Nothing Special   »   [go: up one dir, main page]

JPWO2017094436A1 - Assembled battery - Google Patents

Assembled battery Download PDF

Info

Publication number
JPWO2017094436A1
JPWO2017094436A1 JP2017553724A JP2017553724A JPWO2017094436A1 JP WO2017094436 A1 JPWO2017094436 A1 JP WO2017094436A1 JP 2017553724 A JP2017553724 A JP 2017553724A JP 2017553724 A JP2017553724 A JP 2017553724A JP WO2017094436 A1 JPWO2017094436 A1 JP WO2017094436A1
Authority
JP
Japan
Prior art keywords
battery
negative electrode
short
positive electrode
circuit member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017553724A
Other languages
Japanese (ja)
Other versions
JP6611820B2 (en
Inventor
飯塚 佳士
佳士 飯塚
栗原 克利
克利 栗原
明徳 多田
明徳 多田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Astemo Ltd
Original Assignee
Hitachi Automotive Systems Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Automotive Systems Ltd filed Critical Hitachi Automotive Systems Ltd
Publication of JPWO2017094436A1 publication Critical patent/JPWO2017094436A1/en
Application granted granted Critical
Publication of JP6611820B2 publication Critical patent/JP6611820B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/102Primary casings; Jackets or wrappings characterised by their shape or physical structure
    • H01M50/103Primary casings; Jackets or wrappings characterised by their shape or physical structure prismatic or rectangular
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/204Racks, modules or packs for multiple batteries or multiple cells
    • H01M50/207Racks, modules or packs for multiple batteries or multiple cells characterised by their shape
    • H01M50/209Racks, modules or packs for multiple batteries or multiple cells characterised by their shape adapted for prismatic or rectangular cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/233Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by physical properties of casings or racks, e.g. dimensions
    • H01M50/242Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by physical properties of casings or racks, e.g. dimensions adapted for protecting batteries against vibrations, collision impact or swelling
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/289Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by spacing elements or positioning means within frames, racks or packs
    • H01M50/291Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by spacing elements or positioning means within frames, racks or packs characterised by their shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/572Means for preventing undesired use or discharge
    • H01M50/584Means for preventing undesired use or discharge for preventing incorrect connections inside or outside the batteries
    • H01M50/588Means for preventing undesired use or discharge for preventing incorrect connections inside or outside the batteries outside the batteries, e.g. incorrect connections of terminals or busbars
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/572Means for preventing undesired use or discharge
    • H01M50/584Means for preventing undesired use or discharge for preventing incorrect connections inside or outside the batteries
    • H01M50/59Means for preventing undesired use or discharge for preventing incorrect connections inside or outside the batteries characterised by the protection means
    • H01M50/593Spacers; Insulating plates
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Battery Mounting, Suspending (AREA)
  • Connection Of Batteries Or Terminals (AREA)

Abstract

衝撃等による外力に対する二次電池の安全性を従来よりも向上させることができる組電池を提供する。電極群と、電極群を収容する電池容器11と、電池容器11の外面に配置されて電極群の正極電極及び負極電極にそれぞれ接続された正極外部端子16P及び負極外部端子16Nと、を有する複数の二次電池10を備えた組電池100である。組電池100は、個々の二次電池10に隣接して配置された導電性を有する短絡部材40を備える。短絡部材40は、正極外部端子16Pに接続されたバスバー30から正極電極までの正極荷電部10Pの少なくとも一部に間隔を有して対向するとともに、負極外部端子16Nに接続されたバスバー30から負極電極までの負極荷電部10Nの少なくとも一部に間隔を有して対向する。  Provided is an assembled battery capable of improving the safety of a secondary battery against external force due to impact or the like as compared with the conventional battery. A plurality of electrodes each having an electrode group, a battery container 11 that houses the electrode group, and a positive electrode external terminal 16P and a negative electrode external terminal 16N that are disposed on the outer surface of the battery container 11 and are respectively connected to the positive electrode and the negative electrode of the electrode group The battery pack 100 includes the secondary battery 10. The assembled battery 100 includes a conductive short-circuit member 40 disposed adjacent to each secondary battery 10. The short-circuit member 40 faces at least a part of the positive electrode charging portion 10P from the bus bar 30 connected to the positive electrode external terminal 16P to the positive electrode with a space, and is connected to the negative electrode from the bus bar 30 connected to the negative electrode external terminal 16N. Opposite to at least part of the negative electrode charging portion 10N up to the electrode with a gap.

Description

本発明は、複数の角形二次電池を備えた組電池に関する。   The present invention relates to an assembled battery including a plurality of prismatic secondary batteries.

従来から、例えばノートパソコン、携帯端末等の電気製品や、電気自動車、ハイブリッド自動車等の車両の動力源として、リチウムイオン二次電池やニッケル水素電池等の二次電池が使用されている。リチウムイオン二次電池等の二次電池は、衝撃や落下等による外力が加わると、内部短絡が発生して内部の温度が過度に上昇する虞がある。このような問題に対処するために、二次電池モジュールに外力が加わった場合等に、電池セルに蓄えられた電気エネルギーを、電池セル内の温度上昇を抑制しつつ消費する技術が開示されている(下記特許文献1を参照)。   2. Description of the Related Art Conventionally, secondary batteries such as lithium ion secondary batteries and nickel metal hydride batteries have been used as power sources for electric products such as notebook computers and portable terminals, and vehicles such as electric cars and hybrid cars. A secondary battery such as a lithium ion secondary battery, when an external force is applied due to an impact, a drop or the like, may cause an internal short circuit and excessively increase the internal temperature. In order to cope with such a problem, a technique is disclosed in which, when an external force is applied to the secondary battery module, the electric energy stored in the battery cell is consumed while suppressing the temperature rise in the battery cell. (See Patent Document 1 below).

特許文献1に記載された二次電池モジュールは、陽極端子同士が一列に並んでいると共に陰極端子同士が一列に並ぶように配置されている3個以上の電池セルを有する。この二次電池モジュールは、導電材料で形成されており、一の電池セルにおける陽極端子と一の電池セルに隣接する他の電池セルにおける陰極端子の間、又は一の電池セルにおける陰極端子と他の電池セルにおける陽極端子との間を接続する複数の導電部材を有している。この二次電池モジュールでは、二次電池モジュールが荷重を受けたときに隣接している導電部材が接触して導通するように、隣接している導電部材の一部が対向している(特許文献1、請求項1及び要約等を参照)。   The secondary battery module described in Patent Document 1 includes three or more battery cells arranged such that the anode terminals are arranged in a row and the cathode terminals are arranged in a row. The secondary battery module is formed of a conductive material, and is between an anode terminal in one battery cell and a cathode terminal in another battery cell adjacent to the one battery cell, or between a cathode terminal and other in one battery cell. The battery cell has a plurality of conductive members connecting the anode terminals. In this secondary battery module, when the secondary battery module receives a load, a part of the adjacent conductive members face each other so that the adjacent conductive members come into contact with each other (Patent Document) 1, see claim 1 and abstract etc.).

特許文献1に記載された二次電池モジュールは、二次電池モジュールが外力を受けて電池セルの内部短絡が生じる可能性がある状況において、隣接している導電部材が接触して導通すると、この電池セルの陽極と陰極とがこれらの導電部材を介して短絡する。ここで、各導電部材の電気抵抗は、電池内部の活物質の電気抵抗よりも低いため、電池セルが内部短絡する場合と比較して温度上昇を抑制することができる。これにより、特許文献1では、電池セルの温度上昇を抑制しつつ、電池セルに蓄えられている電気エネルギーを消費することができる、としている(特許文献1、段落0008等を参照)。   In the situation where the secondary battery module described in Patent Document 1 receives an external force and may cause an internal short circuit of the battery cell, when the adjacent conductive member comes into contact and conducts, The anode and cathode of the battery cell are short-circuited through these conductive members. Here, since the electrical resistance of each conductive member is lower than the electrical resistance of the active material inside the battery, the temperature rise can be suppressed as compared with the case where the battery cell is internally short-circuited. Thereby, in patent document 1, it is supposed that the electrical energy stored in the battery cell can be consumed, suppressing the temperature rise of a battery cell (refer patent document 1, paragraph 0008, etc.).

特開2015−053145号公報Japanese Patent Laying-Open No. 2015-053145

特許文献1に記載された二次電池モジュールは、陽極端子同士が一列に並んでいると共に陰極端子同士が一列に並ぶように配置されている3個以上の電池セルを有するが、電池セルの配列の両端の一対の電池セルは、隣接している導電部材が接触しても短絡しない。そのため、配列の両端の一対の電池セルに衝撃や落下等による外力が加わると、内部短絡が発生し、内部の温度が過度に上昇して安全性が低下する虞がある。   The secondary battery module described in Patent Document 1 has three or more battery cells arranged such that the anode terminals are arranged in a row and the cathode terminals are arranged in a row. The pair of battery cells at both ends of the battery is not short-circuited even when adjacent conductive members come into contact with each other. Therefore, when an external force is applied to the pair of battery cells at both ends of the array due to an impact, a drop or the like, an internal short circuit occurs, and the internal temperature may increase excessively and the safety may decrease.

本発明は、前記課題に鑑みてなされたものであり、衝撃等による外力に対する二次電池の安全性を従来よりも向上させることができる組電池を提供することを目的とする。   The present invention has been made in view of the above problems, and an object of the present invention is to provide an assembled battery that can improve the safety of a secondary battery against an external force due to an impact or the like as compared with the conventional battery.

前記目的を達成すべく、本発明の組電池は、電極群と、該電極群を収容する電池容器と、該電池容器の外面に配置されて前記電極群の正極電極及び負極電極にそれぞれ接続された正極外部端子及び負極外部端子と、を有する複数の二次電池を備えた組電池であって、個々の前記二次電池に隣接して配置されて非常時に前記二次電池を外部短絡させる導電性を有する短絡部材を備え、前記短絡部材は、前記正極外部端子に接続されたバスバーから前記正極電極までの正極荷電部の少なくとも一部に間隔を有して対向するとともに、前記負極外部端子に接続されたバスバーから前記負極電極までの負極荷電部の少なくとも一部に間隔を有して対向することを特徴とする。   In order to achieve the above object, an assembled battery of the present invention includes an electrode group, a battery container that accommodates the electrode group, and an outer surface of the battery container that is connected to the positive electrode and the negative electrode of the electrode group, respectively. An assembled battery including a plurality of secondary batteries each having a positive external terminal and a negative external terminal, and disposed adjacent to each of the secondary batteries to electrically short-circuit the secondary battery in an emergency. A short-circuit member having a property, and the short-circuit member is opposed to at least a part of a positive-electrode charging portion from a bus bar connected to the positive-electrode external terminal to the positive-electrode, with an interval, and to the negative-electrode external terminal. It is characterized in that at least a part of the negative electrode charging portion from the connected bus bar to the negative electrode is opposed with a gap.

本発明によれば、衝撃等による外力に対する二次電池の安全性を従来よりも向上させることができる組電池を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the assembled battery which can improve the safety | security of the secondary battery with respect to the external force by an impact etc. than before can be provided.

本発明の実施形態1に係る組電池の模式的な外観斜視図。1 is a schematic external perspective view of an assembled battery according to Embodiment 1 of the present invention. FIG. 図1に示す2つのセルホルダによって保持された二次電池を示す斜視図。The perspective view which shows the secondary battery hold | maintained by the two cell holders shown in FIG. 図2に示すセルホルダと二次電池の分解斜視図。The disassembled perspective view of the cell holder and secondary battery shown in FIG. 図1に示す2つの二次電池の間のセルホルダ及び短絡部材を示す平面図。The top view which shows the cell holder and short circuit member between the two secondary batteries shown in FIG. 図4Aに示すB−B線に沿うセルホルダ及び短絡部材の断面図。Sectional drawing of the cell holder and short circuit member which follow the BB line shown to FIG. 4A. 本発明の実施形態2に係る組電池のセルホルダ及び短絡部材を示す平面図。The top view which shows the cell holder and short circuit member of the assembled battery which concern on Embodiment 2 of this invention. 図5Aに示すB−B線に沿うセルホルダ及び短絡部材の断面図。Sectional drawing of the cell holder and short circuit member which follow the BB line shown to FIG. 5A. 本発明の実施形態3に係る組電池のセルホルダ及び短絡部材を示す平面図。The top view which shows the cell holder and short circuit member of the assembled battery which concern on Embodiment 3 of this invention. 図6Aに示すB−B線に沿うセルホルダ及び短絡部材の断面図。Sectional drawing of the cell holder and short circuit member which follow the BB line shown to FIG. 6A. 本発明の実施形態4に係る組電池のセルホルダ及び短絡部材を示す平面図。The top view which shows the cell holder and short circuit member of the assembled battery which concern on Embodiment 4 of this invention. 図7Aに示すB−B線に沿うセルホルダ及び短絡部材の断面図。Sectional drawing of the cell holder and short circuit member which follow the BB line shown to FIG. 7A. 本発明の実施形態5に係る組電池のセルホルダ及び短絡部材を示す平面図。The top view which shows the cell holder and short circuit member of the assembled battery which concern on Embodiment 5 of this invention. 図8Aに示すB−B線に沿うセルホルダ及び短絡部材の断面図。Sectional drawing of the cell holder and short circuit member which follow the BB line shown to FIG. 8A. 本発明の実施形態6に係る組電池のセルホルダ及び短絡部材を示す平面図。The top view which shows the cell holder and short circuit member of an assembled battery which concern on Embodiment 6 of this invention. 図9Aに示すB−B線に沿うセルホルダ及び短絡部材の断面図。Sectional drawing of the cell holder and short circuit member which follow the BB line shown to FIG. 9A. 本発明の実施形態7に係る組電池のセルホルダ及び短絡部材を示す平面図。The top view which shows the cell holder and short circuit member of the assembled battery which concern on Embodiment 7 of this invention. 図10Aに示すB−B線に沿うセルホルダ及び短絡部材の断面図。FIG. 10B is a cross-sectional view of the cell holder and the short-circuit member along the line BB shown in FIG. 10A. 短絡部材と正極荷電部とが接触した状態を示す二次電池の断面図。Sectional drawing of a secondary battery which shows the state which the short circuit member and the positive electrode charged part contacted. 本発明の実施形態8に係る組電池のセルホルダ及び短絡部材を示す平面図。The top view which shows the cell holder and short circuit member of the assembled battery which concern on Embodiment 8 of this invention. 図11Aに示すB−B線に沿うセルホルダ及び短絡部材の断面図。FIG. 11B is a cross-sectional view of the cell holder and the short-circuit member along the line BB shown in FIG. 11A. 本発明の実施形態9に係る組電池のセルホルダ及び短絡部材を示す平面図。The top view which shows the cell holder and short circuit member of an assembled battery which concern on Embodiment 9 of this invention. 図10Aに示すB−B線に沿うセルホルダ及び短絡部材の断面図。FIG. 10B is a cross-sectional view of the cell holder and the short-circuit member along the line BB shown in FIG. 10A. 短絡部材と正極荷電部とが接触した状態を示す二次電池の断面図。Sectional drawing of a secondary battery which shows the state which the short circuit member and the positive electrode charged part contacted. 本発明の実施形態10に係る組電池のセルホルダ及び短絡部材を示す平面図。The top view which shows the cell holder and short circuit member of an assembled battery which concern on Embodiment 10 of this invention. 本発明の実施形態11に係るセルホルダ及び短絡部材の断面図。Sectional drawing of the cell holder which concerns on Embodiment 11 of this invention, and a short circuit member. 短絡部材と正極荷電部とが接触した状態を示す二次電池の断面図。Sectional drawing of a secondary battery which shows the state which the short circuit member and the positive electrode charged part contacted. 本発明の実施形態12に係る組電池のセルホルダ及び短絡部材を示す平面図。The top view which shows the cell holder and short circuit member of an assembled battery which concern on Embodiment 12 of this invention.

以下、図面を参照して本発明の組電池の実施形態を説明する。   Hereinafter, embodiments of the assembled battery of the present invention will be described with reference to the drawings.

以下の各図面では、各部の縮尺を適宜変更する場合がある。また、以下の説明における上下左右は、各部材の位置関係を説明する便宜的な方向であり、必ずしも鉛直方向や水平方向に対応するものではない。   In the following drawings, the scale of each part may be changed as appropriate. In the following description, up, down, left, and right are convenient directions for explaining the positional relationship between the members, and do not necessarily correspond to the vertical direction or the horizontal direction.

