Nothing Special   »   [go: up one dir, main page]

WO2013161789A1 - 端末装置、基地局装置、通信システム、無線リソース要求方法および集積回路 - Google Patents

端末装置、基地局装置、通信システム、無線リソース要求方法および集積回路 Download PDF

Info

Publication number
WO2013161789A1
WO2013161789A1 PCT/JP2013/061850 JP2013061850W WO2013161789A1 WO 2013161789 A1 WO2013161789 A1 WO 2013161789A1 JP 2013061850 W JP2013061850 W JP 2013061850W WO 2013161789 A1 WO2013161789 A1 WO 2013161789A1
Authority
WO
WIPO (PCT)
Prior art keywords
base station
station apparatus
radio resource
mobile station
uplink radio
Prior art date
Application number
PCT/JP2013/061850
Other languages
English (en)
French (fr)
Inventor
克成 上村
恭之 加藤
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Publication of WO2013161789A1 publication Critical patent/WO2013161789A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0209Power saving arrangements in terminal devices
    • H04W52/0225Power saving arrangements in terminal devices using monitoring of external events, e.g. the presence of a signal
    • H04W52/0229Power saving arrangements in terminal devices using monitoring of external events, e.g. the presence of a signal where the received signal is a wanted signal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0209Power saving arrangements in terminal devices
    • H04W52/0212Power saving arrangements in terminal devices managed by the network, e.g. network or access point is master and terminal is slave
    • H04W52/0216Power saving arrangements in terminal devices managed by the network, e.g. network or access point is master and terminal is slave using a pre-established activity schedule, e.g. traffic indication frame
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • Embodiments of the present invention provide a terminal device, a base station device, and a communication device that reduce power consumption and improve the utilization efficiency of radio resources by efficiently performing radio resource requests between a mobile station device and a base station device.
  • the present invention relates to a system, a radio resource request method, and an integrated circuit technology.
  • 3GPP 3rd Generation Partnership Project
  • 3GPP which is a standardization project, has evolved to realize high-speed communication by adopting OFDM (Orthogonal Frequency Frequency Division) Multiplexing (OFDM) communication method and flexible scheduling in predetermined frequency and time units called resource blocks.
  • OFDM Orthogonal Frequency Frequency Division
  • EUTRA Universal Terrestrial Radio Access
  • Non-Patent Document 1 Non-Patent Document 1
  • a mobile station apparatus in EUTRA includes a radio resource request (also referred to as scheduling request (SR)) procedure for requesting uplink radio resources.
  • SR scheduling request
  • the mobile station apparatus has a physical uplink control channel and a physical random access channel as uplink channels used for the radio resource request, uplink radio resources are required for the base station apparatus.
  • the mobile station apparatus notifies the base station apparatus that uplink radio resources are necessary by transmitting either of these channels.
  • Non-Patent Document 1 an application that generates only a small amount of data packets (for example, background communication (background traffic), instant message communication, or the like) always operates in the mobile station apparatus.
  • the radio resource for uplink data that is actually used is small and the frequency of transmission is low. Therefore, the physical uplink control channel used for the radio resource request is assigned to the mobile station apparatus.
  • utilization efficiency of radio resources related to the physical uplink control channel deteriorates.
  • the simplest way to solve this problem is to reduce the frequency of allocating physical uplink control channels used for radio resource requests.
  • reducing the allocation frequency of the physical uplink control channel used for the radio resource request means that the mobile station apparatus always monitors the physical downlink control channel until the radio resource is allocated, which increases power consumption. There is a problem of doing.
  • an object of an embodiment of the present invention is to reduce power consumption and improve the use efficiency of radio resources by efficiently making radio resource requests between a mobile station apparatus and a base station apparatus. It is an object of the present invention to provide a technique related to a terminal device, a base station device, a communication system, a radio resource request method, and an integrated circuit.
  • a terminal apparatus in an embodiment of the present invention is a terminal apparatus in a communication system including a terminal apparatus and a base station apparatus, and allocates an uplink radio resource after transmitting an uplink radio resource request to the base station apparatus.
  • Start a monitoring timer for monitoring the signal information to be used and while the monitoring timer is operating, monitor the signal information used for the allocation of the uplink radio resources, and after the monitoring timer expires, Signal information used for allocation of the uplink radio resource is not monitored until the uplink radio resource request is transmitted.
  • an offset value used for adjusting an activation time of the monitoring timer is applied to the monitoring timer.
  • the terminal device is characterized in that the monitoring timer is stopped when the signal information used for the allocation of the uplink radio resource is detected.
  • the base station apparatus in the embodiment of the present invention is a base station apparatus in a communication system including a terminal apparatus and a base station apparatus, and an uplink radio resource request is transmitted to the base station apparatus.
  • the terminal device is notified of a monitoring timer applied to the terminal device for monitoring signal information used for uplink radio resource allocation.
  • the base station apparatus notifies the terminal apparatus of an offset value used for adjusting the startup time of the monitoring timer.
  • a communication system is a communication system including a terminal device and a base station device, and the base station device transmits an uplink radio resource request to the base station device.
  • the terminal device is notified of a monitoring timer for monitoring signal information used for uplink radio resource allocation applied to the terminal device, and the terminal device transmits the uplink radio resource request to the base station device. Starts the monitoring timer, monitors the signal information used for the allocation of the uplink radio resource while the monitoring timer is operating, and then transmits the uplink radio resource request next after the monitoring timer expires Until then, the signal information used for the allocation of the uplink radio resource is not monitored.
  • the base station apparatus of the communication system notifies the terminal apparatus of an offset value used for adjusting the activation time of the monitoring timer.
  • the terminal device of the communication system is characterized in that the monitoring timer is stopped when the signal information used for the allocation of the uplink radio resource is detected.
  • a radio resource request method for a terminal apparatus in an embodiment of the present invention is a radio resource request method for a terminal apparatus in a communication system including the terminal apparatus and a base station apparatus, and the uplink radio resource request Starting a monitoring timer for monitoring signal information used for allocation of uplink radio resources after transmission to the base station apparatus, and signal information used for allocation of the uplink radio resources while the monitoring timer is operating And at least a step of not monitoring signal information used for allocation of the uplink radio resource until the next uplink radio resource request is transmitted after the monitoring timer expires.
  • An integrated circuit of a terminal apparatus in an embodiment of the present invention is an integrated circuit mounted on a terminal apparatus in a communication system including the terminal apparatus and a base station apparatus, and an uplink radio resource request is transmitted to the base station.
  • the integrated circuit of the base station apparatus in the embodiment of the present invention is an integrated circuit mounted on a base station apparatus in a communication system including a terminal apparatus and a base station apparatus.
  • the base station apparatus exhibits the above function.
  • each embodiment is disclosed in the technology of a terminal device, a base station device, a communication system, a transmission / reception control method, and an integrated circuit that realize efficient data transmission / reception control, but can be applied to each embodiment.
  • a communication method is not limited to a communication method that is upwardly compatible with EUTRA, such as EUTRA or Advanced EUTRA.
  • CDMA code division multiple access
  • TDMA time division multiple access
  • FDMA frequency division multiple access
  • OFDMA orthogonal FDMA
  • SC -Can single carrier FDMA
  • the mobile station apparatus and the base station apparatus aggregate (aggregate) the frequencies (component carriers or frequency bands) of a plurality of different frequency bands (frequency bands) by carrier aggregation into one frequency (frequency band). ) May be applied.
  • Component carriers include uplink component carriers corresponding to the uplink and downlink component carriers corresponding to the downlink.
  • a mobile station apparatus capable of carrier aggregation performs transmission and reception by regarding these as one 100 MHz frequency bandwidth.
  • the component carriers to be aggregated may be continuous frequencies, or may be frequencies at which all or part of them are discontinuous.
  • the usable frequency band is 800 MHz band, 2.4 GHz band, and 3.4 GHz band
  • one component carrier is 800 MHz band
  • another component carrier is 2 GHz band
  • another component carrier is 3.4 GHz band. It may be transmitted.
  • the frequency bandwidth of each component carrier may be a frequency bandwidth narrower than the receivable frequency bandwidth (for example, 20 MHz) of the mobile station apparatus, or the frequency bandwidth may be different.
  • the frequency bandwidth is preferably equal to one of the conventional cell frequency bandwidths in consideration of backward compatibility. Note that the number of uplink component carriers that the base station apparatus assigns (sets or adds) to the mobile station apparatus is desirably the same as or less than the number of downlink component carriers.
  • a terminal device and a base station device that reduce power consumption and improve the utilization efficiency of radio resources by efficiently making a radio resource request between a mobile station device and a base station device
  • a technique related to a communication system, a radio resource request method, and an integrated circuit can be provided.
  • a channel means a medium used for transmission of signals (signal information)
  • a physical channel means a physical medium used for transmission of signals (signal information).
  • a physical channel can be used synonymously with a signal.
  • the physical channel may be added in the future in EUTRA and Advanced EUTRA, or the structure and format of the physical channel may be changed or added. It does not affect.
  • Radio frames In EUTRA and Advanced EUTRA, physical channel / physical signal scheduling is managed using radio frames.
  • One radio frame is 10 ms, and one radio frame is composed of 10 subframes. Further, one subframe is composed of two slots (that is, one subframe is 1 ms, and one slot is 0.5 ms).
  • resource blocks are used as a minimum scheduling unit in which physical channels are allocated.
  • a resource block is defined by a constant frequency region composed of a set of a plurality of subcarriers (for example, 12 subcarriers) and a region composed of a constant transmission time interval (1 slot) on the frequency axis.
  • the synchronization signal (Synchronization Signals) is composed of three types of primary synchronization signals and secondary synchronization signals composed of 31 types of codes arranged alternately in the frequency domain. 504 kinds of cell identifiers (physical cell ID (Physical Cell Identity; PCI)) for identifying the base station apparatus and frame timing for radio synchronization are shown by the combination.
  • the mobile station device specifies the cell ID of the synchronization signal received by the cell search.
  • the physical broadcast information channel is transmitted for the purpose of reporting control parameters (broadcast information (system information); System information) that are commonly used by mobile station apparatuses in the cell. Broadcast information that is not notified on the physical broadcast information channel is transmitted as a layer 3 message (system information) on the physical downlink shared channel after the radio resource is notified on the physical downlink control channel.
  • a cell global identifier CGI; Cell Global Identifier
  • TAI Tracking Area Identifier
  • Downlink reference signals are classified into multiple types according to their use.
  • cell-specific reference signals are pilot signals transmitted at a predetermined power for each cell, and are downlink reference signals that are periodically repeated in the frequency domain and the time domain based on a predetermined rule. It is.
  • a mobile station apparatus measures reception quality for every cell by receiving cell specific RS.
  • the mobile station apparatus also uses the downlink cell-specific RS as a reference signal for demodulating the physical downlink control channel or the physical downlink shared channel transmitted simultaneously with the cell-specific RS.
  • a sequence used for the cell-specific RS a sequence that can be identified for each cell is used.
  • the downlink reference signal is also used for estimation of downlink propagation path fluctuation.
  • a downlink reference signal used for estimation of propagation path fluctuation is referred to as a channel state information reference signal (CSI-RS).
  • CSI-RS channel state information reference signal
  • the downlink reference signal set individually for each mobile station apparatus is called UE specific reference signals (URS) or Dedicated RS (DRS), and demodulates the physical downlink control channel or the physical downlink shared channel. Sometimes referred to for channel compensation processing.
  • a physical downlink control channel is transmitted in several OFDM symbols (for example, 1 to 4 OFDM symbols) from the head of each subframe, and follows the scheduling of the base station apparatus to the mobile station apparatus. It is used for the purpose of instructing the radio resource allocation information and the adjustment amount of increase / decrease in transmission power.
  • the mobile station apparatus monitors (monitors) the physical downlink control channel addressed to the local station apparatus before transmitting / receiving a layer 3 message (paging, handover command, etc.) that is downlink data or downlink control data.
  • a layer 3 message paging, handover command, etc.
  • the physical downlink control channel is configured to be transmitted in the area of the resource block that is individually assigned to the mobile station apparatus from the base station apparatus in addition to the above-described ODFM symbol. Is also possible.
  • a physical uplink control channel is a reception acknowledgment (ACK / NACK; Acknowledgement / Negative Acknowledgement) or downlink propagation path (channel state) information of data transmitted on the physical downlink shared channel.
  • CSI Channel State Information
  • SR scheduling request
  • CSI includes CQI (Channel Quality Indicator), PMI (Precoding Matrix Indicator), PTI (Precoding Type Indicator), and RI (Rank Indicator).
  • CSI includes CQI (Channel Quality Indicator), PMI (Precoding Matrix Indicator), PTI (Precoding Type Indicator), and RI (Rank Indicator).
  • Each indicator may be expressed as “Indication”, but its use and meaning are the same.
  • the physical downlink shared channel (PDSCH: Physical Downlink Shared Channel) is also used to notify the mobile station apparatus as layer 3 message broadcast information (system information) not notified by the paging or physical broadcast information channel in addition to downlink data. used.
  • the radio resource allocation information of the physical downlink shared channel is indicated by the physical downlink control channel.
  • the physical downlink shared channel is transmitted after being arranged in an OFDM symbol other than the OFDM symbol through which the physical downlink control channel is transmitted. That is, the physical downlink shared channel and the physical downlink control channel are time division multiplexed within one subframe.
  • the physical uplink shared channel mainly transmits uplink data and uplink control data, and can also include control data such as downlink reception quality and ACK / NACK. In addition to uplink data, it is also used to notify the base station apparatus of uplink control information as a layer 3 message. Similarly to the downlink, the radio resource allocation information of the physical uplink shared channel is indicated by the physical downlink control channel.
  • the uplink reference signal (uplink reference signal; Uplink Reference Signal, uplink pilot signal, also called uplink pilot channel) is transmitted from the base station apparatus to the physical uplink control channel PUCCH and / or the physical uplink shared channel PUSCH.
  • Demodulation reference signal (DMRS; Demodulation Reference Signal) used for demodulation and a sounding reference signal (SRS; Sounding Reference Signal) used mainly by the base station apparatus to estimate the uplink channel state It is.
  • Sounding reference signals include a periodic sounding reference signal (Periodic SRS) and an aperiodic sounding reference signal (Aperiodic SRS).
  • the physical random access channel (PRACH; “Physical” Random “Access” Channel) is a channel used to notify a preamble sequence and has a guard time.
  • the preamble sequence is configured so as to express 6-bit information by preparing 64 types of sequences.
  • the physical random access channel is used as a means for accessing the base station apparatus of the mobile station apparatus.
  • the mobile station apparatus transmits a radio resource request when the physical uplink control channel is not set, and transmission timing adjustment information (Timing Advance (TA)) required to match the uplink transmission timing with the reception timing window of the base station apparatus.
  • TA Transmission Advance
  • the physical random access channel is used to request the base station apparatus.
  • the mobile station apparatus transmits a preamble sequence using the radio resource for the physical random access channel set by the base station apparatus.
  • the mobile station apparatus that has received the transmission timing adjustment information is commonly set by the broadcast information (or individually set by the layer 3 message), and a transmission timing timer (TA timer) that counts the valid time of the transmission timing adjustment information
  • TA timer transmission timing timer
  • the uplink state is managed while the transmission timing timer is in the transmission timing adjustment state during the effective time (during time measurement) and the transmission timing is not adjusted (transmission timing unadjusted state) outside the effective period (during stop).
  • the layer 3 message is a control-plane message exchanged between the mobile station apparatus and the RRC (radio resource control) layer of the base station apparatus, and can be used synonymously with RRC signaling or RRC message. Since other physical channels are not related to each embodiment of the present invention, detailed description thereof is omitted.
  • the communicable range of each frequency controlled by the base station apparatus is regarded as a cell.
  • the areas (cells) covered by each frequency may have different widths and different shapes. Moreover, the area to cover may differ for every frequency.
  • a mobile station device When a mobile station device operates in a cell and moves from one cell to another cell, it performs a cell reselection procedure during non-wireless connection (during non-communication), and a handover procedure during wireless connection (during communication). To move to another suitable cell.
  • a suitable cell generally indicates a cell in which access of a mobile station apparatus is not prohibited and the downlink reception quality is the best.
  • carrier aggregation is communication by a plurality of cells using a plurality of component carriers (frequency bands), and is also referred to as cell aggregation.
  • the mobile station apparatus may be wirelessly connected to the base station apparatus via a relay station apparatus (or repeater) for each frequency. That is, the base station apparatus of each embodiment of the present invention can be replaced with a relay station apparatus.
  • the base station device defined by 3GPP is called Node B (NodeB), and the base station device in EUTRA and Advanced EUTRA is called eNodeB (eNodeB).
  • NodeB Node B
  • eNodeB a mobile station apparatus in EUTRA and Advanced EUTRA defined by 3GPP
  • the base station apparatus manages, for each frequency, a cell that is an area in which the mobile station apparatus can communicate with the base station apparatus.
  • a cell is also referred to as a macro cell, a femto cell, a pico cell, or a nano cell depending on the size of an area that can communicate with a mobile station apparatus.
  • the cell used for communication with the mobile station device among the cells of the base station device is a serving cell (Serving cell). This cell is referred to as a neighbor cell.
  • the following two radio resource request methods are prepared as methods for a mobile station device to start transmission of uplink data to a base station device.
  • the base station apparatus assigns the configuration (configuration) related to the transmission resource of the physical uplink control channel necessary for making a radio resource request to the mobile station apparatus
  • the mobile station apparatus moves This is a method in which a station apparatus makes a radio resource request (requests for uplink grant transmission) to a base station apparatus using a physical uplink control channel.
  • the mobile station apparatus is when uplink data is retained in an uplink buffer, and a physical uplink shared channel for transmitting the uplink data is not allocated. (When no uplink grant is detected), the radio resource request is put in a pending state (Pending). When the mobile station apparatus is in a radio resource request pending state and can transmit a physical uplink control channel (hereinafter referred to as SR-PUCCH) used for the radio resource request, the mobile station apparatus transmits SR-PUCCH. Transmit and request radio resources from the base station apparatus.
  • SR-PUCCH physical uplink control channel
  • the mobile station apparatus increments the transmission counter of the physical uplink control channel and starts measuring the radio resource request prohibition timer (SR Prohibit Timer) according to the setting.
  • the mobile station apparatus does not transmit SR-PUCCH when the radio resource request prohibition timer is counting.
  • DRX discontinuous reception
  • DTX intermittent transmission
  • the transmission / reception control is changed so that intermittent transmission control is applied.
  • a mobile station apparatus that transmits SR-PUCCH and whose radio resource request is in a pending state performs physical downlink control in order to detect radio resource allocation (transmission of uplink grant) in each subframe after SR-PUCCH transmission. Monitor the channel. Also, the mobile station apparatus periodically transmits SR-PUCCH until the physical uplink shared channel is assigned by the uplink grant from the base station apparatus. Each time the mobile station apparatus transmits SR-PUCCH, it increments the transmission counter and counts the number of transmissions. If the mobile station apparatus cannot detect the uplink grant even if the SR-PUCCH transmission counter reaches the maximum number of SR-PUCCH transmissions, the mobile station apparatus releases the physical uplink control channel resource, and performs the second radio resource request method. Start. In the first radio resource request method, the mobile station apparatus is in a transmission timing adjustment state.
  • the mobile station apparatus In the second radio resource request method, (1) the mobile station apparatus is in a transmission timing adjustment state, but the base station apparatus allocates an uplink shared channel necessary for making a radio resource request to the mobile station apparatus. This is implemented when there is no, or (2) TA timer is not operating (transmission timing non-adjusted state).
  • the mobile station apparatus makes a radio resource request to the base station apparatus using a physical random access channel, and follows a random access procedure.
  • the mobile station apparatus releases the pending state of the radio resource request.
  • the present embodiment relates to a radio resource request method of the mobile station apparatus 1, and particularly shows a radio resource request method based on determination of a radio resource request method when the mobile station apparatus 1 is communicating.
  • FIG. 1 is a block diagram showing an example of a mobile station apparatus 1 according to the first embodiment of the present invention.
  • the mobile station apparatus 1 includes a reception unit 101, a demodulation unit 102, a decoding unit 103, a measurement processing unit 104, a control unit 105, an uplink buffer control unit 106, an encoding unit 107, a modulation unit 108, a transmission unit 109, an uplink radio.
  • a resource request control unit 110, a random access control unit 111, and an upper layer 112 are included.
  • the upper layer 112 is a block that realizes a specific function of an RRC (Radio Resource Control) layer that performs radio resource control.
  • the uplink buffer control unit 106, the uplink radio resource request control unit 110, and the random access control unit 111 are blocks that realize specific functions of a MAC (Medium Access Control) layer that manages the data link layer.
  • MAC Medium Access Control
  • the mobile station apparatus 1 has a reception system block (reception unit 101, demodulation unit 102, decoding unit 103) to support simultaneous reception of a plurality of frequencies (frequency band, frequency bandwidth) by carrier aggregation, and In order to support simultaneous transmission of a plurality of frequencies (frequency bands, frequency bandwidths), a plurality of transmission system blocks (encoding unit 107, modulation unit 108, transmission unit 109) may be provided.
  • a reception system block reception unit 101, demodulation unit 102, decoding unit 103
  • a plurality of transmission system blocks encoding unit 107, modulation unit 108, transmission unit 109
  • the mobile station apparatus control information is input from the upper layer 112 to the control unit 105.
  • the mobile station apparatus control information is information necessary for radio communication control of the mobile station apparatus 1 configured by the reception control information and the transmission control information.
  • the radio connection resource setting, cell-specific transmission individually transmitted from the base station apparatus 2 is performed.
  • the higher layer 112 inputs the information to the control unit 105 as necessary.
  • the control unit 105 appropriately inputs reception control information, which is control information related to reception, to the reception unit 101, the demodulation unit 102, and the decoding unit 103.
  • the reception control information includes information such as DRX control information, reception timing for each channel, multiplexing method, and radio resource arrangement information in addition to reception frequency band information. Further, the control unit 105 inputs measurement setting information used for measurement event determination as to whether or not the measurement result of the mobile station apparatus 1 satisfies the designated measurement event to the measurement processing unit 104.
  • the measurement setting information can include a plurality of different types of measurement events. In the measurement setting information, a different measurement event may be set from the base station apparatus 2 for each cell or for each frequency.
  • the received signal is received by the receiving unit 101.
  • the receiving unit 101 receives a signal in the frequency band specified by the reception control information. Moreover, the receiving part 101 performs PDCCH monitoring according to a PDCCH monitoring timer, when the PDCCH monitoring timer setting mentioned later is applied as reception control information.
  • the received signal is input to the demodulation unit 102.
  • Demodulation section 102 demodulates the received signal, inputs the signal to decoding section 103 to correctly decode downlink data and downlink control data, and inputs each decoded data to upper layer 112. Each data is also input to the measurement processing unit 104.
  • the measurement processing unit 104 measures a measurement value of downlink reference signal reception quality (SIR, SINR, RSRP, RSRQ, RSSI, path loss, etc.) for each cell (component carrier), a physical downlink control channel, or a physical downlink shared channel.
  • the measurement result information is generated based on the measurement result of the reception error rate.
  • the measurement processing unit 104 also uses the measurement result as one of parameters for determining success or failure of the set measurement event.
  • the measurement processing unit 104 inputs the measurement result to the upper layer 112 as measurement result information.
  • the measurement processing unit 104 displays a measurement event result indicating the content of the established measurement event as a measurement result.
  • Information is sent to the upper layer 112 as information.
  • the measurement processing unit 104 displays the measurement event result indicating the content of the measurement event that is not satisfied when the measurement event once satisfied is not satisfied (that is, when the set measurement event condition is not satisfied). You may notify to the upper layer 112 as measurement result information.
  • mobile station apparatus control information that is a control parameter for controlling each block is input from the upper layer 112 to the control unit 105, and transmission control information that is control information regarding transmission is transmitted to the uplink buffer control unit 106.
  • the transmission control information includes information such as DTX control information, coding information, modulation information, transmission frequency band information, transmission timing for each channel, multiplexing method, and radio resource allocation information as uplink scheduling information of the transmission signal. ing.
  • Random access setting information is input from the upper layer 112 to the random access control unit 111.
  • the random access setting information includes preamble information, radio resource information for transmission of a physical random access channel (power adjustment parameter, maximum preamble retransmission count, etc.), and the like.
  • the upper layer 112 manages transmission timing adjustment information and a transmission timing timer used for uplink transmission timing adjustment, and states of uplink transmission timing (transmission timing adjustment) for each cell (or for each cell group and each TA group). Status or transmission timing non-adjusted state).
  • the transmission timing adjustment information and the transmission timing timer are included in the transmission control information.
  • the upper layer 112 manages transmission timing adjustment information corresponding to the uplink transmission timing of each of the plurality of cells (or cell groups and TA groups). To do.
  • the generated transmission data (uplink data and uplink control data) is input from the higher layer 112 to the uplink buffer control unit 106 at an arbitrary timing. At this time, the uplink buffer control unit 106 calculates the amount of input transmission data (uplink buffer amount). Resource request setting information is set in the uplink radio resource request control unit 110 by the higher layer 112. The resource request setting information includes at least transmission counter setting information and radio resource request prohibition timer information. Further, when the transmission data is input to the uplink buffer control unit 106, the uplink buffer control unit 106 notifies the uplink radio resource request control unit 110 of the generation of the transmission data, thereby transmitting to the uplink buffer. Signals that data exists.
  • the uplink radio resource request control unit 110 determines whether radio resources necessary for transmitting the input transmission data are allocated.
  • the uplink radio resource request control unit 110 receives one of the physical uplink shared channel PUSCH, the radio resource request by the physical uplink control channel (SR-PUCCH), or the physical random access channel based on the radio resource allocation. Select and request control processing for transmitting the selected channel to the encoding unit 107 and / or the random access control unit 111.
  • the encoding unit 107 allocates radio resources that have been allocated in accordance with an instruction from the uplink radio resource request control unit 110.
  • the transmission data corresponding to is acquired from the uplink buffer control unit 106, encoded, and output to the modulation unit 108.
  • the encoding unit 107 performs SR- in accordance with an instruction from the uplink radio resource request control unit 110. Control data necessary for transmission of PUCCH is encoded and output to modulation section 108.
  • the encoding unit 107 performs random access procedure for the random access control unit 111. Instruct to start. At this time, the encoding unit 107 generates a preamble sequence transmitted through the physical random access channel based on the random access data information input from the random access control unit 111. The encoding unit 107 appropriately encodes each data according to the transmission control information and outputs the data to the modulation unit 108.
  • SR-PUCCH radio resource request
  • the modulation unit 108 appropriately performs modulation processing based on the channel structure for transmitting the output from the coding unit 107.
  • the transmission unit 109 maps the output of the modulation unit 108 to the frequency domain, converts the frequency domain signal into a time domain signal, and performs power amplification on a carrier wave of a predetermined frequency.
  • the transmission unit 109 also adjusts the uplink transmission timing according to the transmission timing adjustment information for each cell (also for each cell group and each TA group) input from the higher layer 112.
  • the physical uplink shared channel in which the uplink control data is arranged can include, for example, a layer 3 message (radio resource control message; RRC message) in addition to the user data.
  • FIG. 1 other components of the mobile station apparatus 1 are omitted because they are not particularly strongly related to the present embodiment, but a plurality of blocks having other functions necessary for operating as the mobile station apparatus 1 are omitted. It is clear to have as a component.
  • FIG. 2 is a block diagram showing an example of the base station apparatus 2 according to the first embodiment of the present invention.
  • the base station apparatus includes a reception unit 201, a demodulation unit 202, a decoding unit 203, a control unit 204, a coding unit 205, a modulation unit 206, a transmission unit 207, an upper layer 208, and a network signal transmission / reception unit 209.
  • the base station apparatus 2 includes a reception system block (reception unit 201, demodulation unit 202, decoding unit 203) and a transmission system block (encoding unit) in order to support a plurality of frequencies (frequency bands and frequency bandwidths).
  • 205, a modulation unit 206, and a transmission unit 207) may be provided.
  • the higher layer 208 inputs downlink data and downlink control data to the encoding unit 205.
  • the encoding unit 205 encodes the input data and inputs it to the modulation unit 206.
  • Modulation section 206 modulates the encoded signal.
  • the signal output from the modulation unit 206 is input to the transmission unit 207.
  • Transmitter 207 maps the input signal to the frequency domain, then converts the frequency domain signal to a time domain signal, transmits the amplified signal on a carrier having a predetermined frequency, and transmits the signal.
  • the physical downlink shared channel in which downlink control data is arranged typically constitutes a layer 3 message (RRC message).
  • the receiving unit 201 converts the signal received from the mobile station device 1 into a baseband digital signal.
  • the reception unit 201 receives signals at different timings for each cell (also for each cell group and each TA group).
  • the digital signal converted by the reception unit 201 is input to the demodulation unit 202 and demodulated.
  • the signal demodulated by the demodulation unit 202 is then input to the decoding unit 203 and decoded, and the correctly decoded uplink control data and uplink data are output to the upper layer 208.
  • Base station apparatus control information necessary for control of each block is information necessary for radio communication control of the base station apparatus 2 configured by reception control information and transmission control information, and a higher-level network apparatus (MME or gateway apparatus). , OAM) and system parameters, and the upper layer 208 inputs to the control unit 204 as necessary.
  • MME higher-level network apparatus
  • the control unit 204 transmits base station apparatus control information related to transmission to each block of the encoding unit 205, modulation unit 206, and transmission unit 207 as transmission control information, and base station apparatus control information related to reception to the reception control information.
  • base station apparatus control information related to transmission to each block of the encoding unit 205, modulation unit 206, and transmission unit 207 as transmission control information, and base station apparatus control information related to reception to the reception control information.
  • the RRC of the base station device 2 exists as part of the upper layer 208.
  • the network signal transmitting / receiving unit 209 transmits (transfers) or receives control messages or user data between the base station devices 2 or between the host network device and the base station device 2.
  • the base station device 2 transmits (transfers) or receives control messages or user data between the base station devices 2 or between the host network device and the base station device 2.
  • other components of the base station device 2 are omitted because they are not particularly strongly related to the present embodiment, but a plurality of blocks having other functions necessary for operating as the base station device 2 are omitted. It is clear to have as a component.
  • FIG. 3 is a diagram illustrating exchange of information related to transmission / reception control between the mobile station apparatus 1 and the base station apparatus 2 in the present embodiment.
  • FIG. 3 shows the state transition of the radio resource request (SR state in the figure) and the transition of the monitoring state of the physical downlink control channel (when the mobile station device 1 makes a radio resource request to the base station device 2). It is the figure explaining a horizontal axis as a time axis about (PDCCH monitoring state in a figure). Further, DRX / DTX control is applied to the mobile station apparatus 1.
  • transmission / reception control of the mobile station apparatus 1 from timing T11 to timing T12 will be described.
  • This section shows transmission / reception control of the mobile station apparatus 1 when DRX control is applied to the mobile station apparatus 1 and no transmission data is generated by the timing T11.
  • the mobile station apparatus 1 starts monitoring PDCCH at timing T11 based on the set DRX control setting (PDCCH monitoring state: ON).
  • the mobile station apparatus 1 needs to continue monitoring the PDCCH for a predetermined duration P01 from the timing T11 (PDCCH monitoring state: ON), but may not monitor the PDCCH after the duration P01 has elapsed.
  • This section indicates transmission / reception control when it is determined that DRX control is applied to the mobile station apparatus 1 and SR-PUCCH transmission is performed for a radio resource request.
  • the transmission / reception control of the mobile station apparatus 1 in this section when transmission data is generated, the transmission data is not in a state in which the transmission data can be transmitted by the physical uplink shared channel PUSCH, and the SR-PUCCH can be used.
  • the SR state of the mobile station device 1 is changed to the Pending state.
  • the SR state of the mobile station apparatus 1 before the timing T12 is managed as a non-pending state.
  • the mobile station apparatus 1 whose SR state has changed to the Pending state transmits SR-PUCCH (SR11) at the latest timing T13 at which SR-PUCCH can be transmitted. At this time, the mobile station apparatus 1 increments the counter of the number of SR transmissions.
  • the mobile station apparatus 1 determines the SR-PUCCH transmission timing (timing T13) based on the SR-PUCCH transmission setting. Further, the mobile station apparatus 1 starts a PDCCH monitoring timer simultaneously with transmission of the SR-PUCCH (SR11). The continuous monitoring time P02 set by the base station apparatus 2 is applied to the PDCCH monitoring timer. The mobile station apparatus 1 monitors the PDCCH every subframe from timing T13 to timing T14 when the PDCCH monitoring timer expires (PDCCH monitoring state: ON). That is, the mobile station apparatus 1 monitors the PDCCH every subframe in order to detect uplink radio resource allocation information addressed to the local station apparatus in a section from timing T13 to timing T14.
  • PDCCH monitoring state ON
  • the mobile station apparatus 1 receives the PDCCH transmitted from the base station apparatus 2 every subframe in the section from the timing T13 to the timing T14, and allocates the uplink radio resource notified using the PDCCH. It monitors whether or not the signal information (uplink grant (UL grant)) to be used is detected.
  • uplink grant UL grant
  • the base station apparatus 2 gives an additional parameter to the mobile station apparatus 1 to monitor the PDCCH in some subframes instead of every subframe in the interval from the activation of the PDCCH monitoring timer to the expiration. It may be set. For example, the PDCCH may be monitored only in even-numbered subframes, odd-numbered subframes, or some set subframes in which the PDCCH monitoring timer is operating.
  • the additional parameter may be set individually for each mobile station device 1 or may be fixedly set by the system, and may be set autonomously from information unique to the mobile station device 1. For example, it may be set from the subframe number that transmitted the SR-PUCCH, or may be set from the index number used for setting the SR-PUCCH.
  • the time parameter applied to the PDCCH monitoring timer that is, the parameter for specifying the continuous monitoring time P02 will be described as the PDCCH monitoring timer setting.
  • the PDCCH monitoring timer setting may be individually set in the mobile station apparatus 1 by the base station apparatus 2 as part of the SR-PUCCH setting. That is, different PDCCH monitoring timer settings may be notified for each mobile station apparatus 1. Further, there may be a mobile station apparatus 1 that is not notified of the PDCCH monitoring timer setting.
  • the mobile station device 1 when the base station device 2 is notified of a value greater than or equal to a predetermined value as a transmission cycle timer (Periodic Timer) equal to the SR-PUCCH transmission cycle (SR Period), the mobile station device 1 is implicit (autonomous ) May be applied with the PDCCH monitoring timer setting defined in the system. For example, when 80 ms (milliseconds) is set as the SR-PUCCH transmission cycle timer, the mobile station apparatus 1 does not apply the PDCCH monitoring timer setting, and the SR-PUCCH transmission cycle timer exceeds 80 ms ( For example, when 160 ms) is set, the PDCCH monitoring timer setting may be applied.
  • a transmission cycle timer Periodic Timer
  • SR Period transmission cycle timer
  • the mobile station apparatus sets the PDCCH monitoring timer setting from the SR-PUCCH transmission period timer value. 1 may be calculated implicitly (autonomously) and applied.
  • the calculated value may be a value obtained by reducing the SR-PUCCH transmission cycle timer to 1 / n (n is a non-zero natural number).
  • the coefficient n used for the calculation may be notified from the base station apparatus 2 or may be a fixed numerical value defined by the system.
  • the mobile station apparatus 1 when 80 ms (milliseconds) is set as the SR-PUCCH transmission cycle timer, the mobile station apparatus 1 does not apply the PDCCH monitoring timer setting, and the SR-PUCCH transmission cycle timer exceeds 80 ms ( For example, when 160 ms) is set, a value reduced to 1 / n (20 ms when n is 4) may be applied as the PDCCH monitoring timer setting.
  • the PDCCH monitoring timer setting may be information that specifies whether to activate the PDCCH monitoring timer.
  • the PDCCH monitoring timer setting for activation may be applied based on any of the methods described above.
  • the mobile station apparatus 1 when the radio resource allocation (uplink grant (UL grant)) by the physical downlink control channel PDCCH is not received from the base station apparatus 2 in the section of the continuous monitoring time P02, the mobile station apparatus 1 The monitoring of the PDCCH may not be performed from T14 to timing T15, which is the next SR-PUCCH transmission opportunity.
  • the timing T15 which is an SR-PUCCH transmission opportunity, is equal to the timing at which the SR-PUCCH transmission period (SR Period) has elapsed from the SR-PUCCH (SR11) transmitted immediately before by the mobile station apparatus 1.
  • the mobile station apparatus 1 sets a section (section from timing T14 to timing T15) in which the physical downlink control channel PDCCH need not be monitored. It is possible to suppress power consumption used for the purpose. In particular, as the SR-PUCCH transmission period (SR Period) is longer, the use efficiency of radio resources and the effect of suppressing power consumption increase.
  • SR Period SR-PUCCH transmission period
  • mobile station apparatus 1 transmits SR-PUCCH (SR12) at timing T15, which is the SR-PUCCH transmission period (SR Period). At this time, the mobile station device 1 increments the counter of the number of SR transmissions. In addition, the mobile station apparatus 1 starts the PDCCH monitoring timer simultaneously with the transmission of the SR-PUCCH (SR12), and performs the same reception control described in the section from the timing T13 to the timing T15 regarding the PDCCH monitoring in the section from the timing T15 to the timing T17. This also applies to the intervals after and.
  • the mobile station apparatus 1 will continue until the SR-PUCCH continuous transmission count reaches the maximum transmission count or from the base station apparatus 2 to the local station apparatus. On the other hand, the same reception control is repeated until the uplink grant (UL grant) transmitted is detected.
  • UL grant uplink grant
  • the mobile station apparatus 1 transmits an uplink grant (UL) addressed to the own station apparatus from the base station apparatus 2 at the timing R11 in the section of the continuous monitoring time P02 corresponding to the SR-PUCCH (SR13) transmitted at the timing T17.
  • UL uplink grant
  • SR13 SR-PUCCH
  • An example in the case of detecting (grant) is shown. That is, the timing R11 at which the base station device 2 transmits the uplink grant to the mobile station device 1 is within the interval of the PDCCH monitoring timer applied to the mobile station device 1.
  • the mobile station apparatus 1 changes the SR state from the Pending state to the Non-Pending state, further stops the PDCCH monitoring timer, and applies normal reception control in which the PDCCH is monitored every subframe (PDCCH monitoring). Status: ON). Note that the mobile station apparatus 1 may release the PDCCH monitoring timer or may determine that it has expired.
  • the mobile station apparatus 1 of the present embodiment can explicitly or implicitly set a timer for measuring a predetermined time after transmitting a physical uplink control channel for a radio resource request from the base station apparatus 2.
  • the mobile station apparatus 1 can regard the sections other than the section in which the timer is counting as sections in which the physical downlink control channel need not be monitored.
  • the base station apparatus 2 explicitly or implicitly sets a timer for measuring a predetermined time after transmitting a physical uplink control channel for requesting radio resources to the mobile station apparatus 1. Parameters can be notified. Further, the base station apparatus 2 does not have to transmit a physical downlink control channel to the mobile station apparatus 1 except in a section where the timer is counting.
  • the mobile station apparatus 1 is configured to request a radio resource based on the setting of the physical uplink control channel for the radio resource request notified from the base station apparatus 2. After transmitting the physical uplink control channel, a section in which the physical downlink control channel is not monitored can be set based on a timer, so that the power consumption of the mobile station apparatus 1 is reduced while improving the utilization efficiency of radio resources. be able to.
  • FIG. 4 is a diagram illustrating the exchange of information related to transmission / reception control between the mobile station device 1 and the base station device 2 in the present embodiment, and the way of viewing the diagram is the same as FIG. Further, DRX / DTX control is applied to the mobile station apparatus 1.
  • the transmission / reception control of the mobile station apparatus 1 from the timing T21 to the timing T22 is the same as the transmission / reception control of the mobile station apparatus 1 in the section from the timing T11 to the timing T12 in FIG.
  • This section indicates transmission / reception control when it is determined that DRX control is applied to the mobile station apparatus 1 and SR-PUCCH transmission is performed for a radio resource request.
  • the transmission / reception control of the mobile station apparatus 1 in this section when transmission data is generated, the transmission data is not in a state in which the transmission data can be transmitted by the physical uplink shared channel PUSCH, and the SR-PUCCH can be used.
  • the SR state of the mobile station device 1 is changed to the Pending state.
  • the SR state of the mobile station apparatus 1 before the timing T22 is managed as a Non-Pending state.
  • the mobile station apparatus 1 whose SR state has changed to the Pending state transmits SR-PUCCH (SR21) at the latest timing T23 at which SR-PUCCH can be transmitted. At this time, the mobile station apparatus 1 increments the counter of the number of SR transmissions.
  • the mobile station apparatus 1 determines the SR-PUCCH transmission timing (timing T23) based on the SR-PUCCH transmission setting. Further, the mobile station apparatus 1 applies the offset value P03 until the PDCCH monitoring timer is started simultaneously with the transmission of the SR-PUCCH (SR21). Here, the actual PDCCH monitoring timer is started at timing T24 when the offset value P03 is applied. That is, the offset value is used to adjust the timing for starting the PDCCH monitoring timer.
  • the continuous monitoring time P04 set by the base station apparatus 2 is applied to the PDCCH monitoring timer.
  • the mobile station apparatus 1 does not have to monitor the PDCCH in a section until the PDCCH monitoring timer to which the offset value is applied, that is, a section from timing T23 to timing T24.
  • the mobile station apparatus 1 monitors the PDCCH every subframe during the continuous monitoring time P04 from when the PDCCH monitoring timer starts until it expires, that is, from timing T24 to timing T25 (PDCCH monitoring state: ON).
  • a time parameter (PDCCH monitoring timer setting) applied to the PDCCH monitoring timer, any method described in the first embodiment may be used.
  • the base station apparatus 2 gives an additional parameter to the mobile station apparatus 1 to monitor the PDCCH in some subframes instead of every subframe in the interval from the activation of the PDCCH monitoring timer to the expiration. It may be set. For example, the PDCCH may be monitored only in even-numbered subframes, odd-numbered subframes, or some set subframes in which the PDCCH monitoring timer is operating.
  • the additional parameter may be set individually for each mobile station device 1 or may be fixedly set by the system, and may be set autonomously from information unique to the mobile station device 1. For example, it may be set from the subframe number that transmitted the SR-PUCCH, or may be set from the index number used for setting the SR-PUCCH.
  • the offset value P03 until the PDCCH monitoring timer is started is referred to as a PDCCH monitoring offset value, and a method for setting the PDCCH monitoring offset value will be described.
  • the PDCCH monitoring offset value may be individually notified to the mobile station apparatus 1 and set as part of the SR-PUCCH setting by the base station apparatus 2. That is, a different PDCCH monitoring offset value may be notified for each mobile station apparatus 1. Further, there may be a mobile station apparatus 1 that is not notified of the PDCCH monitoring offset value. Further, an index number for selecting one of a plurality of PDCCH monitoring offset values may be notified, and the index number may be fixedly set in the system or may be set individually for each mobile station apparatus 1.
  • the mobile station device 1 when the base station device 2 is notified of a value greater than or equal to a predetermined value as a transmission cycle timer (Periodic Timer) equal to the SR-PUCCH transmission cycle (SR Period), the mobile station device 1 is implicit (autonomous ) May be applied with a PDCCH monitoring offset value defined in the system. For example, when 80 ms (milliseconds) is set as the SR-PUCCH transmission cycle timer, the mobile station device 1 does not apply the PDCCH monitoring offset value, and the SR-PUCCH transmission cycle timer exceeds 80 ms ( For example, when 160 ms) is set, the PDCCH monitoring offset value may be applied.
  • a transmission cycle timer Periodic Timer
  • the mobile station apparatus sets the PDCCH monitoring offset value from the SR-PUCCH transmission period timer value. 1 may be calculated implicitly (autonomously) and applied.
  • the calculated value may be a value obtained by reducing the SR-PUCCH transmission cycle timer to 1 / n (n is a non-zero natural number).
  • the coefficient n used for the calculation may be notified from the base station apparatus 2 or may be a fixed numerical value defined by the system.
  • the mobile station device 1 when 80 ms (milliseconds) is set as the SR-PUCCH transmission cycle timer, the mobile station device 1 does not apply the PDCCH monitoring offset value, and the SR-PUCCH transmission cycle timer exceeds 80 ms ( For example, when 160 ms) is set, a 1 / n value (20 ms when n is 4) may be applied as the PDCCH monitoring offset value.
  • the PDCCH monitoring offset value may be information that specifies whether or not to set the PDCCH monitoring offset value.
  • the PDCCH monitoring offset value in the case of setting may be applied based on any of the methods described above.
  • the PDCCH monitoring offset value may be set as a timer.
  • timing T26 which is an SR-PUCCH transmission opportunity.
  • the timing T26 is equal to the timing at which the SR-PUCCH transmission period (SR Period) has elapsed from the SR-PUCCH (SR21) transmitted immediately before by the mobile station apparatus 1.
  • the mobile station apparatus 1 sets sections (sections from timing T23 to timing T24 and sections from timing T25 to timing T26) that do not require monitoring of the physical downlink control channel PDCCH. Therefore, it is possible to suppress power consumption used for monitoring the PDCCH in the section. In particular, as the SR-PUCCH transmission period (SR Period) is longer, the use efficiency of radio resources and the effect of suppressing power consumption increase.
  • SR Period SR-PUCCH transmission period
  • the mobile station apparatus 1 transmits SR-PUCCH (SR22) at timing T26, which is the SR-PUCCH transmission period (SR Period). At this time, the mobile station device 1 increments the counter of the number of SR transmissions. Further, the mobile station apparatus 1 applies the offset value P03 until the PDCCH monitoring timer is started simultaneously with the transmission of the SR-PUCCH (SR22), and the same reception control described in the section from the timing T23 to the timing T26 regarding the PDCCH monitoring. Is also applied to the section from the timing T26 to the timing T28 and the subsequent sections.
  • the mobile station apparatus 1 will receive an uplink transmitted from the base station apparatus 2 until the SR-PUCCH continuous transmission count reaches the maximum transmission count. The same reception control is repeated until a link grant (UL grant) is detected.
  • UL grant link grant
  • the operation after the mobile station apparatus 1 detects the uplink grant (UL grant) transmitted from the base station apparatus 2 may be the same as in the first embodiment. That is, the mobile station apparatus 1 that has detected the uplink grant (UL grant) transmitted from the base station apparatus 2 changes the SR state from the Pending state to the Non-Pending state, further stops the PDCCH monitoring timer, and the PDCCH Normal reception control in which subframes are monitored every subframe is applied (PDCCH monitoring state: ON). Note that the mobile station apparatus 1 may release the PDCCH monitoring timer or may determine that it has expired.
  • the mobile station apparatus 1 of the present embodiment may explicitly or implicitly set a timer for measuring a predetermined time after transmitting a physical uplink control channel for a radio resource request and applying an offset value. it can.
  • the mobile station apparatus 1 can regard the sections other than the section in which the timer is counting as sections in which the physical downlink control channel need not be monitored.
  • the base station apparatus 2 of the present embodiment clearly indicates a timer for measuring a predetermined time after transmitting a physical uplink control channel for requesting radio resources to the mobile station apparatus 1 and applying an offset value. It is possible to notify and set parameters for setting automatically or implicitly. Further, the base station apparatus 2 does not have to transmit the downlink control channel to the mobile station apparatus 1 except for the section in which the timer is counting.
  • the mobile station apparatus 1 performs the radio resource request based on the setting of the physical uplink control channel for the radio resource request notified from the base station apparatus 2. Since a section in which the physical downlink control channel is not monitored can be set based on the offset value and the timer after transmitting the physical uplink control channel, the power consumption of the mobile station apparatus 1 can be reduced while improving the utilization efficiency of radio resources. Can be reduced.
  • this uplink transmission scheme can be applied to both communication systems of the FDD (frequency division duplex) scheme and the TDD (time division duplex) scheme.
  • path loss or other measurement values SIR, SINR, RSRP, RSRQ, RSSI, BLER
  • SIR, SINR, RSRP, RSRQ, RSSI, BLER path loss or other measurement values
  • the mobile station device 1 is not limited to a mobile terminal, and the embodiment of the present invention may be realized by mounting the function of the mobile station device 1 on a fixed terminal.
  • the mobile station device is also referred to as a user terminal, a terminal device, a communication terminal, a mobile device, a mobile station, a UE (User Equipment), and an MS (Mobile Station).
  • the base station apparatus is also referred to as a radio base station apparatus, a base station, a radio base station, a fixed station, an NB (Node-B), an eNB (evolved Node-B), a BTS (Base Transceiver Station), or a BS (Base Station). .
  • the mobile station device 1 and the base station device 2 of the embodiment have been described using functional block diagrams. However, the functions of each part of the mobile station device 1 and the base station device 2 or one of these functions The steps of the method or algorithm for realizing the part may be directly embodied by hardware, software module executed by a processor, or a combination of the two. If implemented by software, the functions may be maintained or transmitted as one or more instructions or code on a computer-readable medium.
  • Computer-readable media includes both communication media and computer recording media including media that facilitate carrying a computer program from one place to another.
  • the “computer system” includes an OS and hardware such as peripheral devices.
  • a program that operates in the mobile station apparatus 1 and the base station apparatus 2 according to each embodiment of the present invention is a program (computer) that controls the CPU and the like so as to realize the functions of the above-described embodiments according to the respective embodiments of the present invention.
  • a program that functions Is a program that functions).
  • Information handled by these devices is temporarily stored in the RAM at the time of processing, then stored in various ROMs and HDDs, read out by the CPU, and corrected and written as necessary.
  • the program not only the functions of the above-described embodiment are realized, but also by processing in cooperation with an operating system or other application programs based on the instructions of the program, The functions of the embodiments may be realized.
  • the “computer-readable recording medium” refers to a semiconductor medium (eg, RAM, nonvolatile memory card, etc.), an optical recording medium (eg, DVD, MO, MD, CD, BD, etc.), a magnetic recording medium (eg, , A magnetic tape, a flexible disk, etc.) and a storage device such as a disk unit built in a computer system.
  • the “computer-readable recording medium” means that a program is dynamically held for a short time, like a communication line when a program is transmitted via a network such as the Internet or a communication line such as a telephone line. In this case, it is intended to include those that hold a program for a certain period of time, such as a volatile memory inside a computer system serving as a server or a client in that case.
  • the program may be for realizing a part of the above-described functions, and further, the program described above may be realized in combination with a program already recorded in the computer system. good.
  • each functional block or various features of the mobile station apparatus 1 and the base station apparatus 2 used in each of the above embodiments includes a general-purpose processor, a digital signal designed to execute the functions described in this specification.
  • a processor DSP
  • ASIC application specific integrated circuit
  • FPGA field programmable gate array signal
  • a general purpose processor may be a microprocessor, but in the alternative, the processor may be any conventional processor, controller, microcontroller, or state machine.
  • the processor may also be implemented as a combination of computing devices. For example, a DSP and a microprocessor, a plurality of microprocessors, one or more microprocessors connected to a DSP core, or a combination of other such configurations.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

 移動局装置と基地局装置との間の無線リソース要求を効率的に行うことによって、消費電力の削減および無線リソースの利用効率を向上させる端末装置、基地局装置、通信システム、無線リソース要求方法および集積回路を提供する。基地局装置は、無線リソース要求を送信した際に適用される、無線リソースの割り当てに用いられる信号情報を監視させるための監視タイマーを端末装置に通知し、端末装置は、無線リソース要求の送信後に監視タイマーを起動し、前記監視タイマーに基づいて無線リソースの割り当てに用いられる信号情報を監視する。

Description

端末装置、基地局装置、通信システム、無線リソース要求方法および集積回路
 本発明の実施形態は、移動局装置と基地局装置との間の無線リソース要求を効率的に行うことによって、消費電力の削減および無線リソースの利用効率を向上させる端末装置、基地局装置、通信システム、無線リソース要求方法および集積回路の技術に関する。
 標準化プロジェクトである3GPP(3rd Generation Partnership Project)において、OFDM(Orthogonal Frequency-Division Multiplexing)通信方式やリソースブロックと呼ばれる所定の周波数・時間単位の柔軟なスケジューリングの採用によって、高速な通信を実現させたEvolved Universal Terrestrial Radio Access(以降EUTRAと称する)の標準化が行なわれた。
 また、3GPPでは、より高速なデータ伝送を実現し、EUTRAに対して上位互換性を持つAdvanced EUTRAの議論を行っている。EUTRAや、Advanced EUTRAでは、高速なデータ通信を実現するだけでなく、移動局装置上で常時動作する複数のアプリケーションによって移動局装置の消費電力が増加するという問題や、該アプリケーションによって消費される無線リソースの利用効率を高めるための議論もまた行われている(非特許文献1)。
3GPP TR 36.822 V0.2.0 (2011-11), LTE RAN Enhancements for Diverse Data Applicationshttp://www.3gpp.org/ftp/Specs/html-info/36822.htm
 EUTRAにおける移動局装置は、上りリンクの無線リソースを要求するための無線リソース要求(Scheduling Request(SR)とも称する)手順を備えている。また、このとき移動局装置が無線リソース要求に用いる上りリンクチャネルとして、物理上りリンク制御チャネルと物理ランダムアクセスチャネルとを備えており、基地局装置に対して上りリンクの無線リソースが必要であるとき、移動局装置は、このどちらかのチャネルを送信することによって、基地局装置に対して上りリンクの無線リソースが必要であることを通知する。
 しかしながら、非特許文献1で示されるように、少量のデータパケットのみを生起するようなアプリケーション(例えば、バックグラウンド通信(バックグランドトラフィック)やインスタントメッセージ通信などが相当する)が移動局装置で常時動作しているような通信状態を考えるとき、実際に使用される上りリンクデータ用の無線リソースは少量であり、かつ送信の頻度も低いため、無線リソース要求に用いる物理上りリンク制御チャネルを移動局装置に常に割り当てておくことは、物理上りリンク制御チャネルに関する無線リソースの利用効率が悪くなるという問題がある。この問題を解決するためのもっとも単純な方法は、無線リソース要求に用いる物理上りリンク制御チャネルを割り当てる頻度を減らすことである。
 しかしながら、無線リソース要求に用いる物理上りリンク制御チャネルの割り当て頻度を減らすことは、移動局装置に対し、無線リソースが割り当てられるまで物理下りリンク制御チャネルを常に監視させることを意味し、消費電力が増加するという問題がある。
 上記の課題を鑑みて、本発明の実施形態の目的は、移動局装置と基地局装置との間の無線リソース要求を効率的に行うことによって、消費電力の削減および無線リソースの利用効率を向上させる端末装置、基地局装置、通信システム、無線リソース要求方法および集積回路に関する技術を提供することを目的とする。
 (1)上記の目的を達成するために以下のような手段を講じた。すなわち、本発明の実施形態における端末装置は、端末装置と基地局装置とを備える通信システムにおける端末装置であって、上りリンク無線リソース要求を前記基地局装置に送信後に上りリンク無線リソースの割り当てに用いられる信号情報を監視するための監視タイマーを起動し、前記監視タイマーが動作中は、前記上りリンク無線リソースの割り当てに用いられる信号情報を監視し、前記監視タイマーが満了した後は、次に前記上りリンク無線リソース要求を送信するまで前記上りリンク無線リソースの割り当てに用いられる信号情報を監視しないことを特徴とする。
 (2)また、本発明の実施形態における端末装置において、前記監視タイマーには、前記監視タイマーの起動時間の調整に用いられるオフセット値が適用されることを特徴とする。
 (3)また、本発明の実施形態における端末装置は、前記上りリンク無線リソースの割り当てに用いられる信号情報を検出したときに前記監視タイマーを停止することを特徴とする。
 (4)また、本発明の実施形態における基地局装置は、端末装置と基地局装置とを備える通信システムにおける基地局装置であって、前記基地局装置に対して上りリンク無線リソース要求が送信された際に前記端末装置に適用される、上りリンク無線リソースの割り当てに用いられる信号情報を監視させるための監視タイマーを前記端末装置に通知することを特徴とする。
 (5)また、本発明の実施形態における基地局装置は、前記端末装置に対し、前記監視タイマーの起動時間の調整に用いられるオフセット値を通知することを特徴とする。
 (6)また、本発明の実施形態における通信システムは、端末装置と基地局装置とを備える通信システムであって、前記基地局装置は、上りリンク無線リソース要求を前記基地局装置に送信した際に適用される、上りリンク無線リソースの割り当てに用いられる信号情報を監視させるための監視タイマーを前記端末装置に通知し、前記端末装置は、前記上りリンク無線リソース要求を前記基地局装置に送信後に前記監視タイマーを起動し、前記監視タイマーが動作中は、前記上りリンク無線リソースの割り当てに用いられる信号情報を監視し、前記監視タイマーが満了した後は、次に前記上りリンク無線リソース要求を送信するまで前記上りリンク無線リソースの割り当てに用いられる信号情報を監視しないことを特徴とする。
 (7)また、本発明の実施形態における通信システムの基地局装置は、前記端末装置に対し、前記監視タイマーの起動時間の調整に用いられるオフセット値を通知することを特徴とする。
 (8)また、本発明の実施形態における通信システムの端末装置は、前記上りリンク無線リソースの割り当てに用いられる信号情報を検出したときに前記監視タイマーを停止することを特徴とする。
 (9)また、本発明の実施形態における端末装置の無線リソース要求方法は、端末装置と基地局装置とを備える通信システムにおける端末装置の無線リソース要求方法であって、上りリンク無線リソース要求を前記基地局装置に送信後に上りリンク無線リソースの割り当てに用いられる信号情報を監視するための監視タイマーを起動するステップと、前記監視タイマーが動作中は、前記上りリンク無線リソースの割り当てに用いられる信号情報を監視するステップと、前記監視タイマーが満了した後は、次に前記上りリンク無線リソース要求を送信するまで前記上りリンク無線リソースの割り当てに用いられる信号情報を監視しないステップを少なくとも備えることを特徴とする。
 (10)また、本発明の実施形態における端末装置の集積回路は、端末装置と基地局装置とを備える通信システムにおける端末装置に搭載される集積回路であって、上りリンク無線リソース要求を前記基地局装置に送信後に上りリンク無線リソースの割り当てに用いられる信号情報を監視するための監視タイマーを起動する機能と、前記監視タイマーが動作中は、前記上りリンク無線リソースの割り当てに用いられる信号情報を監視する機能と、前記監視タイマーが満了した後は、次に前記上りリンク無線リソース要求を送信するまで前記上りリンク無線リソースの割り当てに用いられる信号情報を監視しない機能との、一連の機能を前記端末装置に発揮させることを特徴とする。
 (11)また、本発明の実施形態における基地局装置の集積回路は、端末装置と基地局装置とを備える通信システムにおける基地局装置に搭載される集積回路であって、前記基地局装置に対して上りリンク無線リソース要求が送信された際に前記端末装置に適用される、上りリンク無線リソースの割り当てに用いられる信号情報を監視させるための監視タイマーを前記端末装置に通知する機能との、一連の機能を前記基地局装置に発揮させることを特徴とする。
 本明細書では、効率的なデータの送受信制御を実現する端末装置、基地局装置、通信システム、送受信制御方法および集積回路という技術において各実施形態を開示するが、各実施形態に対して適用可能な通信方式は、EUTRAまたはAdvanced EUTRAのようにEUTRAと上位互換性のある通信方式に限定されるものではない。
 例えば、本明細書で述べられる技術は、符号分割多重アクセス(CDMA)システム、時分割多重アクセス(TDMA)システム、周波数分割多重アクセス(FDMA)システム、直交FDMA(OFDMA)システム、シングルキャリアFDMA(SC-FDMA)システム、およびその他のシステム等の、種々の通信システムにおいて使用され得る。また、本明細書において、システムとネットワークは同義的に使用され得る。
 また、移動局装置と基地局装置は、キャリア・アグリゲーションによって複数の異なる周波数バンド(周波数帯)の周波数(コンポーネントキャリア、または周波数帯域)を集約(アグリゲート、aggregate)して一つの周波数(周波数帯域)のように扱う技術を適用してもよい。コンポーネントキャリアには、上りリンクに対応する上りリンクコンポーネントキャリアと、下りリンクに対応する下りリンクコンポーネントキャリアとがある。
 例えば、キャリア・アグリゲーションによって周波数帯域幅が20MHzのコンポーネントキャリアを5つ集約した場合、キャリア・アグリゲーションを可能な能力を持つ移動局装置はこれらを一つの100MHzの周波数帯域幅とみなして送受信を行う。なお、集約するコンポーネントキャリアは連続した周波数であっても、全てまたは一部が不連続となる周波数であってもよい。例えば、使用可能な周波数バンドが800MHz帯、2.4GHz帯、3.4GHz帯である場合、あるコンポーネントキャリアが800MHz帯、別のコンポーネントキャリアが2GHz帯、さらに別のコンポーネントキャリアが3.4GHz帯で送信されていてもよい。
 また、同一周波数帯の連続または不連続の複数のコンポーネントキャリアを集約することも可能である。各コンポーネントキャリアの周波数帯域幅は移動局装置の受信可能周波数帯域幅(例えば20MHz)よりも狭い周波数帯域幅であっても良く、各々周波数帯域幅が異なっていても良い。周波数帯域幅は、後方互換性を考慮して従来のセルの周波数帯域幅のいずれかと等しいことが望ましい。なお、基地局装置が移動局装置に割り当てる(設定する、追加する)上りリンクコンポーネントキャリアの数は、下りリンクコンポーネントキャリアの数と同じか少ないことが望ましい。
 本発明の実施形態によれば、移動局装置と基地局装置との間の無線リソース要求を効率的に行うことによって、消費電力の削減および無線リソースの利用効率を向上させる端末装置、基地局装置、通信システム、無線リソース要求方法および集積回路に関する技術を提供することが出来る。
本発明の実施形態における移動局装置の概略構成を示すブロック図である。 本発明の実施形態における基地局装置の概略構成を示すブロック図である。 本発明の第1の実施形態における移動局装置の送受信動作の一例を示す図である。 本発明の第2の実施形態における移動局装置の送受信動作の一例を示す図である。
 本発明の各実施形態を説明する前に、本発明の各実施形態に関わる技術について以下に簡単に説明する。
 [物理チャネル/物理シグナル]
 EUTRAおよびAdvanced EUTRAで使用される主な物理チャネル、および物理シグナルについて説明を行なう。チャネルとは信号(信号情報)の送信に用いられる媒体を意味し、物理チャネルとは信号(信号情報)の送信に用いられる物理的な媒体を意味する。本発明において、物理チャネルは、信号と同義的に使用され得る。物理チャネルは、EUTRA、およびAdvanced EUTRAにおいて、今後追加、または、その構造やフォーマット形式が変更または追加される可能性もあるが、変更または追加された場合でも本発明の各実施形態の説明には影響しない。
 EUTRAおよびAdvanced EUTRAでは、物理チャネル/物理シグナルのスケジューリングについて無線フレームを用いて管理している。1無線フレームは10msであり、1無線フレームは10サブフレームで構成される。さらに、1サブフレームは2スロットで構成される(すなわち、1サブフレームは1ms、1スロットは0.5msである)。また、物理チャネルが配置されるスケジューリングの最小単位としてリソースブロックを用いて管理している。リソースブロックとは、周波数軸を複数サブキャリア(例えば12サブキャリア)の集合で構成される一定の周波数領域と、一定の送信時間間隔(1スロット)で構成される領域で定義される。
 同期シグナル(Synchronization Signals)は、3種類のプライマリ同期シグナルと、周波数領域で互い違いに配置される31種類の符号から構成されるセカンダリ同期シグナルとで構成され、プライマリ同期シグナルとセカンダリ同期シグナルの信号の組み合わせによって、基地局装置を識別する504通りのセル識別子(物理セルID(Physical Cell Identity; PCI))と、無線同期のためのフレームタイミングが示される。移動局装置は、セルサーチによって受信した同期シグナルのセルIDを特定する。
 物理報知情報チャネル(PBCH; Physical Broadcast Channel)は、セル内の移動局装置で共通に用いられる制御パラメータ(報知情報(システム情報);System information)を通知する目的で送信される。物理報知情報チャネルで通知されない報知情報は、物理下りリンク制御チャネルで無線リソースが通知され、物理下りリンク共用チャネルによってレイヤ3メッセージ(システムインフォメーション)で送信される。報知情報として、セル個別の識別子を示すセルグローバル識別子(CGI; Cell Global Identifier)、ページングによる待ち受けエリアを管理するトラッキングエリア識別子(TAI; Tracking Area Identifier)、ランダムアクセス設定情報(送信タイミングタイマーなど)、共通無線リソース設定情報などが通知される。
 下りリンクリファレンスシグナルは、その用途によって複数のタイプに分類される。例えば、セル固有RS(Cell-specific reference signals)は、セル毎に所定の電力で送信されるパイロットシグナルであり、所定の規則に基づいて周波数領域および時間領域で周期的に繰り返される下りリンクリファレンスシグナルである。移動局装置は、セル固有RSを受信することでセル毎の受信品質を測定する。また、移動局装置は、セル固有RSと同時に送信される物理下りリンク制御チャネル、または物理下りリンク共用チャネルの復調のための参照用の信号としても下りセル固有RSを使用する。セル固有RSに使用される系列は、セル毎に識別可能な系列が用いられる。
 また、下りリンクリファレンスシグナルは下りリンクの伝搬路変動の推定にも用いられる。伝搬路変動の推定に用いられる下りリンクリファレンスシグナルのことをチャネル状態情報リファレンスシグナル(Channel State Information Reference Signals;CSI-RS)と称する。また、移動局装置毎に個別に設定される下りリンクリファレンスシグナルは、UE specific Reference Signals(URS)またはDedicated RS(DRS)と称され、物理下りリンク制御チャネル、または物理下りリンク共用チャネルを復調するときのチャネル補償処理のために参照される。
 物理下りリンク制御チャネル(PDCCH; Physical Downlink Control Channel)は、各サブフレームの先頭からいくつかのOFDMシンボル(例えば1~4OFDMシンボル)で送信され、移動局装置に対して基地局装置のスケジューリングに従った無線リソース割り当て情報や、送信電力の増減の調整量を指示する目的で使用される。移動局装置は、下りリンクデータや下りリンク制御データであるレイヤ3メッセージ(ページング、ハンドオーバーコマンドなど)を送受信する前に自局装置宛の物理下りリンク制御チャネルを監視(モニタ)し、自局装置宛の物理下りリンク制御チャネルを受信することで、送信時には上りリンクグラント、受信時には下りリンクグラント(下りリンクアサインメント)と呼ばれる無線リソース割り当て情報を物理下りリンク制御チャネルから取得する必要がある。なお、物理下りリンク制御チャネルは、上述したODFMシンボルで送信される以外に、基地局装置から移動局装置に対して個別(dedicated)に割り当てられるリソースブロックの領域で送信されるように構成することも可能である。
 物理上りリンク制御チャネル(PUCCH; Physical Uplink Control Channel)は、物理下りリンク共用チャネルで送信されたデータの受信確認応答(ACK/NACK;Acknowledgement/Negative Acknowledgement)や下りリンクの伝搬路(チャネル状態)情報(CSI;Channel State Information)、上りリンクの無線リソース割り当て要求(無線リソース要求)であるスケジューリングリクエスト(SR;Scheduling Request)を行なうために使用される。CSIは、CQI(Channel Quality Indicator)、PMI(Precoding Matrix Indicator)、PTI(Precoding Type Indicator)、RI(Rank Indicator)を含む。各Indicatorは、Indicationと表記される場合もあるが、その用途と意味は同じである。
 物理下りリンク共用チャネル(PDSCH; Physical Downlink Shared Channel)は、下りリンクデータの他、ページングや物理報知情報チャネルで通知されない報知情報(システムインフォメーション)をレイヤ3メッセージとして移動局装置に通知するためにも使用される。物理下りリンク共用チャネルの無線リソース割り当て情報は、物理下りリンク制御チャネルで示される。物理下りリンク共用チャネルは物理下りリンク制御チャネルが送信されるOFDMシンボル以外のOFDMシンボルに配置されて送信される。すなわち、物理下りリンク共用チャネルと物理下りリンク制御チャネルは1サブフレーム内で時分割多重されている。
 物理上りリンク共用チャネル(PUSCH; Physical Uplink Shared Channel)は、主に上りリンクデータと上りリンク制御データを送信し、下りリンクの受信品質やACK/NACKなどの制御データを含めることも可能である。また、上りリンクデータの他、上りリンク制御情報をレイヤ3メッセージとして基地局装置に通知するためにも使用される。また、下りリンクと同様に物理上りリンク共用チャネルの無線リソース割り当て情報は、物理下りリンク制御チャネルで示される。
 上りリンクリファレンスシグナル(上りリンク参照信号;Uplink Reference Signal、上りリンクパイロット信号、上りリンクパイロットチャネルとも呼称する)は、基地局装置が、物理上りリンク制御チャネルPUCCHおよび/または物理上りリンク共用チャネルPUSCHを復調するために使用する復調参照信号(DMRS;Demodulation Reference Signal)と、基地局装置が、主に、上りリンクのチャネル状態を推定するために使用するサウンディング参照信号(SRS;Sounding Reference Signal)が含まれる。また、サウンディング参照信号には、周期的サウンディング参照信号(Periodic SRS)と非周期的サウンディング参照信号(Aperiodic SRS)とがある。
 物理ランダムアクセスチャネル(PRACH; Physical Random Access Channel)は、プリアンブル系列を通知するために使用されるチャネルであり、ガードタイムを有する。プリアンブル系列は、64種類のシーケンスを用意して6ビットの情報を表現するように構成されている。物理ランダムアクセスチャネルは、移動局装置の基地局装置へのアクセス手段として用いられる。移動局装置は、物理上りリンク制御チャネル未設定時の無線リソース要求や、上りリンク送信タイミングを基地局装置の受信タイミングウィンドウに合わせるために必要な送信タイミング調整情報(タイミングアドバンス(Timing Advance;TA)とも呼ばれる)を基地局装置に要求するために物理ランダムアクセスチャネルを用いる。
 具体的には、移動局装置は、基地局装置より設定された物理ランダムアクセスチャネル用の無線リソースを用いてプリアンブル系列を送信する。送信タイミング調整情報を受信した移動局装置は、報知情報によって共通的に設定される(またはレイヤ3メッセージで個別に設定される)送信タイミング調整情報の有効時間を計時する送信タイミングタイマー(TA timer)を設定し、送信タイミングタイマーの有効時間中(計時中)は送信タイミング調整状態、有効期間外(停止中)は送信タイミング非調整状態(送信タイミング未調整状態)として上りリンクの状態を管理する。
 レイヤ3メッセージは、移動局装置と基地局装置のRRC(無線リソース制御)層でやり取りされる制御平面(Control-plane)のメッセージであり、RRCシグナリングまたはRRCメッセージと同義的に使用され得る。なお、それ以外の物理チャネルは、本発明の各実施形態に関わらないため詳細な説明は省略する。
 [無線ネットワーク]
 基地局装置によって制御される各周波数の通信可能範囲はセルとしてみなされる。このとき、各周波数がカバーするエリア(セル)はそれぞれ異なる広さ、異なる形状であっても良い。また、カバーするエリアが周波数毎に異なっていてもよい。移動局装置は、セルの中で動作し、あるセルから別のセルへ移動するときは、非無線接続時(非通信中)はセル再選択手順、無線接続時(通信中)はハンドオーバー手順によって別の好適なセルへ移動する。好適なセルとは、一般的に移動局装置のアクセスが禁止されておらず、下りの受信品質が最良のセルのことを示す。
 なお、キャリア・アグリゲーションは、複数のコンポーネントキャリア(周波数帯域)を用いた複数のセルによる通信であり、セル・アグリゲーションとも称される。なお、移動局装置は、周波数毎にリレー局装置(またはリピーター)を介して基地局装置と無線接続されても良い。すなわち、本発明の各実施形態の基地局装置は、リレー局装置に置き換えることが出来る。
 3GPPが規定する基地局装置はノードB(NodeB)と称され、EUTRAおよびAdvanced EUTRAにおける基地局装置はイーノードB(eNodeB)と称される。なお、3GPPが規定するEUTRAおよびAdvanced EUTRAにおける移動局装置はUE(User Equipment)と称される。基地局装置は移動局装置が該基地局装置で通信可能なエリアであるセルを周波数毎に管理する。セルは、移動局装置と通信可能なエリアの大きさに応じてマクロセルやフェムトセルやピコセル、ナノセルとも称される。また、移動局装置がある基地局装置と通信可能であるとき、その基地局装置のセルのうち、移動局装置との通信に使用しているセルは在圏セル(Serving cell)であり、その他のセルは周辺セル(Neighboring cell)と称される。
 [無線リソース要求(Scheduling Request)]
 EUTRAにおいて、移動局装置が基地局装置に対して上りリンクデータの送信を開始するための方法として、以下の2つの無線リソース要求方法が用意されている。第1の無線リソース要求方法は、基地局装置が移動局装置に対して無線リソース要求を行なうために必要な物理上りリンク制御チャネルの送信リソースに関する設定(コンフィギュレーション)を割り当てている場合に、移動局装置が物理上りリンク制御チャネルを用いて基地局装置に無線リソース要求(上りリンクグラントの送信を要求)を行う方法である。
 第1の無線リソース要求方法において、移動局装置は、上りリンクバッファに上りリンクデータが滞留しているときであって、該上りリンクデータを送信するための物理上りリンク共用チャネルが割り当てられていないとき(上りリンクグラントが未検出であるとき)、無線リソース要求の保留状態(Pending)となる。移動局装置が無線リソース要求の保留状態であるときで、無線リソース要求に用いる物理上りリンク制御チャネル(以降、SR-PUCCHと称する)の送信が可能である時、移動局装置はSR-PUCCHを送信し、基地局装置に無線リソースを要求する。
 このとき、移動局装置は、物理上りリンク制御チャネルの送信カウンタをインクリメントし、設定に応じて無線リソース要求禁止タイマー(SR Prohibit Timer)の計時を開始する。移動局装置は、無線リソース要求禁止タイマーが計時中のときはSR-PUCCHの送信を行わない。また、移動局装置が送受信制御として、間欠受信(DRX:Discontinuous Reception)制御/間欠送信(DTX:Discontinuous Transmission)制御を適用していた場合、間欠受信制御/間欠送信制御から非間欠受信制御/非間欠送信制御を適用するように送受信制御を変更する。
 SR-PUCCHを送信し、かつ無線リソース要求が保留状態の移動局装置は、SR-PUCCH送信後の毎サブフレームにおいて、無線リソース割り当て(上りリンクグラントの送信)を検出するために物理下りリンク制御チャネルを監視する。また、移動局装置は、基地局装置から上りリンクグラントによって物理上りリンク共用チャネルが割り当てられるまで、周期的にSR-PUCCHを送信する。移動局装置は、SR-PUCCHを送信するたびに送信カウンタをインクリメントし、送信回数をカウントする。移動局装置は、SR-PUCCHの送信カウンタがSR-PUCCHの最大送信回数に達しても上りリンクグラントを検出できない場合、物理上りリンク制御チャネルのリソースを解放し、第2の無線リソース要求方法を開始する。第1の無線リソース要求方法において、移動局装置は送信タイミング調整状態である。
 第2の無線リソース要求方法は、(1)移動局装置が送信タイミング調整状態であるが、基地局装置が移動局装置に対して無線リソース要求を行うために必要な上りリンク共用チャネルを割り当てていない場合、または(2)TA timerが非動作中の状態(送信タイミング非調整状態)の場合に実施される。第2の無線リソース要求方法において、移動局装置は、物理ランダムアクセスチャネルを用いて基地局装置に無線リソース要求を行う方法であり、ランダムアクセス手順に従う。
 移動局装置は、第1の無線リソース要求方法または第2の無線リソース要求方法によって、基地局装置から物理上りリンク共用チャネルが割り当てられたときに、無線リソース要求の保留状態を解除する。
 以上の事項を考慮しつつ、以下、添付図面を参照しながら本発明の好適な実施形態について詳細に説明する。なお、本発明の実施形態の説明において、本発明の実施形態に関連した公知の機能や構成についての具体的な説明が、本発明の実施形態の要旨を不明瞭にすると判断される場合には、その詳細な説明を省略する。
 <第1の実施形態>
 本発明の第1の実施形態について以下に説明する。本実施形態は、移動局装置1の無線リソース要求方法に関し、特に、移動局装置1が通信中のときの無線リソース要求の方法を判断し、該状態の判断に基づく無線リソース要求方法について示す。
 図1は、本発明の第1の実施形態による移動局装置1の一例を示すブロック図である。本移動局装置1は、受信部101、復調部102、復号部103、測定処理部104、制御部105、上りリンクバッファ制御部106、符号部107、変調部108、送信部109、上りリンク無線リソース要求制御部110、ランダムアクセス制御部111、上位レイヤ112から構成される。上位レイヤ112は、無線リソース制御を執り行うRRC(Radio Resource Control)層の特定の機能を実現するブロックである。また、上りリンクバッファ制御部106、上りリンク無線リソース要求制御部110、ランダムアクセス制御部111は、データリンク層を管理するMAC(Medium Access Control)層の特定の機能を実現するブロックである。
 なお、移動局装置1は、キャリア・アグリゲーションによって複数の周波数(周波数帯、周波数帯域幅)の同時受信をサポートするために受信系のブロック(受信部101、復調部102、復号部103)、および複数の周波数(周波数帯、周波数帯域幅)の同時送信をサポートするために送信系のブロック(符号部107、変調部108、送信部109)を複数備えてもよい。
 受信に関し、上位レイヤ112より制御部105へ移動局装置制御情報が入力される。移動局装置制御情報は、受信制御情報と送信制御情報によって構成される移動局装置1の無線通信制御に必要な情報であり、基地局装置2から個別に送信される無線接続リソース設定、セル固有の報知情報、またはシステムパラメータにより設定され、上位レイヤ112が必要に応じて制御部105へ入力する。制御部105は、受信に関する制御情報である受信制御情報を、受信部101、復調部102、復号部103へ適切に入力する。
 受信制御情報は、受信周波数帯域の情報の他に、DRX制御情報、各チャネルに関する受信タイミング、多重方法、無線リソース配置情報などの情報が含まれている。また、制御部105は、移動局装置1の測定結果が、指定された測定イベントを満たしたかどうかの測定イベント判定に用いる測定設定情報を測定処理部104に入力する。測定設定情報は、異なる複数の種別の測定イベントを含めることができる。測定設定情報は、セル毎、または周波数毎に異なる測定イベントが基地局装置2から設定されてもよい。
 受信信号は、受信部101において受信される。受信部101は、受信制御情報で指定された周波数帯域で信号を受信する。また、受信部101は、受信制御情報として後述するPDCCH監視タイマー設定が適用される場合は、PDCCHの監視をPDCCH監視タイマーに従って行う。受信された信号は、復調部102へと入力される。復調部102は、受信信号の復調を行い、復号部103へと信号を入力して下りリンクデータと下りリンク制御データとを正しく復号し、復号された各データを上位レイヤ112へと入力する。各データは測定処理部104にも入力される。
 測定処理部104は、セル(コンポーネントキャリア)毎の下りリンクリファレンスシグナルの受信品質(SIR、SINR、RSRP、RSRQ、RSSI、パスロスなど)の測定値や、物理下りリンク制御チャネルまたは物理下りリンク共用チャネルの受信誤り率の測定結果に基づいて測定結果情報を生成する。測定処理部104は、測定結果を設定された測定イベントの成否を判定するパラメータの一つとしても用いる。
 また、測定処理部104は、測定結果を測定結果情報として上位レイヤ112へ入力する。また、測定処理部104は、設定された測定イベントが一つまたは複数成立したとき(すなわち、設定された測定イベント条件を満たした場合)、成立した測定イベントの内容を表す測定イベント結果を測定結果情報として上位レイヤ112に通知する。また、測定処理部104は、一度成立した測定イベントが成立しなくなったとき(すなわち、設定された測定イベント条件を満たさなくなった場合)、非成立となった測定イベントの内容を表す測定イベント結果を測定結果情報として上位レイヤ112に通知してもよい。
 また、送信に関し、上位レイヤ112より制御部105へ各ブロックを制御するための制御パラメータである移動局装置制御情報が入力され、送信に関する制御情報である送信制御情報が、上りリンクバッファ制御部106、符号部107、変調部108、送信部109へ適切に入力される。送信制御情報は、送信信号の上りリンクスケジューリング情報として、DTX制御情報、符号化情報、変調情報、送信周波数帯域の情報、各チャネルに関する送信タイミング、多重方法、無線リソース配置情報などの情報が含まれている。
 上位レイヤ112からランダムアクセス制御部111にランダムアクセス設定情報が入力される。ランダムアクセス設定情報には、プリアンブル情報や物理ランダムアクセスチャネル送信用の無線リソース情報(電力調整パラメータや、最大プリアンブル再送回数など)などが含まれる。また、上位レイヤ112は、上りリンク送信タイミングの調整に用いる送信タイミング調整情報と送信タイミングタイマーを管理し、セル毎(またはセルグループ毎、TAグループ毎)に上りリンク送信タイミングの状態(送信タイミング調整状態または送信タイミング非調整状態)を管理する。送信タイミング調整情報と送信タイミングタイマーは、送信制御情報に含まれる。
 なお、複数の上りリンク送信タイミングの状態を管理する必要がある場合、上位レイヤ112は、複数のそれぞれのセル(またはセルグループ、TAグループ)の上りリンク送信タイミングに対応する送信タイミング調整情報を管理する。
 生起した送信データ(上りリンクデータと上りリンク制御データ)は、上位レイヤ112より任意のタイミングで上りリンクバッファ制御部106に入力される。このとき、上りリンクバッファ制御部106は、入力された送信データの量(上りリンクバッファ量)を計算する。上りリンク無線リソース要求制御部110には、上位レイヤ112よりリソース要求設定情報が設定される。リソース要求設定情報には、少なくとも送信カウンタ設定情報と無線リソース要求禁止タイマー情報とが含まれている。また、上りリンクバッファ制御部106は、上りリンクバッファ制御部106に送信データが入力されたときに、送信データの発生を上りリンク無線リソース要求制御部110へ通知することによって、上りリンクバッファに送信データが存在することを知らせる。
 上りリンク無線リソース要求制御部110は、入力された送信データの送信に必要な無線リソースが割り当てられているかを判断する。上りリンク無線リソース要求制御部110は、無線リソース割り当てに基づいて、物理上りリンク共用チャネルPUSCH、物理上りリンク制御チャネルによる無線リソース要求(SR-PUCCH)、または物理ランダムアクセスチャネルのいずれか一つを選択し、選択したチャネルを送信するための制御処理を符号部107および/またはランダムアクセス制御部111に対して要求する。
 すなわち、すでに無線リソースが割り当てられており、送信データを物理上りリンク共用チャネルPUSCHで送信可能な状態であるとき、符号部107は、上りリンク無線リソース要求制御部110の指示に従って割り当て済みの無線リソースに対応する送信データを上りリンクバッファ制御部106から取得して符号化し、変調部108に出力する。または、無線リソースが割り当てられていないときで、物理上りリンク制御チャネルによる無線リソース要求(SR-PUCCH)が可能であるとき、符号部107は、上りリンク無線リソース要求制御部110の指示に従ってSR-PUCCHの送信に必要な制御データを符号化し、変調部108に出力する。
 または、無線リソースが割り当てられていないときで、物理上りリンク制御チャネルによる無線リソース要求(SR-PUCCH)が不可能であるとき、符号部107は、ランダムアクセス制御部111に対してランダムアクセス手順の開始を指示する。このとき、符号部107は、ランダムアクセス制御部111から入力されるランダムアクセスデータ情報に基づき物理ランダムアクセスチャネルで送信されるプリアンブル系列を生成する。また、符号部107は送信制御情報に従い、各データを適切に符号化し、変調部108に出力する。
 変調部108は、符号部107からの出力を送信するチャネル構造に基づいて適切に変調処理を行う。送信部109は、変調部108の出力を周波数領域にマッピングすると共に、周波数領域の信号を時間領域の信号へ変換し、既定の周波数の搬送波にのせて電力増幅を行う。送信部109は、また、上位レイヤ112より入力されたセル毎(またセルグループ毎、TAグループ毎)の送信タイミング調整情報に従って上りリンク送信タイミングを調整する。上りリンク制御データが配置される物理上りリンク共用チャネルは、ユーザデータの他に、例えばレイヤ3メッセージ(無線リソース制御メッセージ;RRCメッセージ)を含めることも可能である。
 図1において、その他の移動局装置1の構成要素は本実施形態に特に強い関連性がないため省略してあるが、移動局装置1として動作するために必要なその他の機能を有する複数のブロックを構成要素として持つことは明らかである。
 図2は、本発明の第1の実施形態による基地局装置2の一例を示すブロック図である。本基地局装置は、受信部201、復調部202、復号部203、制御部204、符号部205、変調部206、送信部207、上位レイヤ208、ネットワーク信号送受信部209から構成される。なお、基地局装置2は、複数の周波数(周波数帯、周波数帯域幅)をサポートするために受信系のブロック(受信部201、復調部202、復号部203)、および送信系のブロック(符号部205、変調部206、送信部207)を複数備えてもよい。
 上位レイヤ208は、下りリンクデータと下りリンク制御データを符号部205へ入力する。符号部205は、入力されたデータを符号化し、変調部206へ入力する。変調部206は、符号化した信号の変調を行なう。また、変調部206から出力される信号は送信部207に入力される。送信部207は、入力された信号を周波数領域にマッピングした後、周波数領域の信号を時間領域の信号へ変換し、既定の周波数の搬送波にのせて電力増幅を行い送信する。下りリンク制御データが配置される物理下りリンク共用チャネルは、典型的にはレイヤ3メッセージ(RRCメッセージ)を構成する。
 また、受信部201は、移動局装置1から受信した信号をベースバンドのデジタル信号に変換する。移動局装置1に対して異なる複数の送信タイミングのセルを設定している場合、受信部201はセル毎(またセルグループ毎、TAグループ毎)に異なるタイミングで信号を受信する。受信部201で変換されたデジタル信号は、復調部202へ入力されて復調される。復調部202で復調された信号は続いて復号部203へ入力されて復号され、正しく復号された上りリンク制御データや上りリンクデータを上位レイヤ208へと出力する。
 これら各ブロックの制御に必要な基地局装置制御情報は、受信制御情報と送信制御情報によって構成される基地局装置2の無線通信制御に必要な情報であり、上位のネットワーク装置(MMEやゲートウェイ装置、OAM)やシステムパラメータにより設定され、上位レイヤ208が必要に応じて制御部204へ入力する。
 制御部204は、送信に関連する基地局装置制御情報を、送信制御情報として符号部205、変調部206、送信部207の各ブロックに、受信に関連する基地局装置制御情報を、受信制御情報として受信部201、復調部202、復号部203の各ブロックに適切に入力する。基地局装置2のRRCは、上位レイヤ208の一部として存在する。
 一方、ネットワーク信号送受信部209は、基地局装置2間あるいは上位のネットワーク装置と基地局装置2との間の制御メッセージ、またはユーザデータの送信(転送)または受信を行なう。図2において、その他の基地局装置2の構成要素は本実施形態に特に強い関連性がないため省略してあるが、基地局装置2として動作するために必要なその他の機能を有する複数のブロックを構成要素として持つことは明らかである。
 図3は、本実施形態における移動局装置1と基地局装置2との間における、送受信制御に関連する情報のやり取りについて示した図である。
 図3は、移動局装置1が基地局装置2に対して無線リソース要求を行う際の、無線リソース要求の状態遷移(図中におけるSR状態)と、物理下りリンク制御チャネルの監視状態の遷移(図中におけるPDCCH監視状態)とについて、横軸を時間軸として説明した図である。また、移動局装置1にはDRX/DTX制御が適用されている。
 まず、タイミングT11からタイミングT12までの移動局装置1の送受信制御について説明する。この区間は、移動局装置1に対してDRX制御が適用されており、かつタイミングT11までに送信データが生起されなかったときの移動局装置1の送受信制御を示している。移動局装置1は、設定されたDRX制御設定に基づいて、タイミングT11でPDCCHの監視を開始する(PDCCH監視状態:ON)。移動局装置1は、PDCCHの監視をタイミングT11から既定の継続時間P01の間は継続する(PDCCH監視状態:ON)必要があるが、継続時間P01が経過した後はPDCCHを監視しないでもよい。
 続いて、タイミングT12からタイミングT17までの移動局装置1の送受信制御について説明する。この区間は、移動局装置1に対してDRX制御が適用されており、かつ無線リソース要求のためにSR-PUCCHの送信を行うと判断したときの送受信制御を示している。換言すると、本区間の移動局装置1の送受信制御は、送信データが生起された際に、該送信データを物理上りリンク共用チャネルPUSCHで送信可能な状態ではなく、さらにSR-PUCCHが利用可能であると上りリンク無線リソース要求制御部110が判断したときに適用される送受信制御である。
 タイミングT12で送信データが生起されたとき、移動局装置1のSR状態はPending状態へと変更される。なお、説明の簡略化のために図3では省略しているが、タイミングT12以前の移動局装置1のSR状態はNon-Pending状態として管理されている。SR状態がPending状態となった移動局装置1は、SR-PUCCHを送信可能な直近のタイミングT13でSR-PUCCH(SR11)を送信する。このとき、移動局装置1はSR送信回数のカウンタをインクリメントする。
 移動局装置1は、SR-PUCCHの送信設定に基づいてSR-PUCCHの送信タイミング(タイミングT13)を判断する。また、移動局装置1は、SR-PUCCH(SR11)の送信と同時にPDCCH監視タイマーを起動する。PDCCH監視タイマーには、基地局装置2から設定された連続監視時間P02が適用される。移動局装置1は、タイミングT13から、PDCCH監視タイマーが満了するタイミングT14までは、PDCCHを毎サブフレーム監視する(PDCCH監視状態:ON)。つまり、移動局装置1は、タイミングT13からタイミングT14までの区間において、自局装置宛の上りリンクの無線リソース割り当て情報を検出するためにPDCCHを毎サブフレーム監視する。さらに言い換えると、移動局装置1は、タイミングT13からタイミングT14までの区間において、基地局装置2から送信されるPDCCHを毎サブフレーム受信し、PDCCHを用いて通知される上りリンクの無線リソース割り当てに用いられる信号情報(上りリンクグラント(UL grant))が検出されるか否かを監視する。
 また、基地局装置2は、PDCCH監視タイマーが起動してから満了するまでの区間において、毎サブフレームではなく、一部のサブフレームでPDCCHを監視するような追加のパラメータを移動局装置1に設定してもよい。例えば、PDCCH監視タイマーが動作中における偶数サブフレーム、奇数サブフレーム、または、設定された一部のサブフレームでのみPDCCHを監視するようにしてもよい。追加のパラメータは移動局装置1毎に個別に設定されても、システムで固定的に設定されてもよく、さらに、移動局装置1固有の情報から自律的に設定されてもよい。例えば、SR-PUCCHを送信したサブフレーム番号から設定されてもよく、SR-PUCCHの設定に用いるインデックス番号から設定されてもよい。以降、PDCCH監視タイマーに適用される時間パラメータ、すなわち連続監視時間P02を指定するパラメータのことをPDCCH監視タイマー設定として説明する。
 ここで、PDCCH監視タイマー設定は、基地局装置2によってSR-PUCCHの設定の一部として移動局装置1に個別に設定されてもよい。すなわち、移動局装置1毎に異なるPDCCH監視タイマー設定が通知されてもよい。また、PDCCH監視タイマー設定が通知されない移動局装置1があってもよい。
 または、SR-PUCCHの送信周期(SR Period)に等しい送信周期タイマー(Periodic Timer)として所定の値以上の値が基地局装置2から通知されたときに、移動局装置1が暗黙的(自律的)にシステムで既定されたPDCCH監視タイマー設定を適用してもよい。例えば、移動局装置1は、SR-PUCCHの送信周期タイマーとして80ms(ミリ秒)が設定された場合はPDCCH監視タイマー設定を適用せず、SR-PUCCHの送信周期タイマーが80msを超えた値(例えば160ms)が設定された場合はPDCCH監視タイマー設定を適用してもよい。
 または、SR-PUCCHの送信周期タイマー(Periodic Timer)として所定の値以上の値が基地局装置2から通知されたときに、SR-PUCCHの送信周期タイマーの値からPDCCH監視タイマー設定を移動局装置1が暗黙的(自律的)に計算して適用してもよい。ここで、計算した値とは、SR-PUCCHの送信周期タイマーをn分の1にした値(nは0でない自然数)であってもよい。また、計算に用いる係数nは、基地局装置2から通知されてもよいし、システムで規定された固定の数値であってもよい。例えば、移動局装置1は、SR-PUCCHの送信周期タイマーとして80ms(ミリ秒)が設定された場合はPDCCH監視タイマー設定を適用せず、SR-PUCCHの送信周期タイマーが80msを超えた値(例えば160ms)が設定された場合はPDCCH監視タイマー設定として、n分の1にした値(nが4である場合は、20ms)を適用してもよい。
 または、PDCCH監視タイマー設定は、PDCCH監視タイマーを起動するか否かを指定する情報であってもよい。起動する場合のPDCCH監視タイマー設定は、上述したいずれかの方法に基づいて適用してもよい。
 図3に戻り、連続監視時間P02の区間で基地局装置2から物理下りリンク制御チャネルPDCCHによる無線リソース割り当て(上りリンクグラント(UL grant))を受信しなかった場合、移動局装置1は、タイミングT14から次のSR-PUCCHの送信機会であるタイミングT15までは、PDCCHの監視を行わなくてもよい。SR-PUCCHの送信機会であるタイミングT15は、移動局装置1が直前に送信したSR-PUCCH(SR11)からSR-PUCCHの送信周期(SR Period)だけ経過したタイミングと等しい。
 このように構成することによって、移動局装置1は、物理下りリンク制御チャネルPDCCHの監視を行わなくてよい区間(タイミングT14からタイミングT15までの区間)が設定されるため、該区間においてPDCCHの監視のために用いられる消費電力を抑制することが可能である。特に、SR-PUCCHの送信周期(SR Period)が長期間であるほど無線リソースの利用効率および消費電力の抑制効果が上がる。
 続いて、移動局装置1は、SR-PUCCHの送信周期(SR Period)であるタイミングT15でSR-PUCCH(SR12)を送信する。また、このとき、移動局装置1はSR送信回数のカウンタをインクリメントする。また、移動局装置1は、SR-PUCCH(SR12)の送信と同時にPDCCH監視タイマーを起動し、PDCCH監視に関してタイミングT13からタイミングT15の区間で説明した同様の受信制御をタイミングT15からタイミングT17の区間、およびそれ以降の区間に対しても適用する。
 移動局装置1は、ハンドオーバーや無線リンク障害などの特殊な接続手順が発生しなければ、SR-PUCCHの連続送信回数が最大送信回数に達するまで、または、基地局装置2から自局装置に対して送信される上りリンクグラント(UL grant)を検出するまで同様の受信制御を繰り返す。
 図3では、移動局装置1が、タイミングT17で送信したSR-PUCCH(SR13)に対応する連続監視時間P02の区間において、タイミングR11で基地局装置2から自局装置宛の上りリンクグラント(UL grant)を検出した場合の例を示す。すなわち、基地局装置2が上りリンクグラントを移動局装置1へ送信するタイミングR11は、移動局装置1に適用されているPDCCH監視タイマーの区間内である。このとき、移動局装置1は、SR状態をPending状態からNon-Pending状態に遷移させ、さらに、PDCCH監視タイマーを停止し、PDCCHの監視を毎サブフレーム行う通常の受信制御を適用する(PDCCH監視状態:ON)。なお、移動局装置1は、PDCCH監視タイマーをリリースしてもよいし、満了したと判断してもよい。
 本実施形態の移動局装置1は、基地局装置2から無線リソース要求のための物理上りリンク制御チャネルの送信後に、所定の時間を計時するタイマーを明示的または暗黙的に設定することができる。また、移動局装置1は、該タイマーが計時中の区間以外を物理下りリンク制御チャネルの監視を行わなくてよい区間とみなすことできる。
 また、本実施形態の基地局装置2は、移動局装置1に対して無線リソース要求のための物理上りリンク制御チャネルの送信後に、所定の時間を計時するタイマーを明示的または暗黙的に設定するためのパラメータを通知することができる。また、基地局装置2は、該タイマーが計時中の区間以外において、移動局装置1に対して物理下りリンク制御チャネルを送信しないで良い。
 このように、第1の実施形態によれば、移動局装置1とは、基地局装置2から通知される無線リソース要求のための物理上りリンク制御チャネルの設定に基づいて、無線リソース要求のための物理上りリンク制御チャネルを送信後に、物理下りリンク制御チャネルの監視を行わない区間をタイマーに基づいて設定できるため、無線リソースの利用効率を向上させつつ、移動局装置1の消費電力を削減することができる。
 <第2の実施形態>
 本発明の第2の実施形態について以下に説明する。第1の実施形態では、移動局装置1がSR-PUCCH送信後にPDCCH監視タイマーを起動する例について開示したが、本実施形態では、PDCCH監視タイマーを起動するタイミングを任意のタイミングに設定可能な方法について開示する。本実施形態に用いる移動局装置1と基地局装置2の構成は、それぞれ図1と図2と同じ構成で良いため説明を省略する。
 図4は、本実施形態における移動局装置1と基地局装置2との間における、送受信制御に関連する情報のやり取りについて示した図であり、図の見方は図3と同じである。また、移動局装置1にはDRX/DTX制御が適用されている。
 タイミングT21からタイミングT22までの移動局装置1の送受信制御は、図3におけるタイミングT11からタイミングT12までの区間における移動局装置1の送受信制御と同じであるため説明を省略する。
 続いて、タイミングT22からタイミングT26までの移動局装置1の送受信制御について説明する。この区間は、移動局装置1に対してDRX制御が適用されており、かつ無線リソース要求のためにSR-PUCCHの送信を行うと判断したときの送受信制御を示している。換言すると、本区間の移動局装置1の送受信制御は、送信データが生起された際に、該送信データを物理上りリンク共用チャネルPUSCHで送信可能な状態ではなく、さらにSR-PUCCHが利用可能であると上りリンク無線リソース要求制御部110が判断したときに適用される送受信制御である。
 タイミングT22で送信データが生起されたとき、移動局装置1のSR状態はPending状態へと変更される。なお、図3と同様に、タイミングT22以前の移動局装置1のSR状態はNon-Pending状態として管理されている。SR状態がPending状態となった移動局装置1は、SR-PUCCHを送信可能な直近のタイミングT23でSR-PUCCH(SR21)を送信する。このとき、移動局装置1はSR送信回数のカウンタをインクリメントする。
 移動局装置1は、SR-PUCCHの送信設定に基づいてSR-PUCCHの送信タイミング(タイミングT23)を判断する。また、移動局装置1は、SR-PUCCH(SR21)の送信と同時にPDCCH監視タイマーを起動するまでのオフセット値P03を適用する。ここでは、オフセット値P03を適用したタイミングT24で実際のPDCCH監視タイマーが起動される。すなわち、オフセット値はPDCCH監視タイマーを起動するタイミングの調整に用いられる。PDCCH監視タイマーには、基地局装置2から設定された連続監視時間P04が適用される。移動局装置1は、オフセット値を適用したPDCCH監視タイマーが起動するまでの区間、すなわちタイミングT23からタイミングT24までの区間では、PDCCHの監視を行わないで良い。
 移動局装置1は、PDCCH監視タイマーが起動してから満了するまでの連続監視時間P04、すなわちタイミングT24からタイミングT25までは、PDCCHを毎サブフレーム監視する(PDCCH監視状態:ON)。PDCCH監視タイマーに適用される時間パラメータ(PDCCH監視タイマー設定)の設定方法は、第1の実施形態で説明したいずれかの方法を用いてよい。
 また、基地局装置2は、PDCCH監視タイマーが起動してから満了するまでの区間において、毎サブフレームではなく、一部のサブフレームでPDCCHを監視するような追加のパラメータを移動局装置1に設定してもよい。例えば、PDCCH監視タイマーが動作中における偶数サブフレーム、奇数サブフレーム、または、設定された一部のサブフレームでのみPDCCHを監視するようにしてもよい。追加のパラメータは移動局装置1毎に個別に設定されても、システムで固定的に設定されてもよく、さらに、移動局装置1固有の情報から自律的に設定されてもよい。例えば、SR-PUCCHを送信したサブフレーム番号から設定されてもよく、SR-PUCCHの設定に用いるインデックス番号から設定されてもよい。以降、PDCCH監視タイマーを起動するまでのオフセット値P03をPDCCH監視オフセット値と称し、PDCCH監視オフセット値の設定方法について説明する。
 ここで、PDCCH監視オフセット値は、基地局装置2によってSR-PUCCHの設定の一部として移動局装置1に個別に通知されて設定されてもよい。すなわち、移動局装置1毎に異なるPDCCH監視オフセット値が通知されてもよい。また、PDCCH監視オフセット値が通知されない移動局装置1があってもよい。また、複数のPDCCH監視オフセット値の1つを選択するインデックス番号が通知されてもよく、インデックス番号はシステムで固定的に設定されても、移動局装置1毎に個別に設定されてもよい。
 または、SR-PUCCHの送信周期(SR Period)に等しい送信周期タイマー(Periodic Timer)として所定の値以上の値が基地局装置2から通知されたときに、移動局装置1が暗黙的(自律的)にシステムで既定されたPDCCH監視オフセット値を適用してもよい。例えば、移動局装置1は、SR-PUCCHの送信周期タイマーとして80ms(ミリ秒)が設定された場合はPDCCH監視オフセット値を適用せず、SR-PUCCHの送信周期タイマーが80msを超えた値(例えば160ms)が設定された場合はPDCCH監視オフセット値を適用してもよい。
 または、SR-PUCCHの送信周期タイマー(Periodic Timer)として所定の値以上の値が基地局装置2から通知されたときに、SR-PUCCHの送信周期タイマーの値からPDCCH監視オフセット値を移動局装置1が暗黙的(自律的)に計算して適用してもよい。ここで、計算した値とは、SR-PUCCHの送信周期タイマーをn分の1にした値(nは0でない自然数)であってもよい。また、計算に用いる係数nは、基地局装置2から通知されてもよいし、システムで規定された固定の数値であってもよい。例えば、移動局装置1は、SR-PUCCHの送信周期タイマーとして80ms(ミリ秒)が設定された場合はPDCCH監視オフセット値を適用せず、SR-PUCCHの送信周期タイマーが80msを超えた値(例えば160ms)が設定された場合はPDCCH監視オフセット値として、n分の1にした値(nが4である場合は、20ms)を適用してもよい。
 または、PDCCH監視オフセット値は、PDCCH監視オフセット値を設定するか否かを指定する情報であってもよい。設定する場合のPDCCH監視オフセット値は、上述したいずれかの方法に基づいて適用してもよい。
 また、PDCCH監視オフセット値はタイマーとして設定されてもよい。
 図4に戻り、連続監視時間P04の区間で基地局装置2から物理PDCCHによる無線リソース割り当て(上りリンクグラント(UL grant))を検出しなかった場合、移動局装置1は、タイミングT25から次のSR-PUCCHの送信機会であるタイミングT26までは、PDCCHの監視を行わなくてもよい。SR-PUCCHの送信機会であるタイミングT26は、移動局装置1が直前に送信したSR-PUCCH(SR21)からSR-PUCCHの送信周期(SR Period)だけ経過したタイミングと等しい。
 このように構成することによって、移動局装置1は、物理下りリンク制御チャネルPDCCHの監視を行わなくてよい区間(タイミングT23からタイミングT24までの区間、およびタイミングT25からタイミングT26までの区間)が設定されるため、該区間においてPDCCHの監視のために用いられる消費電力を抑制することが可能である。特に、SR-PUCCHの送信周期(SR Period)が長期間であるほど無線リソースの利用効率および消費電力の抑制効果が上がる。
 続いて、移動局装置1は、SR-PUCCHの送信周期(SR Period)であるタイミングT26でSR-PUCCH(SR22)を送信する。また、このとき、移動局装置1はSR送信回数のカウンタをインクリメントする。また、移動局装置1は、SR-PUCCH(SR22)の送信と同時にPDCCH監視タイマーを起動するまでのオフセット値P03を適用し、PDCCH監視に関してタイミングT23からタイミングT26の区間で説明した同様の受信制御をタイミングT26からタイミングT28の区間、およびそれ以降の区間に対しても適用する。
 移動局装置1は、ハンドオーバーや無線リンク障害などの特殊な接続手順が発生しなければ、SR-PUCCHの連続送信回数が最大送信回数に達するまで、または、基地局装置2から送信される上りリンクグラント(UL grant)を検出するまで同様の受信制御を繰り返す。
 移動局装置1が基地局装置2から送信される上りリンクグラント(UL grant)を検出した後の動作は、第1の実施形態と同じで良い。すなわち、基地局装置2から送信される上りリンクグラント(UL grant)を検出した移動局装置1は、SR状態をPending状態からNon-Pending状態に遷移させ、さらに、PDCCH監視タイマーを停止し、PDCCHの監視を毎サブフレーム行う通常の受信制御を適用する(PDCCH監視状態:ON)。なお、移動局装置1は、PDCCH監視タイマーをリリースしてもよいし、満了したと判断してもよい。
 本実施形態の移動局装置1は、無線リソース要求のための物理上りリンク制御チャネルを送信してオフセット値を適用した後に、所定の時間を計時するタイマーを明示的または暗黙的に設定することができる。また、移動局装置1は、該タイマーが計時中の区間以外を物理下りリンク制御チャネルの監視を行わなくてよい区間とみなすことできる。
 また、本実施形態の基地局装置2は、移動局装置1に対して無線リソース要求のための物理上りリンク制御チャネルを送信してオフセット値を適用した後に、所定の時間を計時するタイマーを明示的または暗黙的に設定するためのパラメータを通知して設定することができる。また、基地局装置2は、該タイマーが計時中の区間以外において、移動局装置1に対して下りリンク制御チャネルを送信しないで良い。
 このように、第2の実施形態によれば、移動局装置1は、基地局装置2から通知される無線リソース要求のための物理上りリンク制御チャネルの設定に基づいて、無線リソース要求のための物理上りリンク制御チャネルを送信後に、物理下りリンク制御チャネルの監視を行わない区間をオフセット値とタイマーに基づいて設定できるため、無線リソースの利用効率を向上させつつ、移動局装置1の消費電力を削減することができる。
 なお、以上説明した実施形態は単なる例示に過ぎず、様々な変形例、置換例を用いて実現することができる。例えば、本上りリンク送信方式は、FDD(周波数分割復信)方式とTDD(時分割復信)方式のどちらの通信システムに対しても適用可能である。また、下りリンクの測定値は、パスロスや、それ以外の測定値(SIR、SINR、RSRP、RSRQ、RSSI、BLER)を代わり用いても良いし、これらの測定値の複数を組み合わせて使用することも可能である。また、実施形態で示される各パラメータの名称は、説明の便宜上呼称しているものであって、実際に適用されるパラメータ名称と本発明の実施形態のパラメータ名称とが異なっていても、本発明の実施形態において主張する発明の趣旨に影響するものではない。
 また、移動局装置1とは、移動する端末に限らず、固定端末に移動局装置1の機能を実装することなどにより本発明の実施形態を実現しても良い。移動局装置は、ユーザ端末、端末装置、通信端末、移動機、移動局、UE(User Equipment)、MS(Mobile Station)とも称される。基地局装置は、無線基地局装置、基地局、無線基地局、固定局、NB(Node-B)、eNB(evolved Node-B)BTS(Base Transceiver Station)、BS(Base Station)とも称される。
 また、説明の便宜上、実施形態の移動局装置1および基地局装置2を機能的なブロック図を用いて説明したが、移動局装置1および基地局装置2の各部の機能またはこれらの機能の一部を実現するための方法またはアルゴリズムのステップは、ハードウェア、プロセッサによって実行されるソフトウェアモジュール、またはこれら2つを組み合わせたものによって、直接的に具体化され得る。もしソフトウェアによって実装されるのであれば、その機能は、コンピュータ読み取り可能な媒体上の一つ以上の命令またはコードとして保持され、または伝達され得る。コンピュータ読み取り可能な媒体は、コンピュータプログラムをある場所から別の場所への持ち運びを助ける媒体を含むコミュニケーションメディアやコンピュータ記録メディアの両方を含む。
 そして、一つ以上の命令またはコードをコンピュータ読み取り可能な記録媒体に記録し、この記録媒体に記録された一つ以上の命令またはコードをコンピュータシステムに読み込ませ、実行することにより移動局装置1や基地局装置2の制御を行なっても良い。なお、ここでいう「コンピュータシステム」とは、OSや周辺機器等のハードウェアを含むものとする。
 本発明の各実施形態に記載の動作をプログラムで実現してもよい。本発明の各実施形態に関わる移動局装置1および基地局装置2で動作するプログラムは、本発明の各実施形態に関わる上記実施形態の機能を実現するように、CPU等を制御するプログラム(コンピュータを機能させるプログラム)である。そして、これら装置で取り扱われる情報は、その処理時に一時的にRAMに蓄積され、その後、各種ROMやHDDに格納され、必要に応じてCPUによって読み出し、修正・書き込みが行なわれる。また、プログラムを実行することにより、上述した実施形態の機能が実現されるだけでなく、そのプログラムの指示に基づき、オペレーティングシステムあるいは他のアプリケーションプログラム等と共同して処理することにより、本発明の各実施形態の機能が実現される場合もある。
 また、「コンピュータ読み取り可能な記録媒体」とは、半導体媒体(例えば、RAM、不揮発性メモリカード等)、光記録媒体(例えば、DVD、MO、MD、CD、BD等)、磁気記録媒体(例えば、磁気テープ、フレキシブルディスク等)等の可搬媒体、コンピュータシステムに内蔵されるディスクユニット等の記憶装置のことをいう。さらに、「コンピュータ読み取り可能な記録媒体」とは、インターネット等のネットワークや電話回線等の通信回線を介してプログラムを送信する場合の通信線のように、短時間の間、動的にプログラムを保持するもの、その場合のサーバやクライアントとなるコンピュータシステム内部の揮発性メモリのように、一定時間プログラムを保持しているものも含むものとする。
 また、上記プログラムは、前述した機能の一部を実現するためのものであっても良く、さらに、前述した機能をコンピュータシステムに既に記録されているプログラムとの組み合わせで実現できるものであっても良い。
 また、上記各実施形態に用いた移動局装置1および基地局装置2の各機能ブロック、または諸特徴は、本明細書で述べられた機能を実行するように設計された汎用用途プロセッサ、デジタルシグナルプロセッサ(DSP)、特定用途向け集積回路(ASIC)、フィールドプログラマブルゲートアレイシグナル(FPGA)、またはその他のプログラマブル論理デバイス、ディスクリートゲートまたはトランジスタロジック、ディスクリートハードウェア部品、またはこれらを組み合わせたものによって、実装または実行され得る。汎用用途プロセッサは、マイクロプロセッサであっても良いが、代わりにプロセッサは従来型のプロセッサ、コントローラ、マイクロコントローラ、またはステートマシンであっても良い。
 プロセッサはまた、コンピューティングデバイスを組み合わせたものとして実装されても良い。例えば、DSPとマイクロプロセッサ、複数のマイクロプロセッサ、DSPコアと接続された一つ以上のマイクロプロセッサ、またはその他のそのような構成を組み合わせたものである。
 以上、この発明の実施形態について特定の具体例に基づいて詳述してきたが、本発明の各実施形態の趣旨ならびに特許請求の範囲は、これら特定の具体例に限定されないことは明らかである。すなわち、本明細書の記載は例示説明を目的としたものであり、本発明の各実施形態に対して何ら制限を加えるものではない。
1…移動局装置
2…基地局装置
101、201…受信部
102、202…復調部
103、203…復号部
104…測定処理部
105、204…制御部
106…上りリンクバッファ制御部
107、205…符号部
108、206…変調部
109、207…送信部
110…上りリンク無線リソース要求制御部
111…ランダムアクセス制御部
112、208…上位レイヤ
209…ネットワーク信号送受信部

Claims (11)

  1.  端末装置と基地局装置とを備える通信システムにおける端末装置であって、
     上りリンク無線リソース要求を前記基地局装置に送信後に上りリンク無線リソースの割り当てに用いられる信号情報を監視するための監視タイマーを起動し、
     前記監視タイマーが動作中は、前記上りリンク無線リソースの割り当てに用いられる信号情報を監視し、
     前記監視タイマーが満了した後は、次に前記上りリンク無線リソース要求を送信するまで前記上りリンク無線リソースの割り当てに用いられる信号情報を監視しないことを特徴とする端末装置。
  2.  前記監視タイマーには、前記監視タイマーの起動時間の調整に用いられるオフセット値が適用されることを特徴とする請求項1に記載の端末装置。
  3.  前記上りリンク無線リソースの割り当てに用いられる信号情報を検出したときに前記監視タイマーを停止することを特徴とする請求項1に記載の端末装置。
  4.  端末装置と基地局装置とを備える通信システムにおける基地局装置であって、
     前記基地局装置に対して上りリンク無線リソース要求が送信された際に前記端末装置に適用される、上りリンク無線リソースの割り当てに用いられる信号情報を監視させるための監視タイマーを前記端末装置に通知することを特徴とする基地局装置。
  5.  前記端末装置に対し、前記監視タイマーの起動時間の調整に用いられるオフセット値を通知することを特徴とする請求項4に記載の基地局装置。
  6.  端末装置と基地局装置とを備える通信システムであって、
     前記基地局装置は、上りリンク無線リソース要求を前記基地局装置に送信した際に適用される、上りリンク無線リソースの割り当てに用いられる信号情報を監視させるための監視タイマーを前記端末装置に通知し、
     前記端末装置は、前記上りリンク無線リソース要求を前記基地局装置に送信後に前記監視タイマーを起動し、前記監視タイマーが動作中は、前記上りリンク無線リソースの割り当てに用いられる信号情報を監視し、前記監視タイマーが満了した後は、次に前記上りリンク無線リソース要求を送信するまで前記上りリンク無線リソースの割り当てに用いられる信号情報を監視しないことを特徴とする通信システム。
  7.  前記基地局装置は、前記端末装置に対し、前記監視タイマーの起動時間の調整に用いられるオフセット値を通知することを特徴とする請求項6に記載の通信システム。
  8.  前記端末装置は、前記上りリンク無線リソースの割り当てに用いられる信号情報を検出したときに前記監視タイマーを停止することを特徴とする請求項6に記載の通信システム。
  9.  端末装置と基地局装置とを備える通信システムにおける端末装置の無線リソース要求方法であって、
     上りリンク無線リソース要求を前記基地局装置に送信後に上りリンク無線リソースの割り当てに用いられる信号情報を監視するための監視タイマーを起動するステップと、
     前記監視タイマーが動作中は、前記上りリンク無線リソースの割り当てに用いられる信号情報を監視するステップと、
     前記監視タイマーが満了した後は、次に前記上りリンク無線リソース要求を送信するまで前記上りリンク無線リソースの割り当てに用いられる信号情報を監視しないステップを少なくとも備えることを特徴とする無線リソース要求方法。
  10.  端末装置と基地局装置とを備える通信システムにおける端末装置に搭載される集積回路であって、
     上りリンク無線リソース要求を前記基地局装置に送信後に上りリンク無線リソースの割り当てに用いられる信号情報を監視するための監視タイマーを起動する機能と、
     前記監視タイマーが動作中は、前記上りリンク無線リソースの割り当てに用いられる信号情報を監視する機能と、
     前記監視タイマーが満了した後は、次に前記上りリンク無線リソース要求を送信するまで前記上りリンク無線リソースの割り当てに用いられる信号情報を監視しない機能との、一連の機能を前記端末装置に発揮させることを特徴とする集積回路。
  11.  端末装置と基地局装置とを備える通信システムにおける基地局装置に搭載される集積回路であって、
     前記基地局装置に対して上りリンク無線リソース要求が送信した際に前記端末装置に適用される、上りリンク無線リソースの割り当てに用いられる信号情報を監視させるための監視タイマーを前記端末装置に通知する機能との、一連の機能を前記基地局装置に発揮させることを特徴とする集積回路。
PCT/JP2013/061850 2012-04-25 2013-04-23 端末装置、基地局装置、通信システム、無線リソース要求方法および集積回路 WO2013161789A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012099385A JP2013229694A (ja) 2012-04-25 2012-04-25 移動局装置、基地局装置、通信システム、無線リソース要求方法および集積回路
JP2012-099385 2012-04-25

Publications (1)

Publication Number Publication Date
WO2013161789A1 true WO2013161789A1 (ja) 2013-10-31

Family

ID=49483102

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/061850 WO2013161789A1 (ja) 2012-04-25 2013-04-23 端末装置、基地局装置、通信システム、無線リソース要求方法および集積回路

Country Status (2)

Country Link
JP (1) JP2013229694A (ja)
WO (1) WO2013161789A1 (ja)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011028072A2 (en) * 2009-09-04 2011-03-10 Lg Electronics Inc. Method of controlling a monitoring operation of physical downlink channel in wireless communication system

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011028072A2 (en) * 2009-09-04 2011-03-10 Lg Electronics Inc. Method of controlling a monitoring operation of physical downlink channel in wireless communication system

Also Published As

Publication number Publication date
JP2013229694A (ja) 2013-11-07

Similar Documents

Publication Publication Date Title
US9408151B2 (en) Terminal apparatus, base station apparatus, communication system, control method, and integrated circuit
JP6050021B2 (ja) 端末装置、基地局装置、通信システム、通信方法および集積回路
JP5927901B2 (ja) 移動局装置、基地局装置、通信システム、上りリンク送信制御方法および集積回路
US9883467B2 (en) Terminal device, base station device, communication system, control method, and integrated circuit
JP6409231B2 (ja) 端末装置、基地局装置、通信システム、制御方法および集積回路
JP5856763B2 (ja) 移動局装置、基地局装置、通信システム、移動局装置能力通知方法および集積回路
JP6385344B2 (ja) 端末装置、基地局装置、通信システム、制御方法および集積回路
WO2014003105A1 (ja) 端末装置、基地局装置、通信システム、セル選択方法および集積回路
JP6484857B2 (ja) 端末装置、基地局装置、および通信方法
JP6400011B2 (ja) 無線通信システム、端末装置、基地局装置、無線通信方法および集積回路
WO2016047747A1 (ja) 端末装置、基地局装置、および通信方法
WO2014050492A1 (ja) 端末装置、基地局装置、通信システム、上りリンク送信制御方法および集積回路
JP2013042258A (ja) 移動局装置、基地局装置、通信システム、上りリンク送信制御方法および集積回路
WO2015098746A1 (ja) 移動通信方法及び無線基地局
JP2013042259A (ja) 移動局装置、基地局装置、通信システム、上りリンク送信制御方法および集積回路
JP2014146865A (ja) 端末装置、基地局装置、通信システム、測定方法および集積回路
WO2012111596A1 (ja) 通信システム、基地局装置、移動局装置、パワーヘッドルーム報告方法、および集積回路
JP2014236366A (ja) 端末装置、基地局装置、通信システム、通信方法および集積回路
JP2014023017A (ja) 移動局装置、基地局装置、通信システム、通信方法および集積回路
JP2014204216A (ja) 端末装置、基地局装置、通信システム、通信方法および集積回路
WO2013161789A1 (ja) 端末装置、基地局装置、通信システム、無線リソース要求方法および集積回路
WO2013168697A1 (ja) 移動局装置、基地局装置、通信システム、無線リソース要求方法および集積回路
JP2014220667A (ja) 端末装置、基地局装置、通信システム、通信方法および集積回路

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13781811

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13781811

Country of ref document: EP

Kind code of ref document: A1