Nothing Special   »   [go: up one dir, main page]

WO2013115212A1 - 光学材料用組成物の製造方法 - Google Patents

光学材料用組成物の製造方法 Download PDF

Info

Publication number
WO2013115212A1
WO2013115212A1 PCT/JP2013/051970 JP2013051970W WO2013115212A1 WO 2013115212 A1 WO2013115212 A1 WO 2013115212A1 JP 2013051970 W JP2013051970 W JP 2013051970W WO 2013115212 A1 WO2013115212 A1 WO 2013115212A1
Authority
WO
WIPO (PCT)
Prior art keywords
compound
optical material
mass
composition
parts
Prior art date
Application number
PCT/JP2013/051970
Other languages
English (en)
French (fr)
Inventor
青木 崇
裕人 石塚
英二 輿石
竹内 基晴
Original Assignee
三菱瓦斯化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱瓦斯化学株式会社 filed Critical 三菱瓦斯化学株式会社
Priority to JP2013556428A priority Critical patent/JP5817850B2/ja
Priority to EP13742825.6A priority patent/EP2810972B1/en
Priority to US14/372,153 priority patent/US9458293B2/en
Priority to KR1020147021248A priority patent/KR101561636B1/ko
Priority to IN6876DEN2014 priority patent/IN2014DN06876A/en
Priority to CN201380007358.0A priority patent/CN104080837B/zh
Priority to BR112014018872-6A priority patent/BR112014018872B1/pt
Publication of WO2013115212A1 publication Critical patent/WO2013115212A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G75/00Macromolecular compounds obtained by reactions forming a linkage containing sulfur with or without nitrogen, oxygen, or carbon in the main chain of the macromolecule
    • C08G75/28Polythiocarbonates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G75/00Macromolecular compounds obtained by reactions forming a linkage containing sulfur with or without nitrogen, oxygen, or carbon in the main chain of the macromolecule
    • C08G75/02Polythioethers
    • C08G75/04Polythioethers from mercapto compounds or metallic derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G75/00Macromolecular compounds obtained by reactions forming a linkage containing sulfur with or without nitrogen, oxygen, or carbon in the main chain of the macromolecule
    • C08G75/02Polythioethers
    • C08G75/06Polythioethers from cyclic thioethers
    • C08G75/08Polythioethers from cyclic thioethers from thiiranes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/30Sulfur-, selenium- or tellurium-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/34Heterocyclic compounds having nitrogen in the ring
    • C08K5/3412Heterocyclic compounds having nitrogen in the ring having one nitrogen atom in the ring
    • C08K5/3432Six-membered rings
    • C08K5/3435Piperidines
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L81/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing sulfur with or without nitrogen, oxygen or carbon only; Compositions of polysulfones; Compositions of derivatives of such polymers
    • GPHYSICS
    • G02OPTICS
    • G02CSPECTACLES; SUNGLASSES OR GOGGLES INSOFAR AS THEY HAVE THE SAME FEATURES AS SPECTACLES; CONTACT LENSES
    • G02C7/00Optical parts
    • G02C7/02Lenses; Lens systems ; Methods of designing lenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/04Optical elements characterised by the material of which they are made; Optical coatings for optical elements made of organic materials, e.g. plastics