[実施形態1]
図1は、本発明の実施形態に係る組電池100の模式的な外観斜視図である。
[Embodiment 1]
FIG. 1 is a schematic external perspective view of a battery pack 100 according to an embodiment of the present invention.

組電池100は、複数の二次電池10と、個々の二次電池10を保持するセルホルダ20と、複数の二次電池10を直列に接続するバスバー30と、個々の二次電池10に隣接して配置された導電性を有する短絡部材40と、を備えている。詳細は後述するが、本実施形態の組電池100は、衝撃等による外力が作用した非常時に、個々の二次電池10の正極荷電部10Pと負極荷電部10Nとを短絡させて、個々の二次電池10を外部短絡させる短絡部材40を備えることを特徴としている。   The assembled battery 100 is adjacent to the plurality of secondary batteries 10, the cell holder 20 that holds the individual secondary batteries 10, the bus bar 30 that connects the plurality of secondary batteries 10 in series, and the individual secondary batteries 10. And a short-circuit member 40 having conductivity. Although details will be described later, the assembled battery 100 according to the present embodiment short-circuits the positive electrode charging portion 10P and the negative electrode charging portion 10N of each secondary battery 10 in an emergency in which an external force due to impact or the like is applied. A short-circuit member 40 for externally short-circuiting the secondary battery 10 is provided.

図2は、組電池100を構成する二次電池10を一対のセルホルダ20によって保持した状態を示す斜視図である。図3は、図2に示す二次電池10とセルホルダ20の分解斜視図である。   FIG. 2 is a perspective view showing a state in which the secondary battery 10 constituting the assembled battery 100 is held by a pair of cell holders 20. FIG. 3 is an exploded perspective view of the secondary battery 10 and the cell holder 20 shown in FIG.

組電池100を構成する個々の二次電池10は、扁平角形の電池容器11を備えた角形二次電池である。電池容器11の材質は、例えば、アルミニウム又はアルミニウム合金等の導電性を有する金属材料である。電池容器11は、有底角筒状の電池缶12と、電池缶12の上部の開口部を封止する矩形板状の電池蓋13とによって構成されている。電池缶12は、例えば、板材を深絞り加工することによって、上部に開口部を有する扁平な矩形箱型に形成されている。電池蓋13は、例えば、鍛造等によって長方形の平板状に形成され、例えば、レーザ溶接によって電池缶12の上部に接合され、電池缶12の開口部を封止している。   Each secondary battery 10 constituting the assembled battery 100 is a rectangular secondary battery including a flat rectangular battery container 11. The material of the battery case 11 is a conductive metal material such as aluminum or an aluminum alloy, for example. The battery container 11 includes a bottomed rectangular tube-shaped battery can 12 and a rectangular plate-shaped battery lid 13 that seals the opening at the top of the battery can 12. The battery can 12 is formed into a flat rectangular box shape having an opening in the upper part, for example, by deep drawing a plate material. The battery lid 13 is formed into a rectangular flat plate shape by forging or the like, for example, and is joined to the upper portion of the battery can 12 by, for example, laser welding to seal the opening of the battery can 12.

電池容器11は、幅と高さに対して厚さが小さい扁平角形の形状を有することで、厚さ方向の両側に比較的面積の大きい広側面11wを有し、幅方向両側に比較的面積の小さい狭側面11nを有し、上下に幅方向を長手方向とする長方形の底面11b及び上面11tを有している。なお、各図において、電池容器11の厚さ方向をX軸方向、幅方向をY軸方向、高さ方向をZ軸方向とするXYZ直交座標系を示している。   The battery container 11 has a flat rectangular shape with a small thickness with respect to the width and height, thereby having wide side surfaces 11w having relatively large areas on both sides in the thickness direction and relatively large areas on both sides in the width direction. A narrow bottom surface 11n and a rectangular bottom surface 11b and top surface 11t with the width direction as the longitudinal direction. In each figure, an XYZ orthogonal coordinate system is shown in which the thickness direction of the battery case 11 is the X-axis direction, the width direction is the Y-axis direction, and the height direction is the Z-axis direction.

電池容器11の内部には、電極群14(図10C参照)が収容されている。電極群14は、例えば、長尺帯状の正極電極及び負極電極の間に長尺帯状のセパレータを介在させて捲回した扁平な捲回電極群である。電極群14を構成する正極電極は、幅方向の一端の箔露出部14Pが束ねられて電池容器11の内部に収容された正極集電板15Pに接合されることで、正極集電板15Pを介して正極外部端子16Pに接続されている。電極群14を構成する負極電極は、幅方向の一端の箔露出部14Nが正極電極の箔露出部14Pと電極群14の捲回軸方向の反対側で束ねられ、電池容器11の内部に収容された負極集電板15Nに接合されることで、負極集電板15Nを介して負極外部端子16Nに接続されている。   An electrode group 14 (see FIG. 10C) is housed inside the battery container 11. The electrode group 14 is, for example, a flat wound electrode group that is wound with a long strip-shaped separator interposed between a long strip-shaped positive electrode and a negative electrode. The positive electrode constituting the electrode group 14 has the foil exposed portion 14P at one end in the width direction bundled and joined to the positive current collector 15P accommodated in the battery container 11 so that the positive current collector 15P To the positive external terminal 16P. In the negative electrode constituting the electrode group 14, the foil exposed portion 14 </ b> N at one end in the width direction is bundled on the opposite side in the winding axis direction of the foil exposed portion 14 </ b> P of the positive electrode and the electrode group 14 and accommodated inside the battery container 11. By being joined to the negative electrode current collector plate 15N, the negative electrode current collector plate 15N is connected to the negative electrode external terminal 16N.

正極外部端子16P及び負極外部端子16Nは、電池容器11の外面に配置され、それぞれ正極集電板15P及び負極集電板15Nを介して、電極群14の正極電極及び負極電極に接続されている。より詳細には、正極外部端子16Pは、電池容器11を構成する電池蓋13の上面11tの長手方向の一端に配置され、負極外部端子16Nは、電池蓋13の上面11tの長手方向の他端に配置されている。正極外部端子16P及び負極外部端子16Nは、電池蓋13を貫通する不図示の接続部が電池容器11の内部の正極集電板15P及び負極集電板15Nの基部を貫通し、接続部の先端が塑性変形させられてかしめ部が設けられている。   The positive electrode external terminal 16P and the negative electrode external terminal 16N are disposed on the outer surface of the battery container 11, and are connected to the positive electrode and the negative electrode of the electrode group 14 through the positive electrode current collector plate 15P and the negative electrode current collector plate 15N, respectively. . More specifically, the positive electrode external terminal 16P is disposed at one end in the longitudinal direction of the upper surface 11t of the battery lid 13 constituting the battery container 11, and the negative electrode external terminal 16N is the other end in the longitudinal direction of the upper surface 11t of the battery lid 13. Is arranged. The positive electrode external terminal 16P and the negative electrode external terminal 16N have a connection portion (not shown) penetrating the battery lid 13 penetrating the base portion of the positive electrode current collector plate 15P and the negative electrode current collector plate 15N inside the battery container 11, and the tip of the connection portion. Is plastically deformed to provide a caulking portion.

これにより、正極外部端子16P及び負極外部端子16Nは、絶縁部材17aを介在させて電池蓋13に正極集電板15P及び負極集電板15Nをかしめ固定するとともに、それぞれ正極集電板15P及び負極集電板15Nに対して電気的に接続されている。また、正極外部端子16P及び負極外部端子16Nは、電池蓋13との間に絶縁性を有する樹脂材料を素材とするガスケット17bを介在させることで、電池蓋13に対して電気的に絶縁されている。   As a result, the positive electrode external terminal 16P and the negative electrode external terminal 16N fix the positive electrode current collector plate 15P and the negative electrode current collector plate 15N to the battery cover 13 with the insulating member 17a interposed therebetween, and the positive electrode current collector plate 15P and the negative electrode external electrode 16N, respectively. It is electrically connected to the current collector plate 15N. The positive external terminal 16P and the negative external terminal 16N are electrically insulated from the battery cover 13 by interposing a gasket 17b made of a resin material having an insulating property between the positive electrode external terminal 16P and the negative electrode external terminal 16N. Yes.

電池蓋13の上面11tの正極外部端子16Pと負極外部端子16Nとの間には、ガス排出弁18と注液口19aが設けられている。ガス排出弁18は、例えば、電池蓋13の一部を薄肉化してスリット状の溝を形成することによって形成され、電池容器11の内部の圧力が所定値よりも上昇したときに開裂し、電池容器11の内部のガスを排出することで、電池容器11の内部の圧力を低下させる。注液口19aは、電池容器11の内部に電解液を注入するために用いられ、電解液の注入後に、例えばレーザ溶接によって注液栓19bが接合されて封止される。   Between the positive electrode external terminal 16P and the negative electrode external terminal 16N on the upper surface 11t of the battery lid 13, a gas discharge valve 18 and a liquid injection port 19a are provided. The gas discharge valve 18 is formed, for example, by thinning a part of the battery lid 13 to form a slit-like groove, and is cleaved when the internal pressure of the battery container 11 rises above a predetermined value. By discharging the gas inside the container 11, the pressure inside the battery container 11 is reduced. The liquid injection port 19a is used for injecting the electrolyte into the battery container 11, and after the injection of the electrolyte, the liquid injection plug 19b is joined and sealed, for example, by laser welding.

複数の二次電池10は、互いの電池容器11の広側面11wが対向するように、厚さ方向に積層させて配置される。積層方向に隣接する二つの二次電池10は、一方の二次電池10の正極外部端子16Pと、他方の二次電池10の負極外部端子16Nとが積層方向に隣り合うように、180°反転させて配置される。そして、一方の二次電池10の正極外部端子16Pに、例えば溶接によってバスバー30の一端が接合され、他方の二次電池10の負極外部端子16Nに、例えば溶接によってバスバー30の他端が接合されることで、複数の二次電池10が直列に接続される。   The plurality of secondary batteries 10 are stacked in the thickness direction so that the wide side surfaces 11w of the battery containers 11 face each other. The two secondary batteries 10 adjacent to each other in the stacking direction are inverted by 180 ° so that the positive external terminal 16P of one secondary battery 10 and the negative external terminal 16N of the other secondary battery 10 are adjacent to each other in the stacking direction. Arranged. One end of the bus bar 30 is joined to the positive external terminal 16P of one secondary battery 10 by welding, for example, and the other end of the bus bar 30 is joined to the negative external terminal 16N of the other secondary battery 10 by welding, for example. Thus, the plurality of secondary batteries 10 are connected in series.

図1に示す例では、組電池100は、複数の二次電池10の配列の一端に配置された二次電池10の正極外部端子16Pと、他端に配置された二次電池10の負極外部端子16Nに、バスバー30が接続されていない。しかし、これらの二次電池10の正極外部端子16Pと負極外部端子16Nに、それぞれバスバー30を接続してもよい。これらのバスバー30によって、例えば、組電池100を他の組電池や外部機器に接続することができる。   In the example illustrated in FIG. 1, the assembled battery 100 includes a positive external terminal 16P of the secondary battery 10 disposed at one end of the array of the secondary batteries 10 and an external negative electrode of the secondary battery 10 disposed at the other end. The bus bar 30 is not connected to the terminal 16N. However, the bus bars 30 may be connected to the positive external terminal 16P and the negative external terminal 16N of the secondary battery 10, respectively. With these bus bars 30, for example, the assembled battery 100 can be connected to another assembled battery or an external device.

正極外部端子16P、正極集電板15P、及び正極電極の金属箔の素材は、例えば、アルミニウム又はアルミニウム合金である。また、負極外部端子16N、負極集電板15N、及び負極電極の金属箔の素材は、例えば、銅又は銅合金である。バスバー30の素材は、正極外部端子16P又は負極外部端子16Nと同様の素材、正極外部端子16P及び負極外部端子16Nに対する溶接性と導電性に優れた素材、或いはめっき層を有する金属製の板材等を適宜選択することができる。   The material of the positive electrode external terminal 16P, the positive electrode current collector plate 15P, and the metal foil of the positive electrode is, for example, aluminum or an aluminum alloy. The material of the negative electrode external terminal 16N, the negative electrode current collector plate 15N, and the metal foil of the negative electrode is, for example, copper or a copper alloy. The material of the bus bar 30 is the same material as the positive electrode external terminal 16P or the negative electrode external terminal 16N, a material excellent in weldability and conductivity with respect to the positive electrode external terminal 16P and the negative electrode external terminal 16N, or a metal plate material having a plating layer, etc. Can be appropriately selected.

正極外部端子16Pに接続されたバスバー30から正極電極の箔露出部14P(図10C参照)までの各部材、すなわち、正極外部端子16Pに接続されたバスバー30、正極外部端子16P、正極集電板15P、及び正極電極の金属箔によって、二次電池10の正極荷電部10Pが構成されている。また、負極外部端子16Nに接続されたバスバー30から負極電極の箔露出部14Nまでの各部材、すなわち、負極外部端子16Nに接続されたバスバー30、負極外部端子16N、負極集電板15N、及び負極電極の金属箔によって、二次電池10の負極荷電部10Nが構成されている。   Each member from the bus bar 30 connected to the positive electrode external terminal 16P to the foil exposed portion 14P (see FIG. 10C) of the positive electrode, that is, the bus bar 30 connected to the positive electrode external terminal 16P, the positive electrode external terminal 16P, and the positive electrode current collector plate The positive electrode charging unit 10P of the secondary battery 10 is configured by 15P and the metal foil of the positive electrode. Each member from the bus bar 30 connected to the negative electrode external terminal 16N to the foil exposed portion 14N of the negative electrode, that is, the bus bar 30, the negative electrode external terminal 16N, the negative electrode current collector plate 15N connected to the negative electrode external terminal 16N, and The negative electrode charging portion 10N of the secondary battery 10 is configured by the metal foil of the negative electrode.

組電池100を構成する個々の二次電池10は、それぞれセルホルダ20によって保持されている。セルホルダ20は、複数の二次電池10の積層方向の両端に配置される一対の端部セルホルダ20Aと、2つの隣接する二次電池10の間に配置される複数の中間セルホルダ20Bによって構成されている。セルホルダ20の素材としては、例えば、ガラスエポキシ樹脂、ポリプロピレン、ポリブチレンテレフタレート樹脂などの樹脂材料や、アルミニウム、銅、ステンレスなどの金属材料を用いることができる。   Each secondary battery 10 constituting the assembled battery 100 is held by a cell holder 20. The cell holder 20 includes a pair of end cell holders 20A disposed at both ends in the stacking direction of the plurality of secondary batteries 10 and a plurality of intermediate cell holders 20B disposed between two adjacent secondary batteries 10. Yes. As a material of the cell holder 20, for example, a resin material such as glass epoxy resin, polypropylene, or polybutylene terephthalate resin, or a metal material such as aluminum, copper, or stainless steel can be used.

中間セルホルダ20Bは、図2及び図3に示すように、二次電池10の扁平角形の電池容器11の広側面11wに対向するスペーサ部21と、電池容器11の狭側面11nに対向する側板部22と、電池容器11の底面11bに対向する底板部23とを有している。端部セルホルダ20Aは、中間セルホルダ20Bにおいて、スペーサ部21を中心に電池容器11の厚さ方向の両側に延びる側板部22及び底板部23の片側を、スペーサ部21に沿う平面で切断した構成を有している。そのため、以下では、セルホルダ20の構成として中間セルホルダ20Bの構成を中心に説明し、端部セルホルダ20Aの説明を適宜省略する。   As shown in FIGS. 2 and 3, the intermediate cell holder 20 </ b> B includes a spacer portion 21 that faces the wide side surface 11 w of the flat rectangular battery case 11 of the secondary battery 10 and a side plate portion that faces the narrow side surface 11 n of the battery case 11. 22 and a bottom plate portion 23 that faces the bottom surface 11 b of the battery container 11. The end cell holder 20A has a configuration in which one side of the side plate portion 22 and the bottom plate portion 23 extending on both sides in the thickness direction of the battery container 11 is cut along a plane along the spacer portion 21 in the intermediate cell holder 20B. Have. Therefore, below, it demonstrates centering around the structure of the intermediate | middle cell holder 20B as a structure of the cell holder 20, and abbreviate | omits description of the edge part cell holder 20A suitably.

