Nothing Special   »   [go: up one dir, main page]

WO2010131631A1 - 高屈折率高強度光学材料用組成物 - Google Patents

高屈折率高強度光学材料用組成物 Download PDF

Info

Publication number
WO2010131631A1
WO2010131631A1 PCT/JP2010/057909 JP2010057909W WO2010131631A1 WO 2010131631 A1 WO2010131631 A1 WO 2010131631A1 JP 2010057909 W JP2010057909 W JP 2010057909W WO 2010131631 A1 WO2010131631 A1 WO 2010131631A1
Authority
WO
WIPO (PCT)
Prior art keywords
bis
compound
weight
composition
parts
Prior art date
Application number
PCT/JP2010/057909
Other languages
English (en)
French (fr)
Inventor
青木 崇
裕人 石塚
竹内 基晴
Original Assignee
三菱瓦斯化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱瓦斯化学株式会社 filed Critical 三菱瓦斯化学株式会社
Priority to EP10774888.1A priority Critical patent/EP2431401B1/en
Priority to CN2010800262199A priority patent/CN102459418A/zh
Priority to JP2011513331A priority patent/JP5720565B2/ja
Priority to KR1020117029099A priority patent/KR101714804B1/ko
Priority to US13/319,857 priority patent/US9150694B2/en
Publication of WO2010131631A1 publication Critical patent/WO2010131631A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G75/00Macromolecular compounds obtained by reactions forming a linkage containing sulfur with or without nitrogen, oxygen, or carbon in the main chain of the macromolecule
    • C08G75/02Polythioethers
    • C08G75/06Polythioethers from cyclic thioethers
    • C08G75/08Polythioethers from cyclic thioethers from thiiranes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L81/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing sulfur with or without nitrogen, oxygen or carbon only; Compositions of polysulfones; Compositions of derivatives of such polymers
    • C08L81/02Polythioethers; Polythioether-ethers
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/04Optical elements characterised by the material of which they are made; Optical coatings for optical elements made of organic materials, e.g. plastics
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/04Optical elements characterised by the material of which they are made; Optical coatings for optical elements made of organic materials, e.g. plastics
    • G02B1/041Lenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/04Optical elements characterised by the material of which they are made; Optical coatings for optical elements made of organic materials, e.g. plastics
    • G02B1/041Lenses
    • G02B1/043Contact lenses
    • GPHYSICS
    • G02OPTICS
    • G02CSPECTACLES; SUNGLASSES OR GOGGLES INSOFAR AS THEY HAVE THE SAME FEATURES AS SPECTACLES; CONTACT LENSES
    • G02C7/00Optical parts
    • G02C7/02Lenses; Lens systems ; Methods of designing lenses

Definitions

  • the present invention relates to a composition for optical materials, and further relates to an optical material (optical resin material) such as a plastic lens, a prism, an optical fiber, an information recording base, and a filter using the composition.
  • optical material optical resin material
  • the optical material of the present invention is suitably used as a plastic lens, particularly as a lens for two-point frame glasses.
  • Plastic materials have been widely used in recent years for various optical materials, particularly spectacle lenses, because they are light and tough and easy to dye.
  • the performance required especially for optical materials, especially optical materials for spectacle lenses is low specific gravity as physical properties, low yellowness as chemical and thermal properties, high heat resistance, high strength as mechanical properties, etc.
  • the optical performance is high transparency, high refractive index and high Abbe number.
  • a high refractive index makes it possible to reduce the thickness of the lens, and a high Abbe number reduces chromatic aberration of the lens.
  • the refractive index increases, the Abbe number decreases, and studies are being made to improve both simultaneously.
  • optical materials having a refractive index of 1.73 or more have been proposed using optical materials made of polyepisulfide compounds as disclosed in Patent Documents 2 and 3.
  • the problems to be solved by the present invention are high refractive index (ne is 1.73 or more), high strength (elongation of three-point bending test is 10% or more and good drilling strength), and high heat resistance.
  • An object of the present invention is to provide a composition for an optical material capable of providing an optical material satisfying the above three properties (softening point of TMA measurement is 70 ° C. or higher) or more.
  • the present invention is as follows.
  • the (b) episulfide compound is bis ( ⁇ -epithiopropyl) sulfide and / or bis ( ⁇ -epithiopropyl) disulfide.
  • the (c) xylylenedithiol compound is m-xylylenedithiol and / or p-xylylenedithiol.
  • composition for optical materials according to [1] wherein the content ratio of the inorganic compound (a) is 10% by weight or more based on the total amount of the composition for optical materials.
  • composition for optical materials according to [1] wherein the xylylene diisocyanate compound is not contained in an amount of 1% by weight or more based on the total amount of the composition for optical materials.
  • method according to [1] wherein at least a part of the (a) inorganic compound and the (b) episulfide compound is contained as a prepolymerization reaction product obtained by a prepolymerization reaction with each other. Composition for optical material.
  • a method for preparing a composition for optical materials comprising a step of mixing the following compounds (a), (b) and (c).
  • a method for producing an optical material comprising the following steps (A) and (B).
  • a step of preparing a composition for optical material by mixing the following compounds (a), (b) and (c): (A) 1 to 50 parts by weight (however, 10% by weight or more based on the total amount of the optical material composition) of sulfur and / or selenium atoms (b) 50 to 99 parts by weight of bis ( ⁇ -epi Thiopropyl) sulfide, bis ( ⁇ -epithiopropyl) disulfide, bis ( ⁇ -epithiopropyl) trisulfide, bis ( ⁇ -epithiopropylthio) methane, 1,2-bis ( ⁇ -epithiopropylthio) Ethane, 1,3-bis ( ⁇ -epithiopropylthio) propane, 1,2-bis ( ⁇ -epithiopropylthio) propane, 1,4-bis ( ⁇ -epithiopropy
  • step (A) further comprises a step of prepolymerizing at least a part of the inorganic compound (a) and the episulfide compound (b).
  • Production method [12]: An optical material obtained by the production method according to [10] or [11], wherein the refractive index (ne) is 1.73 or more.
  • [13] A lens for two-point frame glasses made of the optical material according to [12].
  • the present invention has excellent characteristics with respect to high refractive index (ne is 1.73 or more), high strength (elongation of three-point bending test is 10% or more and good drilling strength), and heat resistance. It is possible to provide a composition for optical materials, a resin for optical materials obtained by curing the composition, and a lens for two-point frame glasses using the composition.
  • composition for optical material comprises: (a) an inorganic compound having a sulfur atom and / or selenium atom (hereinafter referred to as (a) compound), (b) an episulfide compound (hereinafter referred to as (b) compound) ), And (c) a xylylene dithiol compound (hereinafter referred to as (c) compound), and optionally containing optional components such as a polymerization catalyst, a polymerization regulator, and a performance improver.
  • an inorganic compound having a sulfur atom and / or selenium atom hereinafter referred to as (a) compound
  • an episulfide compound hereinafter referred to as (b) compound
  • a xylylene dithiol compound hereinafter referred to as (c) compound
  • optionally containing optional components such as a polymerization catalyst, a polymerization regulator, and a performance improver.
  • the inorganic compound having a sulfur atom and / or selenium atom as the compound (a) used in the present invention includes all inorganic compounds having at least one sulfur atom and / or selenium atom. .
  • A It is preferable that the ratio of the total weight of the sulfur atom in a compound and / or a selenium atom is 30 mass% or more. If this ratio is less than 30% by mass, the effect of increasing the refractive index of the resin may be small because the increase in the ratio of the weight of sulfur atoms and / or selenium atoms in the composition for optical materials is small. .
  • the amount of the compound (a) added is 1 to 50 parts by weight, preferably 5 to 50 parts by weight, more preferably 10 to 40 parts by weight when the total of the compounds (a) and (b) is 100 parts by weight. Part by weight, particularly preferably 10 to 30 parts by weight.
  • the inorganic compound having a sulfur atom include sulfur, hydrogen sulfide, carbon disulfide, selenocarbon sulfide, ammonium sulfide, sulfur dioxide, sulfur trioxide and other sulfur oxides, thiocarbonate, sulfuric acid and salts thereof, sulfuric acid Hydrogen salt, sulfite, hyposulfite, persulfate, thiocyanate, thiosulfate, halides such as sulfur dichloride, thionyl chloride, thiophosgene, boron sulfide, nitrogen sulfide, silicon sulfide, phosphorus sulfide, arsenic sulfide, Examples thereof include metal sulfides and metal hydrosulfides.
  • sulfur, carbon disulfide, phosphorus sulfide, selenium sulfide, metal sulfide and metal hydrosulfide are preferable, sulfur, carbon disulfide and selenium sulfide are more preferable, and sulfur is particularly preferable.
  • the inorganic compound having a selenium atom includes all inorganic compounds satisfying this condition except for selenocarbon sulfide and selenium sulfide, which are listed as specific examples of the inorganic compound containing a sulfur atom.
  • selenium oxides such as selenium, hydrogen selenide, selenium dioxide, carbon diselenide, ammonium selenide, selenium dioxide, selenic acid and salts thereof, selenite and salts thereof, hydrogen selenate salts, seleno
  • sulfuric acid and its salts selenopyrosulfuric acid and its salts
  • halides such as selenium tetrabromide and selenium oxychloride, selenocyanate, boron selenide, phosphorus selenide, arsenic selenide, metal selenide and the like.
  • selenium, carbon diselenide, phosphorus selenide, and metal selenide preferred are selenium and carbon diselenide.
  • These inorganic compounds having a sulfur atom and / or selenium atom may be used alone or in combination of two or more.
  • (b) Compound As the compound (b) used in the present invention, bis ( ⁇ -epithiopropyl) sulfide, bis ( ⁇ -epithiopropyl) disulfide, bis ( ⁇ -epithiopropyl) trisulfide, Bis ( ⁇ -epithiopropylthio) methane, 1,2-bis ( ⁇ -epithiopropylthio) ethane, 1,3-bis ( ⁇ -epithiopropylthio) propane, 1,2-bis ( ⁇ -epi And one or more episulfide compounds selected from the group consisting of thiopropylthio) propane, 1,4-bis ( ⁇ -epithiopropylthio) butane, and bis ( ⁇ -epithiopropylthioethyl) sulfide.
  • preferred specific examples are bis ( ⁇ -epithiopropyl) sulfide (formula (1)) and / or bis ( ⁇ -epithiopropyl) disulfide (formula (2)), and the most preferred specific example is bis ( ⁇ -epithiopropyl) sulfide.
  • the amount of the compound (b) used in the present invention is 50 to 99 parts by weight, preferably 50 to 95 parts by weight, when the total of the compounds (a) and (b) is 100 parts by weight.
  • the amount is preferably 60 to 90 parts by weight, particularly preferably 70 to 90 parts by weight.
  • the compound (c) used in the present invention is a xylylene dithiol compound, and specific examples include o-, m-, and p-xylylene dithiol.
  • preferred xylylene dithiol compounds are m-xylylene dithiol (formula (3)) and p-xylylene dithiol (formula (4)) represented by the following structural formula. It is m-xylylene dithiol that becomes a liquid.
  • the amount of the compound (c) used in the present invention is preferably 1 to 50 parts by weight, more preferably 2 parts by weight when the total of the compounds (a) and (b) is 100 parts by weight. Part to 30 parts by weight, more preferably 3 parts to 10 parts by weight.
  • Polymerization catalysts include amines, phosphines, quaternary ammonium salts, quaternary phosphonium salts, condensates of aldehydes and amine compounds, salts of carboxylic acids and ammonia, urethanes, thiourethanes, guanidines, Thioureas, thiazoles, sulfenamides, thiurams, dithiocarbamates, xanthates, tertiary sulfonium salts, secondary iodonium salts, mineral acids, Lewis acids, organic acids, silicic acids, tetrafluoride Examples thereof include boric acids, peroxides, azo compounds, and acidic phosphate esters.
  • the polymerization catalyst is not particularly limited as long as it exhibits polymerization and curing. These polymerization catalysts may be used alone or in combination of two or more. Among these, preferred specific examples include tetra-n-butylammonium bromide, triethylbenzylammonium chloride, cetyldimethylbenzylammonium chloride, quaternary ammonium salts such as 1-n-dodecylpyridinium chloride, tetra-n-butylphosphonium bromide, Quaternary phosphonium salts such as tetraphenylphosphonium bromide can be mentioned.
  • triethylbenzylammonium chloride and / or tetra-n-butylphosphonium bromide are more preferred specific examples.
  • triethylbenzylammonium chloride and / or tetra-n-butylphosphonium bromide are more preferred specific examples.
  • the addition amount of the polymerization catalyst is 0.001 to 5 parts by weight, preferably 0.002 to 5 parts by weight with respect to 100 parts by weight of the total of the compounds (a), (b) and (c). More preferably, it is 0.005 to 3 parts by weight.
  • composition for an optical material of the present invention may be added with a polymerization regulator as necessary for the purpose of extending the pot life or dispersing the polymerization heat during polymerization and curing. it can.
  • the polymerization regulator include halides of Group 13 to 16 elements in the long-term periodic table.
  • These polymerization regulators may be used alone or in combination of two or more.
  • preferred are halides of silicon, germanium, tin and antimony. More preferred are chlorides of silicon, germanium, tin and antimony, and further preferred are chlorides of germanium, tin and antimony having an alkyl group.
  • Specific examples of the most preferred are dibutyltin dichloride, butyltin trichloride, dioctyltin dichloride, octyltin trichloride, dibutyldichlorogermanium, butyltrichlorogermanium, diphenyldichlorogermanium, phenyltrichlorogermanium, triphenylantimony dichloride.
  • the addition amount of the polymerization regulator is 0.001 to 5 parts by weight, preferably 0.002 to 5 parts by weight with respect to 100 parts by weight of the total of the compounds (a), (b) and (c). More preferably, the amount is 0.005 to 3 parts by weight.
  • Performance improver In the composition for optical materials of the present invention, part or all of the compounds of the composition component is used for the purpose of improving various performances such as oxidation resistance, weather resistance, dyeability, strength, and refractive index. It is also possible to add a compound capable of reacting with (performance improving agent). In this case, a known polymerization catalyst can be added separately as necessary for the reaction.
  • Examples of the compound (performance improving agent) capable of reacting with part or all of the composition components include compounds having two or more SH groups other than the xylylene diol of the present invention, epoxy compounds, carboxylic acids, and carboxylic acid anhydrides. Phenols, amines, vinyl compounds, allyl compounds, acrylic compounds, methacrylic compounds and the like.
  • the amount of the performance improver added is 0.001 to 10 parts by weight, preferably 0.002 to 5 parts by weight, based on 100 parts by weight of the total of the compounds (a), (b) and (c). More preferably 0.005 to 3 parts by weight.
  • composition for optical materials of the present invention various additives such as known antioxidants, bluing agents, ultraviolet absorbers, and deodorants are added as optional components as necessary.
  • additives such as known antioxidants, bluing agents, ultraviolet absorbers, and deodorants are added as optional components as necessary.
  • a known external and / or internal adhesion improver is used, or when it is difficult to peel off from the mold, a known external and / or internal mold release is improved.
  • Agents can also be used.
  • external and / or internal adhesion improvers and external and / or internal releasability improvers can be applied to glass or metal molds used during polymerization and curing, and the optical material composition of the present invention. It is also effective to improve the adhesiveness or releasability between the obtained optical material and the mold.
  • the content of the compound (a) is preferably 10% by weight or more based on the total amount of the optical resin composition.
  • the xylylene diisocyanate compound is not contained in an amount of 1% by weight or more based on the total amount of the optical material composition, that is, the content of the xylylene diisocyanate compound is less than 1% by weight based on the total amount of the optical resin composition. Desirably, it is more desirable not to contain a xylylene diisocyanate compound.
  • the (a) compound and the (b) compound may be included as a prepolymerized reaction product obtained by preliminarily polymerizing at least a part of each other.
  • composition for optical material of the present invention is a mixture of the above-mentioned (a), (b) and (c) compounds, and optional components used as necessary, by a conventional method. However, it is desirable that at least a part of the compound (a) and the compound (b) is preliminarily polymerized first and then mixed with the compound (c).
  • the prepolymerization reaction product obtained by preliminarily reacting the compound (a) and the compound (b) in advance, the compound (c) and any It is preferred to mix the ingredients.
  • the prepolymerization reaction of the (a) compound and the (b) compound is an effective means for handling the solid (a) compound, and the resulting optical material has good transparency. This also makes it possible to blend a large amount of the compound (a) (an inorganic compound having sulfur or the like), and provide an optical resin composition that can provide an optical material having a high refractive index, high strength, and high heat resistance. Things are obtained.
  • the method for prepolymerizing (a) compound and (b) compound will be described in detail.
