WO2015097875A1 - Assembled battery - Google Patents
Assembled battery Download PDFInfo
- Publication number
- WO2015097875A1 WO2015097875A1 PCT/JP2013/085149 JP2013085149W WO2015097875A1 WO 2015097875 A1 WO2015097875 A1 WO 2015097875A1 JP 2013085149 W JP2013085149 W JP 2013085149W WO 2015097875 A1 WO2015097875 A1 WO 2015097875A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- spacer
- battery
- electrode group
- end surface
- thickness
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/04—Construction or manufacture in general
- H01M10/0431—Cells with wound or folded electrodes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/20—Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
- H01M50/204—Racks, modules or packs for multiple batteries or multiple cells
- H01M50/207—Racks, modules or packs for multiple batteries or multiple cells characterised by their shape
- H01M50/209—Racks, modules or packs for multiple batteries or multiple cells characterised by their shape adapted for prismatic or rectangular cells
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/20—Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
- H01M50/289—Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by spacing elements or positioning means within frames, racks or packs
- H01M50/291—Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by spacing elements or positioning means within frames, racks or packs characterised by their shape
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Definitions
- the present invention relates to an assembled battery used for in-vehicle applications and the like.
- aqueous solution batteries such as lead batteries, nickel-cadmium batteries, nickel-hydrogen batteries and the like have been mainstream.
- aqueous solution batteries such as lead batteries, nickel-cadmium batteries, nickel-hydrogen batteries and the like have been mainstream.
- lithium ion secondary batteries having high energy density, and their research, development, and commercialization are being promoted rapidly.
- electric vehicles (EVs) and hybrid electric vehicles (HEVs) that assist a part of the drive with electric motors have been developed by each car manufacturer, and high capacity and high output as their power sources. Secondary batteries are now being sought.
- a prismatic lithium ion secondary battery provided with a flat box type battery container is excellent in volumetric efficiency when a plurality of secondary batteries are stacked to form an assembled battery, so HEV, EV, or other Demand is increasing as a power source mounted on equipment.
- a secondary battery in which a wound electrode body is enclosed in a flat rectangular case and a side surface of the largest area of the outer surface of the secondary battery partially contact
- a secondary battery assembly comprising: a contact member for moving the secondary battery and a restraint member for binding the secondary battery and the contact member, wherein the contact member partially presses the compressed surface by the restraint of the restraint member. It is known (refer the following patent document 1).
- the contact member includes a plurality of discretely provided contact portions in contact with the surface to be compressed, and a connection portion connecting the plurality of contact portions to each other.
- the contact portion is formed to protrude from the connection portion toward the compressed surface, and both offsets corresponding to a portion of the wound electrode body which is deviated from the center in the winding axial direction.
- the compressed surface is compressed more strongly, and the compressed surface in the central region between the two offset regions corresponding to the portion near the center in the winding axial direction in the wound electrode body Is of a shape or arrangement that squeezes less strongly, and the protruding height of the contact portion in the offset region is higher than the protruding height of the contact portion in the central region.
- the contact member partially squeezes the compressed surface of the secondary battery, and the compression force on the compressed surface becomes stronger than the central region in the offset region. It is like that.
- the internal pressure of the secondary battery can be made uniform, and the contact pressure at the time of restraint can be made uniform in the secondary battery used at a high rate.
- Patent No. 5187400 gazette
- the secondary battery assembly described in Patent Document 1 can equalize the surface pressure at the time of restraint of the secondary battery in the central region and the offset region in the winding axial direction of the wound electrode body, but There is a possibility that the contact pressure at the time of restraint of the secondary battery may become uneven in directions other than the rotation direction.
- the present invention has been made in view of the above-mentioned problems, and an object of the present invention is to provide a battery pack capable of making contact pressure at the time of restraint of a prismatic secondary battery uniform.
- a plurality of secondary batteries in which wound flat electrode groups are accommodated in a rectangular battery container are stacked in the thickness direction of the electrode groups
- the battery pack of the present invention the battery expanded due to the expansion of the electrode group as compared with the case where the thickness of the spacer is uniform in the direction along the flat surface of the electrode group and in the direction intersecting the axial direction
- the thickness of the spacer is uniform in the direction along the flat surface of the electrode group and in the direction intersecting the axial direction
- FIG. 6 is an exploded perspective view of the prismatic secondary battery and the intermediate cell holder shown in FIG. 5;
- the top view of the square secondary battery and spacer which are shown in FIG. Sectional drawing of the spacer which follows the BB line shown to FIG. 7A.
- Sectional drawing corresponding to FIG. 7B which shows the state at the time of expansion of a square secondary battery.
- FIG. 11B is a cross-sectional view of the spacer taken along the line BB shown in FIG. 11A.
- the top view which shows the spacer of the assembled battery which concerns on Embodiment 5 of this invention. Sectional drawing of the spacer which follows the BB line shown to FIG. 12A.
- the top view which shows the spacer of the assembled battery which concerns on Embodiment 6 of this invention. Sectional drawing of the spacer which follows the BB line shown to FIG. 13A.
- Embodiment 1 of the battery pack of the present invention will be described in detail with reference to the drawings.
- FIG. 1 is an external perspective view of a prismatic secondary battery 100.
- FIG. 2 is an exploded perspective view of the power generation element 50 of the prismatic secondary battery 100 shown in FIG.
- FIG. 3 is an exploded perspective view of the electrode group 40 shown in FIG.
- the prismatic secondary battery 100 includes a flat box-shaped battery container 2.
- the battery case 2 is composed of a battery cover 3 and a battery can 4.
- the battery can 4 is a bottomed rectangular cylindrical container having an opening 4a and an open upper end, and is manufactured by, for example, deep-drawing a metal material.
- the battery cover 3 is a rectangular plate-like member in a plan view that closes the opening 4a of the battery can 4, and is joined by, for example, laser welding over the entire circumference of the opening 4a to seal the opening 4a. ing.
- the battery can 4 and the battery lid 3 are made of, for example, a metal material such as aluminum or an aluminum alloy.
- the battery case 2 is formed in a rectangular box shape having a rectangular parallelepiped shape by a rectangular cylindrical bottomed battery can 4 and a rectangular plate-like battery cover 3 in a plan view, and has a rectangular upper end surface 2a and a substantially equal area. It has a lower end surface 2b, a pair of rectangular wide side surfaces 2c with a large area, and a pair of narrow side surfaces 2d with a small area.
- the X-axis direction is a direction parallel to the width direction of the battery container 2 along the long side direction of the upper end surface 2a or the lower end surface 2b.
- the Y-axis direction is a direction parallel to the thickness direction of the battery container 2 along the short side direction of the upper end surface 2a or the lower end surface 2b.
- the Z-axis direction is a direction parallel to the height direction of the battery container 2 perpendicular to the upper end surface 2a or the lower end surface 2b.
- An electrode group 40 is accommodated inside the battery container 2 via an insulating sheet (not shown).
- the electrode group 40 is a flat wound electrode group formed by winding the positive electrode 41 and the negative electrode 42 stacked with the separators 43 and 44 around an axial core (not shown) into a flat shape.
- the electrode group 40 is disposed inside the battery container 2 such that the axial direction D is parallel to the width direction (X-axis direction) of the battery container 2. That is, the thickness direction of the battery case 2 and the thickness direction of the electrode assembly 40 coincide with each other.
- the electrode group 40 has a pair of curved portions 40c facing the lower end surface 2b and the upper end surface 2a of the battery case 2, and a pair of flat portions 40b.
- the flat portion 40 b has a pair of flat surfaces 40 f facing the pair of wide side surfaces 2 c along the width direction of the battery container 2.
- the positive electrode 41, the negative electrode 42, and the separators 43 and 44 are stacked in a flat state in the plane portion 40b, and are stacked in a curved state in a semi-cylindrical shape in the curved portion 40c.
- the positive electrode 41 is formed by forming a positive electrode mixture layer 41 b on both the front and back sides of a positive electrode metal foil 41 a made of, for example, aluminum foil or the like.
- the positive electrode mixture layer 41b is coated on the positive electrode metal foil 41a, leaving an exposed portion 41c where the positive electrode metal foil 41a is exposed at one side edge.
- the negative electrode 42 has a negative electrode mixture layer 42 b formed on the front and back sides of a negative electrode metal foil 42 a made of, for example, copper foil.
- the negative electrode mixture layer 42 b is coated on the negative electrode metal foil 42 a, leaving an exposed portion 42 c where the negative electrode metal foil 42 a is exposed at one side edge.
- the positive electrode 41 can be manufactured, for example, as follows. First, the layered lithium nickel cobalt manganese oxide as a positive electrode active material (chemical formula Li (Ni x Co y Mn 1 -xy) O 2) relative to 100 parts by weight of scaly graphite and acetylene black and forming a total of 10 parts by weight as the conductive material 4 parts by weight of polyvinylidene fluoride (hereinafter referred to as PVDF) is added as an adhesive. To this, N-methyl pyrrolidone (hereinafter referred to as NMP) is added as a dispersion solvent, and the mixture is kneaded to prepare a positive electrode slurry.
- NMP N-methyl pyrrolidone
- the positive electrode mixture layer 41 b is formed by applying the positive electrode slurry, for example, on both sides of an aluminum foil having a thickness of 15 ⁇ m, leaving the foil exposed portions 41 c. Thereafter, through each process of drying, pressing, and cutting, for example, it is possible to obtain the positive electrode 41 having a thickness of 70 ⁇ m (total of both front and back sides) of the positive electrode active material coated portion containing no aluminum foil.
- the negative electrode mixture layer 42 b can be manufactured, for example, as follows. First, to 100 parts by weight of graphitic carbon powder as a negative electrode active material, CMC aqueous solution is added as a thickener and mixed, 1 part by weight of SBR is added as a binder, and after kneading, the viscosity is adjusted to obtain a negative electrode. Make a slurry. Next, for example, the negative electrode mixture layer 42b is formed by applying the negative electrode slurry on both sides of a copper foil having a thickness of 10 ⁇ m while leaving the foil exposed portions 42c. Thereafter, through each process of drying, pressing, and cutting, for example, the thickness of the negative electrode active material coated portion not including a copper foil (total of both front and back sides) can be 40 ⁇ m.
- the positive electrode active material is a natural graphite capable of inserting and desorbing lithium ions, various artificial graphite materials, carbonaceous materials such as coke, compounds such as Si and Sn (for example, SiO, TiSi 2 etc.), or
- the composite material thereof may be used, and the particle shape thereof is not particularly limited, such as scaly, spherical, fibrous, and massive.
- the negative electrode active material may be other lithium manganate having a spinel crystal structure, a lithium manganese composite oxide partially substituted or doped with a metal element, lithium cobaltate having a layered crystal structure, lithium titanate, or the like It is also possible to use a lithium-metal composite oxide which is partially substituted or doped with a metal element.
- the binder is polytetrafluoroethylene (PTFE), polyethylene, polystyrene, polybutadiene, butyl rubber, nitrile rubber, styrene butadiene rubber, polysulfide rubber, nitrocellulose, cyanoethyl cellulose, various latexes, acrylonitrile, vinyl fluoride, fluorine Polymers such as vinylidene fluoride, propylene fluoride, chloroprene fluoride, acrylic resins and mixtures thereof can be used.
- PTFE polytetrafluoroethylene
- polyethylene polystyrene
- polybutadiene butyl rubber
- nitrile rubber styrene butadiene rubber
- polysulfide rubber nitrocellulose
- cyanoethyl cellulose various latexes
- acrylonitrile vinyl fluoride
- fluorine Polymers such as vinylidene fluoride, propylene fluoride, chloroprene
- the tip end portions of the separators 43 and 44 are welded to an axial core (not shown), and the positive electrode 41, the separator 43, the negative electrode 42 and the separator 44 are wound in this order so as to overlap.
- the winding start end portion of the positive electrode 41 is a negative electrode so that the winding start end portion of the positive electrode 41 is positioned inside the electrode group 40 after winding than the winding start end portion of the negative electrode 42. It arrange
- the shaft core for example, one formed by winding a resin sheet having higher bending rigidity than any of the positive electrode metal foil 41a, the negative electrode metal foil 42a, and the separators 43 and 44 can be used.
- a direction parallel to the axial center of the electrode group 40 that is, a direction parallel to the width direction of the positive electrode 41 and the negative electrode 42 is defined as an axial direction D.
- the exposed portion 41c of the positive electrode and the exposed portion 42c of the negative electrode are disposed at the side edges of the electrode group 40 in one axial direction D and the other. That is, the positive electrode 41 and the negative electrode 42 are stacked and wound so that the respective foil exposed portions 41 c and 42 c are located at one end and the other end of the electrode group 40 in the axial direction D.
- the width of the negative electrode mixture layer 42b is formed wider than the width of the positive electrode mixture layer 41b.
- the width of the first separator 43 is such that the exposed portion 41 c of the positive electrode 41 is exposed from the first separator 43 at one side edge of the electrode group 40.
- the width of the second separator 44 is such that the exposed portion 42 c of the negative electrode 42 is exposed from the second separator 44 at the other side edge of the electrode group 40.
- a hollow portion 40 a is formed on the winding start end portion of the electrode group 40, in other words, on the axial core side.
- the outermost periphery is the separator 44, and the inner side is the negative electrode 42. Accordingly, the positive electrode mixture layer 41 b overlaps with the negative electrode mixture layer 42 b via the separators 43 and 44 in the width direction over the entire length from the winding start end to the winding end.
- the foil exposed portions 41c and 42c at one end and the other end in the axial direction D are divided into two in the thickness direction by flat portions 40b and 40b on both sides of the hollow portion 40a, respectively. It joins to the current collection boards 21 and 31 in the junction parts 40d and 40d which are shown by the hatched area
- the current collector plate 21 constituting the positive electrode terminal 60 is formed, for example, by bending a plate-like metal plate, and has a flat plate-like main body 22 attached along the lower surface of the battery lid 3 and both sides of the main body 22. It has a pair of support portions 22a bent downward at a substantially right angle. Flat plate-like joining pieces 23 are formed at the ends of the pair of support portions 22a. Each joint piece 23 is joined, for example, by ultrasonic welding, to the joint portion 40 d of the foil exposed portion 41 c which is divided into two in the thickness direction of the electrode group 40 and bundled.
- the current collector plate 21 is made of, for example, aluminum or an aluminum alloy.
- the current collecting plate 31 constituting the negative electrode terminal 70 has a flat plate-like main body 32 attached along the lower surface of the battery lid 3 and a pair of support parts bent at right angles on both sides of the main body 32. It has 32a.
- a flat plate-like bonding piece 33 is formed at the tip of each of the pair of support portions 32a. Each bonding piece 33 is bonded to the bonding portion 40d of the foil exposed portion 42c which is divided into two in the thickness direction of the electrode group 40 and bundled, for example, by ultrasonic welding.
- the current collector 31 is made of, for example, copper or a copper alloy.
- the current collectors 21 and 31 are fixed to the battery cover 3 via a gasket (not shown), and the electrode group 40 is joined to the current collectors 21 and 31 so that the electrode group 40 passes the current collectors 21 and 31. It is fixed to the battery cover 3. Further, the battery cover 3 is provided with a positive electrode terminal 60 including the current collecting plate 21 and a negative electrode terminal 70 including the current collecting plate 31.
- the positive electrode terminal 60 is composed of a bolt 61, a connection terminal 62, an external terminal 63, an insulator 64, a gasket and a current collector 21 and these are integrally fixed to the battery cover 3. In this state, current collecting plate 21, connection terminal 62 and external terminal 63 are electrically connected to each other, and insulated from battery cover 3 by insulator 64 and a gasket.
- the negative electrode terminal 70 is composed of a bolt 71, a connection terminal 72, an external terminal 73, an insulator 74, a gasket, and a current collector 31, and these are integrally fixed to the battery lid 3.
- current collecting plate 31, connection terminal 72 and external terminal 73 are electrically connected to each other and insulated from battery cover 3 by insulator 74 and a gasket.
- the insulators 64 and 74 and the gasket are made of, for example, an insulating resin material such as polybutylene terephthalate, polyphenylene sulfide or perfluoroalkoxy fluorine resin.
- the battery assembly 3 is provided with the positive electrode terminal 60 and the negative electrode terminal 70, whereby the lid assembly 10 is configured. Further, the foil exposed portions 41c and 42c of the electrode group 40 are divided into two in the thickness direction by flat portions 40b and 40b on both sides of the hollow portion 40a, and the bonding portions 40d and 40d are current collector plates 21,
- the power generation element 50 is configured by being joined to 31.
- the power generation element 50 is inserted into the inside of the battery can 4 from the opening 4a of the battery can 4 shown in FIG. 1, and the battery lid 3 is sealed and welded to the opening 4a of the battery can 4 all around.
- the electrode group 40 and the current collectors 21 and 31 are accommodated and arranged at predetermined positions inside the battery container 2.
- a gas discharge valve 13 is provided between the positive electrode terminal 60 and the negative electrode terminal 70.
- the gas discharge valve 13 is formed by partially thinning the battery cover 3 by press processing.
- the gas discharge valve 13 may be provided by joining a thin film metal member to the through hole provided in the battery lid 3 by, for example, laser welding.
- the gas discharge valve 13 generates heat when heat is generated due to an abnormality such as overcharging of the prismatic secondary battery 100, and when the pressure in the battery container rises and reaches a predetermined pressure, the gas discharge valve 13 is split and gas is generated from the inside. By discharging, the pressure in the battery container is reduced.
- a liquid injection hole 3 a for injecting an electrolytic solution into the battery case 2 is formed in the battery lid 3.
- the injection hole 3a is sealed by the injection valve 11 after the injection of the electrolyte.
- a non-aqueous electrolytic solution for example, lithium hexafluorophosphate (LiPF 6 ) was dissolved at a concentration of 1 mol / liter in a mixed solution of ethylene carbonate and dimethyl carbonate mixed in a ratio of 1: 2 in volume ratio The thing can be used.
- a plurality of prismatic secondary batteries 100 are interposed between spacers in the thickness direction (Y-axis direction) of the battery container 2, that is, the thickness direction of the flat electrode group 40.
- the stacked secondary battery modules will be described in detail.
- FIG. 4 is an external perspective view of a secondary battery module 200 according to the present embodiment.
- FIG. 5 is a perspective view showing the module 200 shown in FIG. 4 from which a pair of intermediate cell holders 111, 111 and the prismatic secondary battery 100 sandwiched therebetween are removed.
- FIG. 6 is an exploded perspective view showing the prismatic secondary battery 100 shown in FIG. 5 with the pair of intermediate cell holders 111 removed.
- the module 200 has a plurality of prismatic secondary batteries 100 stacked in the thickness direction (Y direction) and a cell holder 91 that holds the prismatic secondary batteries 100 in a stacked state.
- the cell holder 91 can be made of, for example, a resin material such as glass epoxy resin, polypropylene or polybutylene terephthalate resin, or a metal material such as aluminum, copper or stainless steel.
- a resin material such as glass epoxy resin, polypropylene or polybutylene terephthalate resin
- a metal material such as aluminum, copper or stainless steel.
- the cell holder 91 includes a plurality of intermediate cell holders 92 and a pair of end cell holders 93.
- Intermediate cell holder 92 is interposed between prismatic secondary batteries 100 adjacent to each other.
- End cell holders 93 are disposed at both ends in the stacking direction of the plurality of prismatic secondary batteries 100 stacked in the thickness direction via intermediate cell holder 92, and the prismatic secondary battery 100 is placed between the opposing intermediate cell holders 92.
- End cell holder 93 has a configuration in which intermediate cell holder 92 is divided in half by a plane parallel to wide side surface 2 c of prismatic secondary battery 100. Therefore, in the following description, the configuration of the intermediate cell holder 92 will be described in detail, and the description of the configuration of the end cell holder 93 will be omitted as appropriate.
- the intermediate cell holder 92 is opposed to the pair of side plates 111, 111 facing the narrow side surfaces 2d, 2d on both sides in the width direction (X-axis direction) of the battery container 2 of the prismatic secondary battery 100, and the lower end surface 2b of the battery container 2.
