WO2015093166A1 - 自動分析装置 - Google Patents
自動分析装置 Download PDFInfo
- Publication number
- WO2015093166A1 WO2015093166A1 PCT/JP2014/079280 JP2014079280W WO2015093166A1 WO 2015093166 A1 WO2015093166 A1 WO 2015093166A1 JP 2014079280 W JP2014079280 W JP 2014079280W WO 2015093166 A1 WO2015093166 A1 WO 2015093166A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- sample
- item
- rack
- unit
- coagulation time
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N35/00—Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
- G01N35/02—Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor using a plurality of sample containers moved by a conveyor system past one or more treatment or analysis stations
- G01N35/026—Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor using a plurality of sample containers moved by a conveyor system past one or more treatment or analysis stations having blocks or racks of reaction cells or cuvettes
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N35/00—Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
- G01N35/02—Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor using a plurality of sample containers moved by a conveyor system past one or more treatment or analysis stations
- G01N35/04—Details of the conveyor system
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N35/00—Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
- G01N35/02—Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor using a plurality of sample containers moved by a conveyor system past one or more treatment or analysis stations
- G01N35/04—Details of the conveyor system
- G01N2035/046—General conveyor features
- G01N2035/0462—Buffers [FIFO] or stacks [LIFO] for holding carriers between operations
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N35/00—Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
- G01N35/02—Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor using a plurality of sample containers moved by a conveyor system past one or more treatment or analysis stations
- G01N35/04—Details of the conveyor system
- G01N2035/046—General conveyor features
- G01N2035/0467—Switching points ("aiguillages")
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N35/00—Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
- G01N35/02—Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor using a plurality of sample containers moved by a conveyor system past one or more treatment or analysis stations
- G01N35/04—Details of the conveyor system
- G01N2035/046—General conveyor features
- G01N2035/0467—Switching points ("aiguillages")
- G01N2035/0472—Switching points ("aiguillages") for selective recirculation of carriers
Definitions
- the present invention is an automatic analyzer for analyzing the amount of components contained in a sample such as blood or urine (hereinafter also referred to as a specimen), and in particular, an automatic analyzer capable of measuring biochemical test items and blood coagulation test items About.
- an analyzer that analyzes the amount of components contained in a sample, it measures the amount of transmitted light or scattered light of single or multiple wavelengths obtained by irradiating light from a light source onto a reaction mixture in which the sample and reagent are mixed.
- An automatic analyzer that calculates the amount of a component from the relationship between the amount of light and the concentration is known.
- reaction solutions There are roughly two types of analysis methods for reaction solutions, colorimetric analysis using a color reaction between a substrate and an enzyme, and homogeneous immunoassay using an agglutination reaction by binding of an antigen and an antibody.
- homogeneous immunoassay measurement methods such as immunoturbidimetry and latex agglutination are known.
- an antibody-containing reagent is used to generate an immune complex with a measurement target (antigen) contained in a sample, and these are optically detected to quantify the amount of components.
- a reagent containing latex particles sensitized (bound) with an antibody on the surface is used to agglutinate latex particles by antigen-antibody reaction with the antigen contained in the sample, and these are detected optically. Quantify the amount of ingredients.
- Such blood coagulation ability includes an exogenous one that coagulates blood leaked out of the blood vessel and an intrinsic one that coagulates blood inside the blood vessel.
- Measurement items related to blood coagulation ability include prothrombin time (PT) in the extrinsic blood coagulation reaction test, activated partial thromboplastin time (APTT) in the intrinsic blood coagulation reaction test, and fibrinogen amount (Fbg).
- PT prothrombin time
- APTT activated partial thromboplastin time
- Fbg fibrinogen amount
- All of these items are based on detecting fibrin precipitated by adding a reagent for initiating a coagulation reaction by an optical, physical, or electrical method.
- a method using optical means a method of calculating the coagulation time by irradiating the reaction solution with light and detecting the intensity change over time of scattered light and transmitted light due to fibrin deposited in the reaction solution. It has been known.
- the blood coagulation automatic analyzer represented by Patent Document 2 since the blood coagulation time item requires photometric data at intervals of 0.1 seconds, the reaction is performed at an independent photometric port, and the reaction liquid coagulates. Since the reaction container cannot be reused by washing, the reaction container is disposable.
- the field of blood coagulation / fibrinolysis includes blood coagulation time measurement, coagulation factor measurement, and coagulation / fibrinolysis marker measurement.
- Coagulation factors are analyzed mainly by measuring blood coagulation time, while coagulation / fibrinolysis markers are analyzed by a synthetic substrate method using a chromogenic synthetic substrate or the latex agglutination method described above.
- the blood coagulation time item is almost fixed with conventional PT, APTT, and Fbg, whereas the coagulation / fibrinolysis marker item is soluble fibrin monomer complex in addition to D-dimer and fibrin / fibrinogen degradation product (FDP). (SFMC) and plasmin- ⁇ 2 plasmin inhibitor (PIC), etc.
- the processing capacity of automatic analyzers will be improved. Yes. Since the blood coagulation time measurement is usually completed in about 3 minutes, the processing capacity can be kept high by discarding / supplying the reaction container when the measurement is completed. On the other hand, the synthetic substrate method and the latex agglutination method usually have a reaction time of 10 minutes, and in most cases the measurement time is longer than the item of the coagulation time method.
- Automatic analyzers for clinical tests include stand-alone types that are operated as independent devices, and sample racks that include multiple analytical fields such as biochemistry and immunity to streamline laboratory operations.
- a module type (see Patent Document 3) that is connected by a transfer line and operates as one apparatus is known.
- the module type automatic analyzer has a plurality of analysis units that analyze the reaction liquid that is mixed and reacted with the sample and the reagent, and as a method of supplying the sample to the analysis unit, a sample rack containing a sample container is used. There is a method of positioning at the sample suction position of the analysis unit via the transport line.
- biochemical analysis unit By combining the biochemical analysis unit and the blood coagulation analysis unit in a modular manner, benefits such as improved sample management flow and labor saving in device management can be expected. However, simply integrating the biochemical analysis section and the blood coagulation analysis section will not only increase the processing capacity of blood coagulation test items, but will also reduce the overall processing capacity of the apparatus including the biochemical analysis section. there is a possibility.
- reaction time for each synthetic substrate item / latex agglutination item in the blood coagulation test item is predetermined for each item in the same way as the biochemical test item (for example, 10 minutes)
- scheduling is easy, High throughput can be maintained by continuing to dispense the sample, but there are multiple clotting time measurement items because the reaction time varies depending on the sample (for example, 3-7 minutes) and it is necessary to measure at a fixed measurement port. If the installed measurement port is filled, the next sample dispensing cannot be performed until the measurement port is empty, and the sample rack becomes congested on the transport line.
- a method of increasing the number of measurement ports and a method of stocking a sample collected from the sample rack in the analysis unit for a certain period of time can be considered, but both methods cause a significant increase in apparatus cost.
- a sample container also referred to as a sample container
- a biochemical analyzer that performs sample aspiration on the first dispensing line and analyzes a biochemical analysis item in which a reaction time between the reagent and the sample is determined in advance, and the transport line
- a second dispensing line that is arranged in a row and can wait for a plurality of sample racks waiting for sample dispensing, and a sample is aspirated on the second dispensing line, and the reaction time between the reagent and the sample varies depending on the sample.