セルホルダ20は、前述のように、電池容器11の広側面11wに対向するスペーサ部21と、電池容器11の狭側面11nに対向する側板部22と、電池容器11の底面11bに対向する底板部23とを有している。電池容器11の幅方向に間隔を有して対向する一対の長方形の板状の側板部22と、電池容器11の幅方向に延在して一対の側板部22を連結する長方形板状の底板部23とによって、上部が開放されたU字状の保持部24が形成されている。   As described above, the cell holder 20 includes the spacer portion 21 that faces the wide side surface 11w of the battery container 11, the side plate portion 22 that faces the narrow side surface 11n of the battery container 11, and the bottom plate portion that faces the bottom surface 11b of the battery container 11. 23. A pair of rectangular plate-like side plate portions 22 facing each other with a gap in the width direction of the battery case 11, and a rectangular plate-like bottom plate extending in the width direction of the battery case 11 and connecting the pair of side plate portions 22. The portion 23 forms a U-shaped holding portion 24 whose upper portion is open.

セルホルダ20の保持部24は、電池容器11の上面11tを露出させた状態で、電池容器11の厚さの約半分を収容する。対向する一対のセルホルダ20の保持部24に、二次電池10の電池容器11の厚さの約半分ずつを収容することで、二次電池10は、電池容器11の上面11tを露出させた状態で、一対のセルホルダ20の間に保持される。   The holding part 24 of the cell holder 20 accommodates about half of the thickness of the battery container 11 with the upper surface 11t of the battery container 11 exposed. The secondary battery 10 is in a state where the upper surface 11t of the battery container 11 is exposed by accommodating approximately half of the thickness of the battery container 11 of the secondary battery 10 in the holding portions 24 of the pair of cell holders 20 facing each other. Thus, it is held between the pair of cell holders 20.

複数のスペーサ部21の間には、電池容器11の幅方向に延びる複数のスリット25が形成されている。また、側板部22には、各スリット25に連通する複数の開口部26が形成されている。セルホルダ20は、二次電池10の電池容器11の広側面11wを冷却する冷却空気等の冷媒を、一方の側板部22の開口部26から導入してスリット25に流通させ、他方の側板部22の開口部26から導出することができるように構成されている。   A plurality of slits 25 extending in the width direction of the battery container 11 are formed between the plurality of spacer portions 21. Further, the side plate portion 22 is formed with a plurality of openings 26 communicating with the respective slits 25. The cell holder 20 introduces a coolant such as cooling air that cools the wide side surface 11 w of the battery container 11 of the secondary battery 10 from the opening 26 of one side plate portion 22, distributes it through the slit 25, and the other side plate portion 22. It is comprised so that it can derive | lead-out from the opening part 26 of this.

図示は省略するが、複数の二次電池10の積層方向の両端に配置された一対の端部セルホルダ20Aの外側の平坦な面に対向して一対のエンドプレートが配置される。また、二次電池10の幅方向の両側に、複数のセルホルダ20の側板部22に対向して二次電池10の積層方向に延在する一対のサイドプレートが配置され、一対のサイドプレートの延在方向の両端が一対のエンドプレートに締結される。これにより、一対のエンドプレートの間隔が規定され、セルホルダ20の間に配置された複数の二次電池10は、電池容器11の広側面11wにセルホルダ20のスペーサ部21が当接し、圧縮力が付与された状態で、セルホルダ20によって保持される。   Although illustration is omitted, a pair of end plates are disposed opposite to the flat surfaces outside the pair of end cell holders 20A disposed at both ends in the stacking direction of the plurality of secondary batteries 10. In addition, a pair of side plates extending in the stacking direction of the secondary batteries 10 are arranged on both sides of the secondary battery 10 in the width direction so as to face the side plate portions 22 of the plurality of cell holders 20. Both ends in the present direction are fastened to the pair of end plates. Thereby, the space | interval of a pair of end plate is prescribed | regulated, and the spacer part 21 of the cell holder 20 contact | abuts the wide side surface 11w of the battery container 11, and the some secondary battery 10 arrange | positioned between the cell holders 20 has compression force. In the applied state, it is held by the cell holder 20.

図4Aは、図1に示す組電池100の2つの二次電池10の間のセルホルダ20及び短絡部材40を示す平面図である。図4Bは、図4Aに示すB−B線に沿うセルホルダ20及び短絡部材40の断面図である。   4A is a plan view showing the cell holder 20 and the short-circuit member 40 between the two secondary batteries 10 of the assembled battery 100 shown in FIG. 4B is a cross-sectional view of the cell holder 20 and the short-circuit member 40 along the line BB shown in FIG. 4A.

前述のように、本実施形態の組電池100は、衝撃等による外力が作用したときに、個々の二次電池10の正極荷電部10Pと負極荷電部10Nとを短絡させる短絡部材40を備えることを特徴としている。短絡部材40は、導電性を有し、個々の二次電池10に隣接して配置され、非常時に個々の二次電池10を外部短絡させる。短絡部材40の素材は、導電性を有する素材であれば特に限定されないが、機械的強度を確保する観点から、例えば、正極外部端子16Pや負極外部端子16Nと同様の導電性を有する金属材料であることが好ましい。   As described above, the assembled battery 100 of the present embodiment includes the short-circuit member 40 that short-circuits the positive electrode charging portion 10P and the negative electrode charging portion 10N of each secondary battery 10 when an external force due to an impact or the like is applied. It is characterized by. The short-circuit member 40 has conductivity and is disposed adjacent to the individual secondary batteries 10 to externally short-circuit the individual secondary batteries 10 in an emergency. Although the raw material of the short circuit member 40 will not be specifically limited if it is a raw material which has electroconductivity, From a viewpoint of ensuring mechanical strength, it is a metal material which has the same electroconductivity as the positive electrode external terminal 16P and the negative electrode external terminal 16N, for example. Preferably there is.

短絡部材40は、正極外部端子16Pに接続されたバスバー30から電池容器11内の正極電極までの正極荷電部10Pの少なくとも一部に間隔を有して対向するとともに、負極外部端子16Nに接続されたバスバー30から負極電極までの負極荷電部10Nの少なくとも一部に間隔を有して対向する。より具体的には、本実施形態の組電池100において、短絡部材40は、個々の二次電池10の厚さ方向において、正極外部端子16Pに接続されたバスバー30と正極外部端子16Pに間隔を有して対向するとともに、負極外部端子16Nに接続されたバスバー30と負極外部端子16Nに間隔を有して対向している。   The short-circuit member 40 opposes at least a part of the positive electrode charging portion 10P from the bus bar 30 connected to the positive electrode external terminal 16P to the positive electrode in the battery container 11 with an interval, and is connected to the negative electrode external terminal 16N. Further, at least a part of the negative electrode charging portion 10N from the bus bar 30 to the negative electrode is opposed to the bus bar 30 with a gap. More specifically, in the assembled battery 100 of the present embodiment, the short-circuit member 40 is spaced from the bus bar 30 connected to the positive external terminal 16P and the positive external terminal 16P in the thickness direction of each secondary battery 10. The bus bar 30 connected to the negative external terminal 16N and the negative external terminal 16N are opposed to each other with a space therebetween.

短絡部材40は、個々の二次電池10の正極荷電部10Pに対向する正極対向部40Pと、負極荷電部10Nに対向する負極対向部40Nとを有する。正極対向部40Pは、正極外部端子16Pと、正極外部端子16Pに接続されたバスバー30の双方に、電池容器11の厚さ方向に間隔を有して対向している。負極対向部40Nは、負極外部端子16Nに、電池容器11の厚さ方向に間隔を有して対向し、負極外部端子16Nに接続されたバスバー30に、電池容器11の高さ方向に間隔を有して対向している。   The short-circuit member 40 includes a positive electrode facing portion 40P that faces the positive electrode charging portion 10P of each secondary battery 10, and a negative electrode facing portion 40N that faces the negative electrode charging portion 10N. The positive electrode facing portion 40P is opposed to both the positive electrode external terminal 16P and the bus bar 30 connected to the positive electrode external terminal 16P with an interval in the thickness direction of the battery container 11. The negative electrode facing portion 40N is opposed to the negative electrode external terminal 16N with a gap in the thickness direction of the battery case 11, and is spaced from the bus bar 30 connected to the negative electrode external terminal 16N in the height direction of the battery case 11. Have opposites.

なお、正極対向部40Pは、正極外部端子16Pと、正極外部端子16Pに接続されたバスバー30の少なくとも一方に間隔をあけて対向していればよく、負極対向部40Nは、負極外部端子16Nと、負極外部端子16Nに接続されたバスバー30の少なくとも一方に間隔を有して対向していればよい。本実施形態の組電池100において、正極対向部40Pと負極対向部40Nとは、電池容器11の幅方向に間隔を有して分離して配置されている。   The positive electrode facing portion 40P only needs to be opposed to the positive electrode external terminal 16P and at least one of the bus bars 30 connected to the positive electrode external terminal 16P with a space therebetween, and the negative electrode facing portion 40N is connected to the negative electrode external terminal 16N. The bus bar 30 connected to the negative external terminal 16N may be opposed to the bus bar 30 with a gap. In the assembled battery 100 of the present embodiment, the positive electrode facing portion 40P and the negative electrode facing portion 40N are arranged separately with a gap in the width direction of the battery container 11.

短絡部材40と正極荷電部10Pとの間隔、すなわち正極対向部40Pと正極荷電部10Pとの間隔、及び、短絡部材40と負極荷電部10Nとの間隔、すなわち負極対向部40Nと負極荷電部10Nとの間隔は、非常時に組電池100に衝撃等による外力が作用したときに、短絡部材40が正極荷電部10P及び負極荷電部10Nに接触する間隔に設定することができる。具体的には、例えば、組電池100に衝撃が加わったときに想定される荷重による組電池100の変形量を算出し、その変形量に応じて短絡部材40と正極荷電部10P及び負極荷電部10Nとの間隔を設定することができる。   The distance between the short-circuit member 40 and the positive electrode charging portion 10P, that is, the interval between the positive electrode facing portion 40P and the positive electrode charging portion 10P, and the interval between the short-circuit member 40 and the negative electrode charging portion 10N, that is, the negative electrode facing portion 40N and the negative electrode charging portion 10N. Can be set to an interval at which the short-circuit member 40 contacts the positive electrode charging portion 10P and the negative electrode charging portion 10N when an external force due to impact or the like acts on the assembled battery 100 in an emergency. Specifically, for example, the deformation amount of the assembled battery 100 due to a load assumed when an impact is applied to the assembled battery 100 is calculated, and the short-circuit member 40, the positive electrode charging unit 10P, and the negative electrode charging unit are calculated according to the deformation amount. An interval from 10N can be set.

例えば、組電池100に衝撃が加わったときに4kNの荷重が作用することが想定され、その荷重による組電池100の変形によって、短絡部材40が正極荷電部10P及び負極荷電部10Nへ向けて1mm移動することが算出されたと仮定する。この場合、短絡部材40と正極荷電部10Pとの間隔及び短絡部材40と負極荷電部10Nとの間隔は、1mm以下に設定することができる。   For example, it is assumed that a load of 4 kN is applied when an impact is applied to the assembled battery 100, and the short-circuit member 40 is 1 mm toward the positive electrode charging unit 10P and the negative electrode charging unit 10N due to the deformation of the assembled battery 100 due to the load. Assume that it was calculated to move. In this case, the interval between the short-circuit member 40 and the positive electrode charging unit 10P and the interval between the short-circuit member 40 and the negative electrode charging unit 10N can be set to 1 mm or less.

また、組電池100に衝撃が加わったときに40kNの荷重が作用することが想定され、その荷重による組電池100の変形によって、短絡部材40が正極荷電部10P及び負極荷電部10Nへ向けて2mm移動することが算出されたと仮定する。この場合、短絡部材40と正極荷電部10Pとの間隔及び短絡部材40と負極荷電部10Nとの間隔は、2mm以下に設定することができる。組電池100に作用する衝撃による外力は、例えば、組電池100の製造時に作用する圧縮力の2倍から5倍程度と想定することができる。   Further, it is assumed that a load of 40 kN is applied when an impact is applied to the assembled battery 100. Due to the deformation of the assembled battery 100 due to the load, the short-circuit member 40 moves 2 mm toward the positive electrode charging unit 10P and the negative electrode charging unit 10N. Assume that it was calculated to move. In this case, the interval between the short-circuit member 40 and the positive electrode charging unit 10P and the interval between the short-circuit member 40 and the negative electrode charging unit 10N can be set to 2 mm or less. The external force due to the impact acting on the assembled battery 100 can be assumed to be, for example, about 2 to 5 times the compressive force acting when the assembled battery 100 is manufactured.

本実施形態の組電池100において、短絡部材40は、電池容器11に対向する容器対向部41を有している。容器対向部41は、電池容器11の厚さ方向に間隔を有して電池容器11に対向しているが、予め電池容器11に当接して電池容器11と電気的に接続された状態で電池容器11に対向していてもよい。なお、電池容器11は、導電性を有するとともに、正極外部端子16P及び負極外部端子16Nと電池蓋13との間のガスケット17b、並びに、正極集電板15P及び負極集電板15Nと電池蓋13との間の絶縁部材17aを含む絶縁部材を介して、二次電池10の正極荷電部10P及び負極荷電部10Nに対して電気的に絶縁されている。   In the assembled battery 100 of the present embodiment, the short-circuit member 40 has a container facing portion 41 that faces the battery container 11. The container facing portion 41 is opposed to the battery container 11 with an interval in the thickness direction of the battery container 11, but the battery is in contact with the battery container 11 in advance and is electrically connected to the battery container 11. It may be opposed to the container 11. The battery container 11 has conductivity, and the positive electrode external terminal 16P and the gasket 17b between the negative electrode external terminal 16N and the battery cover 13, and the positive electrode current collector plate 15P, the negative electrode current collector plate 15N, and the battery cover 13 are provided. Is electrically insulated from the positive electrode charging portion 10P and the negative electrode charging portion 10N of the secondary battery 10 through an insulating member including an insulating member 17a therebetween.

また、短絡部材40と電池容器11との間隔、すなわち容器対向部41と電池容器11との間隔は、例えば、短絡部材40と正極荷電部10P及び負極荷電部10Nとの間隔と同様に設定してもよい。   Further, the distance between the short-circuit member 40 and the battery container 11, that is, the distance between the container facing portion 41 and the battery container 11, is set in the same manner as the distance between the short-circuit member 40, the positive electrode charging unit 10P, and the negative electrode charging unit 10N, for example. May be.

電池容器11の幅方向において間隔を有して配置された一対の短絡部材40のうち、正極対向部40P及び容器対向部41を有する一方の短絡部材40は、電池容器11の厚さ方向において、正極対向部40Pが正極外部端子16Pへ向けて容器対向部41よりも突出し、正極対向部40Pと容器対向部41との間に段差が形成されている。これにより、正極対向部40Pと正極外部端子16Pとの間隔、又は、正極対向部40Pとバスバー30との間隔と、容器対向部41と電池容器11との間隔とが、概ね等しくなっている。   Among the pair of short-circuit members 40 arranged with a gap in the width direction of the battery container 11, one short-circuit member 40 having the positive electrode facing portion 40 </ b> P and the container facing portion 41 is in the thickness direction of the battery container 11. The positive electrode facing portion 40P protrudes from the container facing portion 41 toward the positive electrode external terminal 16P, and a step is formed between the positive electrode facing portion 40P and the container facing portion 41. Thereby, the space | interval of the positive electrode opposing part 40P and the positive electrode external terminal 16P, or the space | interval of the positive electrode opposing part 40P and the bus-bar 30 and the space | interval of the container opposing part 41 and the battery container 11 are substantially equal.