- a bottom plate 112 is provided.
- the intermediate cell holder 92 is disposed between the two prismatic secondary batteries 100, 100, and thus passes through the middle of the two prismatic secondary batteries 100, 100 and the wide side 2 c of the battery container 2. In a plane parallel to the plane.
- the side plates 111 and the bottom plate 112 of the intermediate cell holder 92 are formed on the narrow sides 2 d and 2 d and the lower end faces 2 b and 2 b of the battery containers 2 and 2 of the two prismatic secondary batteries 100 and 100 arranged on both sides of the intermediate cell holder 92.
- approximately half each of the battery container 2 in the thickness direction (Y-axis direction) is opposed.
- the pair of side plates 111 faces the opposite ends in the width direction of the battery case 2 and extends in the thickness direction of the battery case 2 so as to reach half of the thickness of the battery case 2.
- the bottom plate 112 has a width that reaches half of the thickness of the battery case 2 at the lower end of the battery case 2 in the direction perpendicular to the lower end surface 2 b, ie, the height direction (Z-axis direction) of the battery case 2. It extends in the width direction and connects the lower ends of the pair of side plates 111, 111.
- the pair of opposing intermediate cell holders 92, 92 disposed on both sides in the thickness direction of the battery container 2 have their end portions of the side plates 111, 111 and the bottom plates 112, 112 butted or slightly separated from each other By being disposed, a space for holding the prismatic secondary battery 100 is formed between them.
- a pair of side plates 111, 111 facing each other in the width direction of the battery container 2 are connected by a plurality of spacers 101, 102, 103 extending in the width direction of the wide side surface 2c. More specifically, the pair of side plates 111, 111 is a lower end spacer 101 connecting the lower ends thereof, an upper end spacer 102 connecting the upper ends thereof, and a plurality of intermediate portions connecting intermediate portions of these It is connected by the spacer 103.
- the lower end spacer 101 is connected to the bottom plate 112 at its lower end.
- the width in the Z-axis direction of the upper end spacer 102 corresponds to the dimension in the Z-axis direction from the curved portion 40c on the upper end surface 2a side of the electrode group 40 built in the battery container 2 to the lower position of the battery lid 3 It is wider than the width of the other spacers 101 and 103.
- the distance between the lower end spacer 101 and the middle spacer 103 and the distance between the upper end spacer 102 and the middle spacer 103 are smaller than the distance between the middle spacers 103.
- the spacers 101, 102, 103 of the intermediate cell holder 92 are disposed between the wide side surfaces 2c, 2c of the battery containers 2, 2 of the two adjacent prismatic secondary batteries 100, 100, and are disposed facing the wide side surfaces 2c, 2c. Be done.
- the spacers 101, 102, and 103 of the end cell holder 93 are disposed to face the wide side surface 2c of the battery container 2 of the prismatic secondary battery 100 disposed at both ends in the stacking direction.
- the side plate 111 has a first opening 111 a and a second opening 111 b.
- the first opening 111 a is located between the lower end spacer 101 and the intermediate spacer 103 in the height direction (Z-axis direction) of the battery container 2, and between the upper end spacer 102 and the intermediate spacer 103. It is formed in the position of.
- the second opening 111 b is formed at a position between the middle spacers 103 in the Z direction.
- the first opening 111 a and the second opening 111 b have the same opening width in the thickness direction (Y-axis direction) of the battery case 2.
- the heights of the openings 111a and 111b in the Z-axis direction are larger in the second opening 111b than in the first opening 111a, corresponding to the distance between the spacers 101, 102, and 103. There is.
- the spacers 101, 102, and 103 are spaced apart from each other in the height direction (Z-axis direction) of the battery case 2, whereby a plurality of slits extending in the width direction along the wide side 2c of the battery case 2 114 and 115 are formed. Widths in the Z-axis direction between the lower end spacer 101 and the intermediate spacer 103 and between the upper end spacer 102 and the intermediate spacer 103 correspond to the intervals between the respective spacers 101, 102, and 103. A relatively narrow first slit 114 is formed. In addition, second slits 115 having a relatively wide width in the Z-axis direction are formed between the middle portion spacers 103.
- the first slits 114 communicate the first openings 111 a of the pair of side plates 111, and the second slits 115 communicate the second openings 111 b of the pair of side plates 111.
- the cooling medium is allowed to pass through the slits 114 and 115, and the wide side surface 2c of the battery container 2 of the prismatic secondary battery 100 can be cooled.
- the plurality of prismatic secondary batteries 100 are stacked in the thickness direction, and the end cell holder 93 is disposed outside the prismatic secondary batteries 100 at both ends in the stacking direction.
- a secondary battery module (assembled battery) 200 in which a plurality of prismatic secondary batteries 100 are stacked with the spacers 101, 102, and 103 interposed in the thickness direction is obtained.
- a pair of end plates are disposed outside the pair of end cell holders 93, 93, and the pair of end plates are connected by a metal band.
- the plurality of prismatic secondary batteries 100 are held and fixed by the cell holder 91 including the intermediate cell holder 92 and the end cell holder 93.
- the bolts 61 and 71 of the positive electrode terminal 60 and the negative electrode terminal 70 of the adjacent square secondary batteries 100 and 100 of the module 200 into the through holes of the bus bars and fixing them with nuts, the square secondary of the module 200 is obtained.
- the batteries 100 can be connected in series.
- the module 200 supplies the power stored in each of the prismatic secondary batteries 100 to an external device such as a motor, and transmits the power supplied from an external power source such as a generator to each prismatic secondary battery 100. It can be stored.
- the electrode group 40 expands and contracts due to charge and discharge.
- the electrode group 40 abuts against the inside of the wide side surface 2 c of the battery case 2 via the insulating sheet when the electrode group 40 expands, the battery case 2 is spread outward, and the battery case 2 is obtained by the electrode group 40. May expand to a shape corresponding to the expanded shape of.
- the intermediate portion spacer 103 opposed to the wide side 2c of the battery container 2 abuts on the wide side 2c, and the wide side 2c acts against the expansion of the electrode assembly 40, thereby suppressing the expansion of the battery container 2. Be done.
- the surface pressure of the intermediate portion spacer 103 in contact with the wide side surface 2c becomes uneven, the performance and the life of the prismatic secondary battery 100 may be degraded. Therefore, it is required to make the surface pressure of the intermediate portion spacer 103 in contact with the wide side surface 2 c of the battery container 2 uniform.
- spacer 103 middle part spacer 103 with which the rechargeable battery module of this embodiment is provided is explained in detail.
- the intermediate spacer 103 may be simply referred to as the spacer 103.
- FIG. 7A is a plan view of a prismatic secondary battery 100 sandwiched between a pair of cell holders 92, 92 shown in FIG.
- FIG. 7B is a cross-sectional view of the cell holders 92, 92 taken along the line BB in FIG. 7A.
- FIG. 7C shows the expanded state of the battery case 2 of the prismatic secondary battery 100 in the cross-sectional view shown in FIG. 7B.
- 7A to 7C illustration of the side plate 111 and the bottom plate 112 of the cell holder 92 is omitted.
- FIGS. 7A to 7C in order to make the description easy to understand, the expansion amount of the battery container 2, the thickness of the spacer 103, and the like are exaggeratingly shown.
- each of the four spacers 103 includes an abutting portion 103A or 103B.
- the plurality of contact portions 103A and 103B of the spacer 103 are spaced from each other in the height direction of the battery case 2 and face the wide side surface 2c of the battery case 2.
- the thickness Ta of 103A is relatively thick.
- the thickness Tb is relatively thin.
- the plurality of spacers 103 have a plurality of contact portions 103A and 103B in the Z-axis direction, and the thickness Tb is the smallest between the contact portions 103A and 103A disposed at both ends in the Z-axis direction.
- the contact portion 103B is disposed.
- the contact portions 103A and 103B having a smaller thickness Tb than the pair of contact portions 103A and 103A are disposed.
- the spacer 103 overlaps the flat portion 40b in the thickness direction (Y-axis direction) of the battery case 2 at a position close to the pair of curved portions 40c of the electrode assembly 40. , 103 and the wide side 2c of the battery case 2 are relatively narrow.
- the distance Gb between the spacers 103 and 103 overlapping in the Y-axis direction with the middle part of the flat portion 40b of the electrode group 40 and the wide side 2c of the battery container 2 is relatively wide.
- the contact portions 103A and 103B are contact surfaces 103a and 103b that contact the wide side 2c of the battery case 2 when the battery case 2 of the prismatic secondary battery 100 expands in the thickness direction (Y-axis direction). have.
- the contact surfaces 103 a and 103 b are such that the distances Ga and Gb with the wide side surface 2 c become wider as they approach the center of the battery container 2. Curved and curved.
- the thicknesses Ta and Tb of the contact portions 103A and 103B are made thinner toward the center of the battery container 2 in the X-axis direction.
- the thickness of the spacer 103 that is, the thicknesses Ta and Tb of the contact portions 103A and 103B are determined based on the expanded shape of the battery container 2 of the prismatic secondary battery 100. More specifically, as shown in FIG. 7C, the electrode group 40 inside the battery container 2 expands due to charge and discharge of the prismatic secondary battery 100, and the insulating sheet is placed inside the wide side surface 2c of the battery container 2. When in contact, the battery container 2 may be spread outward, and the battery container 2 may expand to a shape corresponding to the expanded shape of the electrode assembly 40. The thicknesses Ta and Tb of the contact portions 103A and 103B of the spacer 103 are determined based on the expanded shape of the electrode group 40 in the battery container 2 at this time.
- FIG. 8A is a graph showing a change in thickness of battery container 2 in the width direction (X-axis direction) of battery container 2 at the time of expansion of prismatic secondary battery 100 in a cross section taken along line F8a-F8a shown in FIG. is there.
- FIG. 8B is a graph showing a change in thickness of battery container 2 in the height direction (Z-axis direction) of battery container 2 at the time of expansion of prismatic secondary battery 100 in the cross section along line F8b-F8b shown in FIG. It is.
- the thickness which is the dimension in the Y-axis direction of the battery container 2 is the thickness in the region X2 in the widthwise intermediate portion than the thickness in the regions X1 and X3 on both sides in the width direction (X-axis direction) Is thicker.
- the thickness in the vicinity of the center of the region X ⁇ b> 2 in the widthwise intermediate portion is the largest.
- the thickness of the battery case 2 is the thickness in the region Z2 in the middle in the height direction than the thickness in the regions Z1 and Z3 in the upper and lower directions in the height direction (Z-axis direction). Is thicker.
- the thickness in the vicinity of the center of the region Z ⁇ b> 2 in the middle in the height direction is the largest.
- the wide side surface 2c of the battery container 2 is in the thickness direction (Y-axis direction) with the top 40p of the expanded shape of the electrode assembly 40 shown in FIG. It is a position which overlaps with.
- the foil exposed portions 41c and 42c are bundled and joined at both end portions in the width direction, and bonding portions 40d and 40d are formed. Therefore, in the electrode group 40, both end portions in the width direction hardly expand, and the central portion of the flat portion 40b separated from the bonding portion 40d is most easily expanded.
- the upper and lower curved portions 40c and 40c are less likely to expand in the direction along the flat surface 40f and in the direction intersecting the axial direction D, specifically, the height direction of the battery container 2, and the curved portions The central portion of the flat portion 40b farther from 40c, 40c tends to expand.
- the peripheral portion of the wide side surface 2 c is not easily deformed, and the central portion is easily deformed. Due to these combined factors, the top 40 p of the expanded shape of the electrode group 40 is formed at the center of the flat portion 40 b of the electrode group 40.
- the bonding portions 40d and 40d are foil exposed portions 41c. , 42c in the central portion.
- the top 40p of the expanded shape of the electrode group 40 is formed at a position where the position in the Z-axis direction overlaps the position in the Z-axis direction of the bonding portions 40d and 40d when viewed in the axial direction D, ie, the X-axis direction. .
- the spacers 103 have thicknesses Ta and Tb of the contact portions 103A and 103B in the width direction (X-axis direction) of the battery case 2 along the axial direction D of the electrode assembly 40. Is made thinner toward the top 40p of the electrode assembly 40.
- the thicknesses Ta and Tb of the contact portions 103A and 103B in the direction along the flat surface 40f of the electrode group 40 of the electrode group 40 and in the Z-axis direction intersecting the axial direction D The closer to the top 40p of the expanded shape of the light source is thinner.
- the spacer 103 is the thinnest at the position in the Z-axis direction overlapping the position in the Z-axis direction of the bonding portion 40 d of the electrode group 40. That is, the spacer 103 has a three-dimensional shape corresponding to the expanded shape of the electrode group 40.
- the spacer 103 has a three-dimensional shape corresponding to the three-dimensional expanded shape of the electrode group 40, and the battery container 2 is based on the expanded shape of the electrode group 40 in both the X-axis direction and the Z-axis direction. It can be allowed to expand in shape. Therefore, according to module 200 of the present embodiment, battery case 2 is expanded to a shape corresponding to the three-dimensional expansion shape of electrode group 40 along with charge and discharge of prismatic secondary battery 100. Also, the surface pressure of the spacer 103 in contact with the wide side surface 2c can be made uniform.
- the spacer 103 facing the wide side 2c of the battery container 2 abuts on the wide side 2c and a reaction against expansion of the electrode group 40 acts on the wide side 2c, the expansion of the battery case 2 is suppressed. At this time, the surface pressure of the spacer 103 in contact with the wide side surface 2c is equalized, so that deterioration of the performance and life of the prismatic secondary battery 100 can be prevented.
- a plurality of spacers 103 are arranged at intervals in the height direction (Z-axis direction) of the battery case 2 and a plurality of contact portions 103A and 103B in which the plurality of spacers 103 abut the wide side 2c of the battery case 2 have. Therefore, the slits 115 can be formed between the contact portions 103A and 103B of the respective spacers 103, and the cooling medium can be circulated to cool the wide side surface 2c of the battery container 2.
- the battery container 2 has an expanded shape of the electrode group 40 by arranging the contact portion 103B having a thickness Tb thinner than the contact portions 103A and 103A disposed at both ends in the Z-axis direction. Even in the case of expansion to a corresponding shape, the surface pressure of the spacer 103 in contact with the wide side surface 2c in the Z-axis direction can be made uniform.
- the thickness of the spacer 103 is reduced closer to the top 40 P of the expanded shape of the electrode assembly 40, so that the battery container is restrained when the square secondary battery 100 is restrained.
- the surface pressure acting on the wide side surface 2c of 2 can be made uniform to prevent the deterioration of the performance and the life of the prismatic secondary battery 100.
- Embodiment 2 of the assembled battery of the present invention will be described with reference to FIGS. 1 to 6, FIGS. 8A and 8B, and FIGS. 9A and 9B.
- FIG. 9A is a plan view showing a spacer 103 of a secondary battery module of the present embodiment corresponding to FIG. 7A of the first embodiment.
- FIG. 9B is a cross-sectional view of the spacer 103 taken along the line BB in FIG. 9A.
- the secondary battery module of the present embodiment is characterized in that the contact surfaces 103c and 103d of the contact portions 103C and 103D of the spacer 103 are inclined to follow the expanded shape of the electrode assembly 40 in the second embodiment. It differs from the secondary battery module 200.
- the upper end spacer 102 and the lower end spacer 101 are connected to the upper and lower spacers 103.
- the other points of the secondary battery module according to the present embodiment are the same as those of the secondary battery module 200 according to the first embodiment, so the same reference numerals are given to the same parts and the description will be omitted.
- the contact surfaces 103c and 103d of the contact portions 103C and 103D of the spacer 103 facing the wide side surface 2c of the battery container 2 are in the height direction (Z-axis direction) and the width direction (X of the battery container 2). In the axial direction, it is inclined to follow the expanded shape of the electrode assembly 40. More specifically, the contact surfaces 103c and 103d of the contact portions 103C and 103D are the inclination angles of the wide side surface 2c of the battery container 2 expanded according to the expanded shape of the electrode group 40 with respect to the X axis direction and Z axis direction. It is inclined at the corresponding angle. Thus, the thicknesses Tc and Td of the contact portions 103C and 103D are made thinner toward the top 40p of the expanded shape of the electrode assembly 40 in the X-axis direction and the Z-axis direction.
- the contact surfaces 103c and 103d of the contact portions 103C and 103D of the spacer 103 are X
- the surface pressure when the spacer 103 abuts on the wide side surface 2c of the battery container 2 can be made more uniform than in the case of being parallel to the axial direction or the Z-axis direction.
- the upper end spacer 102 and the lower end spacer 101 are connected to the upper and lower spacers 103, the cell holder 92 can be easily manufactured.
- Embodiment 3 of the assembled battery of the present invention will be described with reference to FIGS. 1 to 6, FIGS. 8A and 8B, and FIGS. 10A and 10B.
- FIG. 10A is a plan view showing the spacer 103 of the secondary battery module of the present embodiment corresponding to FIG. 7A of the first embodiment.
- FIG. 10B is a cross-sectional view of the spacer 103 along the line BB in FIG. 10A.
- the secondary battery module of the present embodiment is formed at a position closer to the upper end surface 2 a than the lower end surface 2 b of the battery container 2, with the bonding portion 40 d of the electrode group 40 accommodated in the battery container 2 of the square secondary battery 100.
- the second embodiment differs from the secondary battery module 200 according to the first embodiment in that the thicknesses Te, Tf, Tg, and Th of the contact portions 103E, 103F, 103G, and 103H are different.
- the other points of the secondary battery module according to the present embodiment are the same as those of the secondary battery module 200 according to the first embodiment, so the same reference numerals are given to the same parts and the description will be omitted.
- the electrode group 40 Since the electrode group 40 is difficult to expand at the bonding portion 40d, when the bonding portion 40d of the electrode group 40 is formed at a position closer to the upper end surface 2a than the lower end surface 2b of the battery container 2, as shown in FIG.
- the top 40p of the expanded shape of the electrode assembly 40 is positioned closer to the lower end surface 2b of the battery case 2 than the joint 40d. Therefore, in the present embodiment, the thickness Tg of the contact portion 103G of the spacer 103 closest to the top 40p of the expanded shape of the electrode group 40 located closer to the lower end surface 2b of the battery container 2 than the bonding portion 40d is made the smallest. ing.
- the thickness Te of the contact portion 103E of the spacer 103 closest to the curved portion 40c on the upper end face 2a side of the battery container 2 farthest from the top 40p of the expanded shape of the electrode group 40 is the thickest.
- the thickness Tf of the contact portion 103F of the spacer 103 closer to the top 40p of the expanded shape of the electrode group 40 than the spacer 103 is made thinner than the thickness Te of the contact portion 103E on the upper end surface 2a side of the battery case 2 ing.
- the thickness Th of the contact portion 103H closer to the top 40p of the expanded shape of the electrode group 40 than the spacer 103 and near the curved portion 40c on the lower end surface 2b side of the battery container 2 is the thickness Tf of the contact portion 103F. It is thinner than.
- the spacer 103 has the thickness Te, Tf, Tg, Th of the battery case 2 in the thickness direction, and the top of the expanded shape of the electrode group 40 in which the thickness expands. It is made thinner as it approaches 40p. Therefore, according to the battery module of the present embodiment, the bonding portion 40 d of the electrode group 40 is formed closer to the upper end surface 2 a than the lower end surface 2 b of the battery container 2, and the top 40 p of the expanded shape of the electrode group 40 is bonded Even in the case of being positioned on the lower end surface 2b side of the battery case 2 than the portion 40d, the same effect as the battery module 200 of the first embodiment can be obtained.
- the joint portion 40 d of the electrode group 40 at a position closer to the upper end surface 2 a than the lower end surface 2 b of the battery container 2, the length of the current collector plates 21, 31 in the height direction of the battery container 2 It can be shortened. Therefore, it is possible not only to reduce the electric resistance of the current collectors 21 and 31 to improve the performance of the prismatic secondary battery 100, but also to reduce the material cost.
- the spacer 103 is in contact with the contact surfaces 103e, 103f, 103g of the contact portions 103E, 103F, 103G, 103H facing the battery container 2 as in the second embodiment.