  • the (a) compound and the (b) compound are partly or wholly reacted under stirring or non-stirring.
  • the proportion of the prepolymerization reaction is not particularly limited, but it is preferable that the (a) compound and the (b) compound are prepolymerized so that the compound (a) does not exist as a solid during casting. More preferably, 50 to 100% by weight of each of the (a) compound and the (b) compound is subjected to the prepolymerization reaction, and particularly preferably, all parts by weight of each of the (a) compound and the (b) compound are subjected to the prepolymerization reaction.
  • the proportion of the prepolymerization reaction is not particularly limited, but it is preferable that the (a) compound and the (b) compound are prepolymerized so that the compound (a) does not exist as a solid during casting. More preferably, 50 to 100% by weight of each of the (a
  • a prepolymerization reaction catalyst for promoting the reaction between the compound (a) and the compound (b) may be added.
  • the prepolymerization reaction catalyst the above-described polymerization catalyst can be used, but preferably a compound containing a nitrogen or phosphorus atom is used, more preferably a compound containing a nitrogen or phosphorus atom and having an unsaturated bond. . Particularly preferred are imidazoles, and most preferred is 2-mercapto-1-methylimidazole.
  • the addition amount of the prepolymerization reaction catalyst is 0.001 to 5 parts by weight, preferably 0.002 to 5 parts by weight, more preferably 100 parts by weight of the total of the compounds (a) and (b). Is 0.005 to 3 parts by weight.
  • the prepolymerization reaction may be performed in an atmosphere such as air, presence of a gas such as nitrogen or oxygen, sealed under normal pressure or pressure increase, or reduced pressure.
  • the prepolymerization reaction may be performed in the presence of various additives such as a polymerization regulator, a performance improver, and an ultraviolet absorber as required.
  • a polymerization regulator such as polyethylene glycol
  • a performance improver such as polypropylene
  • an ultraviolet absorber as required.
  • the prepolymerization reaction is carried out by selectively bringing forward a part of the polymerization curing reaction, It is desirable to control the reaction by adopting mild conditions.
  • the compound (a) and the compound (b) are prepolymerized and then the compound (c) is added.
  • the prepolymerization reaction time is 1 minute to 72 hours, preferably 10 minutes to 48 hours, and more preferably 30 minutes to 24 hours.
  • the prepolymerization reaction temperature is 0 ° C. to 150 ° C., preferably 10 ° C. to 120 ° C., more preferably 20 ° C. to 100 ° C.
  • the compound (a) before the reaction is 100 mol%) by this prepolymerization reaction, and react by 20 mol% or more. Is more preferable.
  • liquid chromatography and / or a method for measuring the refractive index is preferable because of high sensitivity, and further, a method for measuring the refractive index is more preferable because it is simple.
  • a method for measuring the refractive index it is preferable to use an inline refractometer because the progress of the reaction can be observed in real time.
  • composition for optical materials The method for producing the composition for optical materials is as follows in detail.
  • performance improver part of composition component or All reactive compounds
  • polymerization catalysts polymerization regulators
  • adhesion improvers or mold release improvers antioxidants
  • bluing agents ultraviolet absorbers, deodorants and other various additives, etc.
  • ultraviolet absorbers deodorants and other various additives, etc.
  • each raw material, additive and the like may be mixed in any order.
  • a preliminary reaction may be performed in advance on two or more types of each component and then mixed.
  • the above-mentioned prepolymerization reaction is performed on the compound (a) and the compound (b), and (c) a part of the compound and the performance improver are reacted in advance (not simply mixed), and then mixed. Is also possible.
  • the set temperature, the time required for this, etc. may basically be any conditions that allow the components to be sufficiently mixed. However, excessive temperature and time may cause undesirable reactions between the raw materials and additives. It is not suitable for the reason that it becomes easy and the viscosity is increased and the casting operation may be difficult.
  • the mixing temperature should be in the range of about ⁇ 50 ° C. to 100 ° C., a preferred temperature range is ⁇ 30 ° C. to 70 ° C., and a more preferred range is ⁇ 5 ° C. to 50 ° C.
  • the mixing time is 1 minute to 12 hours, preferably 5 minutes to 10 hours, and most preferably about 5 minutes to 6 hours. If necessary, the active energy ray may be blocked and mixed. After that, deaeration treatment may be performed by the following method.
  • a deaeration process may be performed after preparing a resin composition by the said mixing. It is preferable to deaerate the composition for optical material in advance before polymerization and curing from the viewpoint of achieving high transparency of the optical material obtained by polymerization and curing.
  • the deaeration treatment is performed before mixing the compound (a), the compound (b), the compound (c), and a compound capable of reacting with some or all of various composition components, a polymerization catalyst, a polymerization regulator, and various additives.
  • At or after mixing under reduced pressure. Preferably, it is performed under reduced pressure during or after mixing.
  • Degassing conditions are 0 to 100 ° C. under reduced pressure of 0.1 to 15000 Pa for 1 minute to 24 hours.
  • the degree of vacuum is preferably 1 to 10000 Pa, more preferably 1 to 5000 Pa, and the degree of vacuum may be varied within these ranges.
  • the deaeration time is preferably 5 minutes to 18 hours, more preferably 10 minutes to 12 hours.
  • the temperature at the time of deaeration is preferably 5 ° C. to 80 ° C., more preferably 10 ° C. to 60 ° C., and the temperature may be varied within these ranges.
  • the components removed by the deaeration treatment are mainly dissolved gases such as hydrogen sulfide and low boiling point substances such as low molecular weight mercaptans, but are not particularly limited as long as the effect of the deaeration treatment is exhibited.
  • the optical material composition thus obtained can be purified by filtering impurities and the like immediately before polymerization and curing. It is desirable from the viewpoint of further improving the quality of the optical material of the present invention to purify the optical material composition through a filter to filter impurities and the like.
  • the pore size of the filter used here is about 0.05 to 10 ⁇ m, and generally 0.1 to 1.0 ⁇ m is used.
  • a filter material PTFE, PET, PP, or the like is preferably used.
  • the optical material of the present invention is obtained by polymerizing and curing the composition for optical materials.
  • the composition for optical materials is usually injected into a glass or metal mold and then heated using an electric furnace or irradiated with active energy rays such as ultraviolet rays using an active energy ray generator or the like. Is done by.
  • the polymerization time is 0.1 to 100 hours, usually 1 to 48 hours, and the polymerization temperature is ⁇ 10 ° C. to 160 ° C., usually ⁇ 10 ° C. to 140 ° C.
  • the polymerization can be carried out by holding at a predetermined polymerization temperature for a predetermined time, raising the temperature from 0.1 ° C. to 100 ° C./h, lowering the temperature from 0.1 ° C. to 100 ° C./h, and combinations thereof.
  • annealing the material at a temperature of 50 ° C. to 150 ° C. for about 5 minutes to 5 hours is a preferable treatment for removing distortion of the optical material.
  • surface treatments such as dyeing, hard coating, antireflection, antifogging, antifouling and impact resistance can be performed as necessary.
  • the refractive index (ne) of the target resin is preferably 1.73 or more, more preferably 1.74 or more, and the strength is 10% or more, more preferably 11%, in the three-point bending test.
  • good drilling strength, heat resistance (softening point of TMA measurement) is 70 ° C. or more, more preferably 72 ° C. or more, particularly preferably 75 ° C. or more.
  • a homogeneous composition for an optical material in which a high amount of sulfur as a refractive index agent is blended in a large amount (for example, 10% by weight or more based on the total amount of the optical resin composition).
  • a large amount for example, 10% by weight or more based on the total amount of the optical resin composition.
  • the compound (a) is preliminarily polymerized in the preparation stage of the optical material composition to consume a suitable amount, thereby completely dissolving the compound (a) to obtain a uniform liquid composition.
  • an optical material having a high refractive index can be obtained.
  • an isocyanate compound has been conventionally blended for high strength.
  • it tends to rapidly polymerize when an isocyanate is added at the same time, and it is difficult to obtain a polymerized cured product. Become.
  • the content of the isocyanate compound is limited to be low in order to avoid rapid polymerization (preferably substantially no isocyanate compound is used), and a xylylene dithiol compound is used as the component (c). Yes.
  • ne is 1.73 or more
  • elongation in a three-point bending test is 10% or more
  • an optical material having good drilling resistance and high heat resistance can be easily obtained.
  • the refractive index and Abbe number, heat resistance, elongation and drill strength of the obtained optical material were evaluated by the following methods.
  • Example 1 (A) 16 parts by weight of sulfur as the compound, (b) 84 parts by weight of bis ( ⁇ -epithiopropyl) sulfide as the compound, and 100 parts by weight of 2- (2-hydroxy-5-tert-octyl) as the UV absorber 1 part by weight of phenyl) benzotriazole was added and mixed well at 60 ° C. to make uniform. Subsequently, 0.5 part by weight of 2-mercapto-1-methylimidazole was added, and a prepolymerization reaction was performed at 60 ° C. until the compound (a) was not precipitated at 20 ° C.
  • the prepolymerization reaction was stopped when about 50 mol% of the compound (a) was reacted, and the compound (a) remained in the obtained composition.
  • the reaction ratio of the compound was determined by liquid chromatography analysis and refractive index measurement of the reaction solution.
  • composition was cooled to 20 ° C.
  • c-1 compound m-xylylenedithiol
  • c-1 compound triethylbenzylammonium chloride
  • di-n-butyltin dichloride di-n-butyltin dichloride
  • the obtained composition for optical material was filtered through a 1.0 ⁇ m PTFE membrane filter, poured into a 2.5 mm thick plate mold composed of two glass plates and a gasket, at 30 ° C. After heating for 10 hours, the temperature was raised at a constant rate from 30 ° C. to 100 ° C. over 10 hours, and finally heated at 100 ° C. for 1 hour to be cured by polymerization. After cooling to room temperature, the mold was released from the mold to obtain a cured optical material.
  • Table 1 shows the evaluation results of the refractive index and Abbe number, heat resistance, elongation and drill strength of the obtained optical material.
  • Example 2 (A) 16 parts by weight of the compound, (b) 84 parts by weight of the compound, (c) 1 part by weight of the c-1 compound as the compound, 2- (2-hydroxy-5-tert-octylphenyl) benzotriazole 1 as the ultraviolet absorber Part by weight was added and mixed well at 50 ° C. to make it uniform. Subsequently, 0.05 parts by weight of 2-mercapto-1-methylimidazole was added, and a prepolymerization reaction was performed at 50 ° C. until the compound (a) was not precipitated at 20 ° C.
  • the prepolymerization reaction was stopped when about 50 mol% of the compound (a) was reacted, and the compound (a) remained in the obtained composition. Thereafter, the obtained composition was cooled to 20 ° C. Thereto was added 7 parts by weight of the c-1 compound not added, 0.050 part by weight of triethylbenzylammonium chloride as a polymerization catalyst, and 0.22 part by weight of di-n-butyltin dichloride as a polymerization regulator. The same treatment and polymerization curing were performed to obtain an optical material. Table 1 shows the evaluation results of the refractive index and Abbe number, heat resistance, elongation and drill strength of the obtained optical material.
  • Examples 3 to 6> It carried out like Example 1 except changing the quantity of a compound.
  • Table 1 shows the evaluation results of the refractive index and Abbe number, heat resistance, elongation and drill strength of the obtained optical material.
  • Example 7 The same procedure as in Example 1 was performed except that p-xylylenedithiol (hereinafter referred to as c-2 compound) was used instead of the compound c-1.
  • Table 1 shows the evaluation results of the refractive index and Abbe number, heat resistance, elongation and drill strength of the obtained optical material.
  • Example 1 The same procedure as in Example 1 was performed except that the c-1 compound of the compound (c) was excluded from the composition. Table 1 shows the evaluation results of the refractive index and Abbe number, heat resistance and elongation of the obtained optical material. The obtained optical material had insufficient elongation and drilling strength.
  • Example 2 The same procedure as in Example 1 was performed except that bis (2-mercaptoethyl) sulfide (hereinafter referred to as o-1 compound) was used instead of the compound c-1. However, in order to ensure the refractive index and heat resistance, deaeration treatment was performed at 4000 Pa for 90 minutes at 20 ° C. Table 1 shows the evaluation results of the refractive index and Abbe number, heat resistance, elongation and drill strength of the obtained optical material. The obtained optical material had insufficient elongation and drilling strength.
  • o-1 compound bis (2-mercaptoethyl) sulfide
  • Comparative Example 4 was repeated except that the composition shown in Table 1 was changed.
  • Table 1 shows the evaluation results of the refractive index and Abbe number, heat resistance, elongation and drill strength of the obtained optical material. All of the obtained optical materials had an insufficient refractive index, and some had insufficient heat resistance and drilling strength.
  • Example 8 The same prepolymerization operation as in Example 1 was performed on 16 parts by weight of the compound (a) and 84 parts by weight of the compound (b) to obtain a uniform composition. Thereto, 15 parts by weight of o-1 compound, 12 parts by weight of o-2 compound, 0.035 parts by weight of triethylbenzylammonium chloride as a polymerization catalyst, and 0.22 parts by weight of di-n-butyltin dichloride as a polymerization regulator may be added. When mixed and homogenized, rapid polymerization occurred and a cured optical material could not be obtained.
  • composition for optical materials of the present invention can provide an optical material having excellent properties such as high refractive index, high strength, and high heat resistance by polymerization and curing.
  • Such an optical material of the present invention is suitable as an optical material for plastic lenses, prisms, optical fibers, information recording substrates, filters, and the like, and is particularly suitable for plastic lenses, particularly lenses for two-point frame glasses.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Ophthalmology & Optometry (AREA)
  • General Health & Medical Sciences (AREA)
  • Polymers With Sulfur, Phosphorus Or Metals In The Main Chain (AREA)
  • Polyurethanes Or Polyureas (AREA)

Abstract

 高屈折率(neが1.73以上)、高強度(3点曲げ試験の伸びが10%以上、かつ耐ドリル強度が良好であること)、および高耐熱性(TMA測定の軟化点が70℃以上)を同時に満足させる光学材料を提供し得る光学材料用組成物を提供することを課題とし、(a)硫黄原子および/またはセレン原子を有する無機化合物、(b)エピスルフィド化合物、および(c)キシリレンジチオール化合物からなる光学材料樹脂用組成物を重合硬化させ、ツーポイントフレームメガネ用レンズなどの光学材料とする。

Description

高屈折率高強度光学材料用組成物
 本発明は光学材料用組成物に関し、更には、それを用いたプラスチックレンズ、プリズム、光ファイバー、情報記録基盤、フィルター等の光学材料(光学用樹脂材料)に関する。本発明の光学材料はプラスチックレンズ、特にツーポイントフレームメガネ用レンズとして好適に使用される。
 プラスチック材料は軽量かつ靭性に富み、また染色が容易であることから、各種光学材料、特に眼鏡レンズに近年多用されている。光学材料、中でも眼鏡レンズ用光学材料に特に要求される性能は、物理的性質としての低比重、化学・熱的性質として低黄色度、高耐熱性で、機械的特性として高強度等であり、光学性能としては高透明性、高屈折率と高アッベ数である。高屈折率はレンズの薄肉化を可能とし、高アッベ数はレンズの色収差を低減するが、屈折率が上昇するほどアッベ数は低くなるため、両者を同時に向上させる検討が実施されている。これらの検討の中で代表的な方法として特許文献1に示されるエピスルフィド化合物を使用する方法がある。また、一例として特許文献2、3に示される、ポリエピスルフィド化合物からなる光学材料により、屈折率が1.73以上の光学材料が提案されている。
 一方、高屈折率化にともない薄肉化したレンズに対しては、安全性等の観点から従来に増して高強度が望まれる。例えばツーポイントと呼ばれるフレームを装着するにはドリルで穴を開ける必要があるが、この際に欠けや割れが生じない強度が必要である。またツーポイントフレームの使用に耐えるためにはフレームが撓んでもレンズが破壊されない強度が必要である。同時にプラスチックレンズは表面を保護するためにハードコートを付ける事が標準となっているが、ハードコートをかける際に熱がかかるため、耐熱性も必要である。
 このような背景から、高屈折率と高強度と耐熱性の三者を同時に満足させる検討がこれまでに実施されている。これらの検討の中で代表的な方法として、特許文献4に示されるキシリレンジチオール化合物を使用した方法がある。この検討では、屈折率が1.70の材料については高強度と高耐熱性の両立を達成したが、屈折率が1.73以上の材料については高強度と耐熱性の両立を達成したものは得られていなかった。
 したがって、エピスルフィド化合物を用いた屈折率が1.73以上のレンズは、高屈折率、高アッベ数を有するが、さらに優れた強度と耐熱性を付与したレンズの開発が求められていた。
特許3491660号公報 特許3738817号公報 特許4127169号公報 特開2008-101190号公報
 本発明が解決しようとする課題は、高屈折率(neが1.73以上)、高強度(3点曲げ試験の伸びが10%以上、かつ耐ドリル強度が良好であること)、および高耐熱性(TMA測定の軟化点が70℃以上)以上3点を同時に満足させる光学材料を提供し得る光学材料用組成物を提供することにある。
 本発明者らは、このような状況に鑑み、鋭意研究を重ねた結果、本課題を解決し、本発明に至った。即ち、本発明は、以下のとおりである。
[1](a)1~50重量部の硫黄原子および/またはセレン原子を有する無機化合物、
 (b)50~99重量部のビス(β-エピチオプロピル)スルフィド、ビス(β-エピチオプロピル)ジスルフィド、ビス(β-エピチオプロピル)トリスルフィド、ビス(β-エピチオプロピルチオ)メタン、1,2-ビス(β-エピチオプロピルチオ)エタン、1,3-ビス(β-エピチオプロピルチオ)プロパン、1,2-ビス(β-エピチオプロピルチオ)プロパン、1,4-ビス(β-エピチオプロピルチオ)ブタン、およびビス(β-エピチオプロピルチオエチル)スルフィドから選択される1種以上であるエピスルフィド化合物、
 (c)前記(a)および(b)化合物の合計を100重量部とした場合に1~50重量部のキシリレンジチオール化合物、を含有する光学材料用組成物。
[2]前記(a)無機化合物が硫黄である、[1]記載の光学材料用組成物。
[3]前記(b)エピスルフィド化合物がビス(β-エピチオプロピル)スルフィドおよび/またはビス(β-エピチオプロピル)ジスルフィドである、[1]記載の光学材料用組成物。
[4]前記(c)キシリレンジチオール化合物が、m-キシリレンジチオールおよび/またはp-キシリレンジチオールである、[1]記載の光学材料用組成物。
[5]前記(a)無機化合物の含有割合が、光学材料用組成物全量に対して10重量%以上である、[1]記載の光学材料用組成物。
[6]キシリレンジイソシアネート化合物が、光学材料用組成物全量に対して1重量%以上含まれないことを特徴とする、[1]記載の光学材料用組成物。
[7]前記(a)無機化合物と(b)エピスルフィド化合物の少なくとも一部が、相互に予備重合反応して得られる予備重合反応物として含まれていることを特徴とする、[1]記載の光学材料用組成物。
[8]下記(a)、(b)及び(c)化合物を混合する工程を含む、光学材料用組成物の調製方法。
 (a)1~50重量部(ただし光学材料用組成物全量に対して10重量%以上)の硫黄原子および/またはセレン原子を有する無機化合物
 (b)50~99重量部のビス(β-エピチオプロピル)スルフィド、ビス(β-エピチオプロピル)ジスルフィド、ビス(β-エピチオプロピル)トリスルフィド、ビス(β-エピチオプロピルチオ)メタン、1,2-ビス(β-エピチオプロピルチオ)エタン、1,3-ビス(β-エピチオプロピルチオ)プロパン、1,2-ビス(β-エピチオプロピルチオ)プロパン、1,4-ビス(β-エピチオプロピルチオ)ブタン、およびビス(β-エピチオプロピルチオエチル)スルフィドから選択される1種以上であるエピスルフィド化合物
 (c)前記(a)および(b)化合物の合計を100重量部とした場合に1~50重量部のキシリレンジチオール化合物
[9]:さらに前記(a)無機化合物と(b)エピスルフィド化合物の少なくとも一部を予備重合反応させる工程を含むことを特徴とする、[8]記載の光学材料用組成物の調製方法。
[10]:下記工程(A)及び(B)を含む、光学材料の製造方法。
(A)下記(a)、(b)及び(c)化合物を混合して光学材料用組成物を調製する工程、
 (a)1~50重量部(ただし光学材料用組成物全量に対して10重量%以上)の硫黄原子および/またはセレン原子を有する無機化合物
 (b)50~99重量部のビス(β-エピチオプロピル)スルフィド、ビス(β-エピチオプロピル)ジスルフィド、ビス(β-エピチオプロピル)トリスルフィド、ビス(β-エピチオプロピルチオ)メタン、1,2-ビス(β-エピチオプロピルチオ)エタン、1,3-ビス(β-エピチオプロピルチオ)プロパン、1,2-ビス(β-エピチオプロピルチオ)プロパン、1,4-ビス(β-エピチオプロピルチオ)ブタン、およびビス(β-エピチオプロピルチオエチル)スルフィドから選択される1種以上であるエピスルフィド化合物
 (c)前記(a)および(b)化合物の合計を100重量部とした場合に1~50重量部のキシリレンジチオール化合物
(B)前記光学材料用組成物を重合硬化させる工程
[11]:前記工程(A)が、さらに前記(a)無機化合物と(b)エピスルフィド化合物の少なくとも一部を予備重合反応させる工程を含むことを特徴とする、[10]記載の光学材料の製造方法。
[12]:[10]又は[11]記載の製造方法によって得られる光学材料であって、屈折率(ne)が1.73以上である、光学材料。
[13]:[12]記載の光学材料からなる、ツーポイントフレームメガネ用レンズ。
 本発明は、高屈折率(neが1.73以上)、高強度(3点曲げ試験の伸びが10%以上、かつ耐ドリル強度が良好であること)、および耐熱性について優れた特性を有することを可能とする光学材料用組成物、およびそれを硬化して得られる光学材料用樹脂、並びにそれを用いたツーポイントフレームメガネ用レンズを提供することができる。
1.光学材料用組成物
 本発明の光学材料用組成物は、(a)硫黄原子および/またはセレン原子を有する無機化合物(以下、(a)化合物)、(b)エピスルフィド化合物(以下、(b)化合物)、及び(c)キシリレンジチオール化合物(以下、(c)化合物)、並びに必要に応じて重合触媒、重合調節剤、性能改良剤等の任意成分を含有してなるものである。
(1)(a)化合物
 本発明で使用する(a)化合物である硫黄原子および/またはセレン原子を有する無機化合物は、硫黄原子および/またはセレン原子を1個以上有する全ての無機化合物を包含する。(a)化合物は、化合物中の硫黄原子および/またはセレン原子の合計重量の割合が30質量%以上であることが好ましい。この割合が、30質量%未満である場合、光学材料用組成物中の硫黄原子および/またはセレン原子の重量の割合上昇分が小さいため、樹脂の高屈折率化の効果が小さくなる場合がある。(a)化合物の添加量は、(a)および(b)化合物の合計を100重量部とした場合、1~50重量部使用するが、好ましくは5~50重量部、より好ましくは10~40重量部、特に好ましくは10~30重量部である。
 硫黄原子を有する無機化合物の具体例としては、硫黄、硫化水素、二硫化炭素、セレノ硫化炭素、硫化アンモニウム、二酸化硫黄、三酸化硫黄等の硫黄酸化物、チオ炭酸塩、硫酸およびその塩、硫酸水素塩、亜硫酸塩、次亜硫酸塩、過硫酸塩、チオシアン酸塩、チオ硫酸塩、二塩化硫黄、塩化チオニル、チオホスゲン等のハロゲン化物、硫化硼素、硫化窒素、硫化珪素、硫化リン、硫化砒素、金属硫化物、金属水硫化物等があげられる。これらの中で好ましいものは硫黄、二硫化炭素、硫化リン、硫化セレン、金属硫化物および金属水硫化物であり、より好ましくは硫黄、二硫化炭素および硫化セレンであり、特に好ましくは硫黄である。
 セレン原子を有する無機化合物とは、硫黄原子を含む無機化合物の具体例として挙げたセレノ硫化炭素、硫化セレンを除き、この条件を満たす無機化合物をすべて包括する。具体例としては、セレン、セレン化水素、二酸化セレン、二セレン化炭素、セレン化アンモニウム、二酸化セレン等のセレン酸化物、セレン酸およびその塩、亜セレン酸およびその塩、セレン酸水素塩、セレノ硫酸およびその塩、セレノピロ硫酸およびその塩、四臭化セレン、オキシ塩化セレン等のハロゲン化物、セレノシアン酸塩、セレン化硼素、セレン化リン、セレン化砒素、金属のセレン化物等があげられる。これらの中で好ましいものは、セレン、二セレン化炭素、セレン化リン、金属のセレン化物であり、特に好ましくはセレンおよび二セレン化炭素である。
 これら硫黄原子および/またはセレン原子を有する無機化合物は、単独でも、2種類以上を混合して使用しても良い。
(2)(b)化合物
 本発明で使用する(b)化合物としては、ビス(β-エピチオプロピル)スルフィド、ビス(β-エピチオプロピル)ジスルフィド、ビス(β-エピチオプロピル)トリスルフィド、ビス(β-エピチオプロピルチオ)メタン、1,2-ビス(β-エピチオプロピルチオ)エタン、1,3-ビス(β-エピチオプロピルチオ)プロパン、1,2-ビス(β-エピチオプロピルチオ)プロパン、1,4-ビス(β-エピチオプロピルチオ)ブタン、およびビス(β-エピチオプロピルチオエチル)スルフィドからなる群から選択される1種以上のエピスルフィド化合物が挙げられる。
 中でも好ましい具体例は、ビス(β-エピチオプロピル)スルフィド(式(1))および/またはビス(β-エピチオプロピル)ジスルフィド(式(2))であり、最も好ましい具体例は、ビス(β-エピチオプロピル)スルフィドである。
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000002
 本発明で使用する(b)化合物の添加量は、(a)および(b)化合物の合計を100重量部とした場合、50~99重量部使用するが、好ましくは50~95重量部、より好ましくは60~90重量部、特に好ましくは70~90重量部である。
(3)(c)化合物
 本発明で使用する(c)化合物はキシリレンジチオール化合物であり、具体例としては、o-、m-、およびp-キシリレンジチオールが好ましく挙げられる。中でも好ましいキシリレンジチオール化合物は、下記構造式で表されるm-キシリレンジチオール(式(3))、p-キシリレンジチオール(式(4))であり、特に好ましいキシリレンジチオール化合物は常温で液体となるm-キシリレンジチオールである。
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000004
 本発明で使用する(c)化合物の添加量は、(a)及び(b)化合物の合計を100重量部とした場合、1重量部~50重量部であることが好ましく、より好ましくは2重量部~30重量部、更に好ましくは3重量部~10重量部である。
(4)重合触媒
 本発明の光学材料用組成物には、重合硬化のために、必要に応じて重合触媒を添加することができる。重合触媒としては、アミン類、ホスフィン類、第4級アンモニウム塩類、第4級ホスホニウム塩類、アルデヒドとアミン系化合物の縮合物、カルボン酸とアンモニアとの塩、ウレタン類、チオウレタン類、グアニジン類、チオ尿素類、チアゾール類、スルフェンアミド類、チウラム類、ジチオカルバミン酸塩類、キサントゲン酸塩、第3級スルホニウム塩類、第2級ヨードニウム塩類、鉱酸類、ルイス酸類、有機酸類、ケイ酸類、四フッ化ホウ酸類、過酸化物、アゾ系化合物、酸性リン酸エステル類を挙げることができる。
 重合触媒は、重合硬化を発現するものであれば、特に限定されるものではない。また、これら重合触媒は単独でも2種類以上を混合して使用してもかまわない。これらのうち好ましい具体例は、テトラ-n-ブチルアンモニウムブロマイド、トリエチルベンジルアンモニウムクロライド、セチルジメチルベンジルアンモニウムクロライド、1-n-ドデシルピリジニウムクロライド等の第4級アンモニウム塩、テトラ-n-ブチルホスホニウムブロマイド、テトラフェニルホスホニウムブロマイド等の第4級ホスホニウム塩が挙げられる。これらの中で、さらに好ましい具体例は、トリエチルベンジルアンモニウムクロライドおよび/またはテトラ-n-ブチルホスホニウムブロマイドであり、最も好ましい具体例は、トリエチルベンジルアンモニウムクロライドである。
 重合触媒の添加量は、(a)、(b)および(c)化合物の合計100重量部に対して、0.001~5重量部であり、好ましくは0.002~5重量部であり、より好ましくは0.005~3重量部である。
(5)重合調節剤
 本発明の光学材料用組成物には、重合硬化する際に、ポットライフの延長や重合発熱の分散化などを目的として、必要に応じて重合調節剤を添加することができる。重合調節剤は、長期周期律表における第13~16族元素のハロゲン化物を挙げることができる。
 これら重合調節剤は、単独でも2種類以上を混合して使用してもかまわない。これらのうち好ましいものはケイ素、ゲルマニウム、スズ、アンチモンのハロゲン化物である。より好ましくはケイ素、ゲルマニウム、スズ、アンチモンの塩化物であり、さらに好ましくはアルキル基を有するゲルマニウム、スズ、アンチモンの塩化物である。最も好ましいものの具体例はジブチルスズジクロライド、ブチルスズトリクロライド、ジオクチルスズジクロライド、オクチルスズトリクロライド、ジブチルジクロロゲルマニウム、ブチルトリクロロゲルマニウム、ジフェニルジクロロゲルマニウム、フェニルトリクロロゲルマニウム、トリフェニルアンチモンジクロライドである。
 重合調節剤の添加量は、(a)、(b)および(c)化合物の合計100重量部に対して、0.001~5重量部であり、好ましくは0.002~5重量部であり、より好ましくは0.005~3重量部である。
(6)性能改良剤
 本発明の光学材料用組成物には、耐酸化性、耐候性、染色性、強度、屈折率等の各種性能の改良を目的として、組成成分の化合物の一部もしくは全部と反応可能な化合物(性能改良剤)を添加することも可能である。この場合は、反応のために必要に応じて公知の重合触媒を別途加えることができる。
 組成成分の一部もしくは全部と反応可能な化合物(性能改良剤)としては、本願発明のキシリレンチジオール以外のSH基を2個以上有する化合物類、エポキシ化合物類、カルボン酸類、カルボン酸無水物類、フェノール類、アミン類、ビニル化合物類、アリル化合物類、アクリル化合物類、メタクリル化合物類等が挙げられる。
 性能改良剤の添加量は、(a)、(b)および(c)化合物の合計100重量部に対して、それぞれ0.001~10重量部であり、好ましくは0.002~5重量部であり、より好ましくは0.005~3重量部である。
(7)その他の任意成分
 本発明の光学材料用組成物においては、任意成分として、公知の酸化防止剤、ブルーイング剤、紫外線吸収剤、消臭剤等の各種添加剤を必要に応じて加え、得られる材料の実用性をより向上せしめることはもちろん可能である。
 また、本発明の光学材料が重合中に型から剥がれやすい場合には公知の外部および/または内部密着性改善剤を、または型から剥がれにくい場合には公知の外部および/または内部離型性改善剤を、使用することもできる。これらの外部および/または内部密着性改善剤や外部および/または内部離型性改善剤は、重合硬化時に用いるガラスもしくは金属製の型に塗布することができるほか、本発明の光学材料用組成物に添加して、得られる光学材料と型の密着性または離型性を向上せしめることも有効である。
 本発明の光学用樹脂組成物では、(a)化合物の含有量が光学用樹脂組成物全量に対し10重量%以上であることが望ましい。(a)化合物の含有量が光学用樹脂組成物全量に対し10重量%以上であると、高屈折率(特にneが1.73以上)を容易に達成することができる。
 また、キシリレンジイソシアネート化合物が光学材料用組成物全量に対して1重量%以上含まれないこと、すなわちキシリレンジイソシアネート化合物の含有量が光学用樹脂組成物全量に対し1重量%未満であることが望ましく、更にはキシリレンジイソシアネート化合物を含まないことがより望ましい。キシリレンジイソシアネート化合物の含有量が1重量%以上であると、ジイソシアネートによる屈折率低下が著しく、屈折率を1.73以上にすることが困難となるだけでなく、急速重合が起こり重合硬化物を得ることができなくなる場合がある。
 また、(a)化合物と(b)化合物は、その少なくとも一部が相互に予備重合反応して得られる予備重合反応物として含まれていてもよい。
2.光学材料用組成物の調製方法
 本発明の光学材料用組成物は、上記(a)、(b)及び(c)化合物、並びに必要に応じて用いられる任意成分を通常の方法で混合・攪拌することにより得られるが、(a)化合物と(b)化合物の少なくとも一部を先に予備重合反応させた後、(c)化合物と混合させるのが望ましい。
(1)予備重合反応
 本発明の光学材料用組成物の調製にあたっては、あらかじめ(a)化合物と(b)化合物とを予備重合反応させ、得られた予備重合反応物と(c)化合物及び任意成分とを混合することが好ましい。(a)化合物と(b)化合物を予備重合反応させることは、固体の(a)化合物をハンドリングする際には有効な手段であり、得られる光学材料の透明性も良好となる。また、これにより(a)化合物(硫黄等を有する無機化合物)を多量に配合することが可能となり、高屈折率、高強度、及び高耐熱性を備えた光学材料を提供しうる光学用樹脂組成物が得られる。
 (a)化合物と(b)化合物とを予備重合反応させる方法を詳しく述べる。(a)化合物と(b)化合物は、それぞれ一部または全部を、撹拌下または非撹拌下反応させる。予備重合反応させる割合は特に制限されないが、注型時に(a)化合物が固体として存在しない程度に(a)化合物と(b)化合物とを予備重合反応させるのが好ましい。更に好ましくは、(a)化合物、(b)化合物それぞれ50~100重量%が予備重合反応に供され、特に好ましくは(a)化合物、(b)化合物それぞれ全重量部が予備重合反応に供される。
 その際、(a)化合物と(b)化合物との反応を促進させる予備重合反応触媒を加えても構わない。予備重合反応触媒としては、前記した重合触媒を用いることもできるが、好ましくは窒素または燐原子を含む化合物が用いられ、より好ましくは窒素または燐原子を含みかつ不飽和結合を有する化合物が用いられる。特に好ましくはイミダゾール類であり、最も好ましくは2-メルカプト-1-メチルイミダゾールである。予備重合反応触媒の添加量は、(a)及び(b)化合物の合計100重量部に対して、0.001~5重量部であり、好ましくは0.002~5重量部であり、より好ましくは0.005~3重量部である。
 予備重合反応は、大気、窒素または酸素等の気体の存在下、常圧もしくは加減圧による密閉下、または減圧下等の任意の雰囲気下で行ってよい。また、この予備重合反応は、重合調節剤、性能改良剤、紫外線吸収剤など必要に応じて用いられる各種添加剤の存在下に行っても構わない。また、(c)化合物の一部または全部の存在下に行っても構わないが、その場合、該予備重合反応は重合硬化反応の一部を選択的に前倒しして実施する形となるため、穏和な条件を採用するなどして反応を制御するのが望ましい。特に好ましくは、(a)化合物と(b)化合物を予備重合反応させたのち、(c)化合物を加える。
 予備重合反応時間は1分間~72時間であり、好ましくは10分間~48時間であり、より好ましくは30分間~24時間である。予備重合反応温度は、0℃~150℃であり、好ましくは10℃~120℃であり、より好ましくは20℃~100℃である。
 さらには、この予備重合反応により、(a)化合物を10モル%以上(反応前の(a)化合物を100モル%とする)反応させておくことが好ましく、20モル%以上反応させておくことがより好ましい。
 また、この予備重合反応物について、液体クロマトグラフィーおよび/または粘度および/または比重および/または屈折率を測定することで、反応の進行度を観察し制御することは、均質な光学材料用組成物とする上で好ましい。また、(a)化合物の反応割合を知ることもできる。
 中でも、液体クロマトグラフィーおよび/または屈折率を測定する手法が高感度であることから好ましく、さらには、屈折率を測定する手法が簡便であることからより好ましい。屈折率を測定する場合、リアルタイムで反応の進行度を観察できることから、インライン型の屈折計を用いることが好ましい。
(2)混合
 光学材料用組成物の製造方法は、詳しく述べるならば以下の通りである。(a)化合物と(b)化合物、および/または(a)化合物と(b)化合物を予備重合反応して得られる予備重合反応物、(c)化合物、性能改良剤(組成成分の一部もしくは全部と反応可能な化合物)、重合触媒、重合調節剤、密着性改善剤または離型性改善剤、酸化防止剤、ブルーイング剤、紫外線吸収剤、消臭剤等の各種添加剤等は、全て同一容器内で同時に撹拌下に混合しても、各原料を段階的に添加混合しても、数成分を別々に混合後さらに同一容器内で再混合しても良い。各原料および添加剤等はいかなる順序で混合しても構わない。さらに、上述した(a)化合物と(b)化合物の組み合わせによる予備重合反応以外にも、各成分の2種類以上についてあらかじめ予備的な反応を行った後、混合しても構わない。例えば(a)化合物と(b)化合物について上記予備重合反応を行い、別途(c)化合物の一部と性能改良剤を(単に混合するのではなく)予備的に反応させ、それらを混合することも可能である。
 混合にあたり、設定温度、これに要する時間等は基本的には各成分が十分に混合される条件であればよいが、過剰の温度・時間は、各原料や添加剤間の好ましくない反応が起こり易くなり、さらには粘度の上昇をきたし注型操作を困難にする場合がある、などの理由により適当ではない。
 混合温度は-50℃から100℃程度の範囲で行われるべきであり、好ましい温度範囲は-30℃から70℃、さらに好ましいのは、-5℃から50℃である。混合時間は、1分から12時間、好ましくは5分から10時間、最も好ましいのは5分から6時間程度である。必要に応じて、活性エネルギー線を遮断して混合してもかまわない。またその後、以下の方法で脱気処理を行ってもよい。
(3)脱気処理
 本発明の光学材料用組成物の製造方法においては、上記混合により樹脂組成物を調製後、脱気処理を行う場合がある。光学材料用組成物を重合硬化前にあらかじめ脱気処理することは、重合硬化して得られる光学材料の高度な透明性を達成する面から好ましい。
 脱気処理は、(a)化合物、(b)化合物、(c)化合物、および各種組成成分の一部もしくは全部と反応可能な化合物、重合触媒、重合調節剤、各種添加剤の混合前、混合時あるいは混合後に、減圧下に行う。好ましくは、混合時あるいは混合後に、減圧下に行う。
 脱気処理条件は、0.1~15000Paの減圧下、1分間~24時間、0℃~100℃で行う。減圧度は、好ましくは1~10000Paであり、より好ましくは1~5000Paであり、これらの範囲で減圧度を可変しても構わない。脱気時間は、好ましくは5分間~18時間であり、より好ましくは10分間~12時間である。脱気の際の温度は、好ましくは5℃~80℃であり、より好ましくは10℃~60℃であり、これらの範囲で温度を可変しても構わない。
 脱気処理の際は、撹拌、気体の吹き込み、超音波などによる振動などによって、光学材料用組成物の界面を更新することは、脱気効果を高める上で好ましい操作である。
 脱気処理により、除去される成分は、主に硫化水素等の溶存ガスや低分子量のメルカプタン等の低沸点物等であるが、脱気処理の効果を発現するのであれば、特に限定されない。
 このようにして得られる光学材料用組成物は、重合硬化の直前にフィルター等で不純物等をろ過し精製することができる。光学材料用組成物をフィルターに通して不純物等をろ過し精製することは、本発明の光学材料の品質をさらに高める上から望ましいことである。ここで用いるフィルターの孔径は0.05~10μm程度であり、一般的には0.1~1.0μmのものが使用される。フィルターの材質としては、PTFEやPETやPPなどが好適に使用される。
3.光学材料
 本発明の光学材料は、上記光学材料用組成物を重合硬化して得られる。重合硬化は通常、光学材料用組成物をガラスや金属製の型に注入後、電気炉を用いて加熱したり、活性エネルギー線発生装置等を用いて紫外線などの活性エネルギー線を照射したりすることによって行われる。重合時間は0.1~100時間、通常1~48時間であり、重合温度は-10℃~160℃、通常-10℃~140℃である。重合は所定の重合温度で所定時間のホールド、0.1℃~100℃/hの昇温、0.1℃~100℃/hの降温およびこれらの組み合わせで行うことができる。
 また、重合終了後、材料を50℃から150℃の温度で5分から5時間程度アニール処理を行う事は、光学材料の歪を除くために好ましい処理である。さらに必要に応じて染色、ハードコート、反射防止、防曇性、防汚性、耐衝撃性付与等の表面処理を行うことができる。
 本発明の好ましい態様である光学材料用組成物を重合硬化することにより、従来困難であった、十分に高い屈折率と良好なアッベ数を有し、更に高い強度および耐熱性を有する光学材料を提供することが可能となった。すなわち、目的とする樹脂の屈折率(ne)としては、好ましくは1.73以上、より好ましくは1.74以上で、強度としては3点曲げ試験の伸びが10%以上、より好ましくは11%以上であり、特に好ましくは12%以上で、かつ耐ドリル強度が良好であること、耐熱性(TMA測定の軟化点)は70℃以上、より好ましくは72℃以上、特に好ましくは75℃以上である光学材料を提供し得る光学材料用組成物および光学材料、並びにそれを用いたツーポイントフレームメガネ用レンズを提供することができる。
 本発明の好ましい態様においては、高屈折率化剤である硫黄を多量に(例えば光学用樹脂組成物全量に対し10重量%以上)配合した均質な光学材料用組成物を得ることができる。そしてそれを用いることによって、屈折率1.73以上という高屈折率の光学材料を得ることができる。
 従来の組成・調製方法では、硫黄等を多量に配合すると急速重合のため屈折率1.73以上の硬化物(光学材料)を得ることはできなかった。硫黄(本発明では(a)化合物)と他の組成成分との相溶性が十分ではなく、(a)化合物を多量に配合すると(a)化合物が溶解しきれずに固体として硬化物中に残存し、屈折率低下の原因となるだけでなく透明な光学材料が得られない。
 本発明によれば、光学材料用組成物の調製段階で(a)化合物をあらかじめ予備重合反応させて適量を消費することによって、(a)化合物を完全に溶解させ、均一な液体組成物とすることが可能となり、その結果、高屈折率の光学材料を得ることができる。また、従来は高強度化のためイソシアネート化合物を配合していたが、(a)化合物を多量に配合した場合、同時にイソシアネートを添加すると急速重合する傾向にあり、重合硬化物を得るのが困難となる。しかし、本発明の好ましい態様では、急速重合を回避するためイソシアネート化合物の含有量を低く制限し(好ましくはイソシアネート化合物を実質的に用いない)、且つ(c)成分としてキシリレンジチオール化合物を用いている。
 このように、本発明の特徴的な組成・調製方法を採用することにより、高屈折率(neが1.73以上)を達成し、さらに高強度(3点曲げ試験の伸びが10%以上、及び耐ドリル強度が良好)、および高耐熱性をも有する光学材料が容易に得られる。
 以下、実施例により本発明を具体的に説明するが、本発明はこれらに限定されるものではない。なお、得られた光学材料の屈折率およびアッベ数、耐熱性、伸びおよび耐ドリル強度の評価は以下の方法で行った。
[屈折率(ne)測定、アッベ数(νd)測定]
 デジタル精密屈折計(カルニュー光学工業株式会社製、KPR-200)を用い、25℃で測定した。
[耐熱性測定]
 サンプルを厚さ3mmに切り出し、1mmφのピンに10gの加重を与え、30℃から10℃/分で昇温してTMA測定(セイコーインスツルメンツ製、TMA/SS6100)を行い、軟化点を測定した。
[伸び(強度)測定]
 JIS規格K-7171に準拠し、厚さ2.5mm、幅10.0mmの平板を、オートグラフ(株式会社島津製作所製、AG-5000B)を用い、支点間距離40mmにおいて3点曲げ試験を行い、破断点の伸びを測定した。
[耐ドリル強度]
 前記特許文献4(特開2008-101190号公報)に示されている評価方法に準拠して、ドリルの回転数2500rpm、進入速度600mm/分で2.5mm厚の平板に直径2mmの穴を開けたときの周辺部の状態を測定した。周辺部に欠けが見られないものを○、見られたものを×とした。
<実施例1>
(a)化合物として硫黄16重量部、(b)化合物としてビス(β-エピチオプロピル)スルフィド84重量部の合計100重量部に、紫外線吸収剤として2-(2-ヒドロキシ-5-tert-オクチルフェニル)ベンゾトリアゾール1重量部を加え、60℃でよく混合し均一とした。次いで、2-メルカプト-1-メチルイミダゾール0.5重量部を加え、(a)化合物が20℃において析出しなくなるまで60℃で予備重合反応させた。
 なお、本実施例では、予備重合反応を(a)化合物が約50モル%反応したところで停止させており、得られた組成物中には(a)化合物が残存した状態にある。(a)化合物の反応割合は、反応液を液体クロマトグラフィー分析ならびに屈折率を測定することにより求めた。
 その後、得られた組成物を20℃に冷却した。そこへ、(c)化合物としてm-キシリレンジチオール(以下c-1化合物と呼ぶ)7重量部、重合触媒としてトリエチルベンジルアンモニウムクロライド0.035重量部、重合調節剤としてジ-n-ブチルスズジクロライド0.22重量部を加えよく混合し均一な組成物とし、4000Pa、20分間、20℃の条件下で脱気処理した。
 得られた光学材料用組成物を1.0μmのPTFE製のメンブランフィルターでろ過し、2枚のガラス板とガスケットから構成される、厚さ2.5mmの平板型モールドに注入し、30℃で10時間加熱し、その後30℃から100℃まで10時間かけて一定速度昇温させ、最後に100℃で1時間加熱し、重合硬化させた。室温まで放冷した後、モールドから離型し、硬化した光学材料を得た。得られた光学材料の屈折率およびアッベ数、耐熱性、伸びおよび耐ドリル強度の評価結果を表1に示した。
<実施例2>
(a)化合物16重量部、(b)化合物84重量部、(c)化合物としてc-1化合物1重量部、紫外線吸収剤として2-(2-ヒドロキシ-5-tert-オクチルフェニル)ベンゾトリアゾール1重量部を加え、50℃でよく混合し均一とした。次いで、2-メルカプト-1-メチルイミダゾール0.05重量部を加え、(a)化合物が20℃において析出しなくなるまで50℃で予備重合反応させた。
 なお、本実施例では、予備重合反応を(a)化合物が約50モル%反応したところで停止させており、得られた組成中には(a)化合物が残存した状態にある。
 その後、得られた組成物を20℃に冷却した。そこへ、未添加分のc-1化合物7重量部、重合触媒としてトリエチルベンジルアンモニウムクロライド0.050重量部、重合調節剤としてジ-n-ブチルスズジクロライド0.22重量部を加え、実施例1と同様な処理、重合硬化を行い、光学材料を得た。得られた光学材料の屈折率およびアッベ数、耐熱性、伸びおよび耐ドリル強度の評価結果を表1に示した。
<実施例3~6>
 (c)化合物の量を変更する以外は実施例1と同様に行った。得られた光学材料の屈折率およびアッベ数、耐熱性、伸びおよび耐ドリル強度の評価結果を表1に示した。
<実施例7>
 (c)化合物のc-1化合物の代わりに、p-キシリレンジチオール(以下c-2化合物と呼ぶ)を使用する以外は、実施例1と同様に行った。得られた光学材料の屈折率およびアッベ数、耐熱性、伸びおよび耐ドリル強度の評価結果を表1に示した。
<比較例1>
 組成から(c)化合物のc-1化合物を除く以外は実施例1と同様に行った。得られた光学材料の屈折率およびアッベ数、耐熱性および伸びの評価結果を表1に示した。得られた光学材料は伸びおよび耐ドリル強度が不十分であった。
<比較例2>
 (c)化合物のc-1化合物の代わりに、ビス(2-メルカプトエチル)スルフィド(以下o-1化合物と呼ぶ)を使用する以外は実施例1と同様に行った。ただし屈折率と耐熱性を確保するために4000Pa、90分間、20℃の条件下で脱気処理した。得られた光学材料の屈折率およびアッベ数、耐熱性、伸びおよび耐ドリル強度の評価結果を表1に示した。得られた光学材料は伸びおよび耐ドリル強度が不十分であった。
<比較例3>
 o-1化合物の量を変更した以外は比較例2と同様に行った。得られた光学材料の屈折率およびアッベ数、耐熱性、伸びおよび耐ドリル強度の評価結果を表1に示した。得られた光学材料は耐熱性および伸びおよび耐ドリル強度が不十分であった。
<比較例4>
 (b)化合物100重量部、c-1化合物16重量部、内部離型剤としてポリオキシエチレンラウリルエーテルリン酸ナトリウム0.005重量部、重合調節剤としてジ-n-ブチルスズジクロライド0.05重量部を混合し、均一な組成物とし1300Paの減圧下で30分脱気を行った後、実施例1と同様に重合硬化させた。得られた光学材料の屈折率およびアッベ数、耐熱性、伸びおよび耐ドリル強度の評価結果を表1に示した。得られた光学材料は屈折率および耐熱性が不十分であった。
<比較例5~7>
 表1に示した組成に変更した以外は比較例4を繰り返した。得られた光学材料の屈折率およびアッベ数、耐熱性、伸びおよび耐ドリル強度の評価結果を表1に示した。得られた光学材料はいずれも屈折率が不十分であり、耐熱性や耐ドリル強度が不十分なものもあった。
<比較例8>
 (a)化合物16重量部、(b)化合物84重量部を実施例1と同じ予備重合操作を行い、均一な組成物とした。そこへ、o-1化合物15重量部、o-2化合物12重量部、重合触媒としてトリエチルベンジルアンモニウムクロライド0.035重量部、重合調節剤としてジ-n-ブチルスズジクロライド0.22重量部を加えよく混合し均一化させると、急速重合が起こり硬化した光学材料は得られなかった。
Figure JPOXMLDOC01-appb-T000005
 なお、上記表1中の記号は、以下を意味する。
(a)硫黄
(b)ビス(β-エピチオプロピル)スルフィド
(c-1)m-キシリレンジチオール
(c-2)p-キシリレンジチオール
(o-1)ビス(2-メルカプトエチル)スルフィド
(o-2)1,3-ビス(1-イソシアナート-1-メチルエチル)ベンゼン
 本発明の光学材料用組成物は、重合硬化することにより、高屈折率、高強度、高耐熱性などの優れた特性を有する光学材料を提供することができる。このような本発明の光学材料は、プラスチックレンズ、プリズム、光ファイバー、情報記録基盤、フィルター等の光学材料として好適であり、中でもプラスチックレンズ、特にツーポイントフレームメガネ用レンズとして好適に使用される。

Claims (13)

  1.  (a)1~50重量部の硫黄原子および/またはセレン原子を有する無機化合物、
     (b)50~99重量部のビス(β-エピチオプロピル)スルフィド、ビス(β-エピチオプロピル)ジスルフィド、ビス(β-エピチオプロピル)トリスルフィド、ビス(β-エピチオプロピルチオ)メタン、1,2-ビス(β-エピチオプロピルチオ)エタン、1,3-ビス(β-エピチオプロピルチオ)プロパン、1,2-ビス(β-エピチオプロピルチオ)プロパン、1,4-ビス(β-エピチオプロピルチオ)ブタン、およびビス(β-エピチオプロピルチオエチル)スルフィドから選択される1種以上であるエピスルフィド化合物、
     (c)前記(a)および(b)化合物の合計を100重量部とした場合に1~50重量部のキシリレンジチオール化合物、を含有する光学材料用組成物。
  2. 前記(a)無機化合物が硫黄である、請求項1記載の光学材料用組成物。
  3.  前記(b)エピスルフィド化合物がビス(β-エピチオプロピル)スルフィドおよび/またはビス(β-エピチオプロピル)ジスルフィドである、請求項1記載の光学材料用組成物。
  4.  前記(c)キシリレンジチオール化合物が、m-キシリレンジチオールおよび/またはp-キシリレンジチオールである、請求項1記載の光学材料用組成物。
  5.  前記(a)無機化合物の含有割合が、光学材料用組成物全量に対して10重量%以上である、請求項1記載の光学材料用組成物。
  6.  キシリレンジイソシアネート化合物が、光学材料用組成物全量に対して1重量%以上含まれないことを特徴とする、請求項1記載の光学材料用組成物。
  7.  前記(a)無機化合物と(b)エピスルフィド化合物の少なくとも一部が、相互に予備重合反応して得られる予備重合反応物として含まれていることを特徴とする、請求項1記載の光学材料用組成物。
  8.  下記(a)、(b)及び(c)化合物を混合する工程を含む、光学材料用組成物の調製方法。
     (a)1~50重量部(ただし光学材料用組成物全量に対して10重量%以上)の硫黄原子および/またはセレン原子を有する無機化合物
     (b)50~99重量部のビス(β-エピチオプロピル)スルフィド、ビス(β-エピチオプロピル)ジスルフィド、ビス(β-エピチオプロピル)トリスルフィド、ビス(β-エピチオプロピルチオ)メタン、1,2-ビス(β-エピチオプロピルチオ)エタン、1,3-ビス(β-エピチオプロピルチオ)プロパン、1,2-ビス(β-エピチオプロピルチオ)プロパン、1,4-ビス(β-エピチオプロピルチオ)ブタン、およびビス(β-エピチオプロピルチオエチル)スルフィドから選択される1種以上であるエピスルフィド化合物
     (c)前記(a)および(b)化合物の合計を100重量部とした場合に1~50重量部のキシリレンジチオール化合物
  9.  さらに前記(a)無機化合物と(b)エピスルフィド化合物の少なくとも一部を予備重合反応させる工程を含むことを特徴とする、請求項8記載の光学材料用組成物の調製方法。
  10. 下記工程(A)及び(B)を含む、光学材料の製造方法。
    (A)下記(a)、(b)及び(c)化合物を混合して光学材料用組成物を調製する工程、
     (a)1~50重量部(ただし光学材料用組成物全量に対して10重量%以上)の硫黄原子および/またはセレン原子を有する無機化合物
     (b)50~99重量部のビス(β-エピチオプロピル)スルフィド、ビス(β-エピチオプロピル)ジスルフィド、ビス(β-エピチオプロピル)トリスルフィド、ビス(β-エピチオプロピルチオ)メタン、1,2-ビス(β-エピチオプロピルチオ)エタン、1,3-ビス(β-エピチオプロピルチオ)プロパン、1,2-ビス(β-エピチオプロピルチオ)プロパン、1,4-ビス(β-エピチオプロピルチオ)ブタン、およびビス(β-エピチオプロピルチオエチル)スルフィドから選択される1種以上であるエピスルフィド化合物
     (c)前記(a)および(b)化合物の合計を100重量部とした場合に1~50重量部のキシリレンジチオール化合物
    (B)前記光学材料用組成物を重合硬化させる工程
  11.  前記工程(A)が、さらに前記(a)無機化合物と(b)エピスルフィド化合物の少なくとも一部を予備重合反応させる工程を含むことを特徴とする、請求項10記載の光学材料の製造方法。
  12.  請求項10又は11記載の製造方法によって得られる光学材料であって、屈折率(ne)が1.73以上である、光学材料。
  13.  請求項12記載の光学材料からなる、ツーポイントフレームメガネ用レンズ。
     
     
PCT/JP2010/057909 2009-05-14 2010-05-10 高屈折率高強度光学材料用組成物 WO2010131631A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP10774888.1A EP2431401B1 (en) 2009-05-14 2010-05-10 Composition for use in optical material with high refractive index and high strength
CN2010800262199A CN102459418A (zh) 2009-05-14 2010-05-10 高折射率高强度光学材料用组合物
JP2011513331A JP5720565B2 (ja) 2009-05-14 2010-05-10 高屈折率高強度光学材料用組成物
KR1020117029099A KR101714804B1 (ko) 2009-05-14 2010-05-10 고굴절률 고강도 광학 재료용 조성물
US13/319,857 US9150694B2 (en) 2009-05-14 2010-05-10 Composition for use in optical material with high refractive index and high strength

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009117568 2009-05-14
JP2009-117568 2009-05-14

Publications (1)

Publication Number Publication Date
WO2010131631A1 true WO2010131631A1 (ja) 2010-11-18

Family

ID=43085003

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/057909 WO2010131631A1 (ja) 2009-05-14 2010-05-10 高屈折率高強度光学材料用組成物

Country Status (6)

Country Link
US (1) US9150694B2 (ja)
EP (1) EP2431401B1 (ja)
JP (1) JP5720565B2 (ja)
KR (1) KR101714804B1 (ja)
CN (2) CN104017216A (ja)
WO (1) WO2010131631A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013115212A1 (ja) * 2012-02-02 2013-08-08 三菱瓦斯化学株式会社 光学材料用組成物の製造方法
JP2013209627A (ja) * 2012-03-01 2013-10-10 Mitsubishi Gas Chemical Co Inc 樹脂用組成物の重合停止方法
WO2018150951A1 (ja) * 2017-02-17 2018-08-23 三菱瓦斯化学株式会社 光学材料用組成物
WO2023032598A1 (ja) * 2021-09-01 2023-03-09 三井化学株式会社 エピスルフィド組成物、重合性組成物、硬化物、及び光学材料

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102762637B (zh) 2010-02-25 2015-04-01 三菱瓦斯化学株式会社 光学材料用组合物和其制造方法以及由光学材料用组合物得到的光学材料
US10047043B2 (en) 2016-03-24 2018-08-14 Mitsubishi Gas Chemical Company, Inc. Thiol compound composition for optical material
CN112639538B (zh) * 2018-09-07 2024-06-28 三菱瓦斯化学株式会社 光学材料用组合物和光学材料
US11678975B2 (en) 2019-04-05 2023-06-20 Amo Groningen B.V. Systems and methods for treating ocular disease with an intraocular lens and refractive index writing
US11583388B2 (en) 2019-04-05 2023-02-21 Amo Groningen B.V. Systems and methods for spectacle independence using refractive index writing with an intraocular lens
US11944574B2 (en) 2019-04-05 2024-04-02 Amo Groningen B.V. Systems and methods for multiple layer intraocular lens and using refractive index writing
US11529230B2 (en) 2019-04-05 2022-12-20 Amo Groningen B.V. Systems and methods for correcting power of an intraocular lens using refractive index writing
US11564839B2 (en) 2019-04-05 2023-01-31 Amo Groningen B.V. Systems and methods for vergence matching of an intraocular lens with refractive index writing
US11583389B2 (en) 2019-04-05 2023-02-21 Amo Groningen B.V. Systems and methods for correcting photic phenomenon from an intraocular lens and using refractive index writing
KR102372880B1 (ko) 2019-05-21 2022-03-08 주식회사 엘지화학 경화성 조성물 및 이의 경화물을 포함하는 광학 부재
KR102512562B1 (ko) * 2019-05-24 2023-03-20 주식회사 엘지화학 경화성 조성물 및 이의 경화물을 포함하는 광학 부재
KR102512563B1 (ko) * 2019-05-24 2023-03-20 주식회사 엘지화학 경화성 조성물 및 이의 경화물을 포함하는 광학 부재
KR102703465B1 (ko) * 2019-10-31 2024-09-04 주식회사 엘지화학 경화성 조성물 및 이를 포함하는 광학 부재
JP7570763B2 (ja) * 2021-03-10 2024-10-22 エルジー・ケム・リミテッド 硬化性組成物およびこれを含む光学部材

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004137481A (ja) * 2002-09-27 2004-05-13 Mitsubishi Gas Chem Co Inc 光学材料の製造方法
JP2005281527A (ja) * 2004-03-30 2005-10-13 Hoya Corp 硫黄含有プレポリマーの製造方法及びプラスチックレンズの製造方法
JP2006348285A (ja) * 2005-05-19 2006-12-28 Mitsubishi Gas Chem Co Inc 樹脂用組成物
JP2007093862A (ja) * 2005-09-28 2007-04-12 Hoya Corp プラスチックレンズ
JP2007238796A (ja) * 2006-03-09 2007-09-20 Mitsubishi Gas Chem Co Inc エピスルフィド化合物の増粘方法
JP2008101190A (ja) 2006-09-19 2008-05-01 Mitsubishi Gas Chem Co Inc 高屈折率高強度樹脂用組成物
WO2008136401A1 (ja) * 2007-04-27 2008-11-13 Hoya Corporation プラスチックレンズの製造方法
WO2010073613A1 (ja) * 2008-12-24 2010-07-01 株式会社ニコン・エシロール 光学用樹脂組成物、光学レンズ及び眼鏡用プラスチックレンズ

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3491660B2 (ja) 1995-08-16 2004-01-26 三菱瓦斯化学株式会社 新規な直鎖アルキルスルフィド型エピスルフィド化合物
JP3415389B2 (ja) * 1996-04-26 2003-06-09 Hoya株式会社 ポリチオールオリゴマーの製造方法
JP3738817B2 (ja) 1999-04-23 2006-01-25 三菱瓦斯化学株式会社 光学材料用組成物
WO2004005374A1 (ja) * 2002-07-08 2004-01-15 Mitsubishi Gas Chemical Company, Inc. 重合性組成物、それからなる光学材料、及びその製造方法
JP4393831B2 (ja) 2003-09-22 2010-01-06 Hoya株式会社 プラスチックレンズの製造方法
AU2006248388B2 (en) 2005-05-19 2011-12-01 Mitsubishi Gas Chemical Company, Inc. Curable composition
AU2007298219B2 (en) * 2006-09-19 2012-03-29 Mitsubishi Gas Chemical Company, Inc. Resin composition for optical material and optical material using the same
KR101522755B1 (ko) 2008-02-13 2015-05-26 미츠비시 가스 가가쿠 가부시키가이샤 수지용 조성물 및 그것을 포함하는 광학렌즈

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004137481A (ja) * 2002-09-27 2004-05-13 Mitsubishi Gas Chem Co Inc 光学材料の製造方法
JP2005281527A (ja) * 2004-03-30 2005-10-13 Hoya Corp 硫黄含有プレポリマーの製造方法及びプラスチックレンズの製造方法
JP2006348285A (ja) * 2005-05-19 2006-12-28 Mitsubishi Gas Chem Co Inc 樹脂用組成物
JP2007093862A (ja) * 2005-09-28 2007-04-12 Hoya Corp プラスチックレンズ
JP2007238796A (ja) * 2006-03-09 2007-09-20 Mitsubishi Gas Chem Co Inc エピスルフィド化合物の増粘方法
JP2008101190A (ja) 2006-09-19 2008-05-01 Mitsubishi Gas Chem Co Inc 高屈折率高強度樹脂用組成物
WO2008136401A1 (ja) * 2007-04-27 2008-11-13 Hoya Corporation プラスチックレンズの製造方法
WO2010073613A1 (ja) * 2008-12-24 2010-07-01 株式会社ニコン・エシロール 光学用樹脂組成物、光学レンズ及び眼鏡用プラスチックレンズ

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013115212A1 (ja) * 2012-02-02 2013-08-08 三菱瓦斯化学株式会社 光学材料用組成物の製造方法
CN104080837A (zh) * 2012-02-02 2014-10-01 三菱瓦斯化学株式会社 光学材料用组合物的制造方法
KR101561636B1 (ko) 2012-02-02 2015-10-20 미쯔비시 가스 케미칼 컴파니, 인코포레이티드 광학재료용 조성물의 제조방법
CN104080837B (zh) * 2012-02-02 2016-06-15 三菱瓦斯化学株式会社 光学材料用组合物的制造方法
US9458293B2 (en) 2012-02-02 2016-10-04 Mitsubishi Gas Chemical Company, Inc. Method for producing composition for optical material
JP2013209627A (ja) * 2012-03-01 2013-10-10 Mitsubishi Gas Chemical Co Inc 樹脂用組成物の重合停止方法
WO2018150951A1 (ja) * 2017-02-17 2018-08-23 三菱瓦斯化学株式会社 光学材料用組成物
US11078363B2 (en) 2017-02-17 2021-08-03 Mitsubishi Gas Chemical Company, Inc. Optical material composition
WO2023032598A1 (ja) * 2021-09-01 2023-03-09 三井化学株式会社 エピスルフィド組成物、重合性組成物、硬化物、及び光学材料

Also Published As

Publication number Publication date
JPWO2010131631A1 (ja) 2012-11-01
EP2431401B1 (en) 2020-10-21
EP2431401A4 (en) 2014-01-22
JP5720565B2 (ja) 2015-05-20
KR101714804B1 (ko) 2017-03-09
CN104017216A (zh) 2014-09-03
US20120142889A1 (en) 2012-06-07
CN102459418A (zh) 2012-05-16
KR20120031169A (ko) 2012-03-30
EP2431401A1 (en) 2012-03-21
US9150694B2 (en) 2015-10-06

Similar Documents

Publication Publication Date Title
JP5720565B2 (ja) 高屈折率高強度光学材料用組成物
JP5817850B2 (ja) 光学材料用組成物の製造方法
JP5772925B2 (ja) 高屈折率高強度樹脂用組成物
CN110198969B (zh) 光学材料用组合物
WO2013122068A1 (ja) 光学材料用重合性組成物、その製造方法、及び光学材料の製造方法
WO2013129460A1 (ja) 光学材料用重合性組成物
JP5799949B2 (ja) 光学材料用組成物及びその製造方法並びに光学材料用組成物から得られる光学材料
JP5458478B2 (ja) 高屈折率高強度樹脂用組成物
CN108276579B (zh) 光学材料用组合物的制造方法
JP6048013B2 (ja) 光学材料用重合性組成物の製造方法
CN110475796B (zh) 光学材料用组合物
JP6048012B2 (ja) 光学材料の製造方法
JP4736117B2 (ja) 光学材料用組成物
JP6089747B2 (ja) 光学材料用重合性組成物
JP6089744B2 (ja) 光学材料用重合性組成物の製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080026219.9

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10774888

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011513331

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2010774888

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20117029099

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 13319857

Country of ref document: US