同様に、負極対向部40N及び容器対向部41を有する他方の短絡部材40は、電池容器11の厚さ方向において、負極対向部40Nが負極外部端子16Nへ向けて容器対向部41よりも突出し、負極対向部40Nと容器対向部41との間に段差が形成されている。これにより、負極対向部40Nと負極外部端子16Nとの間隔と、容器対向部41と電池容器11との間隔とが、概ね等しくなっている。   Similarly, the other short-circuit member 40 having the negative electrode facing portion 40N and the container facing portion 41 has a negative electrode facing portion 40N protruding from the container facing portion 41 toward the negative electrode external terminal 16N in the thickness direction of the battery container 11, A step is formed between the negative electrode facing portion 40N and the container facing portion 41. Thereby, the space | interval of the negative electrode opposing part 40N and the negative electrode external terminal 16N and the space | interval of the container opposing part 41 and the battery container 11 are substantially equal.

本実施形態の組電池100において、短絡部材40は、二次電池10を保持するセルホルダ20のスペーサ部21に固定されている。短絡部材40は、例えば、インサート成形によってセルホルダ20に固定することができる。また、短絡部材40は、例えば、ボルトやリベット等の機械的な締結手段によってセルホルダ20に固定してもよいし、粘着テープや接着剤によってセルホルダ20に固定することもできる。   In the assembled battery 100 of this embodiment, the short-circuit member 40 is fixed to the spacer portion 21 of the cell holder 20 that holds the secondary battery 10. The short-circuit member 40 can be fixed to the cell holder 20 by insert molding, for example. Further, the short-circuit member 40 may be fixed to the cell holder 20 by a mechanical fastening means such as a bolt or a rivet, or may be fixed to the cell holder 20 by an adhesive tape or an adhesive.

以下、本実施形態の組電池100の作用について説明する。   Hereinafter, the operation of the assembled battery 100 of the present embodiment will be described.

前述のように、本実施形態の組電池100は、複数の二次電池10を備えている。また、二次電池10は、電極群14と、電極群14を収容する電池容器11と、電池容器11の外面に配置されて電極群14の正極電極及び負極電極にそれぞれ接続された正極外部端子16P及び負極外部端子16Nと、を有する。さらに、本実施形態の組電池100は、個々の二次電池10に隣接して配置されて非常時に個々の二次電池10を外部短絡させる導電性を有する短絡部材40を備えている。そして、短絡部材40は、正極外部端子16Pに接続されたバスバー30から正極電極までの正極荷電部10Pの少なくとも一部に間隔を有して対向するとともに、負極外部端子16Nに接続されたバスバー30から負極電極までの負極荷電部10Nの少なくとも一部に間隔を有して対向している。   As described above, the assembled battery 100 according to this embodiment includes the plurality of secondary batteries 10. The secondary battery 10 includes an electrode group 14, a battery container 11 that houses the electrode group 14, and a positive external terminal that is disposed on the outer surface of the battery container 11 and is connected to the positive electrode and the negative electrode of the electrode group 14, respectively. 16P and a negative external terminal 16N. Furthermore, the assembled battery 100 of the present embodiment includes a short-circuit member 40 that is disposed adjacent to each secondary battery 10 and has electrical conductivity to externally short-circuit each secondary battery 10 in an emergency. The short-circuit member 40 opposes at least a part of the positive electrode charging portion 10P from the bus bar 30 connected to the positive external terminal 16P to the positive electrode with a space, and is connected to the negative external terminal 16N. To at least a part of the negative electrode charging portion 10N from the negative electrode to the negative electrode with a gap.

以上の構成により、組電池100は、例えば発電機等の外部機器から供給された電力を、積層方向の一端の二次電池10の正極外部端子16Pと、積層方向の他端の二次電池10の負極外部端子16Nとを介して、直列に接続された複数の二次電池10に供給して充電することができる。また、組電池100は、直列に接続された複数の二次電池10に充電された電力を、積層方向の一端の二次電池10の正極外部端子16Pと、積層方向の他端の二次電池10の負極外部端子16Nとを介して、例えばモータ等の外部機器へ供給することができる。   With the above configuration, the assembled battery 100 uses, for example, power supplied from an external device such as a generator to supply the positive external terminal 16P of the secondary battery 10 at one end in the stacking direction and the secondary battery 10 at the other end in the stacking direction. The plurality of secondary batteries 10 connected in series can be charged through the negative external terminal 16N. Further, the assembled battery 100 supplies power charged in the plurality of secondary batteries 10 connected in series to the positive external terminal 16P of the secondary battery 10 at one end in the stacking direction and the secondary battery at the other end in the stacking direction. It can be supplied to an external device such as a motor via the 10 negative external terminals 16N.

このような組電池100の通常の使用時において、短絡部材40は、二次電池10の正極荷電部10Pに間隔を有して対向するとともに、二次電池10の負極荷電部10Nに間隔を有して対向している。これにより、短絡部材40と、二次電池10の正極荷電部10P及び負極荷電部10Nとが電気的に絶縁され、短絡部材40によって正極荷電部10Pと負極荷電部10Nとが短絡することが防止されている。   During normal use of such an assembled battery 100, the short-circuit member 40 faces the positive electrode charging portion 10P of the secondary battery 10 with a gap and has a gap with the negative electrode charging portion 10N of the secondary battery 10. And are facing each other. Accordingly, the short-circuit member 40 is electrically insulated from the positive electrode charging unit 10P and the negative electrode charging unit 10N of the secondary battery 10, and the short-circuit member 40 prevents the positive electrode charging unit 10P and the negative electrode charging unit 10N from being short-circuited. Has been.

例えば、車両の衝突等によって組電池100に衝撃が加わると、組電池100の製造時に作用する圧縮力よりも数倍大きい荷重が組電池100に作用する場合がある。このような場合、従来の組電池では、組電池を構成する二次電池が充電された状態で荷重を受け、例えば、二次電池の内部で正極電極と負極電極とが短絡して温度が過度に上昇する虞がある。   For example, when an impact is applied to the assembled battery 100 due to a vehicle collision or the like, a load that is several times larger than the compressive force acting when the assembled battery 100 is manufactured may act on the assembled battery 100. In such a case, the conventional assembled battery receives a load while the secondary battery constituting the assembled battery is charged. For example, the positive electrode and the negative electrode are short-circuited inside the secondary battery, and the temperature is excessive. There is a risk of rising.

また、前記特許文献1に記載された二次電池モジュールでは、導電部材によって電池セルの配列の中間部の電池セルの内部短絡を防止できるが、電池セルの配列の両端の一対の電池セルは、隣接している導電部材が接触しても短絡しない。そのため、配列の両端の一対の電池セルに衝撃や落下等による外力が加わると、内部短絡が発生し、内部の温度が過度に上昇して安全性が低下する虞がある。   Further, in the secondary battery module described in Patent Document 1, an internal short circuit of the battery cell in the middle part of the battery cell array can be prevented by the conductive member, but the pair of battery cells at both ends of the battery cell array is Even if adjacent conductive members come into contact with each other, no short circuit occurs. Therefore, when an external force is applied to the pair of battery cells at both ends of the array due to an impact, a drop or the like, an internal short circuit occurs, and the internal temperature may increase excessively and the safety may decrease.

これに対し、本実施形態の組電池100は、非常時に衝撃が加わって製造時に作用する圧縮力よりも数倍大きい荷重が作用すると、各部材の変形によって、短絡部材40と、二次電池10の正極荷電部10P及び負極荷電部10Nとの間隔が狭まる。そして、個々の二次電池10に隣接して配置された短絡部材40と、二次電池10の正極荷電部10P及び負極荷電部10Nとが接触し、個々の二次電池10の正極荷電部10Pと負極荷電部10Nとが短絡部材40を介して短絡する。これにより、個々の二次電池10に蓄えられていた電気エネルギーが消費され、二次電池10の内部短絡が防止される。したがって、本実施形態の組電池100によれば、衝撃等による外力に対する二次電池10の安全性を従来よりも向上させることができる。   On the other hand, in the assembled battery 100 of the present embodiment, when a load several times larger than the compressive force acting at the time of manufacturing is applied due to an impact in an emergency, the short-circuit member 40 and the secondary battery 10 are deformed by deformation of each member. The distance between the positive electrode charging portion 10P and the negative electrode charging portion 10N is reduced. Then, the short-circuit member 40 disposed adjacent to each secondary battery 10 is in contact with the positive electrode charging unit 10P and the negative electrode charging unit 10N of the secondary battery 10, and the positive electrode charging unit 10P of each secondary battery 10 is contacted. And the negative electrode charging unit 10 </ b> N are short-circuited via the short-circuit member 40. Thereby, the electrical energy stored in each secondary battery 10 is consumed, and an internal short circuit of the secondary battery 10 is prevented. Therefore, according to the assembled battery 100 of the present embodiment, the safety of the secondary battery 10 against an external force due to an impact or the like can be improved as compared with the related art.

また、短絡部材40は、個々の二次電池10の正極荷電部10Pに対向する正極対向部40Pと、負極荷電部10Nに対向する負極対向部40Nとを有している。   The short-circuit member 40 includes a positive electrode facing portion 40P that faces the positive electrode charging portion 10P of each secondary battery 10 and a negative electrode facing portion 40N that faces the negative electrode charging portion 10N.

そのため、組電池100が衝撃による荷重によって変形したときに、短絡部材40の正極対向部40Pが二次電池10の正極荷電部10Pに接触し、短絡部材40の負極対向部40Nが二次電池10の負極荷電部10Nに接触する。これにより、短絡部材40と、二次電池10の正極荷電部10P及び負極荷電部10Nとを、より確実に導通させることができる。   Therefore, when the assembled battery 100 is deformed by a load due to an impact, the positive electrode facing portion 40P of the short circuit member 40 contacts the positive electrode charging portion 10P of the secondary battery 10, and the negative electrode facing portion 40N of the short circuit member 40 is connected to the secondary battery 10. Of the negative electrode charging portion 10N. Thereby, the short circuit member 40 and the positive electrode charging part 10P and the negative electrode charging part 10N of the secondary battery 10 can be more reliably conducted.

また、短絡部材40の正極対向部40Pは、二次電池10の正極外部端子16Pと、その正極外部端子16Pに接続されたバスバー30の少なくとも一方に間隔を有して対向している。また、短絡部材40の負極対向部40Nは、負極外部端子16Nと、その負極外部端子16Nに接続されたバスバー30の少なくとも一方に間隔を有して対向している。   Further, the positive electrode facing portion 40P of the short-circuit member 40 faces the positive electrode external terminal 16P of the secondary battery 10 and at least one of the bus bars 30 connected to the positive electrode external terminal 16P with a space therebetween. Further, the negative electrode facing portion 40N of the short-circuit member 40 faces the negative electrode external terminal 16N and at least one of the bus bars 30 connected to the negative electrode external terminal 16N with a space therebetween.

二次電池10の正極外部端子16P及び負極外部端子16Nと、これらに接続されたバスバー30は、二次電池10の電池容器11の外部に配置された正極荷電部10P及び負極荷電部10Nである。したがって、二次電池10の電池容器11の内部に配置された正極荷電部10P及び負極荷電部10Nに短絡部材40を接触させる場合と比較して、短絡部材40の正極対向部40P及び負極対向部40Nを、それぞれ、二次電池10の正極荷電部10P及び負極荷電部10Nに接触させるのが容易になる。   The positive electrode external terminal 16P and the negative electrode external terminal 16N of the secondary battery 10 and the bus bar 30 connected thereto are the positive electrode charging unit 10P and the negative electrode charging unit 10N arranged outside the battery container 11 of the secondary battery 10. . Therefore, the positive electrode facing portion 40P and the negative electrode facing portion of the short-circuit member 40 are compared with the case where the short-circuit member 40 is brought into contact with the positive electrode charging portion 10P and the negative electrode charging portion 10N disposed inside the battery container 11 of the secondary battery 10. 40N can be easily brought into contact with the positive electrode charging unit 10P and the negative electrode charging unit 10N of the secondary battery 10, respectively.

また、短絡部材40は、電池容器11に対向する容器対向部41を有している。そして、二次電池10の電池容器11は、導電性を有するとともに、絶縁部材を介して正極荷電部10P及び負極荷電部10Nに対して電気的に絶縁されている。   Further, the short-circuit member 40 has a container facing portion 41 that faces the battery container 11. The battery container 11 of the secondary battery 10 has conductivity, and is electrically insulated from the positive electrode charging unit 10P and the negative electrode charging unit 10N via an insulating member.

そのため、例えば、組電池100に衝撃が加わって製造時に作用する圧縮力よりも数倍大きい荷重が作用すると、各部材の変形によって短絡部材40の容器対向部41と二次電池10の電池容器11との間隔が狭まる。そして、個々の二次電池10に隣接して配置された一対の短絡部材40の正極対向部40P及び負極対向部40Nが、個々の二次電池10の正極荷電部10P及び負極荷電部10Nと接触して導通するとともに、一対の短絡部材40の容器対向部41が、電池容器11と接触して導通する。これにより、一対の短絡部材40と電池容器11とによって、二次電池10の正極荷電部10Pと負極荷電部10Nとの間に短絡経路が形成され、正極荷電部10Pと負極荷電部10Nとが、一対の短絡部材40と電池容器11とを介して短絡する。   Therefore, for example, when an impact is applied to the assembled battery 100 and a load several times larger than the compressive force acting at the time of manufacture is applied, the container facing portion 41 of the short-circuit member 40 and the battery container 11 of the secondary battery 10 are deformed by deformation of each member. The interval between and narrows. Then, the positive electrode facing portion 40P and the negative electrode facing portion 40N of the pair of short-circuit members 40 arranged adjacent to each secondary battery 10 are in contact with the positive electrode charging portion 10P and the negative electrode charging portion 10N of each secondary battery 10. Then, the container facing portions 41 of the pair of short-circuit members 40 come into contact with the battery container 11 and are conducted. Thereby, a short circuit path is formed between the positive electrode charging unit 10P and the negative electrode charging unit 10N of the secondary battery 10 by the pair of short circuit members 40 and the battery container 11, and the positive electrode charging unit 10P and the negative electrode charging unit 10N are connected to each other. Short-circuit through the pair of short-circuit members 40 and the battery container 11.

また、組電池100は、二次電池10を保持するセルホルダ20を備えている。そして、セルホルダ20は、扁平角形の電池容器11の広側面11wに対向するスペーサ部21を有している。そして、本実施形態の組電池100において、短絡部材40は、セルホルダ20のスペーサ部21に固定されている。   The assembled battery 100 includes a cell holder 20 that holds the secondary battery 10. And the cell holder 20 has the spacer part 21 which opposes the wide side surface 11w of the flat rectangular battery case 11. FIG. And in the assembled battery 100 of this embodiment, the short circuit member 40 is being fixed to the spacer part 21 of the cell holder 20. FIG.

これにより、個々の二次電池10の厚さ方向、すなわち複数の二次電池10の積層方向において、短絡部材40を二次電池10の正極荷電部10P及び負極荷電部10Nに対向させることができる。したがって、組電池100に複数の二次電池10の積層方向の衝撃による荷重が作用したときに、短絡部材40を二次電池10の正極荷電部10P及び負極荷電部10Nに接触させて、短絡部材40を介して正極荷電部10Pと負極荷電部10Nとを短絡させることができる。   Thereby, the short circuit member 40 can be made to oppose the positive electrode charging part 10P and the negative electrode charging part 10N of the secondary battery 10 in the thickness direction of the individual secondary batteries 10, that is, in the stacking direction of the plurality of secondary batteries 10. . Therefore, when a load due to an impact in the stacking direction of the plurality of secondary batteries 10 is applied to the assembled battery 100, the short-circuit member 40 is brought into contact with the positive electrode charging unit 10P and the negative electrode charging unit 10N of the secondary battery 10 to The positive electrode charging unit 10P and the negative electrode charging unit 10N can be short-circuited via 40.

以上説明したように、本実施形態の組電池100によれば、衝撃等による外力に対する二次電池10の安全性を従来よりも向上させることができる。   As described above, according to the assembled battery 100 of the present embodiment, the safety of the secondary battery 10 against an external force due to an impact or the like can be improved as compared with the related art.

[実施形態2]
次に、本発明の実施形態2に係る組電池について、図1から図3を援用し、図5A及び図5Bを用いて説明する。図5Aは、図4Aに相当する本実施形態の組電池の2つの二次電池10の間のセルホルダ20及び短絡部材40を示す平面図である。図5Bは、図5Aに示すB−B線に沿うセルホルダ20及び短絡部材40の断面図である。
[Embodiment 2]
Next, the assembled battery according to Embodiment 2 of the present invention will be described with reference to FIGS. 1A to 3B and FIGS. 5A and 5B. FIG. 5A is a plan view showing the cell holder 20 and the short-circuit member 40 between two secondary batteries 10 of the battery pack of the present embodiment corresponding to FIG. 4A. FIG. 5B is a cross-sectional view of the cell holder 20 and the short-circuit member 40 along the line BB shown in FIG. 5A.

本実施形態の組電池は、短絡部材40が、正極対向部40Pと負極対向部40Nとを接続する接続部42を有する点で、前述の実施形態1の組電池100と異なっている。本実施形態の組電池のその他の点は、前述の実施形態1の組電池と同一であるため、同一の部分には同一の符号を付して説明を省略する。   The assembled battery of this embodiment is different from the assembled battery 100 of Embodiment 1 described above in that the short-circuit member 40 includes a connection portion 42 that connects the positive electrode facing portion 40P and the negative electrode facing portion 40N. Since the other points of the assembled battery of the present embodiment are the same as those of the assembled battery of the first embodiment, the same parts are denoted by the same reference numerals and the description thereof is omitted.

本実施形態の組電池は、短絡部材40が、正極対向部40Pと負極対向部40Nとを接続する接続部42を有している。そのため、組電池に衝撃による荷重が作用して各部材が変形し、短絡部材40の正極対向部40P及び負極対向部40Nがそれぞれ二次電池10の正極荷電部10P及び負極荷電部10Nに接触すると、正極対向部40P、接続部42、及び負極対向部40Nによって、正極荷電部10Pと負極荷電部10Nとの短絡経路が形成される。これにより、電池容器11を介することなく短絡部材40単体で正極荷電部10Pと負極荷電部10Nとを短絡させることができる。   In the assembled battery of the present embodiment, the short-circuit member 40 has a connection portion 42 that connects the positive electrode facing portion 40P and the negative electrode facing portion 40N. Therefore, when a load due to impact acts on the assembled battery, each member is deformed, and the positive electrode facing portion 40P and the negative electrode facing portion 40N of the short-circuit member 40 come into contact with the positive electrode charging portion 10P and the negative electrode charging portion 10N of the secondary battery 10, respectively. The positive electrode facing portion 40P, the connecting portion 42, and the negative electrode facing portion 40N form a short circuit path between the positive electrode charging portion 10P and the negative electrode charging portion 10N. Thereby, the positive electrode charging part 10P and the negative electrode charging part 10N can be short-circuited by the short-circuit member 40 alone without using the battery container 11.

さらに、実施形態1の組電池100と同様に、短絡部材40の容器対向部41が二次電池10の電池容器11に接することで、正極対向部40P、電池容器11、及び負極対向部40Nによっても短絡経路が形成され、正極荷電部10Pと負極荷電部10Nとを短絡させることができる。したがって、本実施形態の組電池によれば、実施形態1の組電池100と比較して、個々の二次電池10の正極荷電部10Pと負極荷電部10Nとを短絡させる短絡経路の電気抵抗を低減し、衝撃による荷重が加わったときに正極荷電部10Pと負極荷電部10Nとをより短絡させやすくすることができる。   Further, similarly to the assembled battery 100 of the first embodiment, the container facing portion 41 of the short-circuit member 40 is in contact with the battery container 11 of the secondary battery 10, so that the positive electrode facing portion 40 </ b> P, the battery container 11, and the negative electrode facing portion 40 </ b> N are used. In addition, a short circuit path is formed, and the positive electrode charging unit 10P and the negative electrode charging unit 10N can be short-circuited. Therefore, according to the assembled battery of this embodiment, compared with the assembled battery 100 of Embodiment 1, the electrical resistance of the short circuit path that short-circuits the positive electrode charging portion 10P and the negative electrode charging portion 10N of each secondary battery 10 is reduced. The positive electrode charging part 10P and the negative electrode charging part 10N can be more easily short-circuited when a load due to impact is applied.

[実施形態3]
次に、本発明の実施形態3に係る組電池について、図1から図3を援用し、図6A及び図6Bを用いて説明する。図6Aは、図4Aに相当する本実施形態の組電池の2つの二次電池10の間のセルホルダ20及び短絡部材40を示す平面図である。図6Bは、図6Aに示すB−B線に沿うセルホルダ20及び短絡部材40の断面図である。
[Embodiment 3]
Next, an assembled battery according to Embodiment 3 of the present invention will be described with reference to FIGS. 6A and 6B with reference to FIGS. FIG. 6A is a plan view showing the cell holder 20 and the short-circuit member 40 between the two secondary batteries 10 of the battery pack of the present embodiment corresponding to FIG. 4A. 6B is a cross-sectional view of the cell holder 20 and the short-circuit member 40 along the line BB shown in FIG. 6A.

本実施形態の組電池は、短絡部材40がセルホルダ20の側板部22に固定されている点で、前述の実施形態1の組電池と異なっている。本実施形態の組電池のその他の点は、前述の実施形態1の組電池と同一であるため、同一の部分には同一の符号を付して説明を省略する。   The assembled battery of the present embodiment is different from the assembled battery of Embodiment 1 described above in that the short-circuit member 40 is fixed to the side plate portion 22 of the cell holder 20. Since the other points of the assembled battery of the present embodiment are the same as those of the assembled battery of the first embodiment, the same parts are denoted by the same reference numerals and the description thereof is omitted.

本実施形態の組電池は、前述の実施形態1の組電池と同様に、二次電池10を保持するセルホルダ20を備えている。また、セルホルダ20は、扁平角形の電池容器11の狭側面11nに対向する側板部22を有している。本実施形態の組電池において、短絡部材40は、セルホルダ20の側板部22に固定されている。これにより、二次電池10の幅方向において、短絡部材40の正極対向部40Pは、正極荷電部10Pに間隔を有して対向し、短絡部材40の負極対向部40Nは、負極荷電部10Nに間隔を有して対向している。また、二次電池10の幅方向において、短絡部材40の容器対向部41は、二次電池10の電池容器11の狭側面11nに間隔を有して対向している。   The assembled battery of this embodiment includes a cell holder 20 that holds the secondary battery 10, as in the assembled battery of Embodiment 1 described above. The cell holder 20 has a side plate portion 22 that faces the narrow side surface 11n of the flat rectangular battery case 11. In the assembled battery of the present embodiment, the short-circuit member 40 is fixed to the side plate portion 22 of the cell holder 20. Thereby, in the width direction of the secondary battery 10, the positive electrode facing portion 40P of the short-circuit member 40 is opposed to the positive electrode charging portion 10P with an interval, and the negative electrode facing portion 40N of the short-circuit member 40 is opposed to the negative electrode charging portion 10N. Opposite with a gap. Further, in the width direction of the secondary battery 10, the container facing portion 41 of the short-circuit member 40 faces the narrow side surface 11 n of the battery container 11 of the secondary battery 10 with an interval.

そのため、二次電池10の幅方向において、組電池に衝撃が加わって、組電池に荷重が作用して各部材が変形すると、短絡部材40の正極対向部40P及び負極対向部40Nと、二次電池10の正極荷電部10P及び負極荷電部10Nとの間隔が狭まる。そして、短絡部材40の正極対向部40P及び負極対向部40Nと、二次電池10の正極荷電部10P及び負極荷電部10Nとが接触して導通する。また、短絡部材40の容器対向部41と二次電池10の電池容器11の狭側面11nとの間隔が狭まって、短絡部材40の容器対向部41と電池容器11とが接触して導通する。   Therefore, in the width direction of the secondary battery 10, when an impact is applied to the assembled battery and a load acts on the assembled battery to deform each member, the positive electrode facing portion 40 </ b> P and the negative electrode facing portion 40 </ b> N of the short-circuit member 40, The distance between the positive electrode charging unit 10P and the negative electrode charging unit 10N of the battery 10 is narrowed. Then, the positive electrode facing portion 40P and the negative electrode facing portion 40N of the short-circuit member 40 and the positive electrode charging portion 10P and the negative electrode charging portion 10N of the secondary battery 10 come into contact with each other and are brought into conduction. Moreover, the space | interval of the container opposing part 41 of the short circuit member 40 and the narrow side surface 11n of the battery container 11 of the secondary battery 10 becomes narrow, and the container opposing part 41 of the short circuit member 40 and the battery container 11 contact and are conducted.

したがって、本実施形態の組電池によれば、組電池に二次電池10の幅方向の荷重が作用して変形したときに、実施形態1の組電池と同様に、個々の二次電池10の正極荷電部10Pと負極荷電部10Nとを、一対の短絡部材40及び電池容器11を介して短絡させ、二次電池10の安全性を従来よりも向上させることができる。   Therefore, according to the assembled battery of the present embodiment, when the load in the width direction of the secondary battery 10 acts on the assembled battery and deforms, the individual secondary batteries 10 of the secondary battery 10 are similar to the assembled battery of the first embodiment. The positive electrode charging unit 10P and the negative electrode charging unit 10N can be short-circuited via the pair of short-circuit members 40 and the battery container 11, and the safety of the secondary battery 10 can be improved as compared with the conventional case.

[実施形態4]
次に、本発明の実施形態4に係る組電池について、図1から図3を援用し、図7A及び図7Bを用いて説明する。図7Aは、図4Aに相当する本実施形態の組電池の2つの二次電池10の間のセルホルダ20及び短絡部材40を示す平面図である。図7Bは、図7Aに示すB−B線に沿うセルホルダ20及び短絡部材40の断面図である。
[Embodiment 4]
Next, an assembled battery according to Embodiment 4 of the present invention will be described with reference to FIGS. 7A and 7B with reference to FIGS. FIG. 7A is a plan view showing the cell holder 20 and the short-circuit member 40 between two secondary batteries 10 of the battery pack of the present embodiment corresponding to FIG. 4A. FIG. 7B is a cross-sectional view of the cell holder 20 and the short-circuit member 40 along the line BB shown in FIG. 7A.

本実施形態の組電池は、短絡部材40が、正極対向部40Pと負極対向部40Nとを接続する接続部42を有する点で、前述の実施形態3の組電池と異なっている。本実施形態の組電池のその他の点は、前述の実施形態3の組電池と同一であるため、同一の部分には同一の符号を付して説明を省略する。   The assembled battery of the present embodiment is different from the assembled battery of Embodiment 3 described above in that the short-circuit member 40 includes a connection portion 42 that connects the positive electrode facing portion 40P and the negative electrode facing portion 40N. Since the other points of the assembled battery of the present embodiment are the same as those of the assembled battery of the above-described embodiment 3, the same portions are denoted by the same reference numerals and description thereof is omitted.

本実施形態の組電池は、短絡部材40が、正極対向部40Pと負極対向部40Nとを接続する接続部42を有している。そのため、組電池に衝撃による荷重が作用して各部材が変形し、短絡部材40の正極対向部40P及び負極対向部40Nがそれぞれ二次電池10の正極荷電部10P及び負極荷電部10Nに接触すると、正極対向部40P、接続部42、及び負極対向部40Nによって、正極荷電部10Pと負極荷電部10Nとの短絡経路が形成される。これにより、電池容器11を介することなく短絡部材40単体で正極荷電部10Pと負極荷電部10Nとを短絡させることができる。   In the assembled battery of the present embodiment, the short-circuit member 40 has a connection portion 42 that connects the positive electrode facing portion 40P and the negative electrode facing portion 40N. Therefore, when a load due to impact acts on the assembled battery, each member is deformed, and the positive electrode facing portion 40P and the negative electrode facing portion 40N of the short-circuit member 40 come into contact with the positive electrode charging portion 10P and the negative electrode charging portion 10N of the secondary battery 10, respectively. The positive electrode facing portion 40P, the connecting portion 42, and the negative electrode facing portion 40N form a short circuit path between the positive electrode charging portion 10P and the negative electrode charging portion 10N. Thereby, the positive electrode charging part 10P and the negative electrode charging part 10N can be short-circuited by the short-circuit member 40 alone without using the battery container 11.

さらに、実施形態3の組電池と同様に、短絡部材40の容器対向部41が二次電池10の電池容器11に接することで、正極対向部40P、電池容器11、及び負極対向部40Nによっても、短絡経路が形成され、正極荷電部10Pと負極荷電部10Nとを短絡させることができる。したがって、本実施形態の組電池によれば、実施形態3の組電池と比較して、個々の二次電池10の正極荷電部10Pと負極荷電部10Nとを短絡させる短絡経路の電気抵抗を低減し、衝撃による荷重が加わったときに正極荷電部10Pと負極荷電部10Nとをより短絡させやすくすることができる。   Further, similarly to the assembled battery of the third embodiment, the container facing portion 41 of the short-circuit member 40 is in contact with the battery container 11 of the secondary battery 10 so that the positive electrode facing portion 40P, the battery container 11 and the negative electrode facing portion 40N A short circuit path is formed, and the positive electrode charging unit 10P and the negative electrode charging unit 10N can be short-circuited. Therefore, according to the assembled battery of this embodiment, compared with the assembled battery of Embodiment 3, the electrical resistance of the short circuit path that short-circuits the positive electrode charging portion 10P and the negative electrode charging portion 10N of each secondary battery 10 is reduced. In addition, when a load due to impact is applied, the positive electrode charging unit 10P and the negative electrode charging unit 10N can be more easily short-circuited.

[実施形態5]
次に、本発明の実施形態5に係る組電池について、図1から図3を援用し、図8A及び図8Bを用いて説明する。図8Aは、図4Aに相当する本実施形態の組電池の2つの二次電池10の間のセルホルダ20及び短絡部材40を示す平面図である。図8Bは、図8Aに示すB−B線に沿うセルホルダ20及び短絡部材40の断面図である。
[Embodiment 5]
Next, an assembled battery according to Embodiment 5 of the present invention will be described with reference to FIGS. 8A and 8B with reference to FIGS. FIG. 8A is a plan view showing the cell holder 20 and the short-circuit member 40 between the two secondary batteries 10 of the battery pack of the present embodiment corresponding to FIG. 4A. FIG. 8B is a cross-sectional view of the cell holder 20 and the short-circuit member 40 along the line BB shown in FIG. 8A.

本実施形態の組電池は、バスバー30を保持するバスバーホルダ50を有し、短絡部材40がバスバーホルダ50に固定されている点で、前述の実施形態1の組電池と異なっている。本実施形態の組電池のその他の点は、前述の実施形態1の組電池と同一であるため、同一の部分には同一の符号を付して説明を省略する。   The assembled battery of the present embodiment has a bus bar holder 50 that holds the bus bar 30 and is different from the assembled battery of the first embodiment in that the short-circuit member 40 is fixed to the bus bar holder 50. Since the other points of the assembled battery of the present embodiment are the same as those of the assembled battery of the first embodiment, the same parts are denoted by the same reference numerals and the description thereof is omitted.

本実施形態の組電池は、バスバー30を保持するバスバーホルダ50を有し、短絡部材40がバスバーホルダ50に固定されている。これにより、二次電池10の高さ方向において、短絡部材40の正極対向部40Pは、二次電池10の正極荷電部10Pに間隔を有して対向し、短絡部材40の負極対向部40Nは、二次電池10の負極荷電部10Nに間隔を有して対向している。また、二次電池10の高さ方向において、短絡部材40の容器対向部41は、電池容器11の電池蓋13に間隔を有して対向している。   The assembled battery of this embodiment includes a bus bar holder 50 that holds the bus bar 30, and the short-circuit member 40 is fixed to the bus bar holder 50. Thereby, in the height direction of the secondary battery 10, the positive electrode facing portion 40P of the short-circuit member 40 is opposed to the positive electrode charging portion 10P of the secondary battery 10 with an interval, and the negative electrode facing portion 40N of the short-circuit member 40 is , Opposite to the negative electrode charging portion 10N of the secondary battery 10 with a gap. Further, in the height direction of the secondary battery 10, the container facing portion 41 of the short-circuit member 40 faces the battery lid 13 of the battery container 11 with an interval.