- 103 h may be inclined with respect to the height direction and the width direction of the battery container 2 so as to follow the expanded shape of the electrode group 40.
- Embodiment 4 of the assembled battery of the present invention will be described with reference to FIGS. 11A and 11B with reference to FIGS. 1 to 6, FIGS. 8A and 8B.
- FIG. 11A is a plan view showing the spacer 103 of the battery assembly of the present embodiment corresponding to FIG. 7A of the first embodiment.
- 11B is a cross-sectional view of the spacer 103 along the line BB in FIG. 11A.
- the secondary battery module of the present embodiment is formed at a position closer to the lower end surface 2b of the battery container 2 than the upper end surface 2a of the electrode assembly 40 of the electrode assembly 40 housed in the battery container 2 of the prismatic secondary battery 100
- the second embodiment differs from the secondary battery module 200 of the first embodiment in that the thickness of the contact portions 103I, 103J, 103K and 103L is different.
- the other points of the secondary battery module according to the present embodiment are the same as those of the secondary battery module 200 according to the first embodiment, so the same reference numerals are given to the same parts and the description will be omitted.
- the electrode group 40 does not easily expand at the bonding portion 40d, when the bonding portion 40d of the electrode group 40 is formed at a position closer to the lower end surface 2b than the upper end surface 2a of the battery container 2, as shown in FIG.
- the top 40p of the expanded shape of the electrode assembly 40 is positioned closer to the upper end surface 2a of the battery case 2 than the joint 40d. Therefore, in the present embodiment, the thickness Tj of the contact portion 103J of the spacer 103 closest to the top 40p of the expanded shape of the electrode group 40 located closer to the upper end surface 2a of the battery container 2 than the bonding portion 40d is made the smallest. ing.
- the thickness Tl of the contact portion 103L of the spacer 103 closest to the curved portion 40c on the lower end surface 2b side of the battery container 2 farthest from the top 40p of the expanded shape of the electrode group 40 is the thickest.
- the thickness Tk of the contact portion 103K of the spacer 103 closer to the top 40p of the expanded shape of the electrode group 40 than the spacer 103 is thinner than the thickness Tl of the contact portion 103L on the lower end surface 2b side of the battery container 2 ing.
- the thickness Ti of the contact portion 103I closer to the top 40p of the expanded shape of the electrode assembly 40 than the spacer 103 and near the curved portion 40c on the upper end surface 2a side of the battery container 2 is the thickness Tk of the contact portion 103K. It is thinner than.
- the spacer 103 has the thickness Ti, Tj, Tk, Tl in the thickness direction of the battery case 2 at the top of the expanded shape of the electrode group 40 which expands in the thickness direction. It is made thinner as it approaches 40p. Therefore, according to the battery module of the present embodiment, the bonding portion 40 d of the electrode group 40 is formed closer to the lower end surface 2 b than the upper end surface 2 a of the battery container 2, and the top 40 p of the expanded shape of the electrode group 40 is bonded Even in the case of being positioned on the upper end surface 2a side of the battery container 2 than the portion 40d, the same effect as the battery module 200 of the first embodiment can be obtained.
- the joint 40 d of the electrode assembly 40 at a position closer to the lower end surface 2 b than the upper end surface 2 a of the battery container 2, the length of the current collector plates 21, 31 in the height direction of the battery container 2 It can be long. Therefore, the bending process at the time of manufacture of current collection boards 21 and 31 is made easy, productivity can be improved, and manufacturing cost can be reduced.
- the inertial force acting on electrode group 40 is alleviated by current collecting plates 21 and 31 to prevent positive electrode terminal 60 and negative electrode terminal 70 from being damaged. it can.
- the spacers 103 are the same as the second embodiment in the contact surfaces 103i, 103j, 103k, of the contact portions 103I, 103J, 103K, 103L facing the battery container 2.
- 103 l may be inclined with respect to the height direction and the width direction of the battery case 2 so as to follow the expanded shape of the electrode group 40.
- Embodiment 5 of the assembled battery of the present invention will be described with reference to FIGS. 12A and 12B with reference to FIGS. 1 to 6, FIGS. 8A and 8B.
- FIG. 12A is a plan view showing a spacer 104 of a secondary battery module of the present embodiment corresponding to FIG. 7A of the first embodiment.
- FIG. 11B is a cross-sectional view of the spacer 104 along the line BB in FIG. 11A.
- the intermediate cell holder 92A and the end cell holder do not have the upper end spacer 102, the intermediate spacer 103 and the lower end spacer 101, and the wide side surface 2c of the battery container 2
- the secondary battery module 200 is different from the secondary battery module 200 according to the first embodiment in that most of the spacers 104 are opposed to each other.
- the other points of the secondary battery module according to the present embodiment are the same as those of the secondary battery module 200 according to the first embodiment, so the same reference numerals are given to the same parts and the description will be omitted.
- the spacer 104 of the present embodiment is formed in a rectangular plate shape in a side view in the thickness direction (Y-axis direction) of the battery container 2.
- the thickness T of the Y-axis direction in the height direction (Z-axis direction) and the width direction (X-axis direction) of the battery container 2 is the top 40p of the expanded shape of the electrode group 40 expanded in the Y-axis direction. The closer it is to the Therefore, like the secondary battery module 200 of the first embodiment, the surface pressure acting on the wide side surface 2c of the battery case 2 is equalized when the square secondary battery 100 is restrained, and the performance and the life of the square secondary battery 100 are improved. Deterioration can be prevented.
- the spacer 104 has the height of the battery container 2 so that the contact surface 104 a facing the battery container 2 conforms to the expanded shape of the electrode assembly 40 as in the second embodiment. It is inclined to the direction and width direction.
- the spacer 104 has a three-dimensional concave surface whose abutment surface 104 a facing the wide side surface 2 c of the battery container 2 corresponds to the three-dimensional expansion shape of the battery container 2 based on the expansion shape of the electrode group 40. It is formed in shape. Therefore, like the secondary battery module of the second embodiment, the surface pressure acting on the wide side surface 2 c of the battery container 2 can be made more uniform when the prismatic secondary battery 100 is restrained.
- Embodiment 6 of the assembled battery of the present invention will be described with reference to FIGS. 13A and 13B with reference to FIGS. 1 to 6, FIGS. 8A and 8B.
- FIG. 13A is a plan view showing a spacer 103 of a secondary battery module of the present embodiment corresponding to FIG. 7A of the first embodiment.
- FIG. FIG. 13B is a cross-sectional view of the spacer 103 along the line BB in FIG. 13A.
- the secondary battery module of the present embodiment does not have the upper end spacer 102 and the lower end spacer 101, and the thickness Tm, Tn of the contact portions 103M and 103N of the spacer 103 is the width direction of the battery container 2 (X axis direction And the secondary battery module 200 of the first embodiment in that they are uniform.
- the other points of the secondary battery module according to the present embodiment are the same as those of the secondary battery module 200 according to the first embodiment, so the same reference numerals are given to the same parts and the description will be omitted.
- the secondary battery module of the present embodiment similarly to the secondary battery module 200 of the first embodiment in the height direction of the battery container 2, the closer to the top 40 P of the expanded shape of the electrode assembly 40, the closer to the spacer 103.
- the thicknesses Tm and Tn of the contact portions 103M and 103N are reduced. Therefore, like the secondary battery module 200 of the first embodiment, in the height direction of the battery case 2, the surface pressure acting on the wide side surface 2c of the battery case 2 at the time of restraint of the prismatic secondary battery 100 is equalized. Deterioration of the performance and the life of the secondary battery 100 can be prevented.
- the cell holder 92 can be easily manufactured and the manufacturing cost can be reduced.
- the spacer 103 may be formed in a flexible film shape.
- the expansion of the battery case 2 of the prismatic secondary battery 100 is exaggeratingly expressed for easy understanding of the description, but the actual expansion amount of the battery case 2 in the thickness direction is For example, it is 500 ⁇ m or less.
- the effect of the battery module described in each of the above-described embodiments can be obtained by forming the spacer 103 in the form of a flexible film or thin film having a thickness of, for example, 1 mm or more.
- the spacer 103 in a film shape or a thin film shape, it is possible to minimize the space between the battery containers 2 of the prismatic secondary battery 100 and to reduce the size and weight of the secondary battery module.
- the number of the spacers 103 in the case of arranging the plurality of spacers 103 in the height direction of the battery container 2 is not limited to four, and may be one, two, three or five or more. However, by setting the number of spacers 103 to three or more, the thickness of the spacer 103 between the spacers 103 at both ends in the height direction of the battery container 2 is thinner, and the surface of the spacer 103 in contact with the battery container 2 It becomes possible to equalize the pressure.
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Battery Mounting, Suspending (AREA)
- Connection Of Batteries Or Terminals (AREA)
- Sealing Battery Cases Or Jackets (AREA)
Abstract
The assembled battery (200) comprises a plurality of secondary batteries, each comprising a wound flat electrode group (40) housed in a rectangular battery container (2), which are layered in the thickness direction of the electrode group (40), with a spacer (103) intercalated in between. In a direction along the flat face (40f) of the electrode group (40) and intersecting with an axial direction (D), the closer to the apex (40p) of the bulge of the electrode group (40) in the thickness direction, the thinner the thicknesses (Ta, Tb) of the spacer (103) are.
Description
本発明は、車載用途等に使用される組電池に関する。
The present invention relates to an assembled battery used for in-vehicle applications and the like.
従来、再充電可能な二次電池の分野では、鉛電池、ニッケル-カドミウム電池、ニッケル-水素電池等の水溶液系電池が主流であった。しかし、電気機器の小型化、軽量化が進むに連れ、高エネルギー密度を有するリチウムイオン二次電池が着目され、その研究、開発および商品化が急速に進められている。また、地球温暖化や枯渇燃料の問題から電気自動車(EV)や駆動の一部を電気モータで補助するハイブリッド電気自動車(HEV)が各自動車メーカーで開発され、その電源として高容量で高出力な二次電池が求められるようになっている。
Conventionally, in the field of rechargeable secondary batteries, aqueous solution batteries such as lead batteries, nickel-cadmium batteries, nickel-hydrogen batteries and the like have been mainstream. However, as the size and weight of electrical devices are reduced, attention is focused on lithium ion secondary batteries having high energy density, and their research, development, and commercialization are being promoted rapidly. In addition, due to global warming and exhaustion fuel problems, electric vehicles (EVs) and hybrid electric vehicles (HEVs) that assist a part of the drive with electric motors have been developed by each car manufacturer, and high capacity and high output as their power sources. Secondary batteries are now being sought.
このような要求に合致する電源として、高電圧の非水溶液系のリチウムイオン二次電池が注目されている。特に、扁平箱型の電池容器を備えた角形リチウムイオン二次電池は、複数の二次電池を積層させて組電池を構成したときの体積効率に優れているため、HEV、EV、またはその他の機器に搭載される電源として需要が増大している。
High-voltage non-aqueous solution lithium ion secondary batteries are attracting attention as a power source meeting such requirements. In particular, a prismatic lithium ion secondary battery provided with a flat box type battery container is excellent in volumetric efficiency when a plurality of secondary batteries are stacked to form an assembled battery, so HEV, EV, or other Demand is increasing as a power source mounted on equipment.
例えば、扁平な角形のケースに捲回状の電極体が封入されてなる二次電池と、該二次電池の外面のうち、最大面積の側面(以下、被圧迫面という)に部分的に接触する接触部材と、該二次電池および接触部材を拘束する拘束部材と、を有し、該拘束部材の拘束により前記接触部材が前記被圧迫面を部分的に圧迫している二次電池アセンブリが知られている(下記特許文献1を参照)。
For example, a secondary battery in which a wound electrode body is enclosed in a flat rectangular case and a side surface of the largest area of the outer surface of the secondary battery (hereinafter referred to as a compressed surface) partially contact A secondary battery assembly comprising: a contact member for moving the secondary battery and a restraint member for binding the secondary battery and the contact member, wherein the contact member partially presses the compressed surface by the restraint of the restraint member. It is known (refer the following patent document 1).
特許文献1に記載の二次電池アセンブリでは、前記接触部材は、前記被圧迫面に接触する離散的に設けられた複数の接触部と、該複数の接触部同士を互いに連結する連結部とを有している。また、前記接触部は、前記被圧迫面に向かって該連結部から突出して形成されており、前記捲回状の電極体における捲回軸方向の中央から外れた部位に対応する両方の片寄り領域にて前記被圧迫面をより強く圧迫し、前記捲回状の電極体における捲回軸方向の中央寄りの部位に対応する前記両方の片寄り領域の間の中央領域にて前記被圧迫面をより弱く圧迫する形状または配置のものであり、前記片寄り領域での前記接触部の突出高さが、前記中央領域での前記接触部の突出高さに比較して高くされている。
In the secondary battery assembly described in Patent Document 1, the contact member includes a plurality of discretely provided contact portions in contact with the surface to be compressed, and a connection portion connecting the plurality of contact portions to each other. Have. Further, the contact portion is formed to protrude from the connection portion toward the compressed surface, and both offsets corresponding to a portion of the wound electrode body which is deviated from the center in the winding axial direction. In the region, the compressed surface is compressed more strongly, and the compressed surface in the central region between the two offset regions corresponding to the portion near the center in the winding axial direction in the wound electrode body Is of a shape or arrangement that squeezes less strongly, and the protruding height of the contact portion in the offset region is higher than the protruding height of the contact portion in the central region.
特許文献1に記載の二次電池アセンブリでは、前記接触部材によって、二次電池の前記被圧迫面を部分的に圧迫し、該被圧迫面への圧迫力が片寄り領域において中央領域より強くなるようにしている。これにより、二次電池の内圧を均一化し、ハイレートで使用される二次電池において拘束時の面圧を均一化することができるとしている。
In the secondary battery assembly described in Patent Document 1, the contact member partially squeezes the compressed surface of the secondary battery, and the compression force on the compressed surface becomes stronger than the central region in the offset region. It is like that. As a result, the internal pressure of the secondary battery can be made uniform, and the contact pressure at the time of restraint can be made uniform in the secondary battery used at a high rate.
特許文献1に記載の二次電池アセンブリは、捲回状の電極体における捲回軸方向の中央領域と片寄り領域において二次電池の拘束時の面圧を均一化することができるが、捲回軸方向以外の方向において二次電池の拘束時の面圧が不均一になる虞がある。
The secondary battery assembly described in Patent Document 1 can equalize the surface pressure at the time of restraint of the secondary battery in the central region and the offset region in the winding axial direction of the wound electrode body, but There is a possibility that the contact pressure at the time of restraint of the secondary battery may become uneven in directions other than the rotation direction.
本発明は、前記の課題に鑑みてなされたものであって、その目的とするところは、角形二次電池の拘束時の面圧を均一化することができる組電池を提供することにある。
The present invention has been made in view of the above-mentioned problems, and an object of the present invention is to provide a battery pack capable of making contact pressure at the time of restraint of a prismatic secondary battery uniform.
前記の目的を達成すべく、本発明の組電池は、捲回された扁平状の電極群が角形の電池容器に収容された複数の二次電池を、前記電極群の厚さ方向に積層して間にスペーサを介在させた組電池であって、前記スペーサは、前記電極群の扁平面に沿う方向でかつ軸方向に交差する方向において、前記厚さ方向に膨張する前記電極群の膨張形状の頂部に近いほど厚さが薄いことを特徴とする。
In order to achieve the above object, in the battery pack of the present invention, a plurality of secondary batteries in which wound flat electrode groups are accommodated in a rectangular battery container are stacked in the thickness direction of the electrode groups A spacer interposed between the first and second spacers, wherein the spacer is expanded in the thickness direction in a direction along the flat surface of the electrode group and in a direction intersecting the axial direction. It is characterized in that the thickness is thinner the closer to the top of the.
本発明の組電池によれば、電極群の扁平面に沿う方向でかつ軸方向に交差する方向においてスペーサの厚さが均一な場合と比較して、電極群の膨張に起因して膨張した電池容器にスペーサが当接する際の面圧の片寄りを均一化して、角形二次電池の拘束時の面圧を均一化することができる。
According to the battery pack of the present invention, the battery expanded due to the expansion of the electrode group as compared with the case where the thickness of the spacer is uniform in the direction along the flat surface of the electrode group and in the direction intersecting the axial direction By making uniform the deviation of the surface pressure when the spacer abuts on the container, it is possible to make the surface pressure at the time of restraint of the prismatic secondary battery uniform.
前記した以外の課題、構成および効果は、以下の実施形態の説明により明らかにされる。
Problems, configurations, and effects other than those described above will be apparent from the description of the embodiments below.
[実施形態1]
以下、本発明の組電池の実施形態1について、図面を参照しながら詳細に説明する。 Embodiment 1
Hereinafter, Embodiment 1 of the battery pack of the present invention will be described in detail with reference to the drawings.
以下、本発明の組電池の実施形態1について、図面を参照しながら詳細に説明する。 Embodiment 1
Hereinafter, Embodiment 1 of the battery pack of the present invention will be described in detail with reference to the drawings.
(角形二次電池)
まず、本発明の組電池の実施の形態に係る二次電池モジュールが備える角形二次電池について説明する。 (Square secondary battery)
First, a square secondary battery provided in a secondary battery module according to the embodiment of the assembled battery of the present invention will be described.
まず、本発明の組電池の実施の形態に係る二次電池モジュールが備える角形二次電池について説明する。 (Square secondary battery)
First, a square secondary battery provided in a secondary battery module according to the embodiment of the assembled battery of the present invention will be described.
図1は、角形二次電池100の外観斜視図である。図2は、図1に示す角形二次電池100の発電要素50の分解斜視図である。図3は、図2に示す電極群40の分解斜視図である。
FIG. 1 is an external perspective view of a prismatic secondary battery 100. FIG. 2 is an exploded perspective view of the power generation element 50 of the prismatic secondary battery 100 shown in FIG. FIG. 3 is an exploded perspective view of the electrode group 40 shown in FIG.
角形二次電池100は、扁平箱型の電池容器2を備えている。電池容器2は、電池蓋3と電池缶4によって構成されている。電池缶4は、開口部4aが形成されて上端が開放された有底角筒状の容器であり、例えば、金属材料に深絞り加工を施すことによって製作される。電池蓋3は、電池缶4の開口部4aを塞ぐ平面視で長方形の板状の部材であり、開口部4aの全周に亘って、例えば、レーザ溶接によって接合されて開口部4aを密閉している。電池缶4および電池蓋3は、例えば、アルミニウムまたはアルミニウム合金等の金属材料によって製作されている。
The prismatic secondary battery 100 includes a flat box-shaped battery container 2. The battery case 2 is composed of a battery cover 3 and a battery can 4. The battery can 4 is a bottomed rectangular cylindrical container having an opening 4a and an open upper end, and is manufactured by, for example, deep-drawing a metal material. The battery cover 3 is a rectangular plate-like member in a plan view that closes the opening 4a of the battery can 4, and is joined by, for example, laser welding over the entire circumference of the opening 4a to seal the opening 4a. ing. The battery can 4 and the battery lid 3 are made of, for example, a metal material such as aluminum or an aluminum alloy.
電池容器2は、有底角筒状の電池缶4と、平面視で長方形の板状の電池蓋3によって、直方体形状を有する扁平箱型に形成され、面積が略等しい長方形の上端面2aおよび下端面2b、面積が大きい一対の長方形の広側面2c、および面積が小さい一対の狭側面2dを有している。
The battery case 2 is formed in a rectangular box shape having a rectangular parallelepiped shape by a rectangular cylindrical bottomed battery can 4 and a rectangular plate-like battery cover 3 in a plan view, and has a rectangular upper end surface 2a and a substantially equal area. It has a lower end surface 2b, a pair of rectangular wide side surfaces 2c with a large area, and a pair of narrow side surfaces 2d with a small area.
