニッケルコバルトマンガン複合酸化物(例えばLiNi1/3Co1/3Mn1/3)のような三元系リチウム含有複合酸化物が挙げられる。
 また、一般式がLiMPO或いはLiMVO或いはLiMSiO(式中のMはCo、Ni、Mn、Feのうちの少なくとも一種以上の元素)等で表記されるようなポリアニオン系化合物(例えばLiFePO、LiMnPO、LiFeVO、LiMnVO、LiFeSiO、LiMnSiO、LiCoSiO)を上記正極活物質として用いてもよい。
 上記正極活物質は、種々の方法により製造されたものであり得る。正極活物質がリチウムニッケルコバルトマンガン複合酸化物である場合を例として説明すると、例えば、NiとCoとMnとを目的とするモル比で含む水酸化物(例えば、Ni1/3Co1/3Mn1/3(OH)2で表わされるNiCoMn複合水酸化物)を調製し、この水酸化物とリチウム源とのモル比が目的値となるように混合して焼成することにより、リチウムニッケルコバルトマンガン複合酸化物を得ることができる。上記NiCoMn複合水酸化物は、例えば共沈法により好ましく調製することができる。上記焼成は、典型的には酸化性雰囲気中(例えば大気中)で行われる。焼成温度としては700℃~1000℃が好ましい。共沈法では、例えば、比較的濃度の高い水酸化ナトリウムを用いてNiCoMn複合水酸化物を調製するため、上記のようにして生成されたリチウムニッケルコバルトマンガン複合酸化物は、不純物としてのナトリウム成分(例えば、NaSO)を多く含む傾向にある。
 上記導電材としては、従来この種のリチウムイオン二次電池で用いられているものであればよく、特定の導電材に限定されない。例えば、カーボン粉末やカーボンファイバー等のカーボン材料を用いることができる。カーボン粉末としては、種々のカーボンブラック(例えば、アセチレンブラック、ファーネスブラック、ケッチェンブラック等)、グラファイト粉末等のカーボン粉末を用いることができる。なかでも好ましいカーボン粉末としてアセチレンブラック(AB)が挙げられる。このような導電材は、一種を単独で、または二種以上を適宜組み合わせて用いることができる。
 上記結着剤(バインダ)としては、一般的なリチウムイオン二次電池の正極に使用される結着剤と同様のものを適宜採用することができる。例えば、上記正極合材層を形成する組成物として溶剤系のペースト状組成物(ペースト状組成物には、スラリー状組成物及びインク状組成物が包含される。)を用いる場合には、ポリフッ化ビニリデン(PVDF)、ポリ塩化ビニリデン(PVDC)等の、有機溶媒(非水溶媒)に溶解するポリマー材料を用いることができる。あるいは、水系のペースト状組成物を用いる場合には、水溶性(水に溶解する)のポリマー材料又は水分散性(水に分散する)のポリマー材料を好ましく採用し得る。例えば、ポリテトラフルオロエチレン(PTFE)、カルボキシメチルセルロース(CMC)、スチレンブタジエンゴム(SBR)等が挙げられる。なお、上記で例示したポリマー材料は、結着剤として用いられる他に、上記組成物の増粘剤その他の添加剤として使用されることもあり得る。
 ここで、「溶剤系のペースト状組成物」とは、正極活物質の分散媒が主として有機溶媒(非水溶媒)である組成物を指す概念である。有機溶媒としては、例えば、N‐メチル‐2‐ピロリドン(NMP)等を用いることができる。「水系のペースト状組成物」とは、正極活物質の分散媒として水または水を主体とする混合溶媒を用いた組成物を指す概念である。かかる混合溶媒を構成する水以外の溶媒としては、水と均一に混合し得る有機溶媒(低級アルコール、低級ケトン等)の一種または二種以上を適宜選択して用いることができる。
 ここで開示される正極は、例えば概ね以下の手順で好適に製造することができる。上述した正極活物質、導電材、および有機溶媒に対して可溶性である結着剤等を有機溶媒に分散させてなるペースト状の正極合材層形成用組成物を調製する。調製した組成物を正極集電体に塗布し、乾燥させた後、圧縮(プレス)することによって、正極集電体と該正極集電体上に形成された正極合材層とを備える正極を作製することができる。このように作製された正極は、不可避的な不純物としてナトリウム(Na)成分を含み得る。なお、本実施形態では、不可避的な不純物としてのナトリウム(Na)成分とは、非水電解液中に溶解し得るものをいう。以下、特に断らない限り同様である。
 ここで開示されるリチウムイオン二次電池の負極は、負極集電体と、該負極集電体の表面上に形成された少なくとも負極活物質を含む負極合材層と、を備えている。負極合材層は、負極活物質の他に、結着剤、増粘剤等の任意成分を必要に応じて含有し得る。
 上記負極集電体としては、従来のリチウムイオン二次電池の負極に用いられている集電体と同様、導電性の良好な金属からなる導電性部材が好ましく用いられる。例えば、銅やニッケル或いはそれらを主体とする合金を用いることができる。負極集電体の形状は、正極集電体の形状と同様であり得る。
 上記負極活物質としては、従来からリチウムイオン二次電池に用いられる材料の一種または二種以上を特に限定なく使用することができる。例えば、少なくとも一部にグラファイト構造(層状構造)を含む粒子状(或いは球状、鱗片状)の炭素材料、リチウム遷移金属複合酸化物((例えば、LiTi12等のリチウムチタン複合酸化物)、リチウム遷移金属複合窒化物等が挙げられる。炭素材料としては、例えば、天然黒鉛、人造黒鉛(人工黒鉛)、難黒鉛化炭素(ハードカーボン)、易黒鉛化炭素(ソフトカーボン)等が挙げられる。負極活物質の平均粒径(メジアン径d50)は、例えば凡そ1μm~50μm(通常は5μm~30μm)の範囲内である。なお、平均粒径は、市販されている種々のレーザー回折・散乱法に基づく粒度分布測定装置によって容易に測定することができる。また、上記負極活物質の表面を非晶質炭素膜で被覆してもよい。例えば、負極活物質にピッチを混ぜて焼くことによって、少なくとも一部が非晶質炭素膜で被覆された負極活物質を得ることができる。
 上記結着剤としては、一般的なリチウムイオン二次電池の負極に使用される結着剤と同様のものを適宜採用することができる。例えば、負極合材層を形成するために水系のペースト状の組成物を用いる場合には、水溶性のポリマー材料または水分散性のポリマー材料を好ましく採用し得る。水分散性のポリマーとしては、スチレンブタジエンゴム(SBR)等のゴム類;ポリエチレンオキサイド(PEO)、酢酸ビニル共重合体等が例示される。スチレンブタジエンゴムは中和剤として水酸化ナトリウムを使用しているため、不純物としてのナトリウム成分を含み得る。