Definitions

  • the present invention relates to a composition for optical materials, and further relates to an optical material (optical resin material) such as a plastic lens, a prism, an optical fiber, an information recording base, and a filter using the composition.
  • optical material optical resin material
  • the optical material of the present invention is suitably used as a plastic lens, particularly as a lens for two-point frame glasses.
  • Plastic materials have been widely used in recent years for various optical materials, particularly spectacle lenses, because they are light and tough and easy to dye.
  • the performance required especially for optical materials, especially optical materials for spectacle lenses is low specific gravity as physical properties, low yellowness as chemical and thermal properties, high heat resistance, high strength as mechanical properties, etc.
  • the optical performance is high transparency, high refractive index and high Abbe number.
  • a high refractive index makes it possible to reduce the thickness of the lens, and a high Abbe number reduces chromatic aberration of the lens.
  • the refractive index increases, the Abbe number decreases, and studies are being made to improve both simultaneously.
  • optical materials having a refractive index of 1.73 or more have been proposed by optical materials composed of a polyepisulfide compound and an inorganic compound disclosed in Patent Documents 2 and 3.
  • a refractive index of 1.73 or more comprising four components of an inorganic compound having a sulfur atom and / or a selenium atom, an episulfide compound, a thiol compound and an isocyanate compound. It was difficult to practically produce the optical material. Therefore, development of a manufacturing method of a lens having a refractive index of 1.73 or more and imparting strength and heat resistance has been demanded.
  • the problems to be solved by the present invention are high refractive index (ne is 1.73 or more), high strength (elongation of 13% or more in a three-point bending test and good drilling strength), and high heat resistance. It is an object of the present invention to provide a practical optical material that satisfies the above three properties (softening point of TMA measurement is 70 ° C. or higher) and 3 points at the same time.
  • the present inventors have conducted intensive research, and as a result, have a compound comprising an episulfide group, an inorganic compound having a sulfur atom, and a thiourethane bond-forming thiol compound and an isocyanate compound.
  • a product is cured to obtain an optical material
  • a method for producing a composition for optical material having a low viscosity and not causing rapid gelation by using a hindered amine compound as a catalyst for a prepolymerization reaction has been found. It came to. That is, the present invention is as follows.
  • Optical including a step of producing a composition for optical materials by the method for producing a composition for optical materials according to [1] or [2], and a step of polymerizing and curing the obtained composition for optical materials. Material manufacturing method.
  • [5] A lens for eyeglasses including the optical material according to [4].
  • [6] The eyeglass lens according to [5], which has a strength capable of being attached to a two-point frame.
  • the obtained optical material has a high refractive index (ne is 1.73 or more), high strength (a three-point bending test has an elongation of 13% or more and good drilling resistance), and high heat resistance. It is possible to provide a composition for an optical material that can have a property (TMA measurement value is 70 ° C. or higher), an optical material obtained by curing the composition, and a lens for two-point frame glasses using the composition. it can.
  • hindered amine compound (henceforth, (e) compound) is used as a catalyst for carrying out the prepolymerization reaction of (a) compound and (b) compound.
  • optional components such as a polymerization catalyst, a polymerization regulator, and a performance improver are used as necessary.
  • the inorganic compound having a sulfur atom which is the compound (a) used in the present invention includes all inorganic compounds having one or more sulfur atoms.
  • the amount of the compound (a) used is 10 to 50 parts by mass, preferably 10 to 40 parts by mass, more preferably 10 to 30 parts when the total of the compounds (a) and (b) is 100 parts by mass. Part by mass.
  • the compound (a) is at least 10% by mass or more based on the total amount of the composition for optical material.
  • the inorganic compound having a sulfur atom include sulfur, hydrogen sulfide, carbon disulfide, selenocarbon sulfide, ammonium sulfide, sulfur dioxide, sulfur trioxide and other sulfur oxides, thiocarbonate, sulfuric acid and salts thereof, sulfuric acid Hydrogen salt, sulfite, hyposulfite, persulfate, thiocyanate, thiosulfate, halides such as sulfur dichloride, thionyl chloride, thiophosgene, boron sulfide, nitrogen sulfide, silicon sulfide, phosphorus sulfide, arsenic sulfide, Examples thereof include metal sulfides and metal hydrosulfides.
  • sulfur, carbon disulfide, phosphorus sulfide, selenium sulfide, metal sulfide and metal hydrosulfide are preferable, sulfur, carbon disulfide and selenium sulfide are more preferable, and sulfur is particularly preferable.
  • These inorganic compounds having a sulfur atom may be used alone or in combination of two or more.
  • the compound used in the present invention includes all episulfide compounds having one or more episulfide groups in one molecule, preferably two episulfide groups in one molecule. Specifically, bis ( ⁇ -epithiopropyl) sulfide, bis ( ⁇ -epithiopropyl) disulfide, bis ( ⁇ -epithiopropyl) trisulfide, bis ( ⁇ -epithiopropylthio) methane 1,2-bis ( ⁇ -epithiopropylthio) ethane, 1,3-bis ( ⁇ -epithiopropylthio) propane, 1,2-bis ( ⁇ -epithiopropylthio) propane, 1,4- One or more episulfi selected from the group consisting of bis ( ⁇ -epithiopropylthio) butane and bis ( ⁇ -epithiopropylthioethyl) sulfide Compound.
  • preferred specific examples are bis ( ⁇ -epithiopropyl) sulfide (formula (1)) and / or bis ( ⁇ -epithiopropyl) disulfide (formula (2)), and the most preferred specific example is bis ( ⁇ -epithiopropyl) sulfide.
  • the amount of the compound (b) used in the present invention is 50 to 90 parts by mass, preferably 60 to 90 parts by mass, when the total of the compounds (a) and (b) is 100 parts by mass.
  • the amount is preferably 70 to 90 parts by mass.
  • the compound used in the present invention includes all thiol compounds having one or more mercapto groups per molecule, but preferably has two or more mercapto groups in one molecule.
  • Compounds such as m-xylylenedithiol, p-xylylenedithiol, o-xylylenedithiol, bis (2-mercaptoethyl) sulfide, pentaerythritol tetrakis (2-mercaptoacetate), pentaerythritol tetrakis (3 -Mercaptopropionate), and one or more selected from polythiol compounds such as 1,2-bis (2-mercaptoethylthio) -3-mercaptopropane. These may be used alone or in combination of two or more.
  • m-xylylenedithiol (formula (3)), p-xylylenedithiol (formula (4)) represented by the following structural formula, pentaerythritol tetrakis (3-mercaptopropionate), and 1,2-bis (2-mercaptoethylthio) -3-mercaptopropane is particularly preferred, and m-xylylenedithiol that becomes a low-viscosity liquid at room temperature.
  • the amount of the compound (c) used in the present invention is preferably 1 part by mass to 50 parts by mass, more preferably 2 parts by mass when the total of the compounds (a) and (b) is 100 parts by mass. Part to 30 parts by weight, more preferably 5 parts to 15 parts by weight.
  • the compound (d) used in the present invention includes all isocyanate compounds having one or more isocyanate groups per molecule, preferably a compound having two isocyanate groups in one molecule. Specifically, it is at least one selected from diisocyanate compounds such as xylylene diisocyanate compound, 1,3-bis (isocyanatomethyl) cyclohexane, isophorone diisocyanate, and hexamethylene diisocyanate. These may be used alone or in combination of two or more.
  • m-xylylene diisocyanate represented by the following structural formula, 1,3-bis (1-isocyanato-1-methylethyl) benzene and 1,3-bis (isocyanate) are preferable.
  • Natomethyl) cyclohexane 1,3-bis (1-isocyanato-1-methylethyl) benzene and 1,3-bis (isocyanate)
  • the amount of the compound (d) used in the present invention is preferably 1 part by mass to 50 parts by mass, more preferably 2 parts by mass, when the total of the compounds (a) and (b) is 100 parts by mass. Part to 30 parts by weight, more preferably 3 parts to 10 parts by weight.
  • the amount of the compound (d) is at least 1% by mass or more based on the total amount of the composition for optical materials.
  • 1,2,2,6,6-pentamethylpiperidyl-4-methacrylate represented by the following structural formula and bis (2,2,6,6-tetramethyl-) are more preferable.
  • 4-piperidyl) sebacate particularly preferred is 1,2,2,6,6-pentamethylpiperidyl-4-methacrylate.
  • the compound (e) used in the present invention is 0.001 to 1 part by mass, preferably 0.002 to 1 part by mass with respect to 100 parts by mass in total of the compounds (a) and (b). More preferably, it is 0.005 to 0.5 parts by mass.
  • Polymerization catalysts include amines, phosphines, quaternary ammonium salts, quaternary phosphonium salts, condensates of aldehydes and amine compounds, salts of carboxylic acids and ammonia, urethanes, thiourethanes, guanidines, Thioureas, thiazoles, sulfenamides, thiurams, dithiocarbamates, xanthates, tertiary sulfonium salts, secondary iodonium salts, mineral acids, Lewis acids, organic acids, silicic acids, tetrafluoride Examples thereof include boric acids, peroxides, azo compounds, and acidic phosphate esters.
  • the polymerization catalyst is not particularly limited as long as it exhibits polymerization and curing. These polymerization catalysts may be used alone or in combination of two or more. Among these, preferred specific examples include tetra-n-butylammonium bromide, triethylbenzylammonium chloride, cetyldimethylbenzylammonium chloride, quaternary ammonium salts such as 1-n-dodecylpyridinium chloride, tetra-n-butylphosphonium bromide, Quaternary phosphonium salts such as tetraphenylphosphonium bromide can be mentioned.
  • triethylbenzylammonium chloride and / or tetra-n-butylphosphonium bromide are more preferred specific examples.
  • triethylbenzylammonium chloride and / or tetra-n-butylphosphonium bromide are more preferred specific examples.
  • the addition amount of the polymerization catalyst is 0.001 to 5 parts by mass, preferably 0.002 to 5 parts per 100 parts by mass in total of the compounds (a), (b), (c) and (d). Parts by mass, more preferably 0.005 to 3 parts by mass.
  • composition for an optical material of the present invention may be added with a polymerization regulator as necessary for the purpose of extending the pot life or dispersing the polymerization heat during polymerization and curing. it can.
  • the polymerization regulator include halides of Group 13 to 16 elements in the long-term periodic table.
  • These polymerization regulators may be used alone or in combination of two or more.
  • preferred are halides of silicon, germanium, tin and antimony. More preferred are chlorides of silicon, germanium, tin and antimony, and further preferred are chlorides of germanium, tin and antimony having an alkyl group.
  • Specific examples of the most preferred are dibutyltin dichloride, butyltin trichloride, dioctyltin dichloride, octyltin trichloride, dibutyldichlorogermanium, butyltrichlorogermanium, diphenyldichlorogermanium, phenyltrichlorogermanium, triphenylantimony dichloride.
  • the addition amount of the polymerization regulator is 0.001 to 5 parts by mass, preferably 0.002 to 5 parts per 100 parts by mass in total of the compounds (a), (b), (c) and (d). Parts by mass, more preferably 0.005 to 3 parts by mass.
  • Performance improver In the composition for optical materials of the present invention, a part or all of the compounds of the composition component is used for the purpose of improving various performances such as oxidation resistance, weather resistance, dyeability, strength, and refractive index. It is also possible to add a compound capable of reacting with (performance improving agent). In this case, a known polymerization catalyst can be added separately as necessary for the reaction.
  • Compounds (performance improvers) that can react with some or all of the composition components include compounds having two or more mercapto groups other than the thiol of the present invention, epoxy compounds, carboxylic acids, carboxylic acid anhydrides, phenols , Amines, vinyl compounds, allyl compounds, acrylic compounds, methacrylic compounds and the like.
  • the amount of the performance improver added is 0.001 to 10 parts by mass, preferably 0.002 to 10 parts by mass with respect to 100 parts by mass in total of the compounds (a), (b), (c) and (d). 5 parts by mass, more preferably 0.005 to 3 parts by mass.
  • composition for optical materials of the present invention various additives such as known antioxidants, bluing agents, ultraviolet absorbers, and deodorants are added as optional components as necessary. Of course, it is possible to further improve the practicality of the obtained material. Further, when the optical material of the present invention is easily peeled off from the mold during polymerization, a known external and / or internal adhesion improver is used, or when it is difficult to peel off from the mold, a known external and / or internal mold release is improved. Agents can also be used.
  • external and / or internal adhesion improvers and external and / or internal releasability improvers can be applied to glass or metal molds used during polymerization and curing, and the optical material composition of the present invention. It is also effective to improve the adhesiveness or releasability between the obtained optical material and the mold.
  • the usage-amount of (a) compound is 10 mass% or more with respect to the whole composition for optical materials.
  • (c) a thiol compound is required to copolymerize the compound (d) and improve physical properties such as the color tone of the cured product.
  • the content of the compound (c) is desirably 5% by mass or more based on the total amount of the composition for optical materials for the reasons described above, and further, the compound (c) is preferably 8% by mass or more. More desirable.
  • the compounds (a), (b), (c) and (d), and optional components used as necessary are mixed and stirred by a usual method. It is necessary that at least a part of the compounds (a) and (b) is preliminarily polymerized with the compound (e) as a catalyst and then mixed with the compound (c) and the compound (d).
  • the compound (a) and the compound (b) are preliminarily polymerized in advance using the compound (e) as a catalyst.
  • the reaction liquid obtained by this prepolymerization reaction includes the compound (a), the compound (b) and the prepolymerization reaction product. It is necessary to mix the compound (c), the compound (d), and an optional component in the reaction solution obtained by the preliminary polymerization reaction.
  • the prepolymerization reaction of the (a) compound and the (b) compound is an effective means for handling the solid (a) compound, and the resulting optical material has good transparency.
  • this makes it possible to blend a large amount of the compound (a) (an inorganic compound having sulfur or the like), and to provide an optical material having a high refractive index, high strength, and high heat resistance. Things are obtained.
  • the (a) compound and the (b) compound are partly or wholly reacted under stirring or non-stirring.
  • a part of the compound (a) or the compound (b) is subjected to a prepolymerization reaction, the remainder of the compound (a) or the compound (b) is separately added and mixed with the composition for optical materials.
