Nothing Special   »   [go: up one dir, main page]

WO2014057550A1 - 空気調和装置 - Google Patents

空気調和装置 Download PDF

Info

Publication number
WO2014057550A1
WO2014057550A1 PCT/JP2012/076248 JP2012076248W WO2014057550A1 WO 2014057550 A1 WO2014057550 A1 WO 2014057550A1 JP 2012076248 W JP2012076248 W JP 2012076248W WO 2014057550 A1 WO2014057550 A1 WO 2014057550A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat medium
temperature
heat
heat exchanger
refrigerant
Prior art date
Application number
PCT/JP2012/076248
Other languages
English (en)
French (fr)
Inventor
孝好 本多
嶋本 大祐
森本 修
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to EP12886407.1A priority Critical patent/EP2908070B1/en
Priority to PCT/JP2012/076248 priority patent/WO2014057550A1/ja
Priority to US14/417,870 priority patent/US20150253020A1/en
Priority to CN201280076341.6A priority patent/CN104704300B/zh
Priority to JP2014540684A priority patent/JP5911590B2/ja
Publication of WO2014057550A1 publication Critical patent/WO2014057550A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F5/00Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater
    • F24F5/0007Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater cooling apparatus specially adapted for use in air-conditioning
    • F24F5/001Compression cycle type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/30Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D3/00Hot-water central heating systems
    • F24D3/18Hot-water central heating systems using heat pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/30Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
    • F24F11/46Improving electric energy efficiency or saving
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/62Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/62Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
    • F24F11/63Electronic processing
    • F24F11/65Electronic processing for selecting an operating mode
    • F24F11/67Switching between heating and cooling modes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/80Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air
    • F24F11/83Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling the supply of heat-exchange fluids to heat-exchangers
    • F24F11/84Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling the supply of heat-exchange fluids to heat-exchangers using valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/80Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air
    • F24F11/86Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling compressors within refrigeration or heat pump circuits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F3/00Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems
    • F24F3/06Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the arrangements for the supply of heat-exchange fluid for the subsequent treatment of primary air in the room units
    • F24F3/065Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the arrangements for the supply of heat-exchange fluid for the subsequent treatment of primary air in the room units with a plurality of evaporators or condensers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B25/00Machines, plants or systems, using a combination of modes of operation covered by two or more of the groups F25B1/00 - F25B23/00
    • F25B25/005Machines, plants or systems, using a combination of modes of operation covered by two or more of the groups F25B1/00 - F25B23/00 using primary and secondary systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B47/00Arrangements for preventing or removing deposits or corrosion, not provided for in another subclass
    • F25B47/006Arrangements for preventing or removing deposits or corrosion, not provided for in another subclass for preventing frost
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/62Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
    • F24F11/63Electronic processing
    • F24F11/65Electronic processing for selecting an operating mode
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2140/00Control inputs relating to system states
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/003Indoor unit with water as a heat sink or heat source
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/023Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units
    • F25B2313/0231Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units with simultaneous cooling and heating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/031Sensor arrangements
    • F25B2313/0314Temperature sensors near the indoor heat exchanger
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/13Pump speed control
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/12Hot water central heating systems using heat pumps
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/70Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating

Definitions

  • the present invention relates to an air conditioner such as a multi air conditioner for buildings.
  • a refrigerant is circulated between an outdoor unit that is a heat source device arranged outdoors and an indoor unit that is arranged indoors, thereby conveying cold or hot air into the room. It was.
  • HFC hydrofluorocarbon
  • CO 2 natural refrigerant
  • a chiller which is another conventional air conditioner, generates cold or warm heat with a heat source device arranged outdoors, and cools or heats a heat medium such as water or antifreeze liquid with a heat exchanger arranged inside the outdoor unit.
  • a heat medium such as water or antifreeze liquid
  • a heat exchanger arranged inside the outdoor unit.
  • an air conditioner has been proposed that is excellent in energy saving, prevents the heat medium from freezing, and has a pipe configured so that refrigerant such as HFC is not circulated in the vicinity of the indoor unit (see, for example, Patent Document 2).
  • the technique described in Patent Document 2 includes an antifreezing operation mode for preventing freezing of water in the heat medium pipe.
  • the outdoor unit is started in the heating mode when the temperature detected by the temperature sensor becomes equal to or lower than the set temperature while the compressor is stopped or the pump is stopped.
  • it is an operation mode which prevents the freezing of the heat medium of heat medium piping by exchanging heat with a high temperature / high pressure refrigerant
  • the present invention has been made in order to solve the above-described problems, and can provide a room with a low draft feeling (a feeling of cold air or a feeling of warm air) immediately after the start of operation, and at a target indoor temperature. It aims at providing the air conditioning apparatus which can suppress that the time required until it reaches
  • An air conditioner includes a compressor, a heat source side heat exchanger, at least one expansion valve, and an intermediate heat exchanger that exchanges heat between the refrigerant and the heat medium.
  • a refrigeration cycle circuit configured by connection, an intermediate heat exchanger, a pump that conveys a heat medium, and a use side heat exchanger, and a heat medium circulation circuit that is configured by being connected by a heat medium pipe
  • the compressor and the pump are driven, and the refrigerant and the heat medium are
  • a heat medium temperature adjustment operation mode in which heat is exchanged by an intermediate heat exchanger and the heat medium is heated or cooled to bring the temperature of the heat medium into a temperature range is provided.
  • the operation of the compressor and the pump is temporarily stopped, the temperature of the heat medium changes due to the outside air, etc., even if it is outside the preset temperature range,
  • the compressor and the pump can be driven to exchange heat between the refrigerant and the heat medium in the intermediate heat exchanger, and the temperature of the heat medium can be within the temperature range.
  • the air conditioner of the present invention can supply wind with little draft feeling immediately after the start of operation into the room, and can suppress an increase in the time required to reach the target indoor temperature.
  • the air conditioner according to the present embodiment can supply wind with little draft feeling immediately after the start of operation to an air-conditioned space (for example, a room, a room of a building, a warehouse, etc.), and is required to reach a target indoor temperature.
  • An operation mode for suppressing an increase in time is provided.
  • Drawing 1 is an example of the whole lineblock diagram of the air harmony device concerning an embodiment.
  • the air conditioner according to the present embodiment includes a heat source device (outdoor unit) 1, an indoor unit 2 that is used for air conditioning in a room, etc., and a relay that is separated from the outdoor unit 1 and installed in a non-air-conditioned space 8 or the like.
  • Unit 3 is provided.
  • the heat source device 1 and the relay unit 3 are connected by a refrigerant pipe 4, and a two-phase changing refrigerant or a supercritical refrigerant (primary medium) circulates.
  • the relay unit 3 and the indoor unit 2 are connected by a heat medium pipe 5, and a heat medium (secondary medium) such as water, brine, or antifreeze is circulated.
  • the relay unit 3 includes intermediate heat exchangers 15a and 15b so that heat exchange and the like can be performed between the refrigerant sent from the heat source device 1 and the heat medium sent from the indoor unit 2. Has been.
  • the heat source device 1 is usually disposed in an outdoor space 6 that is an external space of a building 9 such as a building.
  • the indoor unit 2 is disposed at a position where the heated or cooled air can be conveyed to an indoor space 7 such as a living room inside the building 9 of the building.
  • the relay unit 3 has a separate housing from the heat source device 1 and the indoor unit 2, and is connected by a refrigerant pipe 4 and a heat medium pipe 5 of a heat medium, and is different from the outdoor space 6 and the indoor space 7. It can be installed in a place.
  • the relay unit 3 is installed in a non-air-conditioned space 8 such as a ceiling, which is inside the building 9 but is different from the indoor space 7.
  • the relay unit 3 can also be installed in a common part with an elevator or the like.
  • the heat source device 1 and the relay unit 3 are configured so that they can be connected using two refrigerant pipes 4.
  • the relay unit 3 and each indoor unit 2 are connected to each other using two heat medium pipes 5.
  • the construction of the air conditioner is facilitated by connecting using two pipes.
  • FIG. 2 is an example of an overall configuration diagram of an air conditioner different from FIG.
  • the air conditioner according to the present embodiment may include a plurality of relay units 3. That is, the relay unit 3 is divided into one parent relay unit 3a and two child relay units 3b (1) and (2) derived therefrom. In this way, a plurality of child relay units 3b can be connected to one parent relay unit 3a. In this configuration, there are three connection pipes between the parent relay unit 3a and the child relay unit 3b.
  • the indoor unit 2 is shown as an example of a ceiling cassette type, but is not limited thereto. That is, the indoor unit 2 can be a ceiling cassette type as long as it is configured to be able to blow heated or cooled air directly into the indoor space 7 or by a duct or the like. It is not limited to.
  • the heat source device 1 has been described as an example in the case where it is installed in the outdoor space 6 outside the building 9, it is not limited thereto.
  • the heat source device 1 may be set in an enclosed space such as a machine room with a ventilation opening.
  • the heat source device 1 is installed inside the building 9 and exhausts waste heat outside the building 9 through an exhaust duct.
  • it may be installed in the building 9 using a water-cooled heat source device.
  • the relay unit 3 can be placed near the heat source device 1. However, if the distance from the relay unit 3 to the indoor unit 2 is too long, the power for transporting the heat medium increases, and the energy saving effect is reduced. For this reason, when installing the relay unit 3 near the heat source device 1, the installation position of the heat source device 1 may be determined so that the distance from the relay unit 3 to the indoor unit 2 does not become too long.
  • FIG. 3 is an example of a refrigerant and heat medium circuit diagram of the air-conditioning apparatus according to the embodiment.
  • the air conditioner includes the heat source device 1, the indoor unit 2, and the relay unit 3 described in the description of FIGS. 1 and 2.
  • the relay unit 3 of the air-conditioning apparatus according to the present embodiment will be described as having one parent relay unit 3a and one child relay unit 3b shown in FIG. .
  • the heat source device 1 includes a compressor 10 that compresses and discharges a refrigerant, a four-way valve 11 that switches the flow of the refrigerant, a heat source side heat exchanger 12 that functions as a condenser (radiator) or an evaporator,
  • the check valves 13a, 13b, 13c, and 13d that can make the flow direction of the refrigerant constant regardless of the heating operation and the accumulator 17 that stores excess refrigerant are mounted.
  • the indoor unit 2 includes use side heat exchangers 26a to 26d that function as an evaporator or a condenser.
  • the relay unit 3 has a parent relay unit 3a and a child relay unit 3b.
  • the parent relay unit 3a includes a gas-liquid separator 14 that separates the gas phase and the liquid phase of the refrigerant, and an expansion valve (for example, an electronic expansion valve) 16e.
  • the slave relay unit 3b includes intermediate heat exchangers 15a and 15b that exchange heat between the refrigerant and the heat medium, expansion valves (for example, electronic expansion valves) 16a to 16d that depressurize the refrigerant, and pumps 21a and 21b that convey the heat medium. And flow path switching valves 22a to 22d such as three-way valves for switching the flow of the heat medium and flow path switching valves 23a to 23d are mounted.
  • the slave relay unit 3b is provided with stop valves 24a to 24d capable of opening and closing the flow path on the inlet side of the use side heat exchangers 26a to 26d in the heat medium pipe 5, so that the heat medium pipe 5 Of these, flow rate adjusting valves 25a to 25d capable of adjusting the flow rate of the heat medium are provided on the outlet sides of the use side heat exchangers 26a to 26d. Further, the child relay unit 3b is provided with bypasses 27a to 27d that connect the inlet side and the outlet side of the use side heat exchangers 26a to 26d. The bypasses 27a to 27d are provided to connect the flow rate adjusting valves 25a to 25d and the heat medium pipe 5 between the flow path switching valves 23a to 23d and the use side heat exchangers 26a to 26d. Yes.
  • the flow path switching valves 22a to 22d and 23a to 23d are provided corresponding to the inlet side flow paths and the outlet side flow paths of the use side heat exchangers 26a to 26d, respectively.
  • the flow path switching valves 22a to 22d switch their outlet side flow paths among a plurality of installed intermediate heat exchangers, and the flow path switching valves 23a to 23d switch their inlet side flow paths.
  • the flow path switching valves 22a to 22d switch their outlet side flow paths between the intermediate heat exchangers 15a and 15b, and the flow path switching valves 23a to 23d are the intermediate heat exchangers 15a and 15b. It plays the effect of switching the inlet side flow path between them.
  • stop valves 24a to 24d are provided on the inlet side of the use side heat exchangers 26a to 26d, and flow rate adjusting valves 25a to 25d are provided on the outlet side of the use side heat exchangers 26a to 26d, respectively. Further, the inlet side and the outlet side of each of the use side heat exchangers 26a to 26d are connected by bypasses 27a to 27d via the flow rate adjusting valves 25a to 25d.
  • the sub relay unit 3b includes first to seventh temperature sensors and a pressure sensor, as will be described below.
  • the child relay unit 3b detects temperature sensors (first temperature sensors) 31a and 31b that detect the heat medium outlet temperature of the intermediate heat exchangers 15a and 15b, and the heat medium inlet temperature of the intermediate heat exchangers 15a and 15b.
  • Temperature sensors (fourth temperature sensors) 34a to 34d that detect the outlet temperature of the heat medium to 26d.
  • the child relay unit 3b includes a temperature sensor (fifth temperature sensor) 35 for detecting the refrigerant outlet temperature of the intermediate heat exchanger 15a and a temperature sensor (sixth temperature detector) for detecting the refrigerant inlet temperature of the intermediate heat exchanger 15b. Temperature sensor) 37 and a temperature sensor (seventh temperature sensor) 38 for detecting the refrigerant outlet temperature of the intermediate heat exchanger 15b. Furthermore, the child relay unit 3b includes a pressure sensor 36 that detects the refrigerant outlet pressure of the intermediate heat exchanger 15a, and an outside air temperature sensor 39 that is provided in the outdoor unit 1 and detects the outside air temperature. These temperature sensors and pressure sensors are not particularly limited, and various thermometers, temperature sensors, pressure gauges, and pressure sensors can be used.
  • the air conditioner according to the present embodiment includes a compressor 10, a four-way valve 11, a heat source side heat exchanger 12, check valves 13a to 13d, a gas-liquid separator 14, expansion valves 16a to 16e, and intermediate heat exchange. 15a and 15b, and an accumulator 17 are connected to each other by a refrigerant pipe and have a refrigeration cycle circuit.
  • the air conditioner according to the present embodiment includes the intermediate heat exchanger 15a, the pump 21a, the flow path switching valves 22a to 22d, the stop valves 24a to 24d, the use side heat exchangers 26a to 26d, and the flow rate adjustment valves 25a to 25a.
  • the air conditioner includes an intermediate heat exchanger 15b, a pump 21b, flow path switching valves 22a to 22d, stop valves 24a to 24d, use side heat exchangers 26a to 26d, flow rate adjusting valves 25a to 25d, It has a heat medium circulation circuit (also referred to as a second heat medium circulation circuit) configured by connecting the flow path switching valves 23a to 23d with a heat medium pipe. As shown in FIG.
  • the use side heat exchangers 26a to 26d are connected in parallel to the intermediate heat exchanger 15a, and in the second heat medium circuit, The use side heat exchangers 26a to 26d are connected in parallel to the intermediate heat exchanger 15b.
  • the heat source device 1 is provided with a control device 100 that controls equipment constituting the heat source device 1 and causes the heat source device 1 to operate as a so-called outdoor unit.
  • the relay unit 3 is provided with a control device 300 provided with means for controlling the equipment constituting the relay unit 3 and performing an operation described later.
  • These control devices 100 and 300 are constituted by a microcomputer or the like, and are connected so as to communicate with each other. Next, the operation in each operation mode of the air conditioner will be described.
  • FIG. 4 is a circuit diagram showing the flow of the refrigerant and the heat medium during the cooling only operation.
  • the refrigerant is compressed by the compressor 10 to become a high-temperature and high-pressure gas refrigerant, and enters the heat source side heat exchanger 12 via the four-way valve 11.
  • the refrigerant is condensed and liquefied there, flows out from the heat source device 1 through the check valve 13 a, and flows into the relay unit 3 through the refrigerant pipe 4.
  • the refrigerant enters the gas-liquid separator 14, and is introduced into the intermediate heat exchanger 15b through the expansion valves 16e and 16a.
  • the refrigerant is expanded by the expansion valve 16a to become a low-temperature and low-pressure two-phase refrigerant, and the intermediate heat exchanger 15b functions as an evaporator.
  • the refrigerant becomes a low-temperature and low-pressure gas refrigerant in the intermediate heat exchanger 15b, flows out of the relay unit 3 through the expansion valve 16c, and flows into the heat source device 1 again through the refrigerant pipe 4.
  • the refrigerant is sucked into the compressor 10 through the check valve 13 d and the four-way valve 11 and the accumulator 17.
  • the expansion valves 16b and 16d have small openings so that the refrigerant does not flow, and the expansion valve 16c is fully opened to prevent pressure loss.
  • the movement of the secondary side heat medium (water, antifreeze, etc.) will be described.
  • the cold heat of the primary side refrigerant is transmitted to the secondary side heat medium, and the cooled heat medium is caused to flow in the secondary side pipe by the pump 21b.
  • the heat medium exiting the pump 21b passes through the stop valves 24a to 24d through the flow path switching valves 22a to 22d, and flows into the use side heat exchangers 26a to 26d and the flow rate adjusting valves 25a to 25d.
  • the air conditioning load required indoors is maintained by the control device 300 so that the detected temperature difference between the third temperature sensors 33a to 33d and the fourth temperature sensors 34a to 34d is kept at a predetermined target value. This can be covered by controlling the flow rate of the heat medium passing through the use side heat exchangers 26a to 26d. This also applies to all heating operation, cooling main operation, and heating main operation.
  • the flow path is closed by the stop valves 24a to 24d, and the heat medium flows to the use side heat exchanger. Do not.
  • the use-side heat exchangers 26 a and 26 b have a heat load, so that a heat medium flows. However, the use-side heat exchangers 26 c and 26 d have no heat load and the corresponding stop valves 24 c and 24 d. Is closed.
  • FIG. 5 is a circuit diagram showing the flow of the refrigerant and the heat medium during the heating only operation.
  • the refrigerant is compressed by the compressor 10 to become a high-temperature and high-pressure gas refrigerant, flows out from the heat source device 1 through the check valve 13b through the four-way valve 11, and relays through the refrigerant pipe 4. It flows into unit 3.
