Nothing Special   »   [go: up one dir, main page]

WO2015083629A1 - 光半導体装置用熱硬化性樹脂組成物およびそれを用いて得られる光半導体装置用リードフレーム、ならびに光半導体装置 - Google Patents

光半導体装置用熱硬化性樹脂組成物およびそれを用いて得られる光半導体装置用リードフレーム、ならびに光半導体装置 Download PDF

Info

Publication number
WO2015083629A1
WO2015083629A1 PCT/JP2014/081497 JP2014081497W WO2015083629A1 WO 2015083629 A1 WO2015083629 A1 WO 2015083629A1 JP 2014081497 W JP2014081497 W JP 2014081497W WO 2015083629 A1 WO2015083629 A1 WO 2015083629A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical semiconductor
semiconductor device
thermosetting resin
lead frame
reflector
Prior art date
Application number
PCT/JP2014/081497
Other languages
English (en)
French (fr)
Inventor
佑一 深道
俊和 馬場
一浩 福家
Original Assignee
日東電工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日東電工株式会社 filed Critical 日東電工株式会社
Priority to CN201480052989.9A priority Critical patent/CN105580148A/zh
Priority to KR1020167007909A priority patent/KR20160094367A/ko
Publication of WO2015083629A1 publication Critical patent/WO2015083629A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/52Encapsulations
    • H01L33/56Materials, e.g. epoxy or silicone resin
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/58Optical field-shaping elements
    • H01L33/60Reflective elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/62Arrangements for conducting electric current to or from the semiconductor body, e.g. lead-frames, wire-bonds or solder balls
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2244Oxides; Hydroxides of metals of zirconium
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/002Physical properties
    • C08K2201/005Additives being defined by their particle size in general
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48247Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48257Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a die pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/12Passive devices, e.g. 2 terminal devices
    • H01L2924/1204Optical Diode
    • H01L2924/12041LED