以下の説明では、必要に応じて各図に示すXYZ直交座標系を用いる場合がある。なお、X軸方向は、上端面2aまたは下端面2bの長辺方向に沿う電池容器2の幅方向に平行な方向である。Y軸方向は、上端面2aまたは下端面2bの短辺方向に沿う電池容器2の厚さ方向に平行な方向である。Z軸方向は、上端面2aまたは下端面2bに垂直な電池容器2の高さ方向に平行な方向である。
In the following description, an XYZ orthogonal coordinate system shown in each drawing may be used as needed. The X-axis direction is a direction parallel to the width direction of the battery container 2 along the long side direction of the upper end surface 2a or the lower end surface 2b. The Y-axis direction is a direction parallel to the thickness direction of the battery container 2 along the short side direction of the upper end surface 2a or the lower end surface 2b. The Z-axis direction is a direction parallel to the height direction of the battery container 2 perpendicular to the upper end surface 2a or the lower end surface 2b.
電池容器2の内部には、図示を省略する絶縁シートを介して電極群40が収容されている。電極群40は、セパレータ43、44を介して重ねた正極電極41と負極電極42を、図示しない軸芯の周りに捲回して扁平状に成形した扁平な捲回電極群である。電極群40は、軸方向Dが電池容器2の幅方向(X軸方向)と平行になるように、電池容器2の内部に配置されている。すなわち、電池容器2の厚さ方向と電極群40の厚さ方向は一致している。
An electrode group 40 is accommodated inside the battery container 2 via an insulating sheet (not shown). The electrode group 40 is a flat wound electrode group formed by winding the positive electrode 41 and the negative electrode 42 stacked with the separators 43 and 44 around an axial core (not shown) into a flat shape. The electrode group 40 is disposed inside the battery container 2 such that the axial direction D is parallel to the width direction (X-axis direction) of the battery container 2. That is, the thickness direction of the battery case 2 and the thickness direction of the electrode assembly 40 coincide with each other.
電極群40は、電池容器2の下端面2bと上端面2aにそれぞれ対向する一対の湾曲部40cと、一対の平坦部40bとを有している。平坦部40bは電池容器2の幅方向に沿う一対の広側面2cに対向する一対の扁平面40fを有している。正極電極41、負極電極42、およびセパレータ43、44は、平面部40bにおいて平坦な状態で積層され、湾曲部40cにおいて半円筒状に湾曲した状態で積層されている。
The electrode group 40 has a pair of curved portions 40c facing the lower end surface 2b and the upper end surface 2a of the battery case 2, and a pair of flat portions 40b. The flat portion 40 b has a pair of flat surfaces 40 f facing the pair of wide side surfaces 2 c along the width direction of the battery container 2. The positive electrode 41, the negative electrode 42, and the separators 43 and 44 are stacked in a flat state in the plane portion 40b, and are stacked in a curved state in a semi-cylindrical shape in the curved portion 40c.
正極電極41は、例えば、アルミニウム箔等からなる正極金属箔41aの表裏両面に正極合剤層41bが形成されたものである。正極合剤層41bは、一側縁に正極金属箔41aが露出された露出部41cを残して正極金属箔41aに塗工されている。
The positive electrode 41 is formed by forming a positive electrode mixture layer 41 b on both the front and back sides of a positive electrode metal foil 41 a made of, for example, aluminum foil or the like. The positive electrode mixture layer 41b is coated on the positive electrode metal foil 41a, leaving an exposed portion 41c where the positive electrode metal foil 41a is exposed at one side edge.
負極電極42は、例えば、銅箔等からなる負極金属箔42aの表裏両面に負極合剤層42bが形成されたものである。負極合剤層42bは、一側縁に負極金属箔42aが露出された露出部42cを残して負極金属箔42aに塗工されている。
The negative electrode 42 has a negative electrode mixture layer 42 b formed on the front and back sides of a negative electrode metal foil 42 a made of, for example, copper foil. The negative electrode mixture layer 42 b is coated on the negative electrode metal foil 42 a, leaving an exposed portion 42 c where the negative electrode metal foil 42 a is exposed at one side edge.
正極電極41は、例えば、以下のように製作することができる。まず、正極活物質として層状ニッケルコバルトマンガン酸リチウム(化学式Li(NixCoyMn1-x-y)O2)100重量部に対し、導電材として合計10重量部の鱗片状黒鉛やアセチレンブラックと結着剤として4重量部のポリフッ化ビニリデン(以下、PVDFという)とを添加する。これに分散溶媒としてN-メチルピロリドン(以下、NMPという)を添加し、混練して正極スラリーを製作する。次に、この正極スラリーを、例えば、厚さ15μmのアルミニウム箔の両面に箔露出部41cを残して塗布することで正極合剤層41bを形成する。その後、乾燥、プレス、裁断の各工程を経て、例えば、アルミニウム箔を含まない正極活物質塗布部の厚さ(表裏両面の合計)が70μmの正極電極41を得ることができる。
The positive electrode 41 can be manufactured, for example, as follows. First, the layered lithium nickel cobalt manganese oxide as a positive electrode active material (chemical formula Li (Ni x Co y Mn 1 -xy) O 2) relative to 100 parts by weight of scaly graphite and acetylene black and forming a total of 10 parts by weight as the conductive material 4 parts by weight of polyvinylidene fluoride (hereinafter referred to as PVDF) is added as an adhesive. To this, N-methyl pyrrolidone (hereinafter referred to as NMP) is added as a dispersion solvent, and the mixture is kneaded to prepare a positive electrode slurry. Next, the positive electrode mixture layer 41 b is formed by applying the positive electrode slurry, for example, on both sides of an aluminum foil having a thickness of 15 μm, leaving the foil exposed portions 41 c. Thereafter, through each process of drying, pressing, and cutting, for example, it is possible to obtain the positive electrode 41 having a thickness of 70 μm (total of both front and back sides) of the positive electrode active material coated portion containing no aluminum foil.
負極合剤層42bは、例えば、以下のように製作することができる。まず、負極活物質として黒鉛質炭素粉末100重量部に対して、増粘調整剤としてCMC水溶液を添加、混合後に、結着剤として1重量部のSBRを添加し、混練後に粘度調整して負極スラリーを製作する。次に、この負極スラリーを、例えば、厚さ10μmの銅箔の両面に箔露出部42cを残して塗布することで負極合剤層42bを形成する。その後、乾燥、プレス、裁断の各工程を経て、例えば、銅箔を含まない負極活物質塗布部の厚さ(表裏両面の合計)が40μmの負極電極42を得ることができる。
The negative electrode mixture layer 42 b can be manufactured, for example, as follows. First, to 100 parts by weight of graphitic carbon powder as a negative electrode active material, CMC aqueous solution is added as a thickener and mixed, 1 part by weight of SBR is added as a binder, and after kneading, the viscosity is adjusted to obtain a negative electrode. Make a slurry. Next, for example, the negative electrode mixture layer 42b is formed by applying the negative electrode slurry on both sides of a copper foil having a thickness of 10 μm while leaving the foil exposed portions 42c. Thereafter, through each process of drying, pressing, and cutting, for example, the thickness of the negative electrode active material coated portion not including a copper foil (total of both front and back sides) can be 40 μm.
なお、正極活物質は、リチウムイオンを挿入、脱離可能な天然黒鉛や、人造の各種黒鉛材、コークスなどの炭素質材料やSiやSnなどの化合物(例えば、SiO、TiSi2等)、またはそれの複合材料でもよく、その粒子形状においても、鱗片状、球状、繊維状、塊状等、特に制限されるものではない。また、負極活物質は、スピネル結晶構造を有する他のマンガン酸リチウムや一部を金属元素で置換又はドープしたリチウムマンガン複合酸化物や層状結晶構造を有すコバルト酸リチウムやチタン酸リチウムやこれらの一部を金属元素で置換またはドープしたリチウム-金属複合酸化物を用いるようにしてもよい。また、結着材は、ポリテトラフルオロエチレン(PTFE)、ポリエチレン、ポリスチレン、ポリブタジエン、ブチルゴム、ニトリルゴム、スチレンブタジエンゴム、多硫化ゴム、ニトロセルロース、シアノエチルセルロース、各種ラテックス、アクリロニトリル、フッ化ビニル、フッ化ビニリデン、フッ化プロピレン、フッ化クロロプレン、アクリル系樹脂などの重合体およびこれらの混合体などを用いることができる。
The positive electrode active material is a natural graphite capable of inserting and desorbing lithium ions, various artificial graphite materials, carbonaceous materials such as coke, compounds such as Si and Sn (for example, SiO, TiSi 2 etc.), or The composite material thereof may be used, and the particle shape thereof is not particularly limited, such as scaly, spherical, fibrous, and massive. In addition, the negative electrode active material may be other lithium manganate having a spinel crystal structure, a lithium manganese composite oxide partially substituted or doped with a metal element, lithium cobaltate having a layered crystal structure, lithium titanate, or the like It is also possible to use a lithium-metal composite oxide which is partially substituted or doped with a metal element. Further, the binder is polytetrafluoroethylene (PTFE), polyethylene, polystyrene, polybutadiene, butyl rubber, nitrile rubber, styrene butadiene rubber, polysulfide rubber, nitrocellulose, cyanoethyl cellulose, various latexes, acrylonitrile, vinyl fluoride, fluorine Polymers such as vinylidene fluoride, propylene fluoride, chloroprene fluoride, acrylic resins and mixtures thereof can be used.
電極群40を製作するには、図示しない軸芯にセパレータ43、44の各先端部を溶着させ、正極電極41、セパレータ43、負極電極42、セパレータ44がこの順に重なるようにして捲回する。このとき、正極電極41の巻始め側端部が負極電極42の巻始め側端部よりも捲回後の電極群40の内側に位置するように、正極電極41の巻始め側端部を負極電極42の巻始め側端部よりも軸芯側に配置して捲回する。軸芯としては、例えば、正極金属箔41a、負極金属箔42a、セパレータ43、44のいずれよりも曲げ剛性の高い樹脂シートを捲回して構成したものを用いることができる。
In order to manufacture the electrode group 40, the tip end portions of the separators 43 and 44 are welded to an axial core (not shown), and the positive electrode 41, the separator 43, the negative electrode 42 and the separator 44 are wound in this order so as to overlap. At this time, the winding start end portion of the positive electrode 41 is a negative electrode so that the winding start end portion of the positive electrode 41 is positioned inside the electrode group 40 after winding than the winding start end portion of the negative electrode 42. It arrange | positions and winds to the axial core side rather than the winding start side edge part of the electrode 42. As shown in FIG. As the shaft core, for example, one formed by winding a resin sheet having higher bending rigidity than any of the positive electrode metal foil 41a, the negative electrode metal foil 42a, and the separators 43 and 44 can be used.
ここで、この電極群40の軸芯と平行な方向すなわち正極電極41、負極電極42の幅方向と平行な方向を軸方向Dと定義する。この場合、正極の露出部41cと負極の露出部42cとは、電極群40の軸方向Dの一方側と他方側の側縁に位置するように配置する。すなわち、正極電極41および負極電極42は、電極群40の軸方向Dの一端と他端にそれぞれの箔露出部41c、42cが位置するように重ねられて捲回される。
Here, a direction parallel to the axial center of the electrode group 40, that is, a direction parallel to the width direction of the positive electrode 41 and the negative electrode 42 is defined as an axial direction D. In this case, the exposed portion 41c of the positive electrode and the exposed portion 42c of the negative electrode are disposed at the side edges of the electrode group 40 in one axial direction D and the other. That is, the positive electrode 41 and the negative electrode 42 are stacked and wound so that the respective foil exposed portions 41 c and 42 c are located at one end and the other end of the electrode group 40 in the axial direction D.
負極合剤層42bの幅、すなわち軸方向Dの長さは、正極合剤層41bの幅よりも広く形成されている。また、第1のセパレータ43の幅は、電極群40の一方の側縁において、正極電極41の露出部41cが第1のセパレータ43から露出する寸法とされている。第2のセパレータ44の幅は、電極群40の他方の側縁において、負極電極42の露出部42cが第2のセパレータ44から露出する寸法とされている。
The width of the negative electrode mixture layer 42b, that is, the length in the axial direction D is formed wider than the width of the positive electrode mixture layer 41b. Further, the width of the first separator 43 is such that the exposed portion 41 c of the positive electrode 41 is exposed from the first separator 43 at one side edge of the electrode group 40. The width of the second separator 44 is such that the exposed portion 42 c of the negative electrode 42 is exposed from the second separator 44 at the other side edge of the electrode group 40.
電極群40の巻始め端部、換言すれば、軸芯側には空洞部40aが形成されている。また、電極群40の巻終り端部は、最外周がセパレータ44であり、その内側が負極電極42である。従って、正極合剤層41bは、巻始め端部から巻終り端部までの全長に亘って、幅方向においてもすべての部分がセパレータ43、44を介して負極合剤層42bと重なっている。
A hollow portion 40 a is formed on the winding start end portion of the electrode group 40, in other words, on the axial core side. At the winding end of the electrode assembly 40, the outermost periphery is the separator 44, and the inner side is the negative electrode 42. Accordingly, the positive electrode mixture layer 41 b overlaps with the negative electrode mixture layer 42 b via the separators 43 and 44 in the width direction over the entire length from the winding start end to the winding end.
電極群40は、軸方向Dの一端と他端の箔露出部41c、42cが、それぞれ空洞部40aの両側の平坦部40b、40bで厚さ方向に二つに分けて束ねられ、図2においてハッチングされた領域で示す接合部40d、40dにおいて、集電板21、31に接合される。
In the electrode group 40, the foil exposed portions 41c and 42c at one end and the other end in the axial direction D are divided into two in the thickness direction by flat portions 40b and 40b on both sides of the hollow portion 40a, respectively. It joins to the current collection boards 21 and 31 in the junction parts 40d and 40d which are shown by the hatched area | region.
正極端子60を構成する集電板21は、例えば板状の金属板を折り曲げることによって形成され、電池蓋3の下面に沿って取り付けられる平板状の本体部22と、本体部22の両側でそれぞれ下方にほぼ直角に折曲された一対の支持部22aを有している。これら一対の支持部22aの先端には、それぞれ平坦な板状の接合片23が形成されている。各接合片23は、電極群40の厚さ方向に二つに分けて束ねられた箔露出部41cの接合部40dに、例えば超音波溶接によって、それぞれ接合される。集電板21は、例えば、アルミニウムまたはアルミニウム合金によって製作されている。
The current collector plate 21 constituting the positive electrode terminal 60 is formed, for example, by bending a plate-like metal plate, and has a flat plate-like main body 22 attached along the lower surface of the battery lid 3 and both sides of the main body 22. It has a pair of support portions 22a bent downward at a substantially right angle. Flat plate-like joining pieces 23 are formed at the ends of the pair of support portions 22a. Each joint piece 23 is joined, for example, by ultrasonic welding, to the joint portion 40 d of the foil exposed portion 41 c which is divided into two in the thickness direction of the electrode group 40 and bundled. The current collector plate 21 is made of, for example, aluminum or an aluminum alloy.
同様に、負極端子70を構成する集電板31は、電池蓋3の下面に沿って取り付けられる平板状の本体部32と、本体部32の両側でそれぞれ直角に折曲された一対の支持部32aを有している。これら一対の支持部32aの先端には、それぞれ平坦な板状の接合片33が形成されている。各接合片33は、電極群40の厚さ方向に二つに分けて束ねられた箔露出部42cの接合部40dに、例えば超音波溶接によって、それぞれ接合される。集電板31は、例えば、銅または銅合金によって製作されている。
Similarly, the current collecting plate 31 constituting the negative electrode terminal 70 has a flat plate-like main body 32 attached along the lower surface of the battery lid 3 and a pair of support parts bent at right angles on both sides of the main body 32. It has 32a. A flat plate-like bonding piece 33 is formed at the tip of each of the pair of support portions 32a. Each bonding piece 33 is bonded to the bonding portion 40d of the foil exposed portion 42c which is divided into two in the thickness direction of the electrode group 40 and bundled, for example, by ultrasonic welding. The current collector 31 is made of, for example, copper or a copper alloy.
集電板21、31が不図示のガスケットを介して電池蓋3に固定され、電極群40が集電板21、31に接合されることで、電極群40が集電板21、31を介して電池蓋3に固定されている。また、電池蓋3には、集電板21を含む正極端子60と、集電板31を含む負極端子70が設けられている。
The current collectors 21 and 31 are fixed to the battery cover 3 via a gasket (not shown), and the electrode group 40 is joined to the current collectors 21 and 31 so that the electrode group 40 passes the current collectors 21 and 31. It is fixed to the battery cover 3. Further, the battery cover 3 is provided with a positive electrode terminal 60 including the current collecting plate 21 and a negative electrode terminal 70 including the current collecting plate 31.
正極端子60は、ボルト61、接続端子62、外部端子63、絶縁体64、ガスケットおよび集電板21から構成され、これらは電池蓋3に一体的に固定されている。この状態において、集電板21、接続端子62および外部端子63は、互いに電気的に接続され、かつ絶縁体64およびガスケットによって電池蓋3と絶縁されている。
The positive electrode terminal 60 is composed of a bolt 61, a connection terminal 62, an external terminal 63, an insulator 64, a gasket and a current collector 21 and these are integrally fixed to the battery cover 3. In this state, current collecting plate 21, connection terminal 62 and external terminal 63 are electrically connected to each other, and insulated from battery cover 3 by insulator 64 and a gasket.
同様に、負極端子70は、ボルト71、接続端子72、外部端子73、絶縁体74、ガスケット、および集電板31から構成され、これらは電池蓋3に一体的に固定されている。この状態において、集電板31、接続端子72および外部端子73は、互いに電気的に接続され、かつ絶縁体74およびガスケットによって電池蓋3と絶縁されている。絶縁体64、74およびガスケットは、例えばポリブチレンテレフタレート、ポリフェニレンサルファイド、ペルフルオロアルコキシフッ素樹脂等の絶縁性を有する樹脂材によって製作されている。
Similarly, the negative electrode terminal 70 is composed of a bolt 71, a connection terminal 72, an external terminal 73, an insulator 74, a gasket, and a current collector 31, and these are integrally fixed to the battery lid 3. In this state, current collecting plate 31, connection terminal 72 and external terminal 73 are electrically connected to each other and insulated from battery cover 3 by insulator 74 and a gasket. The insulators 64 and 74 and the gasket are made of, for example, an insulating resin material such as polybutylene terephthalate, polyphenylene sulfide or perfluoroalkoxy fluorine resin.
図2に示すように、電池蓋3に正極端子60および負極端子70が設けられることで蓋組立体10が構成される。さらに、電極群40の箔露出部41c、42cが、それぞれ空洞部40aの両側の平坦部40b、40bで厚さ方向に二つに分けて束ねられ、接合部40d、40dが集電板21、31に接合されることで、発電要素50が構成される。発電要素50は、図1に示す電池缶4の開口部4aから電池缶4の内部に挿入され、電池蓋3が電池缶4の開口部4aに全周に亘って封止溶接される。これにより、電極群40と集電板21、31が電池容器2の内部の所定の位置に収容配置される。
As shown in FIG. 2, the battery assembly 3 is provided with the positive electrode terminal 60 and the negative electrode terminal 70, whereby the lid assembly 10 is configured. Further, the foil exposed portions 41c and 42c of the electrode group 40 are divided into two in the thickness direction by flat portions 40b and 40b on both sides of the hollow portion 40a, and the bonding portions 40d and 40d are current collector plates 21, The power generation element 50 is configured by being joined to 31. The power generation element 50 is inserted into the inside of the battery can 4 from the opening 4a of the battery can 4 shown in FIG. 1, and the battery lid 3 is sealed and welded to the opening 4a of the battery can 4 all around. As a result, the electrode group 40 and the current collectors 21 and 31 are accommodated and arranged at predetermined positions inside the battery container 2.
電池蓋3には、正極端子60と負極端子70との間にガス排出弁13が設けられている。ガス排出弁13は、プレス加工によって電池蓋3を部分的に薄肉化することで形成されている。なお、薄膜状の金属部材を電池蓋3に設けた貫通孔に、例えばレーザ溶接によって接合することでガス排出弁13を設けてもよい。ガス排出弁13は、角形二次電池100が過充電等の異常により発熱してガスが発生し、電池容器内の圧力が上昇して所定圧力に達したときに開裂して、内部からガスを排出することで電池容器内の圧力を低減させる。
In the battery lid 3, a gas discharge valve 13 is provided between the positive electrode terminal 60 and the negative electrode terminal 70. The gas discharge valve 13 is formed by partially thinning the battery cover 3 by press processing. The gas discharge valve 13 may be provided by joining a thin film metal member to the through hole provided in the battery lid 3 by, for example, laser welding. The gas discharge valve 13 generates heat when heat is generated due to an abnormality such as overcharging of the prismatic secondary battery 100, and when the pressure in the battery container rises and reaches a predetermined pressure, the gas discharge valve 13 is split and gas is generated from the inside. By discharging, the pressure in the battery container is reduced.
さらに、電池蓋3には、電池容器2内に電解液を注入するための注液孔3aが穿設されている。注液孔3aは、電解液注入後に注液栓11によって封止される。非水電解液としては、例えばエチレンカーボネートとジメチルカーボネートとを体積比で1:2の割合で混合した混合溶液中へ六フッ化リン酸リチウム(LiPF6)を1モル/リットルの濃度で溶解したものを用いることができる。
Furthermore, a liquid injection hole 3 a for injecting an electrolytic solution into the battery case 2 is formed in the battery lid 3. The injection hole 3a is sealed by the injection valve 11 after the injection of the electrolyte. As a non-aqueous electrolytic solution, for example, lithium hexafluorophosphate (LiPF 6 ) was dissolved at a concentration of 1 mol / liter in a mixed solution of ethylene carbonate and dimethyl carbonate mixed in a ratio of 1: 2 in volume ratio The thing can be used.
(組電池)
次に、本発明の組電池の一実施形態として、複数の角形二次電池100を、電池容器2の厚さ方向(Y軸方向)、すなわち扁平な電極群40の厚さ方向にスペーサを介して積層させた二次電池モジュールについて、詳細に説明する。 (Assembly battery)
Next, as an embodiment of the battery pack of the present invention, a plurality of prismaticsecondary batteries 100 are interposed between spacers in the thickness direction (Y-axis direction) of the battery container 2, that is, the thickness direction of the flat electrode group 40. The stacked secondary battery modules will be described in detail.
次に、本発明の組電池の一実施形態として、複数の角形二次電池100を、電池容器2の厚さ方向(Y軸方向)、すなわち扁平な電極群40の厚さ方向にスペーサを介して積層させた二次電池モジュールについて、詳細に説明する。 (Assembly battery)
Next, as an embodiment of the battery pack of the present invention, a plurality of prismatic
図4は、本実施の形態の二次電池モジュール200の外観斜視図である。図5は、図4に示すモジュール200から一対の中間セルホルダ111,111とその間に挟持された角形二次電池100を取り外した状態を示す斜視図である。図6は、図5に示す角形二次電池100から一対の中間セルホルダ111,111を取り外した状態を示す分解斜視図である。
FIG. 4 is an external perspective view of a secondary battery module 200 according to the present embodiment. FIG. 5 is a perspective view showing the module 200 shown in FIG. 4 from which a pair of intermediate cell holders 111, 111 and the prismatic secondary battery 100 sandwiched therebetween are removed. FIG. 6 is an exploded perspective view showing the prismatic secondary battery 100 shown in FIG. 5 with the pair of intermediate cell holders 111 removed.
モジュール200は、厚さ方向(Y方向)に積層された複数の角形二次電池100と、各角形二次電池100を積層した状態に保持するセルホルダ91を有している。セルホルダ91は、例えば、ガラスエポキシ樹脂、ポリプロピレン、ポリブチレンテレフタレート樹脂などの樹脂材料や、アルミニウム、銅、ステンレスなどの金属材料によって構成することができる。例えば、樹脂材料を用いて射出成形によってセルホルダ91を製作する場合には、金型の形状を加工することで、後述する種々の形状を容易に製作することができる。
The module 200 has a plurality of prismatic secondary batteries 100 stacked in the thickness direction (Y direction) and a cell holder 91 that holds the prismatic secondary batteries 100 in a stacked state. The cell holder 91 can be made of, for example, a resin material such as glass epoxy resin, polypropylene or polybutylene terephthalate resin, or a metal material such as aluminum, copper or stainless steel. For example, when manufacturing the cell holder 91 by injection molding using a resin material, various shapes to be described later can be easily manufactured by processing the shape of the mold.
セルホルダ91は、複数の中間セルホルダ92と、一対の端部セルホルダ93とからなる。中間セルホルダ92は、互いに隣り合う角形二次電池100の間に介在される。端部セルホルダ93は、中間セルホルダ92を介して厚さ方向に積層された複数の角形二次電池100の積層方向の両端部に配置され、対向する中間セルホルダ92との間に角形二次電池100を保持する。端部セルホルダ93は、概ね中間セルホルダ92を角形二次電池100の広側面2cに平行な面で半分に分割した構成を有している。そのため、以下の説明では、中間セルホルダ92の構成について詳細に説明し、端部セルホルダ93の構成についての説明は適宜省略する。
The cell holder 91 includes a plurality of intermediate cell holders 92 and a pair of end cell holders 93. Intermediate cell holder 92 is interposed between prismatic secondary batteries 100 adjacent to each other. End cell holders 93 are disposed at both ends in the stacking direction of the plurality of prismatic secondary batteries 100 stacked in the thickness direction via intermediate cell holder 92, and the prismatic secondary battery 100 is placed between the opposing intermediate cell holders 92. Hold. End cell holder 93 has a configuration in which intermediate cell holder 92 is divided in half by a plane parallel to wide side surface 2 c of prismatic secondary battery 100. Therefore, in the following description, the configuration of the intermediate cell holder 92 will be described in detail, and the description of the configuration of the end cell holder 93 will be omitted as appropriate.
中間セルホルダ92は、角形二次電池100の電池容器2の幅方向(X軸方向)両側の狭側面2d、2dに対向する一対の側板111、111と、電池容器2の下端面2bに対向する底板112を有する。図4に示されるように、中間セルホルダ92は、2つの角形二次電池100、100の間に配置されるため、2つの角形二次電池100、100の中間を通り電池容器2の広側面2cに平行な面に面対称な形状を有している。すなわち、中間セルホルダ92の側板111および底板112は、中間セルホルダ92の両側に配置された2つの角形二次電池100、100の電池容器2、2の狭側面2d、2dおよび下端面2b、2bに対して、電池容器2の厚さ方向(Y軸方向)の約半分ずつ対向している。
The intermediate cell holder 92 is opposed to the pair of side plates 111, 111 facing the narrow side surfaces 2d, 2d on both sides in the width direction (X-axis direction) of the battery container 2 of the prismatic secondary battery 100, and the lower end surface 2b of the battery container 2. A bottom plate 112 is provided. As shown in FIG. 4, the intermediate cell holder 92 is disposed between the two prismatic secondary batteries 100, 100, and thus passes through the middle of the two prismatic secondary batteries 100, 100 and the wide side 2 c of the battery container 2. In a plane parallel to the plane. That is, the side plates 111 and the bottom plate 112 of the intermediate cell holder 92 are formed on the narrow sides 2 d and 2 d and the lower end faces 2 b and 2 b of the battery containers 2 and 2 of the two prismatic secondary batteries 100 and 100 arranged on both sides of the intermediate cell holder 92. On the other hand, approximately half each of the battery container 2 in the thickness direction (Y-axis direction) is opposed.
一対の側板111、111は、電池容器2の幅方向の両端部で対峙して、それぞれ電池容器2の厚さの半分に達する幅で電池容器2の厚さ方向に延在している。底板112は、電池容器2の下端面2bと垂直な方向、すなわち電池容器2の高さ方向(Z軸方向)の下端部で、電池容器2の厚さの半分に達する幅で電池容器2の幅方向に延在して、一対の側板111、111の下端部間を連結している。また、電池容器2の厚さ方向の両側に配置された対向する一対の中間セルホルダ92、92は、互いの側板111、111および底板112、112の端部が突き合わされるか僅かに隙間をあけて配置されることで、これらの間に角形二次電池100を保持する空間が形成される。
The pair of side plates 111 faces the opposite ends in the width direction of the battery case 2 and extends in the thickness direction of the battery case 2 so as to reach half of the thickness of the battery case 2. The bottom plate 112 has a width that reaches half of the thickness of the battery case 2 at the lower end of the battery case 2 in the direction perpendicular to the lower end surface 2 b, ie, the height direction (Z-axis direction) of the battery case 2. It extends in the width direction and connects the lower ends of the pair of side plates 111, 111. Further, the pair of opposing intermediate cell holders 92, 92 disposed on both sides in the thickness direction of the battery container 2 have their end portions of the side plates 111, 111 and the bottom plates 112, 112 butted or slightly separated from each other By being disposed, a space for holding the prismatic secondary battery 100 is formed between them.
電池容器2の幅方向に対向する一対の側板111、111は、広側面2cの幅方向に延びる複数のスペーサ101、102、103によって連結されている。より詳細には、一対の側板111、111は、これらの下端部を連結する下端部スペーサ101と、これらの上端部を連結する上端部スペーサ102と、これらの中間部を連結する複数の中間部スペーサ103とにより連結されている。
A pair of side plates 111, 111 facing each other in the width direction of the battery container 2 are connected by a plurality of spacers 101, 102, 103 extending in the width direction of the wide side surface 2c. More specifically, the pair of side plates 111, 111 is a lower end spacer 101 connecting the lower ends thereof, an upper end spacer 102 connecting the upper ends thereof, and a plurality of intermediate portions connecting intermediate portions of these It is connected by the spacer 103.
下端部スペーサ101は、下端が底板112と連結されている。上端部スペーサ102のZ軸方向の幅は、電池容器2に内蔵された電極群40の上端面2a側の湾曲部40cから電池蓋3の下方位置までのZ軸方向の寸法に対応して、他のスペーサ101,103の幅よりも広くなっている。下端部スペーサ101と中間部スペーサ103との間隔、および上端部スペーサ102と中間部スペーサ103との間隔は、中間部スペーサ103同士の間隔よりも狭くなっている。
The lower end spacer 101 is connected to the bottom plate 112 at its lower end. The width in the Z-axis direction of the upper end spacer 102 corresponds to the dimension in the Z-axis direction from the curved portion 40c on the upper end surface 2a side of the electrode group 40 built in the battery container 2 to the lower position of the battery lid 3 It is wider than the width of the other spacers 101 and 103. The distance between the lower end spacer 101 and the middle spacer 103 and the distance between the upper end spacer 102 and the middle spacer 103 are smaller than the distance between the middle spacers 103.
中間セルホルダ92のスペーサ101、102、103は、隣接する2つの角形二次電池100、100の電池容器2、2の広側面2c、2c間に配置され、広側面2c、2cに対向して配置される。端部セルホルダ93のスペーサ101、102、103は、積層方向の両端に配置された角形二次電池100の電池容器2の広側面2cに対向して配置される。
The spacers 101, 102, 103 of the intermediate cell holder 92 are disposed between the wide side surfaces 2c, 2c of the battery containers 2, 2 of the two adjacent prismatic secondary batteries 100, 100, and are disposed facing the wide side surfaces 2c, 2c. Be done. The spacers 101, 102, and 103 of the end cell holder 93 are disposed to face the wide side surface 2c of the battery container 2 of the prismatic secondary battery 100 disposed at both ends in the stacking direction.
側板111は、第1の開口部111aと、第2の開口部111bと、を有している。第1の開口部111aは、電池容器2の高さ方向(Z軸方向)において下端部スペーサ101と中間部スペーサ103との間の位置、および、上端部スペーサ102と中間部スペーサ103との間の位置に形成されている。第2の開口部111bは、Z方向において中間部スペーサ103同士の間の位置に形成されている。第1の開口部111aと第2の開口部111bは、電池容器2の厚さ方向(Y軸方向)の開口幅が等しくなっている。各開口部111a、111bのZ軸方向の開口高さは、各スペーサ101、102、103の間隔に対応して、第1の開口部111aよりも第2の開口部111bの方が大きくなっている。
The side plate 111 has a first opening 111 a and a second opening 111 b. The first opening 111 a is located between the lower end spacer 101 and the intermediate spacer 103 in the height direction (Z-axis direction) of the battery container 2, and between the upper end spacer 102 and the intermediate spacer 103. It is formed in the position of. The second opening 111 b is formed at a position between the middle spacers 103 in the Z direction. The first opening 111 a and the second opening 111 b have the same opening width in the thickness direction (Y-axis direction) of the battery case 2. The heights of the openings 111a and 111b in the Z-axis direction are larger in the second opening 111b than in the first opening 111a, corresponding to the distance between the spacers 101, 102, and 103. There is.
スペーサ101、102、103は、電池容器2の高さ方向(Z軸方向)に互いに間隔をあけて配置されることで、電池容器2の広側面2cに沿ってその幅方向に延びる複数のスリット114、115を形成している。各スペーサ101、102、103間の間隔に対応して、下端部スペーサ101と中間部スペーサ103との間、および上端部スペーサ102と中間部スペーサ103との間には、Z軸方向の幅が比較的狭い第1のスリット114が形成されている。また、中間部スペーサ103同士の間には、Z軸方向の幅が比較的広い第2のスリット115が形成されている。第1のスリット114は、一対の側板111の第1の開口部111aを連通し、第2のスリット115は一対の側板111の第2の開口部111bを連通している。これにより、スリット114、115に冷却媒体を通過させ、角形二次電池100の電池容器2の広側面2cを冷却できるようになっている。
The spacers 101, 102, and 103 are spaced apart from each other in the height direction (Z-axis direction) of the battery case 2, whereby a plurality of slits extending in the width direction along the wide side 2c of the battery case 2 114 and 115 are formed. Widths in the Z-axis direction between the lower end spacer 101 and the intermediate spacer 103 and between the upper end spacer 102 and the intermediate spacer 103 correspond to the intervals between the respective spacers 101, 102, and 103. A relatively narrow first slit 114 is formed. In addition, second slits 115 having a relatively wide width in the Z-axis direction are formed between the middle portion spacers 103. The first slits 114 communicate the first openings 111 a of the pair of side plates 111, and the second slits 115 communicate the second openings 111 b of the pair of side plates 111. As a result, the cooling medium is allowed to pass through the slits 114 and 115, and the wide side surface 2c of the battery container 2 of the prismatic secondary battery 100 can be cooled.
以上の構成を有する中間セルホルダ92を介在させて、複数の角形二次電池100を厚さ方向に積層させ、積層方向両端の角形二次電池100の外側に端部セルホルダ93を配置することで、複数の角形二次電池100を厚さ方向にスペーサ101、102、103を介在させて積層させた二次電池モジュール(組電池)200が得られる。
By interposing the intermediate cell holder 92 having the above configuration, the plurality of prismatic secondary batteries 100 are stacked in the thickness direction, and the end cell holder 93 is disposed outside the prismatic secondary batteries 100 at both ends in the stacking direction. A secondary battery module (assembled battery) 200 in which a plurality of prismatic secondary batteries 100 are stacked with the spacers 101, 102, and 103 interposed in the thickness direction is obtained.
図示は省略するが、一対の端部セルホルダ93、93の外側には、一対の端板が配置され、該一対の端板は金属帯によって連結される。これにより、複数の角形二次電池100は、中間セルホルダ92および端部セルホルダ93からなるセルホルダ91によって保持されて固定される。また、モジュール200の隣接する角形二次電池100、100の正極端子60および負極端子70のボルト61、71を、バスバーの貫通孔に挿通させてナットで固定することで、モジュール200の角形二次電池100を直列に接続することができる。これにより、モジュール200は、各角形二次電池100に蓄えられた電力をモータ等の外部の装置に供給し、発電機等の外部の電力源から供給された電力を各角形二次電池100に蓄えることができる。
Although not shown, a pair of end plates are disposed outside the pair of end cell holders 93, 93, and the pair of end plates are connected by a metal band. Thereby, the plurality of prismatic secondary batteries 100 are held and fixed by the cell holder 91 including the intermediate cell holder 92 and the end cell holder 93. In addition, by inserting the bolts 61 and 71 of the positive electrode terminal 60 and the negative electrode terminal 70 of the adjacent square secondary batteries 100 and 100 of the module 200 into the through holes of the bus bars and fixing them with nuts, the square secondary of the module 200 is obtained. The batteries 100 can be connected in series. Thus, the module 200 supplies the power stored in each of the prismatic secondary batteries 100 to an external device such as a motor, and transmits the power supplied from an external power source such as a generator to each prismatic secondary battery 100. It can be stored.
角形二次電池100は、充放電によって電極群40が膨脹収縮する。電極群40が膨脹する際に、電極群40が電池容器2の広側面2cの内側に絶縁シートを介して当接すると、電池容器2が外側に押し広げられて、電池容器2が電極群40の膨張形状に対応した形状に膨張する場合がある。この場合、電池容器2の広側面2cに対向する中間部スペーサ103が広側面2cに当接して、広側面2cに電極群40の膨張に対する抗力が作用することで、電池容器2の膨張が抑制される。このとき、広側面2cに当接する中間部スペーサ103の面圧が不均一になると、角形二次電池100の性能や寿命が劣化する虞がある。そのため、電池容器2の広側面2cに当接する中間部スペーサ103の面圧を均一にすることが求められる。
In the prismatic secondary battery 100, the electrode group 40 expands and contracts due to charge and discharge. When the electrode group 40 abuts against the inside of the wide side surface 2 c of the battery case 2 via the insulating sheet when the electrode group 40 expands, the battery case 2 is spread outward, and the battery case 2 is obtained by the electrode group 40. May expand to a shape corresponding to the expanded shape of. In this case, the intermediate portion spacer 103 opposed to the wide side 2c of the battery container 2 abuts on the wide side 2c, and the wide side 2c acts against the expansion of the electrode assembly 40, thereby suppressing the expansion of the battery container 2. Be done. At this time, if the surface pressure of the intermediate portion spacer 103 in contact with the wide side surface 2c becomes uneven, the performance and the life of the prismatic secondary battery 100 may be degraded. Therefore, it is required to make the surface pressure of the intermediate portion spacer 103 in contact with the wide side surface 2 c of the battery container 2 uniform.
(スペーサ)
以下、本実施の形態の二次電池モジュールが備える中間部スペーサ103について、詳細に説明する。以下の説明では、中間部スペーサ103を、単にスペーサ103という場合がある。 (Spacer)
Hereinafter,middle part spacer 103 with which the rechargeable battery module of this embodiment is provided is explained in detail. In the following description, the intermediate spacer 103 may be simply referred to as the spacer 103.
以下、本実施の形態の二次電池モジュールが備える中間部スペーサ103について、詳細に説明する。以下の説明では、中間部スペーサ103を、単にスペーサ103という場合がある。 (Spacer)
Hereinafter,
図7Aは、図5に示す一対のセルホルダ92、92の間に挟持された角形二次電池100の平面図である。図7Bは、図7AのB-B線に沿うセルホルダ92、92の断面図である。図7Cは、図7Bに示す断面図において、角形二次電池100の電池容器2が膨張した状態を表している。なお、図7Aないし図7Cにおいて、セルホルダ92の側板111および底板112の図示は省略している。また、図7Aないし図7Cにおいては、説明を分かりやすくするために、電池容器2の膨張量およびスペーサ103の厚さ等を、実際よりも誇張して表している。
FIG. 7A is a plan view of a prismatic secondary battery 100 sandwiched between a pair of cell holders 92, 92 shown in FIG. FIG. 7B is a cross-sectional view of the cell holders 92, 92 taken along the line BB in FIG. 7A. FIG. 7C shows the expanded state of the battery case 2 of the prismatic secondary battery 100 in the cross-sectional view shown in FIG. 7B. 7A to 7C, illustration of the side plate 111 and the bottom plate 112 of the cell holder 92 is omitted. Further, in FIGS. 7A to 7C, in order to make the description easy to understand, the expansion amount of the battery container 2, the thickness of the spacer 103, and the like are exaggeratingly shown.
本実施の形態のモジュール200では、電池容器2の高さ方向(Z軸方向)において、上端部スペーサ102と下端部スペーサ101の間に、4本のスペーサ103が配置されている。4本のスペーサ103は、それぞれ当接部103Aまたは103Bを備えている。これにより、スペーサ103の複数の当接部103A、103Bが、電池容器2の高さ方向に間隔を開けて電池容器2の広側面2cに対向している。
In the module 200 of the present embodiment, four spacers 103 are disposed between the upper end spacer 102 and the lower end spacer 101 in the height direction (Z-axis direction) of the battery container 2. Each of the four spacers 103 includes an abutting portion 103A or 103B. As a result, the plurality of contact portions 103A and 103B of the spacer 103 are spaced from each other in the height direction of the battery case 2 and face the wide side surface 2c of the battery case 2.
電池容器2の内部に収容された電極群40の一対の湾曲部40cに近い位置、すなわち電池容器2の上端面2aおよび下端面2bに近い位置に配置されたスペーサ103、103は、当接部103Aの厚さTaが比較的に厚くされている。一方、電池容器2の高さ方向(Z軸方向)において、電極群40の平坦部40bの中間部、すなわち電池容器2の中中間部に配置されたスペーサ103,103は、当接部103Bの厚さTbが比較的に薄くされている。
The spacers 103 and 103 disposed at positions near the pair of curved portions 40c of the electrode group 40 housed inside the battery container 2, that is, at positions near the upper end surface 2a and the lower end surface 2b of the battery container 2, contact portions The thickness Ta of 103A is relatively thick. On the other hand, in the height direction of the battery case 2 (Z-axis direction), the spacers 103 and 103 disposed in the middle of the flat portion 40b of the electrode assembly 40, ie, in the middle of the battery case 2 The thickness Tb is relatively thin.
要するに、複数のスペーサ103は、Z軸方向において複数の当接部103A、103Bを有し、Z軸方向の両端に配置された当接部103A、103Aの間に、厚さTbが最も薄い当接部103Bが配置されている。換言すると、一対の当接部103A、103Aの間に、該一対の当接部103A、103Aよりも厚さTbが薄い当接部103A、103Bが配置されている。
In short, the plurality of spacers 103 have a plurality of contact portions 103A and 103B in the Z-axis direction, and the thickness Tb is the smallest between the contact portions 103A and 103A disposed at both ends in the Z-axis direction. The contact portion 103B is disposed. In other words, between the pair of contact portions 103A and 103A, the contact portions 103A and 103B having a smaller thickness Tb than the pair of contact portions 103A and 103A are disposed.
これにより、電池容器2の高さ方向(Z軸方向)において、電極群40の一対の湾曲部40cに近い位置で平坦部40bと電池容器2の厚さ方向(Y軸方向)に重なるスペーサ103,103と電池容器2の広側面2cとの間隔Gaは比較的に狭くなっている。一方、Z軸方向において、電極群40の平坦部40bの中間部とY軸方向に重なるスペーサ103,103と電池容器2の広側面2cとの間隔Gbは、比較的に広くなっている。
Thus, in the height direction (Z-axis direction) of the battery case 2, the spacer 103 overlaps the flat portion 40b in the thickness direction (Y-axis direction) of the battery case 2 at a position close to the pair of curved portions 40c of the electrode assembly 40. , 103 and the wide side 2c of the battery case 2 are relatively narrow. On the other hand, in the Z-axis direction, the distance Gb between the spacers 103 and 103 overlapping in the Y-axis direction with the middle part of the flat portion 40b of the electrode group 40 and the wide side 2c of the battery container 2 is relatively wide.
また、当接部103A、103Bは、角形二次電池100の電池容器2が厚さ方向(Y軸方向)に膨張したときに、電池容器2の広側面2cに当接する当接面103a、103bを有している。当接面103a、103bは、図7Aに示すように、電池容器2の幅方向(X軸方向)において、電池容器2の中央に近いほど広側面2cとの間隔Ga、Gbが広くなるように曲線状に湾曲している。これにより、スペーサ103は、X軸方向において、電池容器2の中央に近いほど当接部103A、103Bの厚さTa、Tbが薄くされている。
The contact portions 103A and 103B are contact surfaces 103a and 103b that contact the wide side 2c of the battery case 2 when the battery case 2 of the prismatic secondary battery 100 expands in the thickness direction (Y-axis direction). have. As shown in FIG. 7A, in the width direction (X-axis direction) of the battery container 2, the contact surfaces 103 a and 103 b are such that the distances Ga and Gb with the wide side surface 2 c become wider as they approach the center of the battery container 2. Curved and curved. As a result, in the spacer 103, the thicknesses Ta and Tb of the contact portions 103A and 103B are made thinner toward the center of the battery container 2 in the X-axis direction.
本実施形態のモジュール200において、スペーサ103の厚さ、すなわち当接部103A、103Bの厚さTa、Tbは、角形二次電池100の電池容器2の膨張形状に基づいて決定されている。より具体的には、図7Cに示すように、角形二次電池100の充放電によって電池容器2の内部の電極群40が膨脹して電池容器2の広側面2cの内側に絶縁シートを介して当接すると、電池容器2が外側に押し広げられて、電池容器2が電極群40の膨張形状に対応した形状に膨張する場合がある。スペーサ103の当接部103A、103Bの厚さTa、Tbは、このときの電池容器2内の電極群40の膨張形状に基づいて決定されている。
In the module 200 of the present embodiment, the thickness of the spacer 103, that is, the thicknesses Ta and Tb of the contact portions 103A and 103B are determined based on the expanded shape of the battery container 2 of the prismatic secondary battery 100. More specifically, as shown in FIG. 7C, the electrode group 40 inside the battery container 2 expands due to charge and discharge of the prismatic secondary battery 100, and the insulating sheet is placed inside the wide side surface 2c of the battery container 2. When in contact, the battery container 2 may be spread outward, and the battery container 2 may expand to a shape corresponding to the expanded shape of the electrode assembly 40. The thicknesses Ta and Tb of the contact portions 103A and 103B of the spacer 103 are determined based on the expanded shape of the electrode group 40 in the battery container 2 at this time.
図8Aは、図1に示すF8a-F8a線に沿う断面において、角形二次電池100の膨張時の電池容器2の幅方向(X軸方向)における電池容器2の厚さの変化を示すグラフである。図8Bは、図1に示すF8b-F8b線に沿う断面において、角形二次電池100の膨張時の電池容器2の高さ方向(Z軸方向)における電池容器2の厚さの変化を示すグラフである。
FIG. 8A is a graph showing a change in thickness of battery container 2 in the width direction (X-axis direction) of battery container 2 at the time of expansion of prismatic secondary battery 100 in a cross section taken along line F8a-F8a shown in FIG. is there. FIG. 8B is a graph showing a change in thickness of battery container 2 in the height direction (Z-axis direction) of battery container 2 at the time of expansion of prismatic secondary battery 100 in the cross section along line F8b-F8b shown in FIG. It is.
図8Aに示すように、電池容器2のY軸方向における寸法である厚さは、幅方向(X軸方向)の両側の領域X1、X3における厚さよりも、幅方向中間部の領域X2における厚さの方が厚くなっている。また、電池容器2は、幅方向中間部の領域X2の中央付近の厚さが最も大きくなっている。また、図8Bに示すように、電池容器2の厚さは、高さ方向(Z軸方向)の上下の領域Z1、Z3における厚さよりも、高さ方向中間部の領域Z2における厚さの方が厚くなっている。また、電池容器2は、高さ方向中間部の領域Z2の中央付近の厚さが最も大きくなっている。
As shown in FIG. 8A, the thickness which is the dimension in the Y-axis direction of the battery container 2 is the thickness in the region X2 in the widthwise intermediate portion than the thickness in the regions X1 and X3 on both sides in the width direction (X-axis direction) Is thicker. In the battery case 2, the thickness in the vicinity of the center of the region X <b> 2 in the widthwise intermediate portion is the largest. Further, as shown in FIG. 8B, the thickness of the battery case 2 is the thickness in the region Z2 in the middle in the height direction than the thickness in the regions Z1 and Z3 in the upper and lower directions in the height direction (Z-axis direction). Is thicker. In the battery case 2, the thickness in the vicinity of the center of the region Z <b> 2 in the middle in the height direction is the largest.
図8Aおよび図8Bに示す電池容器2の厚さが最も厚い部分は、電池容器2の広側面2cが、図2に示す電極群40の膨張形状の頂部40pと厚さ方向(Y軸方向)に重なる位置である。
In the thickest portion of the battery container 2 shown in FIGS. 8A and 8B, the wide side surface 2c of the battery container 2 is in the thickness direction (Y-axis direction) with the top 40p of the expanded shape of the electrode assembly 40 shown in FIG. It is a position which overlaps with.
電極群40は、幅方向の両端部において箔露出部41c、42cが束ねられて接合されて接合部40d、40dが形成されている。そのため、電極群40は幅方向の両端部が膨脹しにくく、接合部40dから離れた平坦部40bの中央部が最も膨張しやすくなる。また、電極群40は、扁平面40fに沿う方向でかつ軸方向Dに交差する方向、具体的には電池容器2の高さ方向において、上下の湾曲部40c、40cが膨脹しにくく、湾曲部40c、40cから遠い平坦部40bの中央部ほど膨張しやすい。さらに、電池容器2は、広側面2cの周縁部が変形し難く、中央部が変形しやすい。これらの複合的な要因によって、電極群40の膨張形状の頂部40pは、電極群40の平坦部40bの中央部に形成される。
In the electrode group 40, the foil exposed portions 41c and 42c are bundled and joined at both end portions in the width direction, and bonding portions 40d and 40d are formed. Therefore, in the electrode group 40, both end portions in the width direction hardly expand, and the central portion of the flat portion 40b separated from the bonding portion 40d is most easily expanded. In the electrode group 40, the upper and lower curved portions 40c and 40c are less likely to expand in the direction along the flat surface 40f and in the direction intersecting the axial direction D, specifically, the height direction of the battery container 2, and the curved portions The central portion of the flat portion 40b farther from 40c, 40c tends to expand. Furthermore, in the battery container 2, the peripheral portion of the wide side surface 2 c is not easily deformed, and the central portion is easily deformed. Due to these combined factors, the top 40 p of the expanded shape of the electrode group 40 is formed at the center of the flat portion 40 b of the electrode group 40.
なお、本実施形態では、電極群40の扁平面40fに沿う方向でかつ軸方向Dに交差する電池容器2の高さ方向(Z軸方向)において、接合部40d、40dは、箔露出部41c、42cの中央部に形成されている。この場合、電極群40の膨張形状の頂部40pは、軸方向DすなわちX軸方向に見て、Z軸方向の位置が、接合部40d、40dのZ軸方向の位置と重なる位置に形成される。
In the present embodiment, in the height direction (Z-axis direction) of the battery container 2 intersecting the axial direction D in the direction along the flat surface 40f of the electrode group 40, the bonding portions 40d and 40d are foil exposed portions 41c. , 42c in the central portion. In this case, the top 40p of the expanded shape of the electrode group 40 is formed at a position where the position in the Z-axis direction overlaps the position in the Z-axis direction of the bonding portions 40d and 40d when viewed in the axial direction D, ie, the X-axis direction. .
そのため、図7Aないし図7Cに示すように、スペーサ103は、電極群40の軸方向Dに沿う電池容器2の幅方向(X軸方向)において、当接部103A、103Bの厚さTa、Tbが、電極群40の頂部40pに近いほど薄くされている。また、スペーサ103は、電極群40の電極群40の扁平面40fに沿う方向でかつ軸方向Dと交差するZ軸方向において、当接部103A、103Bの厚さTa、Tbが、電極群40の膨張形状の頂部40pに近いほど薄くされている。そして、スペーサ103は、電極群40の接合部40dのZ軸方向の位置と重なるZ軸方向の位置で最も薄くされている。すなわち、スペーサ103は、電極群40の膨張形状に対応する三次元形状を有している。
Therefore, as shown in FIGS. 7A to 7C, the spacers 103 have thicknesses Ta and Tb of the contact portions 103A and 103B in the width direction (X-axis direction) of the battery case 2 along the axial direction D of the electrode assembly 40. Is made thinner toward the top 40p of the electrode assembly 40. In the spacer 103, the thicknesses Ta and Tb of the contact portions 103A and 103B in the direction along the flat surface 40f of the electrode group 40 of the electrode group 40 and in the Z-axis direction intersecting the axial direction D The closer to the top 40p of the expanded shape of the light source is thinner. The spacer 103 is the thinnest at the position in the Z-axis direction overlapping the position in the Z-axis direction of the bonding portion 40 d of the electrode group 40. That is, the spacer 103 has a three-dimensional shape corresponding to the expanded shape of the electrode group 40.
これにより、スペーサ103は、電極群40の三次元的な膨張形状に対応する三次元形状を有し、X軸方向およびZ軸方向の双方で、電池容器2が電極群40の膨張形状に基づく形状に膨張することを許容することができる。したがって、本実施の形態のモジュール200によれば、角形二次電池100の充放電に伴って、電池容器2が電極群40の三次元的な膨張形状に対応する形状に膨脹した場合であっても、広側面2cに当接するスペーサ103の面圧を均一化することができる。
Thus, the spacer 103 has a three-dimensional shape corresponding to the three-dimensional expanded shape of the electrode group 40, and the battery container 2 is based on the expanded shape of the electrode group 40 in both the X-axis direction and the Z-axis direction. It can be allowed to expand in shape. Therefore, according to module 200 of the present embodiment, battery case 2 is expanded to a shape corresponding to the three-dimensional expansion shape of electrode group 40 along with charge and discharge of prismatic secondary battery 100. Also, the surface pressure of the spacer 103 in contact with the wide side surface 2c can be made uniform.
また、電池容器2の広側面2cに対向するスペーサ103が広側面2cに当接して、広側面2cに電極群40の膨張に対する抗力が作用するので、電池容器2の膨張が抑制される。このとき、広側面2cに当接するスペーサ103の面圧が均一化されるので、角形二次電池100の性能や寿命の劣化を防止することができる。
In addition, since the spacer 103 facing the wide side 2c of the battery container 2 abuts on the wide side 2c and a reaction against expansion of the electrode group 40 acts on the wide side 2c, the expansion of the battery case 2 is suppressed. At this time, the surface pressure of the spacer 103 in contact with the wide side surface 2c is equalized, so that deterioration of the performance and life of the prismatic secondary battery 100 can be prevented.
また、電池容器2の高さ方向(Z軸方向)に複数のスペーサ103が間隔を開けて配置され、複数のスペーサ103が電池容器2の広側面2cに当接する複数の当接部103A、103Bを有している。そのため、各スペーサ103の当接部103A、103Bの間にスリット115を形成し、冷却媒体を流通させて電池容器2の広側面2cを冷却することができる。
Further, a plurality of spacers 103 are arranged at intervals in the height direction (Z-axis direction) of the battery case 2 and a plurality of contact portions 103A and 103B in which the plurality of spacers 103 abut the wide side 2c of the battery case 2 have. Therefore, the slits 115 can be formed between the contact portions 103A and 103B of the respective spacers 103, and the cooling medium can be circulated to cool the wide side surface 2c of the battery container 2.
また、Z軸方向の両端に配置された当接部103A、103Aの間に、これらよりも厚さTbが薄い当接部103Bを配置することで、電池容器2が電極群40の膨張形状に対応する形状に膨脹した場合であっても、Z軸方向において広側面2cに当接するスペーサ103の面圧を均一化することができる。
In addition, the battery container 2 has an expanded shape of the electrode group 40 by arranging the contact portion 103B having a thickness Tb thinner than the contact portions 103A and 103A disposed at both ends in the Z-axis direction. Even in the case of expansion to a corresponding shape, the surface pressure of the spacer 103 in contact with the wide side surface 2c in the Z-axis direction can be made uniform.
以上説明したように、本実施形態の電池モジュール200によれば、電極群40の膨張形状の頂部40Pに近いほどスペーサ103の厚さを薄くすることで、角形二次電池100の拘束時に電池容器2の広側面2cに作用する面圧を均一化して、角形二次電池100の性能や寿命の劣化を防止することができる。
As described above, according to the battery module 200 of the present embodiment, the thickness of the spacer 103 is reduced closer to the top 40 P of the expanded shape of the electrode assembly 40, so that the battery container is restrained when the square secondary battery 100 is restrained. The surface pressure acting on the wide side surface 2c of 2 can be made uniform to prevent the deterioration of the performance and the life of the prismatic secondary battery 100.
[実施形態2]
次に、本発明の組電池の実施形態2について、図1ないし6、図8Aおよび8Bを援用し、図9Aおよび9Bを用いて説明する。 Second Embodiment
Next,Embodiment 2 of the assembled battery of the present invention will be described with reference to FIGS. 1 to 6, FIGS. 8A and 8B, and FIGS. 9A and 9B.
次に、本発明の組電池の実施形態2について、図1ないし6、図8Aおよび8Bを援用し、図9Aおよび9Bを用いて説明する。 Second Embodiment
Next,
図9Aは、実施形態1の図7Aに対応する本実施形態の二次電池モジュールのスペーサ103を示す平面図である。図9Bは、図9AのB-B線に沿うスペーサ103の断面図である。
FIG. 9A is a plan view showing a spacer 103 of a secondary battery module of the present embodiment corresponding to FIG. 7A of the first embodiment. FIG. 9B is a cross-sectional view of the spacer 103 taken along the line BB in FIG. 9A.
本実施形態の二次電池モジュールは、スペーサ103の当接部103C、103Dの当接面103c、103dが、電極群40の膨張形状に沿うように傾斜している点で、実施形態1の二次電池モジュール200と異なっている。また、上端部スペーサ102と下端部スペーサ101は、上下のスペーサ103に連結されている。本実施形態の二次電池モジュールのその他の点は、実施形態1の二次電池モジュール200と同一であるので、同一の部分には同一の符号を付して説明は省略する。
The secondary battery module of the present embodiment is characterized in that the contact surfaces 103c and 103d of the contact portions 103C and 103D of the spacer 103 are inclined to follow the expanded shape of the electrode assembly 40 in the second embodiment. It differs from the secondary battery module 200. The upper end spacer 102 and the lower end spacer 101 are connected to the upper and lower spacers 103. The other points of the secondary battery module according to the present embodiment are the same as those of the secondary battery module 200 according to the first embodiment, so the same reference numerals are given to the same parts and the description will be omitted.
本実施形態では、電池容器2の広側面2cに対向するスペーサ103の当接部103C、103Dの当接面103c、103dが、電池容器2の高さ方向(Z軸方向)および幅方向(X軸方向)において、電極群40の膨張形状に沿うように傾斜している。より詳細には、当接部103C、103Dの当接面103c、103dは、電極群40の膨張形状に応じて膨張した電池容器2の広側面2cのX軸方向およびZ軸方向に対する傾斜角度に対応する角度で傾斜している。これにより、当接部103C、103Dは、X軸方向およびZ軸方向において、電極群40の膨張形状の頂部40pに近いほど厚さTc、Tdが薄くされている。
In the present embodiment, the contact surfaces 103c and 103d of the contact portions 103C and 103D of the spacer 103 facing the wide side surface 2c of the battery container 2 are in the height direction (Z-axis direction) and the width direction (X of the battery container 2). In the axial direction, it is inclined to follow the expanded shape of the electrode assembly 40. More specifically, the contact surfaces 103c and 103d of the contact portions 103C and 103D are the inclination angles of the wide side surface 2c of the battery container 2 expanded according to the expanded shape of the electrode group 40 with respect to the X axis direction and Z axis direction. It is inclined at the corresponding angle. Thus, the thicknesses Tc and Td of the contact portions 103C and 103D are made thinner toward the top 40p of the expanded shape of the electrode assembly 40 in the X-axis direction and the Z-axis direction.
本実施形態の二次電池モジュールによれば、実施形態1の二次電池モジュール200と同様の効果が得られるだけでなく、スペーサ103の当接部103C、103Dの当接面103c、103dがX軸方向またはZ軸方向に平行な場合よりも、スペーサ103が電池容器2の広側面2cに当接する際の面圧を均一化することができる。また、上端部スペーサ102と下端部スペーサ101は、上下のスペーサ103に連結されているので、セルホルダ92の製作が容易になる。
According to the secondary battery module of the present embodiment, not only effects similar to those of the secondary battery module 200 of the first embodiment can be obtained, but the contact surfaces 103c and 103d of the contact portions 103C and 103D of the spacer 103 are X The surface pressure when the spacer 103 abuts on the wide side surface 2c of the battery container 2 can be made more uniform than in the case of being parallel to the axial direction or the Z-axis direction. Further, since the upper end spacer 102 and the lower end spacer 101 are connected to the upper and lower spacers 103, the cell holder 92 can be easily manufactured.
[実施形態3]
次に、本発明の組電池の実施形態3について、図1ないし6、図8Aおよび8Bを援用し、図10Aおよび10Bを用いて説明する。 Third Embodiment
Next,Embodiment 3 of the assembled battery of the present invention will be described with reference to FIGS. 1 to 6, FIGS. 8A and 8B, and FIGS. 10A and 10B.
次に、本発明の組電池の実施形態3について、図1ないし6、図8Aおよび8Bを援用し、図10Aおよび10Bを用いて説明する。 Third Embodiment
Next,
図10Aは、実施形態1の図7Aに対応する本実施形態の二次電池モジュールのスペーサ103を示す平面図である。図10Bは、図10AのB-B線に沿うスペーサ103の断面図である。
FIG. 10A is a plan view showing the spacer 103 of the secondary battery module of the present embodiment corresponding to FIG. 7A of the first embodiment. FIG. 10B is a cross-sectional view of the spacer 103 along the line BB in FIG. 10A.
本実施形態の二次電池モジュールは、角形二次電池100の電池容器2内に収容された電極群40の接合部40dが、電池容器2の下端面2bよりも上端面2aに近い位置に形成され、当接部103E、103F、103Gおよび103Hの厚さTe、Tf、Tg、Thが異なる点で、実施形態1の二次電池モジュール200と異なっている。本実施形態の二次電池モジュールのその他の点は、実施形態1の二次電池モジュール200と同一であるので、同一の部分には同一の符号を付して説明は省略する。
The secondary battery module of the present embodiment is formed at a position closer to the upper end surface 2 a than the lower end surface 2 b of the battery container 2, with the bonding portion 40 d of the electrode group 40 accommodated in the battery container 2 of the square secondary battery 100. The second embodiment differs from the secondary battery module 200 according to the first embodiment in that the thicknesses Te, Tf, Tg, and Th of the contact portions 103E, 103F, 103G, and 103H are different. The other points of the secondary battery module according to the present embodiment are the same as those of the secondary battery module 200 according to the first embodiment, so the same reference numerals are given to the same parts and the description will be omitted.
電極群40は接合部40dにおいて膨脹しにくいことから、電極群40の接合部40dが電池容器2の下端面2bよりも上端面2aに近い位置に形成されると、図10Bに示すように、電極群40の膨張形状の頂部40pは、接合部40dよりも電池容器2の下端面2b側に位置するようになる。そのため、本実施形態では、接合部40dよりも電池容器2の下端面2b側に位置する電極群40の膨張形状の頂部40pに最も近いスペーサ103の当接部103Gの厚さTgが最も薄くされている。
Since the electrode group 40 is difficult to expand at the bonding portion 40d, when the bonding portion 40d of the electrode group 40 is formed at a position closer to the upper end surface 2a than the lower end surface 2b of the battery container 2, as shown in FIG. The top 40p of the expanded shape of the electrode assembly 40 is positioned closer to the lower end surface 2b of the battery case 2 than the joint 40d. Therefore, in the present embodiment, the thickness Tg of the contact portion 103G of the spacer 103 closest to the top 40p of the expanded shape of the electrode group 40 located closer to the lower end surface 2b of the battery container 2 than the bonding portion 40d is made the smallest. ing.
また、電極群40の膨張形状の頂部40pから最も離れた電池容器2の上端面2a側の湾曲部40cに近いスペーサ103の当接部103Eの厚さTeが最も厚くされている。このスペーサ103よりも電極群40の膨張形状の頂部40pに近いスペーサ103の当接部103Fの厚さTfは、電池容器2の上端面2a側の当接部103Eの厚さTeよりも薄くされている。このスペーサ103よりも、電極群40の膨張形状の頂部40pに近く、電池容器2の下端面2b側の湾曲部40cに近い当接部103Hの厚さThは、当接部103Fの厚さTfよりも薄くされている。
Further, the thickness Te of the contact portion 103E of the spacer 103 closest to the curved portion 40c on the upper end face 2a side of the battery container 2 farthest from the top 40p of the expanded shape of the electrode group 40 is the thickest. The thickness Tf of the contact portion 103F of the spacer 103 closer to the top 40p of the expanded shape of the electrode group 40 than the spacer 103 is made thinner than the thickness Te of the contact portion 103E on the upper end surface 2a side of the battery case 2 ing. The thickness Th of the contact portion 103H closer to the top 40p of the expanded shape of the electrode group 40 than the spacer 103 and near the curved portion 40c on the lower end surface 2b side of the battery container 2 is the thickness Tf of the contact portion 103F. It is thinner than.
このように、スペーサ103は、電池容器2の高さ方向において、電池容器2の厚さ方向の厚さTe、Tf、Tg、Thが、厚さ方向に膨張する電極群40の膨張形状の頂部40pに近いほど薄くされている。したがって、本実施形態の電池モジュールによれば、電極群40の接合部40dが電池容器2の下端面2bよりも上端面2aに近い位置に形成され、電極群40の膨張形状の頂部40pが接合部40dよりも電池容器2の下端面2b側に位置する場合であっても、実施形態1の電池モジュール200と同様の効果を得ることができる。
Thus, in the height direction of the battery case 2, the spacer 103 has the thickness Te, Tf, Tg, Th of the battery case 2 in the thickness direction, and the top of the expanded shape of the electrode group 40 in which the thickness expands. It is made thinner as it approaches 40p. Therefore, according to the battery module of the present embodiment, the bonding portion 40 d of the electrode group 40 is formed closer to the upper end surface 2 a than the lower end surface 2 b of the battery container 2, and the top 40 p of the expanded shape of the electrode group 40 is bonded Even in the case of being positioned on the lower end surface 2b side of the battery case 2 than the portion 40d, the same effect as the battery module 200 of the first embodiment can be obtained.
また、電極群40の接合部40dが電池容器2の下端面2bよりも上端面2aに近い位置に形成されることで、集電板21、31の電池容器2の高さ方向の長さを短くすることができる。したがって、集電板21、31の電気抵抗を低減させて角形二次電池100の性能を向上させることができるだけでなく、材料コストを低減することができる。
Further, by forming the joint portion 40 d of the electrode group 40 at a position closer to the upper end surface 2 a than the lower end surface 2 b of the battery container 2, the length of the current collector plates 21, 31 in the height direction of the battery container 2 It can be shortened. Therefore, it is possible not only to reduce the electric resistance of the current collectors 21 and 31 to improve the performance of the prismatic secondary battery 100, but also to reduce the material cost.
さらに、本実施形態の二次電池モジュールにおいても、実施形態2と同様に、スペーサ103は、電池容器2に対向する当接部103E、103F、103G、103Hの当接面103e、103f、103g、103hが、電極群40の膨張形状に沿うように電池容器2の高さ方向および幅方向に対して傾斜してもよい。これにより、実施形態2と同様の効果を得ることができる。
Furthermore, also in the secondary battery module of the present embodiment, the spacer 103 is in contact with the contact surfaces 103e, 103f, 103g of the contact portions 103E, 103F, 103G, 103H facing the battery container 2 as in the second embodiment. 103 h may be inclined with respect to the height direction and the width direction of the battery container 2 so as to follow the expanded shape of the electrode group 40. Thereby, the same effect as that of the second embodiment can be obtained.
[実施形態4]
次に、本発明の組電池の実施形態4について、図1ないし6、図8Aおよび8Bを援用し、図11Aおよび11Bを用いて説明する。 Fourth Embodiment
Next,Embodiment 4 of the assembled battery of the present invention will be described with reference to FIGS. 11A and 11B with reference to FIGS. 1 to 6, FIGS. 8A and 8B.
次に、本発明の組電池の実施形態4について、図1ないし6、図8Aおよび8Bを援用し、図11Aおよび11Bを用いて説明する。 Fourth Embodiment
Next,
図11Aは、実施形態1の図7Aに対応する本実施形態の組電池のスペーサ103を示す平面図である。図11Bは、図11AのB-B線に沿うスペーサ103の断面図である。
FIG. 11A is a plan view showing the spacer 103 of the battery assembly of the present embodiment corresponding to FIG. 7A of the first embodiment. 11B is a cross-sectional view of the spacer 103 along the line BB in FIG. 11A.
本実施形態の二次電池モジュールは、角形二次電池100の電池容器2内に収容された電極群40の接合部40dが、電池容器2の上端面2aよりも下端面2bに近い位置に形成され、当接部103I、103J、103Kおよび103Lの厚さが異なる点で実施形態1の二次電池モジュール200と異なっている。本実施形態の二次電池モジュールのその他の点は、実施形態1の二次電池モジュール200と同一であるので、同一の部分には同一の符号を付して説明は省略する。
The secondary battery module of the present embodiment is formed at a position closer to the lower end surface 2b of the battery container 2 than the upper end surface 2a of the electrode assembly 40 of the electrode assembly 40 housed in the battery container 2 of the prismatic secondary battery 100 The second embodiment differs from the secondary battery module 200 of the first embodiment in that the thickness of the contact portions 103I, 103J, 103K and 103L is different. The other points of the secondary battery module according to the present embodiment are the same as those of the secondary battery module 200 according to the first embodiment, so the same reference numerals are given to the same parts and the description will be omitted.
電極群40は接合部40dにおいて膨脹しにくいことから、電極群40の接合部40dが電池容器2の上端面2aよりも下端面2bに近い位置に形成されると、図11Bに示すように、電極群40の膨張形状の頂部40pは、接合部40dよりも電池容器2の上端面2a側に位置するようになる。そのため、本実施形態では、接合部40dよりも電池容器2の上端面2a側に位置する電極群40の膨張形状の頂部40pに最も近いスペーサ103の当接部103Jの厚さTjが最も薄くされている。
Since the electrode group 40 does not easily expand at the bonding portion 40d, when the bonding portion 40d of the electrode group 40 is formed at a position closer to the lower end surface 2b than the upper end surface 2a of the battery container 2, as shown in FIG. The top 40p of the expanded shape of the electrode assembly 40 is positioned closer to the upper end surface 2a of the battery case 2 than the joint 40d. Therefore, in the present embodiment, the thickness Tj of the contact portion 103J of the spacer 103 closest to the top 40p of the expanded shape of the electrode group 40 located closer to the upper end surface 2a of the battery container 2 than the bonding portion 40d is made the smallest. ing.
また、電極群40の膨張形状の頂部40pから最も離れた電池容器2の下端面2b側の湾曲部40cに近いスペーサ103の当接部103Lの厚さTlが最も厚くされている。このスペーサ103よりも電極群40の膨張形状の頂部40pに近いスペーサ103の当接部103Kの厚さTkは、電池容器2の下端面2b側の当接部103Lの厚さTlよりも薄くされている。このスペーサ103よりも、電極群40の膨張形状の頂部40pに近く、電池容器2の上端面2a側の湾曲部40cに近い当接部103Iの厚さTiは、当接部103Kの厚さTkよりも薄くされている。
Further, the thickness Tl of the contact portion 103L of the spacer 103 closest to the curved portion 40c on the lower end surface 2b side of the battery container 2 farthest from the top 40p of the expanded shape of the electrode group 40 is the thickest. The thickness Tk of the contact portion 103K of the spacer 103 closer to the top 40p of the expanded shape of the electrode group 40 than the spacer 103 is thinner than the thickness Tl of the contact portion 103L on the lower end surface 2b side of the battery container 2 ing. The thickness Ti of the contact portion 103I closer to the top 40p of the expanded shape of the electrode assembly 40 than the spacer 103 and near the curved portion 40c on the upper end surface 2a side of the battery container 2 is the thickness Tk of the contact portion 103K. It is thinner than.
このように、スペーサ103は、電池容器2の高さ方向において、電池容器2の厚さ方向の厚さTi、Tj、Tk、Tlが、厚さ方向に膨張する電極群40の膨張形状の頂部40pに近いほど薄くされている。したがって、本実施形態の電池モジュールによれば、電極群40の接合部40dが電池容器2の上端面2aよりも下端面2bに近い位置に形成され、電極群40の膨張形状の頂部40pが接合部40dよりも電池容器2の上端面2a側に位置する場合であっても、実施形態1の電池モジュール200と同様の効果を得ることができる。
Thus, in the height direction of the battery case 2, the spacer 103 has the thickness Ti, Tj, Tk, Tl in the thickness direction of the battery case 2 at the top of the expanded shape of the electrode group 40 which expands in the thickness direction. It is made thinner as it approaches 40p. Therefore, according to the battery module of the present embodiment, the bonding portion 40 d of the electrode group 40 is formed closer to the lower end surface 2 b than the upper end surface 2 a of the battery container 2, and the top 40 p of the expanded shape of the electrode group 40 is bonded Even in the case of being positioned on the upper end surface 2a side of the battery container 2 than the portion 40d, the same effect as the battery module 200 of the first embodiment can be obtained.
また、電極群40の接合部40dが電池容器2の上端面2aよりも下端面2bに近い位置に形成されることで、集電板21、31の電池容器2の高さ方向の長さを長くすることができる。したがって、集電板21、31の製造時の折り曲げ加工を容易にして生産性を向上させ、製造コストを低減することができる。また、角形二次電池100に衝撃や振動が加わったときに、電極群40に作用する慣性力を集電板21、31によって緩和して、正極端子60および負極端子70が破損することを防止できる。
Further, by forming the joint 40 d of the electrode assembly 40 at a position closer to the lower end surface 2 b than the upper end surface 2 a of the battery container 2, the length of the current collector plates 21, 31 in the height direction of the battery container 2 It can be long. Therefore, the bending process at the time of manufacture of current collection boards 21 and 31 is made easy, productivity can be improved, and manufacturing cost can be reduced. In addition, when impact or vibration is applied to prismatic secondary battery 100, the inertial force acting on electrode group 40 is alleviated by current collecting plates 21 and 31 to prevent positive electrode terminal 60 and negative electrode terminal 70 from being damaged. it can.
さらに、本実施形態の二次電池モジュールにおいても、実施形態2と同様に、スペーサ103は、電池容器2に対向する当接部103I、103J、103K、103Lの当接面103i、103j、103k、103lが、電極群40の膨張形状に沿うように電池容器2の高さ方向および幅方向に対して傾斜してもよい。これにより、実施形態2と同様の効果を得ることができる。
Furthermore, also in the secondary battery module of the present embodiment, the spacers 103 are the same as the second embodiment in the contact surfaces 103i, 103j, 103k, of the contact portions 103I, 103J, 103K, 103L facing the battery container 2. 103 l may be inclined with respect to the height direction and the width direction of the battery case 2 so as to follow the expanded shape of the electrode group 40. Thereby, the same effect as that of the second embodiment can be obtained.
[実施形態5]
次に、本発明の組電池の実施形態5について、図1ないし6、図8Aおよび8Bを援用し、図12Aおよび12Bを用いて説明する。 Fifth Embodiment
Next, Embodiment 5 of the assembled battery of the present invention will be described with reference to FIGS. 12A and 12B with reference to FIGS. 1 to 6, FIGS. 8A and 8B.
次に、本発明の組電池の実施形態5について、図1ないし6、図8Aおよび8Bを援用し、図12Aおよび12Bを用いて説明する。 Fifth Embodiment
Next, Embodiment 5 of the assembled battery of the present invention will be described with reference to FIGS. 12A and 12B with reference to FIGS. 1 to 6, FIGS. 8A and 8B.
図12Aは、実施形態1の図7Aに対応する本実施形態の二次電池モジュールのスペーサ104を示す平面図である。図11Bは、図11AのB-B線に沿うスペーサ104の断面図である。
12A is a plan view showing a spacer 104 of a secondary battery module of the present embodiment corresponding to FIG. 7A of the first embodiment. FIG. 11B is a cross-sectional view of the spacer 104 along the line BB in FIG. 11A.
本実施形態の二次電池モジュールは、中間セルホルダ92Aおよび端部セルホルダ(図示省略)が、上端部スペーサ102、中間部スペーサ103および下端部スペーサ101を有さず、電池容器2の広側面2cの大部分に対向するスペーサ104を備える点で、実施形態1の二次電池モジュール200と異なっている。本実施形態の二次電池モジュールのその他の点は、実施形態1の二次電池モジュール200と同一であるので、同一の部分には同一の符号を付して説明は省略する。
In the secondary battery module of the present embodiment, the intermediate cell holder 92A and the end cell holder (not shown) do not have the upper end spacer 102, the intermediate spacer 103 and the lower end spacer 101, and the wide side surface 2c of the battery container 2 The secondary battery module 200 is different from the secondary battery module 200 according to the first embodiment in that most of the spacers 104 are opposed to each other. The other points of the secondary battery module according to the present embodiment are the same as those of the secondary battery module 200 according to the first embodiment, so the same reference numerals are given to the same parts and the description will be omitted.
本実施形態のスペーサ104は、電池容器2の厚さ方向(Y軸方向)の側面視で長方形の板状に形成されている。スペーサ104は、電池容器2の高さ方向(Z軸方向)および幅方向(X軸方向)において、Y軸方向の厚さTが、Y軸方向に膨張する電極群40の膨張形状の頂部40pに近いほど薄くされている。したがって、実施形態1の二次電池モジュール200と同様に、角形二次電池100の拘束時に電池容器2の広側面2cに作用する面圧を均一化して、角形二次電池100の性能や寿命の劣化を防止することができる。
The spacer 104 of the present embodiment is formed in a rectangular plate shape in a side view in the thickness direction (Y-axis direction) of the battery container 2. In the spacer 104, the thickness T of the Y-axis direction in the height direction (Z-axis direction) and the width direction (X-axis direction) of the battery container 2 is the top 40p of the expanded shape of the electrode group 40 expanded in the Y-axis direction. The closer it is to the Therefore, like the secondary battery module 200 of the first embodiment, the surface pressure acting on the wide side surface 2c of the battery case 2 is equalized when the square secondary battery 100 is restrained, and the performance and the life of the square secondary battery 100 are improved. Deterioration can be prevented.
本実施形態の二次電池モジュールにおいても、実施形態2と同様に、スペーサ104は、電池容器2に対向する当接面104aが、電極群40の膨張形状に沿うように電池容器2の高さ方向および幅方向に対して傾斜している。これにより、スペーサ104は、電池容器2の広側面2cに対向する当接面104aが、電極群40の膨張形状に基づく電池容器2の三次元的な膨張形状に対応する三次元的な凹曲面形状に形成されている。したがって、実施形態2の二次電池モジュールと同様に、角形二次電池100の拘束時に電池容器2の広側面2cに作用する面圧をより均一化することができる。
Also in the secondary battery module of the present embodiment, the spacer 104 has the height of the battery container 2 so that the contact surface 104 a facing the battery container 2 conforms to the expanded shape of the electrode assembly 40 as in the second embodiment. It is inclined to the direction and width direction. Thus, the spacer 104 has a three-dimensional concave surface whose abutment surface 104 a facing the wide side surface 2 c of the battery container 2 corresponds to the three-dimensional expansion shape of the battery container 2 based on the expansion shape of the electrode group 40. It is formed in shape. Therefore, like the secondary battery module of the second embodiment, the surface pressure acting on the wide side surface 2 c of the battery container 2 can be made more uniform when the prismatic secondary battery 100 is restrained.
[実施形態6]
次に、本発明の組電池の実施形態6について、図1ないし6、図8Aおよび8Bを援用し、図13Aおよび13Bを用いて説明する。 Sixth Embodiment
Next, Embodiment 6 of the assembled battery of the present invention will be described with reference to FIGS. 13A and 13B with reference to FIGS. 1 to 6, FIGS. 8A and 8B.
次に、本発明の組電池の実施形態6について、図1ないし6、図8Aおよび8Bを援用し、図13Aおよび13Bを用いて説明する。 Sixth Embodiment
Next, Embodiment 6 of the assembled battery of the present invention will be described with reference to FIGS. 13A and 13B with reference to FIGS. 1 to 6, FIGS. 8A and 8B.
図13Aは、実施形態1の図7Aに対応する本実施形態の二次電池モジュールのスペーサ103を示す平面図である。図13Bは、図13AのB-B線に沿うスペーサ103の断面図である。
13A is a plan view showing a spacer 103 of a secondary battery module of the present embodiment corresponding to FIG. 7A of the first embodiment. FIG. FIG. 13B is a cross-sectional view of the spacer 103 along the line BB in FIG. 13A.
本実施形態の二次電池モジュールは、上端部スペーサ102および下端部スペーサ101を有さず、スペーサ103の当接部103M、103Nの厚さTm、Tnが電池容器2の幅方向(X軸方向)で均一である点で、実施形態1の二次電池モジュール200と異なっている。本実施形態の二次電池モジュールのその他の点は、実施形態1の二次電池モジュール200と同一であるので、同一の部分には同一の符号を付して説明は省略する。
The secondary battery module of the present embodiment does not have the upper end spacer 102 and the lower end spacer 101, and the thickness Tm, Tn of the contact portions 103M and 103N of the spacer 103 is the width direction of the battery container 2 (X axis direction And the secondary battery module 200 of the first embodiment in that they are uniform. The other points of the secondary battery module according to the present embodiment are the same as those of the secondary battery module 200 according to the first embodiment, so the same reference numerals are given to the same parts and the description will be omitted.
本実施形態の二次電池モジュールによれば、電池容器2の高さ方向において、実施形態1の二次電池モジュール200と同様に、電極群40の膨張形状の頂部40Pに近いほどスペーサ103の当接部103M、103Nの厚さTm、Tnが薄くされている。したがって、電池容器2の高さ方向において、実施形態1の二次電池モジュール200と同様に、角形二次電池100の拘束時に電池容器2の広側面2cに作用する面圧を均一化して、角形二次電池100の性能や寿命の劣化を防止することができる。
According to the secondary battery module of the present embodiment, similarly to the secondary battery module 200 of the first embodiment in the height direction of the battery container 2, the closer to the top 40 P of the expanded shape of the electrode assembly 40, the closer to the spacer 103. The thicknesses Tm and Tn of the contact portions 103M and 103N are reduced. Therefore, like the secondary battery module 200 of the first embodiment, in the height direction of the battery case 2, the surface pressure acting on the wide side surface 2c of the battery case 2 at the time of restraint of the prismatic secondary battery 100 is equalized. Deterioration of the performance and the life of the secondary battery 100 can be prevented.
また、電池容器2の幅方向において、スペーサ103の当接部103M、103Nの厚さTm、Tnが均一であるので、セルホルダ92の製造を容易にして製造コストを低減することが可能になる。
In addition, since the thicknesses Tm and Tn of the contact portions 103M and 103N of the spacer 103 are uniform in the width direction of the battery container 2, the cell holder 92 can be easily manufactured and the manufacturing cost can be reduced.
以上、本発明の好ましい実施形態を説明したが、本発明は前述の実施形態に限定されるものではなく、様々な変形例が含まれる。前述の実施形態は本発明を解りやすく説明するために詳細に説明したものであり、必ずしも説明したすべての構成を備えるものに限定されない。
As mentioned above, although the preferable embodiment of this invention was described, this invention is not limited to above-mentioned embodiment, A various modified example is included. The above embodiments have been described in detail for easy understanding of the present invention, and are not necessarily limited to those having all the configurations described.
例えば、上述の実施形態においては、比較的厚さが厚く、比較的剛性が高いスペーサ103について説明したが、スペーサ103は、可撓性を有するフィルム状に形成することもできる。上述の実施形態において用いた図面では、説明を分かりやすくするために角形二次電池100の電池容器2の膨張を誇張して表したが、実際の電池容器2の厚さ方向の膨張量は、例えば500μm以下である。
For example, in the above-described embodiment, although the relatively thick and relatively rigid spacer 103 is described, the spacer 103 may be formed in a flexible film shape. In the drawings used in the above-described embodiment, the expansion of the battery case 2 of the prismatic secondary battery 100 is exaggeratingly expressed for easy understanding of the description, but the actual expansion amount of the battery case 2 in the thickness direction is For example, it is 500 μm or less.
したがって、スペーサ103を、例えば1mm以上の厚さの可撓性を有するフィルム状または薄膜状に形成することで、前述の各実施形態で説明した電池モジュールの効果を得ることができる。また、スペーサ103をフィルム状または薄膜状に形成することで、角形二次電池100の電池容器2の間のスペースを最小限にして、二次電池モジュールを小型軽量化することが可能になる。
Therefore, the effect of the battery module described in each of the above-described embodiments can be obtained by forming the spacer 103 in the form of a flexible film or thin film having a thickness of, for example, 1 mm or more. In addition, by forming the spacer 103 in a film shape or a thin film shape, it is possible to minimize the space between the battery containers 2 of the prismatic secondary battery 100 and to reduce the size and weight of the secondary battery module.
また、電池容器2の高さ方向に複数のスペーサ103を配置する場合のスペーサ103の数は、4本に限定されず、1本、2本、3本または5本以上であってもよい。ただし、スペーサ103の数を3本以上とすることで、電池容器2の高さ方向両端のスペーサ103よりもその間のスペーサ103の厚さを薄くして、電池容器2に当接するスペーサ103の面圧を均一化することが可能になる。
Further, the number of the spacers 103 in the case of arranging the plurality of spacers 103 in the height direction of the battery container 2 is not limited to four, and may be one, two, three or five or more. However, by setting the number of spacers 103 to three or more, the thickness of the spacer 103 between the spacers 103 at both ends in the height direction of the battery container 2 is thinner, and the surface of the spacer 103 in contact with the battery container 2 It becomes possible to equalize the pressure.
2…電池容器、2a…上端面、2b…下端面、2c…広側面、40…捲回電極群、40c…湾曲部、40b…平坦部、40d…接合部、40f…扁平面、40p…膨張形状の頂部、41c,42c…箔露出部、100…角形二次電池、103…中間部スペーサ(スペーサ)、103A-103N…当接部、103a-103n…当接面(電池容器に対向する面)、200…二次電池モジュール(組電池)、D…軸方向、T,Ta-Tn…スペーサの厚さ
DESCRIPTION OF SYMBOLS 2 ... battery container, 2a ... upper end surface, 2b ... lower end surface, 2c ... wide side, 40 ... wound electrode group, 40c ... curved part, 40b ... flat part, 40d ... junction part, 40f ... flat surface, 40p ... expansion Top of the shape, 41c, 42c ... foil exposed part, 100 ... prismatic secondary battery, 103 ... middle part spacer (spacer), 103A-103N ... contact part, 103a-103n ... contact surface (surface facing battery container ), 200 ... secondary battery module (group battery), D ... axial direction, T, Ta-Tn ... thickness of spacer
Claims (11)
- 捲回された扁平状の電極群が角形の電池容器に収容された複数の二次電池を、前記電極群の厚さ方向に積層して間にスペーサを介在させた組電池であって、
前記スペーサは、前記電極群の扁平面に沿う方向でかつ軸方向に交差する方向において、前記厚さ方向に膨張する前記電極群の膨張形状の頂部に近いほど厚さが薄いことを特徴とする組電池。 It is a battery assembly in which a plurality of secondary batteries in which wound flat electrode groups are accommodated in a rectangular battery container are stacked in the thickness direction of the electrode groups and a spacer is interposed therebetween.
The spacer is characterized in that the thickness is thinner toward the top of the expanded shape of the electrode group expanding in the thickness direction in the direction along the flat surface of the electrode group and in the direction intersecting the axial direction. Battery pack. - 前記スペーサは、前記軸方向に沿う方向において前記厚さが前記電極群の前記頂部に近いほど薄く、前記電極群の膨張形状に対応する三次元形状を有することを特徴とする請求項1に記載の組電池。 The spacer has a three-dimensional shape which is thinner as the thickness is closer to the top of the electrode group in a direction along the axial direction, and has a three-dimensional shape corresponding to the expanded shape of the electrode group. Battery pack.
- 前記スペーサは、前記電極群の前記軸方向に交差する方向において、前記電池容器に当接する複数の当接部を有し、一対の前記当接部の間に、該一対の当接部よりも前記厚さが薄い前記当接部が配置されていることを特徴とする請求項1または2に記載の組電池。 The spacer has a plurality of contact portions that contact the battery container in a direction intersecting the axial direction of the electrode group, and the space between the pair of contact portions is greater than the pair of contact portions. The assembled battery according to claim 1, wherein the contact portion having the small thickness is disposed.
- 前記電極群は、前記軸方向が前記電池容器の幅方向に平行に配置され、前記電池容器の下端面と上端面にそれぞれ対向する一対の湾曲部と、前記電池容器の前記幅方向に沿う一対の広側面に対向する前記扁平面を有する平坦部と、該平坦部において前記軸方向の両端の箔露出部を束ねて接合した接合部と、を有し、
前記スペーサは、前記電極群の前記平坦部に形成される前記頂部に近いほど厚さが薄いことを特徴とする請求項3に記載の組電池。 The electrode group is disposed such that the axial direction is parallel to the width direction of the battery case, and a pair of curved portions respectively facing the lower end surface and the upper end surface of the battery case, and a pair along the width direction of the battery case A flat portion having the flat surface opposed to the wide side surface, and a joint portion obtained by bundling and joining foil exposed portions at both ends in the axial direction in the flat portion,
The assembled battery according to claim 3, wherein the spacer is thinner as it is closer to the top portion formed on the flat portion of the electrode group. - 前記接合部は、前記軸方向に交差する前記電池容器の高さ方向において前記箔露出部の中央部に形成され、
前記頂部は、前記軸方向に見て、前記高さ方向の位置が前記接合部の前記高さ方向の位置と重なる位置に形成され、
前記スペーサは、前記接合部の前記高さ方向の位置と重なる前記高さ方向の位置で最も薄くされることを特徴とする請求項4に記載の組電池。 The joint portion is formed at a central portion of the foil exposed portion in a height direction of the battery container intersecting the axial direction.
The top portion is formed at a position where the position in the height direction overlaps the position in the height direction of the joint portion when viewed in the axial direction,
The assembled battery according to claim 4, wherein the spacer is thinnest at a position in the height direction overlapping the position in the height direction of the joint. - 前記スペーサは、前記電池容器に対向する面が、前記電極群の前記膨張形状に沿うように少なくとも前記高さ方向に対して傾斜していることを特徴とする請求項5に記載の組電池。 The assembled battery according to claim 5, wherein a surface of the spacer facing the battery container is inclined at least with respect to the height direction so as to follow the expanded shape of the electrode group.
- 前記接合部は、前記電池容器の前記下端面よりも前記上端面に近い位置に形成され、
前記頂部は、前記接合部よりも前記下端面側に形成され、
前記スペーサは、前記接合部よりも前記下端面側で最も薄くされることを特徴とする請求項4に記載の組電池。 The joint portion is formed at a position closer to the upper end surface than the lower end surface of the battery container,
The top portion is formed closer to the lower end surface than the joint portion,
The assembled battery according to claim 4, wherein the spacer is thinnest on the lower end face side than the joint portion. - 前記スペーサは、前記電池容器に対向する面が、前記電極群の前記膨張形状に沿うように少なくとも前記高さ方向に対して傾斜していることを特徴とする請求項7に記載の組電池。 The assembled battery according to claim 7, wherein a surface of the spacer facing the battery case is inclined at least with respect to the height direction so as to follow the expanded shape of the electrode group.
- 前記接合部は、前記電池容器の前記上端面よりも前記下端面に近い位置に形成され、
前記頂部は、前記接合部よりも前記上端面側に位置し、
前記スペーサは、前記接合部よりも前記上端面側で最も薄くされることを特徴とする請求項8に記載の組電池。 The joint portion is formed at a position closer to the lower end surface than the upper end surface of the battery container,
The top portion is positioned closer to the upper end surface than the joint portion,
The assembled battery according to claim 8, wherein the spacer is thinnest on the upper end surface side than the joint portion. - 前記スペーサは、前記電池容器に対向する面が、前記電極群の前記膨張形状に沿うように少なくとも前記高さ方向に対して傾斜していることを特徴とする請求項7に記載の組電池。 The assembled battery according to claim 7, wherein a surface of the spacer facing the battery case is inclined at least with respect to the height direction so as to follow the expanded shape of the electrode group.
- 前記スペーサは、可撓性を有するフィルム状に形成されていることを特徴とする請求項1または2に記載の組電池。 The assembled battery according to claim 1, wherein the spacer is formed in a flexible film shape.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2013/085149 WO2015097875A1 (en) | 2013-12-27 | 2013-12-27 | Assembled battery |
JP2015554454A JP6186449B2 (en) | 2013-12-27 | 2013-12-27 | Assembled battery |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2013/085149 WO2015097875A1 (en) | 2013-12-27 | 2013-12-27 | Assembled battery |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2015097875A1 true WO2015097875A1 (en) | 2015-07-02 |
Family
ID=53477805
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2013/085149 WO2015097875A1 (en) | 2013-12-27 | 2013-12-27 | Assembled battery |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP6186449B2 (en) |
WO (1) | WO2015097875A1 (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2017094436A1 (en) * | 2015-12-04 | 2017-06-08 | 日立オートモティブシステムズ株式会社 | Battery pack |
WO2017098838A1 (en) * | 2015-12-07 | 2017-06-15 | 日立オートモティブシステムズ株式会社 | Battery pack |
JP2018530890A (en) * | 2015-12-09 | 2018-10-18 | エルジー・ケム・リミテッド | Battery module with improved end plate structure and end plate member therefor |
WO2020111042A1 (en) * | 2018-11-29 | 2020-06-04 | パナソニックIpマネジメント株式会社 | Electric power storage module |
WO2021181894A1 (en) * | 2020-03-12 | 2021-09-16 | 三洋電機株式会社 | Battery pack |
Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009205844A (en) * | 2008-02-26 | 2009-09-10 | Panasonic Corp | Battery pack |
JP2009277575A (en) * | 2008-05-16 | 2009-11-26 | Toyota Motor Corp | Electric storage device and vehicle |
JP2009301969A (en) * | 2008-06-17 | 2009-12-24 | Toyota Motor Corp | Battery device and vehicle |
WO2011158341A1 (en) * | 2010-06-16 | 2011-12-22 | トヨタ自動車株式会社 | Secondary battery assembly |
JP2012146483A (en) * | 2011-01-12 | 2012-08-02 | Toyota Motor Corp | Battery housing case manufacturing method and battery pack |
JP2012221757A (en) * | 2011-04-08 | 2012-11-12 | Toyota Motor Corp | Battery, battery pack and vehicle |
WO2013057952A1 (en) * | 2011-10-21 | 2013-04-25 | 株式会社ニフコ | Battery heat exchanger |
JP2013097888A (en) * | 2011-10-28 | 2013-05-20 | Sanyo Electric Co Ltd | Power supply device |
WO2013084290A1 (en) * | 2011-12-06 | 2013-06-13 | 日立ビークルエナジー株式会社 | Assembled battery |
JP2013149523A (en) * | 2012-01-20 | 2013-08-01 | Gs Yuasa Corp | Storage element module |
JP2014010983A (en) * | 2012-06-28 | 2014-01-20 | Sanyo Electric Co Ltd | Power supply device, and vehicle and power storage device having the power supply device |
-
2013
- 2013-12-27 WO PCT/JP2013/085149 patent/WO2015097875A1/en active Application Filing
- 2013-12-27 JP JP2015554454A patent/JP6186449B2/en not_active Expired - Fee Related
Patent Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009205844A (en) * | 2008-02-26 | 2009-09-10 | Panasonic Corp | Battery pack |
JP2009277575A (en) * | 2008-05-16 | 2009-11-26 | Toyota Motor Corp | Electric storage device and vehicle |
JP2009301969A (en) * | 2008-06-17 | 2009-12-24 | Toyota Motor Corp | Battery device and vehicle |
WO2011158341A1 (en) * | 2010-06-16 | 2011-12-22 | トヨタ自動車株式会社 | Secondary battery assembly |
JP2012146483A (en) * | 2011-01-12 | 2012-08-02 | Toyota Motor Corp | Battery housing case manufacturing method and battery pack |
JP2012221757A (en) * | 2011-04-08 | 2012-11-12 | Toyota Motor Corp | Battery, battery pack and vehicle |
WO2013057952A1 (en) * | 2011-10-21 | 2013-04-25 | 株式会社ニフコ | Battery heat exchanger |
JP2013097888A (en) * | 2011-10-28 | 2013-05-20 | Sanyo Electric Co Ltd | Power supply device |
WO2013084290A1 (en) * | 2011-12-06 | 2013-06-13 | 日立ビークルエナジー株式会社 | Assembled battery |
JP2013149523A (en) * | 2012-01-20 | 2013-08-01 | Gs Yuasa Corp | Storage element module |
JP2014010983A (en) * | 2012-06-28 | 2014-01-20 | Sanyo Electric Co Ltd | Power supply device, and vehicle and power storage device having the power supply device |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2017094436A1 (en) * | 2015-12-04 | 2017-06-08 | 日立オートモティブシステムズ株式会社 | Battery pack |
JPWO2017094436A1 (en) * | 2015-12-04 | 2018-09-06 | 日立オートモティブシステムズ株式会社 | Assembled battery |
WO2017098838A1 (en) * | 2015-12-07 | 2017-06-15 | 日立オートモティブシステムズ株式会社 | Battery pack |
JP2018530890A (en) * | 2015-12-09 | 2018-10-18 | エルジー・ケム・リミテッド | Battery module with improved end plate structure and end plate member therefor |
WO2020111042A1 (en) * | 2018-11-29 | 2020-06-04 | パナソニックIpマネジメント株式会社 | Electric power storage module |
CN113169390A (en) * | 2018-11-29 | 2021-07-23 | 松下知识产权经营株式会社 | Electricity storage module |
WO2021181894A1 (en) * | 2020-03-12 | 2021-09-16 | 三洋電機株式会社 | Battery pack |
CN115244774A (en) * | 2020-03-12 | 2022-10-25 | 三洋电机株式会社 | Battery pack |
Also Published As
Publication number | Publication date |
---|---|
JPWO2015097875A1 (en) | 2017-03-23 |
JP6186449B2 (en) | 2017-08-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6352640B2 (en) | Battery module | |
JP6166994B2 (en) | Assembled battery | |
US8435667B2 (en) | Assembled battery, manufacturing method of the same, and vehicle provided with assembled battery | |
JP6198844B2 (en) | Assembled battery | |
JP5889333B2 (en) | Assembled battery | |
JP6306431B2 (en) | Battery module | |
JP6086240B2 (en) | Non-aqueous electrolyte battery and manufacturing method thereof | |
JP6214758B2 (en) | Prismatic secondary battery | |
TWI699925B (en) | Battery | |
JP2014157722A (en) | Battery pack | |
JP2008078008A (en) | Battery pack and its manufacturing method | |
WO2016132897A1 (en) | Battery pack | |
JP6186449B2 (en) | Assembled battery | |
JP2015118773A (en) | Secondary battery module | |
JP2014102915A (en) | Battery pack | |
WO2016088505A1 (en) | Rectangular secondary cell | |
JP2017188338A (en) | Secondary battery | |
JP2020149935A (en) | Battery module | |
JP5664068B2 (en) | Multilayer battery and method of manufacturing multilayer battery | |
JP2015204236A (en) | Secondary battery and battery module | |
WO2022185854A1 (en) | Electricity storage element | |
JP7065965B2 (en) | Secondary battery | |
JP2019061893A (en) | Power storage element | |
JP2023035555A (en) | Power storage element | |
JP2012230846A (en) | Nonaqueous electrolyte battery |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 13900480 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2015554454 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 13900480 Country of ref document: EP Kind code of ref document: A1 |