  • the refrigerant passes through the gas-liquid separator 14 and is introduced into the intermediate heat exchanger 15a, is condensed and liquefied in the intermediate heat exchanger 15a, passes through the expansion valves 16d and 16b, and passes through the relay unit 3. Spill from.
  • the refrigerant is expanded by the expansion valve 16 b to become a low-temperature and low-pressure two-phase refrigerant, and flows again into the heat source device 1 through the refrigerant pipe 4.
  • the refrigerant is introduced into the heat source side heat exchanger 12 through the check valve 13c, and the heat source side heat exchanger 12 acts as an evaporator.
  • the refrigerant then becomes a low-temperature and low-pressure gas refrigerant and is sucked into the compressor 10 via the four-way valve 11 and the accumulator 17.
  • the expansion valve 16e and the expansion valve 16a or 16c have a small opening so that the refrigerant does not flow.
  • the movement of the secondary side heat medium (water, antifreeze, etc.) will be described.
  • the heat of the primary side refrigerant is transmitted to the secondary side heat medium, and the heated heat medium is caused to flow in the secondary side pipe by the pump 21a.
  • the heat medium exiting the pump 21a passes through the stop valves 24a to 24d through the flow path switching valves 22a to 22d, and flows into the use side heat exchangers 26a to 26d and the flow rate adjusting valves 25a to 25d.
  • the flow path is closed by the stop valves 24a to 24d, and the heat medium is transferred to the use side heat exchanger. Do not flow.
  • the use side heat exchangers 26a and 26b have a heat load, and thus a heat medium is passed.
  • the use side heat exchangers 26c and 26d have no heat load and the corresponding stop valves 24c and 24d. Is closed.
  • FIG. 6 is a circuit diagram showing the flow of the refrigerant and the heat medium during the cooling main operation.
  • the refrigerant is compressed by the compressor 10 to become a high-temperature and high-pressure gas refrigerant, and is introduced into the heat source side heat exchanger 12 through the four-way valve 11. Therefore, the refrigerant in the gas state condenses into a two-phase refrigerant, flows out of the heat source side heat exchanger 12 in the two-phase state, flows out of the heat source device 1 through the check valve 13a, and passes through the refrigerant pipe 4. Flow into the relay unit 3.
  • the refrigerant enters the gas-liquid separator 14, the gas refrigerant and the liquid refrigerant in the two-phase refrigerant are separated, and the gas refrigerant is introduced into the intermediate heat exchanger 15a, and in the intermediate heat exchanger 15a It is condensed and liquefied, and passes through the expansion valve 16d.
  • the liquid refrigerant separated in the gas-liquid separator 14 flows to the expansion valve 16e, condenses and liquefies in the intermediate heat exchanger 15a, merges with the liquid refrigerant that has passed through the expansion valve 16d, and passes through the expansion valve 16a. And introduced into the intermediate heat exchanger 15b.
  • the refrigerant is expanded by the expansion valve 16a to become a low-temperature and low-pressure two-phase refrigerant, and the intermediate heat exchanger 15b functions as an evaporator.
  • the refrigerant becomes a low-temperature and low-pressure gas refrigerant in the intermediate heat exchanger 15b, flows out of the relay unit 3 through the expansion valve 16c, and flows into the heat source device 1 again through the refrigerant pipe 4.
  • the refrigerant is sucked into the compressor 10 through the check valve 13 d and the four-way valve 11 and the accumulator 17.
  • the expansion valve 16b has a small opening so that the refrigerant does not flow, and the expansion valve 16c is fully opened to prevent pressure loss.
  • the movement of the secondary side heat medium (water, antifreeze, etc.) will be described.
  • the heat of the primary side refrigerant is transmitted to the secondary side heat medium, and the heated heat medium is caused to flow in the secondary side pipe by the pump 21a.
  • the intermediate heat exchanger 15b the cold heat of the primary side refrigerant is transmitted to the secondary side heat medium, and the cooled heat medium is caused to flow in the secondary side pipe by the pump 21b.
  • the heat medium exiting the pump 21a and the pump 21b passes through the stop valves 24a to 24d via the flow path switching valves 22a to 22d and flows into the use side heat exchangers 26a to 26d and the flow rate adjusting valves 25a to 25d. To do.
  • the flow rate adjusting valves 25a to 25d due to the action of the flow rate adjusting valves 25a to 25d, only the heat medium having a flow rate necessary to cover the air conditioning load required indoors is caused to flow to the use side heat exchangers 26a to 26d, and the rest is the bypass 27a. It does not contribute to heat exchange through ⁇ 27d.
  • the heat medium passing through the bypasses 27a to 27d merges with the heat medium passing through the use side heat exchangers 26a to 26d, and the warm heat medium passes through the flow path switching valves 23a to 23d.
  • the cold heat medium flows into the intermediate heat exchanger 15b and returns to the pump 21b again.
  • the warm heat medium and the cold heat medium are introduced into the use side heat exchangers 26a to 26d having the heat load and the heat load, respectively, without being mixed by the operation of the flow path switching valves 22a to 22d and 23a to 23d.
  • the air conditioning load required indoors can be covered by controlling the temperature difference between the third temperature sensors 33a to 33d and the fourth temperature sensors 34a to 34d so as to keep the target value. .
  • FIG. 6 shows a state in which a thermal load is generated in the use side heat exchanger 26a and a cold load is generated in the use side heat exchanger 26b.
  • FIG. 7 is a circuit diagram showing the flow of the refrigerant and the heat medium during the heating main operation.
  • the refrigerant is compressed by the compressor 10 to become a high-temperature and high-pressure gas refrigerant, flows out of the heat source device 1 through the check valve 13b through the four-way valve 11, and relays through the refrigerant pipe 4. It flows into unit 3.
  • the refrigerant passes through the gas-liquid separator 14 and is introduced into the intermediate heat exchanger 15a, where it is condensed and liquefied in the intermediate heat exchanger 15a.
  • the refrigerant passing through the expansion valve 16d is divided into a flow path passing through the expansion valve 16a and a flow path passing through the expansion valve 16b.
  • the refrigerant that has passed through the expansion valve 16a is expanded by the expansion valve 16a to become a low-temperature and low-pressure two-phase refrigerant and flows into the intermediate heat exchanger 15b, and the intermediate heat exchanger 15b functions as an evaporator.
  • the refrigerant leaving the intermediate heat exchanger 15b evaporates to become a gas refrigerant and passes through the expansion valve 16c.
  • the refrigerant that has passed through the expansion valve 16b is expanded by the expansion valve 16b to become a low-temperature and low-pressure two-phase refrigerant, merged with the refrigerant that has passed through the intermediate heat exchanger 15b and the expansion valve 16c, and has a higher degree of dryness. It becomes a low-temperature and low-pressure refrigerant.
  • the merged refrigerant flows out from the relay unit 3 and flows into the heat source device 1 again through the refrigerant pipe 4.
  • the refrigerant is introduced into the heat source side heat exchanger 12 through the check valve 13c, and the heat source side heat exchanger 12 acts as an evaporator.
  • the low-temperature and low-pressure two-phase refrigerant is evaporated to become a gas refrigerant, and is sucked into the compressor 10 via the four-way valve 11 and the accumulator 17.
  • the expansion valve 16e has a small opening so that the refrigerant does not flow.
  • the movement of the secondary side heat medium (water, antifreeze, etc.) will be described.
  • the heat of the primary side refrigerant is transmitted to the secondary side heat medium, and the heated heat medium is caused to flow in the secondary side pipe by the pump 21a.
  • the intermediate heat exchanger 15b the cold heat of the primary side refrigerant is transmitted to the secondary side heat medium, and the cooled heat medium is caused to flow in the secondary side pipe by the pump 21b.
  • the heat medium exiting the pump 21a and the pump 21b passes through the stop valves 24a to 24d via the flow path switching valves 22a to 22d and flows into the use side heat exchangers 26a to 26d and the flow rate adjusting valves 25a to 25d. To do.
  • the flow rate adjusting valves 25a to 25d due to the action of the flow rate adjusting valves 25a to 25d, only the heat medium having a flow rate necessary to cover the air conditioning load required indoors is caused to flow to the use side heat exchangers 26a to 26d, and the rest is the bypass 27a. It does not contribute to heat exchange through ⁇ 27d.
  • the heat medium passing through the bypasses 27a to 27d merges with the heat medium passing through the use side heat exchangers 26a to 26d, and the warm heat medium passes through the flow path switching valves 23a to 23d.
  • the cold heat medium flows into the intermediate heat exchanger 15b and returns to the pump 21b again.
  • the warm heat medium and the cold heat medium are introduced into the use side heat exchangers 26a to 26d having the heat load and the heat load, respectively, without being mixed by the operation of the flow path switching valves 22a to 22d and 23a to 23d.
  • the air conditioning load required indoors can be covered by controlling the temperature difference between the third temperature sensors 33a to 33d and the fourth temperature sensors 34a to 34d so as to keep the target value.
  • FIG. 7 shows a state in which a thermal load is generated in the use side heat exchanger 26a and a cold load is generated in the use side heat exchanger 26b.
  • the flow path is closed by the stop valves 24a to 24d and the heat medium is transferred to the use side heat exchanger.
  • the utilization side heat exchangers 26a and 26b have a heat load, and thus a heat medium is flowing.
  • the utilization side heat exchangers 26c and 26d have no heat load, and the corresponding stop valves 24c and 24d. Is closed.
  • the corresponding flow path switching valves 22a to 22d and 23a to 23d are connected to the intermediate heat exchanger 15a for heating.
  • the corresponding flow path switching valves 22a to 22d and 23a to 23d are connected to the cooling intermediate heat exchanger 15b.
  • the flow path switching valves 22a to 22d and 23a to 23d switch the flow path by combining a switch that can switch a three-way flow path such as a three-way valve and a switch that opens and closes a two-way flow path such as an open / close valve. Anything can be used.
  • the flow path switching valve is a combination of two types that can change the flow rate of the three-way flow path such as a stepping motor drive type mixing valve, and the one that can change the flow rate of the two-way flow path such as an electronic expansion valve. You may comprise by these. In that case, it is possible to prevent water hammer due to sudden opening and closing of the flow path.
  • the heat load in the use side heat exchangers 26a to 26d is expressed by equation (1), and the flow rate and density of the heat medium, the specific heat at constant pressure, and the temperature difference between the heat medium at the inlet and outlet of the use side heat exchangers 26a to 26d. Multiplied by.
  • Vw is the flow rate of the heat medium
  • ⁇ w is the density of the heat medium
  • Cpw is the constant pressure specific heat of the heat medium
  • Tw is the temperature of the heat medium
  • the subscript in is the heat medium inlet of the use side heat exchangers 26a to 26d.
  • the value and subscript out indicate values at the heat medium outlet of the use side heat exchangers 26a to 26d.
  • the temperature difference at the inlet / outlet of the heat medium changes according to the change of the heat load in the use side heat exchangers 26a to 26d. Therefore, by setting the temperature difference between the inlet and outlet of the use side heat exchangers 26a to 26d as a target and controlling the flow rate adjusting valves 25a to 25d so as to approach a predetermined target value, the excess heat medium is bypassed 27a. To 27d and the flow rate flowing to the use side heat exchangers 26a to 26d can be controlled.
  • the target value of the temperature difference between the inlet and outlet of the use side heat exchangers 26a to 26d is set to 5 ° C., for example.
  • FIGS. 3 to 7 the case where the flow rate adjusting valves 25a to 25d are mixing valves installed on the downstream side of the use side heat exchangers 26a to 26d has been described as an example, but the use side heat exchanger 26a is described. It may be a three-way valve installed upstream of ⁇ 26d.
  • an air conditioning operation command output from a terminal such as a remote controller is transmitted to at least one of the units constituting the system, so that the operation corresponding to the command is performed.
  • the control devices 100 and 300 control the four-way valve 11 and the like so that the heating operation can be performed.
  • the stop mode the heat medium in the heat medium pipe 5 exchanges heat with the air around the heat medium pipe 5 and the like. That is, the heat medium temperature is affected by the ambient air temperature (outside air, indoor temperature). As a result, the temperature of the heat medium becomes a temperature that is not suitable for cooling and heating operations particularly in summer and winter.
  • the stop mode refers to temporarily stopping the air-conditioning operation when the indoor space has reached the target temperature although the power of the air conditioner is on.
  • the stop of the air-conditioning operation is a mode in which the operation of fans (not shown) attached to the compressor 10, the pumps 21a and 21b, and the use side heat exchangers 26a to 26d is stopped. is there.
  • the heat source device 1 is stopped, but the indoor unit 2 may be in a blowing operation.
  • the draft feeling described in (1) above is performed until the temperature of the heat medium decreases (summer) or until the temperature of the heat medium increases (winter), and the fan airflow is controlled. Can also be suppressed. However, in this case, the time required for the room to reach the target temperature increases. Therefore, the air-conditioning apparatus according to the present embodiment can control the flowcharts shown in FIGS. 8 and 9 to solve the problems (1) and (2).
  • the heat medium temperature adjustment operation mode is changed by heating or cooling the heat medium via the outside air when the pumps 21a and 21b are stopped after the operation for preventing the heat medium from being frozen is finished.
  • the temperature of the heat medium is set within a predetermined temperature range.
  • the air-conditioning apparatus according to the present embodiment can perform two heat medium temperature adjustment operation modes.
  • the air conditioner according to the present embodiment has a system capable of simultaneous cooling and heating. For this reason, the heat medium temperature adjustment operation mode of the air conditioning apparatus according to the present embodiment can be adapted to both the cooling mode and the heating mode.
  • FIG. 8 is a flowchart showing the operation in the heat medium temperature adjustment operation mode.
  • the control device 100 and the control device 500 are collectively referred to as “control device”.
  • the control device determines whether or not a predetermined time (for example, 1 hour) has elapsed since the compressor 10 and the pumps 21a and 21b were stopped. If the predetermined time has elapsed, the process proceeds to STEP2. If the predetermined time has not elapsed, STEP 1 is repeated.
  • a predetermined time for example, 1 hour
  • the control device drives the pumps 21a and 21b for a predetermined time. After operating the pumps 21a and 21b for a predetermined time, the control device stops the pumps 21a and 21b again, and proceeds to STEP3.
  • This STEP 2 is a STEP for preventing the temperature in the vicinity of the sensor from deviating from the average temperature of the heat medium due to temperature unevenness of the heat medium, and drives the pumps 21a and 21b for a limited time.
  • TH 25 ° C.
  • the process proceeds to STEP9. If it is not higher than the heat medium temperature TwTH, that is, if it is lower than TL, the process proceeds to STEP5.
  • the control device controls various devices so as to perform the heating operation.
  • the control device activates the compressor 10, switches the four-way valve 11 to the heating side, activates the pump 21b, and expands the valves 16a and 16c so that the refrigerant and the heat medium flow in the heating only operation mode. 16e and expansion valves 16b and 16d are closed. Further, as in the heating main operation mode, the refrigerant and the heat medium may be supplied to heat the heat medium.
  • the control device determines whether or not a predetermined time has elapsed since the heating operation of STEP 5 was performed. In addition, this predetermined time is good to set according to the length and thickness of refrigerant