Definitions

  • the present invention includes, for example, a thermosetting resin composition for an optical semiconductor device, which is a material for forming a reflector (reflecting portion) that reflects light emitted from an optical semiconductor element, and a lead frame for an optical semiconductor device obtained using the same.
  • the present invention also relates to an optical semiconductor device.
  • an optical semiconductor device in which an optical semiconductor element is mounted has an optical semiconductor element 3 on a metal lead frame composed of a first plate portion 1 and a second plate portion 2, for example, as shown in FIG.
  • a light reflecting reflector 4 made of a resin material is formed so as to be mounted and to surround the optical semiconductor element 3 so as to fill the space between the first plate portion 1 and the second plate portion 2. It takes the composition that it is.
  • the optical semiconductor element 3 mounted in the recess 5 formed as the inner peripheral surface of the metal lead frame and the reflector 4 is resin-sealed using a transparent resin such as a silicone resin containing a phosphor as necessary. By doing so, the sealing resin layer 6 is formed.
  • 7 and 8 are bonding wires for electrically connecting the metal lead frame and the optical semiconductor element 3, which are provided as necessary.
  • the reflector 4 is manufactured by using, for example, transfer molding or the like, using a thermosetting resin typified by an epoxy resin or the like.
  • a thermosetting resin typified by an epoxy resin or the like.
  • ceramics has been conventionally used. Therefore, there is a problem that cracking occurs when thinly formed.
  • this problem is solved by the reflector made of the thermosetting resin.
  • titanium oxide is blended in the thermosetting resin as a white pigment, and light emitted from the optical semiconductor element 3 is reflected (see Patent Document 1).
  • An object of the present invention is to provide a conductive resin composition, a lead frame for an optical semiconductor device obtained using the same, and an optical semiconductor device.
  • the present invention is a material for forming a reflector of an optical semiconductor device having a thickness of the thinnest portion of 0.2 mm or less, and contains the following components (A) and (B):
  • the thermosetting resin composition for optical semiconductor devices is a first gist.
  • the present invention is a plate-shaped lead frame for an optical semiconductor device for mounting an optical semiconductor element only on one surface in the thickness direction, and includes a plurality of plate portions arranged with a gap therebetween, and A lead frame for an optical semiconductor device in which a gap is formed by filling the gap with the thermosetting resin composition for an optical semiconductor device according to the first aspect and curing it is a second aspect.
  • the present invention is a three-dimensional lead frame for an optical semiconductor device comprising an optical semiconductor element mounting region, wherein a reflector is formed in a state surrounding at least a part of the optical semiconductor element mounting region,
  • a third aspect of the present invention is an optical semiconductor device lead frame in which the reflector is formed using the thermosetting resin composition for an optical semiconductor device of the first aspect.
  • a plate portion having an element mounting area for mounting an optical semiconductor element on one side thereof is arranged with a gap therebetween, and the optical semiconductor element is mounted at a predetermined position of the element mounting area.
  • An optical semiconductor device, wherein the gap is filled with the thermosetting resin composition for optical semiconductor devices according to the first aspect and a reflector formed by curing is formed.
  • the present invention also provides an optical semiconductor element at a predetermined position of a lead frame for an optical semiconductor device, which includes an optical semiconductor element mounting region, and in which a reflector is formed so as to surround at least a part of the optical semiconductor element.
  • An optical semiconductor device in which the reflector is formed using the thermosetting resin composition for optical semiconductor devices according to the first aspect is a fifth aspect.
  • zirconium oxide is used instead of titanium oxide that has been conventionally used as a white pigment. Recalled. And in order to show high initial light reflectivity etc., even if the thickness of the thinnest part of a reflector is 0.2 mm or less, it pays attention to the particle size distribution of zirconium oxide in a reflector, this inventor. Conducted various experiments.
  • the ratio (D95 / D5) of the 95% cumulative particle size (D95) and the 5% cumulative particle size (D5) of zirconium oxide in the cured body of the thermosetting resin composition as the reflector material is 1. At ⁇ 100, it was found that the intended purpose could be achieved, and the present invention was reached.
  • the present invention is a thermosetting resin composition for an optical semiconductor device containing the thermosetting resin (A) and zirconium oxide (B) having a specific cumulative particle size distribution. For this reason, even if it shape
  • the average particle diameter (D50) of the zirconium oxide as the component (B) in the thermosetting resin cured body is in a specific range, a higher initial light reflectance and the like are provided.
  • FIG. 10 is a cross-sectional view taken along the line XX ′ of the plan view schematically showing another configuration of the optical semiconductor device.
  • thermosetting resin composition for optical semiconductor devices of the present invention (hereinafter also referred to as “thermosetting resin composition”) is, for example, as described above, the optical semiconductor device shown in FIG. 3 is used as a material for forming the reflectors 4 and 11 in the optical semiconductor device shown in FIG. 3, and is applied to a portion where the thickness of the thinnest portion in the reflectors 4 and 11 is 0.2 mm or less. .
  • thermosetting resin composition of the present invention is obtained using a thermosetting resin (component A) and zirconium oxide (component B) showing a specific cumulative particle size distribution.
  • it is used as a material for forming the reflectors 4 and 11 in the form of a sheet, a powder, or a tablet obtained by tableting the powder.
  • thermosetting resin examples include epoxy resins and silicone resins. These may be used alone or in combination.
  • epoxy resin examples include bisphenol A type epoxy resin, bisphenol F type epoxy resin, bisphenol S type epoxy resin, novolak type epoxy resin such as phenol novolac type epoxy resin and cresol novolac type epoxy resin, monoglycidyl isocyanurate, di Nitrogen-containing ring epoxy resins such as glycidyl isocyanurate, triglycidyl isocyanurate, hydantoin epoxy resin, hydrogenated bisphenol A type epoxy resin, hydrogenated bisphenol F type epoxy resin, aliphatic epoxy resin, silicone modified epoxy resin, glycidyl ether type Polyamines and epichlorohydres such as epoxy resins, diglycidyl ethers such as alkyl-substituted bisphenols, diaminodiphenylmethane and isocyanuric acid Glycidylamine type epoxy resin obtained by reaction with ethylene, linear aliphatic and alicyclic epoxy resins obtained by oxidizing olefinic bonds with peracids such as
  • epoxy resins may be used alone or in combination of two or more.
  • an alicyclic epoxy resin or an isocyanuric ring structure such as triglycidyl isocyanurate alone or in combination from the viewpoint of excellent transparency and discoloration resistance.
  • diglycidyl esters of dicarboxylic acids such as phthalic acid, tetrahydrophthalic acid, hexahydrophthalic acid, methyltetrahydrophthalic acid, nadic acid and methylnadic acid are also suitable.
  • glycidyl esters such as nuclear hydrogenated trimellitic acid and nuclear hydrogenated pyromellitic acid having an alicyclic structure in which an aromatic ring is hydrogenated.
  • the epoxy resin may be solid or liquid at normal temperature, but in general, the epoxy resin used preferably has an average epoxy equivalent of 90 to 1,000. From the viewpoint of convenience, a softening point of 50 to 160 ° C. is preferable. That is, if the epoxy equivalent is too small, the cured product of the thermosetting resin composition may become brittle. Moreover, it is because the glass transition temperature (Tg) of a thermosetting resin composition hardened
  • Tg glass transition temperature
  • a curing agent When using the epoxy resin as the thermosetting resin (component A), a curing agent is usually used.
  • the curing agent include an acid anhydride curing agent and an isocyanuric acid derivative curing agent. These may be used alone or in combination of two or more. Among these, it is preferable to use an acid anhydride curing agent from the viewpoint of heat resistance and light resistance.
  • acid anhydride curing agent examples include phthalic anhydride, maleic anhydride, succinic anhydride, trimellitic anhydride, pyromellitic anhydride, naphthalene-1,4,5,8-tetracarboxylic dianhydride.
  • an oligomer having an acid anhydride as a terminal group of a saturated fatty chain skeleton, an unsaturated fatty chain skeleton, or a silicone skeleton or a side chain thereof alone or in combination of two or more thereof, and the above acid anhydride can be used together.
  • these acid anhydride curing agents phthalic anhydride, hexahydrophthalic anhydride, 3-methylhexahydrophthalic anhydride, 4-methylhexahydrophthalic anhydride, tetrahydrophthalic anhydride, 3-methyltetrahydrophthalic anhydride, 4-Methyltetrahydrophthalic anhydride is preferably used.
  • the acid anhydride curing agent is preferably a colorless or light yellow acid anhydride curing agent.
  • Examples of the isocyanuric acid derivative-based curing agent include 1,3,5-tris (1-carboxymethyl) isocyanurate, 1,3,5-tris (2-carboxyethyl) isocyanurate, 1,3,5, Examples thereof include 5-tris (3-carboxypropyl) isocyanurate and 1,3-bis (2-carboxyethyl) isocyanurate. These may be used alone or in combination of two or more. Furthermore, as the isocyanuric acid derivative-based curing agent, a colorless or light yellow curing agent is preferable.
  • the mixing ratio of the epoxy resin and the curing agent is such that the active group (acid anhydride group or carboxy group) capable of reacting with the epoxy group in the curing agent is 0 with respect to 1 equivalent of the epoxy group in the epoxy resin. It is preferably set to be 3 to 1.3 equivalents, more preferably 0.5 to 1.1 equivalents. That is, if there are too few active groups, the curing rate of the thermosetting resin composition will be slow and the glass transition temperature (Tg) of the cured product will tend to be low. If there are too many active groups, the moisture resistance will be low. This is because there is a tendency to decrease.
  • the active group acid anhydride group or carboxy group
  • epoxy resin curing agents than the above-mentioned acid anhydride curing agent and isocyanuric acid derivative curing agent, for example, phenol curing agent, amine curing agent, and acid Curing agents such as those obtained by partially esterifying an anhydride-based curing agent with alcohol can be used alone or in combination of two or more.
  • blending ratio should just follow the mixing
  • the silicone resin contains at least a catalyst, and specifically contains a catalyst and a silicone resin.
  • the catalyst is, for example, a curing catalyst that accelerates the reaction of the silicone resin to cure the silicone resin, and preferably hydrosilylation that accelerates the hydrosilylation reaction of the silicone resin to be described later and cures the silicone resin by hydrosilylation. It is a catalyst.
  • the catalyst contains a transition metal, and examples of the transition metal include white metal elements such as platinum, palladium and rhodium, preferably platinum.
  • the catalyst when the catalyst contains platinum, for example, platinum black, platinum chloride, inorganic platinum such as chloroplatinic acid, for example, platinum-olefin complex, platinum-carbonyl complex, platinum-acetyl
  • platinum complexes such as acetate, and preferably platinum complexes. More specifically, examples of the platinum complex include a platinum-vinylsiloxane complex, a platinum-tetramethyldivinyldisiloxane complex, a platinum-carbonylcyclovinylmethylsiloxane complex, a platinum-divinyltetramethyldisiloxane complex, and a platinum-cyclovinyl.
  • the said catalyst has the aspect mixed with the silicone resin mentioned later, and the aspect contained in a silicone resin as a component which comprises a silicone resin.
  • the content (concentration) of the transition metal in the catalyst is preferably 0.1 to 500 ppm, more preferably 0.15 to 100 ppm, and still more preferably 0.2 to 50 ppm, based on the weight of the whole silicone resin. Particularly preferred is 0.3 to 10 ppm.
  • the above-mentioned silicone resin is a curable silicone resin that is cured by a reaction accelerated by a catalyst, and examples thereof include a thermosetting silicone resin such as a one-step curable silicone resin and a two-step curable silicone resin.
  • the above-mentioned two-stage curable silicone resin has a two-stage reaction mechanism, and heats B-staged (semi-cured) by the first-stage reaction and C-stage (completely cured) by the second-stage reaction. It is a curable silicone resin.
  • the B stage is a state between the A stage in which the thermosetting silicone resin is soluble in the solvent and the fully cured C stage, and the curing and gelation progresses slightly, Although it swells but does not completely dissolve, it softens by heating but does not melt.
  • the one-step curable silicone resin has a one-step reaction mechanism and is a thermosetting silicone resin that is completely cured by the first-step reaction.
  • the one-step curable silicone resin include addition reaction curable polyorganopolysiloxane disclosed in JP2012-124428A.
  • the addition reaction curable polyorganopolysiloxane contains, for example, an ethylenically unsaturated hydrocarbon group-containing silicon compound and a hydrosilyl group-containing silicon compound.
  • Examples of the ethylenically unsaturated hydrocarbon group-containing silicon compound include vinyl group-containing polyorganosiloxane having two or more vinyl groups in the molecule, preferably vinyl polydimethylsiloxane at both ends.
  • hydrosilyl group-containing silicon compound examples include, for example, a hydrosilyl group-containing polyorganosiloxane having two or more hydrosilyl groups in the molecule, preferably both-end hydrosilyl polydimethylsiloxane, both-end trimethylsilyl-blocked methylhydrosiloxane-dimethylsiloxane copolymer, etc. Is given.
  • Examples of the two-stage curable silicone resin include a condensation reaction / addition reaction curable silicone resin having two reaction systems of a condensation reaction and an addition reaction.
  • Such condensation reaction / addition reaction curable silicone resin contains a catalyst, for example, silanol-terminated polysiloxane, alkenyl group-containing trialkoxysilane, organohydrogenpolysiloxane, condensation catalyst and hydrosilylation catalyst.
  • a first condensation reaction / addition reaction curable silicone resin For example, a second condensation containing a silanol group-terminated polysiloxane, an ethylenically unsaturated hydrocarbon group-containing silicon compound, an ethylenically unsaturated hydrocarbon group-containing silicon compound, an organohydrogenpolysiloxane, a condensation catalyst, and a hydrosilylation catalyst Reaction / addition reaction curable silicone resin, For example, a third condensation reaction / addition reaction curable silicone resin containing a silanol type silicone oil at both ends, an alkenyl group-containing dialkoxyalkylsilane, an organohydrogenpolysiloxane, a condensation catalyst and a hydrosilylation catalyst, For example, a fourth condensation reaction containing an organopolysiloxane having at least two alkenylsilyl groups in one molecule, an organopolysiloxane having at least two hydrosilyl groups in one molecule, a hydrosily
  • the condensation reaction / addition reaction curable silicone resin is preferably the second condensation reaction / addition reaction curable silicone resin, and specifically described in detail in JP-A No. 2010-265436.
  • the second condensation reaction / addition reaction curable silicone resin for example, first, an ethylenically unsaturated hydrocarbon group-containing silicon compound and an ethylenically unsaturated hydrocarbon group which are condensation raw materials are used. It can be prepared by adding the silicon compound and the condensation catalyst all at once, then adding the organohydrogenpolysiloxane as an addition raw material, and then adding a hydrosilylation catalyst (addition catalyst).
  • the specific zirconium oxide (B component) used together with the component A includes a 95% cumulative particle size (D95) and 5% cumulative particle size (D5) in the cumulative particle size distribution in the thermosetting resin cured body.
  • Zirconium oxide having a ratio (D95 / D5) of 1 to 100 is used.
  • Preferred is zirconium oxide having D95 / D5 of 9 to 30, and more preferred is zirconium oxide having D95 / D5 of 10 to 25.
  • the effect of the present invention is “high initial light reflectivity even if the reflector is molded so that the thickness of the thinnest portion is 0.2 mm or less, This is because the effect of “being excellent in long-term light resistance and heat discoloration resistance” can be obtained.
  • the cumulative particle size distribution is said to be “in the thermosetting resin cured body” because the zirconium oxide particles have a high agglomeration property and are easily converted into secondary particles.
  • the accumulated particle size distribution is measured after being dispersed in a thermosetting resin cured body to be primary particles.
  • zirconium oxide is added to the thermosetting resin composition, melt-mixed using a kneader or the like, and then cooled, solidified, and pulverized.
  • a powdery thermosetting resin composition which is used as a material, molded at 180 ° C. for 90 seconds, and cured at 175 ° C. for 3 hours. In this way, a 1 mm-thick resin molded plate was obtained, and this was used as a sample.
  • the sample was fixed on a sample stage, and conductive treatment (platinum palladium was sputtered under the condition of 15 mA ⁇ 10 sec ( Sputtering device: Hitachi E-1030)).
  • conductive treatment platinum palladium was sputtered under the condition of 15 mA ⁇ 10 sec ( Sputtering device: Hitachi E-1030)).
