Nothing Special   »   [go: up one dir, main page]

WO2013114945A1 - 透明導電性フィルム、タッチパネルおよび表示装置 - Google Patents

透明導電性フィルム、タッチパネルおよび表示装置 Download PDF

Info

Publication number
WO2013114945A1
WO2013114945A1 PCT/JP2013/050621 JP2013050621W WO2013114945A1 WO 2013114945 A1 WO2013114945 A1 WO 2013114945A1 JP 2013050621 W JP2013050621 W JP 2013050621W WO 2013114945 A1 WO2013114945 A1 WO 2013114945A1
Authority
WO
WIPO (PCT)
Prior art keywords
refractive index
transparent conductive
easy
layer
adhesion layer
Prior art date
Application number
PCT/JP2013/050621
Other languages
English (en)
French (fr)
Inventor
桐本高代志
中道夏樹
Original Assignee
東レフィルム加工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東レフィルム加工株式会社 filed Critical 東レフィルム加工株式会社
Priority to JP2013502330A priority Critical patent/JP5397824B1/ja
Priority to CN201380006513.7A priority patent/CN104067352B/zh
Priority to KR1020147020184A priority patent/KR101524580B1/ko
Publication of WO2013114945A1 publication Critical patent/WO2013114945A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/11Anti-reflection coatings
    • G02B1/113Anti-reflection coatings using inorganic layer materials only
    • G02B1/115Multilayers
    • G02B1/116Multilayers including electrically conducting layers
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/045Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means using resistive elements, e.g. a single continuous surface or two parallel surfaces put in contact
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2203/00Indexing scheme relating to G06F3/00 - G06F3/048
    • G06F2203/041Indexing scheme relating to G06F3/041 - G06F3/045
    • G06F2203/04103Manufacturing, i.e. details related to manufacturing processes specially suited for touch sensitive devices

Definitions

  • the present invention relates to a transparent conductive film having good light transmission, and in particular, transparent conductivity capable of suppressing a decrease in light transmission from a display panel in a touch panel and a display device using the transparent conductive film. Related to film.
  • the transparent conductive film used for touch panels, etc. is provided on the opposite side of the transparent conductive film (provided with a transparent conductive film on the base film) in order to provide scratch resistance on the touch input surface and antireflection of external light. It is known that functional layers such as a hard coat layer, an antireflection layer, and an antiglare layer are laminated on a surface opposite to the surface on which the surface is coated (Patent Documents 1 and 2).
  • the antireflection layer can take a multilayer structure or a single structure.
  • high antireflection properties are easily obtained, but there are problems of production cost (low productivity) and interference fringes are likely to occur.
  • the antireflection layer has a single structure, the cost is low, but there are problems that sufficient antireflection properties cannot be obtained, deterioration of scratch resistance, slippage and blocking resistance. Further, the above patent document does not specifically describe a single antireflection layer.
  • an object of the present invention is to provide a transparent conductive film having good antireflection properties at low cost.
  • Another object of the present invention is to provide a touch panel using the transparent conductive film of the present invention and a display device including the touch panel.
  • the above object of the present invention has been achieved by the following invention. 1) Having a transparent conductive film on one surface of a base film having a refractive index of 1.6 to 1.7, and having a refractive index of 1.42 via an easy-adhesion layer on the other surface of the base film.
  • Condition 1 the absolute value of the difference between the refractive index of the base film and the refractive index of the easy-adhesion layer is 0.08 or less.
  • a transparent conductive film is provided on one surface of a base film having a refractive index of 1.6 to 1.7, and the refractive index is 1.42 via an easy-adhesion layer on the other surface of the base film.
  • the thickness of the easy adhesion layer is 5 nm or more and less than 50 nm.
  • a transparent conductive film is provided on one surface of a base film having a refractive index of 1.6 to 1.7, and the refractive index is 1.42 via an easy-adhesion layer on the other surface of the base film.
  • Condition 1 The absolute value of the difference between the refractive index of the base film and the refractive index of the easy adhesion layer is 0.08 or less.
  • the thickness of the easy adhesion layer is 5 nm or more and less than 50 nm.
  • the transparent conductive film according to 1) or 4), wherein the easy-adhesion layer has a thickness of 5 nm or more and less than 200 nm.
  • the transparent conductive film of 11) above containing the particles in an amount of 0.05 to 20% by mass with respect to 100% by mass of the solid content of the easy-adhesion layer 13)
  • the low refractive index layer is an ethylenically unsaturated group
  • a touch panel comprising the transparent conductive film according to any one of 1) to 13).
  • the present invention it is possible to provide a transparent conductive film having good antireflection properties at low cost.
  • a touch panel and / or an electromagnetic wave shielding member using the transparent conductive film of the present invention in a display device, a display device having good light transmission from the display panel can be provided.
  • the transparent conductive film with improved slip property can be provided.
  • the transparent conductive film by which the oligomer precipitation from the base film was suppressed can be provided.
  • FIG. 1 is a schematic cross-sectional view of an example of a display device provided with a resistive touch panel using the transparent conductive film of the present invention.
  • FIG. 2 is a schematic cross-sectional view of an example of a display device provided with a capacitive touch panel using the transparent conductive film of the present invention.
  • FIG. 3 is a schematic cross-sectional view of an example of a display device provided with a capacitive touch panel using the transparent conductive film of the present invention.
  • FIG. 4 is a schematic cross-sectional view of an example of a display device provided with an electromagnetic wave shielding member using the transparent conductive film of the present invention.
  • the transparent conductive film of the present invention has a transparent conductive film on one surface of the base film, and only one layer of a low refractive index layer on the other surface of the base film via an easy-adhesion layer.
  • a transparent conductive film on one surface of the base film and only one layer of a low refractive index layer on the other surface of the base film via an easy-adhesion layer.
  • the base film of the present invention is a film having a refractive index in the range of 1.6 to 1.7. From the viewpoint of reducing the reflectance at the interface between the low refractive index layer and the air layer, the base film is preferably as large as possible. Specifically, the refractive index of the base film is preferably 1.61 or more, more preferably 1.62 or more, further preferably 1.63 or more, and particularly preferably 1.64 or more.
  • the base film of the present invention can be selected from plastic films.
  • plastic films a polyester film is preferable from the viewpoint of tensile strength, heat resistance, and solvent resistance, and a polyethylene terephthalate film (PET film) is particularly preferably used.
  • PET film polyethylene terephthalate film
  • the thickness of the substrate film is suitably in the range of 20 to 300 ⁇ m, preferably in the range of 30 to 200 ⁇ m, and more preferably in the range of 50 to 150 ⁇ m.
  • the easy-adhesion layer of the present invention enhances the adhesion between the base film and the low refractive index layer, and has excellent antireflection properties (low reflectance) due to the combination of the base film and the low refractive index layer described below. It is for maintaining.
  • the easy-adhesion layer needs to satisfy the following condition 1, condition 2, or (condition 1 and condition 2).
  • condition 1 the absolute value of the difference between the refractive index of the base film and the refractive index of the easy-adhesion layer is 0.08 or less.
  • Condition 2 The thickness of the easy adhesion layer is 5 nm or more and less than 50 nm.
  • the easy adhesion layer of Condition 1 is an easy adhesion layer in which the absolute value of the difference between the refractive index of the base film and the refractive index of the easy adhesion layer satisfies 0.08 or less.
  • the absolute value of the refractive index difference is preferably 0.06 or less, more preferably 0.05 or less, particularly preferably 0.03 or less, and most preferably 0.01 or less. If the absolute value of the difference between the refractive index of the base film and the refractive index of the easy-adhesion layer is greater than 0.08, good antireflection properties cannot be obtained.
  • the easy-adhesion layer preferably does not have a very high hardness from the viewpoint of enhancing the adhesion between the base film and the low refractive index layer. Since the transparent conductive film of the present invention has only a very thin low refractive index layer on the easy adhesion layer, the hardness of the low refractive index layer decreases when the thickness of the easy adhesion layer is not so high. Inconvenience may occur. Therefore, it is preferable that the thickness of the easy adhesion layer is relatively small.
  • the thickness of the easy adhesion layer is specifically preferably less than 200 nm, more preferably less than 150 nm, further preferably less than 130 nm, and particularly preferably less than 100 nm.
  • the lower limit thickness is preferably 5 nm or more, more preferably 10 nm or more, and even more preferably 20 nm or more from the viewpoint of ensuring the adhesion between the base film and the low refractive index layer.
  • the easy-adhesion layer of Condition 1 is an easy-adhesion layer having a relatively high refractive index, and such an easy-adhesion layer can be obtained by containing a high refractive index material such as a resin or metal oxide fine particles having a relatively high refractive index. it can.
  • the refractive index of a polyethylene terephthalate film is usually about 1.63 to 1.67, and the easy-adhesion layer that has been generally laminated conventionally is composed mainly of a resin such as a polyester resin, an acrylic resin, or a urethane resin.
  • the refractive index is normally relatively small, about 1.50 to 1.54, and does not satisfy Condition 1.
  • One aspect of the easy-adhesion layer of Condition 1 is an aspect in which a resin having a high refractive index is introduced by introducing an aromatic ring, a sulfur atom, a bromine atom, or the like into a resin such as a polyester resin, an acrylic resin, or a urethane resin. is there.
  • the content of the resin having a high refractive index is preferably 50% by mass or more, more preferably 60% by mass or more, particularly 70% by mass with respect to 100% by mass of the solid content of the easy-adhesion layer. % Or more is preferable.
  • the upper limit content is about 98% by mass.
  • a polyester resin having an aromatic ring in the molecule is preferable, and a polyester resin having a condensed aromatic ring in the molecule is more preferable.
  • the condensed aromatic ring include a naphthalene ring and a fluorene ring.
  • the polyester resin is generally obtained by polycondensation from a carboxylic acid component and a glycol component.
  • the polyester resin having a naphthalene ring in the molecule can be synthesized by using a dicarboxylic acid having a naphthalene ring such as 1,4-naphthalenedicarboxylic acid or 2,6-naphthalenedicarboxylic acid as a carboxylic acid component. .
  • the refractive index of the polyester resin having a naphthalene ring in the molecule can be controlled by adjusting the ratio of the dicarboxylic acid having a naphthalene ring in the total carboxylic acid component.
  • the polyester resin having a fluorene ring in the molecule can be synthesized by using a compound having a fluorene ring as the carboxylic acid component and / or glycol component.
  • the refractive index of the polyester resin can be controlled by adjusting the content of the compound having a fluorene ring.
  • numerator is described in detail in the international publication number WO2009 / 145075, for example, It can synthesize
  • the polyester resin is preferably water-soluble or water-dispersible.
  • a water-soluble or water-dispersible polyester resin can be synthesized by including a trivalent or higher polyvalent carboxylic acid or a dicarboxylic acid having a sulfo group in the carboxylic acid component used for the synthesis of the polyester resin. .
  • the easy-adhesion layer under Condition 1 is an aspect in which metal oxide fine particles are contained.
  • the easy-adhesion layer in this aspect is a layer in which metal oxide fine particles are dispersed in a resin.
  • the resin include an acrylic resin (preferably an acrylic resin having an OH group such as an acrylic resin polyol), a polyester resin (preferably a polyester resin having an OH group such as a polyester resin polyol), an epoxy resin, a urethane resin, and a styrene- A maleic acid grafted polyester resin, an acrylic grafted polyester resin, a silicone resin, or a polyester resin having a condensed aromatic ring in the molecule can be used.
  • titanium oxide, zirconium oxide, zinc oxide, tin oxide, antimony oxide, cerium oxide, iron oxide, zinc antimonate, tin oxide-doped indium oxide (ITO), antimony-doped tin oxide (ATO), phosphorus-doped Tin oxide, aluminum-doped zinc oxide, gallium-doped zinc oxide, or the like can be used.
  • titanium oxide and zirconium oxide are preferable from the viewpoint of transparency, light resistance, and high refractive index, and zirconium oxide is particularly preferable.
  • the content ratio of the resin and the metal oxide fine particles in the easy-adhesion layer is suitably in the range of 100: 10 to 100: 400, preferably in the range of 100: 20 to 100: 300, particularly 100: 30 to 100. : The range of 200 is preferable.
  • the easy adhesion layer of Condition 2 has a thickness in the range of 5 nm or more and less than 50 nm.
  • the thickness of the easy-adhesion layer under Condition 2 is preferably smaller even within the above thickness range, specifically, less than 40 nm, and more preferably less than 30 nm.
  • the lower limit thickness of the easy adhesion layer is preferably 10 nm or more.
  • the refractive index of the easy-adhesion layer under Condition 2 is not particularly limited, but is preferably in the range of 1.45 or more and less than 1.60, more preferably in the range of 1.47 to 1.59, and particularly in the range of 1.48 to 1.58. A range is preferred.
  • the condition 2 easy adhesion layer is preferably a layer containing a resin such as a polyester resin, an acrylic resin, or a urethane resin.
  • an easy-adhesion layer having the same composition as that of Condition 1 can be used as the easy-adhesion layer of Condition 2.
  • an easy-adhesion layer that satisfies the conditions 1 and 2 simultaneously can be used.
  • the easy adhesion layer of the present invention contains at least a resin as described above.
  • a resin preferably contains at least a polyester resin.
  • the content of the resin in the easy adhesion layer is preferably 20% by mass or more, more preferably 30% by mass or more, and particularly preferably 50% by mass or more with respect to 100% by mass of the solid content of the easy adhesion layer. Preferably there is.
  • the upper limit is about 98% by mass.
  • the easy-adhesion layer preferably contains a crosslinking agent.
  • crosslinking agents include melamine crosslinking agents, oxazoline crosslinking agents, carbodiimide crosslinking agents, isocyanate crosslinking agents, aziridine crosslinking agents, epoxy crosslinking agents, methylolated or alkylolized urea crosslinking agents, and acrylamides.
  • Crosslinking agents, polyamide resins, amide epoxy compounds, various silane coupling agents, various titanate coupling agents, and the like can be used.
  • crosslinking agents it is preferable to use at least one member selected from the group consisting of melamine crosslinking agents, oxazoline crosslinking agents, carbodiimide crosslinking agents, isocyanate crosslinking agents, and aziridine crosslinking agents.
  • the content of the crosslinking agent in the easy-adhesion layer is preferably in the range of 1 to 40% by mass, more preferably in the range of 3 to 35% by mass, with respect to 100% by mass of the total solid content of the easy-adhesion layer. % Range is particularly preferred.
  • the easy adhesion layer preferably contains at least a resin and a crosslinking agent. This further improves the adhesion between the base film and the low refractive index layer. Further, such an easy-adhesion layer (an easy-adhesion layer containing at least a resin and a crosslinking agent) is laminated on a base film, and a low refractive index layer (an active energy ray-curable resin composition) described later is formed on the easy-adhesion layer. Is deposited by a wet coating method, and oligomer precipitation from the base film can be suppressed.
  • an oligomer which is a non-crosslinking component
  • This oligomer precipitation includes an easy-adhesion layer (an easy-adhesion layer containing at least a resin and a crosslinking agent) and a low refractive index layer (a low refractive index layer obtained by applying and curing an active energy ray-curable resin composition by a wet coating method). It can suppress by laminating
  • the thickness of the easy adhesion layer is preferably 50 nm or more, more preferably 60 nm or more, and particularly preferably 70 nm or more.
  • the easy adhesion layer further contains particles.
  • the convex structure derived from the particles of the easy-adhesion layer is reflected in the low-refractive index layer.
  • the slipperiness of the surface of the low refractive index layer is improved and good blocking resistance can be maintained.
  • the average particle diameter (r) of the particles contained in the easy-adhesion layer is a relatively large ratio with respect to the thickness (d) of the easy-adhesion layer.
  • Formula 1 1.0 ⁇ (r / d) ⁇ 10 Equation 2
  • the average particle size of the particles to be contained in the easy-adhesion layer is preferably selected in the range of the above formulas 1 to 3, but the average particle size of the particles is specifically preferably in the range of 10 to 600 nm, preferably 20 to 500 nm. Is more preferable, and a range of 30 to 300 nm is particularly preferable.
  • grains contained in an easily bonding layer is a particle diameter calculated
  • the content of the particles in the easy-adhesion layer is preferably in the range of 0.05 to 20% by mass, more preferably in the range of 0.1 to 15% by mass, particularly 0% with respect to 100% by mass of the total solid content of the easy-adhesion layer.
  • the range of 2 to 10% by mass is preferable.
  • the particles contained in the easy-adhesion layer are not particularly limited, but inorganic particles such as silica particles, titanium oxide, aluminum oxide, zirconium oxide, calcium carbonate, carbon black, zeolite particles, acrylic particles, silicone particles, polyimide particles, Teflon Examples include organic particles such as (registered trademark) particles, crosslinked polyester particles, crosslinked polystyrene particles, crosslinked polymer particles, and core-shell particles. Among these, silica particles are preferable, and colloidal silica is particularly preferable.
  • the easy-adhesion layer of the present invention is preferably laminated on the base film by a wet coating method, and more preferably a so-called in-line coating method in which the easy-adhesion layer is laminated in the production process of the base film.
  • the wet coating method include a reverse coating method, a spray coating method, a bar coating method, a gravure coating method, a rod coating method, and a die coating method.
  • the substrate film surface is subjected to corona discharge treatment, flame treatment, plasma treatment, etc. as a preliminary treatment for improving the coatability and adhesion. It is preferable to keep it.
  • PET polyethylene terephthalate
  • PET pellets with an intrinsic viscosity of 0.5 to 0.8 dl / g which is a raw material for PET film, are vacuum-dried, then supplied to an extruder, melted at 260 to 300 ° C, extruded into a sheet form from a T-shaped die,
  • An unstretched PET film is produced by winding it around a mirror casting drum having a surface temperature of 10 to 60 ° C. using an electric application casting method, and cooling and solidifying the drum.
  • This unstretched PET film is stretched 2.5 to 5 times in the machine direction (referred to as the “longitudinal direction”, which refers to the traveling direction of the film) between rolls heated to 70 to 100 ° C.
  • At least one surface of the uniaxially stretched PET film obtained by this stretching is subjected to corona discharge treatment in air, the wetting tension of the surface is set to 47 mN / m or more, and the coating solution for the easy adhesion layer of the present invention is applied to the treated surface. To do.
  • the uniaxially stretched PET film coated with the coating solution is gripped with a clip, guided to a drying zone, dried at a temperature lower than Tg of the uniaxially stretched PET film, then raised to a temperature equal to or higher than Tg, and again at a temperature near Tg. And then continuously stretched by 2.5 to 5 times in the transverse direction (referred to as the direction perpendicular to the film traveling direction) in a heating zone at 70 to 150 ° C., followed by 180 to Heat treatment is performed in a heating zone at 240 ° C. for 5 to 40 seconds to obtain a polyester film in which an easy-adhesion layer is laminated on a PET film in which crystal orientation is completed.
  • Biaxial stretching may be longitudinal, transverse sequential stretching, or simultaneous biaxial stretching, and may be re-stretched in either the longitudinal or transverse direction after longitudinal and transverse stretching.
  • the easy-adhesion layer of the present invention is preferably not a resin layer that is cured by active energy rays such as ultraviolet rays and electron beams from the viewpoint of enhancing the adhesion between the base film and the low refractive index layer.
  • active energy rays such as ultraviolet rays and electron beams
  • an active energy ray-curable high refractive index layer is directly laminated on the base film instead of the easy adhesion layer, sufficient adhesion between the base film and the high refractive index layer cannot be obtained.
  • the low refractive index layer of the present invention is a layer having a refractive index of 1.42 or less and a thickness of 80 to 120 nm.
  • the refractive index of the low refractive index layer is preferably 1.41 or less, more preferably 1.40 or less, and particularly preferably 1.39 or less.
  • the lower limit refractive index is not particularly limited, but is about 1.30.
  • the refractive index of the low refractive index layer is greater than 1.42, good antireflection properties cannot be obtained. Also, good antireflection properties cannot be obtained when the thickness of the low refractive index layer is out of the range of 80 to 120 nm.
  • the thickness of the low refractive index layer is preferably in the range of 85 to 115 nm, particularly preferably in the range of 90 to 110 nm.
  • This metal fluoride film is a film laminated by a vapor deposition method such as a vacuum deposition method, a reactive deposition method, an ion beam assisted deposition method, a sputtering method, an ion plating method, or a plasma CVD method.
  • a vapor deposition method such as a vacuum deposition method, a reactive deposition method, an ion beam assisted deposition method, a sputtering method, an ion plating method, or a plasma CVD method.
  • metal fluoride examples include magnesium fluoride (MgF 2 ), aluminum fluoride (AlF 3 ), calcium fluoride (CaF 2 ), barium fluoride (BaF 2 ), strontium fluoride (SrF 2 ), and cryolite. (Na 3 AlF 6), chiolite (Na 5 Al 3 F1 4) , sodium fluoride (NaF), and the like. Of these, magnesium fluoride is preferably used.
  • a preferred embodiment of the low refractive index layer is a layer obtained by applying and curing an active energy ray-curable composition by a wet coating method.
  • a coating method such as a reverse coating method, a spray coating method, a bar coating method, a gravure coating method, a rod coating method, a die coating method, a spin coating method or an extrusion coating method can be used.
  • the active energy ray curable composition examples include an active energy ray curable resin that is cured by active energy rays such as ultraviolet rays and electron beams, and low refractive index inorganic particles and / or fluorine-containing compounds as low refractive index materials.
  • the composition containing is mentioned.
  • the active energy ray-curable resin is a resin that is cured by active energy rays such as ultraviolet rays and electron beams, and monomers and oligomers having at least one ethylenically unsaturated group in the molecule are preferably used.
  • examples of the ethylenically unsaturated group include acryloyl group, methacryloyl group, acryloyloxy group, methacryloyloxy group, vinyl group, and allyl group.
  • the expression “... (Meth) acrylate” includes two compounds “... acrylate” and “... methacrylate”.
  • Examples of the monomer include methyl (meth) acrylate, lauryl (meth) acrylate, ethoxydiethylene glycol (meth) acrylate, methoxytriethylene glycol (meth) acrylate, phenoxyethyl (meth) acrylate, tetrahydrofurfuryl (meth) acrylate, Monofunctional acrylates such as isobornyl (meth) acrylate, 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, 2-hydroxy-3-phenoxy (meth) acrylate, neopentyl glycol di (meth) acrylate, 1,6-hexanediol di (meth) acrylate, trimethylolpropane tri (meth) acrylate, pentaerythritol tri (meth) acrylate, pentaerythritol Tetral (meth) acrylate, dipentaerythritol tri
  • oligomer examples include polyester (meth) acrylate, polyurethane (meth) acrylate, epoxy (meth) acrylate, polyether (meth) acrylate, alkit (meth) acrylate, melamine (meth) acrylate, silicone (meth) acrylate, and the like. Can be mentioned.
  • the above-described monomers and oligomers may be used singly or in combination, but it is preferable to use a trifunctional or higher polyfunctional monomer or oligomer.
  • the content of the active energy ray curable resin is in the range of 5 to 90% by mass with respect to the total solid content of the composition of 100% by mass, and in the range of 5 to 80% by mass.
  • the range of 10 to 70% by mass is more preferable.
  • inorganic particles such as silica and magnesium fluoride are preferable. Further, these inorganic particles are preferably hollow or porous.
  • the refractive index of the inorganic particles is more preferably in the range of 1.2 to 1.35.
  • the content of the low refractive index inorganic particles is preferably in the range of 20 to 70% by mass, more preferably in the range of 25 to 70% by mass with respect to 100% by mass of the total solid content of the composition. In particular, the range of 30 to 60% by mass is preferable.
  • fluorine-containing compound examples include fluorine-containing monomers, fluorine-containing oligomers, and fluorine-containing polymer compounds.
  • the fluorine-containing monomer and fluorine-containing oligomer are monomers and oligomers having an ethylenically unsaturated group and a fluorine atom in the molecule.
  • fluorine-containing monomers and fluorine-containing oligomers examples include 2,2,2-trifluoroethyl (meth) acrylate, 2,2,3,3,3-pentafluoropropyl (meth) acrylate, and 2- (perfluorobutyl).
  • fluorine-containing polymer compound examples include a fluorine-containing copolymer having a fluorine-containing monomer and a monomer for imparting a crosslinkable group as structural units.
  • fluorine-containing monomer unit examples include, for example, fluoroolefins (for example, fluoroethylene, vinylidene fluoride, tetrafluoroethylene, hexafluoroethylene, hexafluoropropylene, perfluoro-2,2-dimethyl-1,3-dioxole, etc.
  • (Meth) acrylic acid partial or fully fluorinated alkyl ester derivatives for example, Biscoat 6FM (manufactured by Osaka Organic Chemical), M-2020 (manufactured by Daikin), etc.), fully or partially fluorinated vinyl ethers, and the like.
  • a monomer for imparting a crosslinkable group in addition to a (meth) acrylate monomer having a crosslinkable functional group in the molecule like glycidyl methacrylate, it has a carboxyl group, a hydroxyl group, an amino group, a sulfonic acid group, etc.
  • Acrylate monomers for example, (meth) acrylic acid, methylol (meth) acrylate, hydroxyalkyl (meth) acrylate, allyl acrylate, etc.).
  • the content of the fluorine-containing compound is preferably 30% by mass or more, more preferably 50% by mass or more, and particularly preferably 60% by mass or more with respect to 100% by mass of the total solid content of the composition.
  • the upper limit is preferably 100% by mass or less, more preferably 99% by mass or less, and particularly preferably 98% by mass or less.
  • the aforementioned fluorine-containing monomer and / or fluorine-containing oligomer can be used as all or part of the active energy ray-curable resin.
  • the active energy ray-curable composition preferably contains a photopolymerization initiator.
  • the photopolymerization initiator include acetophenone, 2,2-diethoxyacetophenone, p-dimethylacetophenone, p-dimethylaminopropiophenone, benzophenone, 2-chlorobenzophenone, 4,4′-dichlorobenzophenone, 4,4′-bisdiethylaminobenzophenone, Michler's ketone, benzyl, benzoin, benzoin methyl ether, benzoin ethyl ether, benzoin isopropyl ether, methylbenzoyl formate, p-isopropyl- ⁇ -hydroxyisobutylphenone, ⁇ -hydroxyisobutylphenone, 2, Carbonyl compounds such as 2-dimethoxy-2-phenylacetophenone and 1-hydroxycyclohexyl phenyl ketone, tetramethylthiuram monosul
  • the content of the photopolymerization initiator is suitably in the range of 0.1 to 10% by mass, preferably in the range of 0.5 to 8% by mass with respect to 100% by mass of the total solid content of the composition.
  • the active energy ray-curable composition preferably contains a polysiloxane compound having an ethylenically unsaturated group in order to improve the slipperiness and scratch resistance of the surface of the low refractive index layer.
  • the polysiloxane compound having an ethylenically unsaturated group is a compound having one or more ethylenically unsaturated groups at either the terminal or side chain of the polysiloxane main chain in the molecule.
  • the ethylenically unsaturated group include vinyl group, allyl group, acryloyl group, methacryloyl group, acryloyloxy group, and methacryloyloxy group.
  • the number of ethylenically unsaturated groups in the polysiloxane compound having an ethylenically unsaturated group is preferably in the range of 1 to 6.
  • the polydimethylsiloxane compound which has an ethylenically unsaturated group is preferable.
  • Examples of the polysiloxane compound having an ethylenically unsaturated group include compounds of Production Examples 1-1 to 1-3 of JP-A-2009-84327, Silaplane FM-0711 and FM-0721 of Chisso Corporation. FM-0725, manufactured by Shin-Etsu Chemical Co., Ltd., X-24-8201, X-22-174DX, X-22-2426, X-222-2404, X-22-164A, X-22-164C, Commercial products such as BY16-152D, BY16-152, BY16-152C manufactured by Toray Dow Corning Co., Ltd. can be used.
  • the content of the polysiloxane compound having an ethylenically unsaturated group is preferably in the range of 0.5% by mass or more and less than 10% by mass with respect to 100% by mass of the total solid content of the active energy ray-curable composition. % Or more and less than 8% by mass, more preferably 1.3% by mass or more and less than 6% by mass, and particularly preferably 1.5% by mass or more and less than 5% by mass.
  • the slipperiness of the surface of the low refractive index layer is further improved, and the production process The anti-blocking property in the above is improved.
  • the low refractive index layer is a layer obtained by applying and curing the active energy ray-curable resin composition by a wet coating method, oligomer precipitation from the base film can be suppressed.
  • an oligomer (a cyclic trimer) that is a non-crosslinking component is formed on the surface of the polyethylene terephthalate film when heat treatment is performed in a transparent conductive film forming process described later. Body) may precipitate.
  • This oligomer precipitation is caused by the above-mentioned easy adhesion layer (easy adhesion layer containing at least a resin and a crosslinking agent) and a low refractive index layer (low refractive index obtained by applying and curing an active energy ray-curable resin composition by a wet coating method).
  • the layer can be suppressed by laminating.
  • the thickness of the low refractive index layer is preferably 80 nm or more, and more preferably 90 nm or more.
  • the luminous reflectance on the low refractive index layer side is preferably 1.0% or less, more preferably 0.9% or less, and particularly preferably 0.8% or less. It is preferable that it is 0.7% or less.
  • the luminous reflectance on the low refractive index layer side of the transparent conductive film is larger than 1.0%, the light transmittance from the display panel is lowered, and the display quality of the display device is lowered.
  • Transparent conductive film As a material of the transparent conductive film, a known material used for an electrode of a touch panel can be used. Examples thereof include metal oxides such as tin oxide, indium oxide, antimony oxide, zinc oxide, ITO (indium tin oxide) and ATO (antimony tin oxide), metal nanowires such as silver nanowires, and carbon nanotubes. Among these, ITO is preferably used.
  • the thickness of the transparent conductive film is preferably 10 nm or more, more preferably 15 nm or more, and particularly preferably 20 nm or more, from the viewpoint of ensuring good electrical conductivity of, for example, a surface resistance value of 10 3 ⁇ / ⁇ or less. It is preferable that On the other hand, if the thickness of the transparent conductive film becomes too large, the effect of suppressing the bone appearance phenomenon may be reduced, and there may be a disadvantage that the transparency is lowered. Therefore, the upper limit of the thickness of the transparent conductive film is 100 nm or less. Preferably, it is 60 nm or less, more preferably 50 nm or less, and particularly preferably 40 nm or less.
  • the method for forming the transparent conductive film is not particularly limited, and a conventionally known method can be used. Specifically, for example, a dry process such as a vacuum deposition method, a sputtering method, or an ion plating method, or a wet coating method (specifically, the method described above) can be used.
  • the transparent conductive film formed as described above may be patterned.
  • the patterning can form various patterns depending on the application to which the transparent conductive film is applied.
  • the pattern portion and the non-pattern portion are formed by patterning the transparent conductive film. Examples of the shape of the pattern portion include a stripe shape, a lattice shape, and a combination pattern thereof.
  • the patterning of the transparent conductive film is generally performed by etching.
  • a transparent conductive film is patterned by forming a patterned etching resist film on the transparent conductive film by a photolithography method, a laser exposure method, or a printing method and then performing an etching process.
  • etching solution a conventionally known one is used.
  • inorganic acids such as hydrogen chloride, hydrogen bromide, sulfuric acid, nitric acid and phosphoric acid, organic acids such as acetic acid, and mixtures thereof, and aqueous solutions thereof are used.
  • Examples of other functional layers include an easy adhesion layer, a hard coat layer, a high refractive index layer, a low refractive index layer, and the like, and these functional layers can be provided alone or in combination.
  • the easy-adhesion layer provided between the base film and the transparent conductive film the same easy-adhesion layer as described above can be used.
  • an easy-adhesion layer having a refractive index in the range of 1.55 to 1.60 is used.
  • the thickness is preferably in the range of 10 to 200 nm.
  • the hard coat layer is preferably a layer obtained by applying and curing the active energy ray-curable composition containing the above-described active energy ray-curable resin by a wet coating method.
  • the refractive index of the hard coat layer is suitably in the range of 1.48 to 1.55, preferably in the range of 1.50 to 1.53.
  • the high refractive index layer is composed of metal oxide fine particles having a refractive index of 1.65 or more (titanium oxide, zirconium oxide, zinc oxide, tin oxide, antimony oxide, cerium oxide, iron oxide, zinc antimonate, tin oxide doped indium oxide ( ITO), antimony-doped tin oxide (ATO), phosphorus-doped tin oxide, aluminum-doped zinc oxide, gallium-doped zinc oxide, fluorine-doped tin oxide, etc.) and an active energy ray-curable composition containing the aforementioned active energy ray-curable resin
  • the layer is preferably applied and cured by a wet coating method.
  • the refractive index (n1) of the high refractive index layer is preferably in the range of 1.61 to 1.80, and more preferably in the range of 1.63 to 1.75.
  • the thickness (d1) of the high refractive index layer is preferably in the range of 30 to 100 nm, more preferably in the range of 40 to 95 nm.
  • the low refractive index layer may be the same as the low refractive index layer described above.
  • a SiO 2 film formed by a vapor deposition method is also preferably used as the low refractive index layer.
  • the refractive index (n2) of the low refractive index layer is preferably in the range of 1.30 to 1.50, more preferably in the range of 1.33 to 1.48.
  • the thickness (d2) of the low refractive index layer is more preferably in the range of 5 to 70 nm, more preferably in the range of 7 to 50 nm, and particularly preferably in the range of 10 to 45 nm.
  • the total of the optical thickness of the high refractive index layer and the optical thickness of the low refractive index layer is preferably ⁇ / 4.
  • the optical thickness is the product of the refractive index and the thickness, and ⁇ is 380 to 780 nm which is the wavelength range of the visible light region.
  • the unit of thickness is nm.
  • the total of the optical thickness of the high refractive index layer and the optical thickness of the low refractive index layer preferably satisfies the following relational expression 4. (380 nm / 4) ⁇ (n1 ⁇ d1) + (n2 ⁇ d2) ⁇ (780 nm / 4) 95 nm ⁇ (n1 ⁇ d1) + (n2 ⁇ d2) ⁇ 195 nm (Formula 4).
  • a hard coat layer, a high refractive index layer, and a low refractive index layer which are layers obtained by applying and curing an active energy ray curable composition by a wet coating method between a base film and a transparent conductive film
  • oligomer precipitation from the base film can be prevented.
  • the transparent conductive film of the present invention is preferably used for a resistive film type or a capacitive type touch panel. In particular, it is preferably used for a capacitive touch panel.
  • the resistive film type touch panel generally has a configuration in which transparent conductive films of two transparent conductive films are arranged to face each other with a spacer interposed therebetween.
  • FIG. 1 is a schematic cross-sectional view of an example of a display device provided with a resistive touch panel using the transparent conductive film of the present invention.
  • FIG. 1 shows an embodiment in which the transparent conductive film 11 of the present invention is used as a lower electrode.
  • the transparent conductive film 12 constituting the upper electrode and the transparent conductive film 11 constituting the lower electrode constitute a touch panel 21, and the touch panel 21 is disposed on the display panel 31 via the air layer 9.
  • the touch panel 21 has the transparent conductive film 2 on one surface of the base film 1 and only one layer of the low refractive index layer 4 on the other surface of the base film 1 through the easy adhesion layer 3.
  • a conductive film 11 and a transparent conductive film 12 having a transparent conductive film 6 on one surface of the substrate film 5 and a functional layer 7 on the other surface of the substrate film 5 are interposed via a spacer 8.
  • the transparent conductive films 2 and 6 are arranged so as to face each other.
  • An air layer 9 exists on the low refractive index layer 4 side of the transparent conductive film 11 of the present invention.
  • the presence of the air layer 9 increases the reflectivity at the interface with the transparent conductive film 11, reduces the transmittance of light emitted from the display panel, and lowers the display quality (brightness and visibility) as a display device.
  • the transparent conductive film of the present invention interface reflection is reduced, and good display quality can be ensured.
  • Examples of the display panel 31 include a liquid crystal display panel and an organic EL display panel.
  • a hard coat layer, an antiglare layer, an antireflection layer, an antifouling layer, or the like is used as the functional layer of the transparent conductive film 12.
  • FIGS. 2 and 3 are schematic cross-sectional views of an example of a display device provided with a capacitive touch panel using the transparent conductive film of the present invention.
  • FIG. 2 is a schematic cross-sectional view of a display device including a capacitive touch panel in which an X electrode and a Y electrode are arranged via an air layer.
  • the X electrode is composed of the transparent conductive film 13 of the present invention
  • the Y electrode is composed of the transparent conductive film 14 of the present invention
  • the two transparent conductive films 13 and 14 are arranged via the air layer 9.
  • a touch panel 22 is formed.
  • the touch panel 22 is disposed on the display panel 31 through the air layer 9.
  • the transparent conductive films 13 and 14 of the present invention constituting the X electrode and the Y electrode have the transparent conductive film 2 on one surface of the base film 1 and the easy adhesion layer 3 on the other surface of the base film 1. Only one layer of the low refractive index layer 4 is provided.
  • the X electrode and the Y electrode are formed by patterning the transparent conductive film 2 respectively.
  • the low refractive index layers 4 of the transparent conductive films 13 and 14 of the present invention are in contact with the air layer 9.
  • the transparent conductive films 13 and 14 may be joined by an adhesive layer (not shown).
  • the transparent conductive film 13 does not necessarily use the transparent conductive film of the present invention because the low refractive index layer does not contact the air layer.
  • FIG. 3 is a schematic cross-sectional view of a display device including a capacitive touch panel using a transparent conductive film in which an X electrode and a Y electrode are formed on one base film.
  • the transparent conductive film 2 of the transparent conductive film 15 of the present invention has a configuration in which a patterned transparent conductive film to be an X electrode and a patterned transparent conductive film to be a Y electrode are laminated via an insulating film. Become.
  • the transparent conductive film 15 of the present invention to be the touch panel 23 is disposed on the display panel 31 via the air layer 9, and the low refractive index layer 4 of the transparent conductive film 15 of the present invention is in contact with the air layer 9. ing.
  • a protective panel (a glass plate, an acrylic resin plate, etc.) (not shown) is usually provided on the touch surface side via an air layer or an adhesive layer (not shown). Are arranged.
  • the low refractive index layer side of the transparent conductive film of the present invention is connected to the display panel via an air layer. It is preferable to arrange so as to face each other.
  • the transparent conductive film of the present invention is incorporated not in the touch surface of the display device provided with the touch panel but in the inside. Since the transparent conductive film of the present invention is used inside a display device, it has a structure having only one low refractive index layer (having no hard coat layer or high refractive index layer) in terms of scratch resistance. enable.
  • Another application of the transparent conductive film of the present invention is an electromagnetic wave shielding member that shields electromagnetic waves generated from a liquid crystal display panel. That is, the transparent conductive film of the present invention is suitable for an electromagnetic wave shielding member.
  • FIG. 4 is a schematic cross-sectional view of an example of a display device provided with an electromagnetic wave shielding member using the transparent conductive film of the present invention.
  • the transparent conductive film 16 of the present invention which becomes the electromagnetic wave shielding member 24 is disposed on the display panel (liquid crystal display panel) 31 via the air layer 9, and the transparent conductive film 16 of the present invention.
  • the low refractive index layer 4 is in contact with the air layer 9.
  • the transparent conductive film 16 of the present invention has a transparent conductive film 2 on one side of the base film 1 and a low refractive index layer 4 on the other side of the base film 1 with an easy adhesion layer 3 interposed therebetween. Have only.
  • the touch panel 25 is disposed on the transparent conductive film 2 side of the transparent conductive film 16 of the present invention which becomes the electromagnetic wave shielding member 24.
  • the touch panel 25 is not particularly limited, and other types of touch panels (for example, an ultrasonic method, an electromagnetic induction method, etc.) other than the above-described resistance film type and capacitance type can also be used.
  • a resistive touch panel and a capacitive touch panel using the transparent conductive film of the present invention as described above are also preferably used.
  • a coating film (dry thickness of about 2 ⁇ m) formed by coating each coating composition of the easy adhesive layer and the low refractive index layer on a silicon wafer with a spin coater ), The refractive index at 633 nm was measured with a phase difference measuring device (Nikon Corporation: NPDM-1000) under a temperature condition of 25 ° C.
  • Thickness of the easy-adhesion layer A cross-section of the base film on which the easy-adhesion layer is laminated is cut into ultrathin sections, and TEM (transmission) is obtained by RuO4 staining, OsO4 staining, or staining ultrathin sectioning by double staining of both.
  • the cross-sectional structure is observed under the following conditions with a scanning electron microscope), and the thickness of the easy-adhesion layer is measured from the cross-sectional photograph. In addition, five places were measured and the average value was made into the thickness of an easily bonding layer.
  • Measurement device Transmission electron microscope (H-7100FA type, manufactured by Hitachi, Ltd.)
  • Measurement conditions Acceleration voltage 100kV -Sample preparation: frozen ultrathin section method-Magnification: 300,000 times.
  • the sample was cut into ultra-thin sections and observed with a transmission electron microscope (H-7100FA, manufactured by Hitachi) at an acceleration voltage of 100 kV (observed at a magnification of 100,000).
  • the thickness of the low refractive index layer is measured from the cross-sectional photograph.
  • five places were measured and the average value was made into the thickness of a low refractive index layer.
  • the luminous reflectance on the low refractive index layer side of the transparent conductive film is 1 in order not to reduce the transmittance of light emission from the display panel. It is preferably 0.0% or less, more preferably 0.9% or less, and particularly preferably 0.8% or less. When the luminous reflectance is greater than 1.0%, the transmittance decreases.
  • ⁇ Fluorene ring-containing polyester resin It is a polyester resin comprising a copolymer composition of the following carboxylic acid component and glycol component.
  • Carboxylic acid component Succinic acid 40mol% 5-Na sulfoisophthalic acid 10 mol%
  • Glycol component 9,9-bis [4- (2-hydroxyethoxy) phenyl] fluorene x mol% Ethylene glycol (50-x) mol%.
  • ⁇ Polyester resin 3> The following water-dispersible polyester resin 3 (naphthalene ring-containing polyester resin) having a refractive index of 1.58 was prepared.
  • ⁇ Naphthalene ring-containing polyester resin It is a polyester resin comprising a copolymer composition of the following carboxylic acid component and glycol component.
  • Carboxylic acid component terephthalic acid 35mol% 2,6-Naphthalenedicarboxylic acid 9 mol% 5-Na sulfoisophthalic acid 6 mol%
  • Glycol component ethylene glycol 49 mol% Diethylene glycol 1 mol%.
  • ⁇ Acrylic resins 1, 2> The following water-dispersible acrylic resin 1 having a refractive index of 1.54 and water-dispersible acrylic resin 2 having a refractive index of 1.52 were prepared.
  • particles contained in the easy adhesion layer Particles contained in the easy adhesion layer
  • Particle A colloidal silica having an average particle diameter of 190 nm
  • particle B colloidal silica having an average particle diameter of 80 nm
  • particle C colloidal silica having an average particle diameter of 30 nm.
  • the following easy-adhesion layer Z was laminated
  • the melamine-based cross-linking agent is a methylol-type melamine-based cross-linking agent (“Nicarac MW12LF” manufactured by Sanwa Chemical Co., Ltd.), and the melamine-based cross-linking agent refers to the above compound in the following examples and comparative examples.
  • the following easy-adhesion layer B is laminated on one surface (low refractive index layer lamination surface) of a polyethylene terephthalate film (PET film) having a refractive index of 1.65 and a thickness of 100 ⁇ m so that the dry thickness is 20 nm.
  • PET film polyethylene terephthalate film
  • a PET film with an adhesive layer was obtained.
  • the thickness of the easy adhesion layer of the PET film with the easy adhesion layer obtained above was 20 nm, and the refractive index of the easy adhesion layer was 1.64. This easy-adhesion layer satisfies the conditions 1 and 2.
  • the easy-adhesion layer Z was laminated
  • the following easy-adhesion layer C is laminated on one surface (low refractive index layer lamination surface) of a polyethylene terephthalate film (PET film) having a refractive index of 1.65 and a thickness of 100 ⁇ m so that the dry thickness is 90 nm.
  • PET film polyethylene terephthalate film
  • a PET film with an adhesive layer was obtained.
  • the thickness of the easy adhesion layer of the PET film with the easy adhesion layer obtained above was 90 nm, and the refractive index of the easy adhesion layer was 1.62. This easy-adhesion layer satisfies the condition 1.
  • the easy-adhesion layer Z was laminated
  • the following easy-adhesion layer D is laminated on one surface (low refractive index layer lamination surface) of a polyethylene terephthalate film (PET film) having a refractive index of 1.65 and a thickness of 100 ⁇ m so that the dry thickness is 30 nm.
  • PET film polyethylene terephthalate film
  • a PET film with an adhesive layer was obtained.
  • the thickness of the easy adhesion layer of the PET film with the easy adhesion layer obtained above was 30 nm, and the refractive index of the easy adhesion layer was 1.62. This easy-adhesion layer satisfies the conditions 1 and 2.
  • the easy-adhesion layer Z was laminated
  • the following easy-adhesion layer E is laminated so that the dry thickness is 90 nm on one surface (low refractive index layer lamination surface) of a polyethylene terephthalate film (PET film) having a refractive index of 1.65 and a thickness of 100 ⁇ m.
  • PET film polyethylene terephthalate film
  • a PET film with an adhesive layer was obtained.
  • the thickness of the easy adhesion layer of the PET film with the easy adhesion layer obtained above was 90 nm, and the refractive index of the easy adhesion layer was 1.58. This easy-adhesion layer satisfies the condition 1.
  • the easy-adhesion layer Z was laminated
  • the following easy-adhesion layer F is laminated on one surface (low refractive index layer lamination surface) of a polyethylene terephthalate film (PET film) having a refractive index of 1.65 and a thickness of 100 ⁇ m so that the dry thickness is 40 nm.
  • PET film polyethylene terephthalate film
  • a PET film with an adhesive layer was obtained.
  • the thickness of the easy adhesion layer of the PET film with the easy adhesion layer obtained above was 40 nm, and the refractive index of the easy adhesion layer was 1.58. This easy-adhesion layer satisfies the conditions 1 and 2.
  • the easy-adhesion layer Z was laminated
  • a PET film with an easy adhesion layer was obtained in the same manner as in Production Example 6 except that the thickness of the easy adhesion layer F in Production Example 6 was changed to 20 nm.
  • the thickness of the easy adhesion layer of the PET film with the easy adhesion layer obtained above was 20 nm, and the refractive index of the easy adhesion layer was 1.58. This easy-adhesion layer satisfies the conditions 1 and 2.
  • the following easy-adhesion layer G is laminated on one surface (low refractive index layer lamination surface) of a polyethylene terephthalate film (PET film) having a refractive index of 1.65 and a thickness of 100 ⁇ m so that the dry thickness is 90 nm.
  • PET film polyethylene terephthalate film
  • a PET film with an adhesive layer was obtained.
  • the thickness of the easy adhesion layer of the PET film with the easy adhesion layer obtained above was 90 nm, and the refractive index of the easy adhesion layer was 1.54. This easy-adhesion layer does not satisfy both conditions 1 and 2.
  • the easy-adhesion layer Z was laminated
  • a PET film with an easy adhesion layer was obtained in the same manner as in Production Example 8 except that the thickness of the easy adhesion layer G in Production Example 8 was changed to 60 nm.
  • the thickness of the easy adhesion layer of the PET film with the easy adhesion layer obtained above was 60 nm, and the refractive index of the easy adhesion layer was 1.54. This easy-adhesion layer does not satisfy both conditions 1 and 2.
  • a PET film with an easy adhesion layer was obtained in the same manner as in Production Example 8, except that the thickness of the easy adhesion layer G in Production Example 8 was changed to 40 nm.
  • the thickness of the easy adhesion layer of the PET film with an easy adhesion layer obtained above was 40 nm, and the refractive index of the easy adhesion layer was 1.54. This easy adhesion layer satisfies the condition 2.
  • the following easy-adhesion layer E is laminated so that the dry thickness is 90 nm on one surface (low refractive index layer lamination surface) of a polyethylene terephthalate film (PET film) having a refractive index of 1.65 and a thickness of 100 ⁇ m.
  • PET film polyethylene terephthalate film
  • a PET film with an adhesive layer was obtained.
  • the thickness of the easy adhesion layer of the PET film with the easy adhesion layer obtained above was 90 nm, and the refractive index of the easy adhesion layer was 1.52. This easy-adhesion layer does not satisfy both conditions 1 and 2.
  • the easy-adhesion layer Z was laminated
  • a PET film with an easy adhesion layer was obtained in the same manner as in Production Example 11 except that the thickness of the easy adhesion layer H in Production Example 11 was changed to 60 nm.
  • the thickness of the easy adhesion layer of the PET film with the easy adhesion layer obtained above was 60 nm, and the refractive index of the easy adhesion layer was 1.52. This easy-adhesion layer does not satisfy both conditions 1 and 2.
  • the following easy-adhesion layer I is laminated to a dry thickness of 20 nm on one surface (low refractive index layer lamination surface) of a polyethylene terephthalate film (PET film) having a refractive index of 1.65 and a thickness of 100 ⁇ m.
  • PET film polyethylene terephthalate film
  • a PET film with an adhesive layer was obtained.
  • the thickness of the easy adhesion layer of the PET film with the easy adhesion layer obtained above was 20 nm, and the refractive index of the easy adhesion layer was 1.52. This easy adhesion layer satisfies the condition 2.
  • the easy-adhesion layer Z was laminated
  • the following easy-adhesion layer J is laminated to a dry thickness of 90 nm on one surface (low refractive index layer lamination surface) of a polyethylene terephthalate film (PET film) having a refractive index of 1.65 and a thickness of 100 ⁇ m.
  • PET film polyethylene terephthalate film
  • a PET film with an adhesive layer was obtained.
  • the thickness of the easy adhesion layer of the PET film with the easy adhesion layer obtained above was 90 nm, and the refractive index of the easy adhesion layer was 1.52. This easy-adhesion layer does not satisfy both conditions 1 and 2.
  • the easy-adhesion layer Z was laminated
  • the following easy adhesion layer K is laminated on one surface (low refractive index layer lamination surface) of a polyethylene terephthalate film (PET film) having a refractive index of 1.65 and a thickness of 100 ⁇ m so that the dry thickness is 90 nm.
  • PET film polyethylene terephthalate film
  • a PET film with an adhesive layer was obtained.
  • the thickness of the easy adhesion layer of the PET film with the easy adhesion layer obtained above was 90 nm, and the refractive index of the easy adhesion layer was 1.52. This easy-adhesion layer does not satisfy both conditions 1 and 2.
  • the easy-adhesion layer Z was laminated
  • This easy-adhesion layer F is an easy-adhesion layer that does not contain particles.
  • the following easy-adhesion layer L is laminated on one surface (low refractive index layer lamination surface) of a polyethylene terephthalate film (PET film) having a refractive index of 1.65 and a thickness of 100 ⁇ m so that the dry thickness is 90 nm.
  • PET film polyethylene terephthalate film
  • a PET film with an adhesive layer was obtained.
  • the thickness of the easy adhesion layer of the PET film with the easy adhesion layer obtained above was 90 nm, and the refractive index of the easy adhesion layer was 1.60. This easy-adhesion layer satisfies the condition 1.
  • the easy-adhesion layer Z was laminated
  • a PET film with an easy adhesion layer was obtained in the same manner as in Production Example 17-1, except that the dry thickness of the easy adhesion layer L was changed to 120 nm in Production Example 17-1.
  • the thickness of the easy adhesion layer of the PET film with the easy adhesion layer obtained above was 120 nm, and the refractive index of the easy adhesion layer was 1.60. This easy-adhesion layer satisfies the condition 1.
  • a PET film with an easy adhesion layer was obtained in the same manner as in Production Example 17-1, except that the dry thickness of the easy adhesion layer L was changed to 120 nm in Production Example 17-1.
  • the thickness of the easy adhesion layer of the PET film with the easy adhesion layer obtained above was 150 nm, and the refractive index of the easy adhesion layer was 1.60. This easy-adhesion layer satisfies the condition 1.
  • the following easy-adhesion layer L is laminated on one surface (low refractive index layer lamination surface) of a polyethylene terephthalate film (PET film) having a refractive index of 1.65 and a thickness of 100 ⁇ m so that the dry thickness is 90 nm.
  • PET film polyethylene terephthalate film
  • a PET film with an adhesive layer was obtained.
  • the thickness of the easy adhesion layer of the PET film with the easy adhesion layer obtained above was 90 nm, and the refractive index of the easy adhesion layer was 1.65. This easy-adhesion layer satisfies the condition 1.
  • the easy-adhesion layer Z was laminated
  • the following easy-adhesion layer L is laminated on one surface (low refractive index layer lamination surface) of a polyethylene terephthalate film (PET film) having a refractive index of 1.65 and a thickness of 100 ⁇ m so that the dry thickness is 90 nm.
  • PET film polyethylene terephthalate film
  • a PET film with an adhesive layer was obtained.
  • the thickness of the easy adhesion layer of the PET film with the easy adhesion layer obtained above was 90 nm, and the refractive index of the easy adhesion layer was 1.66. This easy-adhesion layer satisfies the condition 1.
  • the easy-adhesion layer Z was laminated
  • One surface (low refractive index layer lamination surface) of a polyethylene terephthalate film (PET film) having a refractive index of 1.65 and a thickness of 100 ⁇ m has a high active energy ray curability (ultraviolet ray curability) described below instead of an easy adhesion layer.
  • the refractive index layer was laminated to a dry thickness of 90 nm and irradiated with ultraviolet rays to obtain a high refractive index layer laminated PET film.
  • the thickness of the high refractive index layer of the high refractive index layer laminated PET film obtained above was 90 nm, and the refractive index of the high refractive index layer was 1.65.
  • the easy-adhesion layer Z was laminated
  • Example 1 to 33 and Comparative Examples 1 to 25 Transparent conductive films of Examples 1 to 33 and Comparative Examples 1 to 25 were prepared in the following manner.
  • low refractive index layer A and low refractive index are formed on the surface of one easy adhesive layer (the easy adhesive layer on the low refractive index layer lamination side) of the PET film with an easy adhesive layer obtained in Production Examples 1 to 19 above.
  • Layer B, low refractive index layer C or low refractive index layer D was formed.
  • the low refractive index layer C was formed on the high refractive index layer of the high refractive index layer laminated PET film obtained in Production Example 20.
  • Tables 1 to 3 show combinations of the PET film with an easy adhesion layer and the low refractive index layer.
  • the following hard coat layer, high refractive index layer, SiO2 film, and transparent conductive film are laminated in this order on the surface of the other easy adhesive layer (the easy adhesive layer on the transparent conductive layer side) of the PET film with an easy adhesive layer.
  • a transparent conductive film was produced.
  • Active energy ray-curable resin containing dipentaerythritol hexaacrylate and urethane acrylate in a mass ratio of 1: 3
  • Active energy ray-curable resin 47 parts by mass, hollow silica (ELECOM-P5024 manufactured by JGC Catalysts & Chemicals Co., Ltd.) in a solid content of 50 parts by mass 3 parts by mass of a polysiloxane compound having an ethylenically unsaturated group (“X-22-164C” manufactured by Shin-Etsu Chemical Co., Ltd.) and a photopolymerization initiator (“Irgacure” manufactured by Ciba Specialty Chemicals Co., Ltd.) (Registered trademark) 184 ”) 3 parts by mass was dispersed or dissolved in an organic solvent to prepare an active energy ray-curable composition cloth composition.
  • the refractive index of this composition was 1.35.
  • This composition was applied by a wet coating method (gravure coating method), dried at 90 ° C., and then cured by irradiation with ultraviolet rays of 400 mJ / cm 2 to form a low refractive index layer.
  • the thickness of the low refractive index layer was changed among 70 nm, 90 nm, 100 nm, 110 nm, and 130 nm.
  • a polysiloxane compound having an ethylenically unsaturated group (“X-22-164C” manufactured
  • the refractive index of this composition was 1.38.
  • This composition was applied by a wet coating method (gravure coating method), dried at 90 ° C., and then cured by irradiation with ultraviolet rays of 400 mJ / cm 2 to form a low refractive index layer. As shown in Tables 1 to 3, the thickness of the low refractive index layer (thickness after curing) was changed between 90 nm, 100 nm, and 110 nm.
  • active energy ray-curable resin containing dipentaerythritol hexaacrylate and urethane acrylate in
  • the refractive index of this composition was 1.40.
  • This composition was applied by a wet coating method (gravure coating method), dried at 90 ° C., and then cured by irradiation with ultraviolet rays of 400 mJ / cm 2 to form a low refractive index layer having a thickness of 100 nm.
  • This composition was applied by a wet coating method (gravure coating method), dried at 90 ° C., and then cured by irradiation with ultraviolet rays of 400 mJ / cm 2 to form a low refractive index layer having a thickness of 100 nm.
  • the refractive index of this composition was 1.50.
  • Active energy ray-curable resin dipentaerythritol hexaacrylate 10 parts by mass and urethane acrylate 27 parts by mass) 37 parts by mass, zirconium oxide (average particle size 20 nm), and photopolymerization initiator (Ciba Specialty Chemicals)
  • a composition was prepared by dispersing or dissolving 3 parts by mass of “Irgacure (registered trademark) 184” manufactured by Co., Ltd. in an organic solvent.
  • the refractive index of this composition was 1.70.
  • This composition was applied by a wet coating method (gravure coating method), dried at 90 ° C., and then cured by irradiation with ultraviolet rays of 400 mJ / cm 2 to form a high refractive index layer having a thickness of 80 nm.
  • SiO 2 film> A SiO 2 film (refractive index of 1.46) was laminated by sputtering so that the thickness was 10 nm.
  • Transparent conductive film An ITO film was laminated by a sputtering method so as to have a thickness of 30 nm and patterned (etching process) to form a transparent conductive film.
  • the easy-adhesion layer of the easy-adhesion layer PET film used in Comparative Examples 1 to 6, 8, and 9 does not satisfy both condition 1 and condition 2, and therefore has a high luminous reflectance.
  • the easy adhesion layer of the easy adhesion layer PET film of Comparative Example 5 contains particles, but the ratio (r / d) of the average particle diameter (r) of the particles to the thickness (d) of the easy adhesion layer is 0. Since it is less than .5, the slipperiness is inferior.
  • Easy-Adhesion Layer of Comparative Example 6 The easy-adhesion layer of the PET film is inferior in slipperiness because it does not contain particles.
  • the comparative example 7 using the PET film which does not have an easily bonding layer is inferior in adhesiveness and slipperiness.
  • Comparative Examples 10 to 14, 15, and 16 the refractive index of the low refractive index layer exceeds 1.42, and the luminous reflectance is large. Further, since the low refractive index layer D of Comparative Examples 10 to 14, 15 and 16 does not contain a polysiloxane compound having an ethylenically unsaturated group, it slips compared to the low refractive index layers A, B and C containing the same compound. The sex is inferior.
  • the easy-adhesion layer of the PET film of Comparative Example 14 does not contain particles and uses a low refractive index layer D that does not contain a polysiloxane compound having an ethylenically unsaturated group, slipperiness is achieved. Inferior. From these results, it can be seen that good slipperiness can be obtained when the easy-adhesion layer contains particles of an appropriate size and the low refractive index layer contains a polysiloxane compound having an ethylenically unsaturated group.
  • Comparative Examples 21 to 24 have a high luminous reflectance because the thickness of the low refractive index layer exceeds 120 nm.
  • Comparative Example 25 is provided with an active energy ray-curable high refractive index layer in place of the easy-adhesion layer, but has poor adhesion to the substrate film.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Optics & Photonics (AREA)
  • Human Computer Interaction (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Laminated Bodies (AREA)
  • Position Input By Displaying (AREA)
  • Non-Insulated Conductors (AREA)

Abstract

 低コストで反射防止性が良好な透明導電性フィルムを提供する。屈折率が1.6~1.7の基材フィルムの一方の面に透明導電膜を有し、前記基材フィルムの他方の面に易接着層を介して、屈折率が1.42以下でかつ厚みが80~120nmの低屈折率層を一層のみ有し、前記易接着層が下記の条件1、条件2、または(条件1および条件2)を満足する、透明導電性フィルムである。 条件1;基材フィルムの屈折率と易接着層の屈折率との差の絶対値が0.08以下である。 条件2;易接着層の厚みが5nm以上50nm未満である。

Description

透明導電性フィルム、タッチパネルおよび表示装置
 本発明は、光の透過性が良好な透明導電性フィルムに関し、詳細には透明導電性フィルムを用いたタッチパネルおよび表示装置において表示パネルからの発光の透過性低下を抑制することができる透明導電性フィルムに関する。
 タッチパネル等に使用される透明導電性フィルムは、タッチ入力面の耐擦傷性や外光の反射防止性を付与するために透明導電性フィルムの反対面(基材フィルムに対して透明導電膜が設けられている面とは反対面)にハードコート層、反射防止層、防眩層等の機能層を積層することが知られている(特許文献1、2)。
 また、タッチパネルを備えた表示装置の内部空隙層(空気層)の存在は、透明導電性フィルムと空気層との界面反射を大きくし、それによって表示パネルからの発光の透過性が低下するという不都合が生じる。この課題を解決するために、透明導電膜とは反対面に反射防止層を有する透明導電性フィルムをタッチパネルや表示装置の内部に使用することが知られている(特許文献3、4)。
特開平11-34206号公報 特開2001-15941号公報 特開2000-321558号公報 特開2011-90458号公報
 上記特許文献には反射防止層として多層構成あるいは単一構成を採り得ることが記載されている。しかしながら、多層構成の場合は高い反射防止性が得られやすいが、生産コスト(生産性が低い)の問題や干渉縞が発生しやすくなると言う問題がある。反射防止層が単一構成の場合は低コストであるが、十分な反射防止性が得られないという問題、耐擦傷性の低下、滑り性や耐ブロッキング性が低下すると言う問題がある。また、上記特許文献には、単一の反射防止層については具体的な記載はされていない。
 従って、本発明の目的は、低コストで反射防止性が良好な透明導電性フィルムを提供することにある。本発明の他の目的は、本発明の透明導電性フィルムを用いたタッチパネル、更に前記タッチパネルを備えた表示装置を提供することにある。
 本発明の上記目的は、以下の発明によって達成された。
1)屈折率が1.6~1.7の基材フィルムの一方の面に透明導電膜を有し、前記基材フィルムの他方の面に易接着層を介して、屈折率が1.42以下でかつ厚みが80~120nmの低屈折率層を一層のみ有し、前記易接着層が下記の条件1を満足する透明導電性フィルム。
 条件1;基材フィルムの屈折率と易接着層の屈折率との差の絶対値が0.08以下である。
2)屈折率が1.6~1.7の基材フィルムの一方の面に透明導電膜を有し、前記基材フィルムの他方の面に易接着層を介して、屈折率が1.42以下でかつ厚みが80~120nmの低屈折率層を一層のみ有し、前記易接着層が下記の条件2を満足する透明導電性フィルム。
 条件2;易接着層の厚みが5nm以上50nm未満である。
3)屈折率が1.6~1.7の基材フィルムの一方の面に透明導電膜を有し、前記基材フィルムの他方の面に易接着層を介して、屈折率が1.42以下でかつ厚みが80~120nmの低屈折率層を一層のみ有し、前記易接着層が下記の条件1および条件2を満足する透明導電性フィルム。
 条件1;基材フィルムの屈折率と易接着層の屈折率との差の絶対値が0.08以下である。
 条件2;易接着層の厚みが5nm以上50nm未満である。
4)前記基材フィルムの屈折率と易接着層の屈折率との差の絶対値が0.05以下である、前記1)または3)の透明導電性フィルム。
5)前記易接着層の厚みが5nm以上200nm未満である、前記1)または4)に記載の透明導電性フィルム。
6)前記基材フィルムがポリエステルフィルムである、前記1)~5)のいずれかの透明導電性フィルム。
7)前記ポリエステルフィルムがポリエチレンテレフタレートフィルムである、前記6)の透明導電性フィルム。
8)前記易接着層が少なくとも樹脂と架橋剤を含有する、前記1)~7)のいずれかの透明導電性フィルム。
9)前記樹脂がポリエステル樹脂である、前記8)の透明導電性フィルム。
10)前記低屈折率層が活性エネルギー線硬化性樹脂組成物をウェットコーティング法により塗布し硬化させた層である、前記1)~9)のいずれかの透明導電性フィルム。
11)前記易接着層が粒子を含み、前記粒子の平均粒子径(r)と易接着層の厚み(d)の関係が下記式1を満足する、前記1)~10)のいずれかの透明導電性フィルム。
0.5≦(r/d)≦20 ・・・ 式1
12)前記粒子を前記易接着層の固形分総量100質量%に対して0.05~20質量%含有する、前記11)の透明導電性フィルム
13)前記低屈折率層がエチレン性不飽和基を有するポリシロキサン化合物を含有する、前記1)~12)のいずれかの透明導電性フィルム。
14)前記1)~13)のいずれかの透明導電性フィルムを備えたタッチパネル。
15)表示パネル上に、前記1)~13)のいずれかの透明導電性フィルムを用いたタッチパネルが配置された表示装置であって、前記透明導電性フィルムの前記低屈折率層側が表示パネルと空気層を介して向き合うように配置されている、表示装置。
16)表示パネル上に、前記1)~13)のいずれかの透明導電性フィルムを用いた電磁波シールド部材が配置された表示装置であって、前記透明導電性フィルムの前記低屈折率層側が表示パネルと空気層を介して向き合うように配置されている、表示装置。
 本発明によれば、低コストで反射防止性が良好な透明導電性フィルムを提供することができる。また、本発明の透明導電性フィルムを用いたタッチパネルおよび/または電磁波シールド部材を表示装置に配置することによって、表示パネルからの発光の透過性が良好な表示装置を提供することができる。
 また、本発明の好ましい態様によれば、滑り性が改良された透明導電性フィルムを提供することができる。
また、本発明の好ましい態様によれば、基材フィルムからのオリゴマー析出が抑制された透明導電性フィルムを提供することができる。
図1は本発明の透明導電性フィルムを用いた抵抗膜式タッチパネルを備えた表示装置の一例の模式断面図である。 図2は本発明の透明導電性フィルムを用いた静電容量式タッチパネルを備えた表示装置の一例の模式断面図である。 図3は本発明の透明導電性フィルムを用いた静電容量式タッチパネルを備えた表示装置の一例の模式断面図である。 図4は本発明の透明導電性フィルムを用いた電磁波シールド部材を備えた表示装置の一例の模式断面図である。
 本発明の透明導電性フィルムは、基材フィルムの一方の面に透明導電膜を有し、前記基材フィルムの他方の面に易接着層を介して低屈折率層を一層のみ有する。以下、本発明の透明導電性フィルムの各構成要素について詳細に説明する。
 [基材フィルム]
 本発明の基材フィルムは、屈折率が1.6~1.7の範囲にあるフィルムである。基材フィルムの屈折率は、低屈折率層と空気層との界面での反射率を小さくするという観点から、大きい方が好ましい。基材フィルムの屈折率は、具体的には1.61以上が好ましく、1.62以上がより好ましく、更に1.63以上が好ましく、特に1.64以上が好ましい。
 本発明の基材フィルムはプラスチックフィルムの中から選択することができる。プラスチックフィルムの中でも、引っ張り強度、耐熱性、耐溶剤性の観点からポリエステルフィルムが好ましく、特にポリエチレンテレフタレートフィルム(PETフィルム)が好ましく用いられる。
 基材フィルムの厚みは、20~300μmの範囲が適当であり、30~200μmの範囲が好ましく、50~150μmの範囲がより好ましい。
 [易接着層]
 本発明の易接着層は、基材フィルムと低屈折率層との密着性を強化するとともに、基材フィルムおよび後述の低屈折率層との組み合わせによって優れた反射防止性(低い反射率)を維持するためのものである。優れた反射防止性を維持するには、易接着層は下記の条件1、条件2、または(条件1および条件2)を満足する必要がある。特に、易接着層は条件1を満足することが好ましい。
条件1;基材フィルムの屈折率と易接着層の屈折率との差の絶対値が0.08以下である。
条件2;易接着層の厚みが5nm以上50nm未満である。
 [条件1を満足する易接着層]
 条件1の易接着層は、基材フィルムの屈折率と易接着層の屈折率との差の絶対値が0.08以下を満足する易接着層である。上記屈折率差の絶対値は、0.06以下が好ましく、0.05以下がより好ましく、特に0.03以下が好ましく、0.01以下が最も好ましい。基材フィルムの屈折率と易接着層の屈折率との差の絶対値が0.08より大きくなると、良好な反射防止性が得られない。
 易接着層は、基材フィルムと低屈折率層との密着性を強化するという意味から、易接着層自身の硬度はあまり高くないことが好ましい。本発明の透明導電性フィルムは、易接着層上には極薄膜の低屈折率層のみしか有しないので、硬度があまり高くない易接着層の厚みを大きくすると低屈折率層の硬度が低下するという不都合が生じる場合がある。従って、易接着層の厚みは比較的小さい方が好ましい。
 易接着層の厚みは、上記の観点から、具体的には200nm未満が好ましく、150nm未満がより好ましく、更に130nm未満が好ましく、特に100nm未満が好ましい。下限の厚みは、基材フィルムと低屈折率層との密着性を確保するという観点から、5nm以上が好ましく、10nm以上がより好ましく、更に20nm以上が好ましい。
 条件1の易接着層は屈折率が比較的大きい易接着層であり、かかる易接着層は比較的屈折率の大きい樹脂や金属酸化物微粒子等の高屈折率材料を含有させることによって得ることができる。
 ポリエチレンテレフタレートフィルムに易接着層を設けることは知られている。ポリエチレンテレフタレートフィルムの屈折率は通常1.63~1.67程度で、従来から一般的に積層されている易接着層は、ポリエステル樹脂、アクリル樹脂、ウレタン樹脂等の樹脂を主成分とするもので、屈折率は通常1.50~1.54程度と比較的小さいものであり、条件1を満足しない。
 条件1の易接着層の1つの態様は、ポリエステル樹脂、アクリル樹脂、ウレタン樹脂等の樹脂に、芳香族環、硫黄原子、臭素原子等を導入することにより高屈折率化した樹脂を用いる態様である。上記の高屈折率化した樹脂の含有量は、易接着層の固形分総量100質量%に対して50質量%以上であることが好ましく、60質量%以上であることがより好ましく、特に70質量%以上であることが好ましい。上限の含有量は98質量%程度である。
 上記の高屈折率化した樹脂としては、分子中に芳香族環を有するポリエステル樹脂が好ましく、更に分子中に縮合芳香族環を有するポリエステル樹脂が好ましい。上記縮合芳香族環としては、例えば、ナフタレン環、フルオレン環等が挙げられる。
 ポリエステル樹脂は、一般的にカルボン酸成分とグリコール成分から重縮合して得られる。上記の分子中にナフタレン環を有するポリエステル樹脂は、カルボン酸成分として、1,4-ナフタレンジカルボン酸、2,6-ナフタレンジカルボン酸等のナフタレン環を有するジカルボン酸を用いることによって合成することができる。分子中にナフタレン環を有するポリエステル樹脂の屈折率は、全カルボン酸成分中のナフタレン環を有するジカルボン酸の比率を調整することによって制御することができる。
 上記の分子中にフルオレン環を有するポリエステル樹脂は、カルボン酸成分および/またはグリコール成分として、フルオレン環を有する化合物を用いることによって合成することができる。上記フルオレン環を有する化合物の含有量を調整することによって該ポリエステル樹脂の屈折率を制御することができる。分子中にフルオレン環を有するポリエステル樹脂は、例えば、国際公開番号WO2009/145075号に詳しく記載されており、それを参照して合成することができる。
 上記ポリエステル樹脂は水溶性あるいは水分散性であることが好ましい。水溶性あるいは水分散性のポリエステル樹脂は、ポリエステル樹脂の合成に用いられるカルボン酸成分の中に、3価以上の多価カルボン酸あるいはスルホ基を有するジカルボン酸を含ませることによって合成することができる。
 条件1の易接着層の他の態様は、金属酸化物微粒子を含有させる態様である。この態様の易接着層は、樹脂中に金属酸化物微粒子が分散した層である。樹脂としては、例えば、アクリル樹脂(好ましくはアクリル樹脂ポリオール等のOH基を有するアクリル樹脂)、ポリエステル樹脂(好ましくはポリエステル樹脂ポリオール等のOH基を有するポリエステル樹脂)、エポキシ樹脂、ウレタン樹脂、スチレン-マレイン酸グラフトポリエステル樹脂、アクリルグラフトポリエステル樹脂、シリコーン樹脂、あるいは前述の分子中に縮合芳香族環を有するポリエステル樹脂等を用いることができる。
 金属酸化物微粒子としては、酸化チタン、酸化ジルコニウム、酸化亜鉛、酸化錫、酸化アンチモン、酸化セリウム、酸化鉄、アンチモン酸亜鉛、酸化錫ドープ酸化インジウム(ITO)、アンチモンドープ酸化錫(ATO)、リンドープ酸化錫、アルミニウムドープ酸化亜鉛、ガリウムドープ酸化亜鉛等を用いることができる。これらの金属酸化物微粒子の中でも、透明性、耐光性、高屈折率化の観点から、酸化チタンおよび酸化ジルコニウムが好ましく、特に酸化ジルコニウムが好ましい。
 易接着層における樹脂と金属酸化物微粒子の含有比率は、質量比で100:10~100:400の範囲が適当であり、100:20~100:300の範囲が好ましく、特に100:30~100:200の範囲が好ましい。
 [条件2を満足する易接着層]
 条件2の易接着層は、その厚みが5nm以上50nm未満の範囲である。易接着層の厚みが50nm以上となると低い反射率が得られず、逆に易接着層の厚みが5nm未満となると低屈折率層の密着性が低下する。条件2の易接着層の厚みは、上記厚みの範囲内でも小さい方が好ましく、具体的には40nm未満が好ましく、30nm未満がより好ましい。易接着層の下限の厚みは10nm以上が好ましい。
 条件2の易接着層の屈折率は特に限定されないが、1.45以上1.60未満の範囲が好ましく、1.47~1.59の範囲がより好ましく、特に1.48~1.58の範囲が好ましい。
 条件2の易接着層は、ポリエステル樹脂、アクリル樹脂、ウレタン樹脂等の樹脂を含む層であることが好ましい。
 また、条件2の易接着層は、上記の条件1と同様の組成の易接着層を用いることができる。
 [条件1と条件2を満足する易接着層]
 本発明の易接着層として、条件1および条件2を同時に満足する易接着層を用いることができる。
 [条件1の易接着層と条件2の易接着層の共通する内容]
 次に、条件1および条件2の易接着層に共通する内容について説明する。
 本発明の易接着層は、上述したように少なくとも樹脂を含んでいることが好ましい。かかる樹脂としては、少なくともポリエステル樹脂を含むことが好ましい。樹脂を含む易接着層は、詳しくは後述するが、ポリエステルフィルムの製造工程内で、インラインで易接着層を積層することが可能であり、生産性の点で有益である。易接着層における樹脂の含有量は、易接着層の固形分総量100質量%に対して20質量%以上であることが好ましく、30質量%以上であることがより好ましく、特に50質量%以上であることが好ましい。上限は98質量%程度である。
 易接着層は、架橋剤を含有することが好ましい。かかる架橋剤としては、メラミン系架橋剤、オキサゾリン系架橋剤、カルボジイミド系架橋剤、イソシアネート系架橋剤、アジリジン系架橋剤、エポキシ系架橋剤、メチロール化あるいはアルキロール化した尿素系架橋剤、アクリルアミド系架橋剤、ポリアミド系樹脂、アミドエポキシ化合物、各種シランカップリング剤、各種チタネート系カップリング剤などを用いることができる。これらの架橋剤の中でも、メラミン系架橋剤、オキサゾリン系架橋剤、カルボジイミド系架橋剤、イソシアネート系架橋剤、およびアジリジン系架橋剤からなる群の中の少なくとも一種を用いることが好ましい。
 易接着層における架橋剤の含有量は、易接着層の固形分総量100質量%に対して、1~40質量%の範囲が好ましく、3~35質量%の範囲がより好ましく、5~30質量%の範囲が特に好ましい。
 易接着層は、少なくとも樹脂と架橋剤を含有することが好ましい。これによって、基材フィルムと低屈折率層との密着性が一段と向上する。
また、このような易接着層(少なくとも樹脂と架橋剤を含有する易接着層)を基材フィルムに積層し、この易接着層上に後述の低屈折率層(活性エネルギー線硬化性樹脂組成物をウェットコーティング法により塗布し硬化させた低屈折率層)を積層することにより、基材フィルムからのオリゴマー析出を抑制することができる。
 基材フィルムとしてポリエチレンテレフタレートフィルムを用いた場合、後述する透明導電膜の製膜工程などで加熱処理されると、ポリエチレンテレフタレートフィルムの表面に非架橋成分であるオリゴマー(環状三量体)が析出することがある。このオリゴマー析出は、易接着層(少なくとも樹脂と架橋剤を含有する易接着層)と低屈折率層(活性エネルギー線硬化性樹脂組成物をウェットコーティング法により塗布し硬化させた低屈折率層)を積層することにより抑制することができる。
 更に、オリゴマー析出を抑制するという観点から、易接着層の厚みは50nm以上が好ましく、60nm以上がより好ましく、特に70nm以上が好ましい。
 易接着層は、更に粒子を含有することが好ましい。粒子を含有する易接着層上に平滑で薄膜(80~120nm)の低屈折率層を一層のみ積層した場合、易接着層の粒子に由来する凸構造が低屈折率層にも反映され、その結果低屈折率層積層後であっても、低屈折率層表面の滑り性が向上し良好な耐ブロッキング性を維持することができる。
 上記観点から、易接着層に含有させる粒子の平均粒子径(r)は、易接着層の厚み(d)に対して比較的大きな比率であることが好ましい。具体的には、下記式1を満足することが好ましく、更に下記式2を満足することが好ましく、特に下記式3を満足することが好ましい。
0.5≦(r/d)≦20 ・・・ 式1
1.0≦(r/d)≦10 ・・・ 式2
1.3≦(r/d)≦6  ・・・ 式3。
 易接着層に含有させる粒子の平均粒子径は、上記式1~3の範囲で選択することが好ましいが、粒子の平均粒子径は、具体的には10~600nmの範囲が好ましく、20~500nmの範囲がより好ましく、特に30~300nmの範囲が好ましい。なお、易接着層に含有させる粒子の平均粒子径は、数平均で求めた粒子径である。
 易接着層における粒子の含有量は、易接着層の固形分総量100質量%に対して0.05~20質量%の範囲が好ましく、0.1~15質量%の範囲がより好ましく、特に0.2~10質量%の範囲が好ましい。
 易接着層に含有する粒子としては特に限定されないが、シリカ粒子、酸化チタン、酸化アルミニウム、酸化ジルコニウム、炭酸カルシウム、カーボンブラック、ゼオライト粒子などの無機粒子や、アクリル粒子、シリコーン粒子、ポリイミド粒子、テフロン(登録商標)粒子、架橋ポリエステル粒子、架橋ポリスチレン粒子、架橋重合体粒子、コアシェル粒子などの有機粒子が挙げられる。これらの中でもシリカ粒子が好ましく、特にコロイダルシリカが好ましい。
 本発明の易接着層は、基材フィルム上にウェットコーティング法で積層されることが好ましく、更に基材フィルムの製造工程内で易接着層を積層する、いわゆる、インラインコーティング法が好ましい。ウェットコーティング法としては、例えばリバースコート法、スプレーコート法、バーコート法、グラビアコート法、ロッドコート法、ダイコート法等が挙げられる。
 基材フィルム上に本発明の易接着層を塗布する際には、塗布性や密着性を向上させるための予備処理として、基材フィルム表面にコロナ放電処理、火炎処理、プラズマ処理等を施しておくことが好ましい。
 上述のインラインコーティング法について、基材フィルムとしてポリエチレンテレフタレート(以下、PETと略す)フィルムを用いた態様について以下に説明するが、本発明はこれに限定されるものではない。
 PETフィルムの原料である極限粘度0.5~0.8dl/gのPETペレットを真空乾燥した後、押し出し機に供給し260~300℃で溶融し、T字型口金よりシート状に押し出し、静電印加キャスト法を用いて表面温度10~60℃の鏡面キャスティングドラムに巻き付けて、冷却固化せしめて未延伸PETフィルムを作製する。この未延伸PETフィルムを70~100℃に加熱されたロール間で縦方向(フィルムの進行方向を指し「長手方向」ともいう)に2.5~5倍延伸する。この延伸で得られた一軸延伸PETフィルムの少なくとも片面に空気中でコロナ放電処理を施し、該表面の濡れ張力を47mN/m以上とし、その処理面に本発明の易接着層の塗布液を塗布する。
 次に、塗布液が塗布された一軸延伸PETフィルムをクリップで把持して乾燥ゾーンに導き、一軸延伸PETフィルムのTg未満の温度で乾燥した後、Tg以上の温度に上げ、再度Tg近傍の温度で乾燥、引き続き連続的に70~150℃の加熱ゾーンで横方向(フィルムの進行方向とは直交する方向を指し「幅方向」ともいう)に2.5~5倍延伸し、続いて180~240℃の加熱ゾーンで5~40秒間熱処理を施し、結晶配向の完了したPETフィルムに易接着層が積層されたポリエステルフィルムが得られる。尚、上記熱処理中に必要に応じて3~12%の弛緩処理を施してもよい。二軸延伸は縦、横逐次延伸あるいは同時二軸延伸のいずれでもよく、また縦、横延伸後、縦、横いずれかの方向に再延伸してもよい。
 本発明の易接着層は、基材フィルムと低屈折率層との密着性を強化するという観点から、紫外線や電子線等の活性エネルギー線で硬化する樹脂層ではないことが好ましい。例えば、易接着層に代えて活性エネルギー線硬化性の高屈折率層を基材フィルムに直接積層した場合は、基材フィルムと高屈折率層との密着性が十分に得られない。
 (低屈折率層)
 本発明の低屈折率層は、屈折率が1.42以下でかつ厚みが80~120nmの層である。低屈折率層の屈折率は、1.41以下が好ましく、1.40以下がより好ましく、特に1.39以下が好ましい。下限の屈折率は特に限定されないが、1.30程度である。
 低屈折率層の屈折率が1.42より大きくなると良好な反射防止性が得られない。また、低屈折率層の厚みが80~120nmの範囲を外れる場合も良好な反射防止性が得られない。
 低屈折率層の厚みは、85~115nmの範囲が好ましく、特に90~110nmの範囲が好ましい。
 低屈折率層の1つの態様として、金属フッ化物膜が挙げられる。この金属フッ化物膜は、真空蒸着法、反応性蒸着法、イオンビームアシスト蒸着法、スパッタリング法、イオンプレーティング法、プラズマCVD法等の気相製膜法で積層された膜である。
 上記金属フッ化物としては、例えばフッ化マグネシウム(MgF2)、フッ化アルミニウム(AlF3)、フッ化カルシウム(CaF2)、フッ化バリウム(BaF2)、フッ化ストロンチウム(SrF2)、クリオライト(NaAlF)、チオライト(NaAlF1)、フッ化ナトリウム(NaF)等が挙げられる。これらの中でもフッ化マグネシウムが好ましく用いられる。
 低屈折率層の好ましい態様は、活性エネルギー線硬化性組成物をウェットコーティング法により塗布し硬化せしめた層である。
 ウェットコーティング法としては、例えばリバースコート法、スプレーコート法、バーコート法、グラビアコート法、ロッドコート法、ダイコート法、スピンコート法、エクストルージョンコート法等の塗布方法を用いることができる。
 活性エネルギー線硬化性組成物としては、例えば、紫外線や電子線等の活性エネルギー線によって硬化する活性エネルギー線硬化性樹脂と、低屈折率材料として低屈折率無機粒子および/または含フッ素化合物とを含む組成物が挙げられる。
活性エネルギー線硬化性樹脂は、紫外線や電子線等の活性エネルギー線で硬化する樹脂であり、分子中に少なくとも1個のエチレン性不飽和基を有するモノマーやオリゴマーが好ましく用いられる。ここで、エチレン性不飽和基としては、アクリロイル基、メタクリロイル基、アクリロイルオキシ基、メタクリロイルオキシ基、ビニル基、アリル基等が挙げられる。尚、以下の説明において、「・・・(メタ)アクリレート」なる表現は、「・・・アクリレート」と「・・・メタクリレート」との2つの化合物を含む。
 上記モノマーの例としては、メチル(メタ)アクリレート、ラウリル(メタ)アクリレート、エトキシジエチレングリコール(メタ)アクリレート、メトキシトリエチレングリコール(メタ)アクリレート、フェノキシエチル(メタ)アクリレート、テトラヒドロフルフリル(メタ)アクリレート、イソボルニル(メタ)アクリレート、2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、2-ヒドロキシ-3-フェノキシ(メタ)アクリレート等の単官能アクリレート、ネオペンチルグリコールジ(メタ)アクリレート、1,6-ヘキサンジオールジ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールトリ(メタ)アクリレート、ジペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、トリペンタエリスリトールトリ(メタ)アクリレート、トリペンタエリスリトールヘキサ(メタ)トリアクリレート、トリメチロールプロパン(メタ)アクリル酸安息香酸エステル、トリメチロールプロパン安息香酸エステル等の多官能アクリレート、グリセリンジ(メタ)アクリレートヘキサメチレンジイソシアネート、ペンタエリスリトールトリ(メタ)アクリレートヘキサメチレンジイソシアネート等のウレタンアクリレート等を挙げることができる。
 上記オリゴマーの例としては、ポリエステル(メタ)アクリレート、ポリウレタン(メタ)アクリレート、エポキシ(メタ)アクリレート、ポリエーテル(メタ)アクリレート、アルキット(メタ)アクリレート、メラミン(メタ)アクリレート、シリコーン(メタ)アクリレート等を挙げることができる。
 上記した、モノマーやオリゴマーは、単独もしくは複数混合して使用してもよいが、3官能以上の多官能モノマーや多官能オリゴマーを用いることが好ましい。
 活性エネルギー線硬化性組成物において、活性エネルギー線硬化性樹脂の含有量は組成物の固形分総量100質量%に対して5~90質量%の範囲が適用であり、5~80質量%の範囲が好ましく、10~70質量%の範囲がより好ましい。
 低屈折率無機粒子としては、シリカやフッ化マグネシウム等の無機粒子が好ましい。更にこれらの無機粒子は中空状や多孔質のものが好ましい。上記無機粒子の屈折率は1.2~1.35の範囲がより好ましい。
 活性エネルギー線硬化性組成物において、低屈折率無機粒子の含有量は組成物の固形分総量100質量%に対して20~70質量%の範囲が好ましく、25~70質量%の範囲がより好ましく、特に30~60質量%の範囲が好ましい。
 含フッ素化合物としては、含フッ素モノマー、含フッ素オリゴマー、含フッ素高分子化合物が挙げられる。ここで、含フッ素モノマー、含フッ素オリゴマーは、分子中にエチレン性不飽和基とフッ素原子とを有するモノマーやオリゴマーである。
 含フッ素モノマー、含フッ素オリゴマーとしては、例えば、2,2,2-トリフルオロエチル(メタ)アクリレート、2,2,3,3,3-ペンタフルオロプロピル(メタ)アクリレート、2-(パーフルオロブチル)エチル(メタ)アクリレート、2-(パーフルオロヘキシル)エチル(メタ)アクリレート、2-(パーフルオロオクチル)エチル(メタ)アクリレート、2-(パーフルオロデシル)エチル(メタ)アクリレート、βー(パーフロロオクチル)エチル(メタ)アクリレートなどのフッ素含有(メタ)アクリル酸エステル類、ジ-(α-フルオロアクリル酸)-2,2,2-トリフルオロエチルエチレングリコール、ジ-(α-フルオロアクリル酸)-2,2,3,3,3-ペンタフルオロプロピルエチレングリコール、ジ-(α-フルオロアクリル酸)-2,2,3,3,4,4,4-ヘプタフルオロブチルエチレングリコール、ジ-(α-フルオロアクリル酸)-2,2,3,3,4,4,5,5,5-ノナフルオロペンチルエチレングリコール、ジ-(α-フルオロアクリル酸)-2,2,3,3,4,4,5,5,6,6,6-ウンデカフルオロヘキシルエチレングリコール、ジ-(α-フルオロアクリル酸)-2,2,3,3,4,4,5,5,6,6,7,7,7-トリデカフルオロヘプチルエチレングリコール、ジ-(α-フルオロアクリル酸)-2,2,3,3,4,4,5,5,6,6,7,7,8,8,8-ペンタデカフルオロオクチルエチレングリコール、ジ-(α-フルオロアクリル酸)-3,3,4,4,5,5,6,6,7,7,8,8,8-トリデカフルオロオクチルエチレングリコール、ジ-(α-フルオロアクリル酸)-2,2,3,3,4,4,5,5,6,6,7,7,8,8,9,9,9-ヘプタデカフルオロノニルエチレングリコールなどのジ-(α-フルオロアクリル酸)フルオロアルキルエステル類が挙げられる。
 含フッ素高分子化合物としては、例えば、含フッ素モノマーと架橋性基付与のためのモノマーを構成単位とする含フッ素共重合体が挙げられる。含フッ素モノマー単位の具体例としては、例えばフルオロオレフィン類(例えばフルオロエチレン、ビニリデンフルオライド、テトラフルオロエチレン、ヘキサフルオロエチレン、ヘキサフルオロプロピレン、パーフルオロ-2,2-ジメチル-1,3-ジオキソール等)、(メタ)アクリル酸の部分または完全フッ素化アルキルエステル誘導体類(例えばビスコート6FM(大阪有機化学製)やM-2020(ダイキン製)等)、完全または部分フッ素化ビニルエーテル類等である。架橋性基付与のためのモノマーとしてはグリシジルメタクリレートのように分子内にあらかじめ架橋性官能基を有する(メタ)アクリレートモノマーの他、カルボキシル基やヒドロキシル基、アミノ基、スルホン酸基等を有する(メタ)アクリレートモノマー(例えば(メタ)アクリル酸、メチロール(メタ)アクリレート、ヒドロキシアルキル(メタ)アクリレート、アリルアクリレート等)が挙げられる。
 活性エネルギー線硬化性組成物において、含フッ素化合物の含有量は組成物の固形分総量100質量%に対して、30質量%以上が好ましく、50質量%以上がより好ましく、特に60質量%以上が好ましい。上限は100質量%以下が好ましく、99質量%以下がより好ましく、特に98質量%以下が好ましい。
 活性エネルギー線硬化性組成物は、活性エネルギー線硬化性樹脂の全部もしくは一部として、前述の含フッ素モノマーおよび/または含フッ素オリゴマーを用いることができる。
 活性エネルギー線硬化性組成物は、光重合開始剤を含むことが好ましい。かかる光重合開始剤の具体例としては、例えばアセトフェノン、2,2-ジエトキシアセトフェノン、p-ジメチルアセトフェノン、p-ジメチルアミノプロピオフェノン、ベンゾフェノン、2-クロロベンゾフェノン、4,4’-ジクロロベンゾフェノン、4,4’-ビスジエチルアミノベンゾフェノン、ミヒラーケトン、ベンジル、ベンゾイン、ベンゾインメチルエーテル、ベンゾインエチルエーテル、ベンゾインイソプロピルエーテル、メチルベンゾイルフォルメート、p-イソプロピル-α-ヒドロキシイソブチルフェノン、α-ヒドロキシイソブチルフェノン、2,2-ジメトキシ-2-フェニルアセトフェノン、1-ヒドロキシシクロヘキシルフェニルケトンなどのカルボニル化合物、テトラメチルチウラムモノスルフィド、テトラメチルチウラムジスルフィド、チオキサントン、2-クロロチオキサントン、2-メチルチオキサントンなどの硫黄化合物などを用いることができる。これらの光重合開始剤は単独で使用してもよいし、2種以上組み合せて用いてもよい。
 上記光重合開始剤の含有量は、組成物の固形分総量100質量%に対して0.1~10質量%の範囲が適当であり、0.5~8質量%の範囲が好ましい。
 活性エネルギー線硬化性組成物は、低屈折率層表面の滑り性や耐擦傷性を向上させるために、エチレン性不飽和基を有するポリシロキサン化合物を含有することが好ましい。
 エチレン性不飽和基を有するポリシロキサン化合物は、分子中のポリシロキサン主鎖の末端あるいは側鎖のいずれかに1個以上のエチレン性不飽和基を有する化合物である。エチレン性不飽和基としては、ビニル基、アリル基、アクリロイル基、メタクリロイル基、アクリロイルオキシ基、メタクリロイルオキシ基等が挙げられる。エチレン性不飽和基を有するポリシロキサン化合物におけるエチレン性不飽和基の数は、1~6個の範囲が好ましい。また、エチレン性不飽和基を有するポリシロキサン化合物としては、エチレン性不飽和基を有するポリジメチルシロキサン化合物が好ましい。
 エチレン性不飽和基を有するポリシロキサン化合物としては、特開2009-84327号公報の製造例1-1~1-3の化合物、あるいはチッソ(株)製のサイラプレーンFM-0711、同FM-0721、同FM-0725、信越化学工業(株)製のX-24-8201、X-22-174DX、X-22-2426、X-22-2404、X-22-164A、X-22-164C、東レ・ダウコーニング(株)製のBY16-152D、BY16-152、BY16-152C等の市販品を用いることができる。
 エチレン性不飽和基を有するポリシロキサン化合物の含有量は、活性エネルギー線硬化性組成物の固形分総量100質量%に対して0.5質量%以上10質量%未満の範囲が好まく、1質量%以上8質量%未満の範囲がより好ましく、1.3質量%以上6質量%未満の範囲が更に好ましく、特に1.5質量%以上5質量%未満の範囲が好ましい。
 前述したように、易接着層が粒子を含有しかつ低屈折率層がエチレン性不飽和基を有するポリシロキサン化合物を含有することによって、低屈折率層表面の滑り性が一段と向上し、生産工程等における耐ブロッキング性が向上する。
 また、低屈折率層が活性エネルギー線硬化性樹脂組成物をウェットコーティング法により塗布し硬化させた層である場合、基材フィルムからのオリゴマー析出を抑制することができる。
 前述したように、基材フィルムとしてポリエチレンテレフタレートフィルムを用いた場合、後述する透明導電膜の製膜工程などで加熱処理されると、ポリエチレンテレフタレートフィルムの表面に非架橋成分であるオリゴマー(環状三量体)が析出することがある。このオリゴマー析出は、前述の易接着層(少なくとも樹脂と架橋剤を含有する易接着層)と低屈折率層(活性エネルギー線硬化性樹脂組成物をウェットコーティング法により塗布し硬化させた低屈折率層)を積層することにより抑制することができる。
更に、オリゴマー析出を抑制するという観点から、低屈折率層の厚みは80nm以上が好ましく、90nm以上がより好ましい。
 本発明の透明導電性フィルムにおいて、低屈折率層側の視感反射率は1.0%以下であることが好ましく、0.9%以下であることがより好ましく、特に0.8%以下であることが好ましく、0.7%以下であることが最も好ましい。透明導電性フィルムの低屈折率層側の視感反射率が1.0%より大きくなると、表示パネルからの発光の透過率が低下して表示装置の表示品質を低下させる。
 [透明導電膜]
 透明導電膜の材料としては、タッチパネルの電極に用いられる公知の材料を用いることができる。例えば、酸化錫、酸化インジウム、酸化アンチモン、酸化亜鉛、ITO(酸化インジウム錫)、ATO(酸化アンチモン錫)等の金属酸化物、銀ナノワイヤー等の金属ナノワイヤー、カーボンナノチューブ等が挙げられる。これらの中でもITOが好ましく用いられる。
 透明導電膜の厚みは、例えば表面抵抗値を10Ω/□以下の良好な導電性を確保するという観点から、10nm以上であることが好ましく、15nm以上であることがより好ましく、特に20nm以上であることが好ましい。一方、透明導電膜の厚みが大きくなりすぎると骨見え現象の抑制効果が小さくなること、および透明性が低下するという不都合が生じることがあるので、透明導電膜の厚みの上限は、100nm以下が好ましく、60nm以下がより好ましく、50nm以下が更に好ましく、特に40nm以下が好ましい。
 透明導電膜の形成方法としては特に限定されず、従来公知の方法を用いることができる。具体的には、例えば真空蒸着法、スパッタリング法、イオンプレーティング法等のドライプロセス、あるいはウェットコーティング法(具体的には前述した方法)を用いることができる。
 上記のようにして製膜された透明導電膜はパターン化されていてもよい。パターン化は、透明導電性フィルムが適用される用途に応じて、各種のパターンを形成することができる。なお、透明導電膜のパターン化により、パターン部と非パターン部が形成されるが、パターン部の形状としては、例えば、ストライプ状、格子状、あるいはこれらの組み合わせパターン等が挙げられる。
 透明導電膜のパターン化は、一般的にはエッチングによって行われる。例えば、透明導電膜上にパターン状のエッチングレジスト膜を、フォトリソグラフィ法、レーザー露光法、あるいは印刷法により形成した後エッチン処理することにより、透明導電膜がパターン化される。
 エッチング液としては、従来公知のものが用いられる。例えば、塩化水素、臭化水素、硫酸、硝酸、リン酸等の無機酸、酢酸等の有機酸、およびこれらの混合物、ならびにそれらの水溶液が用いられる。
 [他の機能層]
 基材フィルムと透明導電膜との間に、他の機能層を設けることが好ましい。他の機能層としては、易接着層、ハードコート層、高屈折率層、低屈折率層等が挙げられ、これらの機能層を単独あるいは組み合わせて設けることができる。
 基材フィルムと透明導電膜との間に設ける易接着層としては、前述と同様の易接着層を用いることができるが、特に屈折率が1.55~1.60の範囲の易接着層が好ましい。また、厚みは10~200nmの範囲が好ましい。
 ハードコート層は、前述の活性エネルギー線硬化性樹脂を含む活性エネルギー線硬化組成物をウェットコーティング法で塗布し、硬化せしめた層であることが好ましい。ハードコート層の屈折率は1.48~1.55の範囲が適当であり、1.50~1.53の範囲が好ましい。
 高屈折率層は、屈折率が1.65以上の金属酸化物微粒子(酸化チタン、酸化ジルコニウム、酸化亜鉛、酸化錫、酸化アンチモン、酸化セリウム、酸化鉄、アンチモン酸亜鉛、酸化錫ドープ酸化インジウム(ITO)、アンチモンドープ酸化錫(ATO)、リンドープ酸化錫、アルミニウムドープ酸化亜鉛、ガリウムドープ酸化亜鉛、フッ素ドープ酸化錫等)と、前述の活性エネルギー線硬化性樹脂を含む活性エネルギー線硬化組成物をウェットコーティング法で塗布し、硬化せしめた層であることが好ましい。
 高屈折率層の屈折率(n1)は、1.61~1.80の範囲が好ましく、1.63~1.75の範囲がより好ましい。高屈折率層の厚み(d1)は、30~100nmの範囲が好ましく、40~95nmの範囲がより好ましい。
 低屈折率層は、前述した低屈折率層と同様のものを用いることができる。また、低屈折率層としてSiO膜(気相製膜法で形成)も好ましく用いられる。低屈折率層の屈折率(n2)は1.30~1.50の範囲が好ましく、1.33~1.48の範囲がより好ましい。低屈折率層の厚み(d2)は5~70nmの範囲がより好ましく、7~50nmの範囲がより好ましく、特に10~45nmの範囲が好ましい。
 特に、基材フィルムと透明導電膜との間に、高屈折率層と低屈折率層とを設けることが好ましい。高屈折率層と低屈折率層を設けることによって透明導電性フィルムの透明導電膜の色相に起因する反射色や透過色の不具合を補正することができる。この場合、高屈折率層の光学厚みと低屈折率層の光学厚みの合計は、λ/4であることが好ましい。
ここで、光学厚みは屈折率と厚みの積であり、λは可視光領域の波長範囲である380~780nmである。厚みの単位はnmである。
 すなわち、高屈折率層の光学厚みと低屈折率層の光学厚みの合計は以下の関係式4を満足することが好ましい。
(380nm/4)≦(n1×d1)+(n2×d2)≦(780nm/4)
     95nm≦(n1×d1)+(n2×d2)≦195nm ・・・(式4)。
 上述したように、基材フィルムと透明導電膜との間に、活性エネルギー線硬化組成物をウェットコーティング法で塗布し硬化させた層である、ハードコート層、高屈折率層および低屈折率層からなる群の中から選ばれる少なくとも1層を設けることにより、基材フィルムからのオリゴマー析出を防止することができる。
 [タッチパネルおよび表示装置]
 本発明の透明導電性フィルムは、抵抗膜式や静電容量式等のタッチパネルに好ましく用いられる。特に静電容量式タッチパネルに好ましく用いられる。
 抵抗膜式タッチパネルは、2つの透明導電性フィルムの透明導電膜同士がスペーサーを介して向き合うように配置された構成が一般的である。
図1は本発明の透明導電性フィルムを用いた抵抗膜式タッチパネルを備えた表示装置の一例の模式断面図である。図1は、本発明の透明導電性フィルム11を下部電極として使用した態様である。上部電極を構成する透明導電性フィルム12と下部電極を構成する透明導電性フィルム11とでタッチパネル21を構成し、タッチパネル21は表示パネル31上に空気層9を介して配置されている。
 タッチパネル21は、基材フィルム1の一方の面に透明導電膜2を有しかつ基材フィルム1の他方の面に易接着層3を介して低屈折率層4を一層のみ有する本発明の透明導電性フィルム11と、基材フィルム5の一方の面に透明導電膜6を有しかつ基材フィルム5の他方の面に機能層7を有する透明導電性フィルム12とを、スペーサー8を介して透明導電膜2と6が向き合うように配置されている。本発明の透明導電性フィルム11の低屈折率層4側には、空気層9が存在する。
 この空気層9の存在によって透明導電性フィルム11との界面での反射率が大きくなり、表示すパネルからの発光の透過率を低下させ、表示装置としても表示品質(輝度や視認性)を低下させる。しかしながら、本発明の透明導電性フィルムを用いることによって界面反射が低減され、良好な表示品質を確保することができる。
 表示パネル31としては、液晶表示パネルや有機EL表示パネルが挙げられる。透明導電性フィルム12の機能層としては、ハードコート層、防眩層、反射防止層、防汚層等が用いられる。
 図2および図3は、本発明の透明導電性フィルムを用いた静電容量式タッチパネルを備えた表示装置の一例の模式断面図である。
 図2は、X電極とY電極が空気層を介して配置された静電容量式タッチパネルを備えた表示装置の模式断面図である。X電極は本発明の透明導電性フィルム13で構成され、Y電極は本発明の透明導電性フィルム14で構成されており、2つの透明導電性フィルム13と14は空気層9を介して配置されてタッチパネル22が形成されている。そしてタッチパネル22は、空気層9を介して表示パネル31上に配置されている。
 X電極およびY電極を構成する本発明の透明導電性フィルム13および14は、基材フィルム1の一方の面に透明導電膜2を有しかつ基材フィルム1の他方の面に易接着層3を介して低屈折率層4を一層のみ有する。X電極およびY電極は、透明導電膜2をそれぞれパターン化することによって形成される。
 本発明の透明導電性フィルム13および14のそれぞれの低屈折率層4は、空気層9と接している。
 図2において、透明導電性フィルム13と14とは粘着剤層(図示せず)で接合されていてもよい。この場合、透明導電性フィルム13は低屈折率層が空気層と接しないので、透明導電性フィルム13は、必ずしも本発明の透明導電性フィルムを用いる必要はない。
 図3は、X電極とY電極が1つの基材フィルム上に形成された透明導電性フィルムを用いた静電容量式タッチパネルを備えた表示装置の模式断面図である。本発明の透明導電性フィルム15の透明導電膜2は、X電極となるパターン化された透明導電膜とY電極となるパターン化された透明導電膜とが絶縁膜を介して積層された構成となる。
 タッチパネル23となる本発明の透明導電性フィルム15は、表示パネル31上に空気層9を介して配置されており、本発明の透明導電性フィルム15の低屈折率層4は空気層9と接している。
 図2および図3に示す静電容量式タッチパネルを備えた表示装置は、通常、タッチ面側に図示しない保護パネル(ガラス板やアクリル樹脂板等)が、図示しない空気層あるいは粘着剤層を介して配置されている。
 上述したように、本発明の透明導電性フィルムを用いたタッチパネルを表示装置に表示パネル上に組み込む際には、本発明の透明導電性フィルムの低屈折率層側が空気層を介して表示パネルと向き合うように配置されることが好ましい。
 このように、本発明の透明導電性フィルムは、タッチパネルを備えた表示装置のタッチ面ではなく、内部に組み込まれることが好ましい。本発明の透明導電性フィルムは表示装置の内部に用いられることによって、耐擦傷性の点で、低屈折率層の一層のみの構成(ハードコート層や高屈折率層を有していない)を可能にする。
 また、本発明の透明導電性フィルムの別の用途として、液晶表示パネルから発生される電磁波を遮蔽する電磁波シールド部材が挙げられる。つまり、本発明の透明導電性フィルムは電磁波シールド部材に好適である。
 図4は、本発明の透明導電性フィルムを用いた電磁波シールド部材を備えた表示装置の一例の模式断面図である。
 図4において、電磁波シールド部材24となる本発明の透明導電性フィルム16は、表示パネル(液晶表示パネル)31上に空気層9を介して配置されており、本発明の透明導電性フィルム16の低屈折率層4は空気層9と接している。本発明の透明導電性フィルム16は、基材フィルム1の一方の面に透明導電膜2を有しかつ基材フィルム1の他方の面に易接着層3を介して低屈折率層4を一層のみ有する。
 図4の表示装置は、電磁波シールド部材24となる本発明の透明導電性フィルム16の透明導電膜2の側にタッチパネル25が配置されている。ここで、タッチパネル25は、特に限定されず、上記した抵抗膜式や静電容量式以外の他の方式のタッチパネル(例えば超音波方式、電磁誘導方式等)も使用することができる。また、上記したような本発明の透明導電性フィルムを用いた抵抗膜式タッチパネルや静電容量式タッチパネルも好ましく用いられる。
 以下、実施例により本発明を更に詳細に説明するが、本発明はこれらの実施例によって限定されるものではない。尚、本実施例における、測定方法および評価方法を以下に示す。
 (1)基材フィルムの屈折率の測定
 基材フィルム(PETフィルム)の屈折率は、JIS K7105(1981)に準じてアッベ屈折率計で測定した。
 (2)易接着層および低屈折率層の屈折率の測定
 易接着層および低屈折率層のそれぞれの塗布組成物をシリコンウエハー上にスピンコーターにて塗工形成した塗膜(乾燥厚み約2μm)について、25℃の温度条件下で位相差測定装置(ニコン(株)製:NPDM-1000)で633nmの屈折率を測定した。
 (3)易接着層の厚み
 易接着層が積層された基材フィルムの断面を超薄切片に切り出し、RuO4 染色、OsO4 染色、あるいは両者の二重染色による染色超薄切片法により、TEM(透過型電子顕微鏡)で断面構造が目視可能な以下の条件にて観察し、その断面写真から易接着層の厚みを測定する。なお、5箇所を測定して、その平均値を易接着層の厚みとした。
・測定装置:透過型電子顕微鏡(日立(株)製 H-7100FA型)
・測定条件:加速電圧 100kV
・試料調整:凍結超薄切片法
・倍率:30万倍。
 (4)低屈折率層の厚みの測定
 サンプルの断面を超薄切片に切り出し、透過型電子顕微鏡(日立製H-7100FA型)で加速電圧100kVにて観察(10万倍の倍率で観察)し、その断面写真から低屈折率層の厚みを測定する。なお、5箇所を測定して、その平均値を低屈折率層の厚みとした。
 (5)透明導電性フィルムの視感反射率の測定
<評価用サンプルの作成>
 サンプルの低屈折率層が積層された側とは反対面を粘着剤でガラス板に貼り付け、該ガラス板の反対面(透明導電性フィルムサンプルが貼り付けられた面とは反対側の面)に黒テープ(日東電工製 No.21トク(BC))を貼り付けて評価用サンプルを作製する。
<測定>
 分光光度計(島津製作所製、UV3150PC)を用いて、測定面から5度の入射角で波長380~780nmの範囲で反射率(片面反射)を算出し、視感反射率(JIS Z8701-1999において規定されている反射の刺激値Y)を求めた。分光光度計で分光立体角を測定し、JIS Z8701-1999に従って反射率(片面光線反射)を算出する。算出式は以下の通りである。
・T=K・ ∫S(λ)・y(λ)・ R(λ) ・dλ (ただし、積分区間は380~780nm)
 T:片面光線反射率
 S(λ) :色の表示に用いる標準の光の分布
 y(λ) :XYZ表示系における等色関数
 R(λ) :分光立体角反射率。
<視感反射率の目安>
 本発明の透明導電性フィルムを用いたタッチパネルを備えた表示装置において、表示パネルからの発光の透過率を低下させないためには、透明導電性フィルムの低屈折率層側の視感反射率は1.0%以下であること好ましく、0.9%以下であることがより好ましく、特に0.8%以下であることが好ましい。視感反射率が1.0%より大きくなると透過率が低下する。
 (6)密着性
 各サンプルを60℃-90%RHの雰囲気下に500時間放置した後、各サンプルの薄膜層面に1mmのクロスカットを100個入れ、ニチバン(株)製セロハンテープをその上に貼り付け、指で強く押し付けた後、90度方向に急速に剥離し、残存した個数により、以下の基準で密着性を評価した。
○:90/100(残存個数/測定個数)以上
×:90/100(残存個数/測定個数)未満。
 (7)滑り性
 各サンプルを切断して2枚のシート片(20cm×15cm)を作製した。2枚のシート片の低屈折率層面同士が向き合うように2枚のシート片を僅かにずらして重ね合わせて平滑な台上の置き、下方のシート片を指で台上に固定し、上方のシート片を手で滑らせる方法で滑り性の良否判定を行った。測定環境は23℃、55%RHである。
○:上方のシート片の滑り性が良好である。
△:上方のシート片の滑り性は劣るが比較的良好である。
×:上方のシート片が滑らない。
 (8)易接着層に含有させた粒子の平均粒子径の測定
 易接着層表面を、SEM(走査型電子顕微鏡)を用いて倍率一万倍で観察し、粒子の画像(粒子によってできる光の濃淡)をイメージアナライザー(たとえばケンブリッジインストルメント製QTM900)に結び付け、観察箇所を変えてデータを取り込み、合計粒子数5000個以上となったところで次の数値処理を行ない、それによって求めた数平均径dを平均粒径(直径)とした。
・d=Σdi /N
 ここでdi は粒子の等価円直径(粒子の断面積と同じ面積を持つ円の直径)、Nは個数である。
 (9)オリゴマー析出抑制効果の評価
 各サンプルを140℃のオーブン中に放置し、80分熱処理を行った。熱処理前後のヘイズ値をJIS K 7105(1981)に基づき、日本電色工業(株)製濁度計NDH 2000を用いて測定した。熱処理前後のヘイズ値の変化に基づいてオリゴマー析出抑制効果を以下の基準で評価した。
○:熱処理前後のヘイズ値変化が0.5%未満
△:熱処理前後のヘイズ値変化が0.5%以上1.0%未満
×:熱処理前後のヘイズ値変化が1.0%以上。
 (易接着層を形成するための樹脂)
 <ポリエステル樹脂1、2> 
 ポリエステル樹脂中のフルオレン環の含有量を調整することにより、屈折率が1.64の水分散性のポリエステル樹脂1と、屈折率が1.62の水分散性のポリエステル樹脂2を調製した。つまり、下記のフルオレン環含有ポリエステル樹脂の合成において、9,9-ビス[4-(2-ヒドロキシエトキシ)フェニル]フルオレンの組成比xモル%を35モル%~45モル%の範囲で調整することによって上記ポリエステル樹脂1及びポリエステル樹脂2を得た。
 <フルオレン環含有ポリエステル樹脂>
 下記のカルボン酸成分とグリコール成分との共重合組成からなるポリエステル樹脂である。
・カルボン酸成分
コハク酸           40モル%
5-Naスルホイソフタル酸  10モル%
・グリコール成分
9,9-ビス[4-(2-ヒドロキシエトキシ)フェニル]フルオレン    xモル%
エチレングリコール                      (50-x)モル%。
 <ポリエステル樹脂3>
 下記の屈折率が1.58の水分散性のポリエステル樹脂3(ナフタレン環含有ポリエステル樹脂)を調製した。
 <ナフタレン環含有ポリエステル樹脂>
 下記のカルボン酸成分とグリコール成分との共重合組成からなるポリエステル樹脂である。
・カルボン酸成分
テレフタル酸         35モル%
2,6-ナフタレンジカルボン酸 9モル%
5-Naスルホイソフタル酸  6モル%
・グリコール成分
エチレングリコール     49モル%
ジエチレングリコール     1モル%。
 <アクリル樹脂1、2>
 下記の屈折率が1.54の水分散性のアクリル樹脂1と屈折率が1.52の水分散性のアクリル樹脂2をそれぞれ用意した。
 <アクリル樹脂1>
 下記の共重合組成からなるアクリル樹脂である。
・共重合成分
メチルメタクリレート    64重量%
エチルアクリレート     30重量%
アクリル酸          5重量%
N-メチロールアクリルアミド 1重量%。
 <アクリル樹脂2>
 下記の共重合組成からなるアクリル樹脂である。
・共重合成分
メチルメタクリレート    63重量%
エチルアクリレート     35重量%
アクリル酸          1重量%
N-メチロールアクリルアミド 1重量%。
 (易接着層に含有する粒子)
・粒子A;平均粒子径が190nmのコロイダルシリカ
・粒子B;平均粒子径が80nmのコロイダルシリカ
・粒子C;平均粒子径が30nmのコロイダルシリカ。
 [製造例1]
 屈折率1.65で厚み100μmのポリエチレンテレフタレートフィルム(PETフィルム)の一方の面(低屈折率層積層面)に、下記の易接着層Aを乾燥厚みが90nmとなるように積層して、易接着層付きPETフィルムを得た。
上記で得られた易接着層付きPETフィルムの易接着層の厚みは90nmで、易接着層の屈折率は1.64であった。この易接着層は条件1を満足する。
また、PETフィルムの他方の面(透明導電膜を積層する側の面)には、下記の易接着層Zを乾燥厚みが90nmとなるように積層した。
<易接着層A>
 屈折率1.64のポリエステル樹脂1を100質量部、メラミン系架橋剤を5質量部、粒子Aを2質量部含有する。それぞれの成分の含有量は固形分換算での含有量であり、以下の実施例も同様である。
上記メラミン系架橋剤は、メチロール型メラミン系架橋剤(三和ケミカル(株)製の「ニカラック MW12LF」)であり、以下の実施例および比較例においてメラミン系架橋剤とは、上記化合物を指す。
<易接着層Z>
 屈折率1.58のポリエステル樹脂3を100質量部、メラミン系架橋剤を5質量部、粒子Aを2質量部含有する。
 [製造例2]
 屈折率1.65で厚み100μmのポリエチレンテレフタレートフィルム(PETフィルム)の一方の面(低屈折率層積層面)に、下記の易接着層Bを乾燥厚みが20nmとなるように積層して、易接着層付きPETフィルムを得た。
上記で得られた易接着層付きPETフィルムの易接着層の厚みは20nmで、易接着層の屈折率は1.64であった。この易接着層は条件1および条件2を満足する。
また、PETフィルムの他方の面(透明導電膜を積層する側の面)には、製造例1と同様に易接着層Zを乾燥厚みが90nmとなるように積層した。
<易接着層B>
 屈折率1.64のポリエステル樹脂1を100質量部、メラミン系架橋剤を5質量部、粒子Bを2質量部含有する。
 [製造例3]
 屈折率1.65で厚み100μmのポリエチレンテレフタレートフィルム(PETフィルム)の一方の面(低屈折率層積層面)に、下記の易接着層Cを乾燥厚みが90nmとなるように積層して、易接着層付きPETフィルムを得た。
上記で得られた易接着層付きPETフィルムの易接着層の厚みは90nmで、易接着層の屈折率は1.62であった。この易接着層は条件1を満足する。
また、PETフィルムの他方の面(透明導電膜を積層する側の面)には、製造例1と同様に易接着層Zを乾燥厚みが90nmとなるように積層した。
<易接着層C>
 屈折率1.62のポリエステル樹脂2を100質量部、メラミン系架橋剤を5質量部、粒子Aを2質量部含有する。
 [製造例4]
 屈折率1.65で厚み100μmのポリエチレンテレフタレートフィルム(PETフィルム)の一方の面(低屈折率層積層面)に、下記の易接着層Dを乾燥厚みが30nmとなるように積層して、易接着層付きPETフィルムを得た。
上記で得られた易接着層付きPETフィルムの易接着層の厚みは30nmで、易接着層の屈折率は1.62であった。この易接着層は条件1および条件2を満足する。
また、PETフィルムの他方の面(透明導電膜を積層する側の面)には、製造例1と同様に易接着層Zを乾燥厚みが90nmとなるように積層した。
<易接着層D>
 屈折率1.62のポリエステル樹脂2を100質量部、メラミン系架橋剤を5質量部、粒子Bを2質量部含有する。
 [製造例5]
 屈折率1.65で厚み100μmのポリエチレンテレフタレートフィルム(PETフィルム)の一方の面(低屈折率層積層面)に、下記の易接着層Eを乾燥厚みが90nmとなるように積層して、易接着層付きPETフィルムを得た。
上記で得られた易接着層付きPETフィルムの易接着層の厚みは90nmで、易接着層の屈折率は1.58であった。この易接着層は条件1を満足する。
また、PETフィルムの他方の面(透明導電膜を積層する側の面)には、製造例1と同様に易接着層Zを乾燥厚みが90nmとなるように積層した。
<易接着層E>
 屈折率1.58のポリエステル樹脂3を100質量部、メラミン系架橋剤を5質量部、粒子Aを2質量部含有する。
 [製造例6]
 屈折率1.65で厚み100μmのポリエチレンテレフタレートフィルム(PETフィルム)の一方の面(低屈折率層積層面)に、下記の易接着層Fを乾燥厚みが40nmとなるように積層して、易接着層付きPETフィルムを得た。
上記で得られた易接着層付きPETフィルムの易接着層の厚みは40nmで、易接着層の屈折率は1.58であった。この易接着層は条件1および条件2を満足する。
また、PETフィルムの他方の面(透明導電膜を積層する側の面)には、製造例1と同様に易接着層Zを乾燥厚みが90nmとなるように積層した。
<易接着層F>
 屈折率1.58のポリエステル樹脂3を100質量部、メラミン系架橋剤を5質量部、粒子Bを2質量部含有する。
 [製造例7]
 製造例6の易接着層Fの厚みを20nmに変更する以外は、製造例6と同様にして易接着層付きPETフィルムを得た。
上記で得られた易接着層付きPETフィルムの易接着層の厚みは20nmで、易接着層の屈折率は1.58であった。この易接着層は条件1および条件2を満足する。
 [製造例8]
 屈折率1.65で厚み100μmのポリエチレンテレフタレートフィルム(PETフィルム)の一方の面(低屈折率層積層面)に、下記の易接着層Gを乾燥厚みが90nmとなるように積層して、易接着層付きPETフィルムを得た。
上記で得られた易接着層付きPETフィルムの易接着層の厚みは90nmで、易接着層の屈折率は1.54であった。この易接着層は条件1および条件2のいずれも満足しない。
また、PETフィルムの他方の面(透明導電膜を積層する側の面)には、製造例1と同様に易接着層Zを乾燥厚みが90nmとなるように積層した。
<易接着層G>
 屈折率1.54のアクリル樹脂1を100質量部、メラミン系架橋剤を5質量部、粒子Aを2質量部含有する。
 [製造例9]
 製造例8の易接着層Gの厚みを60nmに変更する以外は、製造例8と同様にして易接着層付きPETフィルムを得た。
上記で得られた易接着層付きPETフィルムの易接着層の厚みは60nmで、易接着層の屈折率は1.54であった。この易接着層は条件1および条件2のいずれも満足しない。
 [製造例10]
 製造例8の易接着層Gの厚みを40nmに変更する以外は、製造例8と同様にして易接着層付きPETフィルムを得た。
上記で得られた易接着層付きPETフィルムの易接着層の厚みは40nmで、易接着層の屈折率は1.54であった。この易接着層は条件2を満足する。
 [製造例11]
 屈折率1.65で厚み100μmのポリエチレンテレフタレートフィルム(PETフィルム)の一方の面(低屈折率層積層面)に、下記の易接着層Eを乾燥厚みが90nmとなるように積層して、易接着層付きPETフィルムを得た。
上記で得られた易接着層付きPETフィルムの易接着層の厚みは90nmで、易接着層の屈折率は1.52であった。この易接着層は条件1および条件2のいずれも満足しない。
また、PETフィルムの他方の面(透明導電膜を積層する側の面)には、製造例1と同様に易接着層Zを乾燥厚みが90nmとなるように積層した。
<易接着層H>
 屈折率1.52のアクリル樹脂2を100質量部、メラミン系架橋剤を5質量部、粒子Aを2質量部含有する。
 [製造例12]
 製造例11の易接着層Hの厚みを60nmに変更する以外は、製造例11と同様にして易接着層付きPETフィルムを得た。
上記で得られた易接着層付きPETフィルムの易接着層の厚みは60nmで、易接着層の屈折率は1.52であった。この易接着層は条件1および条件2のいずれも満足しない。
 [製造例13]
 屈折率1.65で厚み100μmのポリエチレンテレフタレートフィルム(PETフィルム)の一方の面(低屈折率層積層面)に、下記の易接着層Iを乾燥厚みが20nmとなるように積層して、易接着層付きPETフィルムを得た。
上記で得られた易接着層付きPETフィルムの易接着層の厚みは20nmで、易接着層の屈折率は1.52であった。この易接着層は条件2を満足する。
また、PETフィルムの他方の面(透明導電膜を積層する側の面)には、製造例1と同様に易接着層Zを乾燥厚みが90nmとなるように積層した。
<易接着層I>
 屈折率1.52のアクリル樹脂2を100質量部、メラミン系架橋剤を5質量部、粒子Bを2質量部含有する。
 [製造例14]
 屈折率1.65で厚み100μmのポリエチレンテレフタレートフィルム(PETフィルム)の一方の面(低屈折率層積層面)に、下記の易接着層Jを乾燥厚みが90nmとなるように積層して、易接着層付きPETフィルムを得た。
上記で得られた易接着層付きPETフィルムの易接着層の厚みは90nmで、易接着層の屈折率は1.52であった。この易接着層は条件1および条件2のいずれも満足しない。
また、PETフィルムの他方の面(透明導電膜を積層する側の面)には、製造例1と同様に易接着層Zを乾燥厚みが90nmとなるように積層した。
<易接着層J>
 屈折率1.52のアクリル樹脂2を100質量部、メラミン系架橋剤を5質量部、粒子Cを2質量部含有する。
 [製造例15]
 屈折率1.65で厚み100μmのポリエチレンテレフタレートフィルム(PETフィルム)の一方の面(低屈折率層積層面)に、下記の易接着層Kを乾燥厚みが90nmとなるように積層して、易接着層付きPETフィルムを得た。
上記で得られた易接着層付きPETフィルムの易接着層の厚みは90nmで、易接着層の屈折率は1.52であった。この易接着層は条件1および条件2のいずれも満足しない。
また、PETフィルムの他方の面(透明導電膜を積層する側の面)には、製造例1と同様に易接着層Zを乾燥厚みが90nmとなるように積層した。
<易接着層K>
 屈折率1.52のアクリル樹脂2を100質量部、メラミン系架橋剤を5質量部含有する。この易接着層Fは粒子を含まない易接着層である。
 [製造例16]
 易接着層が積層されていないPETフィルム(屈折率1.65、厚み100μm)を用意した。
 [製造例17-1]
 屈折率1.65で厚み100μmのポリエチレンテレフタレートフィルム(PETフィルム)の一方の面(低屈折率層積層面)に、下記の易接着層Lを乾燥厚みが90nmとなるように積層して、易接着層付きPETフィルムを得た。
上記で得られた易接着層付きPETフィルムの易接着層の厚みは90nmで、易接着層の屈折率は1.60であった。この易接着層は条件1を満足する。
また、PETフィルムの他方の面(透明導電膜を積層する側の面)には、製造例1と同様に易接着層Zを乾燥厚みが90nmとなるように積層した。
<易接着層L>
 ポリエステル樹脂3を100質量部、酸化ジルコニウム(平均粒子径が20nm)を20質量部、メラミン系架橋剤を15質量部、粒子Aを1質量部含有する。
 [製造例17-2]
 上記製造例17-1において、易接着層Lの乾燥厚みを120nmに変更する以外は、製造例17-1と同様にして、易接着層付きPETフィルムを得た。
上記で得られた易接着層付きPETフィルムの易接着層の厚みは120nmで、易接着層の屈折率は1.60であった。この易接着層は条件1を満足する。
 [製造例17-3]
 上記製造例17-1において、易接着層Lの乾燥厚みを120nmに変更する以外は、製造例17-1と同様にして、易接着層付きPETフィルムを得た。
上記で得られた易接着層付きPETフィルムの易接着層の厚みは150nmで、易接着層の屈折率は1.60であった。この易接着層は条件1を満足する。
 [製造例18]
 屈折率1.65で厚み100μmのポリエチレンテレフタレートフィルム(PETフィルム)の一方の面(低屈折率層積層面)に、下記の易接着層Lを乾燥厚みが90nmとなるように積層して、易接着層付きPETフィルムを得た。
上記で得られた易接着層付きPETフィルムの易接着層の厚みは90nmで、易接着層の屈折率は1.65であった。この易接着層は条件1を満足する。
また、PETフィルムの他方の面(透明導電膜を積層する側の面)には、製造例1と同様に易接着層Zを乾燥厚みが90nmとなるように積層した。
<易接着層M>
 ポリエステル樹脂3を100質量部、酸化ジルコニウム(平均粒子径が20nm)を60質量部、メラミン系架橋剤を15質量部、粒子Aを1質量部含有する。
 [製造例19]
 屈折率1.65で厚み100μmのポリエチレンテレフタレートフィルム(PETフィルム)の一方の面(低屈折率層積層面)に、下記の易接着層Lを乾燥厚みが90nmとなるように積層して、易接着層付きPETフィルムを得た。
上記で得られた易接着層付きPETフィルムの易接着層の厚みは90nmで、易接着層の屈折率は1.66であった。この易接着層は条件1を満足する。
また、PETフィルムの他方の面(透明導電膜を積層する側の面)には、製造例1と同様に易接着層Zを乾燥厚みが90nmとなるように積層した。
<易接着層N>
 ポリエステル樹脂3を100質量部、酸化ジルコニウム(平均粒子径が20nm)を67質量部、メラミン系架橋剤を15質量部、粒子Aを1質量部含有する。
 [製造例20]
 屈折率1.65で厚み100μmのポリエチレンテレフタレートフィルム(PETフィルム)の一方の面(低屈折率層積層面)に、易接着層に代えて下記の活性エネルギー線硬化性(紫外線硬化性)の高屈折率層を乾燥厚みが90nmとなるように積層し紫外線を照射して、高屈折率層積層PETフィルムを得た。
上記で得られた高屈折率層積層PETフィルムの高屈折率層の厚みは90nmで、高屈折率層の屈折率は1.65であった。
また、上記PETフィルムの他方の面(透明導電膜を積層する側の面)には、製造例1と同様に易接着層Zを乾燥厚みが90nmとなるように積層した。
<高屈折率層>
 活性エネルギー線硬化性樹脂としてジペンタエリスリトールヘキサアクリレートを100質量部、酸化ジルコニウム(平均粒子径が20nm)を100質量部、および光重合開始剤(チバ・スペシャリティ・ケミカルズ(株)製「イルガキュア(登録商標)184」)を5質量部含有する。
 [実施例1~33および比較例1~25]
 下記の要領で実施例1~33よび比較例1~25の透明導電性フィルムを作成した。
 上記の製造例1~19で得られた易接着層付きPETフィルムの一方の易接着層(低屈折率層積層側の易接着層)の面に、下記の低屈折率層A、低屈折率層B、低屈折率層Cまたは低屈折率層Dを形成した。また、上記製造例20で得られた高屈折率層積層PETフィルムの高屈折率層の上に低屈折率層Cを形成した。
 易接着層付きPETフィルムと低屈折率層との組み合わせを表1~表3に示す。
 また、易接着層付きPETフィルムの他方の易接着層(透明導電層側の易接着層)の面に、下記のハードコート層、高屈折率層、SiO2膜、および透明導電膜をこの順に積層して、透明導電性フィルムを作製した。
 <低屈折率層A>
 活性エネルギー線硬化性樹脂(ジペンタエリスリトールヘキサアクリレートとウレタンアクリレートとを質量比1:3で含有)47質量部、中空シリカ(日揮触媒化成(株)製のELECOM-P5024)を固形分で50質量部、エチレン性不飽和基を有するポリシロキサン化合物(信越化学工業(株)製の「X-22-164C」)3質量部、および光重合開始剤(チバ・スペシャリティ・ケミカルズ(株)製「イルガキュア(登録商標)184」)3質量部を有機溶剤に分散あるいは溶解して活性エネルギー線硬化性組成物布組成物を調製した。この組成物の屈折率は1.35であった。
この組成物をウェットコ-ティング法(グラビアコート法)で塗布し、90℃で乾燥後、紫外線400mJ/cmを照射して硬化させて低屈折率層を形成した。低屈折率層の厚み(硬化後の厚み)は、表1~表3に示すように、70nm、90nm、100nm、110nm、130nmの間で変化させた。
 <低屈折率層B>
 活性エネルギー線硬化性樹脂(ジペンタエリスリトールヘキサアクリレートとウレタンアクリレートとを質量比1:3で含有)59質量部、中空シリカ(日揮触媒化成(株)製のELECOM-P5024)を固形分で38質量部、エチレン性不飽和基を有するポリシロキサン化合物(信越化学工業(株)製の「X-22-164C」)3質量部、および光重合開始剤(チバ・スペシャリティ・ケミカルズ(株)製「イルガキュア(登録商標)184」)3質量部を有機溶剤に分散あるいは溶解して活性エネルギー線硬化性組成物布組成物を調製した。この組成物の屈折率は1.38であった。
この組成物をウェットコ-ティング法(グラビアコート法)で塗布し、90℃で乾燥後、紫外線400mJ/cmを照射して硬化させて低屈折率層を形成した。低屈折率層の厚み(硬化後の厚み)は、表1~表3に示すように、90nm、100nm、110nmの間で変化させた。
 <低屈折率層C>
 活性エネルギー線硬化性樹脂(ジペンタエリスリトールヘキサアクリレートとウレタンアクリレートとを質量比1:3で含有)67質量部、中空シリカ(日揮触媒化成(株)製のELECOM-P5024)を固形分で30質量部、エチレン性不飽和基を有するポリシロキサン化合物(信越化学工業(株)製の「X-22-164C」)3質量部、および光重合開始剤(チバ・スペシャリティ・ケミカルズ(株)製「イルガキュア(登録商標)184」)3質量部を有機溶剤に分散あるいは溶解して活性エネルギー線硬化性組成物布組成物を調製した。この組成物の屈折率は1.40であった。
この組成物をウェットコ-ティング法(グラビアコート法)で塗布し、90℃で乾燥後、紫外線400mJ/cmを照射して硬化させて厚みが100nmの低屈折率層を形成した。
 <低屈折率層D>
 活性エネルギー線硬化性樹脂(ジペンタエリスリトールヘキサアクリレートとウレタンアクリレートとを質量比1:3で含有)82質量部、中空シリカ(日揮触媒化成(株)製のELECOM-P5024)を固形分で15質量部、および光重合開始剤(チバ・スペシャリティ・ケミカルズ(株)製「イルガキュア(登録商標)184」)3質量部を有機溶剤に分散あるいは溶解して活性エネルギー線硬化性組成物布組成物を調製した。この組成物の屈折率は1.43であった。
この組成物をウェットコ-ティング法(グラビアコート法)で塗布し、90℃で乾燥後、紫外線400mJ/cmを照射して硬化させて厚みが100nmの低屈折率層を形成した。
 <ハードコート層>
 活性エネルギー線硬化性樹脂(ジペンタエリスリトールヘキサアクリレートとウレタンアクリレートとを質量比1:3で含有)95質量部、光重合開始剤(チバ・スペシャリティ・ケミカルズ(株)製「イルガキュア(登録商標)184」)5質量部を含む組成物を調製した。この組成物の屈折率は1.50であった。
この組成物をウェットコーティング法(グラビアコート法)により塗布し、90℃で乾燥後、紫外線400mJ/cmを照射して硬化させて厚みが2μmのハードコート層を形成した。
 <高屈折率層>
 活性エネルギー線硬化性樹脂(ジペンタエリスリトールヘキサアクリレート10質量部とウレタンアクリレート27質量部)37質量部、酸化ジルコニウム(平均粒子径が20nm)60質量部、および光重合開始剤(チバ・スペシャリティ・ケミカルズ(株)製「イルガキュア(登録商標)184」)3質量部を有機溶剤に分散あるいは溶解した組成物を調製した。この組成物の屈折率は1.70であった。
この組成物をウェットコーティング法(グラビアコート法)により塗布し、90℃で乾燥後、紫外線400mJ/cmを照射して硬化させて厚みが80nmの高屈折率層を形成した。
 <SiO膜>
 SiO膜(屈折率1.46)を厚みが10nmとなるようにスパッタリング法により積層した。
 <透明導電膜>
 ITO膜を厚みが30nmとなるようにスパッタリング法で積層し、パターン加工(エッチング処理)して透明導電膜を形成した。
 [透明導電性フィルムの評価]
 上記で得られた実施例および比較例の透明導電性フィルムについて、視感反射率、密着性および滑り性を評価した。これらの結果を表1~表3に示す。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
 表1~表3の結果から、本発明の実施例は視感反射率が小さく、かつ低屈折率層の密着性および滑り性が良好であることが分かる。
 比較例1~6、8、9に使用した易接着層PETフィルムの易接着層は、条件1と条件2のいずれも満足しないので、視感反射率が大きくなっている。
 また、比較例5の易接着層PETフィルムの易接着層は粒子を含有しているが、易接着層の厚み(d)に対する粒子の平均粒子径(r)の比率(r/d)が0.5未満であるために、滑り性が劣っている。比較例6の易接着層PETフィルムの易接着層は、粒子を含有していないので滑り性が劣っている。易接着層を有しないPETフィルムを使用した比較例7は、密着性および滑り性が劣っている。
 比較例10~14、15、16は、低屈折率層の屈折率が1.42を越えており、視感反射率が大きくなっている。また、比較例10~14、15、16の低屈折率層Dはエチレン性不飽和基を有するポリシロキサン化合物を含まないので、同化合物を含む低屈折率層A、B、Cに比べて滑り性が劣っている。
 また、比較例14の易接着層PETフィルムの易接着層は粒子を含有していなく、かつエチレン性不飽和基を有するポリシロキサン化合物を含まない低屈折率層Dを用いているので滑り性が劣っている。これらの結果から、易接着層が適当な大きさの粒子を含みかつ低屈折率層がエチレン性不飽和基を有するポリシロキサン化合物を含むことによって、良好な滑り性が得られることが分かる。
 比較例17~20は、低屈折率層の厚みが80nm未満であるので、視感反射率が大きくなり、また、オリゴマー析出の抑制効果も低下している。
 比較例21~24は、低屈折率層の厚みが120nmを越えているので、視感反射率が大きくなっている。
 比較例25は、易接着層に代えて活性エネルギー線硬化性の高屈折率層を設けているが、基材フィルムとの密着性が劣っている。
 1、5 基材フィルム
 2、6 透明導電膜
 3 易接着層
 4 低屈折率層
 7 機能層
 8 スペーサー
 9 空気層
 11、13、14、15、16 本発明の透明導電性フィルム
 12 透明導電性フィルム
 21、22、23、25 タッチパネル
 24 電磁波シールド部材
 31 表示パネル

Claims (16)

  1. 屈折率が1.6~1.7の基材フィルムの一方の面に透明導電膜を有し、前記基材フィルムの他方の面に易接着層を介して、屈折率が1.42以下でかつ厚みが80~120nmの低屈折率層を一層のみ有し、前記易接着層が下記の条件1を満足することを特徴とする透明導電性フィルム。
     条件1;基材フィルムの屈折率と易接着層の屈折率との差の絶対値が0.08以下である。
  2. 屈折率が1.6~1.7の基材フィルムの一方の面に透明導電膜を有し、前記基材フィルムの他方の面に易接着層を介して、屈折率が1.42以下でかつ厚みが80~120nmの低屈折率層を一層のみ有し、前記易接着層が下記の条件2を満足することを特徴とする透明導電性フィルム。
     条件2;易接着層の厚みが5nm以上50nm未満である。
  3. 屈折率が1.6~1.7の基材フィルムの一方の面に透明導電膜を有し、前記基材フィルムの他方の面に易接着層を介して、屈折率が1.42以下でかつ厚みが80~120nmの低屈折率層を一層のみ有し、前記易接着層が下記の条件1および条件2を満足することを特徴とする透明導電性フィルム。
     条件1;基材フィルムの屈折率と易接着層の屈折率との差の絶対値が0.08以下である。
     条件2;易接着層の厚みが5nm以上50nm未満である。
  4. 前記基材フィルムの屈折率と易接着層の屈折率との差の絶対値が0.05以下である、請求項1または3に記載の透明導電性フィルム。
  5. 前記易接着層の厚みが5nm以上200nm未満である、請求項1または4に記載の透明導電性フィルム。
  6. 前記基材フィルムがポリエステルフィルムである、請求項1~5のいずれかに記載の透明導電性フィルム。
  7. 前記ポリエステルフィルムがポリエチレンテレフタレートフィルムである、請求項6に記載の透明導電性フィルム。
  8. 前記易接着層が少なくとも樹脂と架橋剤を含有する、請求項1~7のいずれかに記載の透明導電性フィルム。
  9. 前記樹脂がポリエステル樹脂である、請求項8に記載の透明導電性フィルム。
  10. 前記低屈折率層が活性エネルギー線硬化性樹脂組成物をウェットコーティング法により塗布し硬化させた層である、請求項1~9のいずれかに記載の透明導電性フィルム。
  11. 前記易接着層が粒子を含み、前記粒子の平均粒子径(r)と易接着層の厚み(d)の関係が下記式1を満足する、請求項1~101のいずれかに記載の透明導電性フィルム。
    0.5≦(r/d)≦20 ・・・ 式1
  12. 前記粒子を前記易接着層の固形分総量100質量%に対して0.05~20質量%含有する、請求項11に記載の透明導電性フィルム
  13. 前記低屈折率層がエチレン性不飽和基を有するポリシロキサン化合物を含有する、請求項1~12のいずれかに記載の透明導電性フィルム。
  14. 請求項1~13のいずれかに記載の透明導電性フィルムを備えたタッチパネル。
  15. 表示パネル上に、請求項1~13のいずれかに記載の透明導電性フィルムを用いたタッチパネルが配置された表示装置であって、前記透明導電性フィルムの前記低屈折率層側が表示パネルと空気層を介して向き合うように配置されている、表示装置。
  16. 表示パネル上に、請求項1~13のいずれかに記載の透明導電性フィルムを用いた電磁波シールド部材が配置された表示装置であって、前記透明導電性フィルムの前記低屈折率層側が表示パネルと空気層を介して向き合うように配置されている、表示装置。
PCT/JP2013/050621 2012-01-31 2013-01-16 透明導電性フィルム、タッチパネルおよび表示装置 WO2013114945A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2013502330A JP5397824B1 (ja) 2012-01-31 2013-01-16 透明導電性フィルム、タッチパネルおよび表示装置
CN201380006513.7A CN104067352B (zh) 2012-01-31 2013-01-16 透明导电性膜、触摸面板及显示装置
KR1020147020184A KR101524580B1 (ko) 2012-01-31 2013-01-16 투명 도전성 필름, 터치 패널 및 표시 장치

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012017858 2012-01-31
JP2012-017858 2012-07-27

Publications (1)

Publication Number Publication Date
WO2013114945A1 true WO2013114945A1 (ja) 2013-08-08

Family

ID=48904988

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/050621 WO2013114945A1 (ja) 2012-01-31 2013-01-16 透明導電性フィルム、タッチパネルおよび表示装置

Country Status (5)

Country Link
JP (1) JP5397824B1 (ja)
KR (1) KR101524580B1 (ja)
CN (1) CN104067352B (ja)
TW (1) TW201346675A (ja)
WO (1) WO2013114945A1 (ja)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015041055A1 (ja) * 2013-09-20 2015-03-26 東レ株式会社 積層フィルムおよびその製造方法
JP2015080888A (ja) * 2013-10-22 2015-04-27 日油株式会社 透明導電性フィルム
WO2015060599A1 (ko) * 2013-10-23 2015-04-30 (주)엘지하우시스 고굴절 점착제 필름 및 이를 포함하는 터치 패널
JP2015088322A (ja) * 2013-10-30 2015-05-07 富士フイルム株式会社 光取り出し部材、及び有機電界発光装置
CN105005425A (zh) * 2014-04-21 2015-10-28 爱思开哈斯显示用薄膜有限公司 图案的不可见性优异的透明导电光学片
JP5905983B1 (ja) * 2015-02-19 2016-04-20 積水化学工業株式会社 光透過性導電性フィルム、そのフィルムロール及びそれを有するタッチパネル
CN105814523A (zh) * 2013-12-02 2016-07-27 株式会社半导体能源研究所 触摸面板和制造触摸面板的方法
JP2016168736A (ja) * 2015-03-12 2016-09-23 リンテック株式会社 透明導電膜積層用フィルム、その製造方法および透明導電性フィルム
JP2019527152A (ja) * 2016-06-30 2019-09-26 コーロン インダストリーズ インク ポリエステル多層フィルム
CN113031427A (zh) * 2019-12-25 2021-06-25 西铁城时计株式会社 钟表和钟表的风挡的制造方法
WO2023285739A1 (en) 2021-07-13 2023-01-19 Optitune Oy Thick film low refractive index polysiloxane claddings
JP7554134B2 (ja) 2021-02-18 2024-09-19 アイカ工業株式会社 反射防止フィルム及びその製造方法

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI726843B (zh) 2014-05-30 2021-05-11 日商半導體能源研究所股份有限公司 觸控面板
JP6611471B2 (ja) * 2015-05-27 2019-11-27 日東電工株式会社 透明導電性フィルム
KR102393433B1 (ko) * 2017-05-22 2022-05-03 이영수 비전도성 물체로 터치입력이 가능한 스마트기기용 보호필름
JP2019196468A (ja) * 2018-05-11 2019-11-14 日東電工株式会社 粘着剤層、その製造方法、粘着シート、粘着剤層付光学フィルムおよび画像表示装置
CN113396179B (zh) 2019-02-08 2024-09-17 东洋纺株式会社 聚酯薄膜及其用途
JP7502722B2 (ja) 2019-02-08 2024-06-19 東洋紡株式会社 折りたたみ型ディスプレイ及び携帯端末機器
US11926720B2 (en) 2019-05-28 2024-03-12 Toyobo Co., Ltd. Polyester film and application therefor
CN113874211B (zh) * 2019-05-28 2024-05-10 东洋纺株式会社 透明导电性聚酯薄膜及其用途
CN113874212B (zh) 2019-05-28 2023-10-24 东洋纺株式会社 层叠薄膜及其用途
US11899167B2 (en) 2019-05-28 2024-02-13 Toyobo Co., Ltd. Polyester film, laminated film, and use thereof
CN115490437B (zh) * 2022-11-03 2023-09-19 安徽蓝晶显示科技有限公司 一种增透显示盖板玻璃镀膜工艺方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002316378A (ja) * 2001-02-14 2002-10-29 Nitto Denko Corp 透明導電性積層体及びそれを用いたタッチパネル
WO2004070737A1 (ja) * 2003-02-03 2004-08-19 Bridgestone Corporation 透明導電性フィルム、透明導電板及びタッチパネル
JP2006228478A (ja) * 2005-02-15 2006-08-31 Fuji Photo Film Co Ltd 電性膜及びその製造方法、並びに導電性膜を用いた光学フィルター
JP2007512552A (ja) * 2003-10-30 2007-05-17 スリーエム イノベイティブ プロパティズ カンパニー 多層光学接着剤および物品
JP2011224956A (ja) * 2009-07-08 2011-11-10 Nitto Denko Corp 透明導電性フィルム、電子機器およびタッチパネル

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3972418B2 (ja) * 1997-07-14 2007-09-05 東洋紡績株式会社 透明導電性フィルムおよびタッチパネル
JP3313337B2 (ja) * 1999-05-13 2002-08-12 日本写真印刷株式会社 低反射タッチパネル
EP1426174B1 (en) * 2001-09-03 2014-06-18 Teijin Limited Transparent conductive laminate
CN1662373A (zh) * 2002-06-24 2005-08-31 富士胶片株式会社 塑料膜和图象显示单元
ATE500598T1 (de) * 2003-11-28 2011-03-15 Teijin Ltd Transparentes leitfähiges laminat und transparente berührungstafel damit
JP4419146B2 (ja) * 2005-06-13 2010-02-24 日東電工株式会社 透明導電性積層体
KR101408414B1 (ko) * 2006-09-29 2014-06-17 키모토 컴파니 리미티드 광학용 필름 및 이를 사용한 투명 도전성 부재, 투명 터치 패널
CN100565248C (zh) * 2007-03-29 2009-12-02 郭爱军 新型抗反射导电膜
JP4805999B2 (ja) * 2008-12-09 2011-11-02 日東電工株式会社 粘着剤層付き透明導電性フィルムとその製造方法、透明導電性積層体およびタッチパネル
KR20100074024A (ko) * 2008-12-22 2010-07-01 니치유 가부시키가이샤 반사 방지 필름
CN101465173B (zh) * 2008-12-31 2011-02-09 广东东邦科技有限公司 一种触摸屏透明导电膜及其制备方法
JP5389568B2 (ja) * 2009-08-19 2014-01-15 富士フイルム株式会社 透明導電性フィルム

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002316378A (ja) * 2001-02-14 2002-10-29 Nitto Denko Corp 透明導電性積層体及びそれを用いたタッチパネル
WO2004070737A1 (ja) * 2003-02-03 2004-08-19 Bridgestone Corporation 透明導電性フィルム、透明導電板及びタッチパネル
JP2007512552A (ja) * 2003-10-30 2007-05-17 スリーエム イノベイティブ プロパティズ カンパニー 多層光学接着剤および物品
JP2006228478A (ja) * 2005-02-15 2006-08-31 Fuji Photo Film Co Ltd 電性膜及びその製造方法、並びに導電性膜を用いた光学フィルター
JP2011224956A (ja) * 2009-07-08 2011-11-10 Nitto Denko Corp 透明導電性フィルム、電子機器およびタッチパネル

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102061149B1 (ko) * 2013-09-20 2019-12-31 도레이 카부시키가이샤 적층 필름 및 그 제조 방법
JPWO2015041055A1 (ja) * 2013-09-20 2017-03-02 東レ株式会社 積層フィルムおよびその製造方法
TWI643745B (zh) * 2013-09-20 2018-12-11 東麗股份有限公司 積層薄膜及其製造方法
WO2015041055A1 (ja) * 2013-09-20 2015-03-26 東レ株式会社 積層フィルムおよびその製造方法
JP2015080888A (ja) * 2013-10-22 2015-04-27 日油株式会社 透明導電性フィルム
WO2015060599A1 (ko) * 2013-10-23 2015-04-30 (주)엘지하우시스 고굴절 점착제 필름 및 이를 포함하는 터치 패널
US11091671B2 (en) 2013-10-23 2021-08-17 Lg Chem, Ltd. High-refractive adhesive film and touch panel including the same
JP2015088322A (ja) * 2013-10-30 2015-05-07 富士フイルム株式会社 光取り出し部材、及び有機電界発光装置
US10534457B2 (en) 2013-12-02 2020-01-14 Semiconductor Energy Laboratory Co., Ltd. Touch panel and method for manufacturing touch panel
CN105814523B (zh) * 2013-12-02 2019-05-14 株式会社半导体能源研究所 触摸面板和制造触摸面板的方法
CN105814523A (zh) * 2013-12-02 2016-07-27 株式会社半导体能源研究所 触摸面板和制造触摸面板的方法
CN105005425A (zh) * 2014-04-21 2015-10-28 爱思开哈斯显示用薄膜有限公司 图案的不可见性优异的透明导电光学片
CN105005425B (zh) * 2014-04-21 2018-03-27 爱思开希高科技材料有限公司 图案的不可见性优异的透明导电光学片
JP2016155366A (ja) * 2015-02-19 2016-09-01 積水化学工業株式会社 光透過性導電性フィルム、そのフィルムロール及びそれを有するタッチパネル
WO2016133081A1 (ja) * 2015-02-19 2016-08-25 積水化学工業株式会社 光透過性導電性フィルム、そのフィルムロール及びそれを有するタッチパネル
JP5905983B1 (ja) * 2015-02-19 2016-04-20 積水化学工業株式会社 光透過性導電性フィルム、そのフィルムロール及びそれを有するタッチパネル
JP2016168736A (ja) * 2015-03-12 2016-09-23 リンテック株式会社 透明導電膜積層用フィルム、その製造方法および透明導電性フィルム
JP2019527152A (ja) * 2016-06-30 2019-09-26 コーロン インダストリーズ インク ポリエステル多層フィルム
CN113031427A (zh) * 2019-12-25 2021-06-25 西铁城时计株式会社 钟表和钟表的风挡的制造方法
JP7554134B2 (ja) 2021-02-18 2024-09-19 アイカ工業株式会社 反射防止フィルム及びその製造方法
WO2023285739A1 (en) 2021-07-13 2023-01-19 Optitune Oy Thick film low refractive index polysiloxane claddings

Also Published As

Publication number Publication date
KR20140093765A (ko) 2014-07-28
JP5397824B1 (ja) 2014-01-22
KR101524580B1 (ko) 2015-06-01
CN104067352B (zh) 2015-07-15
TW201346675A (zh) 2013-11-16
CN104067352A (zh) 2014-09-24
JPWO2013114945A1 (ja) 2015-05-11

Similar Documents

Publication Publication Date Title
JP5397824B1 (ja) 透明導電性フィルム、タッチパネルおよび表示装置
KR101460919B1 (ko) 점착제층이 형성된 수지 필름, 적층 필름 및 터치 패널
JP5528645B1 (ja) ハードコートフィルムおよび透明導電性フィルム
JP4661946B2 (ja) 光学用易接着性ポリエステルフィルム及び光学用積層ポリエステルフィルム
JP6957885B2 (ja) 有機エレクトロルミネッセンス表示装置用フィルムおよび積層シート
TWI537130B (zh) The manufacturing method of laminated film
JPWO2019107036A1 (ja) ハードコートフィルム、光学積層体および画像表示装置
JP5911317B2 (ja) 積層フィルムの製造方法
JPWO2013038718A1 (ja) 透明導電性フィルムおよびタッチパネル
JP2015176465A (ja) タッチパネル用透明導電性フィルムのベースフィルムおよびタッチパネル用透明導電性フィルム
JP2014040037A (ja) ハードコートフィルム、透明導電性フィルムおよびタッチパネル
JP5821099B2 (ja) タッチパネル用透明導電性フィルムのベースフィルムおよびタッチパネル用透明導電性フィルム
TWI798788B (zh) 積層薄膜以及積層薄膜之製造方法
JP6314611B2 (ja) 機能性フィルムの製造方法
JP7455777B2 (ja) 光学積層体および画像表示装置
JP7089609B2 (ja) 光学積層体、物品、光学積層体の製造方法
JP2015176466A (ja) タッチパネル用透明導電性フィルムのベースフィルムおよびタッチパネル用透明導電性フィルム
JP2024113046A (ja) 反射防止フィルムおよびその製造方法、ならびに画像表示装置
JP2004012592A (ja) 近赤外線吸収および反射防止複合機能フィルム
JP6256154B2 (ja) 積層体、該積層体を用いたタッチパネル及び積層体の製造方法
JP6142481B2 (ja) 偏光子保護用ポリエステルフィルム
JP2012068427A (ja) 反射防止フィルム
JP2016078399A (ja) 透明導電性積層体、及び該透明導電性積層体を用いたタッチパネル
JP2016055583A (ja) 導電性積層体およびそれを用いたタッチパネル
JP7538299B1 (ja) 反射防止フィルム及び画像表示装置

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2013502330

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13743174

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20147020184

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13743174

Country of ref document: EP

Kind code of ref document: A1