  • the control device determines whether or not the detection result of the heat medium temperature Tw is larger than a set lower limit value TL + C (C is a hunting prevention constant). That is, in this STEP 7, it is determined whether the heat medium temperature Tw is within a range larger than TL + C. If it exceeds TL + C, the process proceeds to STEP8. If TL + C is not exceeded, STEP 7 is repeated. That is, since the heat medium temperature Tw does not exceed TL + C, the heating operation is continued until it exceeds TL + C.
  • C is a hunting prevention constant
  • the control device stops the heating operation. That is, the control device stops the compressor 10 and the pumps 21a and 21b. The control device returns to STEP 1 that is in a standby state again after the end of STEP 8.
  • the control device controls various devices so as to perform the cooling operation.
  • the heat medium temperature Tw is higher than TH, and the operation is performed in the cooling mode in order to return the heat medium temperature that has become too high to TH or less.
  • the control device starts the compressor 10, switches the four-way valve 11 to the cooling side, starts the pump 21a, and expands the valves 16b and 16d so that the refrigerant and the heat medium flow in the cooling only operation mode. And the expansion valves 16a, 16c, and 16e are closed. Further, as in the cooling main operation mode, the refrigerant and the heat medium may be supplied to cool the heat medium.
  • the control device determines whether or not a predetermined time has elapsed since the cooling operation of STEP 5 was performed. In addition, this predetermined time is good to set according to the length and thickness of refrigerant
  • the control device determines whether or not the detection result of the heat medium temperature Tw is smaller than a set upper limit value TH-C (C is a hunting prevention constant). That is, in this STEP 11, it is determined whether the heat medium temperature is in a range smaller than TH-C. If it is below TH-C, go to STEP12. If not below TH-C, repeat STEP 11. That is, since the heat medium temperature Tw is not lower than TH-C, the cooling operation is continued until the temperature becomes lower than TH-C.
  • C is a hunting prevention constant
  • the control device stops the cooling operation. That is, the control device stops the compressor 10 and the pumps 21a and 21b. The control device returns to STEP 1 that is in a standby state again after the end of STEP 12.
  • Tw 15 ° C.
  • TH 25 ° C.
  • the air conditioner according to the present embodiment drives the compressor 10 and the pumps 21a and 21b even in the stop mode, and keeps the heat medium temperature within a predetermined range so as not to give a draft feeling. , That much energy is consumed.
  • the reference temperature is set to, for example, a temperature close to the mid-term outside air temperature, it is possible to suppress this consumed energy and improve the energy saving performance of the air conditioner.
  • the control device circulates the heat medium before the pumps 21a and 21b are driven or at the same time (including substantially the same time).
  • the flow path switching valves 22a to 22d and 23a to 23d are switched in the direction in which the path is secured.
  • the heat medium in the heat medium circuit is heated or cooled by the intermediate heat exchangers 15a and 15b, and then transferred from the intermediate heat exchangers 15a and 15b to the use-side heat exchangers 26a to 26d. Therefore, temperature unevenness of the heat medium can be suppressed.
  • FIG. 9 is a flowchart showing the operation in the heat medium temperature adjustment operation mode different from FIG. In FIG. 8 described above, the heat medium temperature during the cooling operation or the heating operation is maintained within a predetermined temperature range, and even if the cooling operation or the heating operation is started again, the heat medium temperature is quickly set to the target temperature. It was control which enabled it to cool or warm to. That is, in FIG. 8, the heat medium temperature can be quickly set to the target temperature regardless of which of the cooling operation and the heating operation is performed.
  • the heat medium temperature adjustment operation mode shown in FIG. 9 is different in that the predetermined temperature range in FIG. 8 is changed according to the outside air temperature. More specifically, in the heat medium temperature adjustment operation mode shown in FIG. 9, the upper limit value and the lower limit value of the predetermined temperature range in FIG. 8 are set in the summer and intermediate periods (spring season) according to the average value of the outside air temperature sampled in advance. , Autumn), and the point of changing to three patterns of winter.
  • the control device continuously samples the average outside air temperature and the heat medium temperature.
  • the control device continuously samples the average outside air temperature and the heat medium temperature of about one day or several days.
  • the data sampled in this STEP 21 is used to determine the heat medium temperature as a reference in STEP 24-1 to STEP 24-3 described later.
  • the control device determines whether or not a predetermined time (for example, 1 hour) has elapsed since the compressor 10 and the pumps 21a and 21b were stopped. If the predetermined time has elapsed, the process proceeds to STEP23. If the predetermined time has not elapsed, STEP 22 is repeated.
  • a predetermined time for example, 1 hour
  • Step 23-1 The control device determines whether or not the average outside air temperature is lower than 10 ° C. If smaller, go to STEP24-1. If not, the process proceeds to STEP 23-2.
  • the control device determines whether or not the average outside air temperature is 10 ° C. or higher and within a range lower than 20 ° C. If the average outside air temperature is within the range, the process proceeds to STEP 24-2. If the average outside air temperature is not within the range, the process proceeds to STEP24-3. Note that the threshold values of STEP 3-1 and 3-2 are set to 10 ° C. and 20 ° C., but these threshold values are set for each region where the air-conditioning apparatus according to the present embodiment is installed or for each customer request. It may be changed accordingly.
  • the control device sets the reference heat medium temperature to 30 ° C. Since the reference heat medium temperature Twm is set to 30 ° C., when the temperature width of the heat medium is set to ⁇ 5 ° C., for example, the set lower limit value TLm is 25 ° C., and the set upper limit value THm is 35 ° C. Become. Since the outside air temperature was lower than that of STEP 23-1, the temperature setting in STEP 24-1 is based on the premise of the winter season. That is, since it is estimated that the next operation mode to be implemented is heating, the medium temperature is set to a high 30 ° C.
  • the control device sets the reference heat medium temperature Twm to 20 ° C. Since the reference heat medium temperature Twm is set to 20 ° C., when the temperature width of the heat medium is set to ⁇ 5 ° C., for example, the set lower limit value TLm is 15 ° C., and the set upper limit value THm is 25 ° C. Become. Since the outside air temperature is 10 ° C. or higher and lower than 20 ° C. from STEP 23-2, the temperature setting in STEP 24-2 is based on the premise that the season is in the middle (spring season, autumn season). In other words, since the next operation mode is assumed to be either heating or cooling, the reference temperature is set to 20 ° C. so that both cooling and heating can be easily handled.
  • the control device sets the reference heat medium temperature Twm to 10 ° C. Since the reference heat medium temperature Twm is set to 10 ° C., when the temperature width of the heat medium is set to ⁇ 5 ° C., for example, the set lower limit value TLm is 5 ° C., and the set upper limit value THm is 15 ° C. Become. Since the outside air temperature is higher than 20 ° C. than STEP 23-2, the temperature setting in STEP 24-3 is based on the premise of the summer season. That is, since it is estimated that the next operation mode to be implemented is cooling, the reference temperature is set to a low 10 ° C.
  • the reference heat medium temperature Twm is set to 30 ° C., 20 ° C., and 10 ° C. This temperature Twm may be changed according to each region or each customer's request. For example, the energy-saving property can be further improved by setting the reference heat medium temperature Twm to a temperature close to the average outside air temperature of each season.
  • STEP25 to STEP35 are the control contents corresponding to STEP2 to STEP12 of FIG.
  • the control device drives the pumps 21a and 21b for a predetermined time.
  • the control device stops the pumps 21a and 21b again after driving the pumps 21a and 21b for a predetermined time, and proceeds to STEP26.
  • This STEP 25 is a STEP for preventing the temperature in the vicinity of the sensor from deviating from the average temperature of the heat medium due to temperature unevenness of the heat medium, as in STEP 2 of FIG. 8, and the pumps 21a and 21b are limited in time. Drive.
  • THm a set upper limit value
  • the control device controls various devices so as to perform the heating operation.
  • the control device activates the compressor 10, switches the four-way valve 11 to the heating side, activates the pump 21b, and expands the valves 16a and 16c so that the refrigerant and the heat medium flow in the heating only operation mode. 16e and expansion valves 16b and 16d are closed. Further, as in the heating main operation mode, the refrigerant and the heat medium may be supplied to heat the heat medium.
  • Step 29 The control device determines whether or not a predetermined time has elapsed since the heating operation of STEP 29 was performed. In addition, this predetermined time is good to set according to the length and thickness of refrigerant
  • the control device determines whether or not the detection result of the heat medium temperature Tw is larger than a set lower limit value TLm + C (C is a hunting prevention constant). That is, in this STEP 30, it is determined whether the heat medium temperature is within a range larger than TLm + C. If it exceeds TLm + C, the process proceeds to STEP 31. If TLm + C is not exceeded, STEP 30 is repeated. That is, since the heat medium temperature Tw does not exceed TLm + C, the heating operation is continued until it exceeds TLm + C.
  • C is a hunting prevention constant
  • STEP 31 The control device stops the heating operation. That is, the control device stops the compressor 10 and the pumps 21a and 21b. The control device returns to STEP 21 that is in a standby state again after the end of STEP 31.
  • the control device controls various devices so as to perform the cooling operation.
  • the operation is performed in the cooling mode in order to return the heat medium temperature that is higher than THm and is too high to THm or less.
  • the control device starts the compressor 10, switches the four-way valve 11 to the cooling side, starts the pump 21a, and expands the valves 16b and 16d so that the refrigerant and the heat medium flow in the cooling only operation mode. And the expansion valves 16a, 16c, and 16e are closed. Further, as in the cooling main operation mode, the refrigerant and the heat medium may be supplied to cool the heat medium.
  • Step 33 The control device determines whether or not a predetermined time has elapsed since the cooling operation of STEP 33 was performed. In addition, this predetermined time is good to set according to the length and thickness of refrigerant
  • the control device determines whether or not the detection result of the heat medium temperature Tw is smaller than a set upper limit value THm-C (C is a hunting prevention constant). That is, in this STEP 34, it is determined whether the heat medium temperature is within a range smaller than THm-C. If it is below THm-C, go to STEP35. If not below THm-C, repeat STEP 34. In other words, since the heat medium temperature Tw is not lower than THm-C, the cooling operation is continued until it falls below THm-C.
  • THm-C is a hunting prevention constant
  • the control device stops the cooling operation. That is, the control device stops the compressor 10 and the pumps 21a and 21b. The control device returns to STEP 21 that is in a standby state again after the end of STEP 35.
  • the air conditioning apparatus has been described with respect to the case where the season is estimated from the average outside air temperature and the value of the target heat medium temperature is determined, but the present invention is not limited thereto. Absent. Since it is assumed that the operation will be performed next time in the operation mode performed last, the control device may be provided with a function capable of recording the operation performed last, for example. In other words, when the control device reaches the stop mode, the control device refers to the record of the operation mode performed so far, and the next operation is performed in the operation mode last performed by the control device among the recorded operation modes. Is to implement.
  • the refrigerant circuit includes an accumulator, but a circuit without an accumulator may be used.
  • the check valves 13a to 13d are provided has been described. However, these are not essential parts, and the present invention can be configured by a circuit without them, and the same operation and the same effect can be achieved.
  • a blower to the heat source side heat exchanger 12 and the use side heat exchangers 26a to 26d to promote condensation or evaporation by blowing air.
  • the present invention is not limited to this.
  • a panel heater using radiation can be used, and as the heat source side heat exchanger 12, water or antifreeze liquid can be used.
  • a water-cooled type that moves heat can also be used, and any structure that can dissipate or absorb heat can be used.
  • the flow path switching valves 22a to 22d, 23a to 23d, the stop valves 24a to 24d, and the flow rate adjusting valves 25a to 25d have been described as being connected to the use side heat exchangers 26a to 26d one by one.
  • the present invention is not limited to this, and a plurality of each use-side heat exchanger may be connected. In that case, the flow path switching valve, the stop valve, and the flow rate adjustment valve connected to the same use side heat exchanger may be operated in the same manner.
  • the present invention is not limited to this. If only heating or cooling is required, only one intermediate heat exchanger is required. In that case, since it is not necessary to pass the heat medium through another intermediate heat exchanger during the heat medium temperature adjustment operation, the flow path is further simplified. One or more sets of the intermediate heat exchanger 15a for heating and the intermediate heat exchanger 15b for cooling may be provided.
  • a flow rate adjustment valve of a two-way flow rate adjustment valve whose opening area can be continuously changed by a stepping motor or the like can be used.
  • the control in this case is similar to the case of the three-way flow path adjustment valve, and the flow rate of the flow into the use side heat exchangers 26a to 26d is controlled by adjusting the opening of the two-way flow path adjustment valve. Control is performed so that the temperature difference between the inlet and outlet of the side heat exchangers 26a to 26d becomes a predetermined target value, for example, 5 ° C.
  • the rotational speeds of the pumps 21a and 21b may be controlled so that the temperature on the inlet side or the outlet side of the intermediate heat exchangers 15a and 15b becomes a predetermined target value.
  • two-way flow path adjustment valves are used as the flow rate adjustment valves 25a to 25d, they can also be used to open and close the flow path, so that the stop valves 24a to 24d are not required, and there is an advantage that a system can be constructed at low cost.
  • the flow rate adjustment valves 25a to 25d, the third temperature sensors 33a to 33d, and the fourth temperature sensors 34a to 34d are described as an example in the relay unit 3.
  • the present invention is not limited to this. Even if these are installed near the use side heat exchangers 26a to 26d, that is, inside or near the indoor unit 2, there is no functional problem, and similar operations are performed. To achieve the same effect.
  • the third temperature sensors 33a to 33d and the fourth temperature sensors 34a to 34d are installed in or near the relay unit 3,
  • the flow rate adjustment valves 25a to 25d may be installed in or near the indoor unit 2.
  • the air-conditioning apparatus is a heat medium that operates the pump and circulates the heat medium or completely starts the outdoor unit when the temperature of the heat medium deviates from the set temperature range.
  • Heat source device (outdoor unit), 2 indoor unit, 3 relay unit, 3a parent relay unit, 3b, 3b (1), 3b (2) child relay unit, 4 refrigerant piping, 5 heat medium piping, 6 outdoor space, 7 Indoor space, 8 non-air-conditioned space, 9 buildings, etc.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Combustion & Propulsion (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Signal Processing (AREA)
  • Mathematical Physics (AREA)
  • Fuzzy Systems (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Air Conditioning Control Device (AREA)
  • Other Air-Conditioning Systems (AREA)
  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Abstract