  • a reflected electron image is observed under an acceleration voltage condition of 5 kV using FE-SEM (manufactured by Hitachi, S-4700).
  • the SEM image (10,000 times image) is binarized by an image processing software (Mitani Corporation, Winroof), and the particle size of zirconium oxide particles is measured (elliptical sphere (spherical sphere)) If the particle size is not uniformly determined as in (1), the value of the ellipse major axis is measured as the particle size). Then, a histogram of the number frequency of the particle sizes is created, and the particle size of the number frequency cumulative value of 5% and 95%, that is, the accumulation degree 95% particle size (D95) and the accumulation degree 5% particle size (D5) are read. Based on the value, D95 / D5 is calculated.
  • the average particle diameter (D50) of the zirconium oxide as the component (B) in the cured thermosetting resin is preferably 0.01 to 1 ⁇ m, and more preferably D50 is 0.00.
  • the average particle size (D50) is a particle size of 50% cumulative measured in the same manner as described above, with a cumulative degree of 95% particle size (D95) and a cumulative degree of 5% particle size (D5). Also called median diameter.
  • the particle size may be adjusted by a known method, but wet pulverization is preferable in terms of pulverization efficiency. Moreover, water and an organic solvent (alcohol etc.) are preferable as a medium at the time of wet pulverization, and as a pulverizer used for pulverization, for example, a ball mill, a vibration mill, a medium stirring mill, or the like can be used.
  • a pulverizer used for pulverization for example, a ball mill, a vibration mill, a medium stirring mill, or the like can be used.
  • the blending ratio of the specific zirconium oxide (component B) is preferably 3 to 50% by volume, more preferably 5 to 30% by volume with respect to the entire thermosetting resin composition. That is, when the content ratio of the B component is too small, there is a tendency that sufficient light reflectivity, particularly excellent initial light reflectivity, cannot be obtained. This is because when the content ratio of the component B is too large, there may be a difficulty in producing a thermosetting resin composition by kneading or the like due to remarkable thickening.
  • the thermosetting resin composition of the present invention includes an inorganic filler (excluding zirconium oxide), a curing accelerator, a release agent, and a silane compound, as necessary. Can be blended. Furthermore, various additives such as a modifier (plasticizer), an antioxidant, a flame retardant, a defoaming agent, a leveling agent, and an ultraviolet absorber can be appropriately blended.
  • the inorganic filler examples include silica glass powder, talc, silica powder such as fused silica powder and crystalline silica powder, alumina powder, aluminum nitride powder, and silicon nitride powder.
  • silica glass powder talc
  • silica powder such as fused silica powder and crystalline silica powder
  • alumina powder aluminum nitride powder
  • silicon nitride powder silicon nitride powder.
  • a fused spherical silica powder from the viewpoints of high filling property and high fluidity.
  • the inorganic filler excludes zirconium oxide as described above.
  • the combination of the particle size of the specific zirconium oxide (component B) and its distribution is a burr when the thermosetting resin composition is formed by transfer molding or the like. It is preferable to consider so as to reduce most.
  • the average particle diameter of the inorganic filler is preferably 5 to 100 ⁇ m, particularly preferably 10 to 80 ⁇ m.
  • the said average particle diameter can be measured using a laser diffraction scattering type particle size distribution analyzer, for example.
  • the kneading may be hindered depending on the case. In that case, the average of zirconium oxide (component B)
  • the particle diameter (D50) is preferably 0.15 to 1 ⁇ m.
  • the content of the inorganic filler is set so that the total content of the specific zirconium oxide (component B) and the inorganic filler is 10 to 90% by volume of the entire thermosetting resin composition. It is preferable to do. More preferred is 60 to 90% by volume, and particularly preferred is 65 to 85% by volume. That is, if the total content is too small, there is a tendency for problems such as warpage to occur during molding. In addition, if the total content is too large, when kneading the compounding components, a great load is applied to the kneader, and the kneading tends to be impossible. As a result, the thermosetting resin composition that is a molding material It tends to be difficult to fabricate.
  • the mixing ratio of the component B and the inorganic filler is out of the above range and the volume ratio is too small, the initial light reflectance of the thermosetting resin composition tends to decrease, and the volume ratio is too large.
  • the melt viscosity of the thermosetting resin composition is increased, kneading tends to be difficult.
  • the curing accelerator can be used when the thermosetting resin (component A) is an epoxy resin.
  • the curing accelerator include 1,8-diaza-bicyclo [5.4.0] undecene- 7, tertiary amines such as triethylenediamine, tri-2,4,6-dimethylaminomethylphenol, N, N-dimethylbenzylamine, N, N-dimethylaminobenzene, N, N-dimethylaminocyclohexane, 2- Imidazoles such as ethyl-4-methylimidazole and 2-methylimidazole, triphenylphosphine, tetraphenylphosphonium tetrafluoroborate, tetraphenylphosphonium tetraphenylborate, tetra-n-butylphosphonium bromide, tetraphenylphosphonium bromide, methyltributylphospho Niu Phosphorus compounds such as dimethyl phosphate, te
  • quaternary ammonium salts such as triethylenediammonium / octylcarboxylate, organometallic salts, and derivatives thereof.
  • these may be used alone or in combination of two or more.
  • tertiary amines, imidazoles, and phosphorus compounds it is particularly preferable to use a phosphorus compound in order to obtain a cured product with little coloring.
  • the content of the curing accelerator is preferably set to 0.001 to 8% by weight, more preferably 0.01 to 5% by weight with respect to the thermosetting resin (component A). That is, if the content of the curing accelerator is too small, a sufficient curing acceleration effect may not be obtained, and if the content of the curing accelerator is too large, the resulting cured product tends to be discolored. Because.
  • release agents are used as the release agent. Among them, it is preferable to use a release agent having an ether bond.
  • a release agent having a structural formula represented by the following general formula (1) Agent for example, a release agent having a structural formula represented by the following general formula (1) Agent.
  • Rm and Rn are a hydrogen atom or a monovalent alkyl group, and both may be the same or different. Further, k is a positive number from 1 to 100, and x is a positive number from 1 to 100. ]
  • Rm and Rn are a hydrogen atom or a monovalent alkyl group, preferably k is a positive number from 10 to 50, and x is a positive number from 3 to 30. More preferably, Rm and Rn are hydrogen atoms, k is a positive number of 28 to 48, and x is a positive number of 5 to 20. That is, when the value of the number of repetitions k is too small, the releasability is lowered, and when the value of the number of repetitions x is too small, the dispersibility is lowered, so that stable strength and releasability tend not to be obtained. Be looked at.
  • the content of the release agent is preferably set in the range of 0.001 to 3% by weight, more preferably in the range of 0.01 to 2% by weight of the entire thermosetting resin composition. That is, if the content of the release agent is too little or too much, the strength of the cured product tends to be insufficient or the release property tends to be lowered.
  • silane compound examples include a silane coupling agent and silane.
  • silane coupling agent examples include 3-glycidoxypropylmethyldimethoxysilane, 3-glycidoxypropyltrimethoxysilane, 3-glycidoxypropylmethyldiethoxysilane, and 3-glycidoxypropylmethylethoxysilane.
  • silane examples include methyltrimethoxysilane, dimethyldimethoxysilane, phenyltrimethoxysilane, methyltriethoxysilane, dimethyldiethylsilane, phenyltriethoxysilane, hexyltrimethoxysilane, hexyltriethoxysilane, and dezyltrimethoxy.
  • silane examples include silane, trifluoropropyltrimethoxysilane, hexamethyldisilazane, and siloxane containing a hydrolyzable group. These may be used alone or in combination of two or more.
  • modifier examples include glycols, silicones, alcohols and the like.
  • antioxidant examples include phenol compounds, amine compounds, organic sulfur compounds, phosphine compounds, and the like.
  • the flame retardant examples include metal hydroxides such as magnesium hydroxide, bromine-based flame retardants, nitrogen-based flame retardants, phosphorus-based flame retardants and the like, and further use a flame retardant aid such as antimony trioxide. You can also.
  • defoaming agent examples include conventionally known defoaming agents such as silicone.
  • thermosetting resin composition of the present invention can be produced, for example, as follows. That is, the components A and B, an inorganic filler, a curing accelerator and a release agent, and various additives used as necessary are appropriately blended, and then melt-mixed using a kneader or the like. Then, this is cooled, solidified, and pulverized to produce a powdery thermosetting resin composition.
  • the cured product obtained by subjecting the obtained thermosetting resin composition to, for example, transfer molding or injection molding preferably has a light reflectance of 80% or more at a wavelength of 450 to 800 nm. More preferably, it is 90% or more. The upper limit is usually 100%. Specifically, the light reflectance at a wavelength of 450 nm of the cured product is preferably 85 to 98%.
  • the light reflectance is measured as follows, for example. That is, a cured product of a thermosetting resin composition having a thickness of 0.2 mm is prepared by predetermined curing conditions, for example, 175 ° C. ⁇ 2 minutes, post-curing at 175 ° C.
  • the light reflectance of the cured product at a wavelength within the above range at ⁇ 10 ° C. can be measured by using a spectrophotometer (for example, spectrophotometer V-670 manufactured by JASCO Corporation).
  • thermosetting resin composition of the present invention is manufactured as follows, for example. That is, a metal lead frame is placed in a mold of a transfer molding machine, and a reflector is formed by transfer molding using the thermosetting resin composition. In this manner, a metal lead frame for an optical semiconductor device in which an annular reflector is formed so as to surround the periphery of the optical semiconductor element mounting region is manufactured. Next, an optical semiconductor element is mounted in the optical semiconductor element mounting region on the metal lead frame inside the reflector, and the optical semiconductor element and the metal lead frame are electrically connected using a bonding wire. And the sealing resin layer is formed by resin-sealing the inner area
  • the three-dimensional (cup type) optical semiconductor device shown in FIG. 1 is manufactured.
  • the optical semiconductor element 3 is mounted on the second plate portion 2 of the metal lead frame composed of the first plate portion 1 and the second plate portion 2, and the optical semiconductor device
  • the reflector 4 for light reflection which consists of a thermosetting resin composition of this invention is formed so that the circumference
  • a transparent sealing resin layer 6 for sealing the optical semiconductor element 3 is formed in the recess 5 formed by the metal lead frame and the inner peripheral surface of the reflector 4, a transparent sealing resin layer 6 for sealing the optical semiconductor element 3 is formed.
  • the sealing resin layer 6 contains a phosphor as necessary.
  • 7 and 8 are bonding wires for electrically connecting the metal lead frame and the optical semiconductor element 3.
  • the structure where the thickness of the thinnest location in the said reflector 4 of an optical semiconductor device becomes 0.2 mm or less is made into object.
  • various substrates may be used in place of the metal lead frame shown in FIG.
  • the various substrates include organic substrates, inorganic substrates, and flexible printed substrates.
  • the reflector may be formed by injection molding.
  • an optical semiconductor device shown in FIG. 2 and FIG. can give. That is, in this optical semiconductor device, the optical semiconductor elements 3 are respectively mounted at predetermined positions on one surface in the thickness direction of the metal lead frames 10 arranged at intervals, and the gap between the metal lead frames 10 is in accordance with the present invention.
  • the light reflection reflector 11 made of a thermosetting resin composition is formed. Also, as shown in FIG. 3, a plurality of reflectors 11 are formed by filling the gap between the metal lead frames 10 with the thermosetting resin composition of the present invention and curing. 2 and 3, reference numeral 12 denotes a bonding wire for electrically connecting the optical semiconductor element 3 and the metal lead frame 10.
  • the metal lead frame 10 is placed in a mold of a transfer molding machine, and the gap between the metal lead frames 10 arranged at intervals and the optical semiconductor of the metal lead frame 10 are formed by transfer molding.
  • the reflectors 11 are respectively formed by filling the concave portions formed on the surface opposite to the element 3 mounting surface with a thermosetting resin composition and curing.
  • the optical semiconductor element 3 is mounted in the optical semiconductor element mounting region at a predetermined position of the metal lead frame 10
  • the optical semiconductor element 3 and the metal lead frame 10 are electrically connected using the bonding wire 12.
  • the optical semiconductor device shown in FIGS. 2 and 3 is manufactured.
  • the structure in which the thickness of the thinnest portion in the reflector 11 of the optical semiconductor device is 0.2 mm or less is targeted.
  • thermosetting resin composition each component shown below was prepared prior to preparation of the thermosetting resin composition.
  • [silica] Fused spherical silica powder (average particle size 20 ⁇ m) (FB-9454, manufactured by Denki Kagaku Kogyo Co., Ltd.)
  • the SEM image (10,000 times image) is binarized by an image processing software (Mitani Corporation, Winroof), and the particle size of zirconium oxide particles is measured (elliptical sphere (spherical sphere))
  • the particle size was not uniformly determined as in (1)
  • the value of the ellipse major axis was measured as the particle size).
  • a histogram of the number frequency of the particle size is created, and the particle size of the number frequency cumulative value of 5%, 50%, and 95%, that is, the accumulation degree 95% particle size (D95), the accumulation degree 50% particle size (D50 ( Average particle diameter)) and 5% cumulative particle size (D5) were read.
  • D95 / D5 was calculated based on the value. The results are shown in Table 1 below.
  • thermosetting resin compositions of Examples and Comparative Examples thus obtained, various evaluations [initial light reflectance, long-term light resistance, heat discoloration resistance] were measured according to the following methods. The results are shown in Tables 2 and 3 below.
  • the example product formed by blending zirconium oxide having a specific particle size distribution as defined in the present invention has a high initial light reflectance even if the molded product is thin, and further, long-term light resistance, Excellent results were also obtained with respect to heat discoloration resistance.
  • the comparative example product using zirconium oxide b6 having a particle size distribution deviating from the provisions of the present invention was extremely inferior to the example product, particularly with respect to the initial light reflectance.
  • an optical semiconductor (light-emitting) device having the configuration shown in FIG. 1 was manufactured using a tablet-like thermosetting resin composition obtained by tableting the powders of the above-mentioned examples. That is, a metal lead frame having a plurality of pairs of a first plate portion 1 and a second plate portion 2 made of copper (silver plating) is placed in a mold of a transfer molding machine, and the thermosetting resin By performing transfer molding using the composition (conditions: molding at 175 ° C. ⁇ 2 minutes + 175 ° C. ⁇ 3 hours), the reflector 4 (thinnest thickness 0.2 mm) at a predetermined position of the metal lead frame shown in FIG. ) was formed.
  • a tablet-like thermosetting resin composition obtained by tableting the powders of the above-mentioned examples. That is, a metal lead frame having a plurality of pairs of a first plate portion 1 and a second plate portion 2 made of copper (silver plating) is placed in a mold of a transfer molding machine
  • an optical semiconductor (light emitting) element (size: 0.5 mm ⁇ 0.5 mm) 3 is mounted, and the optical semiconductor element 3 and the metal lead frame are electrically connected by bonding wires 7 and 8.
  • a unit including the reflector 4, the metal lead frame, and the optical semiconductor element 3 was manufactured.
  • the recess 5 formed by the metal lead frame and the inner peripheral surface of the reflector 4 is filled with silicone resin (manufactured by Shin-Etsu Silicone Co., Ltd., KER-2500) to seal the optical semiconductor element 3 with resin (molding).
  • silicone resin manufactured by Shin-Etsu Silicone Co., Ltd., KER-2500
  • a transparent sealing resin layer 6 was formed, and each reflector was separated into pieces by dicing to produce the optical semiconductor (light emitting) device shown in FIG.
  • the obtained optical semiconductor (light emitting) device was provided with the reflector 4 excellent in long-term light resistance and heat discoloration resistance with a high initial light reflectance, and a good one with high reliability was obtained.
  • thermosetting resin composition for an optical semiconductor device of the present invention is useful as a reflector forming material that reflects light emitted from an optical semiconductor element incorporated in the optical semiconductor device.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Chemical & Material Sciences (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Power Engineering (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Medicinal Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Led Device Packages (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)