 上記増粘剤としては、例えば、水溶性又は水分散性のポリマーを採用し得る。水溶性のポリマーとしては、例えば、カルボキシメチルセルロース(CMC)、メチルセルロース(MC)、酢酸フタル酸セルロース(CAP)、ヒドロキシプロピルメチルセルロース(HPMC)等のセルロース系ポリマー;ポリビニルアルコール(PVA);等が挙げられる。また、上記結着剤として挙げられる材料と同様のものを適宜採用することができる。
 ここで開示される負極は、例えば概ね以下の手順で好適に製造することができる。上述した負極活物質と、他の任意の成分(結着剤、増粘剤等)とを適当な溶媒(例えば水)に分散させてなるペースト状の負極合材層形成用組成物を調製する。調製した組成物を負極集電体に塗布し、乾燥させた後、圧縮(プレス)することによって、負極集電体と該負極集電体上に形成された負極合材層とを備える負極を作製することができる。このように作製された負極は、不可避的な不純物としてナトリウム(Na)成分を含み得る。
 上記セパレータとしては、従来公知のものを特に制限なく使用することができる。例えば、樹脂からなる多孔性シート(微多孔質樹脂シート)を好ましく用いることができる。ポリエチレン(PE)、ポリプロピレン(PP)等の多孔質ポリオレフィン系樹脂シートが好ましい。例えば、PEシート、PPシート、PE層の両側にPP層が積層された三層構造(PP/PE/PP構造)のシート等を好適に使用し得る。上記セパレータは、可塑剤としてナトリウム成分を含む物が多いため、該セパレータに非水電解液を含浸させると、非水電解液中にナトリウム成分が溶解する。
≪Na成分除去工程(S20)≫
 次に、Na成分除去工程(S20)について説明する。本実施形態においては、Na成分除去工程として、上記正極及び上記負極のうち不純物としてのナトリウム(Na)成分を含む電極を非水電解液で洗浄することによって、ナトリウム(Na)成分の少なくとも一部を除去する。好適な一実施においては、不純物としてのナトリウム(Na)成分を含むセパレータを洗浄することによって、ナトリウム(Na)成分の少なくとも一部を除去することをさらに包含する。
 上記非水電解液としては、適当な有機溶媒(非水溶媒)に支持塩(典型的にはリチウム塩)を溶解させた非水電解液を用いることができる。有機溶媒としては、カーボネート類、エステル類、エーテル類、ニトリル類、スルホン類、ラクトン類等の非プロトン性溶媒を用いることができる。例えば、エチレンカーボネート(EC)、プロピレンカーボネート(PC)、ジエチルカーボネート(DEC)、ジメチルカーボネート(DMC)、エチルメチルカーボネート(EMC)等のカーボネート類が例示される。かかる有機溶媒は、一種のみを単独で、または二種以上を組み合わせて用いることができる。
 また、上記支持塩としては、例えば、LiPF、LiClO、LiAsF、Li(CFSON、LiBF、LiCFSO等のリチウム塩が例示される。かかる支持塩は、一種のみを単独で、または二種以上を組み合わせて用いることができる。特にLiPFが好ましい。
 上記不純物としてのナトリウム(Na)成分を含む電極及びセパレータを洗浄することは、例えば概ね以下の手順で好適に行うことができる。まず、Na成分を含む電極又はセパレータ(少なくとも正極及び負極のいずれか一方、好ましくは正極及び負極の両方、さらに好ましくは正極、負極及びセパレータの全て)を適当な非水電解液(例えばECとDMCとEMCとの体積比が3:4:3の混合溶媒にリチウム塩として1mol/LのLiPFを溶解させたもの)中に10時間~24時間程度浸漬させる。これにより、上記電極又はセパレータに含まれるNa成分のうち非水電解液中に溶解し得るNa成分が非水電解液中に溶解する。浸漬後、上記電極又はセパレータを非水電解液から取り出して、該電極又はセパレータの表面を適当な有機溶媒(例えばEMC)で洗浄して乾燥させる。有機溶媒による洗浄は、少なくとも3回程度行うことが好ましい。
≪電極体作製工程(S30)≫
 次に、電極体作製工程(S30)について説明する。本実施形態においては、Na成分除去工程を経た正極及び/又は負極を用いて電極体を作製する。好適な一実施形態においては、Na成分除去工程を経たセパレータをさらに用いて電極体を作製する。
 ここで開示されるリチウムイオン二次電池の電極体(例えば積層型の電極体或いは捲回型の電極体)は、正極と、負極と、正極及び負極の間に介在されたセパレータとを備えている。ここでは、シート状に形成された上記正極と、シート状に形成された上記負極と、上記セパレータシートを備える捲回型の電極体(捲回電極体)を例にして説明するが、かかる形態に限定することを意図したものではない。
 図2は、本実施形態に係る捲回電極体50である。図2に示すように、捲回電極体50は、シート状の正極64とシート状の負極84とを計二枚の長尺なセパレータシート90を介在して積層させた状態で長手方向に捲回して、次いで得られた捲回体を側面方向から押しつぶして拉げさせることによって作製された扁平形状の捲回電極体50である。
 上記積層の際には、図3に示すように、正極64の正極合材層非形成部分(即ち正極合材層66が形成されずに正極集電体62が露出した部分)63と、負極84の負極合材層非形成部分(即ち負極合材層86が形成されずに負極集電体82が露出した部分)83と、がセパレータシート90の幅方向の両側からそれぞれはみ出すように、正極64と負極84とを幅方向にややずらして重ね合わせる。その結果、図2に示すように、捲回電極体50の捲回方向に対する横方向において、正極64および負極84の電極合材層非形成部分63,83がそれぞれ捲回コア部分(すなわち正極64の正極合材層66と負極84の負極合材層86と二枚のセパレータシート90とが密に捲回された部分)から外方にはみ出ている。かかる正極合材層非形成部分63に正極端子60(例えばアルミニウム製)を接合して、上記扁平形状に形成された捲回電極体50の正極64と正極端子60とを電気的に接続する。同様に負極合材層非形成部分83に負極端子80(例えばニッケル製)を接合して、負極84と負極端子80とを電気的に接続する。なお、正負極端子60,80と正負極集電体62,82とは、例えば、超音波溶接、抵抗溶接等によりそれぞれ接合することができる。
 上記Na成分除去工程を経た正極、負極、及びセパレータを用いて作製された電極体に後述のリチウムビス(オキサラト)ボレートが添加された非水電解液を注入した場合、該電極体から非水電解液中に溶解するナトリウムイオンの溶解量[mmol/L]Cは、例えば、0.001mmol/L以下(例えば、0.0001mmol~0.001mmol)である。
≪組立体作製工程(S40)≫
 次に、組立体作製工程(S40)について説明する。本実施形態においては、上記作製された電極体50を電池ケース15内に収容して組立体70を作製する。