 圧縮機及びポンプが停止している間に、熱媒体温度が予め設定される温度範囲外となると、圧縮機及びポンプを駆動して、冷媒と熱媒体とを中間熱交換器で熱交換させ、熱媒体を加温又は冷却して熱媒体の温度を温度範囲内にする熱媒体温度調整運転モードを備えているものである。

Description

空気調和装置
 本発明は、ビル用マルチエアコンなどの空気調和装置に関するものである。
 従来の空気調和装置であるビル用マルチエアコンにおいては、室外に配置した熱源装置である室外機と室内に配置した室内機の間に冷媒を循環させることにより、室内に冷熱または温熱を搬送していた。冷媒としては、HFC(ハイドロフルオロカーボン)冷媒が多く使われており、CO2 等の自然冷媒を使うものも提案されている。 
 また、別の従来の空気調和装置であるチラーには、室外に配置した熱源装置にて、冷熱または温熱を生成し、室外機内に配置した熱交換器で水や不凍液等の熱媒体に冷熱又は温熱を伝えるものがある(たとえば、特許文献1参照)。このようなチラーでは、熱媒体に伝達された冷熱又は温熱を、室内機であるファンコイルユニットやパネルヒータ等に搬送し、冷房や暖房を実施することができるようになっている。 
 このチラーでは、室外で冷媒と水との熱交換を行い、その水を室内機まで搬送するため、水の搬送動力が非常に大きくなる分、省エネルギー性が低減してしまうという問題があった。
 また、チラーでは、水回路側のポンプを長時間停止させると、冷媒回路の冷媒の冷熱が、熱交換器の近傍の水に伝達され続けてしまい、配管中の水が凍結する可能性があるという問題があった。
 ところで、空気調和装置の中には、冷媒循環回路が室内の近傍にも引き回されたものも提案されている。このような空気調和装置は、冷媒としてHCF冷媒を採用している場合には、室内機にHFC等の冷媒が搬送されることとなる。このため、たとえば室内機側の配管が破損すると、冷媒が室内に漏洩してしまい、室内の環境を悪化させてしまうという問題があった。
 そこで、省エネルギー性に優れ、熱媒体の凍結防止を図り、室内機の近傍にHFC等の冷媒を循環させないように配管を構成した空気調和装置が提案されている(たとえば、特許文献2参照)。
 特許文献2に記載の技術は、熱媒体配管の水の凍結を防止する凍結防止運転モードを備えたものである。この凍結防止運転モードは、圧縮機の停止中、又は、ポンプの停止中に、温度センサーの検出温度が設定温度以下になると、室外機を暖房モードで起動する。そして、高温高圧の冷媒と熱媒体とを熱交換させ、熱媒体配管の熱媒体の凍結を防止する運転モードである。
特開2003-343936号公報(たとえば、図1参照) WO2010/050003A1(たとえば、請求項1及び図1参照)
 特許文献2に記載の技術では、たとえば冷房モード時における圧縮機の停止中に、温度センサーの検出温度が設定温度以下になり、凍結防止運転モードに移行した場合について考える。この場合には、暖房モードが実行されて熱媒体が加温され、熱媒体の凍結が抑制される。
 ここで、凍結防止運転モードから、再び冷房モードに移行するときにおいて、目標とする室内温度を達成するために必要な熱媒体温度と、当該冷房モードの圧縮機起動時点での熱媒体温度との間に大きな差がある場合には、室内へドラフト感(過渡な冷感、温感)のある風を供給してしまい、ユーザーの快適性を損ねてしまう可能性があった。
 なお、ドラフト感がある風を室内に供給しないため、長時間、室内機の吹き出し風量を抑える運転をすると、室内が目標温度に達するまでに要する時間が増大してしまう可能性があった。
 本発明は、上記のような課題を解決するためになされたもので、運転開始直後からドラフト感が少ない(冷風感、温風感の感じられる)風を室内に供給できるとともに、目標室内温度に到達するまでに要する時間が増大してしまうことを抑制することが可能な空気調和装置を提供することを目的としている。
 本発明に係る空気調和装置は、圧縮機と、熱源側熱交換器と、少なくとも1つの膨張弁と、冷媒と熱媒体とを熱交換する中間熱交換器とを有し、これらを冷媒配管で接続して構成した冷凍サイクル回路と、中間熱交換器と、熱媒体を搬送するポンプと、利用側熱交換器とを有し、これらが熱媒体配管で接続されて構成された熱媒体循環回路と、を有する空気調和装置において、圧縮機及びポンプが停止している間に、熱媒体温度が予め設定される温度範囲外となると、圧縮機及びポンプを駆動して、冷媒と熱媒体とを中間熱交換器で熱交換させ、熱媒体を加温又は冷却して熱媒体の温度を温度範囲内にする熱媒体温度調整運転モードを備えているものである。
 本発明の空気調和装置によれば、圧縮機及びポンプの運転が一時的に停止し、外気などによって熱媒体の温度が変化してしまい、予め設定される温度範囲外となってしまっても、圧縮機及びポンプを駆動して、冷媒と熱媒体とを中間熱交換器で熱交換させ、熱媒体の温度を温度範囲内にすることができる。
 これにより、本発明の空気調和装置は、運転開始直後からドラフト感が少ない風を室内に供給できるとともに、目標室内温度に到達するまでに要する時間が増大してしまうことを抑制することができる。
本発明の実施の形態に係る空気調和装置の全体構成図の一例である。 図1とは異なる空気調和装置の全体構成図の一例である。 本発明の実施の形態に係る空気調和装置の冷媒及び熱媒体用回路図の一例である。 全冷房運転時における冷媒および熱媒体の流れを示す回路図である。 全暖房運転時における冷媒および熱媒体の流れを示す回路図である。 冷房主体運転時における冷媒および熱媒体の流れを示す回路図である。 暖房主体運転時における冷媒および熱媒体の流れを示す回路図である。 熱媒体温度調整運転モードの動作を示すフローチャートである。 図8とは異なる熱媒体温度調整運転モードの動作を示すフローチャートである。
 以下、本発明に係る空気調和装置の実施の形態について、図面を参照しながら説明する。なお、以下に説明する実施の形態によって本発明が限定されるものではない。また、図1を含め、以下の図面では各構成部材の大きさの関係が実際のものとは異なる場合がある。
 本実施の形態に係る空気調和装置は、運転開始直後からドラフト感が少ない風を空調空間(たとえば、室内、ビルの一室、倉庫など)に供給できるとともに、目標室内温度に到達するまでに要する時間増大を抑制するための運転モード(熱媒体温度調整運転モード)を備えたものである。
<構成説明>
 図1は、実施の形態に係る空気調和装置の全体構成図の一例である。
 本実施の形態に係る空気調和装置は、熱源装置(室外機)1と、室内等の空調に供される室内機2と、室外機1から離され、非空調空間8等に設置される中継ユニット3とを備えている。
 熱源装置1と中継ユニット3は冷媒配管4で接続され、二相変化する冷媒または超臨界状態の冷媒(一次媒体)が循環する。中継ユニット3と室内機2は熱媒体配管5で接続され、水、ブラインまたは不凍液等の熱媒体(二次媒体)が循環する。中継ユニット3は、熱源装置1から送られてきた冷媒と室内機2から送られてきた熱媒体との間で熱交換等を行わせることができるように中間熱交換器15a、15bなどが搭載されている。
 熱源装置1は、通常、ビル等の建物9の外部空間である室外空間6に配置される。室内機2は、ビルの建物9の内部の居室等の室内空間7に、加熱または冷却された空気を搬送できる位置に配置されている。
 中継ユニット3は、熱源装置1および室内機2とは、別筐体になっており、冷媒配管4および熱媒体の熱媒体配管5で接続されて、室外空間6および室内空間7とは別の場所に設置できるようにされている。図1において、中継ユニット3は、建物9の内部ではあるが室内空間7とは別の空間である天井裏等の非空調空間8に設置されている。なお、中継ユニット3は、エレベータ等がある共用部等に設置することも可能である。 
 熱源装置1と中継ユニット3は、2本の冷媒配管4を用いて接続できるように構成されている。また、中継ユニット3と各室内機2は、それぞれが2本の熱媒体配管5を用いて接続されている。このように2本の配管を用いて接続することにより、空気調和装置の施工が容易になる。 
 図2は、図1とは異なる空気調和装置の全体構成図の一例である。図2に示すように、本実施の形態に係る空気調和装置は、中継ユニット3を複数備えたものであってもよい。すなわち、中継ユニット3を、1つの親中継ユニット3aと、それから派生した2つの子中継ユニット3b(1)、(2)に分けている。このようにすることにより、1つの親中継ユニット3aに対し、子中継ユニット3bを複数接続できるようになる。なお、この構成においては、親中継ユニット3aと子中継ユニット3bの間の接続配管は3本になっている。 
 なお、図1及び図2にいて、室内機2は、天井カセット型を例に示してあるが、それに限定されるものではない。すなわち、室内機2は、たとえば天井埋込型、天井吊下式、室内空間7に直接またはダクト等により、加熱または冷却した空気を吹き出せるように構成されているものであれば、天井カセット型に限定されるものではない。 
 また、熱源装置1は、建物9の外の室外空間6に設置されている場合を例に説明を行ったがそれに限定されるものではない。たとえば、熱源装置1は換気口付の機械室等の囲まれた空間に設定してもよく、熱源装置1を建物9の内部に設置して排気ダクトで廃熱を建物9の外に排気してもよく、あるいは水冷式の熱源装置を用いてそれを建物9の中に設置する等してもよい。 
 また、中継ユニット3は、熱源装置1のそばに置くこともできる。ただし、中継ユニット3から室内機2までの距離が長すぎると、熱媒体の搬送動力が大きくなるため、省エネの効果が薄れる。このため、中継ユニット3を熱源装置1のそばに設置する場合においては、中継ユニット3から室内機2までの距離が長くなりすぎないように熱源装置1の設置位置を決定するとよい。 
 次に、図1及び図2に示した空気調和装置の詳細な構成を説明する。図3は、実施の形態に係る空気調和装置の冷媒及び熱媒体用回路図の一例である。図3に示すように、空気調和装置は、図1及び図2の説明で述べた熱源装置1、室内機2、及び中継ユニット3を有している。なお、以下の説明において、本実施の形態に係る空気調和装置の中継ユニット3は、図2に示す1つの親中継ユニット3aと、1つの子中継ユニット3bとを有しているものとして説明する。
 熱源装置1は、冷媒を圧縮して吐出する圧縮機10と、冷媒の流れを切り換える四方弁11と、凝縮器(放熱器)又は蒸発器として機能する熱源側熱交換器12と、冷房運転及び暖房運転にかかわらず冷媒の流れ方向を一定にすることが可能な逆止弁13a、13b、13c、13dと、余剰冷媒を貯留するアキュムレータ17とが搭載されている。
 室内機2は、蒸発器又は凝縮器として機能する利用側熱交換器26a~26dを有している。
 中継ユニット3は、親中継ユニット3a及び子中継ユニット3bを有している。親中継ユニット3aは、冷媒の気相と液相を分離する気液分離器14と、膨張弁(例えば電子膨張弁)16eとを備えている。 
 子中継ユニット3bは、冷媒と熱媒体とを熱交換させる中間熱交換器15a、15bと、冷媒を減圧させる膨張弁(例えば電子膨張弁)16a~16dと、熱媒体を搬送するポンプ21a、21bと、熱媒体の流れを切り換える三方弁などの流路切替弁22a~22d及び流路切替弁23a~23dとが搭載されている。
 また、子中継ユニット3bは、熱媒体配管5のうち利用側熱交換器26a~26dの入口側に、流路の開閉を行うことができる止め弁24a~24dが設けられ、熱媒体配管5のうち利用側熱交換器26a~26dの出口側に、熱媒体の流量を調整することができる流量調整弁25a~25dが設けられている。
 さらに、子中継ユニット3bは、各利用側熱交換器26a~26dの入口側と出口側とを接続するバイパス27a~27dが設けられている。なお、バイパス27a~27dは、流量調整弁25a~25dと、流路切替弁23a~23dと利用側熱交換器26a~26dとの間の熱媒体配管5と、を接続するように設けられている。
 流路切替弁22a~22d、23a~23dは、各利用側熱交換器26a~26dの入口側流路と出口側流路に対応して設けられている。流路切替弁22a~22dは、複数設置された中間熱交換器の間でそれらの出口側流路を切り替え、流路切替弁23a~23dはそれらの入口側流路を切り替える。
 本実施の形態の例では、流路切替弁22a~22dが中間熱交換器15a、15bの間でそれらの出口側流路を切り替え、流路切替弁23a~23dが中間熱交換器15a、15bの間でそれらの入口側流路を切り替える作用を果たしている。 
 また、利用側熱交換器26a~26dの入口側に、止め弁24a~24dを、利用側熱交換器26a~26dの出口側に、流量調整弁25a~25dを、それぞれ備えている。さらに、各利用側熱交換器26a~26dの入口側と出口側は、流量調整弁25a~25dを介してバイパス27a~27dで接続されている。 
 子中継ユニット3bは、次に説明するように、第一~第七の温度センサー及び圧力センサーを備えている。
 子中継ユニット3bは、中間熱交換器15a、15bの熱媒体出口温度を検出する温度センサー(第一の温度センサー)31a、31bと、中間熱交換器15a、15bの熱媒体入口温度を検出する温度センサー(第二の温度センサー)32a、32bと、 利用側熱交換器26a~26dの熱媒体入口温度を検出する温度センサー(第三の温度センサー)33a~33dと、利用側熱交換器26a~26dの熱媒体出口温度を検出する温度センサー(第四の温度センサー)34a~34dとを有している。
 また、子中継ユニット3bは、中間熱交換器15aの冷媒出口温度を検出する温度センサー(第五の温度センサー)35と、中間熱交換器15bの冷媒入口温度を検出する温度センサー(第六の温度センサー)37と、中間熱交換器15bの冷媒出口温度を検出する温度センサー(第七の温度センサー)38とを有している。
 さらに、子中継ユニット3bは、中間熱交換器15aの冷媒出口圧力を検出する圧力センサー36と、室外機1に設けられ、外気温度を検出する外気温度センサー39とを有している。
 なお、これらの温度センサーおよび圧力センサーは、特に限定されるものではなく、各種の温度計、温度センサー、圧力計、圧力センサーが利用できる。 
 そして、本実施の形態に係る空気調和装置は、圧縮機10、四方弁11、熱源側熱交換器12、逆止弁13a~13d、気液分離器14、膨張弁16a~16e、中間熱交換器15a、15b、アキュムレータ17が冷媒配管で接続されて構成された冷凍サイクル回路を有している。 
 また、本実施の形態に係る空気調和装置は、中間熱交換器15a、ポンプ21a、流路切替弁22a~22d、止め弁24a~24d、利用側熱交換器26a~26d、流量調整弁25a~25d、流路切替弁23a~23dが熱媒体配管で接続されて構成された熱媒体循環回路(第一の熱媒体循環回路とも称する)を有している。本実施の形態に係る空気調和装置は、中間熱交換器15b、ポンプ21b、流路切替弁22a~22d、止め弁24a~24d、利用側熱交換器26a~26d、流量調整弁25a~25d、流路切替弁23a~23dが熱媒体配管で接続されて構成された熱媒体循環回路(第二の熱媒体循環回路とも称する)を有している。 
 なお、図3に示すように、第一の熱媒体循環回路においては、各利用側熱交換器26a~26dが中間熱交換器15aに並列接続され、第二の熱媒体循環回路においても、各利用側熱交換器26a~26dが中間熱交換器15bに対して並列接続されている。
 また、熱源装置1にはそれを構成する機器を制御し、熱源装置1にいわゆる室外機としての動作を行わせる制御装置100が設けられている。また、中継ユニット3にはそれを構成する機器を制御し、後述する動作を行わせる手段を備えた制御装置300が設けられている。これらの制御装置100、300はマイコンなどから構成され、互いに通信可能に接続されている。次に、上記空気調和装置の各運転モードの動作について説明する。 
<全冷房運転> 
 図4は、全冷房運転時における冷媒および熱媒体の流れを示す回路図である。全冷房運転において、冷媒は、圧縮機10により圧縮され、高温高圧のガス冷媒になり、四方弁11を介して熱源側熱交換器12に入る。冷媒は、そこで凝縮されて液化し、逆止弁13aを通って熱源装置1から流出し、冷媒配管4を通って中継ユニット3へ流入する。中継ユニット3において、冷媒は、気液分離器14へ入り、膨張弁16eおよび16aを通って、中間熱交換器15bへ導入される。この際、膨張弁16aによって、冷媒は膨張させられて、低温低圧の二相冷媒となり、中間熱交換器15bは蒸発器として作用する。冷媒は、中間熱交換器15bにおいて低温低圧のガス冷媒となり、膨張弁16cを通って、中継ユニット3から流出し、冷媒配管4を通って再び熱源装置1へ流入する。熱源装置1において、冷媒は、逆止弁13dを通って、四方弁11、アキュムレータ17を介して、圧縮機10へ吸い込まれる。この時、膨張弁16b、16dは冷媒が流れないような小さい開度となっており、膨張弁16cは全開状態とし圧力損失が起きないようにしている。 
 次に、二次側の熱媒体(水、不凍液等)の動きについて説明する。中間熱交換器15bにて、一次側の冷媒の冷熱が二次側の熱媒体に伝えられ、冷やされた熱媒体はポンプ21bによって二次側の配管内を流動させられる。ポンプ21bを出た熱媒体は、流路切替弁22a~22dを介して、止め弁24a~24dを通り、利用側熱交換器26a~26dおよび流量調整弁25a~25dに流入する。この時、流量調整弁25a~25dの作用により、室内にて必要とされる空調負荷を賄うのに必要な流量の熱媒体だけが利用側熱交換器26a~26dに流され、残りはバイパス27a~27dを通って熱交換には寄与しない。バイパス27a~27dを通った熱媒体は、利用側熱交換器26a~26dを通った熱媒体と合流し、流路切替弁23a~23dを通って、中間熱交換器15bへ流入し、再びポンプ21bへ吸い込まれる。 
 なお、室内にて必要とされる空調負荷は、制御装置300により、第三の温度センサー33a~33dと第四の温度センサー34a~34dの検出温度差を、予め定めた目標値に保つように、利用側熱交換器26a~26dを通る熱媒体の流量を制御することにより、賄うことができる。そしてこれは、全暖房運転、冷房主体運転、暖房主体運転でも同様である。 
 なお、熱負荷のない利用側熱交換器(サーモオフを含む)へは熱媒体を流す必要がないため、止め弁24a~24dにより流路を閉じて、当該利用側熱交換器へ熱媒体が流れないようにする。図4においては、利用側熱交換器26aおよび26bにおいては熱負荷があるため熱媒体を流しているが、利用側熱交換器26cおよび26dにおいては熱負荷がなく、対応する止め弁24c、24dが閉となっている。 
<全暖房運転> 
 図5は、全暖房運転時における冷媒および熱媒体の流れを示す回路図である。全暖房運転において、冷媒は、圧縮機10により圧縮され、高温高圧のガス冷媒になり、四方弁11を介して、逆止弁13b通って熱源装置1から流出し、冷媒配管4を通って中継ユニット3へ流入する。中継ユニット3において、冷媒は、気液分離器14を通って、中間熱交換器15aへ導入され、中間熱交換器15aにおいて凝縮されて液化し、膨張弁16dおよび16bを通って、中継ユニット3から流出する。この際、膨張弁16bによって、冷媒は膨張させられて、低温低圧の二相冷媒となり、冷媒配管4を通って再び熱源装置1へ流入する。熱源装置1において、冷媒は、逆止弁13cを通って、熱源側熱交換器12へ導入され、熱源側熱交換器12は蒸発器として作用する。冷媒は、そこで低温低圧のガス冷媒となり、四方弁11、アキュムレータ17を介して、圧縮機10へ吸い込まれる。この時、膨張弁16eと、膨張弁16a若しくは16cは、冷媒が流れないような小さい開度にしている。 