Abstract

 第1のプレート部1と第2のプレート部2とからなる金属リードフレームと、その金属リードフレームに搭載された光半導体素子3の周囲を囲うように形成される、最薄箇所の厚みが0.2mm以下のリフレクタ4を備えた光半導体装置において、上記リフレクタ4の形成材料が、下記の(A)および(B)成分を含有する光半導体装置用熱硬化性樹脂組成物からなる。このように厚みが薄くなるよう成形しても、上記樹脂組成物の特性により、高い初期光反射率を示し、さらに長期耐光性および耐加熱変色性に優れるようになる。 (A)熱硬化性樹脂。 (B)熱硬化性樹脂硬化体中での、累積粒度分布における累積度95%粒度(D95)と累積度5%粒度(D5)との比(D95/D5)が1~100の、酸化ジルコニウム。

Description

光半導体装置用熱硬化性樹脂組成物およびそれを用いて得られる光半導体装置用リードフレーム、ならびに光半導体装置
 本発明は、例えば、光半導体素子から発する光を反射させる、リフレクタ(反射部)の形成材料となる光半導体装置用熱硬化性樹脂組成物およびそれを用いて得られる光半導体装置用リードフレーム、ならびに光半導体装置に関するものである。
 従来、光半導体素子を搭載してなる光半導体装置は、例えば、図1に示すように、第1のプレート部1と第2のプレート部2とからなる金属リードフレーム上に光半導体素子3が搭載され、上記光半導体素子3の周囲を囲むように、さらに第1のプレート部1と第2のプレート部2の間を埋めるように、樹脂材料からなる光反射用のリフレクタ4が形成されているという構成をとる。そして、上記金属リードフレームとリフレクタ4の内周面として形成される凹部5に搭載された光半導体素子3を、必要に応じて蛍光体を含有するシリコーン樹脂等の透明樹脂を用いて樹脂封止することにより封止樹脂層6が形成されている。図1において、7,8は金属リードフレームと光半導体素子3とを電気的に接続するボンディングワイヤーであり、必要に応じて設けられるものである。
 このような光半導体装置では、近年、上記リフレクタ4を、エポキシ樹脂等に代表される熱硬化性樹脂を用いて、例えば、トランスファー成形等により成形し製造している。リフレクタの材料としては、従来ではセラミックスを使用していたため、薄く成形すると割れが生じる問題があったが、上記熱硬化性樹脂製のリフレクタにより、この問題が解消されている。そして、上記熱硬化性樹脂には、従来から白色顔料として酸化チタンを配合し、上記光半導体素子3から発する光を反射させている(特許文献1参照)。
特開2011-258845号公報
 しかしながら、上記のように白色顔料として酸化チタンを用いてリフレクタを形成した場合、初期の光反射率に関しては問題無く高い光反射率を実現しているが、経時的使用によりその光反射率が低下してしまうという問題がある。また、リフレクタには、その厚みが薄くなるよう成形した場合であっても、高い初期光反射率を得ることが求められており、同時に、優れた耐加熱変色性を実現することが求められている。
 本発明は、このような事情に鑑みなされたもので、厚みが薄くなるよう成形しても高い初期光反射率を示し、さらに長期耐光性および耐加熱変色性に優れた光半導体装置用熱硬化性樹脂組成物およびそれを用いて得られる光半導体装置用リードフレーム、ならびに光半導体装置の提供をその目的とする。
 上記目的を達成するために、本発明は、最薄箇所の厚みが0.2mm以下である、光半導体装置のリフレクタの形成材料であって、下記の(A)および(B)成分を含有する光半導体装置用熱硬化性樹脂組成物を第1の要旨とする。
(A)熱硬化性樹脂。
(B)熱硬化性樹脂硬化体中での、累積粒度分布における累積度95%粒度(D95)と累積度5%粒度(D5)との比(D95/D5)が1~100の、酸化ジルコニウム。
 そして、本発明は、厚み方向の片面のみに光半導体素子を搭載するための板状の光半導体装置用リードフレームであって、互いに隙間を隔てて配置される複数のプレート部を備えるとともに、上記隙間に、上記第1の要旨の光半導体装置用熱硬化性樹脂組成物を用いて充填し、硬化してなるリフレクタが形成されてなる光半導体装置用リードフレームを第2の要旨とする。また、本発明は、光半導体素子搭載領域を備え、それ自体の少なくとも一部で素子搭載領域の周囲を囲んだ状態でリフレクタが形成されてなる立体状の光半導体装置用リードフレームであって、上記リフレクタが、上記第1の要旨の光半導体装置用熱硬化性樹脂組成物を用いて形成されてなる光半導体装置用リードフレームを第3の要旨とする。
 さらに、本発明は、その片面に光半導体素子を搭載するための素子搭載領域を有するプレート部が、互いに隙間を隔てて配置され、上記素子搭載領域の所定位置に光半導体素子が搭載されてなる光半導体装置であって、上記隙間に、上記第1の要旨の光半導体装置用熱硬化性樹脂組成物を用いて充填し、硬化してなるリフレクタが形成されてなる光半導体装置を第4の要旨とする。また、本発明は、光半導体素子搭載領域を備え、それ自体の少なくとも一部で素子搭載領域の周囲を囲んだ状態でリフレクタが形成されてなる光半導体装置用リードフレームの所定位置に光半導体素子が搭載されてなる光半導体装置であって、上記リフレクタが、上記第1の要旨の光半導体装置用熱硬化性樹脂組成物を用いて形成されてなる光半導体装置を第5の要旨とする。
 本発明者らは、前記課題を解決するため鋭意研究を重ね、その過程で、光半導体装置のリフレクタの形成材料において、白色顔料として従来使用されてきた酸化チタンに代えて、酸化ジルコニウムを用いることを想起した。そして、リフレクタの最薄箇所の厚みが0.2mm以下であっても高い初期光反射率等を示すには、リフレクタ内での酸化ジルコニウムの粒度分布が大きく関与することに着目し、本発明者らは各種実験を重ねた。その結果、リフレクタ材料である熱硬化性樹脂組成物の硬化体中での、酸化ジルコニウムの累積度95%粒度(D95)と累積度5%粒度(D5)との比(D95/D5)が1~100のときに、所期の目的が達成できることを見いだし、本発明に到達した。
 このように、本発明は、前記熱硬化性樹脂(A)と、特定の累積粒度分布を示す酸化ジルコニウム(B)とを含有する光半導体装置用熱硬化性樹脂組成物である。このため、厚みが薄くなるよう成形しても高い初期光反射率を示し、さらに長期耐光性および耐加熱変色性をも備えるようになる。したがって、上記光半導体装置用熱硬化性樹脂組成物を用いてリフレクタを形成してなる光半導体装置では、信頼性の高い光半導体装置が得られる。
 そして、熱硬化性樹脂硬化体中での、上記(B)成分の酸化ジルコニウムの平均粒子径(D50)が特定範囲であると、より一層高い初期光反射率等を備えるようになる。
光半導体装置の構成を模式的に示す断面図である。 光半導体装置の他の構成を模式的に示す平面図である。 上記光半導体装置の他の構成を模式的に示す平面図のX-X′矢視断面図である。
 本発明の光半導体装置用熱硬化性樹脂組成物(以下、「熱硬化性樹脂組成物」ともいう)は、例えば、先に述べたように、図1に示す光半導体装置あるいは後述の図2および図3に示す光半導体装置の、リフレクタ4,11形成材料として用いられるものであって、上記リフレクタ4,11における最薄箇所の厚みが0.2mm以下となる箇所に適用されるものである。このような本発明の熱硬化性樹脂組成物は、熱硬化性樹脂(A成分)と、特定の累積粒度分布を示す酸化ジルコニウム(B成分)を用いて得られるものであり、通常、液状、あるいはシート状、粉末状、もしくはその粉末を打錠したタブレット状にしてリフレクタ4,11形成材料に供される。
〈A:熱硬化性樹脂〉
 上記熱硬化性樹脂(A成分)としては、例えば、エポキシ樹脂、シリコーン樹脂等があげられる。これらは単独でもしくは併せて用いられる。
 上記エポキシ樹脂としては、例えば、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールS型エポキシ樹脂、フェノールノボラック型エポキシ樹脂やクレゾールノボラック型エポキシ樹脂等のノボラック型エポキシ樹脂、モノグリシジルイソシアヌレート、ジグリシジルイソシアヌレート、トリグリシジルイソシアヌレート、ヒダントインエポキシ樹脂等の含窒素環エポキシ樹脂、水素添加ビスフェノールA型エポキシ樹脂、水素添加ビスフェノールF型エポキシ樹脂、脂肪族系エポキシ樹脂、シリコーン変性エポキシ樹脂、グリシジルエーテル型エポキシ樹脂、アルキル置換ビスフェノール等のジグリシジルエーテル、ジアミノジフェニルメタンおよびイソシアヌル酸等のポリアミンとエピクロルヒドリンとの反応により得られるグリシジルアミン型エポキシ樹脂、オレフィン結合を過酢酸等の過酸で酸化して得られる線状脂肪族および脂環式エポキシ樹脂、低吸水率硬化体タイプの主流であるビフェニル型エポキシ樹脂、ジシクロ環型エポキシ樹脂、ナフタレン型エポキシ樹脂等があげられる。これらは単独でもしくは2種以上併せて用いることができる。これらエポキシ樹脂の中でも、透明性および耐変色性に優れるという点から、脂環式エポキシ樹脂や、トリグリシジルイソシアヌレート等のイソシアヌル環構造を有するものを単独でもしくは併せて用いることが好ましい。同様の理由から、フタル酸、テトラヒドロフタル酸、ヘキサヒドロフタル酸、メチルテトラヒドロフタル酸、ナジック酸、メチルナジック酸等のジカルボン酸のジグリシジルエステルも好適である。また、芳香環が水素化された脂環式構造を有する核水素化トリメリット酸、核水素化ピロメリット酸等のグリシジルエステル等もあげられる。
 上記エポキシ樹脂としては、常温で固形であっても液状であってもよいが、一般に、使用するエポキシ樹脂の平均エポキシ当量が90~1000のものが好ましく、また、固形の場合には、取り扱い性の利便性の観点から、軟化点が50~160℃のものが好ましい。すなわち、エポキシ当量が小さすぎると、熱硬化性樹脂組成物硬化物が脆くなる場合がある。また、エポキシ当量が大きすぎると、熱硬化性樹脂組成物硬化物のガラス転移温度(Tg)が低くなる傾向がみられるからである。
 熱硬化性樹脂(A成分)として上記エポキシ樹脂を用いる際には、通常、硬化剤が用いられる。上記硬化剤としては、例えば、酸無水物系硬化剤、イソシアヌル酸誘導体系硬化剤等があげられる。これらは単独でもしくは2種以上併せて用いることができる。これらのなかでも、耐熱性および耐光性の観点から、酸無水物系硬化剤を用いることが好ましい。
 上記酸無水物系硬化剤としては、例えば、無水フタル酸、無水マレイン酸、無水コハク酸、無水トリメリット酸、無水ピロメリット酸、ナフタレン-1,4,5,8-テトラカルボン酸二無水物、およびその核水素化物、ヘキサヒドロ無水フタル酸、3-メチルヘキサヒドロ無水フタル酸、4-メチルヘキサヒドロ無水フタル酸、テトラヒドロ無水フタル酸、3-メチルテトラヒドロ無水フタル酸、4-メチルテトラヒドロ無水フタル酸、無水メチルナジック酸、シクロヘキサン-1,2,3-トリカルボン酸-2,3-無水物、およびその位置異性体、シクロヘキサン-1,2,3,4-テトラカルボン酸-3,4-無水物、およびその位置異性体、無水ナジック酸、無水グルタル酸、無水ジメチルグルタル酸、無水ジエチルグルタル酸、メチルヘキサヒドロ無水フタル酸、メチルテトラヒドロ無水フタル酸等があげられる。これらは単独でもしくは2種以上併せて用いることができる。また、飽和脂肪鎖骨格、不飽和脂肪鎖骨格、またはシリコーン骨格の末端基、ないし、側鎖としてこれら酸無水物を有するオリゴマーも単独で、もしくは2種以上併せて、および、上記酸無水物と併せて用いることができる。これら酸無水物系硬化剤の中でも、無水フタル酸、ヘキサヒドロ無水フタル酸、3-メチルヘキサヒドロ無水フタル酸、4-メチルヘキサヒドロ無水フタル酸、テトラヒドロ無水フタル酸、3-メチルテトラヒドロ無水フタル酸、4-メチルテトラヒドロ無水フタル酸を用いることが好ましい。さらに、酸無水物系硬化剤としては、無色ないし淡黄色の酸無水物系硬化剤が好ましい。また、上記酸無水物の加水分解物であるカルボン酸を併用してもよい。
 また、上記イソシアヌル酸誘導体系硬化剤としては、例えば、1,3,5-トリス(1-カルボキシメチル)イソシアヌレート、1,3,5-トリス(2-カルボキシエチル)イソシアヌレート、1,3,5-トリス(3-カルボキシプロピル)イソシアヌレート、1,3-ビス(2-カルボキシエチル)イソシアヌレート等があげられる。これらは単独でもしくは2種以上併せて用いることができる。さらに、イソシアヌル酸誘導体系硬化剤としては、無色ないし淡黄色の硬化剤が好ましい。
 ここで、上記エポキシ樹脂と上記硬化剤との配合割合は、エポキシ樹脂中のエポキシ基1当量に対して、硬化剤中におけるエポキシ基と反応可能な活性基(酸無水基あるいはカルボキシ基)が0.3~1.3当量となるよう設定することが好ましく、より好ましくは0.5~1.1当量である。すなわち、活性基が少なすぎると、熱硬化性樹脂組成物の硬化速度が遅くなるとともに、その硬化物のガラス転移温度(Tg)が低くなる傾向がみられ、活性基が多すぎると耐湿性が低下する傾向がみられるからである。
 また、その目的および用途に応じて、上述の上記酸無水物系硬化剤およびイソシアヌル酸誘導体系硬化剤以外の他のエポキシ樹脂用硬化剤、例えば、フェノール系硬化剤、アミン系硬化剤、上記酸無水物系硬化剤をアルコールで部分エステル化したもの等の硬化剤を、単独でもしくは2種以上併せて用いることができる。なお、これら硬化剤を用いる場合においても、その配合割合は、上述のエポキシ樹脂と硬化剤との配合割合(当量比)に準じればよい。
 つぎに、上記熱硬化性樹脂(A成分)として上記シリコーン樹脂を用いる場合について述べる。上記シリコーン樹脂としては、少なくとも触媒を含有し、具体的には、触媒およびシリコーン樹脂を含有する。上記触媒は、例えば、シリコーン樹脂の反応を促進させてシリコーン樹脂を硬化させる硬化触媒であって、好ましくは、後述するシリコーン樹脂のヒドロシリル化反応を促進させてシリコーン樹脂をヒドロシリル付加により硬化させるヒドロシリル化触媒である。そして、上記触媒は、遷移金属を含有し、上記遷移金属としては、例えば、白金、パラジウム、ロジウム等の白金属元素、好ましくは、白金があげられる。具体的には、触媒としては、触媒が白金を含有する場合には、例えば、白金黒、塩化白金、塩化白金酸等の無機白金、例えば、白金-オレフィン錯体、白金-カルボニル錯体、白金-アセチルアセテート等の白金錯体等があげられ、好ましくは、白金錯体があげられる。より具体的には、白金錯体としては、例えば、白金-ビニルシロキサン錯体、白金-テトラメチルジビニルジシロキサン錯体、白金-カルボニルシクロビニルメチルシロキサン錯体、白金-ジビニルテトラメチルジシロキサン錯体、白金-シクロビニルメチルシロキサン錯体、白金-オクタナル/オクタノール錯体等があげられる。なお、上記触媒は、後述のシリコーン樹脂と区別して配合される態様や、シリコーン樹脂を構成する成分としてシリコーン樹脂に含有される態様がある。
 上記触媒中の遷移金属の含有割合(濃度)は、シリコーン樹脂全体に対して、質量基準で、好ましくは0.1~500ppm、より好ましくは0.15~100ppm、さらに好ましくは0.2~50ppm、特に好ましくは0.3~10ppmである。
 上記シリコーン樹脂は、触媒によって反応が促進されて硬化する硬化性シリコーン樹脂であって、例えば、1段階硬化型シリコーン樹脂、2段階硬化型シリコーン樹脂等の熱硬化性シリコーン樹脂等があげられる。
 上記2段階硬化型シリコーン樹脂は、2段階の反応機構を有しており、1段階目の反応でBステージ化(半硬化)し、2段階目の反応でCステージ化(完全硬化)する熱硬化性シリコーン樹脂である。なお、上記Bステージとは、熱硬化性シリコーン樹脂が、溶剤に可溶なAステージと、完全硬化したCステージとの間の状態であって、硬化およびゲル化がわずかに進行し、溶剤に膨潤するが完全に溶解せず、加熱によって軟化するが溶融しない状態である。
 上記1段階硬化型シリコーン樹脂は、1段階の反応機構を有しており、1段階目の反応で完全硬化する熱硬化性シリコーン樹脂である。上記1段階硬化型シリコーン樹脂としては、例えば、特開2012-124428号公報に開示される付加反応硬化型ポリオルガノポリシロキサンがあげられる。具体的には、付加反応硬化型ポリオルガノポリシロキサンは、例えば、エチレン系不飽和炭化水素基含有ケイ素化合物およびヒドロシリル基含有ケイ素化合物を含有する。
 上記エチレン系不飽和炭化水素基含有ケイ素化合物として、例えば、分子内に2個以上のビニル基を有するビニル基含有ポリオルガノシロキサン、好ましくは、両末端ビニルポリジメチルシロキサンがあげられる。
 上記ヒドロシリル基含有ケイ素化合物として、例えば、分子内に2個以上のヒドロシリル基を有するヒドロシリル基含有ポリオルガノシロキサン、好ましくは、両末端ヒドロシリルポリジメチルシロキサン、両末端トリメチルシリル封鎖メチルヒドロシロキサン-ジメチルシロキサンコポリマー等があげられる。
 上記2段階硬化型シリコーン樹脂としては、例えば、縮合反応と付加反応との2つの反応系を有する縮合反応・付加反応硬化型シリコーン樹脂等があげられる。このような縮合反応・付加反応硬化型シリコーン樹脂は、触媒を含有しており、例えば、シラノール両末端ポリシロキサン、アルケニル基含有トリアルコキシシラン、オルガノハイドロジェンポリシロキサン、縮合触媒およびヒドロシリル化触媒を含有する第1の縮合反応・付加反応硬化型シリコーン樹脂、
例えば、シラノール基両末端ポリシロキサン、エチレン系不飽和炭化水素基含有ケイ素化合物、エチレン系不飽和炭化水素基含有ケイ素化合物、オルガノハイドロジェンポリシロキサン、縮合触媒およびヒドロシリル化触媒を含有する第2の縮合反応・付加反応硬化型シリコーン樹脂、
例えば、両末端シラノール型シリコーンオイル、アルケニル基含有ジアルコキシアルキルシラン、オルガノハイドロジェンポリシロキサン、縮合触媒およびヒドロシリル化触媒を含有する第3の縮合反応・付加反応硬化型シリコーン樹脂、
例えば、1分子中に少なくとも2個のアルケニルシリル基を有するオルガノポリシロキサン、1分子中に少なくとも2個のヒドロシリル基を有するオルガノポリシロキサン、ヒドロシリル化触媒および硬化遅延剤を含有する第4の縮合反応・付加反応硬化型シリコーン樹脂、
例えば、少なくとも2つのエチレン系不飽和炭化水素基と少なくとも2つのヒドロシリル基とを1分子中に併有する第1オルガノポリシロキサン、エチレン系不飽和炭化水素基を含まず、少なくとも2つのヒドロシリル基を1分子中に有する第2オルガノポリシロキサン、ヒドロシリル化触媒およびヒドロシリル化抑制剤を含有する第5の縮合反応・付加反応硬化型シリコーン樹脂、
例えば、少なくとも2つのエチレン系不飽和炭化水素基と少なくとも2つのシラノール基とを1分子中に併有する第1オルガノポリシロキサン、エチレン系不飽和炭化水素基を含まず、少なくとも2つのヒドロシリル基を1分子中に有する第2オルガノポリシロキサン、ヒドロシリル化抑制剤、および、ヒドロシリル化触媒を含有する第6の縮合反応・付加反応硬化型シリコーン樹脂、
例えば、ケイ素化合物、および、ホウ素化合物またはアルミニウム化合物を含有する第7の縮合反応・付加反応硬化型シリコーン樹脂、
例えば、ポリアルミノシロキサンおよびシランカップリング剤を含有する第8の縮合反応・付加反応硬化型シリコーン樹脂等があげられる。
 これら縮合反応・付加反応硬化型シリコーン樹脂は、単独でもしくは2種以上併せて用いられる。
 上記縮合反応・付加反応硬化型シリコーン樹脂として、好ましくは、上記第2の縮合反応・付加反応硬化型シリコーン樹脂があげられ、具体的には、特開2010-265436号公報等に詳細に記載されており、例えば、シラノール基両末端ポリジメチルシロキサン、ビニルトリメトキシシラン、(3-グリシドキシプロピル)トリメトキシシラン、ジメチルポリシロキサン-co-メチルハイドロジェンポリシロキサン、水酸化テトラメチルアンモニウムおよび白金-カルボニル錯体を含有する。具体的には、上記第2の縮合反応・付加反応硬化型シリコーン樹脂を調製するには、例えば、まず、縮合原料であるエチレン系不飽和炭化水素基含有ケイ素化合物およびエチレン系不飽和炭化水素基含有ケイ素化合物と、縮合触媒とを一度に加え、ついで、付加原料であるオルガノハイドロジェンポリシロキサンを加え、その後、ヒドロシリル化触媒(付加触媒)を加えることにより調製することができる。
〈B:特定の酸化ジルコニウム〉
 上記A成分とともに用いられる特定の酸化ジルコニウム(B成分)としては、熱硬化性樹脂硬化体中での、累積粒度分布における累積度95%粒度(D95)と累積度5%粒度(D5)との比(D95/D5)が1~100の酸化ジルコニウムが用いられる。好ましくは、D95/D5が9~30の酸化ジルコニウムであり、さらに好ましくは、D95/D5が10~25の酸化ジルコニウムである。すなわち、D95/D5を上記範囲に設定することにより、本発明の作用効果である「最薄箇所の厚みが0.2mm以下となるようリフレクタを成形しても高い初期光反射率を示し、さらに長期耐光性および耐加熱変色性に優れるようになる」といった効果が得られるようになるからである。ここで、上記累積粒度分布を「熱硬化性樹脂硬化体中での」としているのは、酸化ジルコニウム粒子が、凝集性が高く二次粒子化しやすい性質のものだからであり、より正確な粒度分布を測定するため、本発明では、熱硬化性樹脂硬化体中に分散させて一次粒子化させてから、その累積粒度分布を測定している。上記累積粒度分布の具体的な測定方法としては、例えば、熱硬化性樹脂組成物中に酸化ジルコニウムを加え、混練機等を用いて溶融混合した後、これを冷却し固化して、粉砕することにより粉末状の熱硬化性樹脂組成物を得、それを材料とし、180℃×90秒で成形後、175℃×3時間キュアする。このようにして、1mm厚の樹脂成形板を得、これを試料とし、樹脂包埋して機械研磨した後、試料台に固定し、導電性処理(15mA×10secの条件で白金パラジウムをスパッタ(スパッタ装置:日立社製E-1030))する。つぎに、FE-SEM(日立社製、S-4700)を用い、反射電子像を5kVの加速電圧条件で観察する。そして、そのSEM画像(1万倍画像)を、画像処理ソフト(MITANI CORPORATION社製、Winroof)により二値化処理し、酸化ジルコニウム粒子の粒径を測定(楕円球状(断面が楕円の球)等のように一律に粒径が定まらない場合には、楕円長軸の値を粒径として測定)する。そして、その粒径の個数頻度のヒストグラムを作成し、5%、95%の個数頻度累積値の粒径、つまり、累積度95%粒度(D95)、累積度5%粒度(D5)を読み取る。その値をもとに、D95/D5を算出する。
 そして、特に、上記熱硬化性樹脂硬化体中での、上記(B)成分の酸化ジルコニウムの平均粒子径(D50)は、0.01~1μmであることが好ましく、より好ましくはD50が0.1~0.5μmの酸化ジルコニウムであり、さらに好ましくは、D50が0.19~0.30μmの酸化ジルコニウムである。すなわち、D50が上記特定範囲であると、より一層高い初期光反射率等を備えるようになるからである。なお、上記平均粒子径(D50)は、先に述べた、累積度95%粒度(D95)、累積度5%粒度(D5)と同様にして測定した、累積度50%粒度のことであり、メディアン径ともいう。
 粒度の調整は、公知の方法で行ってもよいが、粉砕効率の点で湿式粉砕が好ましい。また、湿式粉砕する際の媒体としては、水、有機溶媒(アルコール等)が好ましく、粉砕に用いる粉砕機としては、例えば、ボールミル、振動ミル、媒体撹拌ミル等を用いることができる。
 上記特定の酸化ジルコニウム(B成分)の配合割合は、熱硬化性樹脂組成物全体に対して、好ましくは3~50体積%であり、より好ましくは5~30体積%である。すなわち、B成分の含有割合が少なすぎると、充分な光反射性、特に優れた初期光反射率が得られ難くなる傾向がみられる。B成分の含有割合が多すぎると、著しい増粘により混練等での熱硬化性樹脂組成物の作製に関して困難が生じる可能性がみられるからである。
〈他の添加剤〉
 そして、本発明の熱硬化性樹脂組成物には、上記AおよびB成分以外に、必要に応じて、無機質充填剤(但し、酸化ジルコニウムを除く。)、硬化促進剤、離型剤、シラン化合物を配合することができる。さらには、変性剤(可塑剤)、酸化防止剤、難燃剤、脱泡剤、レベリング剤、紫外線吸収剤等の各種添加剤を適宜配合することができる。
 上記無機質充填剤としては、例えば、石英ガラス粉末、タルク、溶融シリカ粉末や結晶性シリカ粉末等のシリカ粉末、アルミナ粉末、窒化アルミニウム粉末、窒化ケイ素粉末等があげられる。中でも、線膨張係数の低減等の観点から、溶融シリカ粉末を用いることが好ましく、特に高充填性および高流動性という観点から、溶融球状シリカ粉末を用いることが好ましい。なお、上記無機質充填剤は、先に述べたように、酸化ジルコニウムを除く。上記無機質充填剤の粒径およびその分布に関しては、上記特定の酸化ジルコニウム(B成分)の粒径およびその分布との組み合わせを、熱硬化性樹脂組成物をトランスファー成形等により成形する際のバリ等が最も低減するように配慮することが好ましい。具体的には、無機質充填剤の平均粒子径は、5~100μmであることが好ましく、特に好ましくは10~80μmである。なお、上記平均粒子径は、例えば、レーザー回折散乱式粒度分布計を用いて測定することができる。また、上記無機質充填剤を含有させて、前記特定の酸化ジルコニウム(B成分)と併用する際、場合によっては混練に支障が出ることもあることから、その場合、酸化ジルコニウム(B成分)の平均粒子径(D50)を0.15~1μmとすることが好ましい。
 そして、上記無機質充填剤の含有割合においては、上記特定の酸化ジルコニウム(B成分)と無機質充填剤の合計の含有割合が、熱硬化性樹脂組成物全体の10~90体積%となるように設定することが好ましい。より好ましくは60~90体積%であり、特に好ましくは65~85体積%である。すなわち、上記合計の含有割合が少なすぎると、成形時に反りが発生する等の問題が生じる傾向がみられる。また、合計の含有割合が多すぎると、配合成分を混練する際、混練機に多大な負荷がかかり、混練が不可能となる傾向がみられ、結果、成形材料である熱硬化性樹脂組成物を作製することが困難となる傾向がみられる。
 さらに、上記特定の酸化ジルコニウム(B成分)と無機質充填剤との混合割合は、初期光反射率の観点から、体積比で、(B成分)/無機質充填剤=0.028~1.0であることが好ましい。すなわち、B成分と無機質充填剤との混合割合が、上記範囲を外れ、体積比が小さすぎると、熱硬化性樹脂組成物の初期光反射率が低下する傾向がみられ、体積比が大きすぎると、熱硬化性樹脂組成物の溶融粘度が上昇して混練が困難になる傾向がみられる。
 上記硬化促進剤は、前記熱硬化性樹脂(A成分)がエポキシ樹脂の場合に用いることができ、硬化促進剤としては、例えば、1,8-ジアザ-ビシクロ[5.4.0]ウンデセン-7、トリエチレンジアミン、トリ-2,4,6-ジメチルアミノメチルフェノール、N,N-ジメチルベンジルアミン、N,N-ジメチルアミノベンゼン、N,N-ジメチルアミノシクロヘキサン等の3級アミン類、2-エチル-4-メチルイミダゾール、2-メチルイミダゾール等のイミダゾール類、トリフェニルホスフィン、テトラフェニルホスホニウムテトラフルオロボレート、テトラフェニルホスホニウムテトラフェニルボレート、テトラ-n-ブチルホスホニウムブロマイド、テトラフェニルホスホニウムブロマイド、メチルトリブチルホスホニウムジメチルホスフェート、テトラフェニルホスホニウム-o,o-ジエチルホスホロジチオエート、テトラ-n-ブチルホスホニウム-o,o-ジエチルホスホロジチオエート等のリン化合物、1,8-ジアザ-ビシクロ[5.4.0]ウンデセン-7、トリエチレンジアンモニウム・オクチルカルボキシレート等の4級アンモニウム塩、有機金属塩類、およびこれらの誘導体等があげられる。これらは単独でもしくは2種以上併せて用いられる。これら硬化促進剤の中では、3級アミン類、イミダゾール類、リン化合物を用いることが好ましい。その中でも、着色が少ない硬化物を得るためには、リン化合物を用いることが特に好ましい。
 上記硬化促進剤の含有量は、上記熱硬化性樹脂(A成分)に対して0.001~8重量%に設定することが好ましく、より好ましくは0.01~5重量%である。すなわち、硬化促進剤の含有量が少なすぎると、充分な硬化促進効果を得られない場合があり、また硬化促進剤の含有量が多すぎると、得られる硬化物に変色が生じる傾向がみられるからである。
 上記離型剤としては、各種離型剤が用いられるが、中でもエーテル結合を有する離型剤を用いることが好ましく、例えば、下記の一般式(1)で表される構造式を備えた離型剤があげられる。
 CH3・(CH3)k・CH2O(CHRm・CHRn・O)x・H ・・・(1)
[式(1)中、Rm,Rnは水素原子または一価のアルキル基であり、両者は互いに同じであっても異なっていてもよい。また、kは1~100の正数であり、xは1~100の正数である。]
 上記式(1)において、Rm,Rnは水素原子または一価のアルキル基であり、好ましくは、kは10~50の正数、xは3~30の正数である。より好ましくはRmおよびRnは水素原子であり、kは28~48の正数、xは5~20の正数である。すなわち、繰り返し数kの値が小さすぎると、離型性が低下し、また繰り返し数xの値が小さすぎると、分散性が低下するため、安定した強度と離型性が得られなくなる傾向がみられる。一方、繰り返し数kの値が大きすぎると、融点が高くなるため混練が困難となり、熱硬化性樹脂組成物の製造工程において困難を生じる傾向がみられ、繰り返し数xの値が大きすぎると、離型性が低下する傾向がみられるからである。
 上記離型剤の含有量は、熱硬化性樹脂組成物体全体の0.001~3重量%の範囲に設定することが好ましく、0.01~2重量%の範囲に設定することがより好ましい。すなわち、離型剤の含有量が少なすぎたり、多すぎたりすると、硬化体の強度不足を招いたり、離型性の低下を引き起こす傾向がみられるからである。
 上記シラン化合物としては、シランカップリング剤やシランがあげられる。上記シランカップリング剤としては、例えば、3-グリシドキシプロピルメチルジメトキシシラン、3-グリシドキシプロピルトリメトキシシラン、3-グリシドキシプロピルメチルジエトキシシラン、3-グリシドキシプロピルメチルエトキシシラン、2-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン、3-メルカプトプロピルメチルジメトキシシラン、3-メルカプトプロピルトリメトキシシラン等があげられる。また、上記シランとしては、例えば、メチルトリメトキシシラン、ジメチルジメトキシシラン、フェニルトリメトキシシラン、メチルトリエトキシシラン、ジメチルジエチルシラン、フェニルトリエトキシシラン、ヘキシルトリメトキシシラン、ヘキシルトリエトキシシラン、デジルトリメトキシシラン、トリフルオロプロピルトリメトキシシラン、ヘキサメチルジシラザン、加水分解性基を含むシロキサン等があげられる。これらは単独でもしくは2種以上併せて用いられる。
 上記変性剤(可塑剤)としては、例えば、グリコール類、シリコーン類、アルコール類等があげられる。
 上記酸化防止剤としては、例えば、フェノール系化合物、アミン系化合物、有機硫黄系化合物、ホスフィン系化合物等があげられる。
 上記難燃剤としては、例えば、水酸化マグネシウム等の金属水酸化物、臭素系難燃剤、窒素系難燃剤、リン系難燃剤等があげられ、さらに三酸化アンチモン等の難燃助剤を用いることもできる。
 上記脱泡剤としては、例えば、シリコーン系等の従来公知の脱泡剤があげられる。
〈熱硬化性樹脂組成物〉
 本発明の熱硬化性樹脂組成物は、例えば、つぎのようにして製造することができる。すなわち、前記AおよびB成分、さらに無機質充填剤、さらには硬化促進剤および離型剤、ならびに必要に応じて用いられる各種添加剤を適宜配合した後、混練機等を用いて溶融混合し、ついで、これを冷却し固化して粉砕することにより粉末状の熱硬化性樹脂組成物を製造することができる。
 そして、上記得られた熱硬化性樹脂組成物を、例えば、トランスファー成形または射出成形することで得られる硬化物としては、その光反射率が、波長450~800nmにおいて80%以上であることが好ましく、より好ましくは90%以上である。なお、上限は、通常100%である。具体的には、上記硬化物の波長450nmにおける光反射率が85~98%であることが好ましい。上記光反射率は、例えば、つぎのようにして測定される。すなわち、厚み0.2mmの熱硬化性樹脂組成物の硬化物を、所定の硬化条件、例えば、175℃×2分間の成形後、175℃×3時間の後硬化にて作製し、室温(25±10℃)にて上記範囲内の波長での上記硬化物の光反射率を分光光度計(例えば、日本分光社製の分光光度計V-670)を用いることにより測定することができる。
 本発明の熱硬化性樹脂組成物を用いてなる光半導体装置は、例えば、つぎのようにして製造される。すなわち、金属リードフレームをトランスファー成形機の金型内に設置して上記熱硬化性樹脂組成物を用いてトランスファー成形によりリフレクタを形成する。このようにして、光半導体素子搭載領域の周囲を囲うように環状のリフレクタが形成されてなる光半導体装置用の金属リードフレームを作製する。ついで、上記リフレクタの内部の、金属リードフレーム上の光半導体素子搭載領域に光半導体素子を搭載し、光半導体素子と金属リードフレームとをボンディングワイヤーを用いて電気的に接続する。そして、上記光半導体素子を含むリフレクタの内側領域を、シリコーン樹脂等を用いて樹脂封止することにより封止樹脂層が形成される。このようにして、例えば、図1に示す立体状(カップ型)の光半導体装置が作製される。この光半導体装置は、前述のとおり、第1のプレート部1と第2のプレート部2とからなる金属リードフレームの第2のプレート部2上に光半導体素子3が搭載され、上記光半導体素子3の周囲を囲むように、本発明の熱硬化性樹脂組成物からなる光反射用のリフレクタ4が形成されているという構成をとる。そして、上記金属リードフレームとリフレクタ4の内周面とで形成される凹部5には、光半導体素子3を封止する透明性を有する封止樹脂層6が形成されている。この封止樹脂層6には必要に応じて蛍光体が含有されている。図1において、7,8は金属リードフレームと光半導体素子3とを電気的に接続するボンディングワイヤーである。そして、本発明においては、光半導体装置の上記リフレクタ4における最薄箇所の厚みが0.2mm以下となる構造を対象とする。
 なお、本発明において、上記図1の金属リードフレームに代えて各種基板を用いてもよい。上記各種基板としては、例えば、有機基板、無機基板、フレキシブルプリント基板等があげられる。また、上記トランスファー成形に変えて、射出成形によりリフレクタを形成してもよい。
 また、上記構成と異なる光半導体装置として、板状の光半導体装置用リードフレームを用いた、例えば、図2および図3(図2のX-X′矢視断面図)に示す光半導体装置があげられる。すなわち、この光半導体装置は、互いに間隔を設けて配置された金属リードフレーム10の厚み方向の片面の所定位置に光半導体素子3がそれぞれ搭載され、上記金属リードフレーム10間の隙間に本発明の熱硬化性樹脂組成物からなる光反射用のリフレクタ11が形成されているという構成をとる。また、図3に示すように、金属リードフレーム10の隙間に本発明の熱硬化性樹脂組成物を充填し硬化してなるリフレクタ11が複数箇所形成されている。なお、図2および図3において、12は、上記光半導体素子3と金属リードフレーム10とを電気的に接続するボンディングワイヤーである。このような光半導体装置は、上記金属リードフレーム10をトランスファー成形機の金型内に設置してトランスファー成形により、間隔を設けて配置された金属リードフレーム10の隙間および金属リードフレーム10の光半導体素子3搭載面とは反対面に形成された凹部に、熱硬化性樹脂組成物を充填し、硬化させることによりリフレクタ11をそれぞれ形成する。ついで、上記金属リードフレーム10の所定位置となる光半導体素子搭載領域に光半導体素子3を搭載した後、光半導体素子3と金属リードフレーム10とをボンディングワイヤー12を用いて電気的に接続する。このようにして、図2および図3に示す光半導体装置が作製される。そして、本発明においては、光半導体装置の上記リフレクタ11における最薄箇所の厚みが0.2mm以下となる構造を対象とする。
 つぎに、実施例について比較例と併せて説明する。ただし、本発明は、これら実施例に限定されるものではない。
 まず、熱硬化性樹脂組成物の作製に先立って下記に示す各成分を準備した。
[エポキシ樹脂]
 トリグリシジルイソシアヌレート(TEPIC)(エポキシ当量100)
[硬化剤]
 4-メチルヘキサヒドロ無水フタル酸とヘキサヒドロ無水フタル酸の混合物(酸無水物当量164)(新日本理化社製、リカシッドMH-700)
[硬化促進剤]
 メチルトリブチルホスホニウムジメチルホスフェート(日本化学工業社製、ヒシコーリンPX-4MP)
[酸化ジルコニウムb1]
 第一稀元素化学工業社製、UEP酸化ジルコニウム
[酸化ジルコニウムb2]
 第一稀元素化学工業社製、SRP-1酸化ジルコニウム
[酸化ジルコニウムb3]
 第一稀元素化学工業製、SPZ酸化ジルコニウム
[酸化ジルコニウムb4]
 第一稀元素化学工業製のSPZ酸化ジルコニウムを一般的な湿式ボールミルで粉砕したもの。
[酸化ジルコニウムb5]
 第一稀元素化学工業社製、SG酸化ジルコニウム
[酸化ジルコニウムb6]
 第一稀元素化学工業社製、DK-3CH酸化ジルコニウム
[シリカ]
 溶融球状シリカ粉末(平均粒子径20μm)(電気化学工業社製、FB-9454)
[実施例1~9、比較例1~3]
 まず、熱硬化性樹脂硬化体中での、上記酸化ジルコニウムb1~b6の累積粒度分布をみるため、次のような測定を行った。すなわち、まず、上記の、エポキシ樹脂100重量部と、硬化剤132重量部と、硬化促進剤1重量部とともに、酸化ジルコニウムb1~b6のいずれかを181重量部加え、混練機で溶融混練(温度100~130℃)を行ない、室温(25℃)まで冷却して粉砕することにより粉末状の熱硬化性樹脂組成物を得、それを材料とし、180℃×90秒で成形後、175℃×3時間キュアした。このようにして、1mm厚の樹脂成形板を得、これを試料とし、樹脂包埋して機械研磨した後、試料台に固定し、導電性処理(15mA×10secの条件で白金パラジウムをスパッタ(スパッタ装置:日立社製E-1030))した。つぎに、FE-SEM(日立社製、S-4700)を用い、反射電子像を5kVの加速電圧条件で観察した。そして、そのSEM画像(1万倍画像)を、画像処理ソフト(MITANI CORPORATION社製、Winroof)により二値化処理し、酸化ジルコニウム粒子の粒径を測定(楕円球状(断面が楕円の球)等のように一律に粒径が定まらない場合には、楕円長軸の値を粒径として測定)した。そして、その粒径の個数頻度のヒストグラムを作成し、5%、50%、95%の個数頻度累積値の粒径、つまり、累積度95%粒度(D95)、累積度50%粒度(D50(平均粒子径))、累積度5%粒度(D5)を読み取った。さらに、その値をもとに、D95/D5を算出した。その結果を、下記の表1に示す。
Figure JPOXMLDOC01-appb-T000001
 つぎに、前記各成分を、後記の表2および表3に示す割合で配合し、ニーダーで溶融混練(温度100~130℃)を行ない、熟成した後、室温(25℃)まで冷却して粉砕することにより目的とする粉末状の熱硬化性樹脂組成物を作製した。
 このようにして得られた実施例および比較例の熱硬化性樹脂組成物を用い、下記の方法に従って各種評価[初期光反射率、長期耐光性、耐加熱変色性]の測定を行なった。その結果を後記の表2および表3に示す。
[初期光反射率]
 上記各熱硬化性樹脂組成物を用い、厚み0.2mmの試験片を所定の硬化条件(条件:175℃×2分間の成形+175℃×3時間キュア)にて作製し、この試験片(硬化物)を用いて、室温(25℃)での光反射率を測定した。なお、測定装置として日本分光社製の分光光度計V-670を使用して、波長450nmの光反射率を室温(25℃)にて測定した。なお、判定では、光反射率が90%以上のものを「○」、95%以上のものを「◎」と評価し、90%未満のものを「×」と評価した。
[長期耐光性]
 上記と同様にして作製した各試験片を用い、波長600nmの光反射率を室温(25℃)にて測定した。その後、その試験片を110℃のホットプレートで加熱した状態で、強度1W/cm2の高圧水銀灯の光を、g線(436nm)バンドパスフィルターを通して15分間照射した後に、上記と同様にして波長600nmの光反射率を測定した(加速試験)。そして、上記加速試験前後での光反射率の低下度(光照射後の光反射率-光照射前の光反射率)を算出した。なお、測定には、上記と同様、日本分光社製の分光光度計V-670を使用した。
[耐加熱変色性]
 上記と同様にして作製した各試験片を用い、200℃×20時間加熱し、波長450nmの光反射率を測定した。なお、測定には、上記と同様、日本分光社製の分光光度計V-670を使用した。
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
 上記結果から、本発明に規定の、特定の粒度分布を示す酸化ジルコニウムを配合してなる実施例品は、成形物が薄くても、高い初期光反射率が得られ、さらに、長期耐光性、耐加熱変色性に関しても優れた結果が得られた。
 これに対して、本発明の規定から外れる粒度分布を示す酸化ジルコニウムb6を用いた比較例品は、特に、初期光反射率に関し、実施例品に比べ、非常に劣る結果となった。
[光半導体(発光)装置の作製]
 つぎに、上記実施例品である粉末を打錠したタブレット状の熱硬化性樹脂組成物を用いて、図1に示す構成の光半導体(発光)装置を製造した。すなわち、銅(銀メッキ)製の複数の対となった第1のプレート部1と第2のプレート部2を有する金属リードフレームをトランスファー成形機の金型内に設置し、上記熱硬化性樹脂組成物を用いてトランスファー成形(条件:175℃×2分間の成形+175℃×3時間キュア)を行なうことにより、図1に示す、金属リードフレームの所定位置にリフレクタ4(最薄厚み0.2mm)を形成した。ついで、光半導体(発光)素子(大きさ:0.5mm×0.5mm)3を搭載し、この光半導体素子3と上記金属リードフレームをボンディングワイヤー7,8にて電気的に接続することにより、リフレクタ4と、金属リードフレームと、光半導体素子3とを備えたユニットを製造した。
 続いて、上記金属リードフレームとリフレクタ4の内周面とで形成される凹部5に、シリコーン樹脂(信越シリコーン社製、KER-2500)を充填して上記光半導体素子3を樹脂封止(成形条件:150℃×4時間)することにより透明な封止樹脂層6を形成し、リフレクタごとにダイシングにより個片化し、図1に示す光半導体(発光)装置を作製した。得られた光半導体(発光)装置は、高い初期光反射率とともに、長期耐光性、耐加熱変色性に優れたリフレクタ4を備えており、高信頼性を備えた良好なものが得られた。   
 上記実施例においては、本発明における具体的な形態について示したが、上記実施例は単なる例示にすぎず、限定的に解釈されるものではない。当業者に明らかな様々な変形は、本発明の範囲内であることが企図されている。
 本発明の光半導体装置用熱硬化性樹脂組成物は、光半導体装置に内蔵された光半導体素子から発する光を反射させるリフレクタの形成材料として有用である。
 1 第1のプレート部
 2 第2のプレート部
 3 光半導体素子
 4,11 リフレクタ
 5 凹部
 6 封止樹脂層
 7,8,12 ボンディングワイヤー
 10 金属リードフレーム