そのため、二次電池10の高さ方向において、組電池に衝撃が加わって、組電池に荷重が作用して各部材が変形すると、短絡部材40の正極対向部40P及び負極対向部40Nと、二次電池10の正極荷電部10P及び負極荷電部10Nとの間隔が狭まる。そして、短絡部材40の正極対向部40P及び負極対向部40Nと、二次電池10の正極荷電部10P及び負極荷電部10Nとが接触して導通する。また、短絡部材40の容器対向部41と二次電池10の電池容器11の電池蓋13との間隔が狭まって、短絡部材40の容器対向部41と電池容器11とが接触して導通する。   Therefore, when an impact is applied to the assembled battery in the height direction of the secondary battery 10 and a load is applied to the assembled battery to deform each member, the positive electrode facing portion 40P and the negative electrode facing portion 40N of the short-circuit member 40, The space | interval with the positive electrode charging part 10P and the negative electrode charging part 10N of the secondary battery 10 becomes narrow. Then, the positive electrode facing portion 40P and the negative electrode facing portion 40N of the short-circuit member 40 and the positive electrode charging portion 10P and the negative electrode charging portion 10N of the secondary battery 10 come into contact with each other and are brought into conduction. Moreover, the space | interval of the container facing part 41 of the short circuit member 40 and the battery cover 13 of the battery container 11 of the secondary battery 10 narrows, and the container facing part 41 of the short circuit member 40 and the battery container 11 contact and are conducted.

したがって、本実施形態の組電池によれば、組電池に二次電池10の高さ方向の荷重が作用して変形したときに、実施形態1の組電池と同様に、個々の二次電池10の正極荷電部10Pと負極荷電部10Nとを、短絡部材40及び電池容器11を介して短絡させ、二次電池10の安全性を従来よりも向上させることができる。   Therefore, according to the assembled battery of the present embodiment, when the load in the height direction of the secondary battery 10 acts on the assembled battery and deforms, the individual secondary batteries 10 as in the assembled battery of the first embodiment. The positive electrode charging portion 10P and the negative electrode charging portion 10N of the secondary battery 10 can be short-circuited via the short-circuit member 40 and the battery container 11, and the safety of the secondary battery 10 can be improved as compared with the conventional case.

[実施形態6]
次に、本発明の実施形態6に係る組電池について、図1から図3を援用し、図9A及び図9Bを用いて説明する。図9Aは、図4Aに相当する本実施形態の組電池の2つの二次電池10の間のセルホルダ20及び短絡部材40を示す平面図である。図9Bは、図9Aに示すB−B線に沿うセルホルダ20及び短絡部材40の断面図である。
[Embodiment 6]
Next, an assembled battery according to Embodiment 6 of the present invention will be described with reference to FIGS. 9A and 9B with reference to FIGS. FIG. 9A is a plan view showing the cell holder 20 and the short-circuit member 40 between the two secondary batteries 10 of the battery pack of the present embodiment corresponding to FIG. 4A. FIG. 9B is a cross-sectional view of the cell holder 20 and the short-circuit member 40 along the line BB shown in FIG. 9A.

本実施形態の組電池は、短絡部材40が、正極対向部40Pと負極対向部40Nとを接続する接続部42を有する点で、前述の実施形態5の組電池と異なっている。本実施形態の組電池のその他の点は、前述の実施形態5の組電池と同一であるため、同一の部分には同一の符号を付して説明を省略する。   The assembled battery of this embodiment is different from the assembled battery of Embodiment 5 described above in that the short-circuit member 40 includes a connection portion 42 that connects the positive electrode facing portion 40P and the negative electrode facing portion 40N. Since the other points of the assembled battery of the present embodiment are the same as those of the assembled battery of the fifth embodiment described above, the same parts are denoted by the same reference numerals and description thereof is omitted.

本実施形態の組電池は、短絡部材40が、正極対向部40Pと負極対向部40Nとを接続する接続部42を有している。そのため、組電池に衝撃による荷重が作用して各部材が変形し、短絡部材40の正極対向部40P及び負極対向部40Nがそれぞれ二次電池10の正極荷電部10P及び負極荷電部10Nに接触すると、正極対向部40P、接続部42、及び負極対向部40Nによって、正極荷電部10Pと負極荷電部10Nとの短絡経路が形成される。これにより、電池容器11を介することなく短絡部材40単体で正極荷電部10Pと負極荷電部10Nとを短絡させることができる。   In the assembled battery of the present embodiment, the short-circuit member 40 has a connection portion 42 that connects the positive electrode facing portion 40P and the negative electrode facing portion 40N. Therefore, when a load due to impact acts on the assembled battery, each member is deformed, and the positive electrode facing portion 40P and the negative electrode facing portion 40N of the short-circuit member 40 come into contact with the positive electrode charging portion 10P and the negative electrode charging portion 10N of the secondary battery 10, respectively. The positive electrode facing portion 40P, the connecting portion 42, and the negative electrode facing portion 40N form a short circuit path between the positive electrode charging portion 10P and the negative electrode charging portion 10N. Thereby, the positive electrode charging part 10P and the negative electrode charging part 10N can be short-circuited by the short-circuit member 40 alone without using the battery container 11.

さらに、実施形態5の組電池と同様に、短絡部材40の容器対向部41が二次電池10の電池容器11に接することで、正極対向部40P、電池容器11、及び負極対向部40Nによっても、短絡経路が形成され、正極荷電部10Pと負極荷電部10Nとを短絡させることができる。したがって、本実施形態の組電池によれば、実施形態5の組電池と比較して、個々の二次電池10の正極荷電部10Pと負極荷電部10Nとを短絡させる短絡経路の電気抵抗を低減し、衝撃による荷重が加わったときに正極荷電部10Pと負極荷電部10Nとをより短絡させやすくすることができる。   Further, similarly to the assembled battery of the fifth embodiment, the container facing portion 41 of the short-circuit member 40 is in contact with the battery container 11 of the secondary battery 10 so that the positive electrode facing portion 40P, the battery container 11, and the negative electrode facing portion 40N A short circuit path is formed, and the positive electrode charging unit 10P and the negative electrode charging unit 10N can be short-circuited. Therefore, according to the assembled battery of this embodiment, compared with the assembled battery of Embodiment 5, the electrical resistance of the short circuit path that short-circuits the positive electrode charging portion 10P and the negative electrode charging portion 10N of each secondary battery 10 is reduced. In addition, when a load due to impact is applied, the positive electrode charging unit 10P and the negative electrode charging unit 10N can be more easily short-circuited.

[実施形態7]
次に、本発明の実施形態7に係る組電池について、図1から図3を援用し、図10Aから図10Cを用いて説明する。図10Aは、図4Aに相当する本実施形態の組電池の2つの二次電池10の間のセルホルダ20及び短絡部材40を示す平面図である。図10Bは、図10Aに示すB−B線に沿うセルホルダ20及び短絡部材40の断面図である。図10Cは、短絡部材40と電池容器11内部の正極荷電部10Pとが接触した状態を示す二次電池10の断面図である。
[Embodiment 7]
Next, an assembled battery according to Embodiment 7 of the present invention will be described using FIGS. 1 to 3 and FIGS. 10A to 10C. FIG. 10A is a plan view showing the cell holder 20 and the short-circuit member 40 between the two secondary batteries 10 of the battery pack of the present embodiment corresponding to FIG. 4A. FIG. 10B is a cross-sectional view of the cell holder 20 and the short-circuit member 40 along the line BB shown in FIG. 10A. 10C is a cross-sectional view of the secondary battery 10 showing a state in which the short-circuit member 40 and the positive electrode charging unit 10P inside the battery container 11 are in contact with each other.

本実施形態の組電池は、短絡部材40が、電池容器11の内部の正極荷電部10P及び負極荷電部10Nに電池容器11を介して対向する点で、前述の実施形態1の組電池と異なっている。本実施形態の組電池のその他の点は、前述の実施形態1の組電池と同様であるため、同一の部分には同一の符号を付して説明を省略する。   The assembled battery of this embodiment is different from the assembled battery of Embodiment 1 described above in that the short-circuit member 40 faces the positive electrode charging unit 10P and the negative electrode charging unit 10N inside the battery container 11 with the battery container 11 interposed therebetween. ing. Since the other points of the assembled battery of the present embodiment are the same as those of the assembled battery of the above-described first embodiment, the same parts are denoted by the same reference numerals and description thereof is omitted.

本実施形態の組電池では、電池容器11の厚さ方向において、短絡部材40の正極対向部40Pは、電池容器11の内部の正極集電板15Pに電池容器11を介して対向し、短絡部材40の負極対向部40Nは、電池容器11の内部の負極集電板15Nに電池容器11を介して対向している。正極集電板15Pは、二次電池10の正極荷電部10Pの一部であり、電池容器11内部の電極群14を構成する正極電極の箔露出部14Pと電池容器11の外部の正極外部端子16Pとを接続している。負極集電板15Nは、二次電池10の負極荷電部10Nの一部であり、電池容器11内部の電極群14を構成する負極電極の箔露出部14Nと、電池容器11の外部の負極外部端子16Nとを接続している。   In the assembled battery of this embodiment, in the thickness direction of the battery container 11, the positive electrode facing portion 40 </ b> P of the short-circuit member 40 faces the positive current collector plate 15 </ b> P inside the battery container 11 via the battery container 11, and the short-circuit member The negative electrode facing portion 40N of 40 faces the negative electrode current collector plate 15N inside the battery container 11 with the battery container 11 interposed therebetween. The positive electrode current collector plate 15 </ b> P is a part of the positive electrode charging unit 10 </ b> P of the secondary battery 10, and the foil exposed part 14 </ b> P of the positive electrode constituting the electrode group 14 inside the battery container 11 and the positive electrode external terminal outside the battery container 11. 16P is connected. The negative electrode current collector plate 15N is a part of the negative electrode charging portion 10N of the secondary battery 10, and the negative electrode electrode foil exposed portion 14N constituting the electrode group 14 inside the battery container 11 and the negative electrode exterior outside the battery container 11 Terminal 16N is connected.

また、短絡部材40の正極対向部40P及び負極対向部40Nは、それぞれ鋭利な先端部を有し、先端部が電池容器11を向くようにセルホルダ20のスペーサ部21に埋め込まれている。そのため、例えば、組電池に衝撃が加わって、製造時に作用する圧縮力よりも数倍大きい荷重が電池容器11の厚さ方向に作用すると、各部材の変形によって短絡部材40の正極対向部40P及び負極対向部40Nの先端部が、それぞれ電池容器11を突き破る。そして、短絡部材40の正極対向部40P及び負極対向部40Nの先端部が、それぞれ、電池容器11内部の正極集電板15P及び負極集電板15Nに接触して導通する。   The positive electrode facing portion 40P and the negative electrode facing portion 40N of the short-circuit member 40 each have a sharp tip portion, and are embedded in the spacer portion 21 of the cell holder 20 so that the tip portion faces the battery container 11. Therefore, for example, when an impact is applied to the assembled battery and a load several times larger than the compressive force acting during manufacturing acts in the thickness direction of the battery container 11, the positive electrode facing portion 40P of the short-circuit member 40 and the short circuit member 40 are deformed by deformation of each member. The tip of the negative electrode facing portion 40N breaks through the battery container 11 respectively. And the front-end | tip part of the positive electrode opposing part 40P of the short circuit member 40 and the negative electrode opposing part 40N contacts the positive electrode current collecting plate 15P and the negative electrode current collecting plate 15N inside the battery container 11, respectively, and is conducted.

これにより、一対の短絡部材40と電池容器11とによって、正極荷電部10Pと負極荷電部10Nとの間に短絡経路が形成され、個々の二次電池10の正極荷電部10Pと負極荷電部10Nとが、一対の短絡部材40と電池容器11とを介して短絡する。そして、個々の二次電池10に蓄えられていた電気エネルギーが消費され、二次電池10の内部短絡が防止される。したがって、本実施形態の組電池によれば、前述の実施形態1の組電池と同様に、衝撃等による外力に対する二次電池10の安全性を従来よりも向上させることができる。   Thus, a short-circuit path is formed between the positive electrode charging unit 10P and the negative electrode charging unit 10N by the pair of short-circuit members 40 and the battery container 11, and the positive electrode charging unit 10P and the negative electrode charging unit 10N of each secondary battery 10 are formed. Are short-circuited through the pair of short-circuit members 40 and the battery container 11. And the electrical energy stored in each secondary battery 10 is consumed, and the internal short circuit of the secondary battery 10 is prevented. Therefore, according to the assembled battery of this embodiment, the safety of the secondary battery 10 against an external force due to an impact or the like can be improved as compared with the conventional battery, similarly to the assembled battery of the first embodiment.

なお、短絡部材40の正極対向部40Pは、電池容器11の内部の電極群14を構成する正極電極の箔露出部14Pに電池容器11を介して対向してもよい。また、短絡部材40の負極対向部40Nは、電池容器11の内部の電極群14を構成する負極電極の箔露出部14Nに電池容器11を介して対向してもよい。   The positive electrode facing portion 40 </ b> P of the short-circuit member 40 may be opposed to the foil exposed portion 14 </ b> P of the positive electrode constituting the electrode group 14 inside the battery container 11 via the battery container 11. Further, the negative electrode facing portion 40N of the short-circuit member 40 may face the foil exposed portion 14N of the negative electrode constituting the electrode group 14 inside the battery container 11 with the battery container 11 interposed therebetween.

これにより、組電池に衝撃が加わって荷重が電池容器11の厚さ方向に作用したときに、電池容器11を突き破った短絡部材40を、電池容器11の内部の正極荷電部10Pの一部である正極電極の箔露出部14Pと、電池容器11の内部の負極荷電部10Nの一部である負極電極の箔露出部14Nとに接触させることができる。したがって、短絡部材40を正極集電板15P及び負極集電板15Nに接触させる場合と同様の効果を得ることができる。   Thereby, when an impact is applied to the assembled battery and a load acts in the thickness direction of the battery container 11, the short-circuit member 40 that has pierced the battery container 11 is part of the positive electrode charging unit 10 </ b> P inside the battery container 11. The foil exposed portion 14P of a certain positive electrode can be brought into contact with the foil exposed portion 14N of the negative electrode that is a part of the negative electrode charging portion 10N inside the battery container 11. Therefore, the same effect as when the short-circuit member 40 is brought into contact with the positive electrode current collector plate 15P and the negative electrode current collector plate 15N can be obtained.

[実施形態8]
次に、本発明の実施形態8に係る組電池について、図1から図3を援用し、図11A及び図11Bを用いて説明する。図11Aは、図4Aに相当する本実施形態の組電池の2つの二次電池10の間のセルホルダ20及び短絡部材40を示す平面図である。図11Bは、図11Aに示すB−B線に沿うセルホルダ20及び短絡部材40の断面図である。
[Embodiment 8]
Next, an assembled battery according to Embodiment 8 of the present invention will be described with reference to FIGS. 11A and 11B with reference to FIGS. FIG. 11A is a plan view showing the cell holder 20 and the short-circuit member 40 between the two secondary batteries 10 of the battery pack of the present embodiment corresponding to FIG. 4A. FIG. 11B is a cross-sectional view of the cell holder 20 and the short-circuit member 40 along the line BB shown in FIG. 11A.

本実施形態の組電池は、短絡部材40が、正極対向部40Pと負極対向部40Nとを接続する接続部42を有する点で、前述の実施形態7の組電池と異なっている。本実施形態の組電池のその他の点は、前述の実施形態7の組電池と同一であるため、同一の部分には同一の符号を付して説明を省略する。   The assembled battery of this embodiment is different from the assembled battery of Embodiment 7 described above in that the short-circuit member 40 includes a connection portion 42 that connects the positive electrode facing portion 40P and the negative electrode facing portion 40N. Since the other points of the assembled battery of the present embodiment are the same as those of the assembled battery of the seventh embodiment, the same parts are denoted by the same reference numerals and description thereof is omitted.

本実施形態の組電池は、短絡部材40が、正極対向部40Pと負極対向部40Nとを接続する接続部42を有している。そのため、組電池に衝撃による荷重が作用して各部材が変形し、短絡部材40の正極対向部40P及び負極対向部40Nがそれぞれ二次電池10の正極荷電部10P及び負極荷電部10Nに接触すると、正極対向部40P、接続部42、及び負極対向部40Nによって、正極荷電部10Pと負極荷電部10Nとの短絡経路が形成される。これにより、電池容器11を介することなく短絡部材40単体で正極荷電部10Pと負極荷電部10Nとを短絡させることができる。   In the assembled battery of the present embodiment, the short-circuit member 40 has a connection portion 42 that connects the positive electrode facing portion 40P and the negative electrode facing portion 40N. Therefore, when a load due to impact acts on the assembled battery, each member is deformed, and the positive electrode facing portion 40P and the negative electrode facing portion 40N of the short-circuit member 40 come into contact with the positive electrode charging portion 10P and the negative electrode charging portion 10N of the secondary battery 10, respectively. The positive electrode facing portion 40P, the connecting portion 42, and the negative electrode facing portion 40N form a short circuit path between the positive electrode charging portion 10P and the negative electrode charging portion 10N. Thereby, the positive electrode charging part 10P and the negative electrode charging part 10N can be short-circuited by the short-circuit member 40 alone without using the battery container 11.

さらに、実施形態7の組電池と同様に、短絡部材40が二次電池10の電池容器11に電気的に接続されることで、正極対向部40P、電池容器11、及び負極対向部40Nによっても短絡経路が形成され、正極荷電部10Pと負極荷電部10Nとを短絡させることができる。したがって、本実施形態の組電池によれば、実施形態7の組電池と比較して、個々の二次電池10の正極荷電部10Pと負極荷電部10Nとを短絡させる短絡経路の電気抵抗を低減し、衝撃による荷重が加わったときに正極荷電部10Pと負極荷電部10Nとをより短絡させやすくすることができる。   Further, similarly to the assembled battery of the seventh embodiment, the short-circuit member 40 is electrically connected to the battery container 11 of the secondary battery 10 so that the positive electrode facing portion 40P, the battery container 11 and the negative electrode facing portion 40N are also connected. A short circuit path is formed, and the positive electrode charging unit 10P and the negative electrode charging unit 10N can be short-circuited. Therefore, according to the assembled battery of this embodiment, compared with the assembled battery of Embodiment 7, the electrical resistance of the short circuit path for short-circuiting the positive electrode charging portion 10P and the negative electrode charging portion 10N of each secondary battery 10 is reduced. In addition, when a load due to impact is applied, the positive electrode charging unit 10P and the negative electrode charging unit 10N can be more easily short-circuited.

また、短絡部材40が、正極対向部40Pと負極対向部40Nとを接続する接続部42を有することで、組電池に衝撃による荷重が作用したときに、接続部42によって荷重を受け、正極対向部40P及び負極対向部40Nによって電池容器11をより確実に突き破ることができる。したがって、実施形態7の組電池と比較して、より確実に正極荷電部10Pと負極荷電部10Nとの短絡経路を形成することが可能になる。   In addition, since the short-circuit member 40 includes the connection portion 42 that connects the positive electrode facing portion 40P and the negative electrode facing portion 40N, when a load due to an impact is applied to the assembled battery, the load is received by the connection portion 42 and the positive electrode facing The battery container 11 can be pierced more reliably by the portion 40P and the negative electrode facing portion 40N. Therefore, it is possible to form a short circuit path between the positive electrode charging unit 10P and the negative electrode charging unit 10N more reliably as compared with the assembled battery of the seventh embodiment.

[実施形態9]
次に、本発明の実施形態9に係る組電池について、図1から図3を援用し、図12Aから図12Cを用いて説明する。図12Aは、図4Aに相当する本実施形態の組電池の2つの二次電池10の間のセルホルダ20及び短絡部材40を示す平面図である。図12Bは、図12Aに示すB−B線に沿うセルホルダ20及び短絡部材40の断面図である。図12Cは、短絡部材40と電池容器11内部の正極荷電部10Pとが接触した状態を示す二次電池10の断面図である。
[Embodiment 9]
Next, the assembled battery according to Embodiment 9 of the present invention will be described with reference to FIGS. 12A to 12C with reference to FIGS. FIG. 12A is a plan view showing the cell holder 20 and the short-circuit member 40 between the two secondary batteries 10 of the battery pack of the present embodiment corresponding to FIG. 4A. 12B is a cross-sectional view of cell holder 20 and short-circuit member 40 along the line BB shown in FIG. 12A. FIG. 12C is a cross-sectional view of the secondary battery 10 showing a state where the short-circuit member 40 and the positive electrode charging unit 10P inside the battery container 11 are in contact with each other.

本実施形態の組電池は、短絡部材40がセルホルダ20の側板部22に固定されている点で、前述の実施形態7の組電池と異なっている。本実施形態の組電池のその他の点は、前述の実施形態7の組電池と同一であるため、同一の部分には同一の符号を付して説明を省略する。   The assembled battery of this embodiment is different from the assembled battery of Embodiment 7 described above in that the short-circuit member 40 is fixed to the side plate portion 22 of the cell holder 20. Since the other points of the assembled battery of the present embodiment are the same as those of the assembled battery of the seventh embodiment, the same parts are denoted by the same reference numerals and description thereof is omitted.

本実施形態の組電池は、短絡部材40がセルホルダ20の側板部22に固定されている。これにより、電池容器11の幅方向において、短絡部材40の正極対向部40Pは、電池容器11の内部の正極集電板15Pに電池容器11を介して対向し、短絡部材40の負極対向部40Nは、電池容器11の内部の負極集電板15Nに該電池容器11を介して対向している。   In the assembled battery of this embodiment, the short-circuit member 40 is fixed to the side plate portion 22 of the cell holder 20. Thereby, in the width direction of the battery container 11, the positive electrode facing portion 40P of the short-circuit member 40 is opposed to the positive electrode current collector plate 15P inside the battery container 11 via the battery container 11, and the negative electrode facing portion 40N of the short-circuit member 40 is disposed. Faces the negative electrode current collector plate 15N inside the battery container 11 with the battery container 11 interposed therebetween.

そのため、例えば、組電池に衝撃が加わって電池容器11の幅方向に荷重が作用すると、各部材の変形によって、短絡部材40の正極対向部40P及び負極対向部40Nの先端部が、それぞれ電池容器11を突き破る。そして、短絡部材40の正極対向部40P及び負極対向部40Nの先端部が、それぞれ電池容器11内部の正極集電板15P及び負極集電板15Nに接触して導通する。   Therefore, for example, when an impact is applied to the assembled battery and a load acts in the width direction of the battery container 11, the deformation of each member causes the positive electrode facing portion 40 </ b> P and the distal end portion of the negative electrode facing portion 40 </ b> N of the short-circuit member 40 to move to the battery container. Break through 11. And the front-end | tip part of the positive electrode opposing part 40P of the short circuit member 40 and the negative electrode opposing part 40N contacts the positive electrode current collecting plate 15P and the negative electrode current collecting plate 15N inside battery container 11, respectively, and is conducted.

これにより、一対の短絡部材40と電池容器11とによって、正極荷電部10Pと負極荷電部10Nとの間に短絡経路が形成され、個々の二次電池10の正極荷電部10Pと負極荷電部10Nとが一対の短絡部材40と電池容器11とを介して短絡する。そして、個々の二次電池10に蓄えられていた電気エネルギーが消費され、二次電池10の内部短絡が防止される。したがって、本実施形態の組電池によれば、前述の実施形態1の組電池と同様に、衝撃等による外力に対する二次電池10の安全性を従来よりも向上させることができる。   Thus, a short-circuit path is formed between the positive electrode charging unit 10P and the negative electrode charging unit 10N by the pair of short-circuit members 40 and the battery container 11, and the positive electrode charging unit 10P and the negative electrode charging unit 10N of each secondary battery 10 are formed. Are short-circuited via the pair of short-circuit members 40 and the battery container 11. And the electrical energy stored in each secondary battery 10 is consumed, and the internal short circuit of the secondary battery 10 is prevented. Therefore, according to the assembled battery of this embodiment, the safety of the secondary battery 10 against an external force due to an impact or the like can be improved as compared with the conventional battery, similarly to the assembled battery of the first embodiment.

[実施形態10]
次に、本発明の実施形態10に係る組電池について、図1から図3を援用し、図13を用いて説明する。図13は、図4Aに相当する本実施形態の組電池の2つの二次電池10の間のセルホルダ20及び短絡部材40を示す平面図である。
[Embodiment 10]
Next, an assembled battery according to Embodiment 10 of the present invention will be described with reference to FIGS. FIG. 13 is a plan view showing the cell holder 20 and the short-circuit member 40 between the two secondary batteries 10 of the battery pack of the present embodiment corresponding to FIG. 4A.

本実施形態の組電池は、短絡部材40が、正極対向部40Pと負極対向部40Nとを接続する接続部42を有する点で、前述の実施形態9の組電池と異なっている。本実施形態の組電池のその他の点は、前述の実施形態9の組電池と同一であるため、同一の部分には同一の符号を付して説明を省略する。   The assembled battery of this embodiment is different from the assembled battery of Embodiment 9 described above in that the short-circuit member 40 includes a connection portion 42 that connects the positive electrode facing portion 40P and the negative electrode facing portion 40N. Since the other points of the assembled battery of the present embodiment are the same as those of the assembled battery of the above-described embodiment 9, the same portions are denoted by the same reference numerals and description thereof is omitted.

本実施形態の組電池は、短絡部材40が、正極対向部40Pと負極対向部40Nとを接続する接続部42を有している。なお、接続部42の両端は、正極対向部40P及び負極対向部40Nと間隔を有して対向している。そのため、組電池に衝撃による荷重が作用して各部材が変形すると、短絡部材40の正極対向部40P及び負極対向部40Nがそれぞれ電池容器11を突き破って二次電池10の正極荷電部10P及び負極荷電部10Nに接触するとともに、接続部42の両端が正極対向部40P及び負極対向部40Nに接触して導通する。これにより、正極対向部40P、接続部42、及び負極対向部40Nによって、正極荷電部10Pと負極荷電部10Nとの短絡経路が形成され、電池容器11を介することなく短絡部材40単体で正極荷電部10Pと負極荷電部10Nとを短絡させることができる。   In the assembled battery of the present embodiment, the short-circuit member 40 has a connection portion 42 that connects the positive electrode facing portion 40P and the negative electrode facing portion 40N. Note that both ends of the connecting portion 42 are opposed to the positive electrode facing portion 40P and the negative electrode facing portion 40N with a gap therebetween. Therefore, when an impact load acts on the assembled battery to deform each member, the positive electrode facing portion 40P and the negative electrode facing portion 40N of the short-circuit member 40 break through the battery container 11 and the positive electrode charging portion 10P and the negative electrode of the secondary battery 10 respectively. While being in contact with the charging unit 10N, both ends of the connection unit 42 are in contact with the positive electrode facing portion 40P and the negative electrode facing portion 40N to be conductive. As a result, a short-circuit path between the positive electrode charging unit 10P and the negative electrode charging unit 10N is formed by the positive electrode facing portion 40P, the connecting portion 42, and the negative electrode facing portion 40N, and the short-circuit member 40 alone is positively charged without going through the battery container 11. The part 10P and the negative electrode charging part 10N can be short-circuited.

さらに、実施形態9の組電池と同様に、短絡部材40が二次電池10の電池容器11を突き破って電池容器11に電気的に接続されることで、正極対向部40P、電池容器11、及び負極対向部40Nによっても、短絡経路が形成され、正極荷電部10Pと負極荷電部10Nとを短絡させることができる。したがって、本実施形態の組電池によれば、実施形態9の組電池と比較して、個々の二次電池10の正極荷電部10Pと負極荷電部10Nとを短絡させる短絡経路の電気抵抗を低減し、衝撃による荷重が加わったときに正極荷電部10Pと負極荷電部10Nとをより短絡させやすくすることができる。   Furthermore, similarly to the assembled battery of the ninth embodiment, the short-circuit member 40 penetrates the battery container 11 of the secondary battery 10 and is electrically connected to the battery container 11, so that the positive electrode facing portion 40 </ b> P, the battery container 11, and A short circuit path is also formed by the negative electrode facing portion 40N, and the positive electrode charging unit 10P and the negative electrode charging unit 10N can be short-circuited. Therefore, according to the assembled battery of this embodiment, compared with the assembled battery of Embodiment 9, the electrical resistance of the short circuit path that short-circuits the positive electrode charging portion 10P and the negative electrode charging portion 10N of each secondary battery 10 is reduced. In addition, when a load due to impact is applied, the positive electrode charging unit 10P and the negative electrode charging unit 10N can be more easily short-circuited.

[実施形態11]
次に、本発明の実施形態11に係る組電池について、図1から図3を援用し、図14A及び図14Bを用いて説明する。図14Aは、図12Bに相当するセルホルダ20及び短絡部材40の断面図である。図14Bは、短絡部材40と電池容器11内部の正極荷電部10Pとが接触した状態を示す二次電池10の断面図である。
[Embodiment 11]
Next, an assembled battery according to Embodiment 11 of the present invention will be described with reference to FIGS. 14A and 14B with reference to FIGS. 14A is a cross-sectional view of the cell holder 20 and the short-circuit member 40 corresponding to FIG. 12B. 14B is a cross-sectional view of the secondary battery 10 showing a state where the short-circuit member 40 and the positive electrode charging unit 10P inside the battery container 11 are in contact with each other.

本実施形態の組電池は、短絡部材40がセルホルダ20の底板部23に固定されている点で、前述の実施形態7の組電池と異なっている。本実施形態の組電池のその他の点は、前述の実施形態7の組電池と同一であるため、同一の部分には同一の符号を付して説明を省略する。   The assembled battery of this embodiment is different from the assembled battery of Embodiment 7 described above in that the short-circuit member 40 is fixed to the bottom plate portion 23 of the cell holder 20. Since the other points of the assembled battery of the present embodiment are the same as those of the assembled battery of the seventh embodiment, the same parts are denoted by the same reference numerals and description thereof is omitted.

本実施形態の組電池は、短絡部材40がセルホルダ20の底板部23に固定されている。これにより、電池容器11の高さ方向において、短絡部材40の正極対向部40Pは、電池容器11の内部の電極群14を構成する正極電極の箔露出部14Pに電池容器11を介して対向し、短絡部材40の負極対向部40Nは、電池容器11の内部の電極群14を構成する負極電極の箔露出部14Nに該電池容器11を介して対向している。   In the assembled battery of this embodiment, the short-circuit member 40 is fixed to the bottom plate portion 23 of the cell holder 20. Thereby, in the height direction of the battery container 11, the positive electrode facing portion 40 </ b> P of the short-circuit member 40 faces the foil exposed portion 14 </ b> P of the positive electrode constituting the electrode group 14 inside the battery container 11 via the battery container 11. The negative electrode facing portion 40N of the short-circuit member 40 is opposed to the foil exposed portion 14N of the negative electrode constituting the electrode group 14 inside the battery container 11 via the battery container 11.

そのため、例えば、組電池に衝撃が加わって電池容器11の高さ方向に荷重が作用すると、各部材の変形によって、短絡部材40の正極対向部40P及び負極対向部40Nの先端部がそれぞれ電池容器11を突き破る。そして、短絡部材40の正極対向部40P及び負極対向部40Nの先端部が、それぞれ電池容器11内部の正極電極の箔露出部14P及び負極電極の箔露出部14Nに接触して導通する。   Therefore, for example, when an impact is applied to the assembled battery and a load acts in the height direction of the battery container 11, the positive electrode facing portion 40 </ b> P and the tip of the negative electrode facing portion 40 </ b> N of the short-circuit member 40 are respectively connected to the battery container due to deformation of each member. Break through 11. And the front-end | tip part of the positive electrode opposing part 40P and the negative electrode opposing part 40N of the short circuit member 40 contacts the foil exposed part 14P of the positive electrode inside the battery container 11, and the foil exposed part 14N of the negative electrode, respectively, and is conducted.

これにより、一対の短絡部材40と電池容器11とによって正極荷電部10Pと負極荷電部10Nとの間に短絡経路が形成され、個々の二次電池10の正極荷電部10Pと負極荷電部10Nとが一対の短絡部材40と電池容器11とを介して短絡する。そして、個々の二次電池10に蓄えられていた電気エネルギーが消費され、二次電池10の内部短絡が防止される。したがって、本実施形態の組電池によれば、前述の実施形態1の組電池と同様に、衝撃等による外力に対する二次電池10の安全性を従来よりも向上させることができる。   Thereby, a short circuit path is formed between the positive electrode charging unit 10P and the negative electrode charging unit 10N by the pair of short circuit members 40 and the battery container 11, and the positive electrode charging unit 10P and the negative electrode charging unit 10N of each secondary battery 10 Is short-circuited through the pair of short-circuit members 40 and the battery container 11. And the electrical energy stored in each secondary battery 10 is consumed, and the internal short circuit of the secondary battery 10 is prevented. Therefore, according to the assembled battery of this embodiment, the safety of the secondary battery 10 against an external force due to an impact or the like can be improved as compared with the conventional battery, similarly to the assembled battery of the first embodiment.

[実施形態12]
次に、本発明の実施形態12に係る組電池について、図1から図3を援用し、図15を用いて説明する。図15は、図14Aに相当するセルホルダ20及び短絡部材40の断面図である。
[Embodiment 12]
Next, an assembled battery according to Embodiment 12 of the present invention will be described with reference to FIGS. FIG. 15 is a cross-sectional view of the cell holder 20 and the short-circuit member 40 corresponding to FIG. 14A.

本実施形態の組電池は、短絡部材40が、正極対向部40Pと負極対向部40Nとを接続する接続部42を有する点で、前述の実施形態11の組電池と異なっている。本実施形態の組電池のその他の点は、前述の実施形態9の組電池と同一であるため、同一の部分には同一の符号を付して説明を省略する。   The assembled battery of this embodiment is different from the assembled battery of Embodiment 11 described above in that the short-circuit member 40 includes a connection portion 42 that connects the positive electrode facing portion 40P and the negative electrode facing portion 40N. Since the other points of the assembled battery of the present embodiment are the same as those of the assembled battery of the above-described embodiment 9, the same portions are denoted by the same reference numerals and description thereof is omitted.

本実施形態の組電池は、短絡部材40が、正極対向部40Pと負極対向部40Nとを接続する接続部42を有している。そのため、組電池に衝撃による荷重が作用して各部材が変形すると、短絡部材40の正極対向部40P及び負極対向部40Nがそれぞれ電池容器11を突き破って二次電池10の正極荷電部10P及び負極荷電部10Nに接触する。これにより、正極対向部40P、接続部42、及び負極対向部40Nによって、正極荷電部10Pと負極荷電部10Nとの短絡経路が形成され、電池容器11を介することなく短絡部材40単体で正極荷電部10Pと負極荷電部10Nとを短絡させることができる。   In the assembled battery of the present embodiment, the short-circuit member 40 has a connection portion 42 that connects the positive electrode facing portion 40P and the negative electrode facing portion 40N. Therefore, when an impact load acts on the assembled battery to deform each member, the positive electrode facing portion 40P and the negative electrode facing portion 40N of the short-circuit member 40 break through the battery container 11 and the positive electrode charging portion 10P and the negative electrode of the secondary battery 10 respectively. It contacts the charging unit 10N. As a result, a short-circuit path between the positive electrode charging unit 10P and the negative electrode charging unit 10N is formed by the positive electrode facing portion 40P, the connecting portion 42, and the negative electrode facing portion 40N, and the short-circuit member 40 alone is positively charged without going through the battery container 11. The part 10P and the negative electrode charging part 10N can be short-circuited.

さらに、実施形態11の組電池と同様に、短絡部材40が二次電池10の電池容器11を突き破って電池容器11に電気的に接続されることで、正極対向部40P、電池容器11、及び負極対向部40Nによっても、短絡経路が形成され、正極荷電部10Pと負極荷電部10Nとを短絡させることができる。したがって、本実施形態の組電池によれば、実施形態11の組電池と比較して、個々の二次電池10の正極荷電部10Pと負極荷電部10Nとを短絡させる短絡経路の電気抵抗を低減し、衝撃による荷重が加わったときに正極荷電部10Pと負極荷電部10Nとをより短絡させやすくすることができる。   Further, similarly to the assembled battery of the eleventh embodiment, the short-circuit member 40 breaks through the battery container 11 of the secondary battery 10 and is electrically connected to the battery container 11, so that the positive electrode facing portion 40 </ b> P, the battery container 11, and A short circuit path is also formed by the negative electrode facing portion 40N, and the positive electrode charging unit 10P and the negative electrode charging unit 10N can be short-circuited. Therefore, according to the assembled battery of this embodiment, compared with the assembled battery of Embodiment 11, the electrical resistance of the short circuit path that short-circuits the positive electrode charging portion 10P and the negative electrode charging portion 10N of each secondary battery 10 is reduced. In addition, when a load due to impact is applied, the positive electrode charging unit 10P and the negative electrode charging unit 10N can be more easily short-circuited.

以上、図面を用いて本発明の実施の形態を詳述してきたが、具体的な構成はこの実施形態に限定されるものではなく、本発明の要旨を逸脱しない範囲における設計変更等があっても、それらは本発明に含まれるものである。   The embodiment of the present invention has been described in detail with reference to the drawings, but the specific configuration is not limited to this embodiment, and there are design changes and the like without departing from the gist of the present invention. They are also included in the present invention.

例えば、前述の各実施形態を組み合わせることで、組電池に二次電池の電池容器の厚さ方向、幅方向、高さ方向のいずれの荷重が作用した場合でも、一つの短絡部材によって二次電池の正極荷電部と負極荷電部とを短絡させることが可能になる。   For example, by combining the above-described embodiments, even if any load in the thickness direction, the width direction, and the height direction of the battery container of the secondary battery is applied to the assembled battery, the secondary battery is formed by one short-circuit member. It becomes possible to short-circuit the positive electrode charging part and the negative electrode charging part.

10 二次電池
10N 負極荷電部
10P 正極荷電部
11 電池容器
11n 狭側面
11w 広側面
14 電極群
14N 箔露出部(負極電極)
14P 箔露出部(正極電極)
15N 負極集電板
15P 正極集電板
16N 負極外部端子
16P 正極外部端子
17a 絶縁部材
17b ガスケット(絶縁部材)
20 セルホルダ
21 スペーサ部
22 側板部
30 バスバー
40 短絡部材
40N 負極対向部
40P 正極対向部
41 容器対向部
42 接続部
50 バスバーホルダ
100 組電池
DESCRIPTION OF SYMBOLS 10 Secondary battery 10N Negative electrode charging part 10P Positive electrode charging part 11 Battery container 11n Narrow side surface 11w Wide side surface 14 Electrode group 14N Foil exposure part (negative electrode)
14P foil exposed part (positive electrode)
15N Negative current collector 15P Positive current collector 16N Negative external terminal 16P Positive external terminal 17a Insulating member 17b Gasket (insulating member)
20 Cell holder 21 Spacer portion 22 Side plate portion 30 Bus bar 40 Short-circuit member 40N Negative electrode facing portion 40P Positive electrode facing portion 41 Container facing portion 42 Connection portion 50 Bus bar holder 100 Battery pack

Claims (9)

電極群と、該電極群を収容する電池容器と、該電池容器の外面に配置されて前記電極群の正極電極及び負極電極にそれぞれ接続された正極外部端子及び負極外部端子と、を有する複数の二次電池を備えた組電池であって、
個々の前記二次電池に隣接して配置されて非常時に前記二次電池を外部短絡させる導電性を有する短絡部材を備え、
前記短絡部材は、前記正極外部端子に接続されたバスバーから前記正極電極までの正極荷電部の少なくとも一部に間隔を有して対向するとともに、前記負極外部端子に接続されたバスバーから前記負極電極までの負極荷電部の少なくとも一部に間隔を有して対向することを特徴とする組電池。
A plurality of electrode groups, a battery container that houses the electrode groups, and a positive electrode external terminal and a negative electrode external terminal that are disposed on the outer surface of the battery container and connected to the positive electrode and the negative electrode of the electrode group, respectively. An assembled battery including a secondary battery,
A short-circuit member disposed adjacent to each of the secondary batteries and having conductivity to externally short-circuit the secondary battery in an emergency;
The short-circuit member is opposed to at least a part of a positive electrode charging portion from the bus bar connected to the positive external terminal to the positive electrode with a gap, and from the bus bar connected to the negative external terminal to the negative electrode An assembled battery, wherein at least part of the negative electrode charging portion is opposed to each other with an interval.
前記短絡部材は、前記正極荷電部に対向する正極対向部と、前記負極荷電部に対向する負極対向部とを有することを特徴とする請求項1に記載の組電池。   The assembled battery according to claim 1, wherein the short-circuit member includes a positive electrode facing portion that faces the positive electrode charging portion and a negative electrode facing portion that faces the negative electrode charging portion. 前記正極対向部は、前記正極外部端子と該正極外部端子に接続された前記バスバーの少なくとも一方に間隔を有して対向し、
前記負極対向部は、前記負極外部端子と該負極外部端子に接続された前記バスバーの少なくとも一方に間隔を有して対向することを特徴とする請求項2に記載の組電池。
The positive electrode facing portion is opposed to the positive electrode external terminal and at least one of the bus bars connected to the positive electrode external terminal with a space therebetween,
The assembled battery according to claim 2, wherein the negative electrode facing portion is opposed to the negative electrode external terminal and at least one of the bus bars connected to the negative electrode external terminal with a gap.
前記正極対向部は、前記電池容器の内部の前記正極電極又は該正極電極と前記正極外部端子とを接続する正極集電板に該電池容器を介して対向し、
前記負極対向部は、前記電池容器の内部の前記負極電極又は該負極電極と前記負極外部端子とを接続する負極集電板に該電池容器を介して対向することを特徴とする請求項2に記載の組電池。
The positive electrode facing portion is opposed to the positive electrode current collector plate connecting the positive electrode inside the battery container or the positive electrode and the positive electrode external terminal via the battery container,
The negative electrode facing portion faces the negative electrode current collector plate connecting the negative electrode inside the battery container or the negative electrode and the negative electrode external terminal via the battery container. The assembled battery as described.
前記短絡部材は、前記電池容器に対向する容器対向部を有し、
前記電池容器は、導電性を有するとともに、絶縁部材を介して前記正極荷電部及び前記負極荷電部に対して電気的に絶縁されていることを特徴とする請求項3又は請求項4に記載の組電池。
The short-circuit member has a container facing part facing the battery container,
The said battery container is electrically insulated with respect to the said positive electrode charge part and the said negative electrode charge part through an insulating member while having electroconductivity, The Claim 3 or Claim 4 characterized by the above-mentioned. Assembled battery.
前記短絡部材は、前記正極対向部と前記負極対向部とを接続する接続部を有することを特徴とする請求項3又は請求項4に記載の組電池。   5. The assembled battery according to claim 3, wherein the short-circuit member includes a connection portion that connects the positive electrode facing portion and the negative electrode facing portion. 前記二次電池を保持するセルホルダを備え、
前記セルホルダは、扁平角形の前記電池容器の広側面に対向するスペーサ部を有し、
前記短絡部材は、前記スペーサ部に固定されていることを特徴とする請求項1に記載の組電池。
A cell holder for holding the secondary battery;
The cell holder has a spacer portion facing the wide side surface of the battery container having a flat rectangular shape,
The assembled battery according to claim 1, wherein the short-circuit member is fixed to the spacer portion.
前記二次電池を保持するセルホルダを備え、
前記セルホルダは、扁平角形の前記電池容器の狭側面に対向する側板部を有し、
前記短絡部材は、前記側板部に固定されていることを特徴とする請求項1に記載の組電池。
A cell holder for holding the secondary battery;
The cell holder has a side plate portion facing the narrow side surface of the battery container having a flat rectangular shape,
The assembled battery according to claim 1, wherein the short-circuit member is fixed to the side plate portion.
前記バスバーを保持するバスバーホルダを有し、
前記短絡部材は、前記バスバーホルダに固定されていることを特徴とする請求項1に記載の組電池。
A bus bar holder for holding the bus bar;
The assembled battery according to claim 1, wherein the short-circuit member is fixed to the bus bar holder.
JP2017553724A 2015-12-04 2016-11-04 Assembled battery Active JP6611820B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2015237618 2015-12-04
JP2015237618 2015-12-04
PCT/JP2016/082728 WO2017094436A1 (en) 2015-12-04 2016-11-04 Battery pack

Publications (2)

Publication Number Publication Date
JPWO2017094436A1 true JPWO2017094436A1 (en) 2018-09-06
JP6611820B2 JP6611820B2 (en) 2019-11-27

Family

ID=58797063

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017553724A Active JP6611820B2 (en) 2015-12-04 2016-11-04 Assembled battery

Country Status (2)

Country Link
JP (1) JP6611820B2 (en)
WO (1) WO2017094436A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20210064844A (en) * 2019-11-26 2021-06-03 주식회사 엘지에너지솔루션 Battery module and battery pack including the same
CN118399029B (en) * 2024-07-01 2024-08-23 惠州市盛微电子有限公司 Electrical safety system applied to battery short-circuit safety monitoring

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013131461A (en) * 2011-12-22 2013-07-04 Nissan Motor Co Ltd Battery device
JP2013178919A (en) * 2012-02-28 2013-09-09 Nissan Motor Co Ltd Battery device
JP2014110145A (en) * 2012-11-30 2014-06-12 Toyota Motor Corp Power storage device and connection member
JP2014157722A (en) * 2013-02-15 2014-08-28 Hitachi Vehicle Energy Ltd Battery pack
JP2015002113A (en) * 2013-06-17 2015-01-05 株式会社豊田自動織機 Power storage module and power storage pack
JP2015053145A (en) * 2013-09-05 2015-03-19 トヨタ自動車株式会社 Secondary battery module
JP2015118792A (en) * 2013-12-18 2015-06-25 トヨタ自動車株式会社 Secondary battery module
WO2015097875A1 (en) * 2013-12-27 2015-07-02 日立オートモティブシステムズ株式会社 Assembled battery
JP2015207340A (en) * 2012-08-30 2015-11-19 三洋電機株式会社 Power unit, electric vehicle with power unit, power storage device, and manufacturing method of power unit

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013131461A (en) * 2011-12-22 2013-07-04 Nissan Motor Co Ltd Battery device
JP2013178919A (en) * 2012-02-28 2013-09-09 Nissan Motor Co Ltd Battery device
JP2015207340A (en) * 2012-08-30 2015-11-19 三洋電機株式会社 Power unit, electric vehicle with power unit, power storage device, and manufacturing method of power unit
JP2014110145A (en) * 2012-11-30 2014-06-12 Toyota Motor Corp Power storage device and connection member
JP2014157722A (en) * 2013-02-15 2014-08-28 Hitachi Vehicle Energy Ltd Battery pack
JP2015002113A (en) * 2013-06-17 2015-01-05 株式会社豊田自動織機 Power storage module and power storage pack
JP2015053145A (en) * 2013-09-05 2015-03-19 トヨタ自動車株式会社 Secondary battery module
JP2015118792A (en) * 2013-12-18 2015-06-25 トヨタ自動車株式会社 Secondary battery module
WO2015097875A1 (en) * 2013-12-27 2015-07-02 日立オートモティブシステムズ株式会社 Assembled battery

Also Published As

Publication number Publication date
WO2017094436A1 (en) 2017-06-08
JP6611820B2 (en) 2019-11-27

Similar Documents

Publication Publication Date Title
US10811738B2 (en) Battery module, battery pack comprising battery module, and vehicle comprising battery pack
US10115954B2 (en) Battery module
JP7484992B2 (en) Energy storage element
US20200280040A1 (en) Battery module having bus bar, and battery pack
US9548475B2 (en) Battery cell of irregular structure and battery module employed with the same
KR102209769B1 (en) Battery Module
KR101222269B1 (en) Rechargeable battery and Battery Pack
US20130022859A1 (en) Battery Module
EP2899778B1 (en) Battery pack
KR20120016569A (en) Rechargeable battery and battery module
KR20230093033A (en) Battery cells, batteries and electrical devices
KR101147175B1 (en) Rechargeable battery
US20220140452A1 (en) Battery and manufacturing method thereof
JP5929731B2 (en) Power storage device and connecting member
JP6611820B2 (en) Assembled battery
JP2017157407A (en) Secondary battery module
CN108023034B (en) Battery cell and method for producing a battery cell
US9012059B2 (en) Secondary battery
JP6612893B2 (en) Assembled battery
US20220190425A1 (en) Energy storage apparatus
JP7023359B2 (en) Battery pack
KR20190027672A (en) Secondary Battery
EP3951818A1 (en) Electricity storage device
KR20130105370A (en) Electric storage device
JP2019091656A (en) Power storage element and power storage device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180510

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190508

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190704

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20191001

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20191029

R150 Certificate of patent or registration of utility model

Ref document number: 6611820

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250