 図1及び図2に示すように、本実施形態の電池ケース15は、金属製(例えばアルミニウム製。また、樹脂製又はラミネートフィルム製も好適である。)の電池ケースであって、上端が開放された有底の扁平な箱型形状(典型的には直方体形状)のケース本体(外装ケース)30と、該ケース本体30の開口部20を塞ぐ蓋体25とを備えている。電池ケース15の上面(すなわち蓋体25)には、上記捲回電極体50の正極64と電気的に接続する正極端子60および該捲回電極体50の負極84と電気的に接続する負極端子80が設けられている。また、蓋体25には、ケース本体30(電池ケース15)内に収容された捲回電極体50に後述する非水電解液を注入するための注入口45が形成されている。注入口45は、後述の注入工程(S50)の後に封止栓48によって封止される。さらに、蓋体25には、従来のリチウムイオン二次電池のケースと同様に、電池異常の際に電池ケース15内部で発生したガスを電池ケース15の外部に排出するための安全弁40が設けられている。捲回電極体50の捲回軸が横倒しとなる姿勢(すなわち、上記開口部20が捲回軸に対して横方向に位置する向き)で捲回電極体50をケース本体30内に収容する。その後ケース本体30の開口部20を蓋体25によって封止することで組立体70を作製する。蓋体25とケース本体30とは溶接等によって接合する。
≪注入工程(S50)≫
 次に、注入工程(S50)について説明する。本実施形態においては、注入工程として、リチウムビス(オキサラト)ボレート(Li[B(C])(以下、「LiBOB」と略称することがある。)が添加された非水電解液を電池ケース内に注入する。
 注入工程で用いられる非水電解液としては、適当な有機溶媒に支持塩を溶解させた非水電解液であって上記Na成分除去工程で用いられるものと同様のものが挙げられる。Na成分除去工程で用いたものと同様のものを適宜採用することが好ましい。支持塩の濃度は特に制限されないが、極端に低すぎると非水電解液に含まれる電荷担体(典型的にはリチウムイオン)の量が不足し、イオン伝導性が低下する傾向がある。またかかる濃度が極端に高すぎると、室温以下の温度域(例えば0℃~30℃)において非水電解液の粘度が高くなり、イオン伝導性が低下する傾向がある。このため、該支持塩の濃度は例えば、0.1mol/L以上(例えば0.8mol/L以上)であって、2mol/L以下(例えば1.5mol/L以下)とすることが好ましい。
 リチウムビス(オキサラト)ボレートの添加量Dは、電極体の構成(例えば、負極合材層の合材密度、負極合材層の空孔率等)によって適宜決定される。
 なお、リチウムビス(オキサラト)ボレートが添加された非水電解液中に上記電極体から溶解するナトリウムイオンの溶解量[mmol/L]をCとし、リチウムビス(オキサラト)ボレートの添加量[mmol/L]をDとしたときの比であるC/Dが0.1よりも小さくなるように(通常は0.0001以上0.05以下、例えば0.0001以上0.007以下。)、上記Na成分除去工程においてNa成分を含む電極及びセパレータからナトリウム(Na)成分を除去することが好ましい。これにより、電極体の中央部におけるナトリウムイオン濃度の上昇が抑制され、電極体の幅方向において[B(C]が良好に分散する。例えば、[B(Cの状態で溶解或いはNa[B(C]の状態で溶解する。
≪充放電工程(S60)≫
 次に、充放電工程(S60)について説明する。本実施形態においては、組立体70に対して所定の充電電圧まで充電を行うことによって、リチウムビス(オキサラト)ボレート由来の被膜を負極合材層86中の負極活物質の表面に形成する。
 本工程では、例えば、組立体70に対して凡そ0.1C~1Cの充電レートで少なくとも上記LiBOBが分解する所定の電圧(例えば3.7V~4.1V)まで充電を行う。これにより、電極体の幅方向に良好に分散している[B(C]が分解され、[B(C]由来の被膜が負極合材層86中の負極活物質の表面に好ましい状態(即ち負極合材層86の長手方向に直交する幅方向において負極活物質の表面に形成された被膜が、その被膜量のムラが抑制された状態)で形成される。組立体70に対して上記充電を行った後に、凡そ0.1C~1Cの放電レートで所定の電圧(例えば3V~3.2V)まで放電を行う。また、上記充放電を複数回(例えば3回)繰り返すことが好ましい。このように組立体70に対して充放電処理を行うことによって該組立体70は使用可能な電池、即ちリチウムイオン二次電池(非水電解液二次電池)10となる。なお、「1C」とは正極の理論容量より予測した電池容量(Ah)を1時間で充電できる電流量を意味する。
 次に、ここで開示される製造方法によって製造されたリチウムイオン二次電池(非水電解液二次電池)10について説明する。
 本実施形態に係るリチウムイオン二次電池10は、図2に示すように、正極64及び負極84を含む積層若しくは捲回された電極体(ここでは捲回電極体)50と、非水電解液と、を備えている。本実施形態の非水電解液中には、上記充放電工程において分解されなかったLiBOBが残存しているが、上記充放電工程においてLiBOBの全てが分解され、非水電解液中にLiBOBが残存していなくてもよい。図3に示すように、負極84は、負極集電体82と、該負極集電体82の表面上に形成された少なくとも負極活物質(例えば天然黒鉛粒子)を含む負極合材層86と、を備えている。
 上記負極合材層86中に含まれる負極活物質の表面には、上記LiBOB由来の被膜であってホウ素(B)とナトリウム(Na)とを少なくとも含む被膜が形成されている。ここで、負極合材層86の単位面積当たりの被膜に含まれるナトリウム(Na)の量[μg/cm]をAとし、ホウ素(B)の量[μg/cm]をBとしたときの比であるA/Bは、0.1よりも小さい(通常は0.0001以上0.05以下、例えば0.0001以上0.039以下。)。A/Bは、典型的には負極合材層86の幅方向の中心を含む単位面積当たりの被膜に基づいて測定される。特に限定するものではないが、負極合材層86の単位面積当たりの被膜に含まれるナトリウム(Na)の量は、例えば、10μg/cm(例えば、7μg/cm)以下である。
 なお、被膜に含まれるナトリウム(Na)の量[μg/cm]及びホウ素(B)の量[μg/cm]は、被膜をICP(高周波誘導結合プラズマ)発光分析、イオンクロマトグラフィ等により分析することによって把握することができる。また、負極活物質の表面に形成された被膜量のバラツキについては、TOF-SIMS(飛行時間型2次イオン質量分析装置)によるマッピングデータの分析結果から把握することができる。
 従来の方法で製造した場合(即ち電極体から多量のNa成分がLiBOBを含む非水電解液中に溶解する場合)には、負極合材層中の負極活物質の表面に形成された被膜には多量のナトリウムが含まれており、負極合材層の中央部分にナトリウムを含む被膜が局所的に多量に生成されていた。しかしながら、ここで開示されるリチウムイオン二次電池10の負極合材層86中の負極活物質の表面に形成された被膜には、ナトリウムは少量しか含まれておらず、負極合材層86の幅方向において被膜のムラが小さい(好ましい形態では該幅方向に沿って被膜が均一に形成されている)。このため、充放電時に電流が局所的に集中することが防止され、電荷担体に由来する物質(例えば金属リチウム)の析出が抑制される。この結果、高い容量維持率を示すリチウムイオン二次電池(非水電解液二次電池)10となり得る。
 以下、本発明に関する実施例を説明するが、本発明をかかる実施例に示すものに限定することを意図したものではない。
[正極シートの準備]
<正極シートA>
 正極活物質としてのLiNi1/3Co1/3Mn1/3(戸田工業株式会社製)と、導電材としてのCB(電気化学工業株式会社製)と、結着剤としてのPVDF(株式会社クレハ製)との質量比が90:8:2となるように秤量し、これら材料をNMPに分散させてペースト状の正極合材層形成用組成物を調製した。かかる組成物を厚さ15μmの正極集電体(アルミニウム箔)に塗布した。その後、該組成物を120℃の真空中で6時間乾燥させて、ロールプレス機を用いて圧延処理を施すことによって、正極集電体上に正極合材層が形成された正極シートAを作製した(正極準備工程)。正極の理論容量が350mAhとなるように上記組成物の塗布量を調整した。正極シートAの長手方向の長さを50cm、幅方向の長さを5.4cmとした。
<正極シートB>
 上記作製した正極シートAを洗浄することによって不純物としてのナトリウム成分を除去した(Na成分除去工程)。即ち、正極シートAを非水電解液Aに24時間浸漬した。非水電解液Aとしては、エチレンカーボネート(EC)とジメチルカーボネート(DMC)とエチルメチルカーボネート(EMC)との体積比が3:4:3の混合溶媒に1mol/LのLiPFを溶解させたものを使用した。その後、正極シートAを非水電解液Aから取り出して、EMCで3回洗浄して乾燥させた。洗浄後の正極シートAを正極シートBとした。
<正極シートC>
 正極活物質としてのLiNi1/3Co1/3Mn1/3(戸田工業株式会社製)の代わりにLiNi0.8Co0.15Al0.05(戸田工業株式会社製)を用いた他は正極シートAと同様にして、正極シートCを作製した。
<正極シートD>
 正極シートBと同様にして、上記作製した正極シートCを洗浄することによって不純物としてのナトリウム成分を除去した。洗浄後の正極シートCを正極シートDとした。
<正極シートE>
 正極活物質としてのLiNi1/3Co1/3Mn1/3(戸田工業株式会社製)の代わりにLiMn(戸田工業株式会社製)を用いた他は正極シートAと同様にして、正極シートEを作製した。
<正極シートF>
 正極シートBと同様にして、上記作製した正極シートEを洗浄することによって不純物としてのナトリウム成分を除去した。洗浄後の正極シートEを正極シートFとした。
[負極シートの準備]
<負極シートA>
 負極活物質としての球状黒鉛粒子(日立化成工業株式会社製)と、結着剤としてのSBR(JSR株式会社製)と、増粘剤としてのCMCとの質量比が98.6:0.7:0.7となるように秤量し、これら材料を水に分散させてペースト状の負極合材層形成用組成物を調製した。かかる組成物を厚さ10μmの負極集電体(銅箔)に塗布した。その後、該組成物を120℃の真空中で6時間乾燥させて、ロールプレス機を用いて圧延処理を施すことによって、負極集電体上に負極合材層が形成された負極シートAを作製した(負極準備工程)。正極の理論容量と負極の理論容量との比率が1(正極):1.8(負極)となるように上記組成物の塗布量を調整した。負極シートAの長手方向の長さを52cm、幅方向の長さを5.6cmとした。
<負極シートB>
 正極シートBと同様にして、上記作製した負極シートAを洗浄することによって不純物としてのナトリウム成分を除去した。洗浄後の負極シートAを負極シートBとした。
<負極シートC>
 負極活物質としての球状黒鉛粒子(日立化成工業株式会社製)の代わりに天然黒鉛粒子(日立化成工業株式会社製)を用いた他は負極シートAと同様にして、負極シートCを作製した。
<負極シートD>
 正極シートBと同様にして、上記作製した負極シートCを洗浄することによって不純物としてのナトリウム成分を除去した。洗浄後の負極シートCを負極シートDとした。
[セパレータシートの準備]
<セパレータシートA>
 厚み20μmのポリエチレン製の微多孔質樹脂シートをセパレータシートAとして準備した。
<セパレータシートB>
 正極シートBと同様にして、上記準備したセパレータシートAを洗浄することによって不純物としてのナトリウム成分を除去した。洗浄後のセパレータシートAをセパレータシートBとした。
[ナトリウムイオンの溶解量測定]
 次に、上記作製した正極シートAから非水電解液A中に溶解するナトリウムイオンの溶解量(Na溶解量)[mmol/L]を測定した。正極シートAを、5mlの非水電解液Aに24時間浸漬した。24時間の浸漬の後、非水電解液Aを0.2μmの微多孔膜フィルターでろ過し、ICP(高周波誘導結合プラズマ)発光分析によって非水電解液A中に溶解しているナトリウムイオンの量を測定した。同様にして、正極シートB~F、負極シートA~D、及びセパレータシートA、Bについて、各シートから非水電解液A中に溶解するナトリウムイオンの溶解量(Na溶解量)[mmol/L]を測定した。測定結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 表1に示すように、洗浄後のシートは何れもナトリウムイオンの溶解量が0.0003mmol/L以下であり、不純物としてのナトリウム成分がほとんど取り除かれていることが確認できた。また、正極シートA、C、及びEより、使用する正極活物質が異なると非水電解液中に溶解するナトリウムイオンの量が異なることが確認された。即ち、使用する正極活物質によって、正極シートに含まれるナトリウム成分は異なることが確認された。同様に、負極シートA及びCより、使用する負極活物質が異なると非水電解液中に溶解するナトリウムイオンの量が異なることが確認された。
[リチウムイオン二次電池(非水電解液二次電池)の作製]
<例1>
 正極シートBの長手方向の一端から正極合材層を長手方向に5cm剥離して正極集電体を露出させ、該露出した正極集電体にアルミニウム製の正極端子を超音波溶接して取り付けた。負極シートBの長手方向の一端から負極合材層を長手方向に2cm剥離して負極集電体を露出させ、該露出した負極集電体にニッケル製の負極端子を超音波溶接して取り付けた。各端子を取り付けた正極シートB及び負極シートBを、2枚のセパレータシートBを介して捲回し捲回電極体を作製した(電極体作製工程)。該電極体を円筒型のステンレス鋼製の電池ケース内に収容して例1に係る組立体を作製した(組立体準備工程)。
 次いで、例1に係る組立体の電池ケース内にリチウムビス(オキサラト)ボレート(LiBOB)が添加された非水電解液を3.7ml注入した(注入工程)。LiBOBの添加量Dは、0.074mmol/Lであった。非水電解液としては、ECとDMCとEMCとの体積比が3:4:3の混合溶媒に1.1mol/LのLiPFを溶解させたものを使用した。注入後に、例1に係る組立体に対して充放電を5サイクル繰り返した。1サイクルの充放電条件は、25℃の温度条件下、0.2C(70mA)の充電レートで4.1Vまで定電流定電圧で充電を行い10分間の休止の後、0.2C(70mA)の放電レートで3Vまで定電流で放電を行い10分間の休止をした。(予備充電工程)。このようにして、負極活物質の表面にリチウムビス(オキサラト)ボレート由来の被膜が形成された負極を備える、例1に係るリチウムイオン二次電池を作製した。
<例2~例11>
 表2及び表3に示すように、正極シートA~Fと、負極シートA~Dと、及びセパレータシートA、Bとを用いて、例2~例11に係るリチウムイオン二次電池を例1に係るリチウムイオン二次電池と同様にして作製した。なお、表2及び表3において、Na溶解量Cとは、各シートのNa溶解量の合計値である。
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
[容量維持率測定]
 上記作製した例1~例11に係るリチウムイオン二次電池について、充放電を1000サイクル繰り返し1000サイクル後の容量維持率[%]を求めた。即ち、0℃の温度条件下、10C(3.5A)の充電レートで4.1Vまで定電流定電圧で充電する操作と、10C(3.5A)の放電レートで3.0Vまで定電流で放電する操作を1000回繰り返した。1サイクル後の放電容量(初期容量)に対する、1000サイクル後の放電容量の割合((1000サイクル後の放電容量/初期容量)×100(%))を容量維持率(%)として算出した。測定結果を表2及び表3に示す。
 さらに、上記容量維持率測定後の例1~例11に係るリチウムイオン二次電池を解体して各例に係る負極シートを取り出した。このときの負極シートの幅方向の中央部における金属リチウムの析出の有無を調べた。測定結果を表2及び表3に示す。
 表2及び表3に示すように、例1~例5に係るリチウムイオン二次電池では、添加したLiBOBの量に対してNa溶解量Cが少ないため、負極シートの幅方向に被膜量のバラツキが生じていなかった。この結果、充放電時に電流が局所的に集中することが防止されているため、負極シートの幅方向の中央部における金属リチウムの析出は確認されなかった。例1~例5に係るリチウムイオン二次電池では、金属リチウムの析出が抑制されているため、容量維持率も高い値を保持していることが確認された。特に例1に係るリチウムイオン二次電池は高い容量維持率であることが確認された。一方、例6~例11に係るリチウムイオン二次電池では、添加したLiBOBの量に対してNa溶解量Cが多いため(C/D≧0.229)、負極シートの幅方向において被膜量のバラツキが生じていた。この結果、負極シートの表面に金属リチウムが析出していることが確認された。金属リチウムが析出しているため、容量維持率も低下していることが確認された。以上より、C/D(Na溶解量C/LiBOB添加量D)が0.1より小さいとき(通常は0.05以下、例えば0.07以下。)には、リチウムイオン二次電池において、金属リチウムの析出が抑制されると共に高い容量維持率が実現されることが確認された。
[被膜の分析]
 また、上記例1及び例6に係るリチウムイオン二次電池において、負極合材層中の負極活物質の表面に形成された被膜中のナトリウム(Na)及びホウ素(B)をICP(高周波誘導結合プラズマ)発光分析によって分析した。具体的には、長手方向の長さ15cm、幅方向の長さ5.4cmの各負極合材層の単位面積当たりの被膜に含まれるナトリウム(Na)の量[μg/cm]と、単位面積当たりの被膜に含まれるホウ素(B)の量[μg/cm]とを測定した。測定結果を表4に示す。
Figure JPOXMLDOC01-appb-T000004
 表4に示すように、例1に係るリチウムイオン二次電池では、金属リチウムの析出が抑制されており、高い容量維持率が実現されていることが確認された。かかる電池では、負極シートの幅方向に被膜量のバラツキが生じておらず、被膜中のホウ素量に対して被膜中のナトリウム量が少なかった。一方、例6に係るリチウムイオン二次電池では、金属リチウムが析出しており、容量維持率も低いことが確認された。かかる電池では、負極シートの幅方向に被膜量のバラツキが生じており、被膜中のホウ素量に対して被膜中のナトリウム量が多かった。以上より、A/B(被膜中のナトリウム量A/被膜中のホウ素量B)が0.1より小さいとき(通常は0.05以下、例えば0.039以下。)には、リチウムイオン二次電池において、金属リチウムの析出が抑制されると共に高い容量維持率が実現されることが確認された。
 以上、本発明の具体例を詳細に説明したが、これらは例示にすぎず、請求の範囲を限定するものではない。請求の範囲に記載の技術には、以上に例示した具体例を様々に変形、変更したものが含まれる。
 本発明に係る非水電解液二次電池あるいは製造方法によって得られる非水電解液二次電池は、電荷担体に由来する物質の析出が抑制され容量維持率に優れることから、特に自動車等の車両に搭載されるモーター(電動機)用電源として好適に使用し得る。従って本発明は、図5に模式的に示すように、かかるリチウムイオン二次電池10(典型的には当該電池10を複数個直列接続してなる組電池200)を電源として備える車両(典型的には自動車、特にハイブリッド自動車、電気自動車、燃料自動車のような電動機を備える自動車)100を提供する。
10 リチウムイオン二次電池(非水電解液二次電池)
15 電池ケース
20 開口部
25 蓋体
30 ケース本体
40 安全弁
45 注入口
48 封止栓
50 捲回電極体
60 正極端子
62 正極集電体
63 正極合材層非形成部分
64 正極
66 正極合材層
70 組立体
80 負極端子
82 負極集電体
83 負極合材層非形成部分
84 負極
86 負極合材層
90 セパレータシート
100 車両(自動車)
200 組電池

Claims (12)

  1.  非水電解液二次電池であって、
     正極及び負極を含む電極体と、非水電解液と、を備えており、
     前記負極は、負極集電体と、該負極集電体の表面上に形成された少なくとも負極活物質を含む負極合材層と、を備えており、
     前記負極合材層中の前記負極活物質の表面には、ホウ素(B)とナトリウム(Na)とを少なくとも含む被膜が形成されており、
     前記負極合材層の単位面積当たりの前記被膜に含まれるナトリウム(Na)の量[μg/cm]をAとし、ホウ素(B)の量[μg/cm]をBとしたときの比であるA/Bは、0.1よりも小さい、非水電解液二次電池。
  2.  前記正極は、正極集電体と、該正極集電体の表面上に形成された少なくとも正極活物質を含む正極合材層と、を備えており、
     前記正極活物質は、リチウム遷移金属複合酸化物である、請求項1に記載の非水電解液二次電池。
  3.  前記負極は、前記負極合材層中に結着剤を含んでおり、前記結着剤は、スチレンブタジエンゴムである、請求項1又は2に記載の非水電解液二次電池。
  4.  前記電極体は、前記正極と前記負極との間に配置されたセパレータをさらに備えている、請求項1から3のいずれか一項に記載の非水電解液二次電池。
  5.  前記非水電解液は、リチウムビス(オキサラト)ボレートを含む、請求項1から4のいずれか一項に記載の非水電解液二次電池。
  6.  非水電解液二次電池を製造する方法であって、
     正極活物質を含む正極及び負極活物質を含む負極を準備する工程、ここで、準備した前記正極及び前記負極のうち少なくともいずれか一方には不可避的な不純物としてナトリウム(Na)成分が含まれている;
     前記正極及び前記負極のうち前記ナトリウム(Na)成分を含む電極を非水電解液で洗浄して、前記ナトリウム(Na)成分の少なくとも一部を除去する工程;
     前記除去工程を経た正極及び/又は負極を用いて電極体を作製する工程;
     前記電極体が電池ケース内に収容された組立体を作製する工程;
     リチウムビス(オキサラト)ボレートが添加された非水電解液を前記電池ケース内に注入する工程;
     前記組立体に対して所定の充電電圧まで充電を行った後、所定の放電電圧まで放電を行う工程;
    を包含する、非水電解液二次電池の製造方法。
  7.  前記リチウムビス(オキサラト)ボレートが添加された非水電解液中に前記電極体から溶解するナトリウムイオンの溶解量[mmol/L]をCとし、前記リチウムビス(オキサラト)ボレートの添加量[mmol/L]をDとしたときの比であるC/Dが0.1よりも小さくなるように、前記除去工程において前記ナトリウム(Na)成分を除去する、請求項6に記載の製造方法。
  8.  前記除去工程では、リチウム塩を少なくとも含む非水電解液中に前記正極及び/又は前記負極を浸漬させた後、リチウム塩を含まない非水電解液を用いて該正極及び該負極を洗浄する、請求項6又は7に記載の製造方法。
  9.  前記準備工程において、前記正極と前記負極との間に配置されるセパレータをさらに準備し、該セパレータに対して前記除去工程を実施し、該除去工程後のセパレータと、前記除去工程を経た正極及び/又は負極とを用いて前記電極体を作製する、請求項6から8のいずれか一項に記載の製造方法。
  10.  前記正極活物質として、リチウム遷移金属複合酸化物を用いる、請求項6から9のいずれか一項に記載の製造方法。
  11.  前記負極に含まれる結着剤としてスチレンブタジエンゴムを用いる、請求項6から10のいずれか一項に記載の製造方法。
  12.  前記電極体として、シート状に形成された正極とシート状に形成された負極とが重ね合わされた電極体であって該電極体の長手方向に捲回された捲回電極体を用いる、請求項6から11のいずれか一項に記載の製造方法。
PCT/JP2014/063941 2013-07-02 2014-05-27 非水電解液二次電池及びその製造方法 WO2015001871A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US14/392,275 US20160294006A1 (en) 2013-07-02 2014-05-27 Nonaqueous electrolyte secondary cell and method for producing same
CN201480037129.8A CN105340121A (zh) 2013-07-02 2014-05-27 非水电解液二次电池及其制造方法
KR1020167002496A KR20160027088A (ko) 2013-07-02 2014-05-27 비수 전해액 이차 전지 및 그 제조 방법
EP14820014.0A EP3018751A4 (en) 2013-07-02 2014-05-27 NONAQUEOUS ELECTROLYTE RECHARGEABLE BATTERY AND METHOD FOR PRODUCING THE SAME

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013139150A JP2015011969A (ja) 2013-07-02 2013-07-02 非水電解液二次電池及びその製造方法
JP2013-139150 2013-07-02

Publications (1)

Publication Number Publication Date
WO2015001871A1 true WO2015001871A1 (ja) 2015-01-08

Family

ID=52143463

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/063941 WO2015001871A1 (ja) 2013-07-02 2014-05-27 非水電解液二次電池及びその製造方法

Country Status (6)

Country Link
US (1) US20160294006A1 (ja)
EP (1) EP3018751A4 (ja)
JP (1) JP2015011969A (ja)
KR (1) KR20160027088A (ja)
CN (1) CN105340121A (ja)
WO (1) WO2015001871A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9437902B2 (en) 2012-09-07 2016-09-06 Toyota Jidosha Kabushiki Kaisha Method of manufacturing nonaqueous electrolyte secondary battery
WO2021039241A1 (ja) * 2019-08-30 2021-03-04 パナソニックIpマネジメント株式会社 リチウム二次電池
JP7580051B2 (ja) 2019-08-30 2024-11-11 パナソニックIpマネジメント株式会社 リチウム二次電池

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6361920B2 (ja) 2014-09-05 2018-07-25 トヨタ自動車株式会社 リチウムイオン電池
JP6414016B2 (ja) * 2015-10-27 2018-10-31 トヨタ自動車株式会社 リチウムイオン二次電池の製造方法
KR102115596B1 (ko) * 2016-11-24 2020-05-26 주식회사 엘지화학 리튬 전극의 전처리 방법 및 리튬 금속 전지
JP6731151B2 (ja) * 2016-12-26 2020-07-29 トヨタ自動車株式会社 リチウム二次電池の製造方法
WO2022172851A1 (ja) * 2021-02-10 2022-08-18 株式会社エンビジョンAescジャパン 電池
JP7385610B2 (ja) * 2021-02-17 2023-11-22 プライムプラネットエナジー&ソリューションズ株式会社 二次電池の製造方法
JP7522687B2 (ja) * 2021-03-15 2024-07-25 プライムプラネットエナジー&ソリューションズ株式会社 非水電解液二次電池

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02210769A (ja) * 1989-02-10 1990-08-22 Seiko Electronic Components Ltd 非水電池の製造方法
JP2005259592A (ja) 2004-03-12 2005-09-22 Sanyo Electric Co Ltd 二次電池用非水電解液及び非水電解液二次電池
JP2009099285A (ja) * 2007-10-12 2009-05-07 Toyota Motor Corp 二次電池の製造方法
WO2010082261A1 (ja) * 2009-01-16 2010-07-22 パナソニック株式会社 非水電解質二次電池用正極の製造方法および非水電解質二次電池
JP2010218970A (ja) * 2009-03-18 2010-09-30 Toyota Motor Corp リチウムイオン二次電池の正極の製造方法
JP2012216547A (ja) * 2011-03-31 2012-11-08 Toda Kogyo Corp マンガンニッケル複合酸化物粒子粉末及びその製造方法、非水電解質二次電池用正極活物質粒子粉末の製造方法及び非水電解質二次電池
JP2013097973A (ja) * 2011-10-31 2013-05-20 Toyota Motor Corp 非水電解液二次電池、その製造方法、及び評価方法
JP2014026932A (ja) * 2012-07-30 2014-02-06 Toyota Motor Corp 非水電解液二次電池及びその製造方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2831756A1 (en) * 2011-03-31 2012-10-04 Toda Kogyo Corporation Positive electrode active substance particles for non-aqueous electrolyte secondary batteries and process of production thereof
JP5754358B2 (ja) * 2011-11-22 2015-07-29 トヨタ自動車株式会社 非水電解液二次電池およびその製造方法
JP5765582B2 (ja) * 2012-06-29 2015-08-19 トヨタ自動車株式会社 非水電解液二次電池

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02210769A (ja) * 1989-02-10 1990-08-22 Seiko Electronic Components Ltd 非水電池の製造方法
JP2005259592A (ja) 2004-03-12 2005-09-22 Sanyo Electric Co Ltd 二次電池用非水電解液及び非水電解液二次電池
JP2009099285A (ja) * 2007-10-12 2009-05-07 Toyota Motor Corp 二次電池の製造方法
WO2010082261A1 (ja) * 2009-01-16 2010-07-22 パナソニック株式会社 非水電解質二次電池用正極の製造方法および非水電解質二次電池
JP2010218970A (ja) * 2009-03-18 2010-09-30 Toyota Motor Corp リチウムイオン二次電池の正極の製造方法
JP2012216547A (ja) * 2011-03-31 2012-11-08 Toda Kogyo Corp マンガンニッケル複合酸化物粒子粉末及びその製造方法、非水電解質二次電池用正極活物質粒子粉末の製造方法及び非水電解質二次電池
JP2013097973A (ja) * 2011-10-31 2013-05-20 Toyota Motor Corp 非水電解液二次電池、その製造方法、及び評価方法
JP2014026932A (ja) * 2012-07-30 2014-02-06 Toyota Motor Corp 非水電解液二次電池及びその製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3018751A4 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9437902B2 (en) 2012-09-07 2016-09-06 Toyota Jidosha Kabushiki Kaisha Method of manufacturing nonaqueous electrolyte secondary battery
WO2021039241A1 (ja) * 2019-08-30 2021-03-04 パナソニックIpマネジメント株式会社 リチウム二次電池
JP7580051B2 (ja) 2019-08-30 2024-11-11 パナソニックIpマネジメント株式会社 リチウム二次電池

Also Published As

Publication number Publication date
EP3018751A4 (en) 2016-06-22
US20160294006A1 (en) 2016-10-06
KR20160027088A (ko) 2016-03-09
CN105340121A (zh) 2016-02-17
EP3018751A1 (en) 2016-05-11
JP2015011969A (ja) 2015-01-19

Similar Documents

Publication Publication Date Title
JP5924552B2 (ja) 非水電解液二次電池とその製造方法
JP5854279B2 (ja) 非水電解液二次電池の製造方法
JP6567280B2 (ja) 非水電解質二次電池及び製造方法
WO2015001871A1 (ja) 非水電解液二次電池及びその製造方法
JP6338115B2 (ja) 非水電解液二次電池
CN107078280B (zh) 非水电解质二次电池
WO2010131401A1 (ja) リチウムイオン二次電池用電極及びリチウムイオン二次電池
JP5382445B2 (ja) リチウムイオン二次電池
JP2019016483A (ja) 非水電解質二次電池
JP5590381B2 (ja) リチウムイオン二次電池
JP2011090876A (ja) リチウム二次電池および該電池の製造方法
JP2013182712A (ja) 非水電解質二次電池とその製造方法
JP5843107B2 (ja) 非水電解液二次電池の製造方法
JP7321932B2 (ja) 電力機器を始動するためのバッテリーモジュール
JP2013247009A (ja) 非水電解液二次電池の製造方法
JP5999433B2 (ja) 非水電解液二次電池及びその製造方法
JP6315281B2 (ja) 非水電解質二次電池
JP6217981B2 (ja) 非水電解液二次電池とその製造方法
JP6008188B2 (ja) 非水電解液二次電池
JP2013069579A (ja) リチウムイオン二次電池とその製造方法
JP2014130729A (ja) 非水電解液二次電池の製造方法
JP5975291B2 (ja) 非水電解液二次電池の製造方法
JP5904368B2 (ja) 非水電解液二次電池及びその製造方法
JP2011049071A (ja) リチウム二次電池とその製造方法
WO2014115322A1 (ja) リチウムイオン二次電池用負極活物質及びそれらを用いたリチウムイオン二次電池

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480037129.8

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14820014

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14392275

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2014820014

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014820014

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20167002496

Country of ref document: KR

Kind code of ref document: A