Claims (10)

  1.  最薄箇所の厚みが0.2mm以下である、光半導体装置のリフレクタの形成材料であって、下記の(A)および(B)成分を含有することを特徴とする光半導体装置用熱硬化性樹脂組成物。
    (A)熱硬化性樹脂。
    (B)熱硬化性樹脂硬化体中での、累積粒度分布における累積度95%粒度(D95)と累積度5%粒度(D5)との比(D95/D5)が1~100の、酸化ジルコニウム。
  2.  熱硬化性樹脂硬化体中での、上記(B)成分の酸化ジルコニウムの平均粒子径(D50)が0.01~1μmである、請求項1記載の光半導体装置用熱硬化性樹脂組成物。
  3.  さらに無機質充填剤を含有する、請求項1または2記載の光半導体装置用熱硬化性樹脂組成物。
  4.  厚み方向の片面のみに光半導体素子を搭載するための板状の光半導体装置用リードフレームであって、互いに隙間を隔てて配置される複数のプレート部を備えるとともに、上記隙間に、請求項1~3のいずれか一項に記載の光半導体装置用熱硬化性樹脂組成物を用いて充填し、硬化してなるリフレクタが形成されてなることを特徴とする光半導体装置用リードフレーム。
  5.  光半導体素子搭載領域を備え、それ自体の少なくとも一部で素子搭載領域の周囲を囲んだ状態でリフレクタが形成されてなる立体状の光半導体装置用リードフレームであって、上記リフレクタが、請求項1~3のいずれか一項に記載の光半導体装置用熱硬化性樹脂組成物を用いて形成されてなることを特徴とする光半導体装置用リードフレーム。
  6.  上記リフレクタが、リードフレームの片面にのみ形成されている請求項5記載の光半導体装置用リードフレーム。
  7.  上記リフレクタがトランスファー成形または射出成形により光半導体装置用リードフレームに形成されてなる請求項4~6のいずれか一項に記載の光半導体装置用リードフレーム。
  8.  その片面に光半導体素子を搭載するための素子搭載領域を有するプレート部が、互いに隙間を隔てて配置され、上記素子搭載領域の所定位置に光半導体素子が搭載されてなる光半導体装置であって、上記隙間に、請求項1~3のいずれか一項に記載の光半導体装置用熱硬化性樹脂組成物を用いて充填し、硬化してなるリフレクタが形成されてなることを特徴とする光半導体装置。
  9.  光半導体素子搭載領域を備え、それ自体の少なくとも一部で素子搭載領域の周囲を囲んだ状態でリフレクタが形成されてなる光半導体装置用リードフレームの所定位置に光半導体素子が搭載されてなる光半導体装置であって、上記リフレクタが、請求項1~3のいずれか一項に記載の光半導体装置用熱硬化性樹脂組成物を用いて形成されてなることを特徴とする光半導体装置。
  10.  リフレクタで囲まれた光半導体素子を含む領域をシリコーン樹脂にて樹脂封止されてなる請求項9記載の光半導体装置。
PCT/JP2014/081497 2013-12-04 2014-11-28 光半導体装置用熱硬化性樹脂組成物およびそれを用いて得られる光半導体装置用リードフレーム、ならびに光半導体装置 WO2015083629A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201480052989.9A CN105580148A (zh) 2013-12-04 2014-11-28 光半导体装置用热固化性树脂组合物及使用其得到的光半导体装置用引线框以及光半导体装置
KR1020167007909A KR20160094367A (ko) 2013-12-04 2014-11-28 광반도체 장치용 열경화성 수지 조성물 및 그것을 이용하여 얻어지는 광반도체 장치용 리드 프레임, 및 광반도체 장치

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2013-251259 2013-12-04
JP2013251259 2013-12-04
JP2014-227951 2014-11-10
JP2014227951A JP2015129257A (ja) 2013-12-04 2014-11-10 光半導体装置用熱硬化性樹脂組成物およびそれを用いて得られる光半導体装置用リードフレーム、ならびに光半導体装置

Publications (1)

Publication Number Publication Date
WO2015083629A1 true WO2015083629A1 (ja) 2015-06-11

Family

ID=53273392

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/081497 WO2015083629A1 (ja) 2013-12-04 2014-11-28 光半導体装置用熱硬化性樹脂組成物およびそれを用いて得られる光半導体装置用リードフレーム、ならびに光半導体装置

Country Status (5)

Country Link
JP (1) JP2015129257A (ja)
KR (1) KR20160094367A (ja)
CN (1) CN105580148A (ja)
TW (1) TW201529666A (ja)
WO (1) WO2015083629A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109282169B (zh) * 2017-07-21 2021-10-26 深圳光峰科技股份有限公司 波长转换装置、包含其的光源及投影装置
CN109424942A (zh) * 2017-07-21 2019-03-05 深圳光峰科技股份有限公司 波长转换装置、包含其的光源及投影装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04357115A (ja) * 1991-05-31 1992-12-10 Tosoh Corp 酸化ジルコニウム粉末及びその製造方法
JPH07187613A (ja) * 1993-08-11 1995-07-25 Sumitomo Chem Co Ltd 金属酸化物粉末およびその製造方法
JP2004035403A (ja) * 2003-09-08 2004-02-05 Nippon Shokubai Co Ltd ジルコニア系粉体およびジルコニア系成形体
JP2012094587A (ja) * 2010-10-25 2012-05-17 Hitachi Chem Co Ltd 光半導体装置の製造方法及び光半導体装置
JP2012216785A (ja) * 2011-03-31 2012-11-08 Mitsubishi Chemicals Corp 半導体発光装置用パッケージ及び該パッケージを有してなる半導体発光装置並びにそれらの製造方法
JP2013221077A (ja) * 2012-04-16 2013-10-28 Shin-Etsu Chemical Co Ltd Ledのリフレクター用熱硬化性シリコーン樹脂組成物並びにこれを用いたled用リフレクター及び光半導体装置

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5256716B2 (ja) * 2006-12-08 2013-08-07 東レ株式会社 樹脂組成物およびそれから得られる成形品
JP5721969B2 (ja) 2010-06-11 2015-05-20 日東電工株式会社 光半導体装置のリフレクタ用エポキシ樹脂組成物およびそれを用いて得られる光半導体装置用リードフレーム、ならびに光半導体装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04357115A (ja) * 1991-05-31 1992-12-10 Tosoh Corp 酸化ジルコニウム粉末及びその製造方法
JPH07187613A (ja) * 1993-08-11 1995-07-25 Sumitomo Chem Co Ltd 金属酸化物粉末およびその製造方法
JP2004035403A (ja) * 2003-09-08 2004-02-05 Nippon Shokubai Co Ltd ジルコニア系粉体およびジルコニア系成形体
JP2012094587A (ja) * 2010-10-25 2012-05-17 Hitachi Chem Co Ltd 光半導体装置の製造方法及び光半導体装置
JP2012216785A (ja) * 2011-03-31 2012-11-08 Mitsubishi Chemicals Corp 半導体発光装置用パッケージ及び該パッケージを有してなる半導体発光装置並びにそれらの製造方法
JP2013221077A (ja) * 2012-04-16 2013-10-28 Shin-Etsu Chemical Co Ltd Ledのリフレクター用熱硬化性シリコーン樹脂組成物並びにこれを用いたled用リフレクター及び光半導体装置

Also Published As

Publication number Publication date
TW201529666A (zh) 2015-08-01
CN105580148A (zh) 2016-05-11
KR20160094367A (ko) 2016-08-09
JP2015129257A (ja) 2015-07-16

Similar Documents

Publication Publication Date Title
KR101308173B1 (ko) 열경화성 광반사용 수지 조성물 및 그 제조방법, 및 그 수지 조성물을 이용한 광반도체 소자 탑재용 기판 및 광반도체 장치
JP5976806B2 (ja) 光半導体装置用エポキシ樹脂組成物およびそれを用いて得られる光半導体装置用リードフレーム、封止型光半導体素子ならびに光半導体装置
JP6155261B2 (ja) 半導体パッケージ樹脂組成物及びその使用方法
JP2011074355A (ja) 光半導体装置用樹脂組成物およびそれを用いて得られる光半導体装置用リードフレーム、ならびに光半導体装置
JP2009068007A (ja) 熱硬化性光反射用樹脂組成物、これを用いた光半導体搭載用基板及びその製造方法、並びに光半導体装置
JP5721969B2 (ja) 光半導体装置のリフレクタ用エポキシ樹脂組成物およびそれを用いて得られる光半導体装置用リードフレーム、ならびに光半導体装置
WO2015083576A1 (ja) 光半導体装置用熱硬化性樹脂組成物およびそれを用いて得られる光半導体装置用リードフレーム、ならびに光半導体装置
JP5825650B2 (ja) 光半導体リフレクタ用エポキシ樹脂組成物、光半導体装置用熱硬化性樹脂組成物およびそれを用いて得られる光半導体装置用リードフレーム、封止型光半導体素子ならびに光半導体装置
WO2015083532A1 (ja) 光半導体装置用エポキシ樹脂組成物およびそれを用いて得られる光半導体装置用リードフレーム、封止型光半導体素子ならびに光半導体装置
WO2015083629A1 (ja) 光半導体装置用熱硬化性樹脂組成物およびそれを用いて得られる光半導体装置用リードフレーム、ならびに光半導体装置
JP2017103470A (ja) 光半導体素子搭載用基板及びその製造方法、並びに光半導体装置
JP6883185B2 (ja) 光半導体装置用熱硬化性樹脂組成物およびそれを用いて得られる光半導体装置用リードフレーム、光半導体装置、光半導体素子
JP6322929B2 (ja) 光反射用熱硬化性樹脂組成物、光半導体素子搭載用基板及びその製造方法、並びに光半導体装置
JP2012162729A (ja) 光反射用熱硬化性樹脂組成物、これを用いた光半導体素子搭載用基板及びその製造方法、並びに光半導体装置
WO2017051838A1 (ja) 光半導体装置用熱硬化性樹脂組成物およびそれを用いて得られる光半導体装置用リードフレーム、光半導体装置、光半導体素子
JP7459878B2 (ja) 光反射用熱硬化性樹脂組成物、光半導体素子搭載用基板及び光半導体装置
JP2015000885A (ja) 光半導体装置用エポキシ樹脂組成物およびそれを用いて得られる光半導体装置用リードフレーム、ならびに光半導体装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480052989.9

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14867464

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20167007909

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14867464

Country of ref document: EP

Kind code of ref document: A1