 次に、二次側の熱媒体(水、不凍液等)の動きについて説明する。中間熱交換器15aにて、一次側の冷媒の温熱が二次側の熱媒体に伝えられ、暖められた熱媒体はポンプ21aによって二次側の配管内を流動させられる。ポンプ21aを出た熱媒体は、流路切替弁22a~22dを介して、止め弁24a~24dを通り、利用側熱交換器26a~26dおよび流量調整弁25a~25dに流入する。この時、流量調整弁25a~25dの作用により、室内にて必要とされる空調負荷を賄うのに必要な流量の熱媒体だけが利用側熱交換器26a~26dに流され、残りはバイパス27a~27dを通って熱交換には寄与しない。バイパス27a~27dを通った熱冷媒は、利用側熱交換器26a~26dを通った熱媒体と合流し、流路切替弁23a~23dを通って、中間熱交換器15aへ流入し、再びポンプ21aへ吸い込まれる。なお、室内にて必要とされる空調負荷は、第三の温度センサー33a~33dと第四の温度センサー34a~34dの検出温度差を予め目標値に保つように制御することにより、賄うことができる。 
 この際、熱負荷のない利用側熱交換器(サーモオフを含む)へは熱媒体を流す必要がないため、止め弁24a~24dにより流路を閉じて、当該利用側熱交換器へ熱媒体が流れないようにする。図5においては、利用側熱交換器26aおよび26bにおいては熱負荷があるため熱媒体を流しているが、利用側熱交換器26cおよび26dにおいては熱負荷がなく、対応する止め弁24c、24dが閉となっている。 
<冷房主体運転> 
 図6は、冷房主体運転時における冷媒および熱媒体の流れを示す回路図である。冷房主体運転において、冷媒は、圧縮機10により圧縮され、高温高圧のガス冷媒になり、四方弁11を介して熱源側熱交換器12へ導入される。そこで、ガス状態の冷媒が凝縮して二相冷媒になり、二相状態にて熱源側熱交換器12から流出し、逆止弁13aを通って熱源装置1から流出し、冷媒配管4を通って中継ユニット3へ流入する。中継ユニット3において、冷媒は、気液分離器14へ入って、二相冷媒中のガス冷媒と液冷媒が分離され、ガス冷媒は、中間熱交換器15aへ導入され、中間熱交換器15aにおいて凝縮されて液化し、膨張弁16dを通る。一方、気液分離器14において分離された液冷媒は、膨張弁16eへ流され、中間熱交換器15aにて凝縮液化して膨張弁16dを通った液冷媒と合流し、膨張弁16aを通って、中間熱交換器15bへ導入される。この際、膨張弁16aによって、冷媒は膨張させられて、低温低圧の二相冷媒となり、中間熱交換器15bは蒸発器として作用する。冷媒は、中間熱交換器15bにて低温低圧のガス冷媒となり、膨張弁16cを通って、中継ユニット3を流出し、冷媒配管4を通って再び熱源装置1へ流入する。熱源装置1において、冷媒は、逆止弁13dを通って、四方弁11、アキュムレータ17を介して、圧縮機10へ吸い込まれる。この時、膨張弁16bは冷媒が流れないような小さい開度となっており、膨張弁16cは全開状態とし圧力損失が起きないようにしている。 
 次に、二次側の熱媒体(水、不凍液等)の動きについて説明する。中間熱交換器15aにて、一次側の冷媒の温熱が二次側の熱媒体に伝えられ、暖められた熱媒体はポンプ21aによって二次側の配管内を流動させられる。また、中間熱交換器15bにて、一次側の冷媒の冷熱が二次側の熱媒体に伝えられ、冷された熱媒体はポンプ21bによって二次側の配管内を流動させられる。そして、ポンプ21aおよびポンプ21bを出た熱媒体は、流路切替弁22a~22dを介して、止め弁24a~24dを通り、利用側熱交換器26a~26dおよび流量調整弁25a~25dに流入する。この時、流量調整弁25a~25dの作用により、室内にて必要とされる空調負荷を賄うのに必要な流量の熱媒体だけが利用側熱交換器26a~26dに流され、残りはバイパス27a~27dを通って熱交換には寄与しない。バイパス27a~27dを通った熱媒体は、利用側熱交換器26a~26dを通った熱媒体と合流し、流路切替弁23a~23dを通って、それぞれ、暖かい熱媒体は中間熱交換器15aへ流入し再びポンプ21aへ戻り、冷たい熱媒体は中間熱交換器15bへ流入し再びポンプ21bへ戻る。この間、暖かい熱媒体と冷たい熱媒体は、流路切替弁22a~22dおよび23a~23dの作用により、混合することなく、それぞれ温熱負荷、冷熱負荷がある利用側熱交換器26a~26dへ導入される。なお、室内にて必要とされる空調負荷は、第三の温度センサー33a~33dと第四の温度センサー34a~34dの検出温度差を目標値に保つように制御することにより、賄うことができる。 
 図6は、利用側熱交換器26aにて温熱負荷が発生し、利用側熱交換器26bにて冷熱負荷が発生している状態を示している。 
 また、この際、熱負荷のない利用側熱交換器(サーモオフを含む)へは熱媒体を流す必要がないため、止め弁24a~24dにより流路を閉じて、利用側熱交換器へ熱媒体が流れないようにする。図6においては、利用側熱交換器26aおよび26bにおいては熱負荷があるため熱媒体を流しているが、利用側熱交換器26cおよび26dにおいては熱負荷がなく、対応する止め弁24c、24dが閉となっている。 
<暖房主体運転> 
 図7は、暖房主体運転時における冷媒および熱媒体の流れを示す回路図である。暖房主体運転において、冷媒は、圧縮機10により圧縮され、高温高圧のガス冷媒になり、四方弁11を介して、逆止弁13b通って熱源装置1から流出し、冷媒配管4を通って中継ユニット3へ流入する。中継ユニット3において、冷媒は、気液分離器14を通って、中間熱交換器15aへ導入され、中間熱交換器15aにおいて凝縮されて液化する。その後、膨張弁16dを通った冷媒は、膨張弁16aを通る流路と膨張弁16bを通る流路に分けられる。膨張弁16aを通った冷媒は、膨張弁16aによって膨張させられて低温低圧の二相冷媒となり、中間熱交換器15bへ流入し、中間熱交換器15bは蒸発器として作用する。中間熱交換器15bを出た冷媒は、蒸発してガス冷媒となって、膨張弁16cを通る。一方、膨張弁16bを通った冷媒は、膨張弁16bによって膨張させられて低温低圧の二相冷媒となり、中間熱交換器15bおよび膨張弁16cを通った冷媒と合流して、より乾き度の大きい低温低圧の冷媒となる。そして、合流された冷媒は、中継ユニット3から流出し、冷媒配管4を通って再び熱源装置1へ流入する。熱源装置1において、冷媒は、逆止弁13cを通って、熱源側熱交換器12へ導入され、熱源側熱交換器12は蒸発器として作用する。そこで、低温低圧の二相冷媒が蒸発されてガス冷媒となり、四方弁11、アキュムレータ17を介して、圧縮機10へ吸い込まれる。この時、膨張弁16eは冷媒が流れないような小さい開度としている。 
 次に、二次側の熱媒体(水、不凍液等)の動きについて説明する。中間熱交換器15aにて、一次側の冷媒の温熱が二次側の熱媒体に伝えられ、暖められた熱媒体はポンプ21aによって二次側の配管内を流動させられる。また、中間熱交換器15bにて、一次側の冷媒の冷熱が二次側の熱媒体に伝えられ、冷やされた熱媒体はポンプ21bによって二次側の配管内を流動させられる。そして、ポンプ21aおよびポンプ21bを出た熱媒体は、流路切替弁22a~22dを介して、止め弁24a~24dを通り、利用側熱交換器26a~26dおよび流量調整弁25a~25dに流入する。この時、流量調整弁25a~25dの作用により、室内にて必要とされる空調負荷を賄うのに必要な流量の熱媒体だけが利用側熱交換器26a~26dに流され、残りはバイパス27a~27dを通って熱交換には寄与しない。バイパス27a~27dを通った熱媒体は、利用側熱交換器26a~26dを通った熱媒体と合流し、流路切替弁23a~23dを通って、それぞれ、暖かい熱媒体は中間熱交換器15aへ流入し再びポンプ21aへ戻り、冷たい熱媒体は中間熱交換器15bへ流入し再びポンプ21bへ戻る。この間、暖かい熱媒体と冷たい熱媒体は、流路切替弁22a~22dおよび23a~23dの作用により、混合することなく、それぞれ温熱負荷、冷熱負荷がある利用側熱交換器26a~26dへ導入される。なお、室内にて必要とされる空調負荷は、第三の温度センサー33a~33dと第四の温度センサー34a~34dの検出温度差を目標値に保つように制御することにより、賄うことができる
 図7は、利用側熱交換器26aにて温熱負荷が発生し、利用側熱交換器26bにて冷熱負荷が発生している状態を示している。 
 また、この際、熱負荷のない利用側熱交換器(サーモオフを含む)へは熱媒体を流す必要がないため、止め弁24a~24dにより流路を閉じて、利用側熱交換器へ熱媒体が流れないようにする。図7においては、利用側熱交換器26aおよび26bにおいては熱負荷があるため熱媒体を流しているが、利用側熱交換器26cおよび26dにおいては熱負荷がなく、対応する止め弁24c、24dが閉となっている。 
 以上のように、利用側熱交換器26a~26dにて暖房負荷が発生している場合は、対応する流路切替弁22a~22dおよび23a~23dを加熱用の中間熱交換器15aに接続される流路へ切り替え、利用側熱交換器26a~26dにて冷房負荷が発生している場合は、対応する流路切替弁22a~22dおよび23a~23dを冷却用の中間熱交換器15bに接続される流路へ切り替えることにより、各室内機2にて、暖房運転、冷房運転を自由に行うことができるようになる。 
 なお、流路切替弁22a~22dおよび23a~23dは、三方弁等の三方流路を切り替えられるもの、開閉弁等の二方流路の開閉を行うものを2つ組み合わせる等、流路を切り替えられるものであればよい。また、流路切替弁は、ステッピングモータ駆動式の混合弁等の三方流路の流量を変化させられるものや、電子式膨張弁等の2方流路の流量を変化させられるものを2つ組み合わせるなどにより構成してもよい。その場合は、流路の突然の開閉によるウォーターハンマーを防ぐこともできる。
 利用側熱交換器26a~26dにおける熱負荷は、(1)式で表され、熱媒体の流量と密度と定圧比熱と、利用側熱交換器26a~26dの入口と出口の熱媒体の温度差を乗じたものとなる。ここで、Vwは熱媒体の流量、ρwは熱媒体の密度、Cpwは熱媒体の定圧比熱、Twは熱媒体の温度、添字のinは利用側熱交換器26a~26dの熱媒体入口での値、添字のoutは利用側熱交換器26a~26dの熱媒体出口での値を示す。 
Figure JPOXMLDOC01-appb-M000001
 利用側熱交換器26a~26dへ流す熱媒体の流量が一定の場合、利用側熱交換器26a~26dでの熱負荷の変化に応じ、熱媒体の入出口での温度差が変化する。そこで、利用側熱交換器26a~26dの入出口の温度差を目標とし、これが予め定めた目標値に近づくように、流量調整弁25a~25dを制御することにより、余分な熱媒体をバイパス27a~27dへ流して、利用側熱交換器26a~26dへ流れる流量を制御することができる。利用側熱交換器26a~26dの入出口の温度差の目標値は、例えば5℃等に設定する。 
 なお、図3~図7では、流量調整弁25a~25dが利用側熱交換器26a~26dの下流側に設置する混合弁である場合を例に説明を行ったが、利用側熱交換器26a~26dの上流側に設置する三方弁であってもよい。
<従来の空気調和装置について>
 本実施の形態に係る空気調和装置は、リモコンなどの端末から出力される空調運転の指令が、システムを構成するユニットのうちの少なくとも1つに送信されることで、当該指令に対応する運転がなされる。すなわち、リモコンなどの端末からの出力が、たとえば全て暖房運転である場合においては、制御装置100、300が、全暖房運転を実施することができるように四方弁11などを制御するということである。
 ここで、全暖房運転、全冷房運転、暖房主体運転及び冷房主体運転を実施しているときには、中間熱交換器15a、15bを介して冷媒と、冷媒二次側の熱媒体とが熱交換しているため、熱媒体の温度は、一定に保たれている。
 しかし、停止モードになると、熱媒体配管5内の熱媒体が、熱媒体配管5の周囲の空気などと熱交換する。すなわち、熱媒体温度が、周囲の空気温度(外気、室内側温度)に影響を受けるということである。これにより、熱媒体の温度が、特に夏季や冬季には冷房、暖房運転するのに適していない温度になる。なお、停止モードとは、空気調和装置の電源はONになっているが、室内空間が目標温度に達した等により、一時的に空調運転を停止することを指す。なお、この停止モードにおいて、空調運転を停止とは、圧縮機10、ポンプ21a、21b、及び利用側熱交換器26a~26dに付設されるファン(図示省略)の運転を停止しているモードである。但し、停止モードにおいては、熱源装置1は停止しているが、室内機2は送風運転をしている場合もある。
 この停止モードから、冷房、又は暖房運転に移行した場合、(1)室内にドラフト感のある風を供給するか、(2)ドラフト感を抑制するために長時間にわたって室内機吹き出し風量を抑制した運転を実施することになる。
 すなわち、(1)夏季においては、停止モード時に熱媒体の温度が上昇してしまう。このため、停止モードから冷房運転に移行すると、利用側熱交換器26a~26dに温度の上昇した熱媒体が供給されるため、ファンを介して室内に供給される空気温度が上昇し、ユーザーにドラフト感(過渡な温感)を与えてしまうこととなる。
 冬季においては、停止モード時に熱媒体の温度が低下してしまう。このため、停止モードから暖房運転に移行すると、利用側熱交換器26a~26dに温度の低下した熱媒体が供給されるため、ファンを介して室内に供給される空気温度が低下し、ユーザーにドラフト感(過度な冷感)を与えてしまうことなる。
 また、(2)熱媒体の温度が低下するまで(夏季)、或いは、熱媒体の温度が上昇するまで(冬季)、ファンの風量を抑制した運転を実施し、上記の(1)のドラフト感を抑制することもできる。しかし、この場合には、室内が目標温度に達するまでに要する時間が増大してしまう。
 そこで、本実施の形態に係る空気調和装置は、図8及び図9に示すフローチャートの制御を実施し、(1)及び(2)の課題を解決することができるようになっている。
<熱媒体温度調整運転モードについて>
 熱媒体温度調整運転モードは、熱媒体の凍結を防止する運転を実施し終えて、ポンプ21a、21bを停止した場合において、外気などを介して熱媒体が加温又は冷却されることで変化する熱媒体の温度を、予め定めた温度範囲内に収めるようにする運転モードである。具体的には、本実施の形態に係る空気調和装置は、2つの熱媒体温度調整運転モードを実施することができるようになっている。
 (A)一方は、外気温度センサー39を利用しない場合の運転モードである。すなわち、本実施の形態の空気調和装置は外気温度センサー39を有しているが、仮に有していなくとも、熱媒体温度調整運転モードを実施することができるということである。
 (B)他方は、上記(A)で実施する制御に加えて、さらに、外気温度センサー39を利用した制御を実施する運転モードである。すなわち、他方は、外気温度センサー39の検出結果に基づいて季節を予測し、上記(A)では一定である予め定めた温度範囲を変化させる運転モードである。
 なお、図6、7に示すように、本実施の形態に係る空気調和装置は、冷暖同時運転が可能なシステムを有している。このため、本実施の形態に係る空気調和装置の熱媒体温度調整運転モードは、冷房・暖房どちらのモードにも対応できるものとしている。
 図8は、熱媒体温度調整運転モードの動作を示すフローチャートである。まず、上記(A)にて述べた熱媒体温度調整運転モードについて説明する。なお、以下の説明においては、制御装置100及び制御装置500をまとめて「制御装置」と称するものとする。
(STEP1)
 制御装置は、圧縮機10及びポンプ21a、21bが停止してから予め定めた時間(たとえば、1時間)が経過しているか否かを判定する。
 予め定めた時間が経過している場合には、STEP2に移る。
 予め定めた時間が経過していない場合には、STEP1を繰り返す。
(STEP2)
 制御装置は、ポンプ21a、21bを予め定めた時間だけ駆動する。
 制御装置は、ポンプ21a、21bを予め定めた時間運転させた後はポンプ21a、21bを再び停止させ、STEP3へ移る。
 本STEP2は、熱媒体の温度ムラによって、センサー近辺の温度が熱媒体の平均温度から逸脱しないようにするためのSTEPであり、時間を限定してポンプ21a、21bを駆動する。
(STEP3)
 制御装置は、熱媒体温度Twの検出結果が、設定下限値TL以上であり、且つ、設定上限値TH以下であるか否かを判定する。たとえば、基準となる温度を20℃とたとき、±5℃の範囲内(TL=15℃、TH=25℃)に熱媒体温度Twが収まっているか否かを判定するということである。
 範囲内に収まっている場合には、STEP1に戻る。
 範囲内に収まっていない場合には、STEP4に移る。
(STEP4)
 制御装置は、熱媒体温度Twの検出結果が、設定上限値TH(たとえば、TH=25℃)よりも大きいか否かを判定する。すなわち、このSTEP4では、水温が基準となる温度範囲の上限を超えているか否かの判定を実施するということである。
 熱媒体温度TwがTHよりも大きい場合には、STEP9に移る。
 熱媒体温度TwTHよりも大きくない場合、すなわちTLよりも小さい場合には、STEP5に移る。
(STEP5)
 制御装置は、暖房運転を実施するように各種機器を制御する。
 本STEP5では、TLよりも小さくなっており、低くなりすぎた熱媒体温度をTL以上に戻すため、暖房モードで運転させるようにしている。
 このため、制御装置は、全暖房運転モードの冷媒及び熱媒体の流れになるように、圧縮機10を起動し、四方弁11を暖房側に切り換え、ポンプ21bを起動し、膨張弁16a、16c、16eを開き、膨張弁16b、16dを閉じる。また、暖房主体運転モード時のように冷媒及び熱媒体を流し、熱媒体を加温してもよい。
 なお、室内機2a~2dに付設されたファンが動いていると、室内に要求されていない風を供給することになる。このため、この室内機2a~2dより吹き出される風量は、0又はドラフト感を感じ得ないような微風とする。
(STEP6)
 制御装置は、STEP5の暖房運転を実施してから予め定めた時間が経過しているか否かを判定する。なお、この予め定めた時間は、たとえば、冷媒配管や枝配管の長さや太さに応じて設定するとよい。
 予め定めた時間が経過している場合には、STEP7に移る。
 予め定めた時間が経過していない場合には、STEP6を繰り返す。
(STEP7)
 制御装置は、熱媒体温度Twの検出結果が、設定下限値TL+C(Cは、ハンチング防止定数)よりも大きいか否かを判定する。すなわち、本STEP7では、熱媒体温度TwがTL+Cよりも大きい範囲に収まっているかを判定する。
 TL+Cを超えている場合には、STEP8に移る。
 TL+Cを超えていない場合には、STEP7を繰り返す。つまり、熱媒体温度Twが、TL+Cを超えていないため、TL+Cを超えるまで暖房運転を継続することになる。
(STEP8)
 制御装置は、暖房運転を停止する。すなわち、制御装置は、圧縮機10及びポンプ21a、21bを停止する。なお、制御装置は、本STEP8の終了後、再び待機状態であるSTEP1へと戻る。
(STEP9)
 制御装置は、冷房運転を実施するように各種機器を制御する。
 本STEP9では、熱媒体温度TwがTHよりも大きくなっており、高くなりすぎた熱媒体温度をTH以下に戻すため、冷房モードで運転させるようにしている。
 このため、制御装置は、全冷房運転モードの冷媒及び熱媒体の流れになるように、圧縮機10を起動し、四方弁11を冷房側に切り換え、ポンプ21aを起動し、膨張弁16b、16dを開き、膨張弁16a、16c、16eを閉じる。また、冷房主体運転モード時のように冷媒及び熱媒体を流し、熱媒体を冷却してもよい。
 なお、室内機2a~2dに付設されたファンが動いていると、室内に要求されていない風を供給することになる。このため、この室内機2a~2dより吹き出される風量は、0又はドラフト感を感じ得ないような微風とする。
(STEP10)
 制御装置は、STEP5の冷房運転を実施してから予め定めた時間が経過しているか否かを判定する。なお、この予め定めた時間は、たとえば、冷媒配管や枝配管の長さや太さに応じて設定するとよい。
 予め定めた時間が経過している場合には、STEP11に移る。
 予め定めた時間が経過していない場合には、STEP10を繰り返す。
(STEP11)
 制御装置は、熱媒体温度Twの検出結果が、設定上限値TH-C(Cは、ハンチング防止定数)よりも小さいか否かを判定する。すなわち、本STEP11では、熱媒体温度がTH-Cよりも小さい範囲に収まっているかを判定する。
 TH-Cを下回っている場合には、STEP12に移る。
 TH-Cを下回っていない場合には、STEP11を繰り返す。つまり、熱媒体温度Twが、TH-Cを下回っていないため、TH-Cを下回るまで冷房運転を継続することになる。
(STEP12)
 制御装置は、冷房運転を停止する。すなわち、制御装置は、圧縮機10及びポンプ21a、21bを停止する。なお、制御装置は、本STEP12の終了後、再び待機状態であるSTEP1へと戻る。
 なお、ドラフト感を防止するためとはいえ、頻繁に室外機1(圧縮機10及び四方弁11)を起動させると省エネルギー性が損なわれることになる。このため、STEP7やSTEP11では、熱媒体温度Twのハンチングにより、室外機1(圧縮機10及び四方弁11)が必要以上に発停を繰り返すことを防止するため、ハンチング防止定数Cを含めたうえで、熱媒体温度がTL~THの範囲内に収まっているか判定するようにしている。
 また、図8では、基準となる温度を20℃とし、±5℃の範囲内(TL=15℃、TH=25℃)に熱媒体温度Twが収まっているか否かという判定を実施する例を説明したが、それに限定されるものではなく、この基準となる温度は、任意に選択しても良い。
 ただし、基準となる温度を、なるべく中間期の外気温度に近い温度を設定すれば、室外機1(圧縮機10及び四方弁11)の起動回数が減少し、省エネルギー性を向上させることが出来る。
 すなわち、本実施の形態に係る空気調和装置は、停止モード時においても、圧縮機10及びポンプ21a、21bを駆動し、ドラフト感を与えないように熱媒体温度を予め定めた範囲内に保つため、その分のエネルギーを消費している。しかし、基準となる温度を、たとえば中間期の外気温度に近い温度等に設定することで、この消費するエネルギーを抑制し、空気調和装置の省エネルギー性を向上させることが出来る。
 なお、本実施の形態に係る空気調和装置は、制御装置が、ポンプ21a、21bを駆動させるよりも前、又は、駆動させるのと同時(同時には略同時を含む)に、熱媒体の循環流路が確保される方向に流路切替弁22a~22d、23a~23dを切り換えるようにしている。これにより、熱媒体循環回路内の熱媒体は、中間熱交換器15a、15bで加温又は冷却された後に、中間熱交換器15a、15b側から利用側熱交換器26a~26d側へ搬送されることとなり、熱媒体の温度ムラを抑制することができる。
 図9は、図8とは異なる熱媒体温度調整運転モードの動作を示すフローチャートである。
 先述した図8は、冷房運転又は暖房運転時における熱媒体温度を予め定めた温度範囲内となるように維持し、再度冷房運転又は暖房運転が開始しても、迅速に熱媒体温度を目標温度に冷却又は加温することができるようにする制御であった。すなわち、図8では、冷房運転及び暖房運転のうちのいずれを実施していても、迅速に熱媒体温度を目標温度にすることができるようになっている。
 図9に示す熱媒体温度調整運転モードは、図8における予め定めた温度範囲を、外気温度に応じて変化させるようにした点で異なっている。より詳細には、図9に示す熱媒体温度調整運転モードでは、図8における予め定めた温度範囲の上限値及び下限値を、予めサンプリングした外気温度の平均値に応じて夏季、中間期(春季、秋期)、冬季の3パターンに変更するようにした点で異なっている。
(STEP21)
 制御装置は、平均外気温度及び熱媒体温度を継続してサンプリングする。
 本実施の形態では、制御装置が、1日又は数日程度の平均外気温度及び熱媒体温度を継続してサンプリングしている。本STEP21にてサンプリングされたデータは、後述するSTEP24-1~STEP24-3における基準となる熱媒体温度の決定に利用される。
(STEP22)
 制御装置は、圧縮機10及びポンプ21a、21bが停止してから予め定めた時間(たとえば、1時間)が経過しているか否かを判定する。
 予め定めた時間が経過している場合には、STEP23に移る。
 予め定めた時間が経過していない場合には、STEP22を繰り返す。
(STEP23-1)
 制御装置は、平均外気温度が10℃より小さいか否かを判定する。
 小さい場合には、STEP24-1に移る。
 小さくない場合には、STEP23-2に移る。
(STEP23-2)
 制御装置は、平均外気温度が10℃以上であり、且つ、20℃より小さい範囲内であるか否かを判定する。
 平均外気温度が範囲内である場合には、STEP24-2に移る。
 平均外気温度が範囲内でない場合には、STEP24-3に移る。
 なお、STEP3-1、3-2の閾値を10℃、20℃と設定しているが、この閾値は本実施の形態に係る空気調和装置が設置される地域毎、又は顧客の要望毎等に応じて変更しても良い。
(STEP24-1)
 制御装置は、基準となる熱媒体温度を30℃に設定する。なお、基準となる熱媒体温度Twmを30℃と設定したため、熱媒体の温度幅をたとえば±5℃と設定した場合には、設定下限値TLmが25℃となり、設定上限値THmが35℃となる。
 STEP23-1より外気温度が低かったことから、本STEP24-1では、冬季であることを前提とした温度設定となっている。すなわち、次回の実施される運転モードは暖房であると推測されることから、媒体温度は30℃と高めに設定している。
(STEP24-2)
 制御装置は、基準となる熱媒体温度Twmを20℃に設定する。なお、基準となる熱媒体温度Twmを20℃と設定したため、熱媒体の温度幅をたとえば±5℃と設定した場合には、設定下限値TLmが15℃となり、設定上限値THmが25℃となる。
 STEP23-2より外気温度が10℃以上、20℃未満であったことから、本STEP24-2では、中間季(春期、秋期)であることを前提とした温度設定となっている。すなわち、次回の実施される運転モードは暖房及び冷房のいずれも想定されるため、基準となる温度を20℃とし、冷房及び暖房のどちらにも対応しやすいようにしている。
(STEP24-3)
 制御装置は、基準となる熱媒体温度Twmを10℃に設定する。なお、基準となる熱媒体温度Twmを10℃と設定したため、熱媒体の温度幅をたとえば±5℃と設定した場合には、設定下限値TLmが5℃となり、設定上限値THmが15℃となる。
 STEP23-2より外気温度が20℃以上と高かったことから、本STEP24-3では、夏季であることを前提とした温度設定となっている。すなわち、次回の実施される運転モードは冷房であると推測されるため、基準となる温度を10℃と低めに設定している。
 なお、STEP24-1~24-3において、基準の熱媒体温度Twmを30℃、20℃、10℃と設定している。この温度Twmは、地域毎、又は顧客の要望毎等に応じて変更しても良い。たとえば、基準の熱媒体温度Twmを、各々の季節の平均外気温度に近い温度設定することで、さらに省エネルギー性を向上させることが出来る。
 以下のSTEP25~STEP35は、図8のSTEP2~STEP12に対応する制御内容となっている。
(STEP25)
 制御装置は、ポンプ21a、21bを予め定めた時間だけ駆動する。
 制御装置は、ポンプ21a、21bを予め定めた時間駆動させた後はポンプ21a、21bを再び停止させ、STEP26へ移る。
 本STEP25は、図8のSTEP2と同様に、熱媒体の温度ムラによって、センサー近辺の温度が熱媒体の平均温度から逸脱しないようにするためのSTEPであり、時間を限定してポンプ21a、21bを駆動する。
(STEP26)
 制御装置は、熱媒体温度Twの検出結果が、設定下限値TLm以上であり、且つ、設定上限値THm以下であるか否かを判定する。たとえば、STEP24-2を介して本STEP26に至っている場合には、基準となる温度が20℃であり、±5℃の範囲内(TLm=15℃、THm=25℃)に熱媒体温度Twが収まっているか否かを判定するということである。
 範囲内に収まっている場合には、STEP21に戻る。
 範囲内に収まっていない場合には、STEP27に移る。
(STEP27)
 制御装置は、熱媒体温度Twの検出結果が、設定上限値THm(たとえば、THm=25℃)よりも大きいか否かを判定する。すなわち、このSTEP27では、熱媒体温度Twが基準となる温度範囲の上限を超えているか否かの判定を実施するということである。
 THmよりも大きい場合には、STEP32に移る。
 THmよりも大きい場合、すなわちTLmよりも小さい場合には、STEP28に移る。
(STEP28)
 制御装置は、暖房運転を実施するように各種機器を制御する。
 本STEP28では、TLmよりも小さくなっており、低くなりすぎた熱媒体温度をTLm以上に戻すため、暖房モードで運転させるようにしている。
 このため、制御装置は、全暖房運転モードの冷媒及び熱媒体の流れになるように、圧縮機10を起動し、四方弁11を暖房側に切り換え、ポンプ21bを起動し、膨張弁16a、16c、16eを開き、膨張弁16b、16dを閉じる。また、暖房主体運転モード時のように冷媒及び熱媒体を流し、熱媒体を加温してもよい。
 なお、室内機2a~2dに付設されたファンが動いていると、室内に要求されていない風を供給することになる。このため、この室内機2a~2dより吹き出される風量は、0又はドラフト感を感じ得ないような微風とする。
(STEP29)
 制御装置は、STEP29の暖房運転を実施してから予め定めた時間が経過しているか否かを判定する。なお、この予め定めた時間は、たとえば、冷媒配管や枝配管の長さや太さに応じて設定するとよい。
 予め定めた時間が経過している場合には、STEP30に移る。
 予め定めた時間が経過していない場合には、STEP29を繰り返す。
(STEP30)
 制御装置は、熱媒体温度Twの検出結果が、設定下限値TLm+C(Cは、ハンチング防止定数)よりも大きいか否かを判定する。すなわち、本STEP30では、熱媒体温度がTLm+Cよりも大きい範囲に収まっているかを判定する。
 TLm+Cを超えている場合には、STEP31に移る。
 TLm+Cを超えていない場合には、STEP30を繰り返す。つまり、熱媒体温度Twが、TLm+Cを超えていないため、TLm+Cを超えるまで暖房運転を継続する。
(STEP31)
 制御装置は、暖房運転を停止する。すなわち、制御装置は、圧縮機10及びポンプ21a、21bを停止する。なお、制御装置は、本STEP31の終了後、再び待機状態であるSTEP21へと戻る。
(STEP32)
 制御装置は、冷房運転を実施するように各種機器を制御する。
 本STEP32では、THmよりも大きくなっており、高くなりすぎた熱媒体温度をTHm以下に戻すため、冷房モードで運転させるようにしている。
 このため、制御装置は、全冷房運転モードの冷媒及び熱媒体の流れになるように、圧縮機10を起動し、四方弁11を冷房側に切り換え、ポンプ21aを起動し、膨張弁16b、16dを開き、膨張弁16a、16c、16eを閉じる。また、冷房主体運転モード時のように冷媒及び熱媒体を流し、熱媒体を冷却してもよい。
 なお、室内機2a~2dに付設されたファンが動いていると、室内に要求されていない風を供給することになる。このため、この室内機2a~2dより吹き出される風量は、0又はドラフト感を感じ得ないような微風とする。
(STEP33)
 制御装置は、STEP33の冷房運転を実施してから予め定めた時間が経過しているか否かを判定する。なお、この予め定めた時間は、たとえば、冷媒配管や枝配管の長さや太さに応じて設定するとよい。
 予め定めた時間が経過している場合には、STEP34に移る。
 予め定めた時間が経過していない場合には、STEP33を繰り返す。
(STEP34)
 制御装置は、熱媒体温度Twの検出結果が、設定上限値THm-C(Cは、ハンチング防止定数)よりも小さいか否かを判定する。すなわち、本STEP34では、熱媒体温度がTHm-Cよりも小さい範囲に収まっているかを判定する。
 THm-Cを下回っている場合には、STEP35に移る。
 THm-Cを下回っていない場合には、STEP34を繰り返す。つまり、熱媒体温度Twが、THm-Cを下回っていないため、THm-Cを下回るまで冷房運転を継続することになる。
(STEP35)
 制御装置は、冷房運転を停止する。すなわち、制御装置は、圧縮機10及びポンプ21a、21bを停止する。なお、制御装置は、本STEP35の終了後、再び待機状態であるSTEP21へと戻る。
 図9の説明に示すように、本実施の形態に係る空気調和装置は、平均外気温度から季節を推測し、目標熱媒体温度の値を決定する場合について説明したが、それに限定されるものではない。最後に実施した運転モードで、次回も運転がなされると想定されることから、たとえば最後に実施した運転を記録しておける機能を制御装置に具備させてもよい。すなわち、制御装置は、停止モードに至った場合には、これまでに行った運転モードの記録を参照し、当該記録された運転モードのうち制御装置が最後に実施した運転モードで、次回の運転を実施するということである。
 冷媒としては、R-22、R-134a等の単一冷媒、R-410A、R-404A等の擬似共沸混合冷媒、R-407C等の非共沸混合冷媒、化学式内に二重結合を含む、CF3CF=CH2等の地球温暖化係数が比較的小さい値とされている冷媒やその混合物、あるいはCO2やプロパン等の自然冷媒でもよい。 
 なお、ここでは、冷媒回路にアキュムレータを含む構成としたが、アキュムレータがない回路でもよい。また、逆止弁13a~13dがある場合について説明したが、これらも必須の部品ではなく、これらがない回路により本発明を構成して、同様の動作および同様の効果を奏することができる。 
 また、熱源側熱交換器12および利用側熱交換器26a~26dには、送風機を取り付け、送風により凝縮あるいは蒸発を促進させることが好ましい。ただし、これに限るものではなく、例えば利用側熱交換器26a~26dとしては放射を利用したパネルヒータのようなものも用いることができるし、熱源側熱交換器12としては、水や不凍液により熱を移動させる水冷式のタイプも用いることができ、放熱あるいは吸熱をできる構造のものであればどんなものでも用いることができる。 
 また、ここでは、利用側熱交換器26a~26dが4つである場合を例に説明を行ったが、利用側熱交換器の台数には制限されない。 
 また、流路切替弁22a~22d、23a~23d、止め弁24a~24d、流量調整弁25a~25dは、各利用側熱交換器26a~26dにそれぞれ1つづつ接続される場合について説明したが、これに限るものではなく、各利用側熱交換器1つに対し、それぞれが複数接続されていてもよい。その場合には、同じ利用側熱交換器に接続されている、流路切替弁、止め弁、流量調整弁を同じように動作させればよい。 
 また、上記の実施の形態では、加熱用の中間熱交換器15aと、冷却用の中間熱交換器15bがある場合を例に説明を行ったが、これに限るものではない。暖房または冷房のみであれば、中間熱交換器は一台で済む。その場合には、熱媒体温度調整運転時、別の中間熱交換器に熱媒体を通す必要がないため、その流路はより簡素化される。また、加熱用の中間熱交換器15aと冷却用の中間熱交換器15bとを1組以上設けても良い。 
 また、図3等の三方流路型の流量調整弁25a~25dに代えて、ステッピングモータ等により開口面積を連続的に変化させられる二方流路調整弁の流量調整弁を用いることもできる。この場合の制御は、三方流路調整弁の場合と類似であり、二方流路調整弁の開度を調整して、利用側熱交換器26a~26dへ流入させる流量を制御して、利用側熱交換器26a~26dの入口と出口の温度差が予め定めた目標値、例えば5℃、になるように制御する。その上で、中間熱交換器15a、15bの入口側または出口側の温度が、予め定めた目標値になるようにポンプ21a、21bの回転数を制御すればよい。流量調整弁25a~25dとして二方流路調整弁を用いると、流路の開閉にも用いることができるため、止め弁24a~24dが不要になり、安価にシステムを構築できるというメリットがある。 
 また、ここでは、流量調整弁25a~25d、第三の温度センサー33a~33d、第四の温度センサー34a~34dが、中継ユニット3の内部に設置されている場合を例に説明を行ったが、これに限るものではなく、これらを利用側熱交換器26a~26dの近く、すなわち、室内機2の内部または近くに設置するようにしても、機能的には何ら問題はなく、同様の動作をし、同様の効果を奏する。また、流量調整弁25a~25dとして二方流路調整弁を用いた場合は、第三の温度センサー33a~33d、第四の温度センサー34a~34dを中継ユニット3の内部あるいは近傍に設置し、流量調整弁25a~25dを室内機2の内部あるいは近傍に設置するようにしてもよい。 
 以上のように本実施の形態の空気調和装置は、熱媒体の温度が設定温度範囲を逸脱した
場合に、ポンプを動作させ熱媒体を循環させる、室外機を完結的に起動させる等の熱媒体温度を調整する運転を行うことにより、室内にドラフト感が少ない風を供給でき、室内温度も目標とする室内温度に比較的短時間で達することが出来る。
[本実施の形態に係る空気調和装置の有する効果]
 停止モードに移行(空調運転が一時的に停止)して圧縮機及びポンプの運転が一時的に停止していると、外気などによって熱媒体の温度が変化してしまい、予め設定される温度範囲外となってしまう場合がある。しかし、本実施の形態に係る空気調和装置は、予め設定される温度範囲外となると、圧縮機10及びポンプ21a、21bを駆動して、冷媒と熱媒体とを中間熱交換器15a、15bで熱交換させ、熱媒体の温度を予め設定される温度範囲内にすることができる。これにより、運転開始直後からドラフト感が少ない風を室内に供給できるとともに、目標室内温度に到達するまでに要する時間が増大してしまうことを抑制することができる。
 1 熱源装置(室外機)、2 室内機、3 中継ユニット、3a 親中継ユニット、3b、3b(1)、3b(2) 子中継ユニット、4 冷媒配管、5 熱媒体配管、6 室外空間、7 室内空間、8 非空調空間、9 ビル等の建物、10 圧縮機、11 四方弁、12 熱源側熱交換器、13a~13d 逆止弁、14 気液分離器、15a、15b 中間熱交換器、16a~16e、膨張弁、17 アキュムレータ、21a、21b ポンプ、22a~22d 流路切替弁、23a~23d 流路切替弁、24a~24d 止め弁、25a~25d 流量調整弁、26a~26d 利用側熱交換器、27a~27d バイパス、28a、28b バイパス止め弁、31a、31b 第一の温度センサー、32a、32b 第二の温度センサー、33a~33d 第三の温度センサー、34a~34d 第四の温度センサー、35 第五の温度センサー、36 圧力センサー、37 第六の温度センサー、38 第七の温度センサー、39 第八の温度センサー。

Claims (8)

  1.  圧縮機と、熱源側熱交換器と、少なくとも1つの膨張弁と、冷媒と熱媒体とを熱交換する中間熱交換器とを有し、これらを冷媒配管で接続して構成した冷凍サイクル回路と、 
     前記中間熱交換器と、前記熱媒体を搬送するポンプと、利用側熱交換器とを有し、これらが熱媒体配管で接続されて構成された熱媒体循環回路と、を有する空気調和装置において、
     前記圧縮機及び前記ポンプが停止している間に、熱媒体温度が予め設定される温度範囲外となると、
     前記圧縮機及び前記ポンプを駆動して、前記冷媒と前記熱媒体とを前記中間熱交換器で熱交換させ、前記熱媒体を加温又は冷却して前記熱媒体の温度を前記温度範囲内にする熱媒体温度調整運転モードを備えている
     ことを特徴とする空気調和装置。
  2.  前記熱媒体の温度を検出する温度センサーと、
     少なくとも前記温度センサーの検出結果に基づいて前記圧縮機及び前記ポンプを制御し、前記熱媒体温度調整運転モードを行う制御装置と、
     複数の前記中間熱交換器と、
     前記熱媒体循環回路のうちの前記利用側熱交換器の前記熱媒体の入口側及び出口側のそれぞれに設けられ、複数の前記中間熱交換器を通過した前記熱媒体を、どの前記利用側熱交換器に供給するかを切り換える複数の流路切替弁と、
     を有し、
     前記制御装置は、
     少なくとも2つ以上の前記中間熱交換器から前記利用側熱交換器に前記熱媒体が供給されるように前記流路切替弁を制御し、
     前記中間熱交換器の1つから前記利用側熱交換器に供給される前記熱媒体と、前記複数の中間熱交換器の他の1つから前記利用側熱交換器に供給される前記熱媒体とが、前記流路切替弁を介して混合する
     ことを特徴とする請求項1に記載の空気調和装置。
  3.  前記制御装置は、
     前記温度センサーの検出結果が、前記温度範囲より大きい場合において、
     前記中間熱交換器を蒸発器として機能させ、当該中間熱交換器を通過する前記熱媒体を冷却する
     ことを特徴とする請求項2に記載の空気調和装置。 
  4.  前記制御装置は、
     前記圧縮機及び前記ポンプを駆動してから予め定めた時間が経過した後の前記温度センサーの検出結果が、前記温度範囲の下限値にハンチング防止定数を加えた値より大きく、且つ、前記温度範囲の上限値以下である場合には、
     前記圧縮機及び前記ポンプを停止する
     ことを特徴とする請求項3に記載の空気調和装置。
  5.  前記制御装置は、
     前記温度センサーの検出結果が、前記温度範囲より小さい場合において、
     前記中間熱交換器を放熱器として機能させ、当該中間熱交換器を通過する前記熱媒体を加温する
     ことを特徴とする請求項2に記載の空気調和装置。
  6.  前記制御装置は、
     前記圧縮機及び前記ポンプを駆動してから予め定めた時間が経過した後の前記温度センサーの検出結果が、前記温度範囲の上限値にハンチング防止定数を減じた値より小さく、且つ、前記温度範囲の下限値以上である場合には、
     前記圧縮機及び前記ポンプを停止する
     ことを特徴とする請求項5に記載の空気調和装置。
  7.  前記制御装置は、
     前記ポンプを駆動させるよりも前、又は、駆動させるのと同時に、前記熱媒体の循環流路が確保される方向に前記流路切替弁を開き、
     前記中間熱交換器と前記利用側熱交換器との間を前記熱媒体が循環するようにしている
     ことを特徴とする請求項2~6のいずれか一項に記載の空気調和装置。
  8.  外気温度を検出する外気温度センサーを有し、
     前記制御装置は、
     前記外気温度センサーに検出結果に基づいて、予め定めた期間内の外気の平均温度を算出し、
     当該算出した平均温度に基づいて、前記温度範囲の上限値及び下限値を決定する
     ことを特徴とする請求項2~7のいずれか一項に記載の空気調和装置。
PCT/JP2012/076248 2012-10-10 2012-10-10 空気調和装置 WO2014057550A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP12886407.1A EP2908070B1 (en) 2012-10-10 2012-10-10 Air conditioning device
PCT/JP2012/076248 WO2014057550A1 (ja) 2012-10-10 2012-10-10 空気調和装置
US14/417,870 US20150253020A1 (en) 2012-10-10 2012-10-10 Air-conditioning apparatus
CN201280076341.6A CN104704300B (zh) 2012-10-10 2012-10-10 空调装置
JP2014540684A JP5911590B2 (ja) 2012-10-10 2012-10-10 空気調和装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2012/076248 WO2014057550A1 (ja) 2012-10-10 2012-10-10 空気調和装置

Publications (1)

Publication Number Publication Date
WO2014057550A1 true WO2014057550A1 (ja) 2014-04-17

Family

ID=50477039

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/076248 WO2014057550A1 (ja) 2012-10-10 2012-10-10 空気調和装置

Country Status (5)

Country Link
US (1) US20150253020A1 (ja)
EP (1) EP2908070B1 (ja)
JP (1) JP5911590B2 (ja)
CN (1) CN104704300B (ja)
WO (1) WO2014057550A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016002111A1 (ja) * 2014-06-30 2016-01-07 正 岡本 冷暖房空調システム
WO2017119137A1 (ja) * 2016-01-08 2017-07-13 三菱電機株式会社 空気調和装置
JP2019138611A (ja) * 2018-02-15 2019-08-22 株式会社コロナ ヒートポンプ空調システム
WO2019215916A1 (ja) * 2018-05-11 2019-11-14 三菱電機株式会社 冷凍サイクル装置
JPWO2022157918A1 (ja) * 2021-01-22 2022-07-28

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9468158B2 (en) * 2011-07-18 2016-10-18 Phaza Energy Ltd. Apparatus and method for controlling a greenhouse environment
JP5892120B2 (ja) * 2013-08-02 2016-03-23 三菱電機株式会社 暖房給湯システム
CN103759455B (zh) * 2014-01-27 2015-08-19 青岛海信日立空调系统有限公司 热回收变频多联式热泵系统及其控制方法
CN106403183B (zh) * 2016-09-21 2019-04-19 广东美的暖通设备有限公司 多联机系统及其控制方法
EP3559561B1 (en) 2016-11-09 2024-01-31 Moore, Kevin Daniel Martin Methods for reducing energy consumption in a heating, ventilation and air conditioning (hvac) system
EP4368915A4 (en) * 2021-07-08 2024-08-21 Mitsubishi Electric Corp HEAT PUMP SYSTEM

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003343936A (ja) 2002-05-28 2003-12-03 Mitsubishi Electric Corp 冷凍サイクル装置
JP2006170597A (ja) * 2004-11-16 2006-06-29 Sanyo Electric Co Ltd 空気調和装置
WO2010050003A1 (ja) 2008-10-29 2010-05-06 三菱電機株式会社 空気調和装置
WO2010113296A1 (ja) * 2009-04-01 2010-10-07 三菱電機株式会社 空気調和装置

Family Cites Families (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4563877A (en) * 1984-06-12 1986-01-14 Borg-Warner Corporation Control system and method for defrosting the outdoor coil of a heat pump
JP3118376B2 (ja) * 1994-08-19 2000-12-18 三洋電機株式会社 空気調和機
US6123147A (en) * 1996-07-18 2000-09-26 Pittman; Jerry R. Humidity control apparatus for residential air conditioning system
US6080962A (en) * 1996-12-20 2000-06-27 Trw, Inc. Self-contained thermal control for a spacecraft module
KR20040045090A (ko) * 2002-11-22 2004-06-01 엘지전자 주식회사 다수개의 압축기를 적용한 히트펌프 시스템의 압축기제어방법
CN100417870C (zh) * 2004-11-16 2008-09-10 三洋电机株式会社 空调装置
JP3929067B2 (ja) * 2004-12-09 2007-06-13 松下電器産業株式会社 ヒートポンプ
JP4587849B2 (ja) * 2005-03-11 2010-11-24 三洋電機株式会社 空気調和装置及びその制御方法、温度設定装置及びその制御方法
JP4766256B2 (ja) * 2006-07-24 2011-09-07 株式会社富士通ゼネラル 空気調和機の制御方法
JP4997004B2 (ja) * 2007-07-17 2012-08-08 三洋電機株式会社 空気調和装置
CN101809383A (zh) * 2008-02-04 2010-08-18 三菱电机株式会社 空调供热水复合系统
CN101925784B (zh) * 2008-03-21 2014-11-26 三菱电机株式会社 室内单元以及具备该室内单元的空气调节装置
JP2009236373A (ja) * 2008-03-26 2009-10-15 Sharp Corp 一体型空気調和機
WO2009122477A1 (ja) * 2008-03-31 2009-10-08 三菱電機株式会社 空調給湯複合システム
EP2233864B1 (en) * 2008-03-31 2018-02-21 Mitsubishi Electric Corporation Air-conditioning and hot water complex system
KR101533112B1 (ko) * 2008-08-25 2015-07-02 엘지전자 주식회사 히트펌프 시스템 및 그 제어방법
KR100970870B1 (ko) * 2008-08-26 2010-07-16 진금수 히트 펌프 시스템
EP3290826B1 (en) * 2008-10-29 2021-09-01 Mitsubishi Electric Corporation Air-conditioning apparatus
US9353979B2 (en) * 2008-10-29 2016-05-31 Mitsubishi Electric Corporation Air-conditioning apparatus
CN102112815A (zh) * 2008-10-29 2011-06-29 三菱电机株式会社 空气调节装置以及中继装置
WO2010050000A1 (ja) * 2008-10-29 2010-05-06 三菱電機株式会社 空気調和装置
WO2010049999A1 (ja) * 2008-10-29 2010-05-06 三菱電機株式会社 空気調和装置
EP2309199B1 (en) * 2008-10-29 2021-08-18 Mitsubishi Electric Corporation Air conditioner
JPWO2010082325A1 (ja) * 2009-01-15 2012-06-28 三菱電機株式会社 空気調和装置
EP2413055B1 (en) * 2009-03-23 2020-03-11 Mitsubishi Electric Corporation Air conditioner
EP2413056B1 (en) * 2009-03-26 2021-07-14 Mitsubishi Electric Corporation Air-conditioning apparatus
JP5310289B2 (ja) * 2009-06-17 2013-10-09 アイシン精機株式会社 空気調和装置
CN102483273B (zh) * 2009-09-09 2014-09-17 三菱电机株式会社 空气调节装置
WO2011030418A1 (ja) * 2009-09-10 2011-03-17 三菱電機株式会社 空気調和装置
EP2476966B1 (en) * 2009-09-10 2021-05-19 Mitsubishi Electric Corporation Air conditioning device
CN102575860B (zh) * 2009-09-18 2014-12-24 三菱电机株式会社 空气调节装置
JP5380226B2 (ja) * 2009-09-25 2014-01-08 株式会社日立製作所 空調給湯システム及びヒートポンプユニット
JP2011069570A (ja) * 2009-09-28 2011-04-07 Fujitsu General Ltd ヒートポンプサイクル装置
ES2810011T3 (es) * 2009-10-19 2021-03-08 Mitsubishi Electric Corp Máquina de conversión de medio calorífico y sistema de aire acondicionado
EP2472200B1 (en) * 2009-10-27 2019-01-30 Mitsubishi Electric Corporation Air conditioning device
WO2011052050A1 (ja) * 2009-10-28 2011-05-05 三菱電機株式会社 空気調和装置
EP2472202B1 (en) * 2009-10-28 2019-03-20 Mitsubishi Electric Corporation Air conditioning device
ES2748323T3 (es) * 2009-10-29 2020-03-16 Mitsubishi Electric Corp Dispositivo de aire acondicionado
JP5642085B2 (ja) * 2009-11-18 2014-12-17 三菱電機株式会社 冷凍サイクル装置及びそれに適用される情報伝達方法
EP2505938B1 (en) * 2009-11-25 2019-04-10 Mitsubishi Electric Corporation Air conditioning device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003343936A (ja) 2002-05-28 2003-12-03 Mitsubishi Electric Corp 冷凍サイクル装置
JP2006170597A (ja) * 2004-11-16 2006-06-29 Sanyo Electric Co Ltd 空気調和装置
WO2010050003A1 (ja) 2008-10-29 2010-05-06 三菱電機株式会社 空気調和装置
WO2010113296A1 (ja) * 2009-04-01 2010-10-07 三菱電機株式会社 空気調和装置

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016002111A1 (ja) * 2014-06-30 2016-01-07 正 岡本 冷暖房空調システム
WO2017119137A1 (ja) * 2016-01-08 2017-07-13 三菱電機株式会社 空気調和装置
JPWO2017119137A1 (ja) * 2016-01-08 2018-09-06 三菱電機株式会社 空気調和装置
JP2019138611A (ja) * 2018-02-15 2019-08-22 株式会社コロナ ヒートポンプ空調システム
WO2019215916A1 (ja) * 2018-05-11 2019-11-14 三菱電機株式会社 冷凍サイクル装置
JPWO2019215916A1 (ja) * 2018-05-11 2021-05-13 三菱電機株式会社 冷凍サイクル装置
JP7034272B2 (ja) 2018-05-11 2022-03-11 三菱電機株式会社 冷凍サイクル装置
US11365914B2 (en) 2018-05-11 2022-06-21 Mitsubishi Electric Corporation Refrigeration cycle apparatus
JPWO2022157918A1 (ja) * 2021-01-22 2022-07-28
WO2022157918A1 (ja) * 2021-01-22 2022-07-28 三菱電機株式会社 チラーシステム及びチラーシステムを有する空気調和装置
JP7399321B2 (ja) 2021-01-22 2023-12-15 三菱電機株式会社 チラーシステム及びチラーシステムを有する空気調和装置

Also Published As

Publication number Publication date
JP5911590B2 (ja) 2016-04-27
EP2908070B1 (en) 2020-08-05
EP2908070A4 (en) 2016-05-11
CN104704300A (zh) 2015-06-10
US20150253020A1 (en) 2015-09-10
CN104704300B (zh) 2016-10-05
EP2908070A1 (en) 2015-08-19
JPWO2014057550A1 (ja) 2016-08-25

Similar Documents

Publication Publication Date Title
JP5911590B2 (ja) 空気調和装置
JP5312471B2 (ja) 空気調和装置
JP5127931B2 (ja) 空気調和装置
JP5306449B2 (ja) 空気調和装置
JP5933031B2 (ja) 空気調和装置
JP5774128B2 (ja) 空気調和装置
WO2010050004A1 (ja) 空気調和装置
JP6095764B2 (ja) 空気調和装置
JP5984960B2 (ja) 空気調和装置
WO2010050001A1 (ja) 空気調和装置
US9651287B2 (en) Air-conditioning apparatus
WO2011099074A1 (ja) 冷凍サイクル装置
WO2014045358A1 (ja) 空気調和装置
WO2013108290A1 (ja) 空気調和装置
JP5420057B2 (ja) 空気調和装置
JP6120943B2 (ja) 空気調和装置
WO2012073294A1 (ja) 冷凍サイクル装置の部品交換方法および冷凍サイクル装置
JP5955409B2 (ja) 空気調和装置
WO2014083679A1 (ja) 空気調和装置、その設計方法
WO2014128971A1 (ja) 空気調和装置
WO2011030420A1 (ja) 空気調和装置
JPWO2013108290A1 (ja) 空気調和装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12886407

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014540684

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14417870

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2012886407

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE