Nothing Special   »   [go: up one dir, main page]

WO2015050003A1 - 燃料噴射装置用ノズルプレートの取付構造 - Google Patents

燃料噴射装置用ノズルプレートの取付構造 Download PDF

Info

Publication number
WO2015050003A1
WO2015050003A1 PCT/JP2014/074787 JP2014074787W WO2015050003A1 WO 2015050003 A1 WO2015050003 A1 WO 2015050003A1 JP 2014074787 W JP2014074787 W JP 2014074787W WO 2015050003 A1 WO2015050003 A1 WO 2015050003A1
Authority
WO
WIPO (PCT)
Prior art keywords
valve body
fuel injection
nozzle plate
groove
injection device
Prior art date
Application number
PCT/JP2014/074787
Other languages
English (en)
French (fr)
Inventor
幸二 野口
Original Assignee
株式会社エンプラス
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2013206034A external-priority patent/JP6143625B2/ja
Priority claimed from JP2013212499A external-priority patent/JP6143631B2/ja
Application filed by 株式会社エンプラス filed Critical 株式会社エンプラス
Priority to CN201480054856.5A priority Critical patent/CN105593512B/zh
Priority to US15/025,718 priority patent/US10641223B2/en
Publication of WO2015050003A1 publication Critical patent/WO2015050003A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M61/00Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00
    • F02M61/14Arrangements of injectors with respect to engines; Mounting of injectors
    • F02M61/145Arrangements of injectors with respect to engines; Mounting of injectors the injection nozzle opening into the air intake conduit
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M61/00Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00
    • F02M61/16Details not provided for in, or of interest apart from, the apparatus of groups F02M61/02 - F02M61/14
    • F02M61/166Selection of particular materials
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M61/00Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00
    • F02M61/16Details not provided for in, or of interest apart from, the apparatus of groups F02M61/02 - F02M61/14
    • F02M61/168Assembling; Disassembling; Manufacturing; Adjusting
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M61/00Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00
    • F02M61/16Details not provided for in, or of interest apart from, the apparatus of groups F02M61/02 - F02M61/14
    • F02M61/18Injection nozzles, e.g. having valve seats; Details of valve member seated ends, not otherwise provided for
    • F02M61/1853Orifice plates
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M2200/00Details of fuel-injection apparatus, not otherwise provided for
    • F02M2200/80Fuel injection apparatus manufacture, repair or assembly
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16BDEVICES FOR FASTENING OR SECURING CONSTRUCTIONAL ELEMENTS OR MACHINE PARTS TOGETHER, e.g. NAILS, BOLTS, CIRCLIPS, CLAMPS, CLIPS OR WEDGES; JOINTS OR JOINTING
    • F16B21/00Means for preventing relative axial movement of a pin, spigot, shaft or the like and a member surrounding it; Stud-and-socket releasable fastenings
    • F16B21/02Releasable fastening devices locking by rotation
    • F16B21/04Releasable fastening devices locking by rotation with bayonet catch
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16BDEVICES FOR FASTENING OR SECURING CONSTRUCTIONAL ELEMENTS OR MACHINE PARTS TOGETHER, e.g. NAILS, BOLTS, CIRCLIPS, CLAMPS, CLIPS OR WEDGES; JOINTS OR JOINTING
    • F16B21/00Means for preventing relative axial movement of a pin, spigot, shaft or the like and a member surrounding it; Stud-and-socket releasable fastenings
    • F16B21/10Means for preventing relative axial movement of a pin, spigot, shaft or the like and a member surrounding it; Stud-and-socket releasable fastenings by separate parts
    • F16B21/16Means for preventing relative axial movement of a pin, spigot, shaft or the like and a member surrounding it; Stud-and-socket releasable fastenings by separate parts with grooves or notches in the pin or shaft
    • F16B21/18Means for preventing relative axial movement of a pin, spigot, shaft or the like and a member surrounding it; Stud-and-socket releasable fastenings by separate parts with grooves or notches in the pin or shaft with circlips or like resilient retaining devices, i.e. resilient in the plane of the ring or the like; Details

Definitions

  • the present invention relates to a structure for mounting a nozzle plate for a fuel injection device (hereinafter abbreviated as “nozzle plate” as appropriate) used to atomize and inject fuel flowing out from a fuel injection port of a fuel injection device. is there.
  • nozzle plate a fuel injection device
  • An internal combustion engine such as an automobile (hereinafter abbreviated as “engine”) mixes fuel injected from a fuel injection device and air introduced through an intake pipe to form a combustible air-fuel mixture. Qi is burned in the cylinder.
  • engine an internal combustion engine such as an automobile
  • Qi is burned in the cylinder.
  • the mixed state of the fuel and air injected from the fuel injection device has a great influence on the performance of the engine, and in particular, the atomization of the fuel injected from the fuel injection device is reduced. It is known to be an important factor that affects engine performance.
  • a metal nozzle plate 1003 is welded to a metal valve body 1002 in which a fuel injection port 1001 is formed, and is injected from the fuel injection port 1001.
  • the fuel is atomized through the nozzle holes 1004 formed in the nozzle plate 1003 to promote atomization of the fuel (see Patent Documents 1 and 2).
  • the conventional fuel injection device 1000 performs welding using a masking jig in order to prevent welding spatter from entering the nozzle hole 1004 of the nozzle plate 1003 and blocking the nozzle hole 1004 by the welding spatter. It was difficult to perform welding efficiently. As a result, the conventional fuel injection device 1000 has a large number of manufacturing steps, and it is difficult to reduce the manufacturing cost.
  • the present invention provides a nozzle plate mounting structure for a fuel injection device that can reduce the number of manufacturing steps of the fuel injection device and reduce the manufacturing cost of the fuel injection device.
  • the present invention relates to a structure for mounting a nozzle plate 3, 103 for a fuel injection device in which nozzle holes 7, 107 for atomizing fuel injected from fuel injection ports 4, 104 of the fuel injection device 1, 101 are formed. It is.
  • the metal valve bodies 5 and 105 of the fuel injection devices 1 and 101 are configured such that the nozzle plates 3 and 103 for the fuel injection devices are attached to the front end side where the fuel injection ports 4 and 104 are formed. It has become.
  • the nozzle plates 3 and 103 for the fuel injection device are configured to block the cylindrical fitting portions 12 and 112 to which the distal ends of the valve bodies 5 and 105 are fitted, and one end side of the cylindrical fitting portions 12 and 112.
  • the cylindrical fitting portions 12 and 112 and the bottom wall portions 14 and 114 of the fuel injector nozzle plates 3 and 103 are integrally formed of a synthetic resin material.
  • the cylindrical fitting portions 12 and 112 are elastically deformable portions whose other ends can be elastically deformed until the bottom wall portions 14 and 114 abut against the front end surfaces 13 and 113 of the valve bodies 5 and 105.
  • the elastically deformable portion is the arm portion 20 or the U-shaped ring support portion 135.
  • the locking means includes a locking groove 23 of the cylindrical fitting portion 12, an engagement protrusion 8 of the valve body 5 that engages with the locking groove 23, a locking groove 38 of the valve body 5, and the locking groove.
  • 38 is an engagement protrusion 37 of the arm portion 20 that engages with the valve body 38, or a locking groove 108 of the valve body 105 and a U-shaped ring 110 that engages with the locking groove 108.
  • Part of the locking means is the engaging protrusion 8, the locking groove 38, or the U-shaped ring 110.
  • the elastically deforming portion of the cylindrical fitting portion is elastically deformed by engaging a part of the locking means, and the cylindrical fitting portion is Compared to the conventional example in which a metal nozzle plate is welded and fixed to the tip of a metal valve body because it is fixed to the valve body in a state where it is prevented from coming off via a locking means, the number of manufacturing steps for the fuel injection device is reduced. The manufacturing cost of the fuel injection device can be reduced.
  • FIG. 2A is a front view of the front end side of the fuel injection device
  • FIG. 2B is a side view of the front end side of the fuel injection device as viewed from the direction indicated by the arrow C1 in FIG.
  • FIG. 2C is a cross-sectional view of the front end side of the fuel injection device shown by cutting the nozzle plate along line A1-A1 in FIG. 2A
  • FIG. 2D is A1-A1 in FIG. It is a front end side sectional view of a fuel injection device shown by cutting the whole along a line.
  • FIG.3 (a) is a front view of a nozzle plate
  • FIG.3 (b) is seen from the direction shown by arrow C2 of Fig.3 (a).
  • 3C is a side view of the nozzle plate
  • FIG. 3C is a sectional view of the nozzle plate cut along the line A2-A2 of FIG. 3A
  • FIG. ) Is a cross-sectional view of the nozzle plate cut along the line A3-A3
  • FIG. 3E is a view showing a modification of the arm portion of the nozzle plate.
  • FIG.4 (a) is a front end side front view of the valve body 5
  • FIG.4 (b) shows by arrow C3 of Fig.4 (a).
  • 4 is a side view of the distal end side of the valve body 5 as viewed from the direction
  • FIG. 4C is a side view of the distal end side of the valve body 5 as viewed from the direction indicated by the arrow C4 in FIG.
  • FIG. 9A is a front view of the front end side of the fuel injection device
  • FIG. 9B is a side view of the front end side of the fuel injection device viewed from the direction indicated by the arrow C4 in FIG. 9A
  • FIG. 9C is a sectional side view of the front end of the fuel injection device shown by cutting the nozzle plate along the line A4-A4 in FIG. 9A, and FIG.
  • FIG. 9D is a view from the direction F in FIG. It is the top view of the protrusion for engagement seen. It is a figure which shows the nozzle plate which concerns on 2nd Embodiment of this invention, Fig.10 (a) is a front view of a nozzle plate, FIG.10 (b) was seen from the direction of arrow C5 of Fig.10 (a).
  • FIG. 10C is a side view of the nozzle plate, and FIG. 10C is a sectional view of the nozzle plate cut along the line A5-A5 in FIG.
  • FIG.11 (a) is a front view of the front end side of a valve body
  • FIG.11 (b) is a side view of the front end side of a valve body.
  • FIGS. 12A and 12B are diagrams showing a first modification of the second embodiment, in which FIG. 12A is a front view of a nozzle plate, and FIG. 12B is cut along line A6-A6 in FIG. It is sectional drawing of the nozzle plate shown.
  • FIG. 12A is a front view of a nozzle plate
  • FIG. 12B is cut along line A6-A6 in FIG. It is sectional drawing of the nozzle plate shown.
  • It is a figure which shows the modification 2 of 2nd Embodiment and is a side view of the front end side of a valve body.
  • FIG. 14 (a) is a front view of the front end side of a valve body
  • FIG.14 (b) is a side view of the front end side of a valve body.
  • Fig.17 (a) is a front view of the front end side of a valve body
  • FIG.17 (b) is a side view of the front end side of a valve body.
  • FIG. 19 (a) is a front view of the front end side of the fuel injection device
  • FIG. 19 (b) is a side view of the front end side of the fuel injection device viewed from the direction indicated by the arrow C101 in FIG. 19 (a).
  • FIG. 19C is a front end sectional view of the fuel injection device shown by cutting the nozzle plate along line A101-A101 in FIG. 19A
  • FIG. 19D is A101-A101 in FIG. 19A.
  • FIG. 20 is a cross-sectional view of the fuel injection device cut along line A102-A102 in FIG. 19 (b). It is a figure which shows the nozzle plate which concerns on 3rd Embodiment of this invention.
  • 21 (a) is a front view of the nozzle plate
  • FIG. 21 (b) is a side view of the nozzle plate viewed from the direction C102 in FIG. 21 (a)
  • FIG. 21 (c) is FIG. 21 (a).
  • FIG. 21D is a side view of the nozzle plate as viewed from the C103 direction of FIG. 21, and
  • FIG. 21D is a sectional view of the nozzle plate cut along the line A103-A103 in FIG.
  • FIG. 22 is a cross-sectional view of the nozzle plate cut along line A104-A104 in FIG. It is a figure which shows the valve body which concerns on 3rd Embodiment of this invention.
  • FIG. 22A is a front view of the valve body
  • FIG. 22B is a side view of the distal end side of the valve body.
  • Fig.23 (a) is a top view of a U-shaped ring
  • FIG.23 (b) is a side view of a U-shaped ring.
  • FIG. 24 (a) is a front view of the front end side of the fuel injection device
  • FIG. 24 (b) is a side view of the front end side of the fuel injection device as seen from the direction indicated by arrow C104 in FIG. 24 (a).
  • FIG. 25C is a front end sectional view of the fuel injection device shown by cutting the nozzle plate along the line A105-A105 in FIG. It is a figure which shows the U-shaped ring which concerns on 4th Embodiment of this invention.
  • FIG. 25A is a plan view of the U-shaped ring
  • FIG. 25B is a side view of the U-shaped ring. It is a figure which shows the attachment structure of the nozzle plate which concerns on 5th Embodiment of this invention.
  • FIG. 26 (a) is a front view of the front end side of the fuel injection device
  • FIG. 26 (b) is a side view of the front end side of the fuel injection device as seen from the direction indicated by arrow C105 in FIG. 26 (a).
  • FIG. 27C is a front end sectional view of the fuel injection device shown by cutting the nozzle plate along the line A106-A106 in FIG. It is a figure which shows the valve body which concerns on 5th Embodiment of this invention.
  • FIG. 27A is a front view of the valve body
  • FIG. 27B is a side view of the front end side of the valve body.
  • FIG. 1 is a diagram schematically showing a use state of the fuel injection device 1 (see FIG. 2).
  • a port injection type fuel injection device 1 is installed in the middle of an intake pipe 2 of an engine, injects fuel into the intake pipe 2, and introduces air and fuel introduced into the intake pipe 2. To form a combustible mixture.
  • FIG. 2 is a view showing a front end side of the fuel injection device 1 to which a fuel injection device nozzle plate 3 (hereinafter, abbreviated as a nozzle plate) is attached.
  • 2A is a front view of the front end side of the fuel injection device 1.
  • FIG.2 (b) is the front end side view of the fuel-injection apparatus 1 seen from the direction shown by the arrow C1 of Fig.2 (a).
  • FIG. 2C is a cross-sectional side view of the front end of the fuel injection device 1 shown by cutting the nozzle plate 3 along the line A1-A1 of FIG.
  • FIG. 2D is a cross-sectional side view of the front end of the fuel injection device 1 that is shown cut along the line A1-A1 in FIG.
  • a nozzle plate 3 made of a synthetic resin material is attached to the tip side of a metal valve body 5 in which a fuel injection port 4 is formed.
  • the needle valve 6 is opened and closed by a solenoid (not shown).
  • a solenoid not shown
  • fuel in the valve body 5 is injected from the fuel injection port 4.
  • the fuel injected from the port 4 passes through the nozzle holes 7 of the nozzle plate 3 and is injected outside.
  • the valve body 5 has a circular shape when viewed from the front side (see FIG. 4A), and the round bar-like engagement projections 8 are spaced at 180 ° along the circumferential direction of the outer peripheral surface 11 on the distal end side. A pair is formed (see FIGS. 4A to 4C).
  • the nozzle plate 3 is injection molded using a synthetic resin material such as PPS, PEEK, POM, PA, PES, PEI, and LCP.
  • FIG. 3A is a front view of the nozzle plate 3
  • FIG. 3B is a side view of the nozzle plate 3 viewed from the direction indicated by the arrow C2 in FIG. 3A.
  • FIG. 3D is cut along the line A3-A3 in FIG. 3B.
  • 4 (a) is a front view of the front end side of the valve body 5, and FIG.
  • FIG. 4 (b) is a side view of the front end side of the valve body 5 as viewed from the direction indicated by the arrow C3 in FIG. 4 (a).
  • FIG. 4C is a side view of the distal end side of the valve body 5 as seen from the direction indicated by the arrow C4 in FIG.
  • the nozzle plate 3 covers the cylindrical fitting portion 12 fitted to the outer peripheral surface 11 on the distal end side of the valve body 5 and one end side of the cylindrical fitting portion 12. And a bottom wall 14 integrally formed with the bottom wall portion 14 against which the front end surface 13 of the valve body 5 is abutted.
  • the bottom wall portion 14 has a plurality of nozzle holes 7 (six locations at equal intervals in the circumferential direction) for injecting fuel injected from the fuel injection port 4 of the fuel injection device 1 toward the outside (inside the intake pipe 2). Is formed.
  • the bottom wall portion 14 has a flat surface on the inner surface 15 side (the surface side in close contact with the tip surface 13 of the valve body 5), and a central portion 17 on the outer surface 16 side is recessed. That is, in the bottom wall portion 14, the central portion 17 in which the nozzle hole 7 is formed is a disk-shaped thin portion, is a region surrounding the central portion 17, and is connected to one end side of the tubular fitting portion 12.
  • the peripheral portion 18 is a thick portion formed thicker than the central portion 17. In the present embodiment, a total of six nozzle holes 7 are formed in the bottom wall portion 14, but the present invention is not limited to this, and the optimum number, hole diameter, etc. are determined according to the required fuel injection characteristics. .
  • the tubular fitting portion 12 is formed so as to be substantially cylindrical as a whole except for an arm portion 20 described later, and the tip end side of the valve body 5 is fitted to the inner peripheral surface 21 side. Yes.
  • the cylindrical fitting portion 12 is an open end 22 whose one end is closed by the bottom wall portion 14 and whose other end can be inserted into the distal end side of the valve body 5.
  • a pair of locking grooves 23 are formed on the opening end 22 side so as to correspond to the pair of engaging protrusions 8, 8 of the valve body 5. That is, the pair of locking grooves 23 and 23 are formed at intervals of 180 ° in the circumferential direction of the cylindrical fitting portion 12.
  • the locking groove 23 is formed so as to be cut from the open end (other end) 22 of the cylindrical fitting portion 12 along the generatrix direction (the fitting direction of the valve body 5 and the cylindrical fitting portion 12).
  • a groove 24 and a lateral groove 25 extending in the circumferential direction from the end of the vertical groove 24 are provided.
  • the vertical groove 24 and the horizontal groove 25 penetrate from the outer peripheral surface 26 to the inner peripheral surface 21 of the cylindrical fitting portion 12.
  • the cylindrical fitting portion 12 is shaped like a cantilever where the arm portion 20 can be flexibly deformed (elastically deformed) between the open end (other end) 22 and the lateral groove 25. That is, the arm part 20 is an elastic deformation part formed in the cylindrical fitting part 12, and elastic deformation of the cylindrical fitting part 12 in the radial direction and elastic deformation of the cylindrical fitting part 12 in the generatrix direction. Is possible.
  • the arm portion 20 is formed with a groove wall 28 in which a recess 27 for accommodating the engaging protrusion 8 of the valve body 5 forms a part of the contour of the lateral groove 25.
  • the recess 27 is formed in a trapezoidal shape with a flat bottom surface 27a on which the round bar-shaped engaging protrusion 8 is seated and a pair of inclined surfaces 27b and 27b extending from both ends of the bottom surface 27a toward the groove wall 28. .
  • the recess 27 functions as a lock position for fixing the engagement protrusion 8 of the valve body 5 in a positioned state.
  • the pair of inclined surfaces 27 b and 27 b are formed such that the distance between them is larger on the groove wall 28 side than on the bottom surface 27 a side.
  • the engaging protrusion 8 that moves along the groove wall 28 is formed in the recess 27. It can be smoothly guided to the bottom surface 27a.
  • the arm portion 20 is formed so that the inner surface 20 a has the same diameter as the inner peripheral surface 21 of the cylindrical fitting portion 12, and the outer surface 20 b is the cylindrical fitting portion 12. It is formed so that it may have the same diameter as the outer peripheral surface 26.
  • the pair of arm portions 20 may be formed so that at least the tip side is positioned on the radially inner side with respect to the inner peripheral surface 21 of the cylindrical fitting portion 12. Good.
  • the pair of arm portions 20, 20 formed in this way holds the outer peripheral surface 11 of the valve body 5 because the distal end side is located radially inward from the inner peripheral surface 21 of the cylindrical fitting portion 12. Can be pinched.
  • the arm portion 20 is preferably formed such that the amount of displacement toward the radially inward side gradually increases from the proximal end side toward the distal end side.
  • the groove wall 28 from the recess 27 to the vertical groove 24 forming a part of the arm portion 20 is formed at the opening end (other end) 22 of the cylindrical fitting portion 12 from the vicinity of the recess 27 toward the vertical groove 24.
  • An approaching inclined surface 30 and a curved surface 31 that smoothly connects the inclined surface 30 and the longitudinal groove 24 are formed, and the engaging protrusion 8 of the valve body 5 deforms the arm portion 20 while deforming and deforming the recess 27. It can move smoothly in.
  • the cylindrical fitting portion 12 of the nozzle plate 3 and the valve body 5 are relatively rotated.
  • the engaging projection 8 of the valve body 5 slides in the lateral groove 25 while gently deforming and deforming the arm portion 20 outward (bending and deforming in the direction of widening the groove width of the lateral groove 25).
  • the engaging protrusion 8 of the valve body 5 is received in the recess 27 of the arm portion 20 while receiving the elastic force of the arm portion 20, and the bottom surface 27 a of the recess 27 is used for engaging the valve body 5 by the elastic force of the arm portion 20.
  • the engagement projection 8 of the valve body 5 is fixed in a state of being seated (contacted) on the bottom surface 27 a of the recess 27.
  • the locking groove 23 of the cylindrical fitting portion 12 and the engaging protrusion 8 of the valve body 5 constitute locking means for fixing the cylindrical fitting portion 12 in a state of being prevented from coming off from the valve body 5.
  • the engagement protrusion 8 of the valve body 5 is engaged with the locking groove 23 of the nozzle plate 3, and the valve body 5 and the nozzle plate 3 are relatively moved.
  • the engaging protrusion 8 moves in the lateral groove 25 of the locking groove 23 while elastically deforming (flexing deformation) the arm portion 20, and the engaging protrusion 8 moves to the recess 27 (locking groove 23) of the arm portion 20.
  • the bottom surface 27a of the recess 27 of the arm portion 20 is pressed against the engagement protrusion 8 of the valve body 5 by the elastic force of the arm portion 20, and the engagement protrusion 8 of the valve body 5 is It is fixed in a state of being seated on the bottom surface 27 a of the recess 27 of the portion 20. That is, according to the mounting structure of the nozzle plate 3 according to the present embodiment, the nozzle plate 3 and the valve body 5 are configured such that the engagement protrusion 8 of the valve body 5 has the recess 27 of the arm portion 20 (the locking position of the locking groove 23). Since it is fixed inside by the elastic force of the arm portion 20, it is fixed in a state of being prevented from coming off.
  • the fuel injection device is compared with the conventional example in which the metal nozzle plate 103 is welded and fixed to the tip of the metal valve body 102 (see FIG. 18). 1 can be reduced, and the manufacturing cost of the fuel injection device 1 can be reduced.
  • the mounting structure of the nozzle plate 3 according to the present embodiment, after the nozzle plate 3 is mounted on the valve body 5, there is a difference in thermal expansion between the nozzle plate 3 made of synthetic resin material and the valve body 5 made of metal.
  • the arm portion 20 is elastically deformed to absorb the thermal expansion difference between the nozzle plate 3 and the valve body 5, and the bottom surface 27 a of the recess 27 is pressed against the engagement protrusion 8 of the valve body 5 by the elastic force of the arm portion 20.
  • the state is maintained, and an elastic force that presses the bottom wall portion 14 of the nozzle plate 3 against the distal end surface 13 of the valve body 5 (a force resulting from elastic deformation of the arm portion 20) always acts, so that the bottom wall portion 14 of the nozzle plate 3. Since no gap is created between the nozzle plate 3 and the front end surface 13 of the valve body 5, even if the fuel injection pressure acts on the nozzle plate 3, the nozzle plate 3 Without such falling off from di 5, the nozzle plate 3 to exhibit the desired function (the ability to atomize the fuel).
  • the nozzle plate 3 made of a synthetic resin material has a larger coefficient of thermal expansion than that of the metal valve body 5, so that the elongation due to thermal expansion is greater than that of the metal valve body 5.
  • the arm portion 20 when there is a manufacturing error between the valve body 5 and the nozzle plate 3, the arm portion 20 is elastically deformed and the manufacturing error between the nozzle plate 3 and the valve body 5.
  • the bottom surface 27a of the recess 27 is kept pressed against the engagement protrusion 8 of the valve body 5 by the elastic force of the arm portion 20, and the bottom wall portion 14 of the nozzle plate 3 is brought into contact with the distal end surface 13 of the valve body 5. It is always pressed by the elastic force of the arm portion 20 (the force resulting from the elastic deformation of the arm portion 20), and a gap is generated between the bottom wall portion 14 of the nozzle plate 3 and the tip surface 13 of the valve body 5. Therefore, even if the fuel injection pressure acts on the nozzle plate 3, the nozzle plate 3 does not fall off the valve body 5, and the nozzle plate 3 To exert the function of (the ability to atomize the fuel).
  • the nozzle plate 3 and the valve body 5 have the engagement protrusion 8 of the valve body 5 with the recess 27 of the arm portion 20 (the locking position of the locking groove 23). Since it is fixed inside by the elastic force of the arm portion, it is fixed in a state of being prevented from coming off. Therefore, according to the nozzle plate mounting structure according to the present embodiment, the conventional problem of welding and fixing the metal nozzle plate 103 to the tip of the metal valve body 102 (the nozzle hole 104 is blocked by welding sputtering). (The problem of being peeled off) does not occur (see FIG. 18), and all the nozzle holes 7 reliably perform the function for atomizing the fuel.
  • the engaging protrusion 8 is formed integrally with the valve body 5 or separately from the valve body 5 and then fixed to the valve body 5.
  • FIG. 5 is a diagram illustrating a mounting structure of the nozzle plate 3 according to the first modification of the first embodiment.
  • the mounting structure of the nozzle plate 3 according to this modification is such that the edge located near the vertical groove 24 in the recess 27 of the arm portion 20 is a recess front edge, If the edge far from the vertical groove 24 is a recessed rear edge, the anti-rotation protrusion 32 connected to the recessed rear edge and protruding into the lateral groove 25 is connected to the groove wall 28 on the arm portion 20 side forming the lateral groove 25. Is formed.
  • the nozzle plate 3 can be prevented from being excessively rotated with respect to the valve body 5 by the anti-rotation protrusion 32, and the engagement protrusion 8 of the valve body 5 is placed in the recess 27. It can be reliably accommodated.
  • the rotation of the nozzle plate 3 relative to the valve body 5 can be prevented by the anti-rotation protrusion 32, and the engagement protrusion 8 of the valve body 5 is recessed in the arm portion 20. Since the position of the nozzle hole 7 of the nozzle plate 3 can be positioned with respect to the valve body 5 by being securely accommodated in the nozzle 27, the fuel can be accurately injected from the nozzle hole 7 in a desired injection direction.
  • FIG. 6 is a view showing a mounting structure of the nozzle plate 3 according to Modification 2 of the first embodiment.
  • 6A is a front view of the front end side of the fuel injection device 1
  • FIG. 6B is a side view of the front end side of the fuel injection device 1.
  • the mounting structure of the nozzle plate 3 according to this modification is such that the shape of the recess 27 formed in the arm portion 20 is formed with a curvature radius slightly larger than the curvature radius of the engagement protrusion 8.
  • the shape of the recess 27 is different from the trapezoidal first embodiment and Modification 1 in that it is substantially semicircular.
  • Such a substantially semicircular recess 27 according to this modification can make the gap with the round bar-shaped engagement protrusion 8 smaller than the trapezoidal recess 27 according to the first embodiment and the modification 1, and can be shaped like a round bar.
  • the engaging protrusions 8 can be held in a more accurately positioned state.
  • the same rotation preventing projection 32 as that in Modification 1 is formed.
  • the two-surface width portion 33 is formed so as to partially cut out one end side (bottom wall portion 14 side) of the cylindrical fitting portion 12.
  • the dihedral width portion 33 is formed to have a symmetrical shape with respect to a center line 34 parallel to the Y axis.
  • the nozzle plate 3 has a two-sided width portion 33 formed on one end side of the cylindrical fitting portion 12, and therefore is assembled to the valve body 5 with the two-sided width portion 33 as a mark.
  • the valve body 5 can be assembled while being positioned.
  • FIG. 7 is a diagram illustrating a nozzle plate 3 mounting structure (particularly, a structure of the valve body 5) according to the third modification of the first embodiment.
  • one of the pair of engaging protrusions 8, 8 of the valve body 5 is located on a center line 35 parallel to the X axis.
  • the other of the protrusions 8 is positioned so as to be shifted in the circumferential direction by ⁇ from the X axis.
  • the pair of locking grooves 23 and 23 are formed in the nozzle plate 3 so as to correspond to the pair of engaging protrusions 8 and 8 according to this modification (see FIG. 2).
  • the position of the nozzle hole 7 of the nozzle plate 3 can be uniquely positioned with respect to the valve body 5, so that erroneous assembly of the nozzle plate 3 and the valve body 5 can be reliably prevented.
  • FIG. 8 is a view showing a modification of the engaging protrusion 8 according to the first embodiment. That is, in the first embodiment, the engagement protrusion 8 is exemplified by a round bar shape with a circular shape on the front side, but is not limited thereto, and the front shape as shown in FIG. An oval shaped rod-shaped body, a rod-shaped body having a D-shaped front shape as shown in FIG. 8B, or an elliptical rod-shaped body as shown in FIG. Further, as shown in FIG. 8D, the engaging protrusion 8 may be a plate-like body or a rod-like body having a chamfered portion 8a in contact with the arm portion 20 (see FIG. 2B).
  • FIG. 9A is a front view of the front end side of the fuel injection device 1
  • FIG. 9B is a side view of the front end side of the fuel injection device 1 as viewed from the direction indicated by the arrow C4 in FIG. 9A
  • FIG. 9C is a cross-sectional side view of the front end of the fuel injection device 1 shown by cutting the nozzle plate 3 along the line A4-A4 of FIG. 9A
  • FIG. It is a top view of the protrusion for engagement seen from F direction of c).
  • 10 (a) is a front view of the nozzle plate 3, and FIG.
  • FIG. 10 (b) is a side view of the nozzle plate 3 viewed from the direction indicated by the arrow C5 in FIG. 10 (a).
  • FIG. 11 is a cross-sectional view of the nozzle plate 3 cut along the line A5-A5 in FIG.
  • FIG. 11A is a front view of the distal end side of the valve body 5
  • FIG. 11B is a side view of the distal end side of the valve body 5.
  • the description of the mounting structure of the nozzle plate 3 according to the present embodiment is as follows. In FIGS. 9 to 11, the same reference numerals are given to the same components as the mounting structure of the nozzle plate 3 of the first embodiment. A description overlapping the description of the nozzle plate 3 of the first embodiment is omitted.
  • the arm portion 20 of the nozzle plate 3 has an engagement protrusion 37 formed on the inner surface 36 on the front end side (the surface facing the outer peripheral surface 11 of the valve body 5).
  • the valve body 5 has a locking groove 38 formed on the outer peripheral surface 11.
  • the engagement protrusion 37 is formed with an engagement guide surface 37 a that is inclined from the center toward the opening end 22.
  • the locking groove 38 is formed in a long hole shape (engraved) so as to substantially follow the circumferential direction of the outer peripheral surface 11 of the valve body 5, and one end side in the longitudinal direction (one end side of the locking groove 38) 38 a is in the longitudinal direction.
  • the other end side (the other end side of the locking groove 38) 38b of the valve body 5 is positioned closer to the distal end surface 13 side of the valve body 5, and between the one end side 38a in the longitudinal direction and the other end side 38b in the longitudinal direction (the locking groove 38). Is formed so as to be located farthest from the distal end surface 13 of the valve body 5.
  • the locking groove 38 is carved on the outer surface 11 side of the valve body 5 and does not penetrate the inner surface side of the valve body 5.
  • the arm portion 20 includes a longitudinal groove 40 formed in the tubular fitting portion 12 so as to be cut in the generatrix direction from the opening end 22 of the tubular fitting portion 12 of the nozzle plate 3, and a peripheral groove from the end portion of the vertical groove 40.
  • the cylindrical fitting portion 12 can be flexibly deformed (elastically deformed) toward the opening end 22 side of the cylindrical fitting portion 12. It is shaped like a cantilever that can be deformed radially outward.
  • the arm portion 20 is in a state in which the cylindrical fitting portion 12 of the nozzle plate 3 is fitted to the valve body 5 and the bottom wall portion 14 of the nozzle plate 3 is in contact with the front end surface 13 of the valve body 5.
  • the engaging protrusion 37 engages with one end side 38 a in the longitudinal direction of the locking groove 38.
  • the arm portion 20 allows the tubular fitting portion 12 of the nozzle plate 3 and the valve body 5 to rotate relative to each other in a state where the engagement protrusion 37 is engaged with one end side 38a of the locking groove 38 in the longitudinal direction.
  • the engaging protrusion 37 moves from one end side 38 a in the longitudinal direction of the locking groove 38 to the other end 38 b side in the longitudinal direction of the locking groove 38, and bends and deforms in a direction away from the distal end surface 13 of the valve body 5.
  • the engaging protrusion 37 is seated on the other end side 38b in the longitudinal direction of the locking groove 38 as a lock position.
  • the arm portion 20 presses the engaging protrusion 37 against the groove wall 38d on the other end side 38b in the longitudinal direction of the locking groove 38 by the elastic force generated by the bending deformation, and the engaging protrusion 37 is engaged.
  • the other end side 38b in the longitudinal direction of the stop groove 38 is fixed.
  • the locking groove 38 has a substantially intermediate portion 38 c in the longitudinal direction located farthest from the distal end surface 13 of the valve body 5. Therefore, the engaging protrusion 37 fixed to the other end side 38 b of the locking groove 38 by the elastic force of the arm portion 20 gets over the intermediate portion 38 c in the longitudinal direction of the locking groove 38 and extends in the longitudinal direction of the locking groove 38. It cannot be easily moved to the one end side 38a. Thereby, the nozzle plate 3 and the valve body 5 are fixed in a state where they are prevented from coming off.
  • the engagement groove 38 of the valve body 5 and the engagement protrusion 37 of the arm portion 20 that engages with the engagement groove 38 are fixed to the valve body 5 in a state in which the tubular fitting portion 12 is prevented from coming off. Configure the means.
  • the cylindrical fitting portion 12 and the valve body 5 are rotated relative to each other, and the engagement protrusion 37 of the arm portion 20 is simply moved from one end side 38 a to the other end side 38 b in the longitudinal direction of the locking groove 38. Is pressed against the other end side 38b (locking position of the locking groove 38) in the longitudinal direction of the locking groove 38 of the bubble body 5 by the elastic force of the arm portion 20, and the engaging protrusion 37 is connected to the other end side of the locking groove 38.
  • the nozzle plate 3 and the valve body 5 are configured such that the engagement protrusion 37 of the arm portion 20 is the other end side in the longitudinal direction of the locking groove 38 of the valve body 5. It is fixed to 38b (locking position of the locking groove 38) by the elastic force of the arm portion 20, and is fixed in a state where it is prevented from coming off. Therefore, according to the mounting structure of the nozzle plate 3 according to the present embodiment, the fuel injection device is compared with the conventional example in which the metal nozzle plate 103 is welded and fixed to the tip of the metal valve body 102 (see FIG. 18). 1 can be reduced, and the manufacturing cost of the fuel injection device 1 can be reduced.
  • the arm portion 20 is elastically deformed.
  • the thermal expansion difference and the manufacturing error between the nozzle plate 3 and the valve body 5 are absorbed, and the engaging projection 37 of the arm portion 20 is fixed to the other end side 38b in the longitudinal direction of the locking groove 38 by the elastic force of the arm portion 20.
  • the nozzle plate 3 and the valve body 5 are configured such that the engagement protrusion 37 of the arm portion 20 has the other end side in the longitudinal direction of the locking groove 38 of the valve body 5. Since it is fixed to 38b (locking position of the locking groove 38) by the elastic force of the arm portion 20, it is fixed in a state of being prevented from coming off. Therefore, according to the mounting structure of the nozzle plate 3 according to the present embodiment, the conventional problem of welding and fixing the metal nozzle plate 103 to the tip of the metal valve body 102 (the nozzle hole 104 is formed by welding sputtering). (The problem of being blocked) does not occur (see FIG. 18), and all the nozzle holes 7 reliably perform the function for atomizing the fuel.
  • the two-surface width portion 33 is formed by partially cutting off one end side (bottom wall portion 14 side) of the cylindrical fitting portion 12. By being formed, the same effect as that of the second modification of the first embodiment can be obtained (see FIG. 6).
  • FIG. 12 is a diagram illustrating a first modification of the second embodiment, and is a diagram illustrating a modification of the nozzle plate 3.
  • 12A is a front view of the nozzle plate 3
  • FIG. 12B is a cross-sectional view of the nozzle plate 3 cut along the line A6-A6 of FIG. 12A.
  • the nozzle plate 3 according to this modification is different from the engagement protrusion 37 of the arm portion 20 in the second embodiment in the shape of the engagement protrusion 37 of the arm portion 20, but has other configurations. This is the same as the nozzle plate 3 in the second embodiment.
  • the engagement protrusion 37 of the arm portion 20 is formed in a hemispherical shape.
  • the engagement protrusion 37 of the arm portion 20 of the second embodiment is formed in a round bar shape.
  • the arm portion 20 and the engaging projection 37 are easily engaged with the outer peripheral surface 11 of the valve body 5.
  • the engaging protrusion 37 is easily engaged with the locking groove 38 of the valve body 5 (see FIG. 9).
  • FIG. 13 is a diagram showing a second modification of the second embodiment, in which the groove width on one end side 38a in the longitudinal direction of the locking groove 38 is larger than the groove width on the other end side 38b in the longitudinal direction of the locking groove 38.
  • FIG. 9 is a view (a side view on the distal end side of the valve body 5) showing a mode in which the engagement protrusion 37 of the arm portion 20 is made wider and easily engaged with one end side 38a of the locking groove 38 (see FIG. 9).
  • FIG. 14 is a diagram showing a third modification of the second embodiment, in which the groove depth on one end side 38a in the longitudinal direction of the locking groove 38 is gently changed to lock the engaging protrusion 37 of the arm portion 20. It is a figure which shows the aspect made to engage smoothly with the groove
  • 14A is a front view of the distal end side of the valve body 5
  • FIG. 14B is a side view of the distal end side of the valve body 5.
  • FIG. 15 is a view showing a fourth modification of the second embodiment, and the inclination of the locking groove 38 from the longitudinal intermediate portion 38 c of the locking groove 38 to the other end side 38 b of the locking groove 38 in the longitudinal direction. It is a figure (side view of the front end side of valve body 5) which shows the mode which changed the angle into two steps.
  • the locking groove 38 of the present modification has an inclination angle of the locking groove 38 closer to the other end side 38b in the longitudinal direction in the range from the intermediate portion 38c in the longitudinal direction to the other end side 38b in the longitudinal direction.
  • the angle of inclination of the locking groove 38 closer to the portion 38c is made larger so that the operator can feel that the engaging protrusion 37 is housed in the locking position (the other end side 38b) of the locking groove 38. At the same time, the engagement protrusion 37 is difficult to come out from the other end side 38b of the locking groove 38 in the longitudinal direction.
  • FIG. 16 is a diagram showing a fifth modification of the second embodiment, and is a diagram showing a mode in which a retaining prevention protrusion 42 is formed at a position near the other end side 38b in the longitudinal direction of the locking groove 38 (valve body 5).
  • the locking groove 38 of the present modification is formed with a groove prevention face 42 at a position close to the other end side 38b in the longitudinal direction on the groove wall 38e on the side where the engaging protrusion 37 contacts. .
  • FIG. 17 is a diagram showing a sixth modification of the second embodiment, in which the protrusion engaging hole (positioning recess) 43 for receiving the engaging protrusion 37 of the arm portion 20 is the other end side in the longitudinal direction of the locking groove 38. It is a figure which shows the aspect formed in 38b (refer FIG. 9). That is, the locking groove 38 according to this modification is formed so that the groove depth of the portion excluding the protrusion engaging hole 43 is the same, and is shallower than the hole depth of the protrusion engaging hole 43. According to this modified example, it is possible to give the operator a sense that the engaging protrusion 37 is housed in the locking position of the locking groove 38 (the protrusion engaging hole 43 on the other end side 38b).
  • 17A is a plan view of the distal end side of the valve body 5
  • FIG. 17B is a side view of the distal end side of the valve body 5.
  • FIG. 18 is a diagram schematically showing a usage state of the fuel injection device 101 (see FIG. 19).
  • a port injection type fuel injection device 101 is installed in the middle of an intake pipe 102 of an engine, injects fuel into the intake pipe 102, and introduces air and fuel into the intake pipe 102. To form a combustible mixture.
  • FIG. 19 is a view showing the front end side of the fuel injection device 101 to which the fuel injection device nozzle plate 103 (hereinafter abbreviated as a nozzle plate) is attached.
  • FIG. 19A is a front view of the front end side of the fuel injection device 101.
  • FIG. 19B is a side view of the front end side of the fuel injection device 101 as seen from the direction indicated by the arrow C101 in FIG.
  • FIG. 19C is a cross-sectional side view of the front end of the fuel injection device 101 shown by cutting the nozzle plate 103 along the line A101-A101 in FIG.
  • FIG. 19D is a cross-sectional side view of the front end of the fuel injection device 101, taken along line A101-A101 in FIG.
  • a nozzle plate 103 made of a synthetic resin material is attached to the tip end side of a metal valve body 105 in which a fuel injection port 104 is formed.
  • a needle valve 106 is opened and closed by a solenoid (not shown).
  • a solenoid not shown.
  • fuel in the valve body 105 is injected from the fuel injection port 104, and fuel injection is performed.
  • the fuel injected from the port 104 passes through the nozzle hole 107 of the nozzle plate 103 and is injected outside.
  • the valve body 105 has a circular shape when viewed from the front side (see FIG.
  • the locking groove 108 has a rectangular cross-sectional shape (a cross-sectional shape along the generatrix of the valve body 105), and a part of the U-shaped ring 110 is engaged (FIGS. 19 and FIG. 20).
  • the nozzle plate 103 is injection-molded using a synthetic resin material such as PPS, PEEK, POM, PA, PES, PEI, and LCP.
  • FIG. 20 is a cross-sectional view of the fuel injection device 101 cut along the line A102-A102 in FIG. 19B.
  • FIG. 21A is a front view of the nozzle plate 103
  • FIG. 21B is a side view of the nozzle plate 103 viewed from the direction C102 in FIG. 21A
  • FIG. 21 (a) is a side view of the nozzle plate 103 viewed from the C103 direction of FIG. 21 (a)
  • FIG. 21 (d) is a sectional view of the nozzle plate 103 cut along the line A103-A103 of FIG. 21 (a).
  • FIG. 21A is a front view of the nozzle plate 103
  • FIG. 21B is a side view of the nozzle plate 103 viewed from the direction C102 in FIG. 21A
  • FIG. 21 (a) is a side view of the nozzle plate 103 viewed from the C103 direction of FIG. 21 (a)
  • FIG. 21 (d) is a sectional view of the nozzle plate 103
  • 21E is a sectional view of the nozzle plate 103 cut along the line A104-A104 in FIG. 21B.
  • 22A is a front view of the front end side of the valve body 105
  • FIG. 22B is a side view of the front end side of the valve body 105.
  • FIG. 23A is a plan view of the U-shaped ring 10
  • FIG. 23B is a side view of the U-shaped ring 10.
  • the nozzle plate 103 has a cylindrical fitting portion 112 that is press-fitted into the outer peripheral surface 111 of the valve body 105 and one end side of the cylindrical fitting portion 112. It is a bottomed cylindrical body integrally formed with a bottom wall portion 114 that is formed and against which the front end surface 113 of the valve body 105 is abutted.
  • the bottom wall portion 114 has a plurality of nozzle holes 107 (six at regular intervals in the circumferential direction) for injecting the fuel injected from the fuel injection port 104 of the fuel injection device 101 toward the outside (inside the intake pipe 102). Is formed.
  • the bottom wall portion 114 is a flat surface on the inner surface 115 side (the surface side in close contact with the tip surface 113 of the valve body 105), and the center portion 117 on the outer surface 116 side is recessed. That is, the bottom wall portion 114 has a central portion 117 where the nozzle hole 107 is formed as a disk-shaped thin portion, is an area surrounding the central portion 117, and is connected to one end side of the cylindrical fitting portion 112.
  • the peripheral portion 118 is a thick portion formed thicker than the central portion 117.
  • a total of six nozzle holes 107 are formed in the bottom wall portion 114.
  • the present invention is not limited to this, and the optimum number, hole diameter, etc. are determined according to the required fuel injection characteristics. .
  • the cylindrical fitting portion 112 has a cylindrical shape and is formed so that the inner diameter dimension is slightly smaller than the outer diameter dimension of the valve body 105 so as to be fitted to the distal end side of the valve body 105 in an interference fit state. ing. One end of the cylindrical fitting portion 112 is closed by the bottom wall portion 114, and the other end is opened so that the distal end side of the valve body 105 can be inserted.
  • the valve body 105 into which the tubular fitting portion 112 is press-fitted has a locking groove 108 formed on the outer peripheral surface 111 on the distal end side.
  • the locking groove 108 of the valve body 105 is a recess having a rectangular cross-sectional shape cut along the central axis 120 of the valve body 105 (see FIGS. 19C to 19D and FIG. 22).
  • a ring mounting groove 121 for mounting the U-shaped ring 110 is formed in the cylindrical fitting portion 112.
  • the ring mounting groove 121 includes a pair of arc-shaped portion engaging groove portions 123 with which the arc-shaped portion 122 of the U-shaped ring 110 is engaged, and a pair of arcs extending substantially in parallel from both ends of the arc-shaped portion 122 of the U-shaped ring 110. It is comprised with a pair of arm part engaging groove part 125,125 with which the arm parts 124 and 124 are engaged (refer FIG. 23).
  • the arcuate portion engaging groove portion 123 is formed to have a groove depth substantially the same as the wire diameter of the U-shaped ring 110, and a pair of arm portion engaging groove portions along the outer surface 126 of the cylindrical fitting portion 112. 125 and 125 are formed in an arc shape.
  • the pair of arm portion engaging groove portions 125, 125 are formed so that the valve body pressing portion 127 of the U-shaped ring 110 is engaged with the locking groove 108 of the valve body 105 when the cylindrical fitting portion 112 is fitted to the valve body 105. It protrudes to the extent that it abuts against the groove bottom 130. As a result, a window 131 that allows the valve body 105 to be exposed is formed at the groove bottom of the arm engaging groove 125. As shown in FIGS.
  • the pair of arm portion engaging groove portions 125, 125 are formed on a virtual plane XY perpendicular to the central axis 132 of the cylindrical fitting portion 112 (nozzle plate 103).
  • a coordinate plane it is formed substantially parallel to the X axis, and is formed so as to be symmetrical with respect to a center line 133 orthogonal to the center axis 132 of the cylindrical fitting portion 112.
  • the connecting portion 134 between the arcuate portion engaging groove portion 123 and the arm portion engaging groove portion 125 is formed with a smooth curved surface, and the tip of the arm portion 124 of the U-shaped ring 110 is placed in the arm portion engaging groove portion 125. It functions as a guide surface for insertion, and smoothly guides the tip of the arm portion 124 of the U-shaped ring 110 into the arm portion engaging groove 125.
  • the ring mounting groove 121 of the cylindrical fitting portion 112 is formed so that the groove width is larger than the wire diameter of the U-shaped ring 110. Further, in the ring mounting groove 121 of the cylindrical fitting portion 112, the nozzle plate 103 is press-fitted into the distal end side of the valve body 105, and the bottom wall portion 114 of the nozzle plate 103 is in contact with the distal end surface 113 of the valve body 105. In FIG. 3, the valve body 105 is formed so as to be positioned slightly closer to the bottom wall portion 114 with respect to the locking groove 108.
  • the cylindrical fitting portion 112 is formed with a ring mounting groove 121 so that a thin U-shaped ring support portion (elastic deformation portion) 135 having a substantially C-ring shape in a plan view is fitted into the cylindrical fitting portion 112. It is formed on the opening end 136 side of the portion 112. Then, in a state where the nozzle plate 103 is press-fitted into the distal end side of the valve body 105 and the bottom wall portion 114 of the nozzle plate 103 is in contact with the distal end surface 113 of the valve body 105, the ring mounting groove 121 of the cylindrical fitting portion 112.
  • the U-shaped ring 110 When the U-shaped ring 110 is attached to the U-shaped ring 110, the U-shaped ring 110 elastically deforms the U-shaped ring support portion 135 while the groove wall 137 of the arm portion engaging groove portion 125 and the groove wall 138 of the locking groove 108. The U-shaped ring 110 is pressed against the groove wall 138 of the locking groove 108 by the elastic force of the U-shaped ring support portion 135.
  • the U-shaped ring 110 is formed by bending an elastically deformable metal wire having a circular cross section.
  • the U-shaped ring 110 integrally includes an arc-shaped portion 122 and a pair of arm portions 124 and 124 extending substantially in parallel from both ends of the arc-shaped portion 122.
  • the arm portion 124 of the U-shaped ring 110 has a valve body pressing portion 127 formed in an arc shape so as to follow the groove bottom shape of the locking groove 108 of the valve body 105.
  • Such a U-shaped ring 110 is elastically deformed so as to widen the distance between the pair of arm portions 124 and 124, and the ring mounting groove 121 of the cylindrical fitting portion 112 and the locking groove of the valve body 105.
  • valve body pressing portions 127 and 127 of the pair of arm portions 124 and 124 are elastically sandwiched so as to hold the valve body 105 from both sides in the radial direction, and the ring fitting of the cylindrical fitting portion 112 is performed. It is sandwiched between the groove wall 137 of the groove 121 and the groove wall 138 of the locking groove 108 of the valve body 105. As a result, the nozzle plate 103 is securely fixed to the distal end side of the valve body 105.
  • the locking groove 108 of the valve body 105 and the U-shaped ring 110 engaged with the locking groove 108 are locking means for fixing the tubular fitting portion 112 in a state of being prevented from coming off from the valve body 105. Configure.
  • the cylindrical fitting portion 112 of the nozzle plate 103 is press-fitted into the distal end side of the valve body 105, and the U-shaped ring 110 is attached to the nozzle plate 103.
  • the U-shaped ring 110 elastically deforms the U-shaped ring support portion 135 while the groove wall 137 of the arm engaging groove 125 and the groove wall 138 of the locking groove 108.
  • the U-shaped ring 110 is inserted between them and is pressed against the groove wall 138 of the locking groove 108 by the elastic force of the U-shaped ring support portion 135.
  • the U-shaped ring 110 has the groove wall 138 of the locking groove 108 of the valve body 105 and the groove wall 137 of the ring mounting groove 121 of the nozzle plate 103.
  • the nozzle plate 103 is securely fixed to the valve body 105 in a state in which the nozzle plate 103 is prevented from being detached by the U-shaped ring 110, so that the metal nozzle plate 1003 is attached to the tip of the metal valve body 1002.
  • the number of manufacturing steps of the fuel injection device 101 can be reduced, and the manufacturing cost of the fuel injection device 101 can be reduced.
  • the U-shaped ring support portion 135 is elastically deformed to absorb the difference in thermal expansion between the nozzle plate 103 and the valve body 105, and the U-shaped ring 110 is aligned with the groove wall 138 of the locking groove 108 and the ring mounting groove. 121 is maintained between the groove wall 137 and the gap between the bottom wall 114 of the nozzle plate 103 and the front end surface 113 of the valve body 105, so that the fuel injection pressure is low.
  • the nozzle plate 103 made of a synthetic resin material has a larger coefficient of thermal expansion than that of the metal valve body 105, so that the elongation due to thermal expansion is greater than that of the metal valve body 105.
  • the U-shaped ring support portion 135 is elastically deformed to cause the nozzle plate 103 and the valve body to be deformed.
  • 105 is absorbed, and the state where the U-shaped ring 110 is held between the groove wall 138 of the locking groove 108 and the groove wall 137 of the ring mounting groove 121 is maintained, and the bottom wall portion of the nozzle plate 103 is maintained.
  • 114 and the tip end surface 113 of the valve body 105 so that the nozzle plate 103 falls off the valve body 105 even when fuel injection pressure acts on the nozzle plate 103.
  • Nozzle plate 103 exhibits a desired function (function of atomizing fuel).
  • the cylindrical fitting portion 112 of the nozzle plate 103 is press-fitted into the distal end side of the valve body 105, so that the nozzle plate 103 and the valve body 105 are U-shaped. Since it can be fixed in a state in which it is prevented from coming off by the ring 110, there is a problem such as the conventional example in which the metal nozzle plate 1003 is welded and fixed to the tip of the metal valve body 1002 (the problem that the nozzle hole 1004 is blocked by welding spatter) ) Does not occur (see FIG. 30), and all the nozzle holes 107 reliably perform the function for atomizing the fuel.
  • the front side shape of the nozzle plate 103 and the valve body 105 is not limited to a circle, but a polygonal shape such as a hexagonal shape, a D shape, an oval shape, or other shapes. But you can.
  • FIGS. 24 to 25 are views for explaining a nozzle plate 103 mounting structure according to the fourth embodiment of the present invention.
  • description of the attachment structure of the nozzle plate 103 according to the present embodiment will be described with reference to FIGS. 24 to 25 by assigning the same reference numerals to the same components as the attachment structure of the nozzle plate 103 of the third embodiment.
  • a description overlapping with the description of the nozzle plate 103 of the third embodiment is omitted.
  • the groove width of the ring mounting groove 121 and the groove width of the locking groove 108 are the ring mounting groove according to the third embodiment. It is formed wider than the groove width of 121 and the groove width of the locking groove 108.
  • the arm portion 124 of the U-shaped ring 110 is formed with a spring action portion 140 that curves and protrudes in the groove width direction of the locking groove 108.
  • the U-shaped ring 110 is similar in shape to the U-shaped ring 110 according to the third embodiment in plan view (see FIGS. 23 (a) and 25 (a)), but the spring acting portion 140 is a valve body.
  • the elastic force of the U-shaped ring 110 is increased in the direction in which the groove wall 138 of the locking groove 108 and the groove wall 137 of the ring mounting groove 121 are moved away from each other.
  • the force in the direction of pressing the bottom wall portion 114 of the nozzle plate 103 against the distal end surface 113 of the valve body 105 is always applied.
  • the U-shaped ring 110 when a difference in thermal expansion or a manufacturing error occurs between the metal valve body 105 and the synthetic resin material nozzle plate 103, the U-shaped ring 110.
  • the spring acting part 140 is elastically deformed (elastically restored or a larger deformation is caused) and the U-shaped ring support part 135 is elastically deformed to reduce a difference in thermal expansion between the valve body 105 and the nozzle plate 103 and a manufacturing error.
  • Friction acting between the tubular fitting portion 112 and the valve body 105 by absorbing and elastically contacting the groove wall 138 of the locking groove 108 and the groove wall 137 of the ring mounting groove 121 so that the U-shaped ring 110 is stretched.
  • the nozzle plate 103 is removed from the valve body 105 by the force, the elastic force of the U-shaped ring 110 and the elastic force of the U-shaped ring support portion 135. You can compete in the direction of the force. As a result, even when a difference in thermal expansion or a manufacturing error occurs between the metal valve body 105 and the synthetic resin material nozzle plate 103, the gap between the bottom wall portion 114 of the nozzle plate 103 and the front end surface 113 of the valve body 105 is reduced. Therefore, even if the fuel injection pressure acts on the nozzle plate 103, the nozzle plate 103 does not fall off the valve body 105.
  • the same effects as those of the mounting structure of the nozzle plate 103 according to the third embodiment can be obtained. That is, according to the mounting structure of the nozzle plate 103 according to the present embodiment, the tubular fitting portion 112 of the nozzle plate 103 is press-fitted into the distal end side of the valve body 105, and a U-shape is formed in the ring mounting groove 121 of the nozzle plate 103. Since the nozzle plate 103 is fixed to the front end side of the valve body 105 only by attaching the ring 110, the metal nozzle plate 1003 is fixed to the front end of the metal valve body 1002 by welding. Compared to the example (see FIG. 30), the number of manufacturing steps of the fuel injection device 101 can be reduced, and the manufacturing cost of the fuel injection device 101 can be reduced.
  • the cylindrical fitting portion 112 of the nozzle plate 103 is press-fitted into the distal end side of the valve body 105, and a U-shape is formed in the ring mounting groove 121 of the nozzle plate 103. Since the nozzle plate 103 is fixed to the front end side of the valve body 105 only by attaching the ring 110, the metal nozzle plate 1003 is fixed to the front end of the metal valve body 1002 by welding. There is no problem (a problem that the nozzle hole 1004 is blocked by welding spatter) (see FIG. 30), and all the nozzle holes 107 reliably perform the function for atomizing the fuel.
  • the mode in which the spring action portion 140 of the U-shaped ring 110 is brought into contact with the groove wall 138 of the locking groove 108 is illustrated, but the present invention is not limited thereto, and the spring action of the U-shaped ring 110 is illustrated.
  • the portion 140 may be brought into contact with the groove wall 137 of the ring mounting groove 121.
  • FIGS. 26 to 27 are views for explaining the mounting structure of the nozzle plate 103 according to the fifth embodiment of the present invention.
  • the same reference numerals are given to the same components as the mounting structure of the nozzle plate 103 of the third embodiment.
  • a description overlapping with the description of the nozzle plate 103 of the third embodiment is omitted.
  • the nozzle plate 103 mounting structure has the groove wall 138 of the locking groove 108 against which the U-shaped ring 110 is pressed as an inclined surface.
  • the groove wall 138 as the inclined surface is formed so as to increase the groove width from the groove bottom 130 toward the outer surface 111 of the valve body 105.
  • the U-shaped ring 110 when the U-shaped ring 110 is mounted in the ring mounting groove 121 of the nozzle plate 103 after the nozzle plate 103 is press-fitted into the valve body 105,
  • the arm portion 124 of the ring-shaped ring 110 enters between the groove wall (inclined surface) 138 of the locking groove 108 and the groove wall 137 of the ring mounting groove 121 while bending and deforming the U-shaped ring support portion 135.
  • the U-shaped ring 110 when a difference in thermal expansion or a manufacturing error occurs between the metal valve body 105 and the synthetic resin material nozzle plate 103, the U-shaped ring 110 is used. Moves along the groove wall (inclined surface) 138 of the locking groove 108, and the U-shaped ring support portion 135 is elastically deformed to absorb a difference in thermal expansion and a manufacturing error between the valve body 105 and the nozzle plate 103. , The elastic force of the U-shaped ring 110 acting on the groove wall (inclined surface) 138 of the locking groove 108 (the elastic force sandwiching the valve body 105), and the action between the tubular fitting portion 112 and the valve body 105.
  • This frictional force counteracts the force in the direction of removing the nozzle plate 103 from the valve body 105.
  • the gap between the bottom wall portion 114 of the nozzle plate 103 and the front end surface 113 of the valve body 105 is reduced. Therefore, even if the fuel injection pressure acts on the nozzle plate 103, the nozzle plate 103 does not fall off the valve body 105.
  • the same effect as the mounting structure of the nozzle plate 103 according to the third to fourth embodiments can be obtained.
  • FIG. 28 is a diagram illustrating a first modification of the third embodiment.
  • the ring mounting groove 121 of the nozzle plate 103 is formed with a protrusion 142 on the groove wall 141 on the U-shaped ring support part 135 side and corresponding to the window 131 (see FIG. 21).
  • the U-shaped ring 110 may be pressed by the protrusion 142.
  • the groove width of the ring mounting groove 121 can be increased, the frictional resistance between the ring mounting groove 121 and the U-shaped ring 110 can be reduced, and the U-shape to the ring mounting groove 121 can be reduced.
  • the mounting operation of the ring 110 becomes easy.
  • the projection 142 is hemispherical, but the projection 142 is not limited to this, and the contact area between the groove wall 141 and the U-shaped ring 110 can be reduced, and the U-shaped ring 110 is attached to the ring.
  • the groove wall 141 may be formed to have a partially curved surface as long as it has a shape that reduces frictional resistance when mounted in the groove 121.
  • FIG. 29 is a diagram illustrating a second modification of the third embodiment.
  • a substantially semicircular strength adjusting groove 143 and a strength adjusting groove 145 are formed on both sides of the U-shaped ring support portion 135 and the contact area with the U-shaped ring 110. (Incision) may be formed to facilitate bending and deformation of the U-shaped ring support portion 135.
  • strength adjusting grooves 143 and 143 are formed on the groove wall 137 side of the U-shaped ring support portion 135.
  • FIG. 29B shows an example in which a strength adjusting groove 145 is formed at the open end 136 of the U-shaped ring support portion 135.
  • 29C shows a structure in which the strength adjusting groove 143 is formed in the groove wall 137 of the U-shaped ring support portion 135 and the strength adjusting groove 145 is formed in the opening end 136.
  • this modification 2 is added to the U-shaped ring support part 135 of the fourth embodiment, the U-shaped ring support part 135 of the fifth embodiment, and the U-shaped ring support part 135 of the modification 1. Is also applicable.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Fuel-Injection Apparatus (AREA)

Abstract

【課題】燃料噴射装置の製造工数を削減でき、燃料噴射装置の製造コストを削減できる燃料噴射装置用ノズルプレートの取付構造を提供する。 【解決手段】バルブボディ(5)の係合用突起(8)をノズルプレート(3)の係止溝(23)に係合し、バルブボディ(5)とノズルプレート(3)を相対回動させると、係合用突起(8)が係止溝(23)の横溝(25)内をアーム部(20)(弾性変形部分)を弾性変形させながら移動し、係合用突起(8)がアーム部(20)の凹み(27)(係止溝(23)のロック位置)に収容されると共に、アーム部(20)の凹み(27)の底面(27a)がバルブボディ(5)の係合用突起(8)にアーム部(20)の弾性力で押し付けられて、バルブボディ(5)の係合用突起(8)がアーム部(20)の凹み(27)の底面(27a)に着座した状態で固定される。これにより、ノズルプレート(3)は、バルブボディ(5)に係合用突起(8)と係止溝(23)(係止手段)を介して抜け止めされた状態で固定される。

Description

燃料噴射装置用ノズルプレートの取付構造
 この発明は、燃料噴射装置の燃料噴射口から流出した燃料を微粒化して噴射するために使用される燃料噴射装置用ノズルプレート(以下、適宜「ノズルプレート」と略称する)の取付構造に関するものである。
 自動車等の内燃機関(以下、「エンジン」と略称する)は、燃料噴射装置から噴射された燃料と吸気管を介して導入された空気とを混合して可燃混合気を形成し、この可燃混合気をシリンダー内で燃焼させるようになっている。このようなエンジンは、燃料噴射装置から噴射された燃料と空気との混合状態がエンジンの性能に大きな影響を及ぼすことが知られており、特に、燃料噴射装置から噴射された燃料の微粒化がエンジンの性能を左右する重要な要素となることが知られている。
 そこで、従来から、図30に示すように、燃料噴射装置1000は、燃料噴射口1001が形成された金属製のバルブボディ1002に金属製のノズルプレート1003を溶接し、燃料噴射口1001から噴射された燃料をノズルプレート1003に形成されたノズル孔1004を介して吸気管内に噴射することにより、燃料の微粒化を促進するようになっている(特許文献1、2参照)。
特開平11-270438号公報 特開2011-144731号公報
 しかしながら、従来の燃料噴射装置1000は、溶接スパッタがノズルプレート1003のノズル孔1004に浸入し、ノズル孔1004が溶接スパッタで塞がれるのを防止するため、マスキング治具を使用して溶接を行わなければならず、溶接を効率的に行うことが困難であった。その結果、従来の燃料噴射装置1000は、製造工数が嵩み、製造コストの削減が困難であった。
 そこで、本発明は、燃料噴射装置の製造工数を削減でき、燃料噴射装置の製造コストを削減できる燃料噴射装置用ノズルプレートの取付構造を提供する。
 本発明は、燃料噴射装置1,101の燃料噴射口4,104から流出した燃料を微粒化して噴射するノズル孔7,107が形成された燃料噴射装置用ノズルプレート3,103の取付構造に関するものである。本発明において、前記燃料噴射装置1,101の金属製バルブボディ5,105は、前記燃料噴射口4,104が形成された先端側に前記燃料噴射装置用ノズルプレート3,103が取り付けられるようになっている。前記燃料噴射装置用ノズルプレート3,103は、前記バルブボディ5,105の先端側が嵌合される筒状嵌合部12,112と、前記筒状嵌合部12,112の一端側を塞ぐように形成されて前記バルブボディ5,105の先端面13,113が突き当てられると共に前記ノズル孔7,107が形成された底壁部14,114と、を有している。前記燃料噴射装置用ノズルプレート3,103の前記筒状嵌合部12,112及び前記底壁部14,114は、合成樹脂材料で一体に形成されている。前記筒状嵌合部12,112は、他端側の一部分が弾性変形可能な弾性変形部分であり、前記底壁部14,114が前記バルブボディ5,105の先端面13,113に突き当たるまで前記バルブボディ5,105の先端側に嵌合され、前記弾性変形部分が係止手段の一部と係合することによって弾性変形させられると、前記バルブボディ5,105に前記係止手段を介して抜け止めされた状態で固定される。ここで、弾性変形部分は、アーム部20であるか、又は、U字状リング支持部分135である。また、係止手段は、筒状嵌合部12の係止溝23及びこの係止溝23と係合するバルブボディ5の係合用突起8、バルブボディ5の係止溝38及びこの係止溝38と係合するアーム部20の係合用突起37、又は、バルブボディ105の係止用溝108及びこの係止用溝108と係合するU字状リング110である。また、係止手段の一部は、係合用突起8、係止溝38、又は、U字状リング110である。
 本発明に係る燃料噴射装置用ノズルプレートの取付構造によれば、筒状嵌合部の弾性変形部分が係止手段の一部と係合することによって弾性変形させられ、筒状嵌合部がバルブボディに係止手段を介して抜け止めされた状態で固定されるため、金属製のノズルプレートを金属製のバルブボディの先端に溶接固定する従来例に比較し、燃料噴射装置の製造工数を削減でき、燃料噴射装置の製造コストを削減できる。
燃料噴射装置の使用状態を模式的に示す図である。 本発明の第1実施形態に係るノズルプレートの取付構造を示す図である。図2(a)が燃料噴射装置の先端側正面図であり、図2(b)が図2(a)の矢印C1で示す方向から見た燃料噴射装置の先端側側面図であり、図2(c)が図2(a)のA1-A1線に沿ってノズルプレートを切断して示す燃料噴射装置の先端側断面図であり、図2(d)が図2(a)のA1-A1線に沿って全体を切断して示す燃料噴射装置の先端側断面図である。 本発明の第1実施形態に係るノズルプレートを示す図であり、図3(a)がノズルプレートの正面図であり、図3(b)が図3(a)の矢印C2で示す方向から見たノズルプレートの側面図であり、図3(c)が図3(a)のA2-A2線に沿って切断して示すノズルプレートの断面図であり、図3(d)が図3(b)のA3-A3線に沿って切断して示すノズルプレートの断面図であり、図3(e)がノズルプレートのアーム部の変形例を示す図である。 本発明の第1実施形態に係るバルブボディを示す図であり、図4(a)がバルブボディ5の先端側正面図であり、図4(b)が図4(a)の矢印C3で示す方向から見たバルブボディ5の先端側側面図であり、図4(c)が図4(b)の矢印C4で示す方向から見たバルブボディ5の先端側側面図である。 第1実施形態の変形例1に係るノズルプレートの取付構造を示す図である。 第1実施形態の変形例2に係るノズルプレートの取付構造を示す図である。 第1実施形態の変形例3に係るバルブボディの構造を示す図である。 第1実施形態に係る係合用突起の変形例を示す図である。 本発明の第2実施形態に係るノズルプレートの取付構造を示す図である。図9(a)が燃料噴射装置の先端側正面図であり、図9(b)が図9(a)の矢印C4で示す方向から見た燃料噴射装置の先端側側面図であり、図9(c)が図9(a)のA4-A4線に沿ってノズルプレートを切断して示す燃料噴射装置の先端側断面図であり、図9(d)が図9(c)のF方向から見た係合用突起の平面図である。 本発明の第2実施形態に係るノズルプレートを示す図であり、図10(a)がノズルプレートの正面図であり、図10(b)が図10(a)の矢印C5の方向から見たノズルプレートの側面図であり、図10(c)が図10(a)のA5-A5線に沿って切断して示すノズルプレートの断面図である。 本発明の第2実施形態に係るバルブボディを示す図であり、図11(a)がバルブボディの先端側の正面図であり、図11(b)がバルブボディの先端側の側面図である。 第2実施形態の変形例1を示す図であり、図12(a)がノズルプレートの正面図であり、図12(b)が図12(a)のA6-A6線に沿って切断して示すノズルプレートの断面図である。 第2実施形態の変形例2を示す図であり、バルブボディの先端側の側面図である。 第2実施形態の変形例3を示す図であり、図14(a)がバルブボディの先端側の正面図であり、図14(b)がバルブボディの先端側の側面図である。 第2実施形態の変形例4を示す図であり、バルブボディの側面図である。 第2実施形態の変形例5を示す図であり、バルブボディの側面図である。 第2実施形態の変形例6を示す図であり、図17(a)がバルブボディの先端側の正面図であり、図17(b)がバルブボディの先端側の側面図である。 他の燃料噴射装置の使用状態を模式的に示す図である。 本発明の第3実施形態に係るノズルプレートの取付構造を示す図である。図19(a)が燃料噴射装置の先端側正面図であり、図19(b)が図19(a)の矢印C101で示す方向から見た燃料噴射装置の先端側側面図であり、図19(c)が図19(a)のA101-A101線に沿ってノズルプレートを切断して示す燃料噴射装置の先端側断面図であり、図19(d)が図19(a)のA101-A101線に沿って全体を切断して示す燃料噴射装置の先端側断面図である。 図19(b)のA102-A102線に沿って切断して示す燃料噴射装置の断面図である。 本発明の第3実施形態に係るノズルプレートを示す図である。図21(a)がノズルプレートの正面図であり、図21(b)が図21(a)のC102方向から見たノズルプレートの側面図であり、図21(c)が図21(a)のC103方向から見たノズルプレートの側面図であり、図21(d)が図21(a)のA103-A103線に沿って切断して示すノズルプレートの断面図であり、図21(e)が図21(b)のA104-A104線に沿って切断して示すノズルプレートの断面図である。 本発明の第3実施形態に係るバルブボディを示す図である。図22(a)がバルブボディの正面図であり、図22(b)がバルブボディの先端側側面図である。 本発明の第3実施形態に係るU字状リングを示す図である。図23(a)がU字状リングの平面図であり、図23(b)がU字状リングの側面図である。 本発明の第4実施形態に係るノズルプレートの取付構造を示す図である。図24(a)が燃料噴射装置の先端側正面図であり、図24(b)が図24(a)の矢印C104で示す方向から見た燃料噴射装置の先端側側面図であり、図24(c)が図24(a)のA105-A105線に沿ってノズルプレートを切断して示す燃料噴射装置の先端側断面図である。 本発明の第4実施形態に係るU字状リングを示す図である。図25(a)がU字状リングの平面図であり、図25(b)がU字状リングの側面図である。 本発明の第5実施形態に係るノズルプレートの取付構造を示す図である。図26(a)が燃料噴射装置の先端側正面図であり、図26(b)が図26(a)の矢印C105で示す方向から見た燃料噴射装置の先端側側面図であり、図26(c)が図26(a)のA106-A106線に沿ってノズルプレートを切断して示す燃料噴射装置の先端側断面図である。 本発明の第5実施形態に係るバルブボディを示す図である。図27(a)がバルブボディの正面図であり、図27(b)がバルブボディの先端側側面図である。 本発明の第3実施形態の変形例1に係る燃料噴射装置の先端側側面図であり、図19(b)に対応する図である。 本発明の第3実施形態の変形例2に係る燃料噴射装置の先端側側面図であり、図19(b)に対応する図である。 従来のノズルプレートの取付構造を示す燃料噴射装置の先端側断面図である。
 以下、本発明の実施形態を図面に基づき詳述する。
 [第1実施形態]
  (燃料噴射装置)
 図1は、燃料噴射装置1の使用状態を模式的に示す図である(図2参照)。この図1に示すように、ポート噴射方式の燃料噴射装置1は、エンジンの吸気管2の途中に設置され、燃料を吸気管2内に噴射して、吸気管2に導入された空気と燃料とを混合し、可燃混合気を形成するようになっている。
 図2は、燃料噴射装置用ノズルプレート3(以下、ノズルプレートと略称する)が取り付けられた燃料噴射装置1の先端側を示す図である。なお、図2(a)は、燃料噴射装置1の先端側正面図である。また、図2(b)は、図2(a)の矢印C1で示す方向から見た燃料噴射装置1の先端側側面図である。また、図2(c)は、図2(a)のA1-A1線に沿ってノズルプレート3を切断して示す燃料噴射装置1の先端側断面図である。また、図2(d)は、図2(a)のA1-A1線に沿って全体を切断して示す燃料噴射装置1の先端側断面図である。
 図2に示すように、燃料噴射装置1は、燃料噴射口4が形成された金属製バルブボディ5の先端側に合成樹脂材料製のノズルプレート3が取り付けられている。この燃料噴射装置1は、図外のソレノイドによってニードルバルブ6が開閉されるようになっており、ニードルバルブ6が開かれると、バルブボディ5内の燃料が燃料噴射口4から噴射され、燃料噴射口4から噴射された燃料がノズルプレート3のノズル孔7を通過して外部に噴射されるようになっている。バルブボディ5は、正面側から見た形状が円形状であり(図4(a)参照)、丸棒状の係合用突起8が先端側の外周面11の周方向に沿って180°の間隔で一対形成されている(図4(a)~(c)参照)。なお、ノズルプレート3は、PPS、PEEK、POM、PA、PES、PEI、LCP等の合成樹脂材料を使用して射出成形される。
  (ノズルプレートの取付構造)
 以下、図2乃至図4に基づき、本実施形態に係るノズルプレート3の取付構造を説明する。なお、図3(a)がノズルプレート3の正面図であり、図3(b)が図3(a)の矢印C2で示す方向から見たノズルプレート3の側面図であり、図3(c)が図3(a)のA2-A2線に沿って切断して示すノズルプレート3の断面図であり、図3(d)が図3(b)のA3-A3線に沿って切断して示すノズルプレート3の断面図である。また、図4(a)がバルブボディ5の先端側正面図であり、図4(b)が図4(a)の矢印C3で示す方向から見たバルブボディ5の先端側側面図であり、図4(c)が図4(b)の矢印C4で示す方向から見たバルブボディ5の先端側側面図である。
 図2乃至図4に示すように、ノズルプレート3は、バルブボディ5の先端側外周面11に嵌合される筒状嵌合部12と、この筒状嵌合部12の一端側を塞ぐように形成されてバルブボディ5の先端面13が突き当てられる底壁部14と、を一体に有する有底筒状体である。
 底壁部14は、燃料噴射装置1の燃料噴射口4から噴射された燃料を外部(吸気管2内)に向けて噴射するためのノズル孔7が複数(周方向に等間隔で6箇所)形成されている。この底壁部14は、内面15側(バルブボディ5の先端面13に密着する面側)が平坦面であり、外面16側の中央部17が凹んでいる。すなわち、底壁部14は、ノズル孔7が形成される中央部17が円板状の薄肉部分であり、この中央部17を取り囲む領域であり且つ筒状嵌合部12の一端側に接続される周縁部18が中央部17よりも肉厚に形成された厚肉部分である。なお、本実施形態において、ノズル孔7は、底壁部14に合計6箇所形成されているが、これに限られず、要求される燃料噴射特性に応じた最適の個数及び孔径等が決定される。
 筒状嵌合部12は、後述するアーム部20を除き、全体がほぼ円筒形状となるように形成されており、内周面21側にバルブボディ5の先端側が嵌合されるようになっている。この筒状嵌合部12は、一端が底壁部14によって塞がれ、他端がバルブボディ5の先端側を挿入できるようになっている開口端22である。
 筒状嵌合部12は、バルブボディ5の一対の係合用突起8,8に対応するように、係止溝23が開口端22側に一対形成されている。すなわち、一対の係止溝23,23が筒状嵌合部12の周方向に180°の間隔で形成されている。この係止溝23は、筒状嵌合部12の開口端(他端)22から母線方向(バルブボディ5と筒状嵌合部12の嵌合方向)に沿って切り込むように形成された縦溝24と、この縦溝24の端部から周方向に延びる横溝25と、を有している。これら縦溝24及び横溝25は、筒状嵌合部12の外周面26から内周面21まで貫通している。そして、この筒状嵌合部12は、アーム部20が開口端(他端)22と横溝25との間に撓み変形(弾性変形)可能な片持ち梁状に形作られている。すなわち、アーム部20は、筒状嵌合部12に形成された弾性変形部分であり、筒状嵌合部12の径方向への弾性変形及び筒状嵌合部12の母線方向への弾性変形が可能である。
 アーム部20は、バルブボディ5の係合用突起8を収容する凹み27が横溝25の輪郭の一部を形作る溝壁28に形成されている。この凹み27は、丸棒状の係合用突起8が着座する平坦な底面27aと、この底面27aの両端から溝壁28に向かって延びる一対の傾斜面27b,27bとで台形形状に形作られている。そして、この凹み27は、バルブボディ5の係合用突起8を位置決めした状態で固定するロック位置として機能する。一対の傾斜面27b,27bは、互いの間隔が底面27a側よりも溝壁28側の方が大きくなるように形成されており、溝壁28に沿って移動する係合用突起8を凹み27の底面27aに円滑に案内できるようになっている。
 また、アーム部20は、図3(d)に示すように、内面20aが筒状嵌合部12の内周面21と同一径となるように形成され、外面20bが筒状嵌合部12の外周面26と同一径となるように形成されている。なお、図3(e)に示すように、一対のアーム部20は、少なくとも先端側を筒状嵌合部12の内周面21よりも径方向内方側に位置するように形成してもよい。このように形成された一対のアーム部20,20は、先端側が筒状嵌合部12の内周面21よりも径方向内方側に位置するため、バルブボディ5の外周面11を抱きかかえるように挟持することができる。また、図3(e)に示すように、アーム部20は、径方向内方側への変位量が基端側から先端側へ向かうにしたがって漸増するように形成されることが好ましい。
 また、アーム部20の一部を形作る凹み27から縦溝24までの溝壁28は、凹み27の近傍から縦溝24に向かうにしたがって筒状嵌合部12の開口端(他端)22に近づくような傾斜面30と、この傾斜面30と縦溝24とを滑らかに接続する曲面31とが形成されており、バルブボディ5の係合用突起8がアーム部20を撓み変形させながら凹み27内に滑らかに移動できるようになっている。
  (ノズルプレートとバルブボディの組付け作業)
 ノズルプレート3の筒状嵌合部12とバルブボディ5を組み付ける場合、バルブボディ5の先端側を筒状嵌合部12の開口端22から筒状嵌合部12の内部に挿入し、バルブボディ5の係合用突起8を筒状嵌合部12の縦溝24に係合させた状態において、バルブボディ5の先端面13がノズルプレート3の底壁部14に当接するまで、バルブボディ5の先端側を縦溝24に沿って筒状嵌合部12の内部に押し込む。次いで、バブルボディ5の先端面13がノズルプレート3の底壁部14に当接した状態において、ノズルプレート3の筒状嵌合部12とバルブボディ5とを相対回動させる。この際、バルブボディ5の係合用突起8がアーム部20を緩やかに外側へ撓み変形させながら(横溝25の溝幅を拡げる方向へ撓み変形させながら)横溝25内をスライド移動する。そして、バルブボディ5の係合用突起8がアーム部20の弾性力を受けながらアーム部20の凹み27内に収容され、凹み27の底面27aがアーム部20の弾性力によってバルブボディ5の係合用突起8に押し付けられるため、バルブボディ5の係合用突起8が凹み27の底面27aに着座した(当接した)状態で固定される。なお、筒状嵌合部12の係止溝23とバルブボディ5の係合用突起8は、筒状嵌合部12をバルブボディ5に抜け止めした状態で固定する係止手段を構成する。
  (第1実施形態の効果)
 以上のような本実施形態に係るノズルプレート3の取付構造によれば、バルブボディ5の係合用突起8をノズルプレート3の係止溝23に係合し、バルブボディ5とノズルプレート3を相対回動させると、係合用突起8が係止溝23の横溝25内をアーム部20を弾性変形(撓み変形)させながら移動し、係合用突起8がアーム部20の凹み27(係止溝23のロック位置)に収容されると共に、アーム部20の凹み27の底面27aがバルブボディ5の係合用突起8にアーム部20の弾性力で押し付けられて、バルブボディ5の係合用突起8がアーム部20の凹み27の底面27aに着座した状態で固定される。すなわち、本実施形態に係るノズルプレート3の取付構造によれば、ノズルプレート3とバルブボディ5は、バルブボディ5の係合用突起8がアーム部20の凹み27(係止溝23のロック位置)内にアーム部20の弾性力で固定されるため、抜け止めされた状態で固定されることになる。したがって、本実施形態に係るノズルプレート3の取付構造によれば、金属製のノズルプレート103を金属製のバルブボディ102の先端に溶接固定する従来例に比較し(図18参照)、燃料噴射装置1の製造工数を削減でき、燃料噴射装置1の製造コストを削減できる。
 また、本実施形態に係るノズルプレート3の取付構造によれば、ノズルプレート3がバルブボディ5に取り付けられた後、合成樹脂材料製のノズルプレート3と金属製のバルブボディ5に熱膨張差が生じると、アーム部20が弾性変形してノズルプレート3とバルブボディ5の熱膨張差を吸収し、凹み27の底面27aがバルブボディ5の係合用突起8にアーム部20の弾性力で押し付けられる状態が維持され、ノズルプレート3の底壁部14をバルブボディ5の先端面13に押し付ける弾性力(アーム部20の弾性変形に起因する力)が常時作用し、ノズルプレート3の底壁部14とバルブボディ5の先端面13との間に隙間を生じるようなことがないため、燃料の噴射圧力がノズルプレート3に作用しても、ノズルプレート3がバルブボディ5から脱落するようなことがなく、ノズルプレート3が所望の機能(燃料を微粒化する機能)を発揮する。なお、合成樹脂材料製のノズルプレート3は、熱膨張率が金属製のバルブボディ5よりも大きいため、金属製のバルブボディ5よりも熱膨張による伸びが大きくなる。
 また、本実施形態に係るノズルプレート3の取付構造によれば、バルブボディ5とノズルプレート3の製造誤差がある場合に、アーム部20が弾性変形してノズルプレート3とバルブボディ5の製造誤差を吸収し、凹み27の底面27aがバルブボディ5の係合用突起8にアーム部20の弾性力で押し付けられる状態が維持され、ノズルプレート3の底壁部14がバルブボディ5の先端面13にアーム部20の弾性力(アーム部20の弾性変形に起因する力)によって常時押し付けられ、ノズルプレート3の底壁部14とバルブボディ5の先端面13との間に隙間を生じるようなことがないため、燃料の噴射圧力がノズルプレート3に作用しても、ノズルプレート3がバルブボディ5から脱落するようなことがなく、ノズルプレート3が所望の機能(燃料を微粒化する機能)を発揮する。
 また、本実施形態に係るノズルプレート3の取付構造によれば、ノズルプレート3とバルブボディ5は、バルブボディ5の係合用突起8がアーム部20の凹み27(係止溝23のロック位置)内にアーム部の弾性力で固定されるため、抜け止めされた状態で固定されることになる。したがって、本実施形態に係るノズルプレートの取付構造によれば、金属製のノズルプレート103を金属製のバルブボディ102の先端に溶接固定する従来例のような不具合(溶接スパッタでノズル孔104が塞がれるという不具合)が生じることがなく(図18参照)、全てのノズル孔7が燃料の微粒化のための機能を確実に発揮する。
 なお、本実施形態において、係合用突起8は、バルブボディ5と一体に形成されるか、又はバルブボディ5と別に形成された後に、バルブボディ5に固定される。
  (第1実施形態の変形例1)
 図5は、第1実施形態の変形例1に係るノズルプレート3の取付構造を示す図である。この図5に示すように、本変形例に係るノズルプレート3の取付構造は、アーム部20の凹み27のうちの縦溝24に近い位置にある端縁を凹み前端縁とし、凹み27のうちの縦溝24から遠い位置にある端縁を凹み後端縁とすると、横溝25を形作るアーム部20側の溝壁28に、凹み後端縁に接続され且つ横溝25内に出っ張る回し止め突起32が形成されている。
 このような本変形例に係るノズルプレート3の取付構造によれば、バルブボディ5に対するノズルプレート3の回し過ぎを回し止め突起32で防止でき、バルブボディ5の係合用突起8を凹み27内に確実に収容できる。
 また、本変形例に係るノズルプレート3の取付構造によれば、バルブボディ5に対するノズルプレート3の回し過ぎを回し止め突起32で防止でき、バルブボディ5の係合用突起8をアーム部20の凹み27内に確実に収容することにより、ノズルプレート3のノズル孔7の位置をバルブボディ5に対して位置決めできるため、燃料をノズル孔7から所望の噴射方向に正確に噴射することができる。
  (第1実施形態の変形例2)
 図6は、第1実施形態の変形例2に係るノズルプレート3の取付構造を示す図である。なお、図6(a)が燃料噴射装置1の先端側の正面図であり、図6(b)が燃料噴射装置1の先端側の側面図である。
 この図6に示すように、本変形例に係るノズルプレート3の取付構造は、アーム部20に形成された凹み27の形状が係合用突起8の曲率半径よりも僅かに大きな曲率半径で形成された略半円形である点において、凹み27の形状が台形の第1実施形態及び変形例1と相違している。
 このような本変形例に係る略半円形の凹み27は、丸棒状の係合用突起8との隙間を第1実施形態及び変形例1に係る台形の凹み27と比較して小さくでき、丸棒状の係合用突起8をより正確に位置決めした状態で保持することができる。なお、本変形例は、上記変形例1と同様の回り止め突起32が形成されている。
 また、本変形例は、筒状嵌合部12の一端側(底壁部14側)を部分的に切り欠くようにして二面幅部33が形成されている。この二面幅部33は、図6(a)に示すように、Y軸に平行な中心線34に対して対称の形状となるように形成されている。このように、筒状嵌合部12の一端側に二面幅部33が形成されることにより、ノズルプレート3とバルブボディ5を相対回動させる際に、二面幅部33を把持した状態でノズルプレート3とバルブボディ5を相対回動させることができるため、ノズルプレート3に回動方向の力を加え易くなり、ノズルプレート3のバルブボディ5への取付作業を容易に行える。また、本変形例に係るノズルプレート3は、筒状嵌合部12の一端側に二面幅部33が形成されているため、二面幅部33を目印にしてバルブボディ5に組み付けられ、バルブボディ5に対して位置決めされた状態で組み付けることができる。
  (第1実施形態の変形例3)
 図7は、第1実施形態の変形例3に係るノズルプレート3の取付構造(特に、バルブボディ5の構造)を示す図である。この図7に示すように、バルブボディ5の一対の係合用突起8,8のうちの一方は、X軸と平行な中心線35上に位置しているが、バルブボディ5の一対の係合用突起8,8のうちの他方は、X軸からθだけ周方向にずれて位置している。なお、一対の係止溝23,23は、本変形例に係る一対の係合用突起8,8に対応するようにノズルプレート3に形成される(図2参照)。
 このような構成の本変形例によれば、ノズルプレート3のノズル孔7の位置をバルブボディ5に対して一義的に位置決めできるので、ノズルプレート3とバルブボディ5の誤組みを確実に防止できる。
  (第1実施形態の変形例4)
 図8は、第1実施形態に係る係合用突起8の変形例を示す図である。すなわち、上記第1実施形態において、係合用突起8は、正面側の形状が円形である丸棒状のものを例示したが、これに限られず、図8(a)に示すような正面形状が略小判型形状の棒状体、図8(b)に示すような正面形状がD形状の棒状体、又は図8(c)に示すような楕円形状の棒状体でもよい。また、図8(d)に示すように、係合用突起8は、アーム部20との接触部分8aがR面取りされた板状体又は棒状体でもよい(図2(b)参照)。
 [第2実施形態]
 図9乃至図11は、本発明の第2実施形態に係るノズルプレート3の取付構造を説明するための図である。なお、図9(a)が燃料噴射装置1の先端側正面図であり、図9(b)が図9(a)の矢印C4で示す方向から見た燃料噴射装置1の先端側側面図であり、図9(c)が図9(a)のA4-A4線に沿ってノズルプレート3を切断して示す燃料噴射装置1の先端側断面図であり、図9(d)が図9(c)のF方向から見た係合用突起の平面図である。また、図10(a)がノズルプレート3の正面図であり、図10(b)が図10(a)の矢印C5で示す方向から見たノズルプレート3の側面図であり、図10(c)が図10(a)のA5-A5線に沿って切断して示すノズルプレート3の断面図である。また、図11(a)がバルブボディ5の先端側の正面図であり、図11(b)がバルブボディ5の先端側の側面図である。そして、本実施形態に係るノズルプレート3の取付構造の説明は、図9乃至図11において、第1実施形態のノズルプレート3の取付構造と共通する構成部分には同一符号を付することにより、第1実施形態のノズルプレート3の説明と重複する説明を省略する。
 図9乃至図11に示すように、本実施形態において、ノズルプレート3のアーム部20は、先端側の内面36(バルブボディ5の外周面11に対向する面)に係合用突起37が形成されている。これに対し、バルブボディ5は、外周面11に係止溝38が形成されている。係合用突起37は、図9(c)及び(d)に示すように、中心部から開口端22側に向かって傾斜する係合ガイド面37aが形成されている。この係合用突起37の係合ガイド面37aは、ノズルプレート3をバルブボディ5に嵌合する際に、バルブボディ5の先端面13側のエッジに当接し、アーム部20を緩やかに撓み変形させ、ノズルプレート3とバルブボディ5の円滑な嵌合を可能にする。
 係止溝38は、バルブボディ5の外周面11の周方向にほぼ沿うように長穴状に形成され(彫り込まれ)、長手方向の一端側(係止溝38の一端側)38aが長手方向の他端側(係止溝38の他端側)38bよりもバルブボディ5の先端面13側に位置し、長手方向の一端側38aと長手方向の他端側38bの間(係止溝38の長手方向のほぼ中間部分38c)がバルブボディ5の先端面13から最も遠く位置するように形成されている。なお、係止溝38は、バルブボディ5の外表面11側に彫り込まれたものであり、バルブボディ5の内面側に貫通していない。
 アーム部20は、ノズルプレート3の筒状嵌合部12の開口端22から母線方向に切り込むように筒状嵌合部12に形成された縦溝40と、この縦溝40の端部から周方向に沿って延びるように筒状嵌合部12に形成された横溝41とによって、筒状嵌合部12の開口端22側に撓み変形(弾性変形)可能で且つ筒状嵌合部12の径方向外方への撓み変形が可能な片持ち梁状に形作られている。
 また、アーム部20は、ノズルプレート3の筒状嵌合部12がバルブボディ5に嵌合され、且つ、ノズルプレート3の底壁部14がバルブボディ5の先端面13に当接した状態において、係合用突起37が係止溝38の長手方向の一端側38aに係合する。そして、このアーム部20は、係合用突起37が係止溝38の長手方向の一端側38aに係合した状態において、ノズルプレート3の筒状嵌合部12とバルブボディ5が相対回動させられると、係合用突起37が係止溝38の長手方向の一端側38aから係止溝38の長手方向の他端38b側に移動して、バルブボディ5の先端面13から遠ざかる方向へ撓み変形させられ、係合用突起37をロック位置としての係止溝38の長手方向の他端側38bに着座させる。この際、アーム部20は、撓み変形させられたことにより生じる弾性力で、係合用突起37を係止溝38の長手方向の他端側38bの溝壁38dに押し付け、係合用突起37を係止溝38の長手方向の他端側38bに固定する。しかも、係止溝38は、長手方向のほぼ中間部分38cがバルブボディ5の先端面13から最も遠く位置している。したがって、係止溝38の他端側38bにアーム部20の弾性力で固定された係合用突起37は、係止溝38の長手方向の中間部分38cを乗り越えて係止溝38の長手方向の一端側38aへ容易に移動することができない。これにより、ノズルプレート3とバルブボディ5は、抜け止めされた状態で固定されることになる。なお、バルブボディ5の係止溝38及びこの係止溝38と係合するアーム部20の係合用突起37は、筒状嵌合部12をバルブボディ5に抜け止めした状態で固定する係止手段を構成する。
 以上のような本実施形態に係るノズルプレート3の取付構造によれば、アーム部20の係合用突起37を係止溝38の長手方向の一端側38aに係合した後、筒状嵌合部12とバルブボディ5を相対回動させ、アーム部20の係合突起37を係止溝38の長手方向の一端側38aから他端側38bへ移動させるだけで、アーム部20の係合用突起37がバブルボディ5の係止溝38の長手方向の他端側38b(係止溝38のロック位置)にアーム部20の弾性力で押し付けられ、係合用突起37が係止溝38の他端側38bの溝壁38dに着座した状態で固定される。すなわち、本実施形態に係るノズルプレート3の取付構造によれば、ノズルプレート3とバルブボディ5は、アーム部20の係合用突起37がバルブボディ5の係止溝38の長手方向の他端側38b(係止溝38のロック位置)にアーム部20の弾性力で固定され、抜け止めされた状態で固定されることになる。したがって、本実施形態に係るノズルプレート3の取付構造によれば、金属製のノズルプレート103を金属製のバルブボディ102の先端に溶接固定する従来例に比較し(図18参照)、燃料噴射装置1の製造工数を削減でき、燃料噴射装置1の製造コストを削減できる。
 また、本実施形態に係るノズルプレート3の取付構造によれば、合成樹脂材料製のノズルプレート3と金属製のバルブボディ5に熱膨張差や製造誤差が生じると、アーム部20が弾性変形してノズルプレート3とバルブボディ5の熱膨張差や製造誤差を吸収し、アーム部20の係合用突起37が係止溝38の長手方向の他端側38bにアーム部20の弾性力で固定された状態が維持され、ノズルプレート3の底壁部14をバルブボディ5の先端面13に押し付ける弾性力(アーム部20の弾性変形に起因する力)が常時作用し、ノズルプレート3の底壁部14とバルブボディ5の先端面13との間に隙間を生じるようなことがないため、燃料の噴射圧力がノズルプレート3に作用しても、ノズルプレート3がバルブボディ5から脱落するようなことがなく、ノズルプレート3が所望の機能(燃料を微粒化する機能)を発揮する。
 また、本実施形態に係るノズルプレート3の取付構造によれば、ノズルプレート3とバルブボディ5は、アーム部20の係合用突起37がバルブボディ5の係止溝38の長手方向の他端側38bに(係止溝38のロック位置)にアーム部20の弾性力で固定されるため、抜け止めされた状態で固定されることになる。したがって、本実施形態に係るノズルプレート3の取付構造によれば、金属製のノズルプレート103を金属製のバルブボディ102の先端に溶接固定する従来例のような不具合(溶接スパッタでノズル孔104が塞がれるという不具合)が生じることがなく(図18参照)、全てのノズル孔7が燃料の微粒化のための機能を確実に発揮する。
 なお、本実施形態において、第1実施形態の変形例2と同様に、筒状嵌合部12の一端側(底壁部14側)を部分的に切り欠くようにして二面幅部33が形成されることにより、第1実施形態の変形例2と同様の効果を得ることができる(図6参照)。
  (第2実施形態の変形例1)
 図12は、第2実施形態の変形例1を示す図であり、ノズルプレート3の変形例を示す図である。なお、図12(a)がノズルプレート3の正面図であり、図12(b)が図12(a)のA6-A6線に沿って切断して示すノズルプレート3の断面図である。
 図12に示すように、本変形例に係るノズルプレート3は、アーム部20の係合用突起37の形状が上記第2実施形態におけるアーム部20の係合用突起37と異なるが、他の構成が上記第2実施形態におけるノズルプレート3と同様である。すなわち、本変形例において、アーム部20の係合用突起37は、半球状に形成されている。これに対し、上記第2実施形態のアーム部20の係合用突起37は、丸棒状に形成されている。このような本実施形態に係るノズルプレート3は、アーム部20及び係合用突起37がバルブボディ5の外周面11に容易に係合されると共に。係合用突起37がバルブボディ5の係止溝38に容易に係合される(図9参照)。
  (第2実施形態の変形例2)
 図13は、第2実施形態の変形例2を示す図であり、係止溝38の長手方向の一端側38aの溝幅を係止溝38の長手方向の他端側38bの溝幅よりも広くし、アーム部20の係合用突起37を係止溝38の一端側38aに係合し易くした態様を示す図(バルブボディ5の先端側の側面図)である(図9参照)。
  (第2実施形態の変形例3)
 図14は、第2実施形態の変形例3を示す図であり、係止溝38の長手方向の一端側38aの溝深さを緩やかに変化させ、アーム部20の係合用突起37を係止溝38に滑らかに係合させるようにした態様を示す図である(図9参照)。なお、図14(a)がバルブボディ5の先端側の正面図であり、図14(b)がバルブボディ5の先端側の側面図である。
  (第2実施形態の変形例4)
 図15は、第2実施形態の変形例4を示す図であり、係止溝38の長手方向の中間部分38cから係止溝38の長手方向の他端側38bまでの係止溝38の傾斜角度を2段階に変化させた態様を示す図(バルブボディ5の先端側の側面図)である。すなわち、本変形例の係止溝38は、長手方向の中間部分38cから長手方向の他端側38bまでの範囲において、長手方向他端側38b寄りの係止溝38の傾斜角度を長手方向中間部分38c寄りの係止溝38の傾斜角度よりも大きくし、係合用突起37が係止溝38のロック位置(他端側38b)に収容された感覚を作業者に与えることができるようにすると共に、係合用突起37が係止溝38の長手方向の他端側38bから抜け出し難くしたものである。
  (第2実施形態の変形例5)
 図16は、第2実施形態の変形例5を示す図であり、係止溝38の長手方向の他端側38b寄りの位置に抜け止め防止突起42を形成した態様を示す図(バルブボディ5の先端側の側面図)である。すなわち、本変形例の係止溝38は、係合用突起37が接触する側の溝壁38eで、且つ、長手方向の他端側38b寄りの位置に、抜け止め防止突起42が形成されている。これにより、係合用突起37が抜け止め防止突起42を乗り越えて係止溝38の長手方向の他端側38bに収容されると、係合用突起37が抜け止め防止突起42を乗り越えた際の衝撃が作業者の手に伝わり、係合用突起37が係止溝38のロック位置(他端側38b)に収容された感覚を作業者に与えることができるようにすると共に、係合用突起37が係止溝38の長手方向の他端側38bから抜け出し難くしたものである。
  (第2実施形態の変形例6)
 図17は、第2実施形態の変形例6を示す図であり、アーム部20の係合用突起37を収容する突起係合穴(位置決め凹部)43が係止溝38の長手方向の他端側38bに形成された態様を示す図である(図9参照)。すなわち、本変形例に係る係止溝38は、突起係合穴43を除く部分の溝深さが同一であり、且つ、突起係合穴43の穴深さよりも浅く形成されている。このような本変形例によれば、係合用突起37が係止溝38のロック位置(他端側38bの突起係合穴43)に収容された感覚を作業者に与えることができると共に、係合用突起37が係止溝38の長手方向の他端側38b(突起係合穴43)から抜け出し難くなり、係合用突起37が係止溝38の長手方向の他端側に位置決めされた状態で確実に固定される(図9参照)。なお、図17(a)がバルブボディ5の先端側の平面図であり、図17(b)がバルブボディ5の先端側の側面図である。
 [第3実施形態]
  (燃料噴射装置)
 図18は、燃料噴射装置101の使用状態を模式的に示す図である(図19参照)。この図18に示すように、ポート噴射方式の燃料噴射装置101は、エンジンの吸気管102の途中に設置され、燃料を吸気管102内に噴射して、吸気管102に導入された空気と燃料とを混合し、可燃混合気を形成するようになっている。
 図19は、燃料噴射装置用ノズルプレート103(以下、ノズルプレートと略称する)が取り付けられた燃料噴射装置101の先端側を示す図である。なお、図19(a)は、燃料噴射装置101の先端側正面図である。また、図19(b)は、図19(a)の矢印C101で示す方向から見た燃料噴射装置101の先端側側面図である。また、図19(c)は、図19(a)のA101-A101線に沿ってノズルプレート103を切断して示す燃料噴射装置101の先端側断面図である。また、図19(d)は、図19(a)のA101-A101線に沿って全体を切断して示す燃料噴射装置101の先端側断面図である。
 図19に示すように、燃料噴射装置101は、燃料噴射口104が形成された金属製バルブボディ105の先端側に合成樹脂材料製のノズルプレート103が取り付けられている。この燃料噴射装置101は、図外のソレノイドによってニードルバルブ106が開閉されるようになっており、ニードルバルブ106が開かれると、バルブボディ105内の燃料が燃料噴射口104から噴射され、燃料噴射口104から噴射された燃料がノズルプレート103のノズル孔107を通過して外部に噴射されるようになっている。バルブボディ105は、正面側から見た形状が円形状であり(図22(a)参照)、先端側の外周面に環状の係止用溝108が周方向に沿って形成されている(図22(a)~(b)参照)。係止用溝108は、断面形状(バルブボディ105の母線に沿った断面形状)が矩形形状であり、U字状リング110の一部が係合されるようになっている(図19及び図20参照)。なお、ノズルプレート103は、PPS、PEEK、POM、PA、PES、PEI、LCP等の合成樹脂材料を使用して射出成形される。
  (ノズルプレートの取付構造)
 以下、図19乃至図23に基づき、本実施形態に係るノズルプレート103の取付構造を説明する。なお、図20は、図19(b)のA102-A102線に沿って切断して示す燃料噴射装置101の断面図である。また、図21(a)がノズルプレート103の正面図であり、図21(b)が図21(a)のC102方向から見たノズルプレート103の側面図であり、図21(c)が図21(a)のC103方向から見たノズルプレート103の側面図であり、図21(d)が図21(a)のA103-A103線に沿って切断して示すノズルプレート103の断面図であり、図21(e)が図21(b)のA104-A104線に沿って切断して示すノズルプレート103の断面図である。また、図22(a)がバルブボディ105の先端側正面図であり、図22(b)がバルブボディ105の先端側側面図である。また、図23(a)がU字状リング10の平面図であり、図23(b)がU字状リング10の側面図である。
 図19乃至図22に示すように、ノズルプレート103は、バルブボディ105の先端側外周面111に圧入される筒状嵌合部112と、この筒状嵌合部112の一端側を塞ぐように形成されてバルブボディ105の先端面113が突き当てられる底壁部114と、を一体に有する有底筒状体である。
 底壁部114は、燃料噴射装置101の燃料噴射口104から噴射された燃料を外部(吸気管102内)に向けて噴射するためのノズル孔107が複数(周方向に等間隔で6箇所)形成されている。この底壁部114は、内面115側(バルブボディ105の先端面113に密着する面側)が平坦面であり、外面116側の中央部117が凹んでいる。すなわち、底壁部114は、ノズル孔107が形成される中央部117が円板状の薄肉部分であり、この中央部117を取り囲む領域であり且つ筒状嵌合部112の一端側に接続される周縁部118が中央部117よりも肉厚に形成された厚肉部分である。なお、本実施形態において、ノズル孔107は、底壁部114に合計6箇所形成されているが、これに限られず、要求される燃料噴射特性に応じた最適の個数及び孔径等が決定される。
 筒状嵌合部112は、円筒形状であり、バルブボディ105の先端側にしまりばめの状態で嵌合されるように、内径寸法がバルブボディ105の外径寸法よりも僅かに小さく形成されている。この筒状嵌合部112は、一端側が底壁部114によって塞がれ、他端側がバルブボディ105の先端側を挿入できるように開口している。この筒状嵌合部112が圧入されるバルブボディ105は、先端側の外周面111に係止用溝108が形成されている。バルブボディ105の係止用溝108は、バルブボディ105の中心軸120に沿って切断して示す断面形状が矩形形状の凹みである(図19(c)~(d)、図22参照)。
 筒状嵌合部112には、U字状リング110を装着するためのリング装着溝121が形成されている。このリング装着溝121は、U字状リング110の円弧状部122が係合される円弧状部係合溝部123と、U字状リング110の円弧状部122の両端からほぼ平行に延びる一対のアーム部124,124が係合される一対のアーム部係合溝部125,125とで構成されている(図23参照)。円弧状部係合溝部123は、U字状リング110の線径とほぼ同様の溝深さに形成されており、筒状嵌合部112の外表面126に沿って一対のアーム部係合溝部125,125まで円弧状に形成されている。一対のアーム部係合溝部125,125は、筒状嵌合部112をバルブボディ105に嵌合した場合に、U字状リング110のバルブボディ押圧部分127がバルブボディ105の係止用溝108の溝底130に当接する程度に出っ張っている。その結果、アーム部係合溝部125の溝底には、バルブボディ105の露出を可能にする窓131が形成されている。この一対のアーム部係合溝部125,125は、図20及び図21(a)に示すように、筒状嵌合部112(ノズルプレート103)の中心軸132に直交する仮想平面をX-Y座標面とすると、X軸にほぼ平行に形成されており、筒状嵌合部112の中心軸132に直交する中心線133に対して対称の形状となるように形成されている。円弧状部係合溝部123とアーム部係合溝部125との接続部分134は、滑らかな曲面で形成されており、U字状リング110のアーム部124の先端をアーム部係合溝部125内に挿入する際のガイド面として機能し、U字状リング110のアーム部124の先端をアーム部係合溝部125内へ円滑に案内する。
 筒状嵌合部112のリング装着溝121は、溝幅がU字状リング110の線径よりも大きくなるように形成されている。また、筒状嵌合部112のリング装着溝121は、ノズルプレート103がバルブボディ105の先端側に圧入され、ノズルプレート103の底壁部114がバルブボディ105の先端面113に当接した状態において、バルブボディ105の係止用溝108に対して僅かに底壁部114寄りに位置するように形成されている。また、筒状嵌合部112は、リング装着溝121が形成されることにより、平面視した形状が略Cリング状の薄肉のU字状リング支持部分(弾性変形部分)135が筒状嵌合部112の開口端136側に形成される。そして、ノズルプレート103がバルブボディ105の先端側に圧入され、ノズルプレート103の底壁部114がバルブボディ105の先端面113に当接した状態において、筒状嵌合部112のリング装着溝121にU字状リング110が装着されると、U字状リング110がU字状リング支持部分135を弾性変形させながらアーム部係合溝部125の溝壁137と係止用溝108の溝壁138との間に挿入され、U字状リング110がU字状リング支持部分135の弾性力で係止用溝108の溝壁138に押圧される。
 U字状リング110は、円形断面の弾性変形可能な金属線材が折り曲げられて形成されたものである。このU字状リング110は、円弧状部122と、この円弧状部122の両端からほぼ平行に伸びる一対のアーム部124,124と、を一体に有している。また、U字状リング110のアーム部124は、バルブボディ105の係止用溝108の溝底形状に沿うように円弧状に形作られたバルブボディ押圧部分127を有している。このようなU字状リング110は、一対のアーム部124,124の間隔を広げるように弾性変形させられた状態で筒状嵌合部112のリング装着溝121及びバルブボディ105の係止用溝108に装着され、一対のアーム部124,124のバルブボディ押圧部分127,127によってバルブボディ105を径方向の両側から抱き込むように弾性的に挟持すると共に、筒状嵌合部112のリング装着溝121の溝壁137とバルブボディ105の係止用溝108の溝壁138との間に挟持される。これにより、ノズルプレート103は、バルブボディ105の先端側に確実に固定される。なお、バルブボディ105の係止用溝108及びこの係止用溝108と係合するU字状リング110は、筒状嵌合部112をバルブボディ105に抜け止めした状態で固定する係止手段を構成する。
  (第3実施形態の効果)
 以上のような本実施形態に係るノズルプレート103の取付構造によれば、ノズルプレート103の筒状嵌合部112がバルブボディ105の先端側に圧入され、U字状リング110がノズルプレート103のリング装着溝121に装着されると、U字状リング110がU字状リング支持部分135を弾性変形させながらアーム部係合溝部125の溝壁137と係止用溝108の溝壁138との間に挿入され、U字状リング110がU字状リング支持部分135の弾性力で係止用溝108の溝壁138に押圧される。その結果、本実施形態に係るノズルプレート103の取付構造によれば、U字状リング110がバルブボディ105の係止用溝108の溝壁138とノズルプレート103のリング装着溝121の溝壁137とで弾性的に挟持され、ノズルプレート103がバルブボディ105にU字状リング110で抜け止めされた状態で確実に固定されるため、金属製のノズルプレート1003を金属製のバルブボディ1002の先端に溶接固定する従来例に比較し(図30参照)、燃料噴射装置101の製造工数を削減でき、燃料噴射装置101の製造コストを削減できる。
 また、本実施形態に係るノズルプレート103の取付構造によれば、ノズルプレート103がバルブボディ105に圧入された後、合成樹脂材料製のノズルプレート103と金属製のバルブボディ105に熱膨張差が生じると、U字状リング支持部分135が弾性変形してノズルプレート103とバルブボディ105との熱膨張差を吸収し、U字状リング110が係止用溝108の溝壁138とリング装着溝121の溝壁137とに挟持された状態が維持され、ノズルプレート103の底壁部114とバルブボディ105の先端面113との間に隙間を生じるようなことがないため、燃料の噴射圧力がノズルプレート103に作用しても、ノズルプレート103がバルブボディ105から脱落するようなことがなく、ノズルプレート103が所望の機能(燃料を微粒化する機能)を発揮する。なお、合成樹脂材料製のノズルプレート103は、熱膨張率が金属製のバルブボディ105よりも大きいため、金属製のバルブボディ105よりも熱膨張による伸びが大きくなる。
 また、本実施形態に係るノズルプレート103の取付構造によれば、バルブボディ105とノズルプレート103の製造誤差がある場合に、U字状リング支持部分135が弾性変形してノズルプレート103とバルブボディ105との製造誤差を吸収し、U字状リング110が係止用溝108の溝壁138とリング装着溝121の溝壁137とに挟持された状態が維持され、ノズルプレート103の底壁部114とバルブボディ105の先端面113との間に隙間を生じるようなことがないため、燃料の噴射圧力がノズルプレート103に作用しても、ノズルプレート103がバルブボディ105から脱落するようなことがなく、ノズルプレート103が所望の機能(燃料を微粒化する機能)を発揮する。
 また、本実施形態に係るノズルプレート103の取付構造によれば、ノズルプレート103の筒状嵌合部112をバルブボディ105の先端側に圧入し、ノズルプレート103とバルブボディ105とをU字状リング110によって抜け止めした状態で固定できるため、金属製のノズルプレート1003を金属製のバルブボディ1002の先端に溶接固定する従来例のような不具合(溶接スパッタでノズル孔1004が塞がれるという不具合)が生じることがなく(図30参照)、全てのノズル孔107が燃料の微粒化のための機能を確実に発揮する。
 なお、本実施形態に係るノズルプレート103の取付構造において、ノズルプレート103及びバルブボディ105の正面側形状は、円形に限られず、六角形状等の多角形状、D形状、小判型形状、その他の形状でもよい。
 [第4実施形態]
 図24乃至図25は、本発明の第4実施形態に係るノズルプレート103の取付構造を説明するための図である。なお、本実施形態に係るノズルプレート103の取付構造の説明は、図24乃至図25において、第3実施形態のノズルプレート103の取付構造と共通する構成部分には同一符号を付することにより、第3実施形態のノズルプレート103の説明と重複する説明を省略する。
 図24乃至図25に示すように、本実施形態の係るノズルプレート103の取付構造において、リング装着溝121の溝幅及び係止用溝108の溝幅は、第3実施形態に係るリング装着溝121の溝幅及び係止用溝108の溝幅よりも広く形成されている。また、U字状リング110のアーム部124には、係止用溝108の溝幅方向へ湾曲して出っ張るばね作用部分140が形成されている。U字状リング110は、平面視した形状が第3実施形態に係るU字状リング110と同様であるが(図23(a)、図25(a)参照)、ばね作用部分140がバルブボディ押圧部分127のうちで係止用溝108に係合される部分に形成され、そのばね作用部分140が弾性変形させられた状態で係止用溝108の溝壁138に弾性的に接触し、ばね作用部分140を除く他部分がリング装着溝121の溝壁137(ばね作用部分140が当接する係止用溝108の溝壁138に対向するリング装着溝121の溝壁137)に当接するようになっている。この際、U字状リング支持部分135は、U字状リング110に押されて弾性変形する。
 このような本実施形態に係るノズルプレート103の取付構造によれば、係止用溝108の溝壁138とリング装着溝121の溝壁137とを遠ざける方向へU字状リング110の弾性力が作用し、ノズルプレート103の底壁部114をバルブボディ105の先端面113に押し付ける方向の力が常時作用する。
 したがって、本実施形態に係るノズルプレート103の取付構造によれば、金属製のバルブボディ105と合成樹脂材料製のノズルプレート103に熱膨張差や製造誤差が生じた場合、U字状リング110のばね作用部分140が弾性変形する(弾性復元するか、又はより大きな撓み変形が生じる)と共にU字状リング支持部分135が弾性変形してバルブボディ105とノズルプレート103の熱膨張差や製造誤差を吸収し、係止用溝108の溝壁138とリング装着溝121の溝壁137にU字状リング110が突っ張るように弾性接触し、筒状嵌合部112とバルブボディ105間に作用する摩擦力、U字状リング110の弾性力及びU字状リング支持部分135の弾性力によってノズルプレート103をバルブボディ105から外す方向の力に対抗できる。その結果、金属製のバルブボディ105と合成樹脂材料製のノズルプレート103に熱膨張差や製造誤差が生じた場合でも、ノズルプレート103の底壁部114とバルブボディ105の先端面113との間に隙間が生じることがなく、燃料の噴射圧力がノズルプレート103に作用しても、ノズルプレート103がバルブボディ105から脱落するようなことがない。
 以上のような本実施形態に係るノズルプレート103の取付構造によれば、上記第3実施形態に係るノズルプレート103の取付構造と同様の効果を得ることができる。すなわち、本実施形態に係るノズルプレート103の取付構造によれば、ノズルプレート103の筒状嵌合部112をバルブボディ105の先端側に圧入し、ノズルプレート103のリング装着溝121にU字状リング110を装着するだけで、ノズルプレート103がバルブボディ105の先端側に抜け止めされた状態で固定されるため、金属製のノズルプレート1003を金属製のバルブボディ1002の先端に溶接固定する従来例に比較し(図30参照)、燃料噴射装置101の製造工数を削減でき、燃料噴射装置101の製造コストを削減できる。
 また、本実施形態に係るノズルプレート103の取付構造によれば、ノズルプレート103の筒状嵌合部112をバルブボディ105の先端側に圧入し、ノズルプレート103のリング装着溝121にU字状リング110を装着するだけで、ノズルプレート103がバルブボディ105の先端側に抜け止めされた状態で固定されるため、金属製のノズルプレート1003を金属製のバルブボディ1002の先端に溶接固定する従来例のような不具合(溶接スパッタでノズル孔1004が塞がれるという不具合)が生じることがなく(図30参照)、全てのノズル孔107が燃料の微粒化のための機能を確実に発揮する。
 なお、本実施形態において、U字状リング110のばね作用部分140を係止用溝108の溝壁138に当接させる態様を例示したが、これに限られず、U字状リング110のばね作用部分140をリング装着溝121の溝壁137に当接させるようにしてもよい。
 [第5実施形態]
 図26乃至図27は、本発明の第5実施形態に係るノズルプレート103の取付構造を説明するための図である。なお、本実施形態に係るノズルプレート103の取付構造の説明は、図26乃至図27において、第3実施形態のノズルプレート103の取付構造と共通する構成部分には同一符号を付することにより、第3実施形態のノズルプレート103の説明と重複する説明を省略する。
 図26乃至図27に示すように、本実施形態に係るノズルプレート103の取付構造は、U字状リング110が押し付けられる係止用溝108の溝壁138を傾斜面としている。そして、この傾斜面としての溝壁138は、溝底130からバルブボディ105の外表面111に向かうにしたがって溝幅を拡げるように形成されている。
 このような本実施形態に係るノズルプレート103の取付構造によれば、ノズルプレート103をバルブボディ105に圧入した後、ノズルプレート103のリング装着溝121にU字状リング110を装着すると、U字状リング110のアーム部124がU字状リング支持部分135を撓み変形させながら係止用溝108の溝壁(傾斜面)138とリング装着溝121の溝壁137との間に入り込む。そして、U字状リング110の一対のアーム部124,124がバルブボディ105を挟持する弾性力とU字状リング支持部分135の弾性力とが係止用溝108の溝壁138に作用し、ノズルプレート103の底壁部114をバルブボディ105の先端面113に押し付ける方向の力(係止用溝108の傾斜面である溝壁138に作用する斜面分力)が常時作用する。
 このような本実施形態に係るノズルプレート103の取付構造によれば、金属製のバルブボディ105と合成樹脂材料製のノズルプレート103に熱膨張差や製造誤差が生じた場合、U字状リング110が係止用溝108の溝壁(傾斜面)138に沿って移動すると共に、U字状リング支持部分135が弾性変形してバルブボディ105とノズルプレート103の熱膨張差や製造誤差を吸収し、係止用溝108の溝壁(傾斜面)138に作用するU字状リング110の弾性力(バルブボディ105を挟持する弾性力)、及び筒状嵌合部112とバルブボディ105間に作用する摩擦力がノズルプレート103をバルブボディ105から外す方向の力に対抗する。その結果、金属製のバルブボディ105と合成樹脂材料製のノズルプレート103に熱膨張差や製造誤差が生じた場合でも、ノズルプレート103の底壁部114とバルブボディ105の先端面113との間に隙間が生じることがなく、燃料の噴射圧力がノズルプレート103に作用しても、ノズルプレート103がバルブボディ105から脱落するようなことがない。
 以上のような本実施形態に係るノズルプレート103の取付構造によれば、上記第3乃至第4実施形態に係るノズルプレート103の取付構造と同様の効果を得ることができる。
 [第3実施形態の変形例1]
 図28は、上記第3実施形態の変形例1を示す図である。この図28に示すように、ノズルプレート103のリング装着溝121は、U字状リング支持部分135側の溝壁141で且つ窓131に対応する部分に突起142を形成し(図21参照)、この突起142でU字状リング110を押圧してもよい。このように構成することにより、リング装着溝121の溝幅を拡げることができ、リング装着溝121とU字状リング110との摩擦抵抗を減少させることができ、リング装着溝121へのU字状リング110の装着作業が容易になる。なお、本変形例において、突起142は、半球状のものを例示したが、これに限られず、溝壁141とU字状リング110との接触面積を小さくでき、U字状リング110をリング装着溝121へ装着する際の摩擦抵抗が小さくなる形状のものであればよく、溝壁141を部分的に凸曲面にしてもよい。
 [第3実施形態の変形例2]
 図29は、上記第3実施形態の変形例2を示す図である。この図29(a)~(c)に示すように、U字状リング支持部分135で且つU字状リング110との接触領域の両側に、略半円形の強度調整溝143や強度調整溝145(切り込み)を形成し、U字状リング支持部分135を撓み変形させやすくしてもよい。なお、図29(a)は、U字状リング支持部分135の溝壁137側に強度調整溝143,143を形成したものである。また、図29(b)は、U字状リング支持部分135の開口端136に強度調整溝145を形成したものである。また、図29(c)は、U字状リング支持部分135の溝壁137に強度調整溝143を形成すると共に開口端136に強度調整溝145を形成したものである。このような構成によれば、U字状リング支持部分135が変形し易くなるため、U字状リング110をリング装着溝121に装着する際の抵抗が軽減され、U字状リング110をリング装着溝121に装着する作業が容易になる。
 なお、本変形例2は、上記第4実施形態のU字状リング支持部分135、上記第5実施形態のU字状リング支持部分135、及び上記変形例1のU字状リング支持部分135にも適用できる。
 1,101……燃料噴射装置、3,103……ノズルプレート(燃料噴射装置用ノズルプレート)、4,104……燃料噴射口、5,105……バルブボディ、7,107……ノズル孔、8……係合用突起(係止手段の一部)、12,112……筒状嵌合部、13,113……先端面、14,114……底壁部、20……アーム部(弾性変形部分)、38……係止溝(係止手段の一部)、110……U字状リング(係止手段の一部)、135……U字状リング支持部分(弾性変形部分)

Claims (17)

  1.  燃料噴射装置の燃料噴射口から流出した燃料を微粒化して噴射するノズル孔が形成された燃料噴射装置用ノズルプレートの取付構造において、
     前記燃料噴射装置の金属製バルブボディは、前記燃料噴射口が形成された先端側に前記燃料噴射装置用ノズルプレートが取り付けられるようになっており、
     前記燃料噴射装置用ノズルプレートは、前記バルブボディの先端側が嵌合される筒状嵌合部と、前記筒状嵌合部の一端側を塞ぐように形成されて前記バルブボディの先端面が突き当てられると共に前記ノズル孔が形成された底壁部と、を有し、
     前記筒状嵌合部と前記底壁部は、合成樹脂材料で一体に形成され、
     前記筒状嵌合部は、他端側の一部分が弾性変形可能な弾性変形部分であり、前記底壁部が前記バルブボディの先端面に突き当たるまで前記バルブボディの先端側に嵌合され、前記弾性変形部分が係止手段の一部と係合することによって弾性変形させられると、前記バルブボディに前記係止手段を介して抜け止めされた状態で固定される、
     ことを特徴とする燃料噴射装置用ノズルプレートの取付構造。
  2.  燃料噴射装置の燃料噴射口から流出した燃料を微粒化して噴射するノズル孔が形成された燃料噴射装置用ノズルプレートの取付構造において、
     前記燃料噴射装置の金属製バルブボディは、外周に係合用突起が形成され、前記燃料噴射口が形成された先端側に前記燃料噴射装置用ノズルプレートが取り付けられるようになっており、
     前記燃料噴射装置用ノズルプレートは、前記バルブボディの先端側が嵌合される筒状嵌合部と、前記筒状嵌合部の一端側を塞ぐように形成されて前記バルブボディの先端面が突き当てられると共に前記ノズル孔が形成された底壁部と、を有し、
     前記燃料噴射装置用ノズルプレートの前記筒状嵌合部と前記底壁部は、合成樹脂材料で一体に形成され、
     前記筒状嵌合部は、
     ・他端側に係止溝が形成されることにより、他端側の開口端と前記係止溝との間に弾性変形可能なアーム部が形成され、
     ・前記バルブボディの先端側が嵌合されることにより、前記係合用突起が前記係止溝に係合され、且つ、前記底壁部が前記バルブボディの先端面に当接した状態において、前記バルブボディが相対回動させられると、前記係合用突起が前記係止溝のロック位置に着座すると共に、前記係合用突起が前記アーム部を弾性変形させて、前記底壁部を前記バルブボディの先端面に押し付ける弾性力が前記アーム部に生じ、前記バルブボディに前記係合用突起と前記係止溝を介して抜け止めされた状態で固定される、
     ことを特徴とする燃料噴射装置用ノズルプレートの取付構造。
  3.  前記係止溝は、前記筒状嵌合部の他端から前記バルブボディと前記筒状嵌合部の嵌合方向に沿って切り込むように形成された縦溝と、前記縦溝の端部から周方向に延びる横溝と、を有し、
     前記アーム部は、前記筒状嵌合部の他端と前記横溝との間に片持ち梁状に形作られ、前記横溝の溝壁に前記係合用突起を収容する凹みが形成され、
     前記係合用突起は、前記筒状嵌合部と前記バルブボディとの嵌合時に前記縦溝内を移動し、前記筒状嵌合部と前記バルブボディとの相対回動時に前記アーム部を撓み変形させながら前記横溝内を移動し、前記ロック位置としての前記凹みの内面に前記アーム部の弾性力で押し付けられた状態で着座し、前記凹み内に固定される、
     ことを特徴とする請求項2に記載の燃料噴射装置用ノズルプレートの取付構造。
  4.  前記横溝を形作る前記アーム部側の溝壁で、且つ、前記凹みの近傍から前記縦溝までの溝壁は、前記係合用突起を前記縦溝から前記凹みに滑らかに案内できるように、前記凹みの近傍から前記縦溝に向かうにしたがって前記筒状嵌合部の他端に近づく傾斜面である、
     ことを特徴とする請求項3に記載の燃料噴射装置用ノズルプレートの取付構造。
  5.  前記傾斜面と前記縦溝が曲面で滑らかに接続された、
     ことを特徴とする請求項4に記載の燃料噴射装置用ノズルプレートの取付構造。
  6.  前記アーム部は、前記凹みのうちの前記縦溝に近い位置にある端縁を凹み前端縁とし、前記凹みのうちの前記縦溝から遠い位置にある端縁を凹み後端縁とすると、前記横溝を形作る前記アーム部側の前記溝壁に、前記凹み後端縁に接続され且つ前記横溝内に出っ張る回し止め突起が形成された、
     ことを特徴とする請求項3乃至5のいずれかに記載の燃料噴射装置用ノズルプレートの取付構造。
  7.  前記アーム部は、少なくとも先端側が前記筒状嵌合部よりも径方向内方側に位置するように形成され、少なくとも先端側がバルブボディの外周面に押し付けられるようになっている、
     ことを特徴とする請求項3乃至6のいずれかに記載の燃料噴射装置用ノズルプレートの取付構造。
  8.  燃料噴射装置の燃料噴射口から流出した燃料を微粒化して噴射するノズル孔が形成された燃料噴射装置用ノズルプレートの取付構造において、
     前記燃料噴射装置の金属製バルブボディは、外周に係止溝が形成され、前記燃料噴射口が形成された先端側に前記燃料噴射装置用ノズルプレートが取り付けられるようになっており、
     前記燃料噴射装置用ノズルプレートは、前記バルブボディの先端側が嵌合される筒状嵌合部と、前記筒状嵌合部の一端側を塞ぐように形成されて前記バルブボディの先端面が突き当てられると共に前記ノズル孔が形成された底壁部と、を有し、
     前記燃料噴射装置用ノズルプレートの前記筒状嵌合部と前記底壁部は、合成樹脂材料で一体に形成され、
     前記筒状嵌合部は、
     ・他端側に弾性変形可能なアーム部が形成され、前記アーム部の内面に前記係止溝と係合する係合用突起が形成され、
     ・前記バルブボディの先端側が嵌合されることにより、前記係合用突起が前記係止溝に係合され、且つ、前記底壁部が前記バルブボディの先端面に当接した状態において、前記バルブボディが相対回動させられると、前記係合用突起が前記係止溝のロック位置に着座すると共に、前記係合用突起が前記アーム部を弾性変形させて、前記底壁部を前記バルブボディの先端面に押し付ける弾性力が前記アーム部に生じ、前記バルブボディに前記係合用突起と前記係止溝を介して抜け止めされた状態で固定される、
     ことを特徴とする燃料噴射装置用ノズルプレートの取付構造。
  9.  前記係止溝は、前記バルブボディの外周面の周方向にほぼ沿うように長穴状に形成され、長手方向の一端側が長手方向の他端側よりも前記バルブボディの先端面側に位置し、前記長手方向の一端側と前記長手方向の他端側の間が前記バルブボディの先端面から最も遠く位置するように形成され、
     前記アーム部は、
     ・前記筒状嵌合部が前記バルブボディに嵌合され、且つ、前記底壁部が前記バルブボディの先端面に当接した状態において、前記係合用突起が前記係止溝の前記長手方向の一端側に係合し、
     ・前記係合用突起が前記係止溝の前記長手方向の一端側に係合した状態において、前記筒状嵌合部と前記バルブボディが相対回動させられると、前記係合用突起が前記係止溝の前記長手方向の一端側から前記係止溝の前記長手方向の他端側に移動して、前記バルブボディの先端面から遠ざかる方向へ撓み変形させられ、前記係合用突起を前記ロック位置としての前記係止溝の前記長手方向の他端側に着座させる、
     ことを特徴とする請求項8に記載の燃料噴射装置用ノズルプレートの取付構造。
  10.  前記係止溝の前記長手方向の他端側には、前記係合用突起を収容する位置決め凹部が形成された、
     ことを特徴とする請求項9に記載の燃料噴射装置用ノズルプレートの取付構造。
  11.  前記係止溝の前記長手方向の一端側の溝幅を、前記係止溝の前記長手方向の他端側の溝幅よりも大きくした、
     ことを特徴とする請求項9又は10に記載の燃料噴射装置用ノズルプレートの取付構造。
  12.  前記アーム部は、前記筒状嵌合部の他端から前記バルブボディと前記筒状嵌合部の嵌合方向に沿って切り込むように縦溝が形成されると共に、前記縦溝の端部から周方向に延びる横溝が形成されることにより、前記筒状嵌合部の他端と前記横溝との間に片持ち梁状に形作られた、
     ことを特徴とする請求項8乃至11のいずれかに記載の燃料噴射装置用ノズルプレートの取付構造。
  13.  前記アーム部は、少なくとも先端側が前記筒状嵌合部よりも径方向内方側に位置するように形成され、少なくとも先端側がバルブボディの外周面に押し付けられるようになっている、
     ことを特徴とする請求項12に記載の燃料噴射装置用ノズルプレートの取付構造。
  14.  前記筒状嵌合部の底壁部側の外周に二面幅部が形成された、
     ことを特徴とする請求項2乃至13のいずれかに記載の燃料噴射装置用ノズルプレートの取付構造。
  15.  燃料噴射装置の燃料噴射口から流出した燃料を微粒化して噴射するノズル孔が形成された燃料噴射装置用ノズルプレートの取付構造において、
     前記燃料噴射口が形成された前記燃料噴射装置の金属製バルブボディは、外周に沿って環状の係止用溝が形成され、
     前記燃料噴射装置用ノズルプレートは、前記バルブボディの先端側が圧入される筒状嵌合部と、前記筒状嵌合部の一端側を塞ぐように形成されて前記バルブボディの先端面が突き当てられると共に前記ノズル孔が形成された底壁部と、を有し、
     前記燃料噴射装置用ノズルプレートの前記筒状嵌合部と前記底壁部は、合成樹脂材料で一体に形成され、
     前記筒状嵌合部は、U字状リングを装着するリング装着溝が形成されると共に、前記リング装着溝と開口端との間に弾性変形可能なU字状リング支持部分が形成され、
     前記U字状リングは、前記燃料噴射装置用ノズルプレートの前記筒状嵌合部が前記バルブボディに圧入された状態で前記リング装着溝に装着されると、一部が前記U字状リング支持部分を弾性変形させた状態で前記係止用溝に係合されて、前記U字状リング支持部分によって前記係止用溝の溝壁に弾性的に押圧され、前記リング装着溝の前記溝壁と前記係止用溝の前記溝壁によって挟持され、前記燃料噴射装置用ノズルプレートと前記バルブボディを抜け止めした状態で固定する、
     ことを特徴とする燃料噴射装置用ノズルプレートの取付構造。
  16.  前記U字状リングは、前記係止用溝の溝幅方向に湾曲して出っ張るばね作用部分を有し、前記ばね作用部分が前記係止用溝の前記溝壁又は前記リング装着溝の前記溝壁のいずれか一方に弾性的に当接する、
     ことを特徴とする請求項15に記載の燃料噴射装置用ノズルプレートの取付構造。
  17.  前記係止用溝の前記溝壁は、溝底から前記バルブボディの外表面に向かうにしたがって溝幅を拡げる傾斜面である、
     ことを特徴とする請求項16又は17に記載の燃料噴射装置用ノズルプレートの取付構造。
PCT/JP2014/074787 2013-10-01 2014-09-19 燃料噴射装置用ノズルプレートの取付構造 WO2015050003A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201480054856.5A CN105593512B (zh) 2013-10-01 2014-09-19 燃料喷射装置用喷嘴板的安装构造
US15/025,718 US10641223B2 (en) 2013-10-01 2014-09-19 Attachment structure of fuel injection device nozzle plate

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2013206034A JP6143625B2 (ja) 2013-10-01 2013-10-01 燃料噴射装置用ノズルプレートの取付構造
JP2013-206034 2013-10-01
JP2013-212499 2013-10-10
JP2013212499A JP6143631B2 (ja) 2013-10-10 2013-10-10 燃料噴射装置用ノズルプレートの取付構造

Publications (1)

Publication Number Publication Date
WO2015050003A1 true WO2015050003A1 (ja) 2015-04-09

Family

ID=52778597

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/074787 WO2015050003A1 (ja) 2013-10-01 2014-09-19 燃料噴射装置用ノズルプレートの取付構造

Country Status (3)

Country Link
US (1) US10641223B2 (ja)
CN (3) CN108953025B (ja)
WO (1) WO2015050003A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019507286A (ja) * 2015-12-24 2019-03-14 マーレ トンヒョン フィルタ システムズ カンパニー リミテッド グリップを有するドレインピンを備えた液体フィルタモジュール

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6433162B2 (ja) * 2014-02-12 2018-12-05 株式会社エンプラス 燃料噴射装置用ノズルプレート
WO2018090281A1 (en) * 2016-11-17 2018-05-24 XDynamics Limited A manually detachable locking mechanism
JP7184755B2 (ja) 2017-04-05 2022-12-06 株式会社北川鉄工所 チャック機構
GB2568249B (en) 2017-11-08 2022-07-06 Kohler Mira Ltd Cartridge retention and removal means
US11600517B2 (en) * 2018-08-17 2023-03-07 Taiwan Semiconductor Manufacturing Co., Ltd. Screwless semiconductor processing chambers
FR3084731B1 (fr) * 2019-02-19 2020-07-03 Safran Aircraft Engines Chambre de combustion pour une turbomachine

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0290134A (ja) * 1988-09-28 1990-03-29 Nippon Chemicon Corp 電子ビューファインダにおける接眼レンズの取付構造
JPH03160151A (ja) * 1989-11-15 1991-07-10 Aisan Ind Co Ltd 電磁式燃料噴射弁
JPH0882271A (ja) * 1994-09-13 1996-03-26 Nippondenso Co Ltd 流体噴射ノズル及びそれを用いた電磁式燃料噴射弁
JP2008138714A (ja) * 2006-11-30 2008-06-19 Sanden Corp 回転体と回転軸との締結構造
JP2010242548A (ja) * 2009-04-02 2010-10-28 Nissan Motor Co Ltd 燃料噴射ノズルの取付け構造

Family Cites Families (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3594876A (en) * 1969-10-15 1971-07-27 Dzus Fastener Co Fastener having improved load-carrying capacity
US4305180A (en) * 1979-12-14 1981-12-15 International Telephone And Telegraph Corporation Bayonet coupling nut
US4464001A (en) * 1982-09-30 1984-08-07 The Bendix Corporation Coupling nut having an anti-decoupling device
US4515129A (en) * 1983-06-10 1985-05-07 General Motors Corporation Edge discharge pulse fuel injector
DE8424654U1 (de) * 1984-08-20 1985-12-19 Allied Corp., Morristown, N.J. Steckverbinder, insbesondere Rundsteckverbinder
US4773374A (en) * 1985-10-03 1988-09-27 Nippondenso Co., Ltd. Fuel injection system for internal combustion engine
US4708370A (en) * 1985-11-14 1987-11-24 Toddco Recreational vehicle discharge pipe coupler
JPS6350667A (ja) * 1986-08-19 1988-03-03 Aisan Ind Co Ltd 電磁式燃料噴射弁のノズル構造
US4925110A (en) * 1987-12-28 1990-05-15 Toyota Jidosha Kabushiki Kaisha Fuel injection valve for an internal combustion engine having a pillar opposing a fuel injection hole
DE3808396C2 (de) * 1988-03-12 1995-05-04 Bosch Gmbh Robert Kraftstoffeinspritzventil
DE3927390A1 (de) * 1989-08-19 1991-02-21 Bosch Gmbh Robert Kraftstoffeinspritzventil
DE4019752A1 (de) * 1990-06-21 1992-01-02 Bosch Gmbh Robert Brennstoffeinspritzventil
FR2694053B1 (fr) * 1992-07-24 1994-09-02 Souriau & Cie Ensemble de connexion à verrouillage du type baïonnette.
JP3085008B2 (ja) * 1993-03-12 2000-09-04 株式会社デンソー 流体噴射弁
JPH10505546A (ja) * 1994-08-01 1998-06-02 フィアラ,スタニスラフ 穴を正確に空ける際の仕上げ工具
US5741084A (en) * 1995-03-27 1998-04-21 Del Rio; Eddy H. Wear compensating axial connection
JPH09228920A (ja) * 1996-02-22 1997-09-02 Keehin:Kk 電磁式燃料噴射弁
JP3000436B2 (ja) * 1996-07-26 2000-01-17 株式会社ケーヒン 電磁式燃料噴射弁
JP3811285B2 (ja) 1998-03-20 2006-08-16 株式会社ケーヒン 電磁式燃料噴射弁の製造方法
SE511860C2 (sv) * 1998-04-07 1999-12-06 Ericsson Telefon Ab L M Låsmekanism för mekanisk sammankoppling av två anordningar samt portabel kommunikationsanordning försedd med en dylik låsmekanism
US6226068B1 (en) * 1999-08-27 2001-05-01 Amphenol Corporation Self-locking bayonet coupling mechanism
US6619264B2 (en) * 2000-10-25 2003-09-16 Siemens Vdo Automotive Inc. Lost core fuel rail with attachment features
KR101102255B1 (ko) * 2003-09-01 2012-01-03 술저 믹스팩 아게 베이어닛 결합 수단을 갖는 밀봉 플러그 및 체결 링을포함하는 분배 장치
US7161111B2 (en) * 2004-08-18 2007-01-09 Illinois Tool Works Inc. Plasma torch having a quick-connect retaining cup
US7107969B2 (en) * 2004-09-28 2006-09-19 Ford Global Technologies, Llc Twist-lock fuel injector assembly
US7828232B2 (en) * 2005-04-18 2010-11-09 Denso Corporation Injection valve having nozzle hole
CN101581265B (zh) * 2005-04-18 2011-07-20 株式会社电装 燃料喷射阀
DE102005061408A1 (de) * 2005-12-22 2007-06-28 Robert Bosch Gmbh Kunststoff-Metall-Verbindung und Brennstoffeinspritzventil mit einer Kraftstoff-Metall-Verbindung
US7438055B1 (en) * 2007-07-11 2008-10-21 Delphi Technologies, Inc Fuel injector to fuel rail connection
DE102009053966A1 (de) * 2009-11-19 2011-05-26 Maquet Gmbh & Co. Kg Anordnung und Verfahren zum Verbinden eines Zubehörteils mit einem Operationstisch
JP5321473B2 (ja) 2010-01-13 2013-10-23 株式会社デンソー 燃料噴射弁
JP2012036930A (ja) * 2010-08-04 2012-02-23 Honda Motor Co Ltd 係止具
CN105579699B (zh) * 2013-09-26 2018-11-06 恩普乐斯股份有限公司 燃料喷射装置用喷嘴板的安装构造
WO2015046029A1 (ja) * 2013-09-26 2015-04-02 株式会社エンプラス 燃料噴射装置用ノズルプレートの取付構造
DE102015225342A1 (de) * 2015-12-15 2017-06-22 Robert Bosch Gmbh Spritzlochscheibe und Ventil

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0290134A (ja) * 1988-09-28 1990-03-29 Nippon Chemicon Corp 電子ビューファインダにおける接眼レンズの取付構造
JPH03160151A (ja) * 1989-11-15 1991-07-10 Aisan Ind Co Ltd 電磁式燃料噴射弁
JPH0882271A (ja) * 1994-09-13 1996-03-26 Nippondenso Co Ltd 流体噴射ノズル及びそれを用いた電磁式燃料噴射弁
JP2008138714A (ja) * 2006-11-30 2008-06-19 Sanden Corp 回転体と回転軸との締結構造
JP2010242548A (ja) * 2009-04-02 2010-10-28 Nissan Motor Co Ltd 燃料噴射ノズルの取付け構造

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019507286A (ja) * 2015-12-24 2019-03-14 マーレ トンヒョン フィルタ システムズ カンパニー リミテッド グリップを有するドレインピンを備えた液体フィルタモジュール
US10625187B2 (en) 2015-12-24 2020-04-21 Mahle Donghyun Filter Systems Co., Ltd. Liquid filter assembly having a drain pin with a grip
US10881994B2 (en) 2015-12-24 2021-01-05 Mahle Donghyun Filter Systems Co., Ltd. Liquid filter assembly having a drain pin with a grip

Also Published As

Publication number Publication date
US10641223B2 (en) 2020-05-05
CN108915921B (zh) 2021-01-15
CN108915921A (zh) 2018-11-30
CN105593512B (zh) 2018-12-04
CN108953025A (zh) 2018-12-07
CN105593512A (zh) 2016-05-18
US20160245250A1 (en) 2016-08-25
CN108953025B (zh) 2021-01-15

Similar Documents

Publication Publication Date Title
WO2015050003A1 (ja) 燃料噴射装置用ノズルプレートの取付構造
US8707930B2 (en) Hold-down device for a fuel injection device
EP2860388B1 (en) Fluid injection assembly for a combustion engine
US20160237968A1 (en) Attachment structure of fuel injection device nozzle plate
US11204008B2 (en) Fuel injection assembly for an internal combustion engine
JP2001193600A (ja) 燃料分配管への燃料噴射弁の取付け構造
CN109863297B (zh) 喷射器杯、弹簧夹、流体喷射组件和用于其组装的方法
WO2015068516A1 (ja) 燃料噴射装置用ノズルプレートの取付構造
JP6256918B2 (ja) インジェクタ組付体
JP6143631B2 (ja) 燃料噴射装置用ノズルプレートの取付構造
KR101963955B1 (ko) 내연기관용 연료 전달 조립체
WO2015046029A1 (ja) 燃料噴射装置用ノズルプレートの取付構造
JP6143634B2 (ja) 燃料噴射装置用ノズルプレートの取付構造
JP6143625B2 (ja) 燃料噴射装置用ノズルプレートの取付構造
JP6143623B2 (ja) 燃料噴射装置用ノズルプレートの取付構造
JP2005163627A (ja) 燃料噴射弁装置
JP6143648B2 (ja) 燃料噴射装置用ノズルプレートの取付構造
JP6143652B2 (ja) 燃料噴射装置用ノズルプレートの取付構造
JP6274524B2 (ja) 燃料供給装置の組立方法及びクリップ
JP6143628B2 (ja) 燃料噴射装置用ノズルプレートの取付構造
JPWO2006137298A1 (ja) フューエルインジェクタの位置決め構造
EP3508716A1 (en) Combination of a clip and an aligning element and fluid injection assembly
JP3993611B2 (ja) 燃料分配管への燃料噴射弁の取付け構造及びその取付け方法
JP6304759B2 (ja) 燃料供給装置の組立方法及びこれに用いる治具

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14850257

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15025718

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14850257

Country of ref document: EP

Kind code of ref document: A1