  • the proportion of the prepolymerization reaction is not particularly limited, but it is preferable that the (a) compound and the (b) compound are prepolymerized so that the compound (a) does not exist as a solid during casting.
  • each of the (a) compound and the (b) compound is subjected to the preliminary polymerization reaction, and particularly preferably, all parts by mass of each of the (a) compound and the (b) compound are subjected to the preliminary polymerization reaction.
  • the compound (e) which is a prepolymerization reaction catalyst for promoting the reaction between the compound (a) and the compound (b) is added.
  • the prepolymerization reaction catalyst (e) compound a hindered amine compound is used, and preferably 1,2,2,6,6-pentamethylpiperidyl-4-methacrylate is used.
  • the amount of the prepolymerization reaction catalyst (e) compound added is 0.001 to 1 part by mass, preferably 0.002 to 1 part by mass with respect to 100 parts by mass in total of the compounds (a) and (b). More preferably, it is 0.005 to 0.5 parts by mass.
  • the prepolymerization reaction may be performed in the presence of a gas such as air, nitrogen or oxygen, sealed under normal pressure or increased or reduced pressure, or any atmosphere such as reduced pressure. Further, this prepolymerization reaction may be performed in the presence of various additives used as necessary, such as a polymerization regulator, a performance improver, and an ultraviolet absorber. In addition, although it may be carried out in the presence of part or all of the compound (c), in that case, the prepolymerization reaction is carried out by selectively carrying out a part of the polymerization curing reaction, It is desirable to control the reaction by adopting mild conditions.
  • the prepolymerization reaction time is 1 minute to 72 hours, preferably 10 minutes to 48 hours, and more preferably 30 minutes to 24 hours.
  • the prepolymerization reaction temperature is 0 ° C. to 150 ° C., preferably 10 ° C. to 120 ° C., more preferably 10 ° C. to 80 ° C.
  • the compound (a) before the reaction is 100 mol%) by this prepolymerization reaction, and react by 20 mol% or more. Is more preferable.
  • liquid chromatography and / or a method for measuring the refractive index is preferable because of high sensitivity, and further, a method for measuring the refractive index is more preferable because it is simple.
  • a method for measuring the refractive index it is preferable to use an inline refractometer because the progress of the reaction can be observed in real time.
  • composition for optical materials The manufacturing method of the composition for optical materials is as follows in detail.
  • Various additives such as UV absorbers and deodorizers are all mixed in the same container at the same time with stirring, or each ingredient is added stepwise and mixed, and then several components are mixed separately and then the same You may remix in a container.
  • a preliminary reaction may be performed in advance on two or more types of each component and then mixed.
  • the above-mentioned prepolymerization reaction is performed on the compound (a) and the compound (b), and (c) a part of the compound and the performance improver are reacted in advance (not simply mixed), and then mixed. Is also possible.
  • the set temperature, the time required for this, etc. may basically be any conditions that allow the components to be sufficiently mixed. However, excessive temperature and time may cause undesirable reactions between the raw materials and additives. It is not suitable for the reason that it becomes easy and the viscosity is increased and the casting operation may be difficult.
  • the mixing temperature should be in the range of about ⁇ 50 ° C. to 100 ° C., a preferred temperature range is ⁇ 30 ° C. to 70 ° C., and a more preferred range is ⁇ 5 ° C. to 50 ° C.
  • the mixing time is 1 minute to 12 hours, preferably 5 minutes to 10 hours, and most preferably about 5 minutes to 6 hours. If necessary, the active energy ray may be blocked and mixed. After that, deaeration treatment may be performed by the following method.
  • a degassing treatment may be performed after the resin composition is produced by the above mixing. It is preferable to deaerate the composition for optical material in advance before polymerization and curing from the viewpoint of achieving high transparency of the optical material obtained by polymerization and curing.
  • the deaeration treatment is performed by using (a) compound, (b) compound, (c) compound, (d) compound, and a compound capable of reacting with some or all of various composition components, a polymerization catalyst, a polymerization regulator, and various additives.
  • the reaction is performed under reduced pressure. Preferably, it is performed under reduced pressure during or after mixing.
  • Degassing conditions are 0 to 100 ° C. under reduced pressure of 0.1 to 15000 Pa for 1 minute to 24 hours.
  • the degree of vacuum is preferably 1 to 10000 Pa, more preferably 1 to 5000 Pa, and the degree of vacuum may be varied within these ranges.
  • the deaeration time is preferably 5 minutes to 18 hours, more preferably 10 minutes to 12 hours.
  • the temperature at the time of deaeration is preferably 5 ° C. to 80 ° C., more preferably 10 ° C. to 60 ° C., and the temperature may be varied within these ranges.
  • the components removed by the deaeration treatment are mainly dissolved gases such as hydrogen sulfide and low boiling point substances such as low molecular weight mercaptans, but are not particularly limited as long as the effect of the deaeration treatment is exhibited.
  • the optical material composition thus obtained can be purified by filtering impurities and the like immediately before polymerization and curing. It is desirable from the viewpoint of further improving the quality of the optical material of the present invention to purify the optical material composition through a filter to filter impurities and the like.
  • the pore size of the filter used here is about 0.05 to 10 ⁇ m, and generally 0.1 to 1.0 ⁇ m is used.
  • a filter material PTFE, PET, PP, or the like is preferably used.
  • the optical material of the present invention is obtained by polymerizing and curing an optical material composition obtained by the above-described method for producing an optical material composition.
  • the composition for optical materials is usually injected into a glass or metal mold and then heated using an electric furnace or irradiated with active energy rays such as ultraviolet rays using an active energy ray generator or the like. Is done by.
  • the polymerization time is 0.1 to 100 hours, usually 1 to 48 hours, and the polymerization temperature is ⁇ 10 ° C. to 160 ° C., usually ⁇ 10 ° C. to 140 ° C.
  • the polymerization can be carried out by holding at a predetermined polymerization temperature for a predetermined time, raising the temperature from 0.1 ° C. to 100 ° C./h, lowering the temperature from 0.1 ° C. to 100 ° C./h, and combinations thereof.
  • annealing the material at a temperature of 50 ° C. to 150 ° C. for about 5 minutes to 5 hours is a preferable treatment for removing distortion of the optical material.
  • surface treatments such as dyeing, hard coating, antireflection, antifogging, antifouling and impact resistance can be performed as necessary.
  • the refractive index (ne) of the target optical material is preferably 1.73 or more, more preferably 1.74 or more, and the strength is an elongation of 13% or more, more preferably 14 in the three-point bending test. %, More preferably 15% or more, good drilling strength, and heat resistance (softening point of TMA measurement) of 70 ° C. or more.
  • An optical material and a lens for two-point frame glasses using the optical material can be provided.
  • a homogeneous optical material composition in which a large amount of sulfur as a high refractive index agent is blended (for example, 10% by mass or more based on the total amount of the optical material composition).
  • an optical material having a high refractive index of 1.73 or higher can be obtained.
  • rapid polymerization occurs when the (a) and (d) compounds are blended in large quantities.
  • a cured product (optical material) having a refractive index of 1.73 or more could not be obtained.
  • compounds (a) and (b) are preliminarily prepared using a hindered amine compound such as 1,2,2,6,6-pentamethylpiperidyl-4-methacrylate as a catalyst in the production stage of the composition for optical materials.
  • a hindered amine compound such as 1,2,2,6,6-pentamethylpiperidyl-4-methacrylate
  • the compound can be completely dissolved to form a uniform liquid composition, and it can be cured by polymerization without causing rapid polymerization. New optical materials can be obtained.
  • ne is 1.73 or more
  • elongation in a three-point bending test is 13% or more
  • an optical material having good drilling resistance and high heat resistance can be easily obtained.
  • the refractive index and Abbe number, heat resistance, elongation and drill strength of the obtained optical material were evaluated by the following methods.
  • Example 1 (A) 20 parts by mass of sulfur as a compound, (b) 80 parts by mass of bis ( ⁇ -epithiopropyl) sulfide (hereinafter referred to as b-1 compound) as a total of 100 parts by mass, and 2- ( 1 part by mass of 2-hydroxy-5-tert-octylphenyl) benzotriazole was added and mixed well at 50 ° C. to make uniform.
  • b-1 compound bis ( ⁇ -epithiopropyl) sulfide
  • e-1 compound 1,2,2,6,6-pentamethylpiperidyl-4-methacrylate
  • e-1 compound a prepolymerization reaction catalyst
  • the prepolymerization reaction was carried out at 50 ° C. until no precipitation occurred at 20 ° C.
  • the prepolymerization reaction was stopped when about 50 mol% of the compound (a) was reacted, and the compound (a) remained in the obtained composition.
  • the reaction ratio of the compound was determined by liquid chromatography analysis and refractive index measurement of the reaction solution.
  • c-1 compound m-xylylenedithiol
  • d-1 compound m-xylylene diisocyanate
  • the obtained optical material composition was filtered through a 1.0 ⁇ m PTFE membrane filter, poured into a 2.5 mm thick plate mold composed of two glass plates and a gasket, and at 30 ° C. After heating for 10 hours, the temperature was raised at a constant rate from 30 ° C. to 100 ° C. over 10 hours, and finally heated at 100 ° C. for 1 hour for polymerization and curing. After cooling to room temperature, the mold was released from the mold to obtain a cured optical material.
  • Table 1 shows the evaluation results of the refractive index and Abbe number, heat resistance, elongation and drill strength of the obtained optical material.
  • Examples 2 and 3 The same procedure as in Example 1 was performed except that the amounts of the (a) compound and the (b) compound were changed.
  • Table 1 shows the evaluation results of the refractive index and Abbe number, heat resistance, elongation and drill strength of the obtained optical material.
  • Example 4 The same procedure as in Example 1 was performed except that the amounts of the compound (c) and the compound (d) were changed.
  • Table 1 shows the evaluation results of the refractive index and Abbe number, heat resistance, elongation and drill strength of the obtained optical material.
  • Example 5 It carried out similarly to Example 1 except changing the quantity of the (e) compound which is a prepolymerization reaction catalyst.
  • Table 1 shows the evaluation results of the refractive index and Abbe number, heat resistance, elongation and drill strength of the obtained optical material.
  • Example 6 ⁇ Example 6> (B) Instead of the b-1 compound, bis ( ⁇ -epithiopropyl) disulfide (hereinafter referred to as b-2 compound) is used, and the amount of (a) and (b) compound is changed. The same operation as in Example 1 was performed. Table 1 shows the evaluation results of the refractive index and Abbe number, heat resistance, elongation and drill strength of the obtained optical material.
  • b-2 compound bis ( ⁇ -epithiopropyl) disulfide
  • Example 7 ⁇ Example 7> (D) Instead of the d-1 compound, 1,3-bis (1-isocyanato-1-methylethyl) benzene (hereinafter referred to as d-2 compound) is used, and the amount of (d) compound is The same operation as in Example 4 was performed except that the change was made.
  • Table 1 shows the evaluation results of the refractive index and Abbe number, heat resistance, elongation and drill strength of the obtained optical material.
  • Example 8> (D) The same procedure as in Example 1 was conducted except that 1,3-bis (isocyanatomethyl) cyclohexane (hereinafter referred to as d-3 compound) was used instead of the d-1 compound.
  • Table 1 shows the evaluation results of the refractive index and Abbe number, heat resistance, elongation and drill strength of the obtained optical material.
  • Example 9 The same procedure as in Example 1 was performed except that p-xylylenedithiol (hereinafter referred to as c-2 compound) was used instead of the compound c-1.
  • Table 1 shows the evaluation results of the refractive index and Abbe number, heat resistance, elongation and drill strength of the obtained optical material.
  • Example 10 and 11 Compound c-1 and pentaerythritol tetrakis (3-mercaptopropionate) (hereinafter referred to as c-3 compound) or c-1 compound and 1,2-bis (2-mercaptoethylthio)-
  • c-3 compound pentaerythritol tetrakis (3-mercaptopropionate)
  • c-4 compound 3-mercaptopropane
  • Example 12 ⁇ Example 12> (E) Instead of e-1 compound, bis (2,2,6,6-tetramethyl-4-piperidyl) sebacate (hereinafter referred to as e-2 compound) was used and the amount used was changed. The same operation as in Example 1 was performed. Table 1 shows the evaluation results of the refractive index and Abbe number, heat resistance, elongation and drill strength of the obtained optical material.
  • Example 1 shows the evaluation results of the refractive index and Abbe number, heat resistance and elongation of the obtained optical material.
  • the obtained optical material had insufficient elongation and drilling strength.
  • the obtained composition was cooled to 20 ° C. Then, 0.03 parts by mass of triethylbenzylammonium chloride as a polymerization catalyst and 0.20 parts by mass of di-n-butyltin dichloride as a polymerization regulator were dissolved in 7 parts by mass of c-1 compound as a master batch. The mixture was mixed to obtain a uniform composition, and degassed at 4000 Pa for 30 minutes at 20 ° C. Thereafter, polymerization and curing were performed in the same manner as in Example 1 to obtain a cured optical material. Table 1 shows the evaluation results of the refractive index and Abbe number, heat resistance, elongation and drill strength of the obtained optical material. The obtained optical material had insufficient elongation.
  • Comparative Example 4 was repeated except that the composition shown in Table 1 was changed.
  • Table 1 shows the evaluation results of the refractive index and Abbe number, heat resistance, elongation and drill strength of the obtained optical material. Some of the obtained optical materials had a low refractive index and insufficient elongation.
  • Comparative Example 7 Comparative Example 4 was repeated except that the composition shown in Table 1 was changed. (A) The compound was cured by polymerization with the compound remaining undissolved, and a uniform transparent optical material could not be obtained.
  • composition for an optical material according to the production method of the present invention can provide an optical material having excellent characteristics such as a high refractive index, high strength, and high heat resistance by polymerizing and curing.
  • Such an optical material of the present invention is suitable as an optical material for plastic lenses, prisms, optical fibers, information recording substrates, filters, and the like, and is particularly suitable for plastic lenses, particularly lenses for two-point frame glasses.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Ophthalmology & Optometry (AREA)
  • General Health & Medical Sciences (AREA)
  • Polyurethanes Or Polyureas (AREA)
  • Polymers With Sulfur, Phosphorus Or Metals In The Main Chain (AREA)
  • Eyeglasses (AREA)

Abstract

 本発明によれば、(a)硫黄原子を有する無機化合物と(b)エピスルフィド化合物を、ヒンダードアミンを触媒として予備重合反応させた後、(c)ポリチオール化合物、(d)ポリイソシアネート化合物を添加混合することで、均一な光学材料を得ることが可能な光学材料用組成物を製造することができる。また、本光学材料用組成物を重合硬化させることにより高屈折率(neが1.73以上)、高強度(3点曲げ試験の伸びが13%以上、かつ耐ドリル強度が良好であること)、および高耐熱性(TMA測定の軟化点が70℃以上)を有する光学材料を提供することができる。

Description

光学材料用組成物の製造方法
 本発明は光学材料用組成物に関し、更には、それを用いたプラスチックレンズ、プリズム、光ファイバー、情報記録基盤、フィルター等の光学材料(光学用樹脂材料)に関する。本発明の光学材料はプラスチックレンズ、特にツーポイントフレームメガネ用レンズとして好適に使用される。
 プラスチック材料は軽量かつ靭性に富み、また染色が容易であることから、各種光学材料、特に眼鏡レンズに近年多用されている。光学材料、中でも眼鏡レンズ用光学材料に特に要求される性能は、物理的性質としての低比重、化学・熱的性質として低黄色度、高耐熱性で、機械的特性として高強度等であり、光学性能としては高透明性、高屈折率と高アッベ数である。高屈折率はレンズの薄肉化を可能とし、高アッベ数はレンズの色収差を低減するが、屈折率が上昇するほどアッベ数は低くなるため、両者を同時に向上させる検討が実施されている。これらの検討の中で代表的な方法として特許文献1に示されるエピスルフィド化合物を使用する方法がある。また、特許文献2、3に示される、ポリエピスルフィド化合物と無機化合物からなる光学材料により、屈折率が1.73以上の光学材料が提案されている。
 一方、高屈折率化にともない薄肉化したレンズに対しては、安全性等の観点から従来に増して高強度が望まれる。例えばツーポイントと呼ばれるフレームを装着するにはドリルで穴を開ける必要があるが、この際に欠けや割れが生じない強度が必要である。またツーポイントフレームの使用に耐えるためにはフレームが撓んでもレンズが破壊されない強度が必要である。同時にプラスチックレンズは表面を保護するためにハードコートを付ける事が標準となっているが、ハードコートをかける際に熱がかかるため、耐熱性も必要である。
 このような背景から、高屈折率と高強度と耐熱性の三者を同時に満足させる検討がこれまでに実施されている。これらの検討の中で代表的な方法として、特許文献4、5に示されるように、エピスルフィド基を有する化合物、硫黄原子および/またはセレン原子を有する無機化合物、チオウレタン結合を構成するチオール化合物とイソシアネート化合物の4種類の化合物を使用した方法がある。また、屈折率が1.73以上の均一透明な光学材料を得るためには、硫黄原子および/またはセレン原子を有する無機化合物とエピスルフィド基を有する化合物を予備重合反応することが知られている。この予備重合反応物にチオール化合物とイソシアネート化合物をそれぞれ加えると、急速重合が起こり、均一透明な光学材料が得られない、あるいは厚みが極薄い光学材料しか得ることができない。特許文献5では、前記予備重合反応物にチオール化合物とイソシアネート化合物を予備重合反応させた物を加えることにより急速重合を回避しているが、注型組成物が高粘度となり、注型作業が困難であった。
 したがって、前記文献の製造方法では、急速重合あるいは高粘度化が起こるため、硫黄原子および/またはセレン原子を有する無機化合物、エピスルフィド化合物、チオール化合物およびイソシアネート化合物の4成分からなる屈折率1.73以上の光学材料を実用的に製造することは困難であった。そのため屈折率1.73以上であり、強度と耐熱性を付与したレンズの製造方法の開発が求められていた。
特開平9-110979号公報 特開2001-002783号公報 特開2004-137481号公報 特開2002-122701号公報 特開2004-339329号公報
 本発明が解決しようとする課題は、高屈折率(neが1.73以上)、高強度(3点曲げ試験の伸びが13%以上、かつ耐ドリル強度が良好であること)、および高耐熱性(TMA測定の軟化点が70℃以上)以上3点を同時に満足させる実用可能な光学材料を提供することにある。
 本発明者らは、このような状況に鑑み、鋭意研究を重ねた結果、エピスルフィド基を有する化合物、硫黄原子を有する無機化合物、チオウレタン結合を構成するチオール化合物とイソシアネート化合物の4種類を含む組成物を硬化させ光学材料とする際、ヒンダードアミン化合物を予備重合反応の触媒として用いることにより、低粘度でかつ急速なゲル化を起こすことのない光学材料用組成物を製造する方法を見出し、本発明に至った。即ち、本発明は、以下のとおりである。
[1]:下記(a)化合物10~50質量部(ただし光学材料用組成物全量に対して10質量%以上)、下記(b)化合物50~90質量部、下記(c)化合物1~50質量部および下記(d)化合物1~50質量部(ただし光学材料用組成物全量に対して1質量%以上)を原料とする光学材料用組成物の製造方法であって(ただし、質量部は(a)化合物と(b)化合物との合計量を100質量部とした値)、下記(a)化合物と下記(b)化合物とをヒンダードアミンを触媒として予備重合反応させて得られた反応液と下記(c)化合物および下記(d)化合物を混合することを特徴とする光学材料用組成物の製造方法。
 (a)硫黄原子を有する無機化合物
 (b)エピスルフィド基を1分子中に1個以上有するエピスルフィド化合物
 (c)メルカプト基を1分子あたり1個以上有するチオール化合物
 (d)イソシアネート基を1分子あたり1個以上有するイソシアネート化合
[2]:前記ヒンダードアミンが、1,2,2,6,6-ペンタメチルピペリジル-4-メタクリレートであることを特徴とする[1]記載の光学材料用組成物の製造方法。
[3]:[1]または[2]記載の光学材料用組成物の製造方法により光学材料用組成物を製造する工程と、得られた光学材料用組成物を重合硬化させる工程とを含む光学材料の製造方法。
[4]:[3]記載の製造方法によって得られる光学材料であって、屈折率(ne)が1.73以上である、光学材料。
[5]:[4]記載の光学材料を含むメガネ用レンズ。
[6]:ツーポイントフレームに装着可能な強度を有する[5]記載のメガネ用レンズ。
 本発明は、得られる光学材料が、高屈折率(neが1.73以上)、高強度(3点曲げ試験の伸びが13%以上、かつ耐ドリル強度が良好であること)、および高耐熱性(TMA測定値が70℃以上)を有することを可能とする光学材料用組成物、およびそれを硬化して得られる光学材料、並びにそれを用いたツーポイントフレームメガネ用レンズを提供することができる。
1.光学材料用組成物の製造方法
 本発明の光学材料用組成物の製造方法は、原料として、(a)硫黄原子を有する無機化合物(以下、(a)化合物)、(b)エピスルフィド基を1分子中に1個以上有するエピスルフィド化合物(以下、(b)化合物)、(c)メルカプト基を1分子あたり1個以上有するチオール化合物(以下、(c)化合物)、(d)イソシアネート基を1分子あたり1個以上有するイソシアネート化合物(以下、(d)化合物)を用いる。また、(a)化合物と(b)化合物とを予備重合反応させるための触媒として(e)ヒンダードアミン化合物(以下、(e)化合物)を用いる。
 さらに必要に応じて重合触媒、重合調節剤、性能改良剤等の任意成分を用いる。
(1)(a)化合物
 本発明で使用する(a)化合物である硫黄原子を有する無機化合物は、硫黄原子を1個以上有する全ての無機化合物を包含する。(a)化合物は、化合物中の硫黄原子の合計質量の割合が30質量%以上であることが好ましい。この割合が、30質量%未満である場合、光学材料用組成物中の硫黄原子の質量の割合上昇分が小さいため、光学材料の高屈折率化の効果が小さくなる場合がある。(a)化合物の使用量は、(a)および(b)化合物の合計を100質量部とした場合、10~50質量部使用するが、好ましくは10~40質量部、より好ましくは10~30質量部である。
 ただし本光学材料用組成物から得られる光学材料が屈折率ne:1.73以上を達成するには、光学材料用組成物全量に対して、(a)化合物が少なくとも10質量%以上とする。
 硫黄原子を有する無機化合物の具体例としては、硫黄、硫化水素、二硫化炭素、セレノ硫化炭素、硫化アンモニウム、二酸化硫黄、三酸化硫黄等の硫黄酸化物、チオ炭酸塩、硫酸およびその塩、硫酸水素塩、亜硫酸塩、次亜硫酸塩、過硫酸塩、チオシアン酸塩、チオ硫酸塩、二塩化硫黄、塩化チオニル、チオホスゲン等のハロゲン化物、硫化硼素、硫化窒素、硫化珪素、硫化リン、硫化砒素、金属硫化物、金属水硫化物等があげられる。これらの中で好ましいものは硫黄、二硫化炭素、硫化リン、硫化セレン、金属硫化物および金属水硫化物であり、より好ましくは硫黄、二硫化炭素および硫化セレンであり、特に好ましくは硫黄である。
 これら硫黄原子を有する無機化合物は、単独でも、2種類以上を混合して使用しても良い。
(2)(b)化合物
 本発明で使用する(b)化合物としては、エピスルフィド基を1分子中に1個以上有するエピスルフィド化合物を全て包括するが、好ましくは1分子中に2個のエピスルフィド基を有する化合物であり、具体的にはビス(β-エピチオプロピル)スルフィド、ビス(β-エピチオプロピル)ジスルフィド、ビス(β-エピチオプロピル)トリスルフィド、ビス(β-エピチオプロピルチオ)メタン、1,2-ビス(β-エピチオプロピルチオ)エタン、1,3-ビス(β-エピチオプロピルチオ)プロパン、1,2-ビス(β-エピチオプロピルチオ)プロパン、1,4-ビス(β-エピチオプロピルチオ)ブタン、およびビス(β-エピチオプロピルチオエチル)スルフィドからなる群から選択される1種以上のエピスルフィド化合物が挙げられる。これらは単独でも、2種類以上を混合して使用してもかまわない。
 中でも好ましい具体例は、ビス(β-エピチオプロピル)スルフィド(式(1))および/またはビス(β-エピチオプロピル)ジスルフィド(式(2))であり、最も好ましい具体例は、ビス(β-エピチオプロピル)スルフィドである。
Figure JPOXMLDOC01-appb-C000001
ビス(β-エピチオプロピル)スルフィド
Figure JPOXMLDOC01-appb-C000002
ビス(β-エピチオプロピル)ジスルフィド
 本発明で使用する(b)化合物の添加量は、(a)および(b)化合物の合計を100質量部とした場合、50~90質量部使用するが、好ましくは60~90質量部、より好ましくは70~90質量部である。
(3)(c)化合物
 本発明で使用する(c)化合物は、メルカプト基を1分子あたり1個以上有するチオール化合物を全て包括するが、好ましくは1分子中に2個以上のメルカプト基を有する化合物であり、具体的にはm-キシリレンジチオール、p-キシリレンジチオール、o-キシリレンジチオール、ビス(2-メルカプトエチル)スルフィド、ペンタエリスリトールテトラキス(2-メルカプトアセテート)、ペンタエリスリトールテトラキス(3-メルカプトプロピオネート)、および1,2-ビス(2-メルカプトエチルチオ)-3-メルカプトプロパンなどのポリチオール化合物から選択される1種以上である。これらは単独でも、2種類以上を混合して使用してもかまわない。
 中でも好ましいのは下記構造式で表されるm-キシリレンジチオール(式(3))、p-キシリレンジチオール(式(4))、並びに、ペンタエリスリトールテトラキス(3-メルカプトプロピオネート)、および1,2-ビス(2-メルカプトエチルチオ)-3-メルカプトプロパンであり、特に好ましいのは常温で低粘度な液体となるm-キシリレンジチオールである。
Figure JPOXMLDOC01-appb-C000003
m-キシリレンジチオール
Figure JPOXMLDOC01-appb-C000004
p-キシリレンジチオール
 本発明で使用する(c)化合物の添加量は、(a)及び(b)化合物の合計を100質量部とした場合、1質量部~50質量部であることが好ましく、より好ましくは2質量部~30質量部、更に好ましくは5質量部~15質量部である。
(4)(d)化合物
 本発明で使用する(d)化合物は、イソシアネート基を1分子あたり1個以上有するイソシアネート化合物を全て包括するが、好ましくは1分子中に2個のイソシアネート基を有する化合物であり、具体的にはキシリレンジイソシアネート化合物、1,3-ビス(イソシアナトメチル)シクロヘキサン、イソホロンジイソシアネート、およびヘキサメチレンジイソシアネートなどのジイソシアネート化合物から選択される1種以上である。これらは単独でも、2種類以上を混合して使用してもかまわない。
 中でも好ましいのは下記構造式で表されるm-キシリレンジイソシアネート(式(5)) 、並びに、1,3-ビス(1-イソシアナート-1-メチルエチル)ベンゼンおよび1,3-ビス(イソシアナトメチル)シクロヘキサンである。
Figure JPOXMLDOC01-appb-C000005
m-キシリレンジイソシアネート
 本発明で使用する(d)化合物の添加量は、(a)及び(b)化合物の合計を100質量部とした場合、1質量部~50質量部であることが好ましく、より好ましくは2質量部~30質量部、更に好ましくは3質量部~10質量部である。
 ただし本光学材料用組成物から得られる光学材料が十分な強度を達成するには、光学材料用組成物全量に対して、(d)化合物が少なくとも1質量%以上とする。
(5)(e)化合物
 (a)化合物と(b)化合物との予備重合反応を促進させる、ヒンダードアミンである(e)化合物としては、1,2,2,6,6-ペンタメチルピペリジル-4-メタクリレート、ビス(2,2,6,6-テトラメチル-4-ピペリジル)セバケート、ビス(1,2,2,6,6-ペンタメチル-4-ピペリジル)セバケート、ビス(1,2,2,6,6-ペンタメチル-4-ピペリジル)-2-(3,5-ジ-tert-ブチル-4-ヒドロキシベンジル)-2-n-ブチルマロネート、1-メチル-8-(1,2,2,6,6-ペンタメチル-4-ピペリジル)-セバケート、1-[2-〔3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオニルオキシ〕エチル]-4-〔3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオニルオキシ〕-2,2,6,6-テトラメチルピペリジン、4-ベンゾイルオキシ-2,2,6,6-テトラメチルピペリジン、テトラキス(2,2,6,6-テトラメチル-4-ピペリジル)-1,2,3,4-ブタン-テトラカルボキシレート、トリエチレンジアミン、8-アセチル-3-ドデシル-7,7,9,9-テトラメチル-1,3,8-トリアザスピロ[4,5]デカン-2,4-ジオンなどのヒンダードアミンから選択される1種以上のヒンダードアミン化合物が用いられる。中でもより好ましいのは下記構造式で表される1,2,2,6,6-ペンタメチルピペリジル-4-メタクリレート(式(6))、およびビス(2,2,6,6-テトラメチル-4-ピペリジル)セバケートであり、特に好ましいのは、1,2,2,6,6-ペンタメチルピペリジル-4-メタクリレートである。
Figure JPOXMLDOC01-appb-C000006
 本発明で使用する(e)化合物は、(a)及び(b)化合物の合計100質量部に対して、0.001~1質量部であり、好ましくは0.002~1質量部であり、より好ましくは0.005~0.5質量部である。
(6)重合触媒
 本発明の光学材料用組成物には、重合硬化のために、必要に応じて重合触媒を添加することができる。重合触媒としては、アミン類、ホスフィン類、第4級アンモニウム塩類、第4級ホスホニウム塩類、アルデヒドとアミン系化合物の縮合物、カルボン酸とアンモニアとの塩、ウレタン類、チオウレタン類、グアニジン類、チオ尿素類、チアゾール類、スルフェンアミド類、チウラム類、ジチオカルバミン酸塩類、キサントゲン酸塩、第3級スルホニウム塩類、第2級ヨードニウム塩類、鉱酸類、ルイス酸類、有機酸類、ケイ酸類、四フッ化ホウ酸類、過酸化物、アゾ系化合物、酸性リン酸エステル類を挙げることができる。
 重合触媒は、重合硬化を発現するものであれば、特に限定されるものではない。また、これら重合触媒は単独でも2種類以上を混合して使用してもかまわない。これらのうち好ましい具体例は、テトラ-n-ブチルアンモニウムブロマイド、トリエチルベンジルアンモニウムクロライド、セチルジメチルベンジルアンモニウムクロライド、1-n-ドデシルピリジニウムクロライド等の第4級アンモニウム塩、テトラ-n-ブチルホスホニウムブロマイド、テトラフェニルホスホニウムブロマイド等の第4級ホスホニウム塩が挙げられる。これらの中で、さらに好ましい具体例は、トリエチルベンジルアンモニウムクロライドおよび/またはテトラ-n-ブチルホスホニウムブロマイドであり、最も好ましい具体例は、トリエチルベンジルアンモニウムクロライドである。
 重合触媒の添加量は、(a)、(b)、(c)、および(d)化合物の合計100質量部に対して、0.001~5質量部であり、好ましくは0.002~5質量部であり、より好ましくは0.005~3質量部である。
(7)重合調節剤
 本発明の光学材料用組成物には、重合硬化する際に、ポットライフの延長や重合発熱の分散化などを目的として、必要に応じて重合調節剤を添加することができる。重合調節剤は、長期周期律表における第13~16族元素のハロゲン化物を挙げることができる。
 これら重合調節剤は、単独でも2種類以上を混合して使用してもかまわない。これらのうち好ましいものはケイ素、ゲルマニウム、スズ、アンチモンのハロゲン化物である。より好ましくはケイ素、ゲルマニウム、スズ、アンチモンの塩化物であり、さらに好ましくはアルキル基を有するゲルマニウム、スズ、アンチモンの塩化物である。最も好ましいものの具体例はジブチルスズジクロライド、ブチルスズトリクロライド、ジオクチルスズジクロライド、オクチルスズトリクロライド、ジブチルジクロロゲルマニウム、ブチルトリクロロゲルマニウム、ジフェニルジクロロゲルマニウム、フェニルトリクロロゲルマニウム、トリフェニルアンチモンジクロライドである。
 重合調節剤の添加量は、(a)、(b)、(c)および(d)化合物の合計100質量部に対して、0.001~5質量部であり、好ましくは0.002~5質量部であり、より好ましくは0.005~3質量部である。
(8)性能改良剤
 本発明の光学材料用組成物には、耐酸化性、耐候性、染色性、強度、屈折率等の各種性能の改良を目的として、組成成分の化合物の一部もしくは全部と反応可能な化合物(性能改良剤)を添加することも可能である。この場合は、反応のために必要に応じて公知の重合触媒を別途加えることができる。
 組成成分の一部もしくは全部と反応可能な化合物(性能改良剤)としては、本願発明のチオール以外のメルカプト基を2個以上有する化合物類、エポキシ化合物類、カルボン酸類、カルボン酸無水物類、フェノール類、アミン類、ビニル化合物類、アリル化合物類、アクリル化合物類、メタクリル化合物類等が挙げられる。
 性能改良剤の添加量は、(a)、(b)、(c)および(d)化合物の合計100質量部に対して、それぞれ0.001~10質量部であり、好ましくは0.002~5質量部であり、より好ましくは0.005~3質量部である。
(9)その他の任意成分
 本発明の光学材料用組成物においては、任意成分として、公知の酸化防止剤、ブルーイング剤、紫外線吸収剤、消臭剤等の各種添加剤を必要に応じて加え、得られる材料の実用性をより向上せしめることはもちろん可能である。
 また、本発明の光学材料が重合中に型から剥がれやすい場合には公知の外部および/または内部密着性改善剤を、または型から剥がれにくい場合には公知の外部および/または内部離型性改善剤を、使用することもできる。これらの外部および/または内部密着性改善剤や外部および/または内部離型性改善剤は、重合硬化時に用いるガラスもしくは金属製の型に塗布することができるほか、本発明の光学材料用組成物に添加して、得られる光学材料と型の密着性または離型性を向上せしめることも有効である。
 本発明の光学材料用組成物の製造方法では、(a)化合物の使用量が光学材料用組成物全量に対し10質量%以上であることが望ましい。(a)化合物の含有量が光学材料用組成物全量に対し10質量%以上であると、高屈折率(特にneが1.73以上)を達成することができる。
 また、(d)イソシアネート化合物の含有量が光学材料用組成物全量に対し1質量%以上であることが、硬化物の強度の面から必要であり、更には(d)化合物が2質量%以上であることが望ましい。
 また(d)化合物を共重合せしめるとともに硬化物の色調などの物性を向上させるため、(c)チオール化合物が必要となる。(c)化合物の含有量は先に述べたような理由から、光学材料用組成物全量に対し5質量%以上であることが望ましく、更には(c)化合物が8質量%以上であることがより望ましい。
 本発明の光学材料用組成物の製造方法では、上記(a)、(b)、(c)及び(d)化合物、並びに必要に応じて用いられる任意成分を通常の方法で混合・攪拌するが、(a)化合物と(b)化合物の少なくとも一部を、(e)化合物を触媒として先に予備重合反応させた後、(c)化合物及び(d)化合物と混合させることが必要である。
(i)予備重合反応
 本発明の光学材料用組成物の製造にあたっては、あらかじめ(a)化合物と(b)化合物とを(e)化合物を触媒として予備重合反応させる。この予備重合反応で得られる反応液には(a)化合物、(b)化合物および予備重合反応物が含まれる。予備重合反応で得られた反応液に、(c)化合物、(d)化合物、及び任意成分とを混合することが必要である。(a)化合物と(b)化合物を予備重合反応させることは、固体の(a)化合物をハンドリングする際には有効な手段であり、得られる光学材料の透明性も良好となる。また、これにより(a)化合物(硫黄等を有する無機化合物)を多量に配合することが可能となり、高屈折率、高強度、及び高耐熱性を備えた光学材料を提供しうる光学材料用組成物が得られる。
 (a)化合物と(b)化合物とを予備重合反応させる方法を詳しく述べる。(a)化合物と(b)化合物は、それぞれ一部または全部を、撹拌下または非撹拌下反応させる。(a)化合物または(b)化合物の一部を予備重合反応に供する場合、(a)化合物または(b)化合物の残部は別途光学材料用組成物に添加混合される。
 予備重合反応させる割合は特に制限されないが、注型時に(a)化合物が固体として存在しない程度に(a)化合物と(b)化合物とを予備重合反応させるのが好ましい。更に好ましくは、(a)化合物、(b)化合物それぞれ50~100質量%が予備重合反応に供され、特に好ましくは(a)化合物、(b)化合物それぞれ全質量部が予備重合反応に供される。
 その際、(a)化合物と(b)化合物との反応を促進させる予備重合反応触媒である(e)化合物を加える。予備重合反応触媒(e)化合物としては、ヒンダードアミン化合物が用いられ、好ましくは1,2,2,6,6-ペンタメチルピペリジル-4-メタクリレートが用いられる。予備重合反応触媒(e)化合物の添加量は、(a)及び(b)化合物の合計100質量部に対して、0.001~1質量部であり、好ましくは0.002~1質量部であり、より好ましくは0.005~0.5質量部である。
 予備重合反応は、大気、窒素または酸素等の気体の存在下、常圧もしくは加減圧による密閉下、または減圧下等の任意の雰囲気下で行ってよい。また、この予備重合反応は、重合調節剤、性能改良剤、紫外線吸収剤など必要に応じて用いられる各種添加剤の存在下に行っても構わない。また、(c)化合物の一部または全部の存在下に行っても構わないが、その場合、該予備重合反応は重合硬化反応の一部を選択的に前倒しして実施する形となるため、穏和な条件を採用するなどして反応を制御するのが望ましい。
 予備重合反応時間は1分間~72時間であり、好ましくは10分間~48時間であり、より好ましくは30分間~24時間である。予備重合反応温度は、0℃~150℃であり、好ましくは10℃~120℃であり、より好ましくは10℃~80℃である。
 さらには、この予備重合反応により、(a)化合物を10モル%以上(反応前の(a)化合物を100モル%とする)反応させておくことが好ましく、20モル%以上反応させておくことがより好ましい。
 また、この予備重合反応物について、液体クロマトグラフィーおよび/または粘度および/または比重および/または屈折率を測定することで、反応の進行度を観察し制御することは、均質な光学材料用組成物とする上で好ましい。また、(a)化合物の反応割合を知ることもできる。
 中でも、液体クロマトグラフィーおよび/または屈折率を測定する手法が高感度であることから好ましく、さらには、屈折率を測定する手法が簡便であることからより好ましい。屈折率を測定する場合、リアルタイムで反応の進行度を観察できることから、インライン型の屈折計を用いることが好ましい。
(ii)混合
 光学材料用組成物の製造方法は、詳しく述べるならば以下の通りである。(a)化合物と(b)化合物、および(a)化合物と(b)化合物を予備重合反応して得られる予備重合反応物を含む反応液、(c)化合物、(d)化合物、性能改良剤(組成成分の一部もしくは全部と反応可能な化合物)、予備重合反応触媒(e)化合物、重合触媒、重合調節剤、密着性改善剤または離型性改善剤、酸化防止剤、ブルーイング剤、紫外線吸収剤、消臭剤等の各種添加剤等は、全て同一容器内で同時に撹拌下に混合しても、各原料を段階的に添加混合しても、数成分を別々に混合後さらに同一容器内で再混合しても良い。各原料および添加剤等はいかなる順序で混合しても構わない。さらに、上述した(a)化合物と(b)化合物の組み合わせによる予備重合反応以外にも、各成分の2種類以上についてあらかじめ予備的な反応を行った後、混合しても構わない。例えば(a)化合物と(b)化合物について上記予備重合反応を行い、別途(c)化合物の一部と性能改良剤を(単に混合するのではなく)予備的に反応させ、それらを混合することも可能である。
 混合にあたり、設定温度、これに要する時間等は基本的には各成分が十分に混合される条件であればよいが、過剰の温度・時間は、各原料や添加剤間の好ましくない反応が起こり易くなり、さらには粘度の上昇をきたし注型操作を困難にする場合がある、などの理由により適当ではない。
 混合温度は-50℃~100℃程度の範囲で行われるべきであり、好ましい温度範囲は-30℃~70℃、さらに好ましいのは、-5℃~50℃である。混合時間は、1分~12時間、好ましくは5分~10時間、最も好ましいのは5分~6時間程度である。必要に応じて、活性エネルギー線を遮断して混合してもかまわない。またその後、以下の方法で脱気処理を行ってもよい。
(iii)脱気処理
 本発明の光学材料用組成物の製造方法においては、上記混合により樹脂組成物を製造後、脱気処理を行う場合がある。光学材料用組成物を重合硬化前にあらかじめ脱気処理することは、重合硬化して得られる光学材料の高度な透明性を達成する面から好ましい。
 脱気処理は、(a)化合物、(b)化合物、(c)化合物、(d)化合物、および各種組成成分の一部もしくは全部と反応可能な化合物、重合触媒、重合調節剤、各種添加剤の混合前、混合時あるいは混合後に、減圧下に行う。好ましくは、混合時あるいは混合後に、減圧下に行う。
 脱気処理条件は、0.1~15000Paの減圧下、1分間~24時間、0℃~100℃で行う。減圧度は、好ましくは1~10000Paであり、より好ましくは1~5000Paであり、これらの範囲で減圧度を可変しても構わない。脱気時間は、好ましくは5分間~18時間であり、より好ましくは10分間~12時間である。脱気の際の温度は、好ましくは5℃~80℃であり、より好ましくは10℃~60℃であり、これらの範囲で温度を可変しても構わない。
 脱気処理の際は、撹拌、気体の吹き込み、超音波などによる振動などによって、光学材料用組成物の界面を更新することは、脱気効果を高める上で好ましい操作である。
 脱気処理により、除去される成分は、主に硫化水素等の溶存ガスや低分子量のメルカプタン等の低沸点物等であるが、脱気処理の効果を発現するのであれば、特に限定されない。
 このようにして得られる光学材料用組成物は、重合硬化の直前にフィルター等で不純物等をろ過し精製することができる。光学材料用組成物をフィルターに通して不純物等をろ過し精製することは、本発明の光学材料の品質をさらに高める上から望ましいことである。ここで用いるフィルターの孔径は0.05~10μm程度であり、一般的には0.1~1.0μmのものが使用される。フィルターの材質としては、PTFEやPETやPPなどが好適に使用される。
2.光学材料
 本発明の光学材料は、上記光学材料用組成物の製造方法で得られる光学材料用組成物を重合硬化して得られる。重合硬化は通常、光学材料用組成物をガラスや金属製の型に注入後、電気炉を用いて加熱したり、活性エネルギー線発生装置等を用いて紫外線などの活性エネルギー線を照射したりすることによって行われる。重合時間は0.1~100時間、通常1~48時間であり、重合温度は-10℃~160℃、通常-10℃~140℃である。重合は所定の重合温度で所定時間のホールド、0.1℃~100℃/hの昇温、0.1℃~100℃/hの降温およびこれらの組み合わせで行うことができる。
 また、重合終了後、材料を50℃から150℃の温度で5分から5時間程度アニール処理を行う事は、光学材料の歪を除くために好ましい処理である。さらに必要に応じて染色、ハードコート、反射防止、防曇性、防汚性、耐衝撃性付与等の表面処理を行うことができる。
 本発明の製造方法で得られる光学材料用組成物を重合硬化することにより、従来困難であった、十分に高い屈折率と良好なアッベ数を有し、更に高い強度および耐熱性を有する光学材料を提供することが可能となった。すなわち、目的とする光学材料の屈折率(ne)としては、好ましくは1.73以上、より好ましくは1.74以上で、強度としては3点曲げ試験の伸びが13%以上、より好ましくは14%以上であり、特に好ましくは15%以上で、かつ耐ドリル強度が良好であること、耐熱性(TMA測定の軟化点)は70℃以上である光学材料を提供し得る光学材料用組成物および光学材料、並びにそれを用いたツーポイントフレームメガネ用レンズを提供することができる。
 本発明においては、高屈折率化剤である硫黄を多量に(例えば光学材料用組成物全量に対し10質量%以上)配合した均質な光学材料用組成物を得ることができる。そしてそれを用いることによって、屈折率1.73以上という高屈折率の光学材料を得ることができる。
 従来の(a)化合物、(b)化合物、(c)化合物、(d)化合物からなる組成物とその製造方法では、(a)化合物と(d)化合物を多量に配合すると、急速重合が起こり、屈折率1.73以上の硬化物(光学材料)を得ることはできなかった。
 本発明によれば、光学材料用組成物の製造段階で(a)化合物と(b)化合物を1,2,2,6,6-ペンタメチルピペリジル-4-メタクリレートなどのヒンダードアミン化合物を触媒として予備重合反応させて適量を消費することによって、(a)化合物を完全に溶解させ、均一な液体組成物とすることが可能であり、かつ急速重合を起こすことなく重合硬化が可能であり、透明均一な光学材料を得ることが可能となった。
 このように、本発明の特徴的な組成・製造方法を採用することにより、高屈折率(neが1.73以上)を達成し、さらに高強度(3点曲げ試験の伸びが13%以上、及び耐ドリル強度が良好)、および高耐熱性をも有する光学材料が容易に得られる。
 以下、実施例により本発明を具体的に説明するが、本発明はこれらに限定されるものではない。なお、得られた光学材料の屈折率およびアッベ数、耐熱性、伸びおよび耐ドリル強度の評価は以下の方法で行った。
[屈折率(ne)測定、アッベ数(νd)測定]
 デジタル精密屈折計(カルニュー光学工業株式会社製、KPR-200)を用い、25℃で測定した。
[耐熱性測定]
 サンプルを厚さ3mmに切り出し、1mmφのピンに10gの加重を与え、30℃から10℃/分で昇温してTMA測定(セイコーインスツルメンツ製、TMA/SS6100)を行い、軟化点を測定した。
[伸び(強度)測定]
 JIS規格K-7171に準拠し、厚さ2.5mm、幅10.0mmの平板を、オートグラフ(株式会社島津製作所製、AG-5000B)を用い、支点間距離40mmにおいて3点曲げ試験を行い、破断点の伸びを測定した。
[耐ドリル強度]
 特開2008-101190号公報に示されている評価方法に準拠して、ドリルの回転数2500rpm、進入速度600mm/分で2.5mm厚の平板に直径2mmの穴を開けたときの周辺部の状態を測定した。周辺部に欠けが見られないものを○、見られたものを×とした。
<実施例1>
 (a)化合物として硫黄20質量部、(b)化合物としてビス(β-エピチオプロピル)スルフィド(以下b-1化合物と呼ぶ)80質量部の合計100質量部に、紫外線吸収剤として2-(2-ヒドロキシ-5-tert-オクチルフェニル)ベンゾトリアゾール1質量部を加え、50℃でよく混合し均一とした。次いで、予備重合反応触媒(e)化合物として1,2,2,6,6-ペンタメチルピペリジル-4-メタクリレート(以下e-1化合物と呼ぶ)0.01質量部を加え、(a)化合物が20℃において析出しなくなるまで50℃で予備重合反応させた。
 なお、本実施例では、予備重合反応を(a)化合物が約50モル%反応したところで停止させており、得られた組成物中には(a)化合物が残存した状態にある。(a)化合物の反応割合は、反応液を液体クロマトグラフィー分析ならびに屈折率を測定することにより求めた。
 その後、得られた組成物を20℃に冷却した。そこへ、あらかじめ重合触媒としてトリエチルベンジルアンモニウムクロライド0.035質量部、重合調節剤としてジ-n-ブチルスズジクロライド0.40質量部を(c)化合物であるm-キシリレンジチオール(以下c-1化合物と呼ぶ)9質量部に溶解させたものをマスターバッチとして加えた。次いで(d)化合物としてm-キシリレンジイソシアネート(以下d-1化合物と呼ぶ)3質量部を加え、混合し均一な組成物とし、4000Pa、60分間、20℃の条件下で脱気処理した。
 得られた光学材料用組成物を1.0μmのPTFE製のメンブランフィルターでろ過し、2枚のガラス板とガスケットから構成される、厚さ2.5mmの平板型モールドに注入し、30℃で10時間加熱し、その後30℃から100℃まで10時間かけて一定速度昇温させ、最後に100℃で1時間加熱し、重合硬化させた。室温まで放冷した後、モールドから離型し、硬化した光学材料を得た。得られた光学材料の屈折率およびアッベ数、耐熱性、伸びおよび耐ドリル強度の評価結果を表1に示した。
<実施例2、3>
 (a)化合物と(b)化合物の量を変更する以外は実施例1と同様に行った。得られた光学材料の屈折率およびアッベ数、耐熱性、伸びおよび耐ドリル強度の評価結果を表1に示した。
<実施例4>
 (c)化合物と(d)化合物の量を変更する以外は実施例1と同様に行った。得られた光学材料の屈折率およびアッベ数、耐熱性、伸びおよび耐ドリル強度の評価結果を表1に示した。
<実施例5>
 予備重合反応触媒である(e)化合物の量を変更する以外は実施例1と同様に行った。得られた光学材料の屈折率およびアッベ数、耐熱性、伸びおよび耐ドリル強度の評価結果を表1に示した。
<実施例6>
 (b)化合物のb-1化合物の代わりに、ビス(β-エピチオプロピル)ジスルフィド(以下b-2化合物と呼ぶ)を使用し、(a)および(b)化合物の量を変更する以外は実施例1と同様に行った。得られた光学材料の屈折率およびアッベ数、耐熱性、伸びおよび耐ドリル強度の評価結果を表1に示した。
<実施例7>
 (d)化合物のd-1化合物の代わりに、1,3-ビス(1-イソシアナート-1-メチルエチル)ベンゼン(以下d-2化合物と呼ぶ)を使用し、(d)化合物の量を変更する以外は実施例4と同様に行った。得られた光学材料の屈折率およびアッベ数、耐熱性、伸びおよび耐ドリル強度の評価結果を表1に示した。
<実施例8>
 (d)化合物のd-1化合物の代わりに、1,3-ビス(イソシアナトメチル)シクロヘキサン(以下d-3化合物と呼ぶ)を使用する以外は実施例1と同様に行った。得られた光学材料の屈折率およびアッベ数、耐熱性、伸びおよび耐ドリル強度の評価結果を表1に示した。
<実施例9>
 (c)化合物のc-1化合物の代わりに、p-キシリレンジチオール(以下c-2化合物と呼ぶ)を使用する以外は実施例1と同様に行った。得られた光学材料の屈折率およびアッベ数、耐熱性、伸びおよび耐ドリル強度の評価結果を表1に示した。
<実施例10、11>
 (c)化合物を、c-1化合物とペンタエリスリトールテトラキス(3-メルカプトプロピオネート)(以下c-3化合物と呼ぶ)あるいはc-1化合物と1,2-ビス(2-メルカプトエチルチオ)-3-メルカプトプロパン(以下c-4化合物と呼ぶ)のように2種類の(c)化合物を併用する、かつ各化合物の質量部を変更する以外は実施例1と同様に行った。得られた光学材料の屈折率およびアッベ数、耐熱性、伸びおよび耐ドリル強度の評価結果を表1に示した。
<実施例12>
 (e)化合物のe-1化合物の代わりにビス(2,2,6,6-テトラメチル-4-ピペリジル)セバケート(以下e-2化合物と呼ぶ)を使用し、使用量を変更する以外は実施例1と同様に行った。得られた光学材料の屈折率およびアッベ数、耐熱性、伸びおよび耐ドリル強度の評価結果を表1に示した。
<比較例1>
 (a)化合物として硫黄15質量部、(b)化合物としてb-1化合物85質量部の合計100質量部に、紫外線吸収剤として2-(2-ヒドロキシ-5-tert-オクチルフェニル)ベンゾトリアゾール1質量部を加え、60℃でよく混合し均一とした。次いで、予備重合反応触媒として2-メルカプト-1-メチルイミダゾール(以下e-3化合物と呼ぶ)0.5質量部を加え、(a)化合物が20℃において析出しなくなるまで50℃で予備重合反応させた。その後、得られた組成物を20℃に冷却した。そこへ、重合触媒としてトリエチルベンジルアンモニウムクロライド0.03質量部、重合調節剤としてジ-n-ブチルスズジクロライド0.20質量部を溶解させ、実施例1と同様に重合硬化させた。
 得られた光学材料の屈折率およびアッベ数、耐熱性および伸びの評価結果を表1に示した。得られた光学材料は伸びおよび耐ドリル強度が不十分であった。
<比較例2>
 (a)化合物として硫黄16質量部、(b)化合物としてb-1化合物84質量部の合計100質量部に、紫外線吸収剤として2-(2-ヒドロキシ-5-tert-オクチルフェニル)ベンゾトリアゾール1質量部を加え、60℃でよく混合し均一とした。次いで、e-3化合物0.5質量部を加え、(a)化合物が20℃において析出しなくなるまで60℃で予備重合反応させた。
 その後、得られた組成物を20℃に冷却した。そこへ、あらかじめ重合触媒としてトリエチルベンジルアンモニウムクロライド0.03質量部、重合調節剤としてジ-n-ブチルスズジクロライド0.20質量部をc-1化合物7質量部に溶解させたものをマスターバッチとして加え、混合し均一な組成物とし、4000Pa、30分間、20℃の条件下で脱気処理した。以後、実施例1と同様に重合硬化させ、硬化した光学材料を得た。得られた光学材料の屈折率およびアッベ数、耐熱性、伸びおよび耐ドリル強度の評価結果を表1に示した。得られた光学材料は伸びが不十分であった。
<比較例3>
 (c)化合物のc-1化合物の代わりに、ビス(2-メルカプトエチル)スルフィド(以下c-5化合物と呼ぶ)を使用する以外は比較例2と同様に行った。得られた光学材料の屈折率およびアッベ数、耐熱性、伸びおよび耐ドリル強度の評価結果を表1に示した。得られた光学材料は伸びおよび耐ドリル強度が不十分であった。
<比較例4>
 (b)化合物としてb-1化合物100質量部、(c)化合物としてc-1化合物16質量部、内部離型剤としてポリオキシエチレンラウリルエーテルリン酸ナトリウム0.005質量部、重合触媒としてテトラ-n-ブチルアンモニウムブロマイド0.03質量部、重合調節剤としてジ-n-ブチルスズジクロライド0.05質量部を混合し、均一な組成物とし1300Paの減圧下で30分脱気を行った後、実施例1と同様に重合硬化させた。得られた光学材料の屈折率およびアッベ数、耐熱性、伸びおよび耐ドリル強度の評価結果を表1に示した。得られた光学材料は屈折率および耐熱性が不十分であった。
<比較例5、6>
 表1に示した組成に変更した以外は比較例4を繰り返した。得られた光学材料の屈折率およびアッベ数、耐熱性、伸びおよび耐ドリル強度の評価結果を表1に示した。得られた光学材料はいずれも屈折率が低く、伸びが不十分なものもあった。
<比較例7>
 表1に示した組成に変更した以外は比較例4を繰り返した。(a)化合物が溶け残ったまま重合硬化してしまい、均一透明な光学材料は得られなかった。
<比較例8>
 比較例2と同様に予備重合反応を行い、得られた組成物を20℃に冷却した。そこへ、あらかじめ重合触媒としてトリエチルベンジルアンモニウムクロライド0.03質量部、重合調節剤としてジ-n-ブチルスズジクロライド0.20質量部をc-1化合物9質量部に溶解させたものを、マスターバッチとして加え、次いでd-1化合物3質量部を順に加え混合したが、急速重合が起こり、光学材料は得られなかった。
Figure JPOXMLDOC01-appb-T000007
 なお、上記表1中の記号は、以下を意味する。
(a)硫黄
(b-1)ビス(β-エピチオプロピル)スルフィド
(b-2)ビス(β-エピチオプロピル)ジスルフィド
(c-1)m-キシリレンジチオール
(c-2)p-キシリレンジチオール
(c-3)ペンタエリスリトールテトラキス(3-メルカプトプロピオネート)
(c-4)1,2-ビス(2-メルカプトエチルチオ)-3-メルカプトプロパン
(c-5)ビス(2-メルカプトエチル)スルフィド
(d-1)m-キシリレンジイソシアネート
(d-2)1,3-ビス(1-イソシアナート-1-メチルエチル)ベンゼン
(d-3)1,3-ビス(イソシアナトメチル)シクロヘキサン
(e-1)1,2,2,6,6-ペンタメチルピペリジル-4-メタクリレート
(e-2)ビス(2,2,6,6-テトラメチル-4-ピペリジル)セバケート
(e-3)2-メルカプト-1-メチルイミダゾール
 本発明の製造方法による光学材料用組成物は、重合硬化することにより、高屈折率、高強度、高耐熱性などの優れた特性を有する光学材料を提供することができる。このような本発明の光学材料は、プラスチックレンズ、プリズム、光ファイバー、情報記録基盤、フィルター等の光学材料として好適であり、中でもプラスチックレンズ、特にツーポイントフレームメガネ用レンズとして好適に使用される。

Claims (6)

  1.  下記(a)化合物10~50質量部(ただし光学材料用組成物全量に対して10質量%以上)、下記(b)化合物50~90質量部、下記(c)化合物1~50質量部および下記(d)化合物1~50質量部(ただし光学材料用組成物全量に対して1質量%以上)を原料とする光学材料用組成物の製造方法であって(ただし、質量部は(a)化合物と(b)化合物との合計量を100質量部とした値)、下記(a)化合物と下記(b)化合物とをヒンダードアミンを触媒として予備重合反応させて得られた反応液と下記(c)化合物および下記(d)化合物を混合することを特徴とする光学材料用組成物の製造方法。
     (a)硫黄原子を有する無機化合物
     (b)エピスルフィド基を1分子中に1個以上有するエピスルフィド化合物
     (c)メルカプト基を1分子あたり1個以上有するチオール化合物
    (d)イソシアネート基を1分子あたり1個以上有するイソシアネート化合物
  2.  前記ヒンダードアミンが、1,2,2,6,6-ペンタメチルピペリジル-4-メタクリレートであることを特徴とする請求項1記載の光学材料用組成物の製造方法。
  3.  請求項1または2記載の光学材料用組成物の製造方法により光学材料用組成物を製造する工程と、得られた光学材料用組成物を重合硬化させる工程とを含む光学材料の製造方法。
  4.  請求項3記載の製造方法によって得られる光学材料であって、屈折率(ne)が1.73以上である、光学材料。
  5.  請求項4記載の光学材料を含むメガネ用レンズ。
  6.  ツーポイントフレームに装着可能な強度を有する請求項5記載のメガネ用レンズ。
PCT/JP2013/051970 2012-02-02 2013-01-30 光学材料用組成物の製造方法 WO2013115212A1 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP2013556428A JP5817850B2 (ja) 2012-02-02 2013-01-30 光学材料用組成物の製造方法
EP13742825.6A EP2810972B1 (en) 2012-02-02 2013-01-30 Method for producing composition for optical material
US14/372,153 US9458293B2 (en) 2012-02-02 2013-01-30 Method for producing composition for optical material
KR1020147021248A KR101561636B1 (ko) 2012-02-02 2013-01-30 광학재료용 조성물의 제조방법
IN6876DEN2014 IN2014DN06876A (ja) 2012-02-02 2013-01-30
CN201380007358.0A CN104080837B (zh) 2012-02-02 2013-01-30 光学材料用组合物的制造方法
BR112014018872-6A BR112014018872B1 (pt) 2012-02-02 2013-01-30 método para produzir composição para material ótico, método para produzir material ótico, material ótico obtenível através de tal método e lente de óculos

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012021022 2012-02-02
JP2012-021022 2012-02-02

Publications (1)

Publication Number Publication Date
WO2013115212A1 true WO2013115212A1 (ja) 2013-08-08

Family

ID=48905245

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/051970 WO2013115212A1 (ja) 2012-02-02 2013-01-30 光学材料用組成物の製造方法

Country Status (8)

Country Link
US (1) US9458293B2 (ja)
EP (1) EP2810972B1 (ja)
JP (1) JP5817850B2 (ja)
KR (1) KR101561636B1 (ja)
CN (1) CN104080837B (ja)
BR (1) BR112014018872B1 (ja)
IN (1) IN2014DN06876A (ja)
WO (1) WO2013115212A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013189630A (ja) * 2012-02-14 2013-09-26 Mitsubishi Gas Chemical Co Inc 光学材料用重合性組成物
KR20160114144A (ko) 2014-03-11 2016-10-04 미쯔이가가꾸가부시끼가이샤 광학 재료용 중합성 조성물 및 광학 재료
KR20180113569A (ko) 2016-03-18 2018-10-16 미쯔이가가꾸가부시끼가이샤 (폴리)술피드 화합물의 제조 방법 및 에피술피드 화합물의 제조 방법

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170052284A1 (en) * 2015-08-21 2017-02-23 Ppg Industries Ohio, Inc. Batch Process for Preparing Molded Optical Articles
KR101831892B1 (ko) * 2016-06-30 2018-02-26 에스케이씨 주식회사 폴리티오우레탄계 광학 재료용 중합성 조성물
KR102081498B1 (ko) * 2017-05-12 2020-02-25 주식회사 케이오씨솔루션 광학재료용 모노머의 몰드 자동 주입방법 및 자동 주입장치
EP3632663A1 (en) * 2018-10-05 2020-04-08 Essilor International (Compagnie Generale D'optique) Method for the manufacturing of an optical element, optical element thus obtained
KR102669070B1 (ko) * 2018-12-06 2024-05-23 미쓰이 가가쿠 가부시키가이샤 신규한 에피설파이드 화합물, 이를 포함하는 에피설파이드계 광학재료용 조성물과 광학재료의 제조방법
KR102375853B1 (ko) * 2019-04-25 2022-03-17 주식회사 엘지화학 회절 도광판 및 회절 도광판의 제조 방법
CN114349922B (zh) * 2020-10-13 2024-01-23 浙江华峰新材料有限公司 一种柔性双重固化树脂组合物及其成型体的制备方法

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09110979A (ja) 1995-08-16 1997-04-28 Mitsubishi Gas Chem Co Inc 新規な直鎖アルキルスルフィド型エピスルフィド化合物
JP2001002783A (ja) 1999-04-23 2001-01-09 Mitsubishi Gas Chem Co Inc 光学材料用組成物
JP2002122701A (ja) 2000-10-13 2002-04-26 Mitsubishi Gas Chem Co Inc 光学材料用組成物
JP2004137481A (ja) 2002-09-27 2004-05-13 Mitsubishi Gas Chem Co Inc 光学材料の製造方法
JP2004339329A (ja) 2003-05-14 2004-12-02 Mitsubishi Gas Chem Co Inc 光学材料の製造方法
JP2007093862A (ja) * 2005-09-28 2007-04-12 Hoya Corp プラスチックレンズ
JP2008101190A (ja) 2006-09-19 2008-05-01 Mitsubishi Gas Chem Co Inc 高屈折率高強度樹脂用組成物
JP2009144094A (ja) * 2007-12-17 2009-07-02 Seiko Epson Corp 光学材料の製造方法および製造装置
JP2009242532A (ja) * 2008-03-31 2009-10-22 Mitsubishi Gas Chem Co Inc 光学材料用樹脂組成物の製造方法
WO2010073613A1 (ja) * 2008-12-24 2010-07-01 株式会社ニコン・エシロール 光学用樹脂組成物、光学レンズ及び眼鏡用プラスチックレンズ
WO2010131631A1 (ja) * 2009-05-14 2010-11-18 三菱瓦斯化学株式会社 高屈折率高強度光学材料用組成物
JP2012233044A (ja) * 2011-04-28 2012-11-29 Mitsubishi Gas Chemical Co Inc 硬化性組成物および光学接着剤

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5807975A (en) 1995-08-16 1998-09-15 Mitsubishi Gas Chemical Company,Inc. Alkyl sulfide type episulfide compound
JP2001002933A (ja) 1999-04-23 2001-01-09 Mitsubishi Gas Chem Co Inc 光学材料用組成物
JP4561946B2 (ja) * 2000-09-14 2010-10-13 三菱瓦斯化学株式会社 光学材料用組成物
WO2004005374A1 (ja) 2002-07-08 2004-01-15 Mitsubishi Gas Chemical Company, Inc. 重合性組成物、それからなる光学材料、及びその製造方法
AU2006248388B2 (en) 2005-05-19 2011-12-01 Mitsubishi Gas Chemical Company, Inc. Curable composition
AU2007298219B2 (en) * 2006-09-19 2012-03-29 Mitsubishi Gas Chemical Company, Inc. Resin composition for optical material and optical material using the same
KR20140094607A (ko) * 2006-10-16 2014-07-30 미쓰이 가가쿠 가부시키가이샤 광학재료용 수지의 제조방법
WO2010116841A1 (ja) * 2009-03-30 2010-10-14 昭和電工株式会社 硬化性組成物及びその硬化物
CN102834484B (zh) * 2010-04-09 2016-03-23 日立化成工业株式会社 球状荧光体、波长转换型太阳能电池密封材料、太阳能电池模块、和它们的制造方法
WO2012147708A1 (ja) 2011-04-28 2012-11-01 三菱瓦斯化学株式会社 硬化性組成物および光学用接着剤

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09110979A (ja) 1995-08-16 1997-04-28 Mitsubishi Gas Chem Co Inc 新規な直鎖アルキルスルフィド型エピスルフィド化合物
JP2001002783A (ja) 1999-04-23 2001-01-09 Mitsubishi Gas Chem Co Inc 光学材料用組成物
JP2002122701A (ja) 2000-10-13 2002-04-26 Mitsubishi Gas Chem Co Inc 光学材料用組成物
JP2004137481A (ja) 2002-09-27 2004-05-13 Mitsubishi Gas Chem Co Inc 光学材料の製造方法
JP2004339329A (ja) 2003-05-14 2004-12-02 Mitsubishi Gas Chem Co Inc 光学材料の製造方法
JP2007093862A (ja) * 2005-09-28 2007-04-12 Hoya Corp プラスチックレンズ
JP2008101190A (ja) 2006-09-19 2008-05-01 Mitsubishi Gas Chem Co Inc 高屈折率高強度樹脂用組成物
JP2009144094A (ja) * 2007-12-17 2009-07-02 Seiko Epson Corp 光学材料の製造方法および製造装置
JP2009242532A (ja) * 2008-03-31 2009-10-22 Mitsubishi Gas Chem Co Inc 光学材料用樹脂組成物の製造方法
WO2010073613A1 (ja) * 2008-12-24 2010-07-01 株式会社ニコン・エシロール 光学用樹脂組成物、光学レンズ及び眼鏡用プラスチックレンズ
WO2010131631A1 (ja) * 2009-05-14 2010-11-18 三菱瓦斯化学株式会社 高屈折率高強度光学材料用組成物
JP2012233044A (ja) * 2011-04-28 2012-11-29 Mitsubishi Gas Chemical Co Inc 硬化性組成物および光学接着剤

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2810972A4

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013189630A (ja) * 2012-02-14 2013-09-26 Mitsubishi Gas Chemical Co Inc 光学材料用重合性組成物
KR20160114144A (ko) 2014-03-11 2016-10-04 미쯔이가가꾸가부시끼가이샤 광학 재료용 중합성 조성물 및 광학 재료
US10266636B2 (en) 2014-03-11 2019-04-23 Mitsui Chemicals, Inc. Process for producing episulfide compound for optical material, episulfide-containing composition, and polymerizable composition for optical material including the same composition
KR20180113569A (ko) 2016-03-18 2018-10-16 미쯔이가가꾸가부시끼가이샤 (폴리)술피드 화합물의 제조 방법 및 에피술피드 화합물의 제조 방법
US10844010B2 (en) 2016-03-18 2020-11-24 Mitsui Chemicals, Inc. Process for producing (poly)sulfide compound and process for producing episulfide compound

Also Published As

Publication number Publication date
US9458293B2 (en) 2016-10-04
EP2810972B1 (en) 2016-11-02
JPWO2013115212A1 (ja) 2015-05-11
JP5817850B2 (ja) 2015-11-18
EP2810972A1 (en) 2014-12-10
CN104080837B (zh) 2016-06-15
BR112014018872A2 (ja) 2017-06-20
US20140378628A1 (en) 2014-12-25
KR20140117463A (ko) 2014-10-07
EP2810972A4 (en) 2015-09-09
IN2014DN06876A (ja) 2015-05-22
KR101561636B1 (ko) 2015-10-20
CN104080837A (zh) 2014-10-01
BR112014018872B1 (pt) 2021-03-02
BR112014018872A8 (pt) 2017-07-11

Similar Documents

Publication Publication Date Title
JP5817850B2 (ja) 光学材料用組成物の製造方法
JP5720565B2 (ja) 高屈折率高強度光学材料用組成物
US9529117B2 (en) Polymerizable composition for optical material, method for producing same, and method for producing optical material
CN110198969B (zh) 光学材料用组合物
JP5772925B2 (ja) 高屈折率高強度樹脂用組成物
JP5817910B2 (ja) 光学材料用重合性組成物
JP5458478B2 (ja) 高屈折率高強度樹脂用組成物
JP2007321072A (ja) 高屈折率樹脂の製造方法
JP6048013B2 (ja) 光学材料用重合性組成物の製造方法
CN110475796B (zh) 光学材料用组合物
WO2010073613A1 (ja) 光学用樹脂組成物、光学レンズ及び眼鏡用プラスチックレンズ
JP6089747B2 (ja) 光学材料用重合性組成物
JP6089744B2 (ja) 光学材料用重合性組成物の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13742825

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013556428

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14372153

Country of ref document: US

REEP Request for entry into the european phase

Ref document number: 2013742825

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2013742825

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20147021248

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112014018872

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112014018872

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20140730