- a coagulation time analysis unit for analyzing a coagulation time item, a reading unit that reads analysis request information for a sample, a conveyance path of the sample rack is determined from information of the reading unit, and the conveyance line is controlled And, among the synthetic substrate item, latex agglutination item, and coagulation time item in the blood coagulation test item, the synthetic substrate item or latex agglutination item is the first inspection item and the coagulation time item is the second inspection item.
- the control unit measures the first test item by the biochemical analysis unit, and the second test is performed.
- the automatic analyzer is configured to determine a transport path of the sample rack so as to measure an item in the coagulation time analyzer and to control the transport line.
- the sample dispensing line of the coagulation time analyzer has a function that allows the sample containers on the sample rack to be accessed and sampled in random order by moving the rack back and forth. Without waiting for confirmation of the necessity of re-inspection for all requested items, the re-inspection can be performed in random order from the coagulation time item that is faster than the synthetic substrate item / latex agglutination item. Improvement of processing capacity can be expected.
- the sample rack can be transported by any method as long as it can move the rack, such as a belt conveyor system or an extrusion arm system that pushes and transfers the rear end of the rack.
- a control unit for determining whether reexamination is necessary and a storage unit that monitors the analysis results of each analysis unit and stores the analysis results.
- the biochemical analysis unit measures the synthetic substrate item / latex aggregation item whose reaction time is predetermined for each item, and the coagulation time analysis unit determines the coagulation time item with a different reaction time for each sample.
- the synthetic substrate item / latex agglomeration item having a longer reaction time than the coagulation time item is measured by the biochemical analysis unit having a higher processing capacity than the coagulation time analysis unit. A significant improvement in processing capacity can be expected.
- An object of the present invention is to provide an automatic analyzer having a high processing capability that integrates a biochemical analyzer and a blood coagulation analyzer while realizing a reduction in device cost and life cycle cost.
- a synthetic substrate item or a latex item in a blood coagulation test item may be referred to as a first test item, and a coagulation time item may be referred to as a second test item.
- the biochemical measurement item may be referred to as a third inspection item.
- the first inspection item include D dimer, FDP, SFMC, and PIC.
- the second inspection item include PT, APTT, Fbg, and the like.
- the third inspection item include ALT and AST.
- FIG. 1 is a schematic view of an automatic analyzer including a turntable type biochemical analyzer and a coagulation time analyzer according to an embodiment of the present invention.
- a transport system that transports a sample rack 101 on which a sample container containing a sample such as blood or urine to be analyzed is mounted, a rack supply unit 102, a rack storage unit 103, and a sample rack 101 are provided.
- Transport line 104 for transport to the analysis unit, return line 105, rack standby unit 106, standby unit handling mechanism 107, rack return mechanism 108, rack sorting mechanism 109, emergency sample rack input unit 110, reading Part (conveyance line) 111 is shown.
- the transport system of the biochemical analysis unit 112 arranged along the transport line 104 includes a reading unit (biochemistry) 116 for collating analysis request information for a sample stored in the sample rack 101 from the transport line 104, A rack carry-in mechanism (biochemistry) 114 for receiving the sample rack 101 from the transport line 104, and a dispensing line (raw) for performing sample dispensing in the sample container of the sample rack 101, having a role of waiting for the sample rack 101 until dispensing starts.
- Chemistry 113 and a rack handling mechanism (biochemistry) 115 for transporting the sample rack 101 after sample dispensing to the transport line 104 or the return line 105.
- the conveyance system of the coagulation time analysis unit 117 arranged along the conveyance line 104 includes a reading unit (coagulation) 121 for collating analysis request information for a sample stored in the sample rack 101 from the conveyance line 104, and conveyance.
- a rack carry-in mechanism (coagulation) 119 for receiving the sample rack 101 from the line 104, and a dispensing line (coagulation) 118 for performing sample dispensing in the sample container of the sample rack 101 having a role of waiting for the sample rack 101 until dispensing starts.
- a rack handling mechanism (coagulation) 120 for transporting the sample rack 101 after sample dispensing to the return line 105.
- the dispensing line (coagulation) 118 includes a sample rack transport mechanism that can move the sample rack 101 back and forth with respect to the traveling direction of the sample rack 101.
- the analysis unit 112 In order to suppress the congestion of the sample rack 101, it is generally desirable to arrange the analysis unit 112 on the upstream side of the coagulation time analysis unit 117, which generally has a high sample processing capacity.
- the automatic analyzer according to the present embodiment includes a control unit 122, a storage unit 123, a display unit 124, and an input unit 125.
- the biochemical analysis unit 112 has a known configuration, and mainly includes a sample probe that sucks a sample from the sample rack 101, a reaction cell that discharges the sucked sample, and a reagent that holds a reagent to be mixed with the sample in the reaction cell. It consists of a storage, a reagent dispensing mechanism that discharges the reagent to the reaction cell, a detector that irradiates light to the mixed liquid of the specimen and reagent in the reaction cell, and measures transmitted light or scattered light, and its light source. An optical system and an arithmetic unit that calculates a predetermined component concentration contained in the liquid mixture from data obtained from the detector.
- the biochemical analysis unit 112 can analyze at least the third inspection item.
- the coagulation time analysis unit 117 has a known configuration, and mainly holds a sample probe that sucks a sample from the sample rack 101, a reaction container that discharges the sucked sample, and a reagent that is mixed with the sample in the reaction container.
- an arithmetic unit for calculating the coagulation time of the specimen from the data obtained from the detector.
- the coagulation time analysis unit 117 can analyze at least the second inspection item.
- FIG. 2 is a schematic diagram showing the transport path of the sample rack 101.
- FIG. 4 showing a flowchart of the analysis operation
- FIG. 5 showing a flowchart of the sample dispensing operation
- FIG. 6 showing a flowchart of the rack standby operation in the rack standby unit 106.
- FIG. 4a When analysis is requested by the input unit 125, the analysis starts (FIG. 4a), and the control unit 122 moves the sample racks 101 arranged in the rack supply unit 102 to the transport line 104 (FIG. 4b).
- the sample rack number and the sample container number are recognized by reading the identification medium such as the barcode label attached to the sample rack 101 and the sample container accommodated in the sample rack 101 by the reading unit (conveyance line) 111.
- the sample rack number and the sample container number recognized by the reading unit (conveyance line) 111 are transmitted to the control unit 122, and the control unit 122 displays the type of the sample rack 101 and the analysis item designated for each sample container.
- the type or the like is matched with the measurement request information instructed in advance from the input unit 125 in association with the sample reception number (FIG. 4c). Based on the comparison result, the destination of the sample rack 101 is determined by the control unit 122, stored in the storage unit 123, and used for subsequent processing of the sample rack 101.
- the biochemical analysis unit 112 includes a reaction disk for advancing the reaction between the sample and the reagent according to various analysis items in each reaction container arranged side by side on the circumference, and a reagent inhalation position according to the various analysis items.
- a reagent disk that operates so as to be positioned at a position, a sample dispensing mechanism that dispenses a sample in a sample container from a dispensing line (biochemistry) 113 to a reaction container on the reaction disk, and a reaction disk from a reagent bottle on the reagent disk
- a reagent dispensing mechanism is provided for dispensing a reagent corresponding to an analysis item to the upper reaction container.
- the control unit 122 confirms whether there is a measurement request for any of biochemistry, synthetic substrate, and latex agglomeration items (FIG. 4d).
- the control unit 122 confirms whether the dispensing line (biochemistry) 113 is free (FIG. 4e). 101 is conveyed to the biochemical analysis part 112, and sample dispensing is started (FIG. 4g).
- the control unit 122 controls the standby unit handling mechanism, moves the sample rack 101 to the rack standby unit 106, and makes the sample rack 101 stand by on the spot. (FIG. 4f).
- sample dispensing (FIG. 4g) will be described with reference to FIG.
- the sample rack 101 transported to the biochemical analysis unit 112 is collated with the sample rack information by the reading unit (biochemistry) 116 (FIG. 5b), and the analysis information is collated.
- the control unit 122 controls the rack carry-in mechanism (biochemistry) 114 and moves from the transfer line 104 to the dispensing line (biochemistry) 113 (FIG. 5d).
- the control unit 122 transports the sample rack 101 to the dispensing position, inserts the dispensing nozzle of the sample dispensing mechanism into the sample container that is instructed to analyze at that position, sucks the sample, and the biochemical analysis unit Control is performed so as to dispense into the reaction vessel 112 (FIG.
- the sample collection operation is repeated.
- the control unit 122 moves the sample rack 101 for which all the analysis items instructed for the biochemical analysis unit 112 have been collected from the dispensing position to the corresponding position of the rack handling mechanism (biochemistry) 115. . Thereafter, the control unit 122 moves the sample rack 101 from the dispensing line to the transport line 104 (FIG. 5f). Alternatively, the control unit 122 moves the sample rack 101 from the dispensing line to the return line 105 as described later.
- the control unit 122 confirms whether there is a request for a coagulation time item from the coagulation time analysis unit in the sample mounted on the sample rack 101 (FIG. 4h).
- the control unit 122 confirms whether or not the dispensing line (coagulation) of the coagulation time analysis unit 117 is empty (FIG. 4i). If there is an empty space, the sample rack 101 is transported to the coagulation time analysis unit 117 and sample dispensing is started (FIG. 4k). Details are omitted for the same control as in FIG. On the other hand, when the dispensing line (coagulation) 118 is not empty (FIG.
- the sample rack 101 for which the samples related to all the analysis items instructed for the coagulation time analysis unit 117 have been collected is moved to a corresponding position of the rack handling mechanism (coagulation) 120 and returned by the rack handling mechanism (coagulation) 120. It is transferred to the line 105 (FIG. 4l).
- the control unit 122 transports the sample rack 101 to the rack distribution mechanism 109 through the return line 105 (FIG. 4m).
- the sample rack 101 is transferred onto the return line 105 by the rack handling mechanism 118 and then transported to the rack sorting mechanism 109 (FIG. 4m).
- the sample rack number of the sample rack 101 that has been sampled and is transported to the rack distribution mechanism 109 is stored in the storage unit 123, the control sample rack, the standard sample rack, the cleaning liquid rack, etc.
- the control unit 122 has already determined whether the sample rack 101 does not require retesting or the sample rack 101 that may be retested. Based on the determination, the sample rack 101 is transferred to the rack return mechanism 108 by the rack distribution mechanism 109 that has received the control signal from the control unit 122 based on the determination, and the rack storage mechanism 108 receives the rack return mechanism 108. 103. If there is a possibility of retesting the sample rack 101, the sample rack 101 is transferred to the standby unit handling mechanism 107 and carried to the rack standby unit 106, and waits until the necessity of retesting is determined (FIG. 4n).
- the sample collected in the reaction container of each analysis unit is reacted with the reagent dispensed by the reagent dispensing mechanism, and data corresponding to each measured analysis item is output to the control unit 122.
- the control unit 122 collates the determination criteria set in advance with the analysis test data. If the measurement data is inappropriate, the control unit 122 associates the sample rack number and the sample container number with the sample rack number.
- the data is stored in the storage unit 123 and re-inspected (FIG. 4o).
- the case where the measurement data is inappropriate includes, for example, the case where the measurement data exceeds or falls below a preset criterion.
- the sample rack 101 for which the reexamination has been completed is transferred from the rack standby unit 106 to the return line 105 by the standby unit handling mechanism 107 (FIG. 4p), transported to the rack return mechanism 108 by the feedback line 105, and the rack return mechanism 108. Is stored in the rack storage unit 103 (FIG. 4q).
- the first analysis test data and the retest test data are merged by the control unit 122 (FIG. 4r), displayed on the display unit 124 (FIG. 4s), and the analysis is completed (FIG. 4t).
- FIG. 3 is a schematic diagram showing the operation of the sample rack 101 in the dispensing line (coagulation) 121 of the coagulation time analysis unit 117 in the embodiment of the present invention.
- the dispensing line (coagulation) 118 includes a sample rack transport mechanism that can move the sample rack 101 back and forth with respect to the traveling direction.
- the sampling mechanism can access the samples on the sample rack 101 in any order. . Therefore, reexamination can be performed in any order in the coagulation time items whose reaction times vary depending on the specimen.
- the random order means that the sampling mechanism can be accessed in any order such as the order of the sample containers C, B, A, E, and D. That is, as shown by the arrow in FIG. 3, the sample rack 101 can be moved backward from the traveling direction.
- the control unit 122 moves the dispensing line (coagulation) 118 in the reverse direction, so that the sample rack 101 can be moved backward in the direction opposite to the traveling direction, and the sample containers C, B, E, and D can be moved.
- the sampling mechanism can be accessed.
- the control unit 122 performs dispensing. It is confirmed whether or not the line (coagulation) 118 is empty (FIG. 7b). If there is a vacancy, the sample rack 101 is transported to the coagulation time analysis unit 117 and sample dispensing is started (FIG. 7d). When the dispensing line (coagulation) 118 is not empty, the rack standby unit 106 waits until the dispensing line (coagulation) 118 is empty (FIG. 7c).
- the control unit 122 moves the reinspection rack 101 including the reinspection sample to the coagulation time analysis unit 117 (FIG. 9c).
- the control unit 122 transports the sample rack from the standby unit 106 to the dispensing line (coagulation) 118 at the time when the item that needs to be retested first is determined in the coagulation time item in the same sample rack 112. It is desirable to control the transfer line.
- the control unit 122 uses a reading unit (coagulation) 121 to read an identification medium such as a barcode label attached to the sample rack 101 that has moved. Based on the read information, the control unit 122 collates the retest sample rack information in order to confirm whether the moved sample rack 101 includes the sample container to be retested (FIG. 9c). The control unit 122 transfers the sample rack 101 recognized as the correct sample rack by the collation from the transfer line 104 to the dispensing line (coagulation) 118 by the rack carry-in mechanism (coagulation) 119 (FIG. 9d).
- coagulation a reading unit
- the control unit 122 moves the sample rack 101 by the sample rack transport mechanism of the dispensing line (coagulation) 121 so that the sample container instructed for retesting is positioned at the sampling position of the sample dispensing mechanism (FIG. 9e). ). Then, sample dispensing is performed (FIG. 9f).
- the control unit 122 confirms whether there is a re-inspection request for the coagulation time item in another sample container of the same sample rack 101 (FIG. 9g).
- the sample rack 101 is moved so that the corresponding sample container is positioned at the sampling position of the sample dispensing mechanism, and the sample collection operation is repeated. For example, if the corresponding sample container is still downstream in the traveling direction of the sample rack 101, the sample rack 101 is moved backward with respect to the traveling direction, and the sample collecting operation of the sample container is performed. .
- sample rack transport mechanism may be the dispensing line itself or a mechanism different from the dispensing line.
- control unit 122 controls the position of the sample rack on the dispensing line (coagulation) so as to dispense the sample from the sample container in the order in which it is determined that retesting is necessary.
- coagulation the dispensing line
- the sample containers A, B, and C measure the coagulation time item PT in the previous example, if it is determined that the reexamination is necessary in the order of the sample containers B, A, and C, the sample containers B, Dispense the sample in the order of A and C. Thereby, re-inspection with high processing capability can be performed.
- the sample rack 101 is controlled to wait on the dispensing line (coagulation) 118 until it is determined whether or not all the coagulation time items in the sample rack 101 are required. (FIG. 9h). Even when there is no other retest request, since the timing at which the measurement result of the coagulation time item is obtained is different, a retest request is subsequently generated for the sample container included in the sample rack 101 This is to enable quick sample dispensing in response to such a re-inspection request.
- the control unit 122 confirms whether or not it is necessary to reexamine the coagulation time item for the sample container of the sample rack 101. As a result of the confirmation, if not all are determined, the confirmation of FIG. 9g is performed, and if determined, the process proceeds to the next flow. Whether or not retesting is necessary cannot be determined unless the measurement result of the coagulation time item included in the sample rack 101 is obtained. Therefore, when the sample rack 101 proceeds to the next follow-up, all of the coagulation time items are determined. It is limited to the sample rack 101 which waits in the dispensing line until the measurement result is obtained.
- the control unit 122 moves the sample rack 101 for which the samples relating to the re-examination of all the coagulation time items have been collected to the corresponding position of the rack handling mechanism (coagulation) 120 (FIG. 9j).
- the control unit 122 transfers the sample rack 101 to the return line 105 by the rack handling mechanism (coagulation) 120 (FIG. 9k).
- the control unit 122 transports the sample rack 101 to the rack distribution mechanism 109 through the return line 105 (FIG. 7e).
- the control unit 122 delivers the sample rack 101 to the standby unit handling mechanism 107 and carries it to the rack standby unit 106 (FIG. 7f).
- the control part 122 confirms whether all the reexamination necessity of the biochemical item was determined.
- the rack standby unit 106 stands by (FIG. 7h).
- the control unit 122 confirms whether there is a request for reexamination of biochemical items (FIG. 7i).
- the control unit 122 indicates that the sample needs to be retested with the sample rack number and the sample container number.
- the data is stored in the storage unit 123 in correspondence.
- the sample rack 101 in which there is a sample that needs to be retested (FIG. 7i) is subjected to sample dispensing according to the flow shown in FIG. 5 (FIG. 7j).
- the measurement performed in the biochemical analysis unit 112 is generally fixed at 10 minutes, measurement data can be obtained in the order of sample dispensing. For this reason, it is not necessary to dispense samples in random order as performed in the coagulation time analyzer as described above.
- the sample rack 101 determined as not requiring reexamination is transferred from the rack standby unit 106 to the return line 105 by the standby unit handling mechanism 107, transported to the rack return mechanism 108 by the return line 105, and then received by the rack return mechanism 108. It is stored in the rack storage unit 103.
- the first analysis inspection data and the re-inspection analysis inspection data are merged by the control unit 123, displayed on the display unit 124, and the analysis ends.
- the turnaround time is shortened by sampling in the coagulation time analysis unit in any order before determining whether or not all re-examinations are necessary for the coagulation time item.
- a reexamination mode is described as a coagulation real-time reexamination mode in this specification.
- the measurement request for the coagulation time item (second test item) is sparse compared to the biochemical measurement item (third test item) and the synthetic substrate / latex agglutination item (first test item).
- This is a retesting method that is effective when it is intermittent (for example, when one sample rack is intermittent).
- scheduling is facilitated by performing re-inspection after all re-inspection necessity regarding the coagulation time item is determined can be considered.
- the control unit explained an example of transporting the sample rack to the dispensing line (coagulation), but as another embodiment, A mode is also conceivable in which re-examination is performed after waiting for the necessity of re-examination of all the coagulation time items in the same sample rack.
- the end time of the sample aspiration for retesting the coagulation time item of the sample rack If the time required for re-examination of all of the synthetic substrate item or latex agglutination item (first inspection item) and biochemical measurement item (third inspection item) is earlier than It is also possible to control the transport line so that it is transported to the injection line (solidification). Such a reexamination mode is referred to as a coagulation batch reexamination mode in this specification.
- the coagulation batch re-inspection mode is an effective re-inspection method when a measurement request is made in units of a certain amount of coagulation time items (second inspection items) (for example, several consecutive sample racks).
- control unit 122 automatically switches between the coagulation real-time reinspection mode and the coagulation batch reinspection mode depending on the measurement request status of the inspection item. For example, the number of consecutive samples for which a coagulation time item (second test item) is requested is set in advance as a reference value for switching the retest mode, and the control unit determines the measurement item request status stored in the storage unit 123. 122 can automatically switch the reinspection mode.
- the reexamination mode which automatically switches between the coagulation real-time reexamination mode and the coagulation batch reexamination mode is described as the coagulation autoreexamination mode in this specification.
- FIG. 10 shows a selection screen for the reinspection mode of the coagulation time item in the embodiment of the present invention.
- the operator can arbitrarily select a coagulation real-time reexamination mode, coagulation batch reexamination mode, and coagulation autoreexamination mode from the coagulation time item reexamination condition setting screen of the display unit 124 according to the operation status of the automatic analyzer. It has become.
- the continuous number of samples for which a coagulation time item (second inspection item), which is a reference value for switching the reexamination mode, is requested can be arbitrarily set.
- the control unit 122 confirms whether or not the reexamination necessity of all biochemical items has been decided prior to the necessity of reexamination of the coagulation time item. ( Figure 8b). If it has not been determined, the control unit 122 causes the rack standby unit 106 to wait for the sample rack 101 (FIG. 8c). The control unit 122 confirms whether or not there is a re-inspection request for biochemical items in the sample rack 101 (FIG. 8d).
- the control unit 122 confirms whether or not the dispensing line (biochemistry) 113 is free (FIG. 8e). If there is a vacancy, the control unit 122 transports the sample rack 101 to the biochemical analysis unit 112 and starts sample dispensing (FIG. 8g). When the dispensing line (biochemistry) 113 is not empty, the rack standby unit 106 waits until the dispensing line (biochemistry) 113 is empty according to the flow of FIG. 6 (FIG. 8f).
- the control unit 122 confirms whether or not the dispensing line (coagulation) 118 is empty (FIG. 8h). If there is a vacancy, the control unit 122 transports the sample rack 101 to the coagulation time analysis unit 117 and starts sample dispensing (FIG. 8j). When the dispensing line (coagulation) 118 is not empty, the rack standby unit 106 waits until the dispensing line (coagulation) 118 is empty according to the flow of FIG. 6 (FIG. 8i). On the other hand, when the dispensing line (coagulation) 118 is empty, sample dispensing for coagulation time reexamination is performed according to the flow of FIG.
- the automatic analyzer of the present invention it is possible to measure a transmitted light or a scattered light by a photometer mounted on the biochemical analyzer 112 and calculate a reference value regarding the amount of interfering substances contained in the sample. It is.
- the degree of chyle, hemolysis, and jaundice is determined by the following formula using absorbance at 480 nm, 505 nm, 570 nm, 600 nm, 660 nm, and 700 nm. calculate.
- a reference material for calculating a reference value related to the amount of interfering substances contained in the sample is set, measured in advance by the biochemical analysis unit 112 and the coagulation time analysis unit 117, and the reference value in the biochemical analysis unit 112 is set.
- a correlation curve between the substance measurement result and the reference substance measurement result in the coagulation time analysis unit 117 is obtained and stored in the storage unit 123.
- the biochemical analysis unit 112 Prior to the measurement by the coagulation time analysis unit 117, calculates a reference value related to the amount of the interfering substance contained in the sample, and based on the correlation curve stored in the storage unit 123 and the reference value. The measurement result in the coagulation time analysis unit 117 can be corrected.
- FIG. 11 is a schematic diagram of an automatic analyzer that clearly shows the amplifier 126 of the coagulation time analysis unit 117 according to an embodiment of the present invention.
- the coagulation time analysis unit 117 is connected to a detector that detects transmitted light or scattered light at the measurement port, and an amplifier 126 that amplifies the signal from the detector.
- the control unit 122 obtains a reference value related to the amount of interfering substances, and based on this reference value, the control unit 122 can offset the zero level of the amplifier 126 before detecting light with the detector.
- FIG. 12 shows the measurement result of the photometer of the biochemical analysis unit 112 (upper) and the measurement result of the detector of the coagulation time analysis unit 117 (lower). For example, based on the difference between the measurement result of transmitted light or scattered light (reference value regarding the amount of interference substance) by the photometer of the biochemical analysis unit 112 and a preset reference level, the detector of the coagulation time analysis unit 117 The control unit 122 controls the offset of the zero level of the amplifier 126 that amplifies the signal. In this way, by offsetting the zero level based on the measurement result of the biochemical analysis unit 112 and measuring the same sample with the coagulation time analysis unit 117 using the offset amplifier 126, the range over which measurement becomes impossible is prevented. Measurement with an appropriate amplification factor can be made possible. As a result, the frequency at which measurement becomes impossible is reduced, and analysis with less waste of samples and reagents becomes possible.
- the control unit measures the first examination item by the biochemical analysis unit, and the second examination item is obtained.
- the control unit determines the transport path of the sample rack so that the measurement time is measured by the coagulation time analysis unit and controlling the transport line, an automatic analyzer having a high processing capacity can be provided.
- the control unit when there is a request for measurement of the first test item and the second test item in the same sample rack, the control unit performs sample suction in the biochemical analysis unit and then performs sample suction in the coagulation time analysis unit.
- the control unit By determining the transport path of the sample rack so as to perform the control and controlling the transport line, it is possible to provide an automatic analyzer having a high processing capacity.
- the coagulation time analysis unit is not necessarily arranged downstream of the biochemical analysis unit, and a configuration in which the coagulation analysis unit is arranged upstream of the biochemical analysis unit is also possible.
- the control unit performs sample aspiration in the biochemical analysis unit, and then there is a vacancy in the second dispensing line.
- the sample rack is transported to the dispensing line (coagulation), and when the dispensing line (coagulation) is not empty, the transport line is controlled to transport the sample rack to the rack standby unit.
- a plurality of sample containers are mounted on the sample rack, and the control unit dispenses samples from the sample containers in the order in which it is determined that the second inspection item requires re-examination among the plurality of sample containers.
- the control unit dispenses samples from the sample containers in the order in which it is determined that the second inspection item requires re-examination among the plurality of sample containers.
- the control unit needs to re-inspect all the inspection items of the second inspection item of the sample rack.
- the end time of the sample aspiration for retesting the second test item of the sample rack is determined from the time until the necessity of all retests for the first and third test items is determined.
- sample rack can be configured so that only a single sample container is mounted in addition to the above-described structure in which a plurality of sample containers are mounted.
Landscapes
- Chemical & Material Sciences (AREA)
- Physics & Mathematics (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Automatic Analysis And Handling Materials Therefor (AREA)
Abstract
Description
入力部125により分析が依頼されると分析が開始し(図4a)、制御部122は、ラック供給部102に並べられた検体ラック101を搬送ライン104に移動する(図4b)。その後、検体ラック101及び検体ラック101に収容されるサンプル容器に貼り付けられたバーコードラベル等の識別媒体を読取部(搬送ライン)111により読み取ることで、検体ラック番号及びサンプル容器番号が認識される。読取部(搬送ライン)111によって認識された検体ラック番号及びサンプル容器番号は、制御部122に伝達され、制御部122は、検体ラック101の種別、各サンプル容器に対し指示されている分析項目の種類等が、検体受付番号と対応させて入力部125から予め指示されている測定依頼情報と照合する(図4c)。その照合結果に基づいて検体ラック101の送り先が制御部122によって決定され、記憶部123に記憶されてその後の検体ラック101の処理に利用される。
これにより、処理能力の高い再検査を行うことができる。
乳び(L)=(1/C)×(660nmと700nmの吸光度差)
溶血(H)=(1/A)×(570nmと600nmの吸光度差
-B×660nmと700nmの吸光度差)
黄疸(I)=(1/D)×(480nmと505nmの吸光度差
-E×570nmと600nmの吸光度差
-F×660nmと700nmの吸光度差)
C、A、D:吸光度を血清情報として出力するための係数
B、E、F:吸収スペクトルの重なりを補正するための係数
さらに、干渉物質の量に関する参考値をもとに、凝固時間分析部117での測定結果を補正することもできる。
102 ラック供給部
103 ラック収納部
104 搬送ライン
105 帰還ライン
106 ラック待機部
107 待機部ハンドリング機構
108 ラック戻し機構
109 ラック振分機構
110 緊急検体ラック投入部
111 読取部(搬送ライン)
112 生化学分析部
113 分注ライン(生化学)
114 ラック搬入機構(生化学)
115 ラックハンドリング機構(生化学)
116 読取部(生化学)
117 凝固時間分析部
118 分注ライン(凝固)
119 ラック搬入機構(凝固)
120 ラックハンドリング機構(凝固)
121 読取部(凝固)
122 制御部
123 記憶部
124 表示部
125 入力部
126 増幅器
Claims (14)
- 検体が保持された検体容器を収容した検体ラックを搬送する搬送ラインと、
前記搬送ラインに沿って配置され、検体分注待ちの前記検体ラックを複数待機させることができる第1分注ラインと、
前記第1分注ライン上で検体吸引を行い、試薬と検体との反応時間が予め決定されている生化学分析項目を分析する生化学分析部と、
前記搬送ラインに沿って配置され、検体分注待ちの前記検体ラックを複数待機させることができる第2分注ラインと、
前記第2分注ライン上で検体吸引を行い、試薬と検体との反応時間が検体により異なる凝固時間項目を分析する凝固時間分析部と、
検体に対する分析依頼情報を読み取る読取部と、
前記読取部の情報から前記検体ラックの搬送経路を決定し、前記搬送ラインを制御する制御部と、を備え、
血液凝固検査項目における合成基質項目、ラテックス凝集項目、凝固時間項目のうち、合成基質項目又はラテックス凝集項目を第1検査項目、凝固時間項目を第2検査項目としたとき、
同一検体ラック中に前記第1検査項目と前記第2検査項目の測定依頼があった場合に、前記制御部は、前記第1検査項目を前記生化学分析部で測定し、前記第2検査項目を前記凝固時間分析部で測定するよう前記検体ラックの搬送経路を決定し、前記搬送ラインを制御することを特徴とする自動分析装置。 - 請求項1記載の自動分析装置において、
同一検体ラック中に前記第1検査項目と前記第2検査項目の測定依頼があった場合に、前記制御部は、前記生化学分析部での検体吸引を行った後、前記凝固時間分析部での検体吸引を行うよう前記検体ラックの搬送経路を決定し、前記搬送ラインを制御することを特徴とする自動分析装置。 - 請求項2記載の自動分析装置において、
さらに、前記搬送ラインに接続され、前記検体ラックを一時的に待機させるラック待機部を備え、
同一検体ラック中に前記第1検査項目と前記第2検査項目の測定依頼があった場合に、 前記制御部は、
前記生化学分析部での検体吸引を行った後、前記第2分注ラインに空きがある場合は前記第2分注ラインに当該検体ラックを搬送し、
前記第2分注ラインに空きがない場合は前記ラック待機部に当該検体ラックを搬送するよう前記搬送ラインを制御し、前記第2分注ラインに空きが生じた後に当該検体ラックを前記ラック待機部から前記第2分注ラインに搬送することを特徴とする自動分析装置。 - 請求項2記載の自動分析装置において、
さらに、前記搬送ラインに接続され、前記検体ラックを一時的に待機させるラック待機部を備え、
同一検体ラック中のすべての測定依頼項目の検体吸引が終了した後、前記制御部は、当該検体ラックを前記ラック待機部に搬送し、
前記制御部は同一検体ラック中で前記第2検査項目において最初に再検査が必要な項目を決定した時点で、前記制御部は、当該検体ラックを前記ラック待機部から前記第2分注ラインに搬送するよう前記搬送ラインを制御する第1の再検査モードを有することを特徴とする自動分析装置。 - 請求項4記載の自動分析装置において、
当該検体ラックには、複数のサンプル容器が搭載され、
前記制御部は、当該複数のサンプル容器のうち、再検査が必要と判断した順番にサンプル容器からサンプルを分注するよう前記第2分注ラインにおける当該検体ラックの位置を制御することを特徴とする自動分析装置。 - 請求項2記載の自動分析装置において、
さらに、前記搬送ラインに接続され、前記検体ラックを一時的に待機させるラック待機部を備え、
同一検体ラック中のすべての測定依頼項目の検体吸引が終了した後、前記制御部は、当該検体ラックを前記ラック待機部に搬送し、
生化学測定項目を第3検査項目としたとき、同一検体ラックにおいて、前記第1、第2、第3検査項目のすべての測定依頼があった場合に、
前記制御部は、当該検体ラックの前記第2検査項目のすべての検査項目の再検査要否が決定した時点で、当該検体ラックの前記第2検査項目の再検査のための検体吸引の終了時間が、前記第1および第3検査項目のすべての再検査の要否が決定するまでの時間よりも早い場合に、当該検体ラックを前記第2分注ラインに搬送するよう前記搬送ラインを制御する第2の再検査モードを有することを特徴とする自動分析装置。 - 請求項1~6記載の自動分析装置において、
前記第1の再検査モードと、前記第2の再検査モードを、手動で任意に選択可能であることを特徴とする自動分析装置。 - 請求項1~6記載の自動分析装置において、
検査項目の依頼状況に応じて、前記第1の再検査モードと、前記第2の再検査モードを、自動で切り替えることを特徴とする自動分析装置。 - 請求項8記載の自動分析装置において、
予め既定されている前記第2検査項目が依頼されている検体の連続数を基準値として、前記第1の再検査モードと、前記第2の再検査モードを、自動で切り替えることを特徴とする自動分析装置。 - 請求項1~9記載の自動分析装置において、
さらに、情報を記憶する記憶部を備え、
サンプル中に含まれる干渉物質の量に関する参考値を算出するための基準物質を前記生化学分析部および前記凝固時間分析部にて予め測定し、前記生化学分析部での基準物質測定結果と前記凝固時間分析部での基準物質測定結果の相関曲線を求めて前記記憶部に記憶し、前記凝固時間分析部での測定に先立ち前記生化学分析部にてサンプル中に含まれる干渉物質の量に関する参考値を算出し、当該参考値と前記相関曲線を基に、前記凝固時間分析部での測定結果を補正することを特徴とする自動分析装置。 - 請求項10記載の自動分析装置において、
前記凝固時間分析部は、透過光または散乱光を検出する凝固時間検出部と、当該凝固時間検出部からの信号を増幅する増幅器と、前記増幅器を制御する増幅器制御部を備え、
前記増幅器制御部は、当該凝固時間検出部で光を検出する前に、前記増幅器の零レベルをオフセットすることを特徴とする自動分析装置。 - 請求項11記載の自動分析装置において、
前記血液凝固時間分析部は、透過光または散乱光を検出する凝固時間検出部と、当該凝固時間検出部からの信号を増幅する増幅器と、前記増幅器を制御する増幅器制御部を備え、
前記生化学分析部の測定結果と予め設定された基準レベルとの差分に基づき、前記増幅器制御部は、当該凝固時間検出部で光を検出する前に、前記増幅器の零レベルをオフセットすることを特徴とする自動分析装置。 - 請求項12記載の自動分析装置において、
前記測定結果を得た検体と同一検体であって、前記測定結果を得た分析項目とは別の分析項目の測定に対し、前記測定結果の補正、又は、前記増幅器の零レベルをオフセットすることを特徴とする自動分析装置。 - 検体が保持された検体容器を搬送する搬送ラインと、
前記搬送ラインに沿って配置され、検体分注待ちの前記検体容器を複数待機させることができる第1分注ラインと、
前記第1分注ライン上で検体吸引を行い、試薬と検体との反応時間が予め決定されている生化学分析項目を分析する生化学分析部と、
前記搬送ラインに沿って配置され、検体分注待ちの検体容器を複数待機させることができる第2分注ラインと、
前記第2分注ライン上で検体吸引を行い、試薬と検体との反応時間が検体により異なる凝固時間項目を分析する凝固時間分析部と、
検体に対する分析依頼情報を読み取る読取部と、
前記読取部の情報から検体容器の搬送経路を決定し、前記搬送ラインを制御する制御部と、を備え、
血液凝固検査項目における合成基質項目、ラテックス凝集項目、凝固時間項目のうち、合成基質項目又はラテックス凝集項目を第1検査項目、凝固時間項目を第2検査項目としたとき、
同一検体容器中に前記第1検査項目と前記第2検査項目の測定依頼があった場合に、前記制御部は、前記第1検査項目を前記生化学分析部で測定し、前記第2検査項目を前記凝固時間分析部で測定するよう検体容器の搬送経路を決定し、前記搬送ラインを制御することを特徴とする自動分析装置。
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP14870815.9A EP3086123B1 (en) | 2013-12-20 | 2014-11-05 | Automatic analysis device |
US15/035,275 US10330692B2 (en) | 2013-12-20 | 2014-11-05 | Automatic analysis device |
JP2015553417A JP6576833B2 (ja) | 2013-12-20 | 2014-11-05 | 自動分析装置 |
CN201480063431.0A CN106030312A (zh) | 2013-12-20 | 2014-11-05 | 自动分析装置 |
CN201910357298.4A CN110058030B (zh) | 2013-12-20 | 2014-11-05 | 自动分析装置 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013263204 | 2013-12-20 | ||
JP2013-263204 | 2013-12-20 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2015093166A1 true WO2015093166A1 (ja) | 2015-06-25 |
Family
ID=53402523
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2014/079280 WO2015093166A1 (ja) | 2013-12-20 | 2014-11-05 | 自動分析装置 |
Country Status (5)
Country | Link |
---|---|
US (1) | US10330692B2 (ja) |
EP (1) | EP3086123B1 (ja) |
JP (1) | JP6576833B2 (ja) |
CN (2) | CN106030312A (ja) |
WO (1) | WO2015093166A1 (ja) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2017043196A1 (ja) * | 2015-09-11 | 2017-03-16 | 株式会社 日立ハイテクノロジーズ | 自動分析装置 |
CN107923853A (zh) * | 2015-08-26 | 2018-04-17 | 株式会社日立高新技术 | 自动分析装置、自动分析系统和自动分析方法 |
JP2018066583A (ja) * | 2016-10-17 | 2018-04-26 | キヤノンメディカルシステムズ株式会社 | 自動分析装置 |
JP2019045363A (ja) * | 2017-09-05 | 2019-03-22 | 株式会社日立ハイテクノロジーズ | 自動分析装置 |
CN110297096A (zh) * | 2019-06-04 | 2019-10-01 | 迈克医疗电子有限公司 | 一种样本调度方法、装置、终端设备和介质 |
CN110967501A (zh) * | 2018-09-30 | 2020-04-07 | 深圳迈瑞生物医疗电子股份有限公司 | 一种样本检测方法、装置、样本分析仪及存储介质 |
JP2020159968A (ja) * | 2019-03-27 | 2020-10-01 | シスメックス株式会社 | 検体測定装置および検体測定方法 |
Families Citing this family (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106771302B (zh) * | 2016-12-19 | 2018-08-10 | 宁波美康盛德生物科技有限公司 | 生化分析仪样品进样推进机构 |
CN106771283B (zh) * | 2016-12-19 | 2018-08-10 | 宁波美康盛德生物科技有限公司 | 生化分析仪输送系统 |
CN106841649B (zh) * | 2016-12-19 | 2019-12-24 | 杭州美康盛德医学检验实验室有限公司 | 生化分析仪样品回收系统 |
CN107356775B (zh) * | 2017-07-03 | 2020-04-14 | 苏州卫宁精密仪器设备有限公司 | 一种用于化学发光免疫分析的测试任务规划方法 |
LU100524B1 (en) * | 2017-11-29 | 2019-06-12 | Stratec Biomedical Ag | Sample and supplies track |
CN110875086B (zh) * | 2018-09-04 | 2024-04-12 | 深圳迈瑞生物医疗电子股份有限公司 | 一种样本分析方法、样本分析系统及计算机存储介质 |
CN110967500A (zh) * | 2018-09-30 | 2020-04-07 | 深圳迈瑞生物医疗电子股份有限公司 | 一种样本检测方法、装置、样本分析仪和存储介质 |
CN110967503B (zh) * | 2018-09-30 | 2024-08-13 | 深圳迈瑞生物医疗电子股份有限公司 | 一种进样调度方法、装置、分析检测系统和存储介质 |
US20220011330A1 (en) * | 2018-12-19 | 2022-01-13 | Hitachi High-Tech Corporation | Automated Analysis Device, and Analysis Method |
CN111398611A (zh) * | 2019-01-03 | 2020-07-10 | 深圳迈瑞生物医疗电子股份有限公司 | 样本检测时间预估方法、装置、样本分析仪及存储介质 |
CN111624356A (zh) * | 2019-02-27 | 2020-09-04 | 深圳迈瑞生物医疗电子股份有限公司 | 一种样本分析系统、样本调度方法及存储介质 |
CN112345778B (zh) * | 2019-08-06 | 2024-03-12 | 深圳迈瑞生物医疗电子股份有限公司 | 级联的样本分析系统、装置和质控项目失控的处理方法 |
CN112782411B (zh) * | 2019-11-01 | 2024-01-02 | 深圳迈瑞生物医疗电子股份有限公司 | 一种样本重测策略的设置方法、重测方法和样本分析系统 |
CN112904030A (zh) * | 2019-12-03 | 2021-06-04 | 深圳迈瑞生物医疗电子股份有限公司 | 一种供液系统及其方法 |
WO2021128312A1 (zh) * | 2019-12-27 | 2021-07-01 | 深圳迈瑞生物医疗电子股份有限公司 | 一种自动进样系统、样本分析系统和自动进样控制的方法 |
JP2021175975A (ja) * | 2020-04-28 | 2021-11-04 | キヤノンメディカルシステムズ株式会社 | 検体検査装置、及び、検体検査システム |
Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4451433A (en) | 1980-11-10 | 1984-05-29 | Hitachi, Ltd. | Automatic chemical analyzer |
JP2000321286A (ja) | 1999-05-10 | 2000-11-24 | Shimadzu Corp | 血液凝固分析装置 |
JP2001004636A (ja) * | 1999-06-18 | 2001-01-12 | Hitachi Ltd | 自動分析装置 |
JP2001013151A (ja) * | 1999-06-30 | 2001-01-19 | Mitsubishi Chemicals Corp | 血液の検査装置 |
JP2001027639A (ja) * | 1999-07-15 | 2001-01-30 | Mitsubishi Chemicals Corp | 血液の検査方法 |
JP2001208760A (ja) * | 2000-01-27 | 2001-08-03 | Jeol Ltd | 複合生化学・免疫自動分析装置 |
JP2003057251A (ja) * | 2001-08-21 | 2003-02-26 | Hitachi Ltd | 生体サンプルの自動分析システム |
WO2006107016A1 (ja) * | 2005-04-01 | 2006-10-12 | Mitsubishi Kagaku Iatron, Inc. | 生体サンプルの複合自動分析装置、自動分析方法、及び反応キュベット |
JP2008039554A (ja) * | 2006-08-04 | 2008-02-21 | Hitachi High-Technologies Corp | 自動分析装置 |
JP4576393B2 (ja) | 2007-02-13 | 2010-11-04 | 株式会社日立ハイテクノロジーズ | 自動分析装置 |
WO2013187210A1 (ja) * | 2012-06-11 | 2013-12-19 | 株式会社 日立ハイテクノロジーズ | 自動分析装置 |
Family Cites Families (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0810227B2 (ja) * | 1987-09-28 | 1996-01-31 | 株式会社日立製作所 | 自動分析装置 |
JP2647133B2 (ja) * | 1988-05-11 | 1997-08-27 | 株式会社東芝 | 自動化学分折装置 |
JPH06207943A (ja) * | 1993-01-11 | 1994-07-26 | Toshiba Corp | 自動分析装置 |
JP3336894B2 (ja) * | 1997-01-29 | 2002-10-21 | 株式会社日立製作所 | 自動分析装置 |
JP3609945B2 (ja) * | 1998-08-28 | 2005-01-12 | 株式会社日立製作所 | 自動分析方法及び装置 |
JP3931110B2 (ja) * | 2002-05-29 | 2007-06-13 | 株式会社日立ハイテクノロジーズ | 自動分析装置 |
JP4829716B2 (ja) * | 2006-08-18 | 2011-12-07 | シスメックス株式会社 | 血液凝固分析装置 |
JP5465850B2 (ja) * | 2008-08-01 | 2014-04-09 | シスメックス株式会社 | 試料分析システム |
JP5174629B2 (ja) * | 2008-11-20 | 2013-04-03 | 株式会社日立ハイテクノロジーズ | 自動分析装置 |
JP5355362B2 (ja) * | 2008-12-22 | 2013-11-27 | シスメックス株式会社 | 検体検査システム、検体検査方法およびコンピュータプログラム |
JP2010181197A (ja) * | 2009-02-03 | 2010-08-19 | Beckman Coulter Inc | 自動分析装置およびラック搬送方法 |
JP2011013151A (ja) | 2009-07-03 | 2011-01-20 | Shimadzu Corp | 試料加熱装置 |
JP2011027636A (ja) * | 2009-07-28 | 2011-02-10 | Beckman Coulter Inc | 分析システムおよび試薬容器供給方法 |
JP5236612B2 (ja) * | 2009-11-04 | 2013-07-17 | 株式会社日立ハイテクノロジーズ | 自動分析装置 |
US10094844B2 (en) * | 2011-09-05 | 2018-10-09 | Hitachi High-Technologies Corporation | Automatic analyzer |
JP5779062B2 (ja) * | 2011-09-28 | 2015-09-16 | シスメックス株式会社 | 検体処理装置 |
-
2014
- 2014-11-05 CN CN201480063431.0A patent/CN106030312A/zh active Pending
- 2014-11-05 EP EP14870815.9A patent/EP3086123B1/en active Active
- 2014-11-05 US US15/035,275 patent/US10330692B2/en active Active
- 2014-11-05 CN CN201910357298.4A patent/CN110058030B/zh active Active
- 2014-11-05 JP JP2015553417A patent/JP6576833B2/ja active Active
- 2014-11-05 WO PCT/JP2014/079280 patent/WO2015093166A1/ja active Application Filing
Patent Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4451433A (en) | 1980-11-10 | 1984-05-29 | Hitachi, Ltd. | Automatic chemical analyzer |
JP2000321286A (ja) | 1999-05-10 | 2000-11-24 | Shimadzu Corp | 血液凝固分析装置 |
JP2001004636A (ja) * | 1999-06-18 | 2001-01-12 | Hitachi Ltd | 自動分析装置 |
JP2001013151A (ja) * | 1999-06-30 | 2001-01-19 | Mitsubishi Chemicals Corp | 血液の検査装置 |
JP2001027639A (ja) * | 1999-07-15 | 2001-01-30 | Mitsubishi Chemicals Corp | 血液の検査方法 |
JP2001208760A (ja) * | 2000-01-27 | 2001-08-03 | Jeol Ltd | 複合生化学・免疫自動分析装置 |
JP2003057251A (ja) * | 2001-08-21 | 2003-02-26 | Hitachi Ltd | 生体サンプルの自動分析システム |
WO2006107016A1 (ja) * | 2005-04-01 | 2006-10-12 | Mitsubishi Kagaku Iatron, Inc. | 生体サンプルの複合自動分析装置、自動分析方法、及び反応キュベット |
JP2008039554A (ja) * | 2006-08-04 | 2008-02-21 | Hitachi High-Technologies Corp | 自動分析装置 |
JP4576393B2 (ja) | 2007-02-13 | 2010-11-04 | 株式会社日立ハイテクノロジーズ | 自動分析装置 |
WO2013187210A1 (ja) * | 2012-06-11 | 2013-12-19 | 株式会社 日立ハイテクノロジーズ | 自動分析装置 |
Non-Patent Citations (1)
Title |
---|
See also references of EP3086123A4 |
Cited By (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3343207A4 (en) * | 2015-08-26 | 2019-02-27 | Hitachi High-Technologies Corporation | AUTOMATIC ANALYSIS DEVICE, AUTOMATIC ANALYSIS SYSTEM AND AUTOMATIC ANALYSIS PROCESS |
US10725028B2 (en) | 2015-08-26 | 2020-07-28 | Hitachi High-Tech Corporation | Automatic analysis device, automatic analysis system, and automatic analysis method |
CN107923853A (zh) * | 2015-08-26 | 2018-04-17 | 株式会社日立高新技术 | 自动分析装置、自动分析系统和自动分析方法 |
JPWO2017043196A1 (ja) * | 2015-09-11 | 2018-06-28 | 株式会社日立ハイテクノロジーズ | 自動分析装置 |
CN107850612A (zh) * | 2015-09-11 | 2018-03-27 | 株式会社日立高新技术 | 自动分析装置 |
CN107850612B (zh) * | 2015-09-11 | 2019-01-01 | 株式会社日立高新技术 | 自动分析装置 |
CN109669045A (zh) * | 2015-09-11 | 2019-04-23 | 株式会社日立高新技术 | 自动分析装置 |
CN109669045B (zh) * | 2015-09-11 | 2022-06-17 | 株式会社日立高新技术 | 自动分析装置 |
WO2017043196A1 (ja) * | 2015-09-11 | 2017-03-16 | 株式会社 日立ハイテクノロジーズ | 自動分析装置 |
US10684298B2 (en) | 2015-09-11 | 2020-06-16 | Hitachi High-Tech Corporation | Automated analyzer |
JP2018066583A (ja) * | 2016-10-17 | 2018-04-26 | キヤノンメディカルシステムズ株式会社 | 自動分析装置 |
JP2019045363A (ja) * | 2017-09-05 | 2019-03-22 | 株式会社日立ハイテクノロジーズ | 自動分析装置 |
CN110967501A (zh) * | 2018-09-30 | 2020-04-07 | 深圳迈瑞生物医疗电子股份有限公司 | 一种样本检测方法、装置、样本分析仪及存储介质 |
JP2020159968A (ja) * | 2019-03-27 | 2020-10-01 | シスメックス株式会社 | 検体測定装置および検体測定方法 |
JP7311996B2 (ja) | 2019-03-27 | 2023-07-20 | シスメックス株式会社 | 検体測定装置および検体測定方法 |
CN110297096A (zh) * | 2019-06-04 | 2019-10-01 | 迈克医疗电子有限公司 | 一种样本调度方法、装置、终端设备和介质 |
CN110297096B (zh) * | 2019-06-04 | 2023-04-07 | 迈克医疗电子有限公司 | 一种样本调度方法、装置、终端设备和介质 |
Also Published As
Publication number | Publication date |
---|---|
EP3086123A1 (en) | 2016-10-26 |
EP3086123A4 (en) | 2017-08-09 |
JPWO2015093166A1 (ja) | 2017-03-16 |
US20160291048A1 (en) | 2016-10-06 |
CN110058030B (zh) | 2023-04-07 |
JP6576833B2 (ja) | 2019-09-18 |
US10330692B2 (en) | 2019-06-25 |
CN106030312A (zh) | 2016-10-12 |
EP3086123B1 (en) | 2021-04-07 |
CN110058030A (zh) | 2019-07-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6576833B2 (ja) | 自動分析装置 | |
JP7450656B2 (ja) | 自動分析装置 | |
JP6602873B2 (ja) | 自動分析装置 | |
JP5378859B2 (ja) | 検体検査システム | |
US9829497B2 (en) | Sample analysis system and sample analyzer | |
US9213037B2 (en) | Sample analyzer and sample analyzing method | |
JP6698665B2 (ja) | 自動分析装置 | |
WO2017033641A1 (ja) | 自動分析装置 | |
WO2007139212A1 (ja) | 自動分析装置 | |
US20130260412A1 (en) | Sample processing apparatus, sample analyzer, sample analyzing system, sample processing system and sample processing method | |
Boyd et al. | Automation in the clinical laboratory | |
JP2010122124A (ja) | 自動分析装置 | |
JP6886952B2 (ja) | 検体測定装置および検体測定方法 | |
JP4705182B2 (ja) | 特定成分の分析装置 | |
WO2008044313A1 (fr) | Procédé de détermination d'anomalie et analyseur | |
WO2007135923A1 (ja) | 自動分析装置 | |
JPH01223354A (ja) | 自動化学分析装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 14870815 Country of ref document: EP Kind code of ref document: A1 |
|
DPE2 | Request for preliminary examination filed before expiration of 19th month from priority date (pct application filed from 20040101) | ||
ENP | Entry into the national phase |
Ref document number: 2015553417 Country of ref document: JP Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 15035275 Country of ref document: US |
|
REEP | Request for entry into the european phase |
Ref document number: 2014870815 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2014870815 Country of ref document: EP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |