Nothing Special   »   [go: up one dir, main page]

WO2013031593A1 - 電気電子部品封止用樹脂組成物、電気電子部品封止体の製造方法および電気電子部品封止体 - Google Patents

電気電子部品封止用樹脂組成物、電気電子部品封止体の製造方法および電気電子部品封止体 Download PDF

Info

Publication number
WO2013031593A1
WO2013031593A1 PCT/JP2012/071154 JP2012071154W WO2013031593A1 WO 2013031593 A1 WO2013031593 A1 WO 2013031593A1 JP 2012071154 W JP2012071154 W JP 2012071154W WO 2013031593 A1 WO2013031593 A1 WO 2013031593A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin
electronic parts
resin composition
electrical
brominated epoxy
Prior art date
Application number
PCT/JP2012/071154
Other languages
English (en)
French (fr)
Inventor
大樹 舩岡
健治 志賀
Original Assignee
東洋紡株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東洋紡株式会社 filed Critical 東洋紡株式会社
Priority to EP12827752.2A priority Critical patent/EP2752455A1/en
Priority to KR1020137033043A priority patent/KR20140058437A/ko
Priority to US14/241,662 priority patent/US20140221578A1/en
Priority to CN201280041612.4A priority patent/CN103764756A/zh
Publication of WO2013031593A1 publication Critical patent/WO2013031593A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/20Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the epoxy compounds used
    • C08G59/22Di-epoxy compounds
    • C08G59/226Mixtures of di-epoxy compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/18Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances
    • H01B3/30Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes
    • H01B3/40Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes epoxy resins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L67/00Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
    • C08L67/02Polyesters derived from dicarboxylic acids and dihydroxy compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/20Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the epoxy compounds used
    • C08G59/22Di-epoxy compounds
    • C08G59/30Di-epoxy compounds containing atoms other than carbon, hydrogen, oxygen and nitrogen
    • C08G59/308Di-epoxy compounds containing atoms other than carbon, hydrogen, oxygen and nitrogen containing halogen atoms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/04Homopolymers or copolymers of ethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L67/00Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
    • C08L67/02Polyesters derived from dicarboxylic acids and dihydroxy compounds
    • C08L67/025Polyesters derived from dicarboxylic acids and dihydroxy compounds containing polyether sequences
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/18Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances
    • H01B3/30Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes
    • H01B3/42Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes polyesters; polyethers; polyacetals
    • H01B3/427Polyethers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/29Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the material, e.g. carbon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/29Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the material, e.g. carbon
    • H01L23/293Organic, e.g. plastic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L61/00Compositions of condensation polymers of aldehydes or ketones; Compositions of derivatives of such polymers
    • C08L61/04Condensation polymers of aldehydes or ketones with phenols only
    • C08L61/06Condensation polymers of aldehydes or ketones with phenols only of aldehydes with phenols
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L61/00Compositions of condensation polymers of aldehydes or ketones; Compositions of derivatives of such polymers
    • C08L61/34Condensation polymers of aldehydes or ketones with monomers covered by at least two of the groups C08L61/04, C08L61/18 and C08L61/20
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Definitions

  • the present invention relates to a sealed electric and electronic part sealed with a resin composition, a method for producing the same, and a resin composition suitable for this application.
  • Hot melt resins that can be sealed by lowering viscosity simply by heating and melting solidify and form a sealed body by simply cooling after sealing, so the productivity is high, and the resin is melted and removed by heating. It has excellent characteristics such as easy recycling of the member, and is suitable for sealing electrical and electronic parts.
  • Polyester which has both high electrical insulation and water resistance, is considered to be a very useful material for this application, but generally has a high melt viscosity and injection at a high pressure of several hundred MPa or more to seal parts with complex shapes. Molding is required, and there is a risk of destroying electrical and electronic parts.
  • Patent Document 1 discloses a polyester resin composition for molding containing a polyester resin having a specific composition and physical properties and an antioxidant, and sealing at a low pressure that does not damage electrical and electronic parts. Is disclosed to be possible. With this resin composition, a molded product with good initial adhesion can be obtained, and the polyester resin composition can be applied to general electric and electronic parts.
  • Patent Document 2 discloses a resin composition for sealing electrical and electronic parts in which a crystalline polyester resin, an epoxy resin, and a polyolefin resin are blended. This composition has a high initial adhesion strength to a glass epoxy plate or a polybutylene terephthalate plate containing 30% by weight of a glass filler. A decrease in adhesion strength due to loading at 105 ° C. for 1000 hours is also suppressed.
  • the electrical and electronic component encapsulant is required to have flame retardancy.
  • Patent Documents 1 and 2 describe that flame retardants can be blended.
  • a flame retardant may be added.
  • simply adding an existing flame retardant makes it difficult to obtain a practical flame retardant at a high blending ratio. It is necessary to add a flame retardant, the fluidity of the sealant is lowered, resulting in poor filling of the sealant, the adhesiveness between the sealant and electric and electronic parts is lowered, the bleedout of the flame retardant is caused, etc. It was found to cause problems.
  • An object of the present invention is to provide a flame-retardant electrical and electronic component encapsulant that does not bleed out a flame retardant while maintaining a practical level of sealing agent filling property and adhesion between the sealant and the electrical and electronic component. It is to provide a resin composition for sealing electrical and electronic parts.
  • Copolymer polyester elastomer (X), brominated epoxy resin (B1), non-brominated epoxy resin (B2) and polyolefin resin (C) are contained, dried to a moisture content of 0.1% or less, and 220 ° C.
  • Resin for encapsulating electrical and electronic parts having a melt viscosity of 5 dPa ⁇ s or more and 3.0 ⁇ 10 3 dPa ⁇ s or less when extruded from a die having a hole diameter of 1.0 mm and a thickness of 10 mm. Composition.
  • An electrical and electronic component encapsulated having a melt viscosity of 5 dPa ⁇ s or more and 3000 dPa ⁇ s or less when heated to 220 ° C. by applying pressure of 1 MPa and extruded from a die having a pore diameter of 1.0 mm and a thickness of 10 mm. Resin composition for stopping.
  • the resin composition temperature is 130 ° C. or higher and 260 ° C. or lower in a mold into which an electric / electronic component is inserted.
  • a method for producing an encapsulated electrical and electronic component which is injected at an object pressure of 0.1 MPa to 10 MPa.
  • the resin composition for sealing electric and electronic parts of the present invention as a sealing material in an electric and electronic part sealing body, the filling property of the sealing agent at a practical level and the adhesion between the sealing agent and the electric and electronic parts can be improved. It is possible to obtain a flame retardant electrical / electronic component encapsulant without bleed out of the flame retardant while maintaining.
  • the encapsulated body for electrical and electronic parts of the present invention comprises a resin or a resin composition that is heated and kneaded in a mold in which the electrical and electronic parts are set inside the mold to give fluidity to 0.1 to 10 MPa. It can be manufactured by injecting at low pressure and enclosing and sealing the electrical and electronic parts with a resin or resin composition. In other words, since it is performed at a very low pressure compared to injection molding at a high pressure of 40 MPa or more, which is generally used for molding plastics in the past, it is resistant to heat and pressure while being sealed by an injection molding method. It is possible to seal a limited electric / electronic component without breaking it.
  • sealing resin or a sealing resin composition By properly selecting a sealing resin or a sealing resin composition, it has adhesion durability that can withstand environmental loads on various polyester substrates, glass epoxy substrates, metals, etc., and also has flame resistance. A sealing body can be obtained. The details of the embodiments of the invention will be sequentially described below.
  • the copolymerized polyester elastomer (X) used in the present invention has a chemical structure in which a hard segment mainly composed of a polyester segment and a soft segment mainly composed of a polycarbonate segment, a polyalkylene glycol segment and / or a polylactone segment are bonded by an ester bond. Consists of.
  • the polyester segment is preferably mainly composed of a polyester having a structure that can be formed by polycondensation of an aromatic dicarboxylic acid and an aliphatic glycol and / or an alicyclic glycol.
  • the soft segment is preferably contained in an amount of 20% by weight or more and 80% by weight or less, more preferably 30% by weight or more and 70% by weight or less, and more preferably 40% by weight or more and 60% by weight or less with respect to the entire copolymer polyester elastomer. % Or less is more preferable.
  • the lower limit of the number average molecular weight of the copolymerized polyester elastomer (X) used in the present invention is not particularly limited, but is preferably 3,000 or more, more preferably 5,000 or more, and further preferably 7,000 or more.
  • the upper limit of the number average molecular weight is not particularly limited, but is preferably 50,000 or less, more preferably 40,000 or less, and still more preferably 30,000 or less. If the number average molecular weight is too low, the sealing resin composition may have insufficient hydrolysis resistance and strong elongation retention under high temperature and high humidity. If the number average molecular weight is too high, the melt viscosity of the resin composition may be insufficient. The molding pressure may become too high or the molding may become difficult.
  • the copolymerized polyester elastomer (X) used in the present invention is preferably a saturated polyester resin, and is also preferably an unsaturated polyester resin having a trace amount of vinyl groups of 50 equivalents / 10 6 g or less.
  • an unsaturated polyester having a high concentration of vinyl groups there is a possibility that crosslinking occurs at the time of melting, and the melt stability may be inferior.
  • the copolymerized polyester elastomer (X) used in the present invention may be a polyester having a branch by copolymerizing a tri- or higher functional polycarboxylic acid such as trimellitic anhydride or trimethylolpropane or a polyol as necessary.
  • the upper limit of the melting point of the copolyester elastomer (X) is preferably 210 ° C.
  • it is 200 degreeC, More preferably, it is 190 degreeC.
  • 70 ° C. or higher preferably 100 ° C. or higher, more preferably 120 ° C. or higher, particularly preferably 140 ° C. or higher, and most preferably 150 ° C. or higher.
  • a known method can be used. For example, after a polycarboxylic acid component and a polyol component described later are esterified at 150 to 250 ° C. A copolyester elastomer can be obtained by a polycondensation reaction at 230 to 300 ° C. under reduced pressure. Alternatively, a copolymerization may be performed by performing a transesterification reaction at 150 ° C. to 250 ° C. using a derivative such as dimethyl ester of polycarboxylic acid described later and a polyol component, and then performing a polycondensation reaction at 230 ° C. to 300 ° C. while reducing the pressure. A polyester elastomer can be obtained.
  • Examples of a method for determining the composition and composition ratio of the copolymerized polyester elastomer (X) used in the present invention include 1 H-NMR, 13 C-NMR, and polyester resin in which a polyester resin is dissolved in a solvent such as deuterated chloroform. Quantification by gas chromatography measured after methanolysis (hereinafter sometimes abbreviated as methanolyc-GC method) and the like.
  • methanolyc-GC method gas chromatography measured after methanolysis
  • the composition and composition ratio are determined by 1 H-NMR.
  • 13 C-NMR or methanolysis-GC method is adopted or used in combination.
  • the hard segment of the copolymerized polyester elastomer (X) of the present invention is preferably composed of a hard segment mainly composed of a polyester segment.
  • the acid component constituting the polyester segment is not particularly limited, but it contains 50 mol% or more of an aromatic dicarboxylic acid having 8 to 14 carbon atoms to increase the melting point for improving the heat resistance of the copolymer polyester elastomer. It is preferable in terms of design.
  • the aromatic dicarboxylic acid having 8 to 14 carbon atoms is preferably terephthalic acid and / or naphthalenedicarboxylic acid because of its high reactivity with glycol and desirable in view of polymerizability and productivity.
  • the total of terephthalic acid and naphthalenedicarboxylic acid is more preferably 60 mol% or more, more preferably 80 mol% or more, and more preferably 95 mol% or more of the total acid component of the copolyester elastomer.
  • the total acid component may be composed of terephthalic acid and / or naphthalenedicarboxylic acid.
  • polyester segment Other acid components constituting the polyester segment include diphenyl dicarboxylic acid, isophthalic acid, aromatic dicarboxylic acid such as 5-sodium sulfisophthalic acid, cycloaliphatic dicarboxylic acid, alicyclic dicarboxylic acid such as tetrahydrophthalic anhydride, and succinic acid.
  • dicarboxylic acids such as aliphatic dicarboxylic acids such as glutaric acid, adipic acid, azelaic acid, sebacic acid, dodecanedioic acid, dimer acid and hydrogenated dimer acid.
  • dicarboxylic acid components are used within a range that does not significantly lower the melting point of the resin, and the copolymerization ratio thereof is less than 30 mol%, preferably less than 20 mol% of the total acid components.
  • trifunctional or higher functional polycarboxylic acids such as trimellitic acid and pyromellitic acid can be used as other acid components constituting the polyester segment.
  • the copolymerization ratio of the trifunctional or higher polycarboxylic acid is preferably 10 mol% or less, and more preferably 5 mol% or less from the viewpoint of preventing gelation of the resin composition.
  • the aliphatic glycol or alicyclic glycol constituting the polyester segment is not particularly limited, but preferably contains at least 50 mol% of the aliphatic glycol and / or alicyclic glycol having 2 to 10 carbon atoms in the total glycol component. More preferably, it consists of alkylene glycols having 2 to 8 carbon atoms. Specific examples of preferred glycol components include ethylene glycol, 1,3-propylene glycol, 1,4-butanediol, 1,6-hexanediol, 1,4-cyclohexanedimethanol and the like.
  • 1,4-butanediol and 1,4-cyclohexanedimethanol are most preferred from the viewpoint of a high melting point design for improving the heat resistance of the polyester elastomer.
  • a tri- or higher functional polyol such as glycerin, trimethylolpropane, pentaerythritol, etc. may be used, and the content is made 10 mol% or less from the viewpoint of preventing gelation of the resin composition. Preferably, it is 5 mol% or less.
  • a butylene terephthalate unit or a butylene naphthalate unit is particularly preferable from the viewpoints of the polyester elastomer having a high melting point and improving heat resistance, and moldability and cost performance. .
  • the soft segment of the copolymerized polyester elastomer of the present invention is preferably composed of a soft segment mainly composed of a polycarbonate segment, a polyalkylene glycol segment and / or a polylactone segment.
  • the copolymerization ratio of the soft segment is preferably 1 mol% or more, more preferably 5 mol% or more, when the entire glycol component constituting the copolymerized polyester elastomer (X) is 100 mol%. It is more preferably at least mol%, particularly preferably at least 20 mol%.
  • the resin composition of the present invention has a high melt viscosity and cannot be molded at a low pressure, or tends to cause problems such as short shots due to high crystallization speed.
  • the copolymerization ratio of the soft segment is too high, problems such as insufficient heat resistance of the encapsulant of the present invention tend to occur.
  • the number average molecular weight of the soft segment is not particularly limited, but is preferably 400 or more, more preferably 800 or more. If the number average molecular weight of the soft segment is too low, flexibility cannot be imparted and the stress load on the electronic substrate after sealing tends to increase. Further, the number average molecular weight of the soft segment is preferably 5000 or less, and more preferably 3000 or less. If the number average molecular weight is too high, the compatibility with other copolymerization components is poor, and there is a tendency that copolymerization cannot be performed.
  • Examples of the polycarbonate segment used for the soft segment include those mainly composed of a polycarbonate structure in which an aliphatic diol residue having 2 to 12 carbon atoms is bonded by a carbonate group.
  • An aliphatic diol residue having 4 to 12 carbon atoms is preferable, and an aliphatic diol residue having 5 to 9 carbon atoms is particularly preferable from the viewpoint of flexibility and low-temperature characteristics of the obtained polyester elastomer.
  • One type of aliphatic diol residue may be used, or two or more types may be used.
  • polyalkylene glycol segment used for the soft segment examples include polyethylene glycol, polytrimethylene glycol, polytetramethylene glycol and the like.
  • Polytetramethylene glycol is most preferred in terms of imparting flexibility and reducing melt viscosity.
  • polylactone segment used for the soft segment examples include polycaprolactone, polyvalerolactone, polypropiolactone, polyundecalactone, poly (1,5-oxetan-2-one) and the like.
  • the polyester resin (A) used in the present invention is a crystalline polyester resin copolymerized with polyether diol, and is a kind of copolymer polyester elastomer (X).
  • the polyether diol is copolymerized to exhibit characteristics such as a decrease in melt viscosity, imparting flexibility, and imparting adhesion.
  • the copolymerization ratio of the polyether diol is preferably 1 mol% or more, and more preferably 5 mol% or more when the total glycol component constituting the crystalline polyester resin (A) is 100 mol%. More preferably, it is 10 mol% or more, and especially preferably 20 mol% or more.
  • the number average molecular weight of the polyether diol is preferably 400 or more, and more preferably 800 or more.
  • the number average molecular weight of the polyether diol is preferably 5000 or less, and more preferably 3000 or less. If the number average molecular weight is too high, the compatibility with other components is poor, and there is a tendency to cause a problem that copolymerization is impossible.
  • Specific examples of the polyether diol include polyethylene glycol, polytrimethylene glycol, polytetramethylene glycol, and the like, and polytetramethylene glycol is most preferable in terms of imparting flexibility and reducing melt viscosity.
  • Polyethylene which is widely used as an engineering plastic by adjusting the composition ratio of an aliphatic component and / or an alicyclic component and an aromatic component in the constituent component of the crystalline polyester resin (A) of the present invention
  • Low melt viscosity not found in general-purpose crystalline polyester resins such as terephthalate (hereinafter sometimes abbreviated as PET) and polybutylene terephthalate (hereinafter sometimes abbreviated as PBT), and two-component curable epoxy resin Comparable heat resistance, high temperature and high humidity resistance, cold cycle resistance, etc. can be exhibited. For example, in order to maintain high heat resistance of 150 ° C.
  • terephthalic acid and ethylene glycol, terephthalic acid and 1,4-butanediol, naphthalene dicarboxylic acid and ethylene glycol, naphthalene dicarboxylic acid and 1,4-butanediol are used.
  • a copolymerized polyester based is suitable.
  • mold releasability due to rapid crystallization after molding is a desirable characteristic from the viewpoint of productivity, so terephthalic acid and 1,4-butanediol, naphthalenedicarboxylic acid and 1,4-butanediol, which are rapidly crystallized, are used. It is preferable to use it as a main component.
  • the acid component constituting the crystalline polyester resin (A) it is preferable to contain both or one of terephthalic acid and naphthalenedicarboxylic acid from the viewpoint of heat resistance.
  • the copolymerization ratio is preferably 65 mol% or more, more preferably 70 mol% or more, especially 80 mol% or more when the total amount of terephthalic acid and naphthalenedicarboxylic acid is 100 mol%. It is preferable that If the total of terephthalic acid and naphthalenedicarboxylic acid is too low, the heat resistance required for electrical and electronic parts may be insufficient.
  • the glycol component constituting the crystalline polyester resin (A) contains one or both of ethylene glycol and 1,4-butanediol from the viewpoint of maintaining crystallinity during copolymerization.
  • the copolymerization ratio is preferably 40 mol% or more, more preferably 45 mol% or more, particularly preferably 45 mol% or more when the total amount of ethylene glycol and 1,4-butanediol is 100 mol% of the total amount of glycol components. 50 mol% or more is preferable, and most preferably 55 mol% or more.
  • the basic composition comprising the above-mentioned acid component and glycol component giving high heat resistance has adipic acid, azelaic acid, sebacic acid, 1,4-cyclohexanedicarboxylic acid, 1,3-cyclohexane.
  • Aliphatic or alicyclic dicarboxylic acids such as dicarboxylic acid, 1,2-cyclohexanedicarboxylic acid, 4-methyl-1,2-cyclohexanedicarboxylic acid, dimer acid, hydrogenated dimer acid, 1,2-propanediol, , 3-propanediol, 1,2-butanediol, 1,3-butanediol, 2-methyl-1,3-propanediol, 1,5-pentanediol, 1,6-hexanediol, 3-methyl-1 , 5-pentanediol, neopentyl glycol, diethylene glycol, dipropylene glycol 2,2,4-trimethyl-1,3-pentanediol, cyclohexanedimethanol, tricyclodecane dimethanol, neopentyl glycol hydroxypivalate, 1,9-nonanediol, 2-methyloctane
  • the polyester resin (A) of the present application may have an aliphatic or alicyclic dicarboxylic acid having 10 or more carbon atoms such as dimer acid or hydrogenated dimer acid, and / or 10 carbon atoms such as dimer diol or hydrogenated dimer diol.
  • an aliphatic or alicyclic dicarboxylic acid having 10 or more carbon atoms such as dimer acid or hydrogenated dimer acid, and / or 10 carbon atoms such as dimer diol or hydrogenated dimer diol.
  • dimer acid, aliphatic or alicyclic dicarboxylic acid having 10 or more carbon atoms such as dimer diol and / or aliphatic or alicyclic diol having 10 or more carbon atoms
  • polytetramethylene glycol such as polytetramethylene glycol.
  • the term “cooling cycle durability” as used herein means that even if the temperature is raised and lowered repeatedly between high and low temperatures, peeling of the interface part between the electronic component having a different linear expansion coefficient and the sealing resin, or cracking of the sealing resin It is performance that is hard to occur. If the elastic modulus of the resin is significantly increased during cooling, peeling or cracking is likely to occur.
  • the glass transition temperature is preferably ⁇ 10 ° C. or lower in order to provide a material that can withstand the cooling and heating cycle. More preferably, it is ⁇ 20 ° C. or less, more preferably ⁇ 40 ° C. or less, and most preferably ⁇ 50 ° C. or less.
  • the lower limit is not particularly limited, but a temperature of ⁇ 100 ° C. or more is realistic in consideration of adhesion and blocking resistance.
  • the dimer acid is an aliphatic or alicyclic dicarboxylic acid produced by dimerization of an unsaturated fatty acid by polymerization or Diels-Alder reaction (most of the dimer, trimer, monomer, etc.).
  • the hydrogenated dimer acid refers to one obtained by adding hydrogen to the unsaturated bond portion of the dimer acid.
  • the dimer diol and hydrogenated dimer diol are those obtained by reducing the two carboxyl groups of the dimer acid or the hydrogenated dimer acid to hydroxyl groups. Specific examples of the dimer acid or dimer diol include Copolis' Enpol (registered trademark) or Sobamol (registered trademark) and Unikema's Prepol.
  • an aromatic copolymer component in the polyester resin (A) of the present application, a small amount of an aromatic copolymer component can be used as long as it is within a range that maintains a low melt viscosity.
  • Preferred examples of the aromatic copolymer component include aromatic dicarboxylic acids such as isophthalic acid and orthophthalic acid, and aromatic glycols such as ethylene oxide adduct and propylene oxide adduct of bisphenol A.
  • aromatic dicarboxylic acids such as isophthalic acid and orthophthalic acid
  • aromatic glycols such as ethylene oxide adduct and propylene oxide adduct of bisphenol A.
  • an aliphatic component having a relatively high molecular weight such as dimer acid or dimer diol
  • the upper limit of the ester group concentration of the polyester resin (A) is 8000 equivalents / 10 6 in order to provide hydrolysis resistance that can withstand high temperature and high humidity in providing long-term durability to the sealed electrical and electronic parts. g is desirable.
  • a preferable upper limit is 7500 equivalent / 10 ⁇ 6 > g, More preferably, it is 7000 equivalent / 10 ⁇ 6 > g.
  • the lower limit is desirably 1000 equivalents / 10 6 g.
  • a preferred lower limit is 1500 equivalents / 10 6 g, more preferably 2000 equivalents / 10 6 g.
  • the unit of ester group concentration is represented by the number of equivalents per 10 6 g of resin, and is a value calculated from the composition of the polyester resin and its copolymerization ratio.
  • the block-like segment is introduced into the polyester resin (A) of the present invention, it is preferably 2 mol% or more when the total of all the acid components and all glycol components of the polyester resin (A) is 200 mol%. More preferably, it is 5 mol% or more, more preferably 10 mol% or more, and most preferably 20 mol% or more.
  • the upper limit is 70 mol% or less, preferably 60 mol% or less, more preferably 50 mol% or less in consideration of handling properties such as heat resistance and blocking.
  • the number average molecular weight of the polyester resin (A) of the present invention is preferably 3000 or more, more preferably 5000 or more, and further preferably 7000 or more.
  • the upper limit of the number average molecular weight is preferably 50000 or less, more preferably 40000 or less, and still more preferably 30000 or less. If the number average molecular weight is less than 3000, the sealing resin composition may be insufficient in hydrolysis resistance and high elongation at high temperature and high humidity. If it exceeds 50,000, the melt viscosity at 220 ° C. May be higher.
  • the polyester resin (A) of the present invention is preferably a saturated polyester resin that does not contain an unsaturated group. If it is an unsaturated polyester, there is a possibility that crosslinking occurs at the time of melting, and the melt stability may be inferior.
  • the polyester resin (A) of the present invention may be a branched polyester by copolymerizing a tri- or higher functional polycarboxylic acid such as trimellitic anhydride or trimethylolpropane or a polyol as necessary.
  • the upper limit of the melting point of the polyester resin (A) is 210 ° C. desirable.
  • it is 200 degreeC, More preferably, it is 190 degreeC.
  • the lower limit is preferably 5 to 10 ° C. higher than the heat-resistant temperature required for the corresponding application.
  • it is 70 ° C. or higher, preferably 100 ° C. or higher, more preferably 120 ° C. or higher, particularly preferably 140 ° C. or higher, and most preferably 150 ° C. or higher.
  • the polyester resin (A) of the present invention As a method for producing the polyester resin (A) of the present invention, a known method can be used.
  • the above-mentioned dicarboxylic acid and diol components are esterified at 150 to 250 ° C. and then reduced in pressure while being reduced in pressure to 230 to 300.
  • the target polyester resin can be obtained by polycondensation at ° C.
  • the target polyester resin is obtained by performing a transesterification reaction at 150 ° C. to 250 ° C. using a derivative such as dimethyl ester of the above dicarboxylic acid and a diol component, and then performing polycondensation at 230 ° C. to 300 ° C. under reduced pressure. be able to.
  • the composition and composition ratio of the polyester resin (A) for example, 1 H-NMR or 13 C-NMR in which the polyester resin is dissolved in a solvent such as deuterated chloroform is measured, and after the methanolysis of the polyester resin Quantification by gas chromatography to be measured (hereinafter sometimes abbreviated as methanolysis-GC method) and the like.
  • methanolysis-GC method methanolysis-GC method
  • the composition and composition ratio are determined by 1 H-NMR.
  • 13 C-NMR or methanolysis-GC method is adopted or used in combination.
  • the brominated epoxy resin (B1) used in the resin composition of the present invention is an epoxy resin having an average of 1.1 or more glycidyl groups and one or more bromine atoms in the molecule.
  • brominated bisphenol A diglycidyl ether, brominated novolak glycidyl ether and the like can be mentioned, and other examples include brominated glycidyl ester type, alicyclic or aliphatic brominated epoxide.
  • the number average molecular weight of the brominated epoxy resin (B1) is preferably in the range of 100 to 10,000, and if the number average molecular weight is less than 100, the encapsulant composition for electrical and electronic parts is likely to be very soft and poor in mechanical properties. Yes, at 10,000 or more, the compatibility with the copolymerized polyester elastomer (X) or the polyester resin (A) is lowered, and the adhesion and flame retardancy may be impaired. Further, by using together with the non-brominated epoxy resin (B2) shown below, further improvement in adhesiveness can be expected, and the brominated epoxy resin (B1) is bleeded from the sealant composition for electrical and electronic parts. Out is suppressed.
  • the non-brominated epoxy resin (B2) used in the resin composition of the present invention is preferably an epoxy resin having a number average molecular weight in the range of 450 to 40,000 and having an average of 1.1 or more glycidyl groups in the molecule. is there.
  • non-brominated epoxy resins (B2) include glycidyl ether types such as bisphenol A diglycidyl ether, bisphenol S diglycidyl ether, novolac glycidyl ether, glycidyl esters such as hexahydrophthalic acid glycidyl ester and dimer acid glycidyl ester.
  • triglycidyl isocyanurate glycidylhindantoin, tetraglycidyldiaminodiphenylmethane, triglycidylparaaminophenol, triglycidylmetaaminophenol, diglycidylaniline, diglycidyltoluidine, tetraglycidylmetaxylenediamine, diglycidyltribromoaniline, tetraglycidyl Glycidylamine such as bisaminomethylcyclohexane or 3,4-epoxycyclohexane Methyl carboxylate, epoxidized polybutadiene, such as alicyclic or aliphatic epoxides such as epoxidized soybean oil.
  • a copolymerized polyester elastomer (X) or polyester resin (A) is used as a non-brominated epoxy resin (B2). It is preferable to select one having good compatibility.
  • the preferred number average molecular weight of the non-brominated epoxy resin (B2) is 450 to 40,000. If the number average molecular weight is less than 450, the adhesive composition is very soft and the mechanical properties may be inferior. If it is 40000 or more, the compatibility with the copolymer polyester elastomer (X) or the polyester resin (A) decreases. , There is a risk that adhesion will be impaired.
  • the sealing resin composition by blending the brominated epoxy resin (B1) and the non-brominated epoxy (B2) into the sealing resin composition, it is possible to seal the electrical and electronic parts with good initial adhesion, cooling cycle and high Flame retardancy can be achieved while imparting excellent properties such as durability against adhesion to high-humidity environmental loads.
  • Brominated epoxy resin (B1) is not only effective as a flame retardant, but also stress relaxation effect due to crystallization delay of polyester resin (A), copolymer polyester elastomer (X) or crystalline polyester resin (A) and polyolefin resin It is considered that the effect as a compatibilizer with (C) and the effect of improving the wettability to the substrate by introducing a functional group are exhibited.
  • the brominated epoxy resin (B1) can be prevented from bleeding out from the resin composition for sealing electrical and electronic parts, Stress relaxation effect due to crystallization delay of copolymer polyester elastomer (X) or polyester resin (A), effect as a compatibilizer between crystalline polyester resin (A) and polyolefin resin (C), and further by introduction of functional groups The effect of improving the wettability to the substrate can be further added.
  • the total blending amount of the brominated epoxy resin (B1) and the non-brominated epoxy resin (B2) in the resin composition for sealing electric and electronic parts of the present invention is 100 masses of copolymerized polyester elastomer (X) or polyester resin (A).
  • the amount is preferably 5 to 100 parts by mass with respect to parts.
  • brominated epoxy resin (B1) and non-brominated epoxy resin (B2) are 100 mass parts or more, it is inferior to the productivity of a resin composition, Furthermore, characteristics, such as heat resistance of a sealing body. May be inferior.
  • a non-brominated epoxy resin (B2) having a common chemical structure with the brominated epoxy resin (B1) because the effect of suppressing the bleedout of the brominated epoxy resin (B1) tends to increase.
  • a brominated bisphenol A type epoxy resin is used as the component (B1)
  • a bisphenol A type epoxy resin is used as the component (B2)
  • a novolac type brominated epoxy resin is used as the component (B1).
  • the blending ratio of the non-brominated epoxy resin (B2) is preferably 10% by weight or more and 50% by weight or less with respect to the brominated epoxy resin (B1). If the blending ratio of the non-brominated epoxy resin (B2) is 10% by weight or less, the bleed-out suppressing effect may not be exhibited, and if it is 50% by weight or more, flame retardancy may not be exhibited.
  • the compounding of the polyolefin resin (C) with the sealing resin composition has excellent properties such as good adhesion and durability against cold cycle and high temperature hard environmental load when sealing electrical and electronic parts.
  • the polyolefin resin (C) is considered to exhibit a strain energy relaxation effect by crystallization or enthalpy relaxation of the copolymer polyester elastomer (X) or the polyester resin (A).
  • the blending amount of the polyolefin resin (C) in the present invention is 0.1 to 100 parts by weight, preferably 0.5 to 50 parts by weight based on 100 parts by weight of the copolyester elastomer (X) or the polyester resin (A). Part by mass.
  • the polyolefin resin (C) When the polyolefin resin (C) is less than 0.5 parts by mass, it is difficult to relieve strain energy by crystallization or enthalpy relaxation of the copolyester elastomer (X) or the polyester resin (A), so that the adhesion strength tends to decrease. is there. Moreover, when 50 mass parts or more of polyolefin resin (C) is mix
  • Polyolefin resin used in the present invention (C) is preferably a density less than 0.75 g / cm 3 or more 0.91 g / cm 3.
  • the polyolefin resin (C) is easily finely dispersed and mixed with the originally incompatible copolymer polyester elastomer (X) or the polyester resin (A).
  • no special kneading equipment is required.
  • a homogeneous resin composition can be obtained by a general kneading equipment such as a single screw extruder or a twin screw extruder.
  • the low density and low crystallinity also act appropriately on the temporal relaxation of the residual stress at the time of injection molding generated in the copolymer polyester elastomer (X) or the crystalline polyester resin (A)
  • a resin it exhibits preferable characteristics such as long-term adhesion durability and reduction of stress caused by environmental load.
  • polyolefin resin (C) having such characteristics polyethylene and ethylene copolymers are particularly preferable because they are readily available, inexpensive, and do not adversely affect the adhesion to metals and films.
  • low density polyethylene ultra low density polyethylene, linear low density polyethylene, ethylene propylene elastomer, ethylene-vinyl acetate copolymer, ethylene-ethyl acrylate copolymer, ethylene-vinyl acetate-maleic anhydride Copolymer, ethylene-ethyl acrylate-maleic anhydride terpolymer, ethylene-glycidyl methacrylate copolymer, ethylene-vinyl acetate-glycidyl methacrylate terpolymer, ethylene-methyl acrylate-methacryl Examples thereof include glycidyl acid terpolymers.
  • the polyolefin resin (C) preferably does not contain a polar group capable of reacting with the polyester resin (A) such as a carboxyl group or a glycidyl group.
  • a polar group capable of reacting with the polyester resin (A)
  • the compatibility with the copolymer polyester elastomer (X) or the polyester resin (A) changes, and the strain energy during crystallization of the copolymer polyester elastomer (X) or the polyester resin (A) is changed and relaxed.
  • a polyolefin having a polar group tends to have a higher compatibility with a polyester resin than a polyolefin having no polar group.
  • the compatibility is higher, the adhesion deterioration with time tends to increase. .
  • the component (D) used in the present invention is a phenol resin (D1) and / or a phenol-modified alkylbenzene resin (D2).
  • the blending ratio is preferably 0 to 50 parts by mass of the total of the phenol-modified alkylbenzene resin (D2) and / or phenol resin (D1) with respect to 100 parts by mass of the polyester resin.
  • the component (D1) and the component (D2) are not essential components, the effect of suppressing the bleeding out of the brominated epoxy resin (B1) and / or the resin composition of the present invention and the object to be sealed are added. In some cases, the effect of improving the adhesion to the electrical and electronic parts can be exhibited. In particular, when the common chemical structure of the brominated epoxy resin (B1) and the non-brominated epoxy resin (B2) is poor, a remarkable bleed-out suppression effect tends to be exhibited.
  • the phenol-modified alkylbenzene resin (D2) used in the resin composition of the present invention is a product obtained by modifying an alkylbenzene resin with phenol and / or alkylphenol, and preferably has a number average molecular weight in the range of 450 to 40,000.
  • the phenol-modified alkylbenzene resin (D2) is produced by reacting an alkylbenzene such as xylene or mesitylene with an aldehyde such as formaldehyde in the presence of an acidic catalyst to produce an alkylbenzene resin. It can be produced by reacting with aldehydes.
  • the phenol-modified alkylbenzene resin (D2) is preferably an alkylphenol-modified xylene resin or an alkylphenol-modified mesitylene resin.
  • a xylene resin is a multimer composition having a basic structure in which a xylene structure is crosslinked by a methylene group or an ether bond, and can be typically obtained by heating meta-xylene and formaldehyde in the presence of sulfuric acid.
  • the mesitylene resin is a multimer composition having a basic structure in which the mesitylene structure is cross-linked by a methylene group or an ether bond. Typically, the mesitylene resin can be obtained by heating mesitylene and formaldehyde in the presence of sulfuric acid.
  • Xylene resins and mesitylene resins are typical of alkylbenzene resins.
  • the phenol-modified alkylbenzene resin (D2) of the present invention preferably has a hydroxyl value of 100 equivalents / 10 6 g or more, more preferably 1000 equivalents / 10 6 g or more, and 5000 equivalents / 10 6 g or more. Is more preferable. Also, preferably not more than 20000 equivalents / 10 6 g, more preferably 15000 or less equivalent / 10 6 g.
  • the hydroxyl value referred to here is measured by the JIS K1557-1: 2007A method.
  • the phenol resin (D1) used in the resin composition of the present invention is a resin obtained by reaction of phenols and aldehydes, and may be a novolak type phenol resin or a cresol type phenol resin, and has a number average molecular weight of 450 to 40,000. Those within the range are preferred.
  • Phenols that can be used as starting materials for phenol resins include bifunctional compounds such as o-cresol, p-cresol, p-tert-butylphenol, p-ethylphenol, 2,3-xylenol and 2,5-xylenol.
  • Trifunctional phenols such as phenol, phenol, m-cresol, m-ethylphenol, 3,5-xylenol and m-methoxyphenol, tetrafunctional phenols such as bisphenol A and bisphenol F, and these various phenols 1 type, or 2 or more types combined use can be mentioned.
  • formaldehyde used for manufacture of a phenol resin 1 type, or 2 or more types, such as formaldehyde, paraformaldehyde, a trioxane, can be used together.
  • Other examples include phenol-modified resins such as phenol aralkyl and phenol-modified xylene resins.
  • the polyester resin (A) are particularly preferable in order to exhibit high adhesion.
  • the melt viscosity is close and a hydroxyl group is present.
  • the phenolic resin (D1) of the present invention preferably has a hydroxyl value of 100 equivalents / 10 6 g or more, more preferably 500 equivalents / 10 6 g or more, and 1000 equivalents / 10 6 g or more. Is more preferable. Further, preferably 10000 or less equivalent / 10 6 g, more preferably not more than 5000 equivalents / 10 6 g.
  • the resin composition for sealing electrical and electronic parts of the present invention comprises a copolymerized polyester elastomer (X) or a crystalline polyester resin (A) copolymerized with polyether diol, brominated epoxy resin (B1), non-brominated When epoxy resin (B2) and polyolefin resin (C) are contained, dried to a moisture content of 0.1% or less, heated to 220 ° C., applied with a pressure of 1 MPa, and extruded from a die having a pore diameter of 1.0 mm and a thickness of 10 mm Is a resin composition for encapsulating electrical and electronic parts having a melt viscosity of 5 dPa ⁇ s or more and 3000 dPa ⁇ s or less.
  • the resin composition for sealing electric and electronic parts of the present invention preferably has a melt viscosity at 220 ° C. of 5 to 3000 dPa ⁇ s, and is a copolymerized polyester elastomer (X) or crystalline polyester resin (A), brominated epoxy. Achieved by appropriately adjusting the type and blending ratio of resin (B1), non-brominated epoxy resin (B2), polyolefin resin (C), and phenol resin (D1) and / or phenol-modified xylene resin (D2) can do.
  • resin (B1), non-brominated epoxy resin (B2), polyolefin resin (C), and phenol resin (D1) and / or phenol-modified xylene resin (D2) can do.
  • the melt viscosity of the resin composition of the present invention is the melt viscosity of the resin composition of the present invention. Tends to act in the direction of lowering, and increasing the molecular weight of the crystalline polyester (A) tends to act in the direction of increasing the melt viscosity of the resin composition of the present invention.
  • the viscosity is a value measured as follows. That is, the sealing resin composition was dried to a moisture content of 0.1% or less, and then heated and stabilized at 220 ° C. with a flow tester (model number CFT-500C) manufactured by Shimadzu Corporation.
  • melt viscosity 3000 dPa ⁇ s or higher, high resin cohesive strength and durability can be obtained, but high-pressure injection molding is required when sealing to parts with complex shapes, so the parts can be destroyed. May occur.
  • a sealing resin composition having a melt viscosity of 1500 dPa ⁇ s or less, preferably 1000 dPa ⁇ s or less, more preferably 800 dPa ⁇ s or less, A molded part having excellent insulation properties can be obtained, and the characteristics of the electric and electronic parts are not impaired.
  • the melt viscosity at 220 ° C. is low, but considering the adhesiveness and cohesive force of the resin composition, the lower limit is preferably 5 dPa ⁇ s or more, and more preferably Is preferably 10 dPa ⁇ s or more, more preferably 50 dPa ⁇ s or more, and most preferably 100 dPa ⁇ s or more.
  • the resin composition for sealing electric and electronic parts of the present invention includes a copolymerized polyester elastomer (X) or polyester resin (A), brominated epoxy resin (B1) for the purpose of improving adhesion, flexibility, durability and the like.
  • X copolymerized polyester elastomer
  • A polyester resin
  • B1 brominated epoxy resin
  • B2 non-brominated epoxy resin
  • C polyolefin resin
  • the polyester resin (A) is preferably contained in an amount of 40% by weight or more, more preferably 50% by weight or more based on the whole composition.
  • the copolyester elastomer (X) or the polyester resin (A) itself has a copolyester elastomer (X) or polyester resin (A) content of less than 40% by weight; Adhesion durability, elongation retention, hydrolysis resistance, and water resistance may be reduced.
  • antioxidants include, for example, 1,3,5-tris (3,5-di-t-butyl-4-hydroxybenzyl) isocyanurate, 1,1,3-tri (4 -Hydroxy-2-methyl-5-tert-butylphenyl) butane, 1,1-bis (3-tert-butyl-6-methyl-4-hydroxyphenyl) butane, 3,5-bis (1,1-dimethyl) Ethyl) -4-hydroxy-benzenepropanoic acid, pentaerythrityltetrakis (3,5-di-t-butyl-4-hydroxyphenyl) propionate, 3- (1,1-dimethylethyl) -4-hydroxy- 5-methyl-benzenepropanoic acid, 3,9-bis [1,
  • the addition amount is preferably 0.1% by weight or more and 5% by weight or less with respect to the whole sealing resin composition. If it is less than 0.1% by weight, the deterioration preventing effect may be poor. On the other hand, if it exceeds 5% by weight, the adhesion and the like may be adversely affected.
  • the encapsulated body for electric and electronic parts of the present invention can be produced by heating and kneading the resin composition for encapsulating electric and electronic parts of the present invention and then pouring the resin composition into a mold having the electric and electronic parts inserted therein.
  • the resin composition for sealing electric and electronic parts of the present invention even if all the components constituting the resin composition are separately heated and kneaded in advance, some or all of the components are immediately before mold injection. It may be mixed and heated and kneaded.
  • the resin composition temperature and the resin composition pressure at the time of mold injection are not particularly limited. However, if the resin composition temperature is 130 to 260 ° C. and the resin composition pressure is 0.1 to 10 MPa, damage to electrical and electronic parts Is preferable.
  • a screw type hot melt molding applicator can be used for the injection of the resin.
  • the type of the applicator for hot melt molding is not particularly limited, and examples thereof include ST2 manufactured by Nordson, Germany, and a vertical extrusion molding machine manufactured by Imoto Seisakusho.
  • the injection molding conditions were a molding resin temperature of 220 ° C., a molding pressure of 3 MPa, a holding pressure of 3 MPa, a cooling time of 15 seconds, and an injection speed of 50%.
  • 1 to 3 are schematic views of the cross section of the mold 1, showing the state at the end of the injection of the sealing resin composition, and the cross section AA ′ in FIG. 1 is shown in FIG.
  • the B ′ cross section corresponds to FIG. 1
  • the CC ′ cross section of FIGS. 2, 2 and 3 corresponds to FIG.
  • the molded product was released, and the sealing resin composition other than the overlapping portion of the flat plate 4 and the flat plate 5 was cut off to obtain an adhesion strength test piece.
  • the glass epoxy adhesion test piece has a structure in which an overlapping portion (25 mm in width ⁇ 18 mm in length) between glass epoxy plates is filled with a sealing resin composition having a thickness of 1 mm and bonded.
  • a glass epoxy plate having a 10-point average roughness on the surface of the bonded portion in the range of 0.5 to 3 ⁇ m was used.
  • the adhesion test piece was allowed to stand for 3 hours or more and 100 hours or less in an atmosphere of 23 ° C.
  • ⁇ Low pressure moldability test> A flat plate mold (100 mm ⁇ 100 mm ⁇ 10 mm) made of a sealing resin composition was molded using Nordson ST-2 as an applicator for hot melt molding using a flat plate mold. The gate position was the center of a 100 mm ⁇ 100 mm surface. Molding conditions: molding resin temperature 220 ° C., molding pressure 3 MPa, holding pressure 3 MPa, cooling time 15 seconds, injection speed 50% ⁇ : Completely filled, without sink marks. ⁇ : Filled without short shot, but there is a sink. X: There is a short shot.
  • Copolyester elastomers B to E were synthesized by the same method as copolymer polyester elastomer A.
  • the respective compositions and physical property values are shown in Tables 1 and 2.
  • TPA terephthalic acid
  • NDC naphthalene dicarboxylic acid
  • BD 1,4-butanediol
  • PTMG1000 polytetramethylene ether glycol (number average molecular weight 1000)
  • PTMG2000 polytetramethylene ether glycol (number average molecular weight 2000)
  • Resin composition 1 for sealing electrical and electronic parts uniformly comprises 100 parts by mass of copolymer polyester elastomer A, 30 parts by mass of polyolefin resin A, 30 parts by mass of brominated epoxy resin A, and 20 parts by mass of non-brominated epoxy resin A. And then melt kneaded at a die temperature of 220 ° C. using a twin screw extruder. Sealing resin compositions 2 to 22 were prepared in the same manner as sealing resin composition 1. The respective compositions and physical property values are shown in Tables 3 to 6.
  • Polyolefin resin A Excellen (registered trademark) VL EUL731, manufactured by Sumitomo Chemical Co., Ltd., ⁇ -olefin copolymerized ultra-low density polyethylene, density 0.90.
  • Polyolefin resin B Admer (registered trademark) SF-600, manufactured by Mitsui Chemicals, adhesive polyolefin, density 0.88.
  • Polyolefin resin C Hi-Zex (registered trademark) 2100J, manufactured by Mitsui Chemicals, high density polyethylene, density 0.93.
  • Brominated epoxy resin A BREN-S, manufactured by Nippon Kayaku Co., Ltd., brominated novolak type epoxy resin
  • Brominated epoxy resin B JER5050, manufactured by Mitsubishi Chemical Corporation, brominated bisphenol A type epoxy resin
  • Non-brominated epoxy Resin A YDCN-704A, manufactured by Nippon Steel Chemical Co., Ltd., novolac type epoxy resin
  • non-brominated epoxy resin B JER1007K
  • bisphenol A type epoxy resin, non-brominated epoxy resin C YD- 017, manufactured by Nippon Steel Chemical Co., Ltd.
  • phenol resin A EP4020, manufactured by Asahi Organic Materials Co., Ltd., cresol novolak Type phenolic resin
  • Example 1 Using sealing resin composition 1 as the sealing resin composition, ⁇ melting property test>, ⁇ adhesion strength test>, ⁇ bleedout test>, ⁇ low pressure moldability test>, ⁇ flame retardant test> did.
  • ⁇ melting characteristic test> it was a favorable melting characteristic of 554 dPa ⁇ s.
  • ⁇ Adhesion Strength Test> the initial adhesion strength of the glass epoxy plate adhesion test piece was 1.3 MPa.
  • ⁇ Flame Retardancy Test> is equivalent to V2.
  • ⁇ Bleed Out Test> there is no bleed out by visual confirmation, and the flame resistance after the bleed out test is maintained at V2 or higher.
  • ⁇ Low Pressure Formability Test> is sink or short. The results were all good and good for all items. The evaluation results are shown in Table 3.
  • Examples 2 to 17 Using the sealing resin compositions 2 to 17 as the sealing resin composition, the same as in Example 1, ⁇ Melting property test>, ⁇ Adhesion strength test>, ⁇ Bleedout test>, ⁇ Low pressure moldability test> ⁇ Flame retardancy test> was carried out. The evaluation results are shown in Tables 3-5.
  • Comparative Example 1 Using the sealing resin composition 16 as the sealing resin composition, in the same manner as in Example 1, ⁇ melting property test>, ⁇ adhesion strength test>, ⁇ bleedout test>, ⁇ low pressure moldability test>, ⁇ Flame retardant test> was carried out. In the ⁇ melting characteristic test>, it was 554 dPa ⁇ s, and in the ⁇ adhesion strength test>, the adhesive strength to the glass epoxy plate was 1.0 MPa, which was a favorable result. Regarding ⁇ Flame Retardancy Test>, V2 equivalent and good results were obtained, but in ⁇ Bleed Out Test>, the evaluation result was visually confirmed as bleed out, resulting in NG.
  • Examples 1 to 17 satisfy the scope of the claims, and the results of ⁇ melting property test>, ⁇ adhesion strength test>, ⁇ bleedout test>, ⁇ low pressure moldability test>, and ⁇ flame retardant test> are all good. became.
  • Comparative Example 1 is out of the scope of the present invention because it does not contain a non-brominated epoxy resin, and the ⁇ bleedout test> result is poor.
  • Comparative Example 3 did not contain brominated epoxy resin, it was outside the scope of the present invention, and the flame retardancy test was poor with HB.
  • Comparative Example 3 had a high melt viscosity and was outside the scope of the present invention, and the low-pressure moldability was poor.
  • Comparative Example 4 did not contain a non-brominated epoxy resin, as in Comparative Example 1, it was out of the scope of the present invention, and was equivalent to HB in the flame retardancy test.
  • the resin composition for sealing electrical and electronic parts of the present invention is a flame-retardant electrical material that does not have a flame retardant bleed out while maintaining a practical level of sealing agent filling property and adhesion between the sealing agent and the electrical and electronic parts.
  • An electronic component encapsulant can be provided.
  • a seal used for an electrical / electronic encapsulant such as a connector for various applications for automobiles, communication, computers, home appliances, harnesses or electronic components, printed circuit boards, and sensors. Useful as a stopper.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)

Abstract

 実用レベルの封止剤の充填性および封止剤と電気電子部品との接着性を維持しながら難燃剤のブリードアウトのない難燃性電気電子部品封止体を提供することのできる電気電子部品封止用樹脂組成物を提供すること。共重合ポリエステルエラストマー(X)、臭素化エポキシ樹脂(B1)、非臭素化エポキシ樹脂(B2)およびポリオレフィン樹脂(C)を含有し、水分率0.1%以下に乾燥して220℃に加熱し圧力1MPaを付与し、孔径1.0mm、厚み10mmのダイより押し出したときの溶融粘度が5dPa・s以上3000dPa・s以下である、電気電子部品封止用樹脂組成物、これを用いた電気電子部品封止体および電気電子部品封止体の製造方法。

Description

電気電子部品封止用樹脂組成物、電気電子部品封止体の製造方法および電気電子部品封止体
 本発明は樹脂組成物によって封止された電気電子部品封止体およびその製造方法、この用途に適した樹脂組成物に関する。
 自動車・電化製品に広汎に使用されている電気電子部品は、その使用目的を達成する為に、外部との電気絶縁性が必須とされ、電気電子部品の形状に確実に追随し未充填部が発生しない封止方法が求められている。加温溶融するだけで粘度が低下し封止できるホットメルト樹脂は、封止後冷却するだけで固化して封止体が形成されるので生産性が高く、加熱して樹脂を溶融除去することで部材のリサイクルが容易に可能となる等の優れた特徴を有し、電気電子部品封止用に適している。
 電気絶縁性・耐水性が共に高いポリエステルはこの用途に非常に有用な材料と考えられるが、一般に溶融粘度が高く、複雑な形状の部品を封止するには数百MPa以上の高圧での射出成型が必要となり、電気電子部品を破壊してしまう虞があった。これに対し、特許文献1には、特定の組成および物性を有するポリエステル樹脂と酸化防止剤とを含有するモールディング用ポリエステル樹脂組成物が開示されており、電気電子部品を破損しない低圧での封止が可能であることが開示されている。この樹脂組成物により、初期密着性の良好な成型品が得られるようになり、一般電気電子部品へのポリエステル系樹脂組成物の適用が可能となった。また、特許文献2には、結晶性ポリエステル樹脂とエポキシ樹脂とポリオレフィン樹脂が配合されている電気電子部品封止用樹脂組成物が開示されている。この組成物は、ガラスエポキシ板やガラスフィラー30重量%入りポリブチレンテレフタレート板に対する初期接着強度が高く、また-40℃と80℃の冷熱1000サイクル負荷、85℃・85%RH・1000時間負荷および105℃・1000時間負荷による密着強度の低下も抑制されている。
特許第3553559号公報 特開2010-150471号公報
 電気電子部品封止体には難燃性が要求される場合があるが、特許文献1、2には難燃剤の配合が可能なことが記載されている程度であり、具体的な難燃処方は提案されていない。電気電子部品封止体に難燃性を付与するには難燃剤を配合すればよいのだが、単純に既存の難燃剤を配合すると実用的な難燃性を得るためには高配合比率で難燃剤を配合する必要があり、封止剤の流動性が低下し封止剤の充填不良を生じる、封止剤と電気電子部品との接着性を低下させる、難燃剤のブリードアウトを生じる、等の問題を生じることが判明した。本発明の課題は、実用レベルの封止剤の充填性および封止剤と電気電子部品との接着性を維持しながら難燃剤のブリードアウトのない難燃性電気電子部品封止体を提供することのできる電気電子部品封止用樹脂組成物を提供することである。
  (1) 共重合ポリエステルエラストマー(X)、臭素化エポキシ樹脂(B1)、非臭素化エポキシ樹脂(B2)およびポリオレフィン樹脂(C)を含有し、水分率0.1%以下に乾燥して220℃に加熱し圧力1MPaを付与し、孔径1.0mm、厚み10mmのダイより押し出したときの溶融粘度が5dPa・s以上3.0×10dPa・s以下である、電気電子部品封止用樹脂組成物。
  (2) ポリエーテルジオールが共重合されている結晶性ポリエステル樹脂(A)、臭素化エポキシ樹脂(B1)、非臭素化エポキシ樹脂(B2)およびポリオレフィン樹脂(C)を含有し、水分率0.1%以下に乾燥して220℃に加熱し圧力1MPaを付与し、孔径1.0mm、厚み10mmのダイより押し出したときの溶融粘度が5dPa・s以上3000dPa・s以下である、電気電子部品封止用樹脂組成物。
  (3) 臭素化エポキシ樹脂(B1)、非臭素化エポキシ樹脂(B2)の両方が、ビスフェノールA型もしくはノボラック型のエポキシ樹脂であることを特徴とする(1)または(2)に記載の電気電子部品封止用樹脂組成物。
  (4) 共重合ポリエステルエラストマー(X)または結晶性ポリエステル樹脂(A)100質量部、臭素化エポキシ樹脂(B1)と非臭素化エポキシ樹脂(B2)の合計5~100質量部およびポリオレフィン樹脂(C)0.1~100質量部を含有し、なおかつ非臭素化エポキシ樹脂(B2)が臭素化エポキシ樹脂(B1)の10質量%以上50質量%以下配合されている(1)~(3)のいずれかに記載の電気電子部品封止用樹脂組成物。
  (5) さらにフェノール樹脂および/またはフェノール変性アルキルベンゼン樹脂(D)を含有することを特徴とする(1)~(4)のいずれかに記載の電気電子部品封止用樹脂組成物。
  (6) (1)~(5)のいずれかに記載の樹脂組成物を、加熱して混練した後、電気電子部品を挿入した金型に樹脂組成物温度130℃以上260℃以下かつ樹脂組成物圧力0.1MPa以上10MPa以下で注入する、電気電子部品封止体の製造方法。
  (7) (1)~(5)のいずれかに記載の樹脂組成物で封止された電気電子部品封止体。
 本発明の電気電子部品封止用樹脂組成物を電気電子部品封止体において封止材として用いることにより、実用レベルの封止剤の充填性および封止剤と電気電子部品との接着性を維持しながら難燃剤のブリードアウトのない難燃性電気電子部品封止体をえることができる。
密着強力試験用試験片の作成方法を示す模式図である。 密着強力試験用試験片の作成方法を示す模式図である。 密着強力試験用試験片の作成方法を示す模式図である。
 本発明の電気電子部品封止体は、電気電子部品を金型内部にセットした金型の中に、加熱し混練して流動性を与えた樹脂または樹脂組成物を、0.1~10MPaの低圧で射出して、樹脂または樹脂組成物によって電気電子部品を包み込み封止することによって製造することができる。すなわち、従来一般的にプラスチックの成型に用いられている40MPa以上の高圧での射出成型に比べて、非常に低圧で行われるため、射出成型法による封止でありながら、耐熱性及び耐圧性に制限のある電気電子部品を破壊することなく封止することができるものである。封止樹脂または封止樹脂組成物を適切に選択することにより、様々なポリエステル基材、ガラスエポキシ基板、金属等に対して、環境負荷に耐える密着耐久性を有し、且つ難燃性を有する封止体を得ることができるものである。以下に、発明実施の形態の詳細を順次説明していく。
<共重合ポリエステルエラストマー(X)>
 本発明に用いる共重合ポリエステルエラストマー(X)は、主としてポリエステルセグメントからなるハードセグメントと、主としてポリカーボネートセグメント、ポリアルキレングリコールセグメントおよび/またはポリラクトンセグメントからなるソフトセグメントとがエステル結合により結合された化学構造からなる。前記ポリエステルセグメントは芳香族ジカルボン酸と脂肪族グリコールおよび/または脂環族グリコールとの重縮合により形成しうる構造のポリエステルから主としてなることが好ましい。前記ソフトセグメントは、共重合ポリエステルエラストマー全体に対して20重量%以上80重量%以下含有されることが好ましく、30重量%以上70重量%以下含有されることがより好ましく、40重量%以上60重量%以下含有されることが更に好ましい。
 本発明に用いる共重合ポリエステルエラストマー(X)の数平均分子量の下限は特に限定されないが、3,000以上であることが好ましく、より好ましくは5,000以上、さらに好ましくは7,000以上である。また、数平均分子量の上限は特に限定されないが、好ましくは50,000以下、より好ましくは40,000以下、さらに好ましくは30,000以下である。数平均分子量が低すぎると封止用樹脂組成物の耐加水分解性や高温高湿下での強伸度保持が不足することがあり、数平均分子量が高すぎると樹脂組成物の溶融粘度が高くなり成形圧力が高くなりすぎたり成形困難となったりすることがある。
 本発明に用いる共重合ポリエステルエラストマー(X)は飽和ポリエステル樹脂であることが好ましく、50当量/10g以下の微量のビニル基を有する不飽和ポリエステル樹脂であることも好ましい。高濃度のビニル基を有する不飽和ポリエステルであれば、溶融時に架橋が起こる等の可能性があり、溶融安定性に劣る場合がある。
 本発明に用いる共重合ポリエステルエラストマー(X)は、必要に応じて無水トリメリット酸、トリメチロールプロパン等の三官能以上のポリカルボン酸やポリオールを共重合し、分岐を有するポリエステルとしても差し支えない。
 本発明に用いる共重合ポリエステルエラストマー(X)の熱劣化を出来るだけ生じさせずにモールドするためには、210~240℃での速やかな溶融が求められる。このため、共重合ポリエステルエラストマー(X)の融点の上限は210℃が望ましい。好ましくは200℃、より好ましくは190℃である。常温での取り扱い性と通常の耐熱性を考慮すると70℃以上、好ましくは100℃以上、さらに好ましくは120℃以上、特に好ましくは140℃以上、最も好ましくは150℃以上である。
 本発明に用いる共重合ポリエステルエラストマー(X)の製造方法としては、公知の方法をとることができるが、例えば、後述するポリカルボン酸成分及びポリオール成分を150~250℃でエステル化反応させた後、減圧しながら230~300℃で重縮合反応させることにより、共重合ポリエステルエラストマーを得ることができる。あるいは、後述するポリカルボン酸のジメチルエステル等の誘導体とポリオール成分を用いて150℃~250℃でエステル交換反応させた後、減圧しながら230℃~300℃で重縮合反応させることにより、共重合ポリエステルエラストマーを得ることができる。
 本発明に用いる共重合ポリエステルエラストマー(X)の組成及び組成比を決定する方法としては、例えばポリエステル樹脂を重クロロホルム等の溶媒に溶解して測定するH-NMRや13C-NMR、ポリエステル樹脂のメタノリシス後に測定するガスクロマトグラフィーによる定量(以下、メタノリシス-GC法と略記する場合がある)等が挙げられる。本発明においては、共重合ポリエステルエラストマー(X)を溶解でき、なおかつH-NMR測定に適する溶剤がある場合には、H-NMRで組成及び組成比を決定することとする。適当な溶剤がない場合やH-NMR測定だけでは組成比が特定できない場合には、13C-NMRやメタノリシス-GC法を採用または併用することとする。
<共重合ポリエステルエラストマー(X)のハードセグメント>
 本発明の共重合ポリエステルエラストマー(X)のハードセグメントは、主としてポリエステルセグメントからなるハードセグメントからなることが好ましい。
 ポリエステルセグメントを構成する酸成分は特に限定されないが、炭素数8~14の芳香族ジカルボン酸を全酸成分の50モル%以上含むことが共重合ポリエステルエラストマーの耐熱性を向上させるための高融点化設計の点で好ましい。また、炭素数8~14の芳香族ジカルボン酸はテレフタル酸および/又はナフタレンジカルボン酸であることがグリコールと高反応性であり、重合性および生産性の点で望ましい。テレフタル酸とナフタレンジカルボン酸の合計が、共重合ポリエステルエラストマーの全酸成分の60モル%以上であることがより好ましく、80モル%以上であることがより好ましく、95モル%以上であることが更に好ましく、全酸成分がテレフタル酸および/またはナフタレンジカルボン酸で構成されていても差し支えない。
 ポリエステルセグメントを構成するその他の酸成分としては、ジフェニルジカルボン酸、イソフタル酸、5-ナトリウムスルイソフタル酸などの芳香族ジカルボン酸、シクロヘキサンジカルボン酸、テトラヒドロ無水フタル酸などの脂環族ジカルボン酸、コハク酸、グルタル酸、アジピン酸、アゼライン酸、セバシン酸、ドデカン二酸、ダイマー酸、水添ダイマー酸などの脂肪族ジカルボン酸などのジカルボン酸が挙げられる。これらのジカルボン酸成分は樹脂の融点を大きく低下させない範囲で用いられ、その共重合比率は全酸成分の30モル%未満、好ましくは20モル%未満である。また、ポリエステルセグメントを構成するその他の酸成分として、トリメリット酸、ピロメリット酸等の三官能以上のポリカルボン酸を用いることも可能である。3官能以上のポリカルボン酸の共重合比率は、樹脂組成物のゲル化防止の観点から10モル%以下とすることが好ましく、5モル%以下とすることがより好ましい。
 また、ポリエステルセグメントを構成する脂肪族グリコール又は脂環族グリコールは特に限定されないが、炭素数2~10の脂肪族グリコールおよび/または脂環族グリコールを全グリコール成分の50モル%以上含むことが好ましく、炭素数2~8のアルキレングリコール類からなることがより好ましい。好ましいグリコール成分の例としては、具体的にはエチレングリコール、1,3-プロピレングリコール、1,4-ブタンジオール、1,6-ヘキサンジオール、1,4-シクロヘキサンジメタノールなどが挙げられる。1,4-ブタンジオール及び1,4-シクロヘキサンジメタノールがポリエステルエラストマーの耐熱性を向上させるための高融点化設計の点で最も好ましい。また、グリコール成分の一部として、グリセリン、トリメチロールプロパン、ペンタエリスルトール等の三官能以上のポリオールを用いても良く、樹脂組成物のゲル化防止の観点から10モル%以下とすることが好ましく、5モル%以下とすることがより好ましい。
 ポリエステルセグメントを構成する成分としては、ブチレンテレフタレート単位あるいはブチレンナフタレート単位よりなるものが、ポリエステルエラストマーが高融点となり耐熱性を向上させることができること、また、成形性、コストパフォーマンスの点より、特に好ましい。
<共重合ポリエステルエラストマー(X)のソフトセグメント>
 本発明の共重合ポリエステルエラストマーのソフトセグメントは、主としてポリカーボネートセグメント、ポリアリキレングリコールセグメントおよび/またはポリラクトンセグメントからなるソフトセグメントからなることが好ましい。ソフトセグメントの共重合比率は前記共重合ポリエステルエラストマー(X)を構成するグリコール成分全体を100モル%としたとき1モル%以上であることが好ましく、5モル%以上であることがより好ましく、10モル%以上であることが更に好ましく、20モル%以上であることが特に好ましい。また、90モル%以下であることが好ましく、55モル%以下であることがより好ましく、50モル%以下であることが更に好ましく、45モル%以下であることが特に好ましい。ソフトセグメントの共重合比率が低すぎると、本発明の樹脂組成物の溶融粘度が高くなり低圧で成形できない、または、結晶化速度が速くショートショットが発生する等の問題を生じる傾向にある。また、ソフトセグメントの共重合比率が高すぎると本発明の封止体の耐熱性が不足する等の問題を生じる傾向にある。
 ソフトセグメントの数平均分子量は特に限定されないが、400以上であることが好ましく、800以上であることがより好ましい。ソフトセグメントの数平均分子量が低すぎると柔軟性付与が出来ず、封止後の電子基板への応力負荷が大きくなるとの問題を生じる傾向にある。またソフトセグメントの数平均分子量は5000以下であることが好ましく、3000以下であることがより好ましい。数平均分子量が高すぎると他の共重合成分との相溶性が悪く共重合できないとの問題を生じる傾向にある。
 ソフトセグメントに用いられるポリカーボネートセグメントとしては、炭素数2~12の脂肪族ジオール残基をカーボネート基で結合したポリカーボネート構造から主としてなるものを挙げることができる。得られるポリエステルエラストマーの柔軟性や低温特性の面から炭素数4~12の脂肪族ジオール残基が好ましく、炭素数5~9の脂肪族ジオール残基が特に好ましい。脂肪族ジオール残基は1種のみ用いてもよいし、2種以上を用いてもよい。
 ソフトセグメントに用いられるポリアリキレングリコールセグメントの具体例としては、ポリエチレングリコール、ポリトリメチレングリコール、ポリテトラメチレングリコール等を挙げることができる。柔軟性付与、低溶融粘度化の面でポリテトラメチレングリコールが最も好ましい。
 ソフトセグメントに用いられるポリラクトンセグメントの具体例としては、ポリカプロラクトン、ポリバレロラクトン、ポリプロピオラクトン、ポリウンデカラクトン、ポリ(1,5-オキセタン-2-オン)等を挙げることができる。
<ポリエステル樹脂(A)>
 本発明に用いられるポリエステル樹脂(A)は、ポリエーテルジオールが共重合されている結晶性ポリエステル樹脂であり、共重合ポリエステルエラストマー(X)の一種である。ポリエーテルジオールが共重合されていることによって、溶融粘度低下や柔軟性付与、密着性付与といった特徴を発揮する。前記ポリエーテルジオールの共重合比率は前記結晶性ポリエステル樹脂(A)を構成するグリコール成分全体を100モル%としたとき1モル%以上であることが好ましく、5モル%以上であることがより好ましく、10モル%以上であることが更に好ましく、20モル%以上であることが特に好ましい。また、90モル%以下であることが好ましく、55モル%以下であることがより好ましく、50モル%以下であることが更に好ましく、45モル%以下であることが特に好ましい。前記ポリエーテルジオールの共重合比率が低すぎると溶融粘度が高くなり、低圧で成形できない、または、結晶化速度が速く、ショートショットが発生する等の問題を生じる傾向にある。また、前記ポリエーテルジオールの共重合比率が高すぎると耐熱性が不足する等の問題を生じる傾向にある。一方、前記ポリエーテルジオールの数平均分子量は400以上であることが好ましく、800以上であることがより好ましい。数平均分子量が低すぎると柔軟性付与が出来ず、封止後の電子基板への応力負荷が大きくなるとの問題を生じる傾向にある。また前記ポリエーテルジオールの数平均分子量は5000以下であることが好ましく、3000以下であることがより好ましい。数平均分子量が高すぎるとその他成分との相溶性が悪く、共重合できないとの問題を生じる傾向にある。前記ポリエーテルジオールの具体例としては、ポリエチレングリコール、ポリトリメチレングリコール、ポリテトラメチレングリコール等を挙げることができるが、柔軟性付与、低溶融粘度化の面でポリテトラメチレングリコールが最も好ましい。
 本発明の結晶性ポリエステル樹脂(A)の構成成分において、脂肪族系成分および/または脂環族系成分と芳香族系成分の組成比率を調整することにより、エンジニアリングプラスチックスとして汎用されているポリエチレンテレフタレート(以下、PETと略記する場合がある)やポリブチレンテレフタレート(以下、PBTと略記する場合がある)等の汎用の結晶性ポリエステル樹脂にはない低溶融粘度と、二液硬化型エポキシ樹脂に匹敵する耐熱性と耐高温高湿性、耐冷熱サイクル性等を発現させることができる。例えば、150℃以上の高い耐熱性を保持する為には、テレフタル酸とエチレングリコール、テレフタル酸と1,4-ブタンジオール、ナフタレンジカルボン酸とエチレングリコール、ナフタレンジカルボン酸と1,4-ブタンジオールをベースとした共重合ポリエステルが適している。特に、モールド後の速い結晶固化による金型離型性は、生産性の観点から望ましい特性なので、結晶化の速いテレフタル酸と1,4-ブタンジオール、ナフタレンジカルボン酸と1,4-ブタンジオールを主成分とすることが好ましい。
 結晶性ポリエステル樹脂(A)を構成する酸成分として、テレフタル酸およびナフタレンジカルボン酸の両方または一方を含有することが耐熱性の点で好ましい。またその共重合比率はテレフタル酸およびナフタレンジカルボン酸の合計が酸成分の合計量を100モル%としたとき65モル%以上であることが好ましく、更には70モル%以上、特には80モル%以上であることが好ましい。テレフタル酸およびナフタレンジカルボン酸の合計が低すぎると、電気電子部品に必要な耐熱性が不足することがある。
 また、結晶性ポリエステル樹脂(A)を構成するグリコール成分として、エチレングリコールおよび1,4-ブタンジオールの両方または一方を含有することが共重合時の結晶性保持の点で好ましい。またその共重合比率はエチレングリコールおよび1,4-ブタンジオールの合計量がグリコール成分の合計量を100モル%としたとき40モル%以上であることが好ましく、更には45モル%以上、特には50モル%以上が好ましく、最も好ましくは55モル%以上である。エチレングリコールおよび1,4-ブタンジオールの合計量が低すぎると、結晶化速度が低くなり、金型離型性の悪化や、成型時間が長くなる等成型性が損なわれる上、結晶性も不足し、耐熱性が不足することがある。
 本願のポリエステル樹脂(A)においては、高い耐熱性を与える上述した酸成分およびグリコール成分からなる基本組成に、アジピン酸、アゼライン酸、セバシン酸、1,4-シクロヘキサンジカルボン酸、1,3-シクロヘキサンジカルボン酸、1,2-シクロヘキサンジカルボン酸、4-メチル-1,2-シクロヘキサンジカルボン酸、ダイマー酸、水添ダイマー酸等の脂肪族または脂環族ジカルボン酸や、1,2-プロパンジオール、1,3-プロパンジオール、1,2-ブタンジオール、1,3-ブタンジオール、2-メチル-1,3-プロパンジオール、1,5-ペンタンジオール、1,6-ヘキサンジオール、3-メチル-1,5-ペンタンジオール、ネオペンチルグリコール、ジエチレングリコール、ジプロピレングリコール、2,2,4-トリメチル-1,3-ペンタンジオール、シクロヘキサンジメタノール、トリシクロデカンジメタノール、ネオペンチルグリコールヒドロキシピバリン酸エステル、1,9-ノナンジオール、2-メチルオクタンジオール、1,10-ドデカンジオール、2-ブチル-2-エチル-1,3-プロパンジオール、ポリテトラメチレングリコール、ポリオキシメチレングリコール等の脂肪族または脂環族グリコールを共重合成分として用いることができ、本発明の樹脂組成物の密着性を更に改善できる場合ある。
 また、本願のポリエステル樹脂(A)に、ダイマー酸、水添ダイマー酸等の炭素数10以上の脂肪族または脂環族ジカルボン酸、および/または、ダイマージオール、水添ダイマージオール等の炭素数10以上の脂肪族および/または脂環族ジオールを共重合すると、高融点を維持したままガラス転移温度を低下させ、本発明の樹脂組成物の耐熱性と電気電子部品への密着性との両立性をさらに改善できる場合がある。
 また、ダイマー酸や、ダイマージオールの様な炭素数10以上の脂肪族または脂環族ジカルボン酸および/または炭素数10以上の脂肪族または脂環族ジオール、および、ポリテトラメチレングリコールの様なポリアルキレンエーテルグリコールに代表される分子量の比較的高い脂肪族系成分からなるブロック的なセグメントを導入すると、ポリエステル樹脂(A)のガラス転移温度が低くなることにより冷熱サイクル耐久性が、エステル基濃度が低下することにより耐加水分解性が、それぞれ向上するので、モールド後の耐久性が重要な場合はより好ましい方策である。ここで言う冷熱サイクル耐久性とは、高温と低温の間を何度も昇降温させても、線膨張係数の異なる電子部品等と封止樹脂との界面部分の剥離や、封止樹脂の亀裂が起こりにくいという性能である。冷却時に樹脂の弾性率が著しく上がると、剥離や亀裂が起こりやすくなる。冷熱サイクルに耐える素材を提供する為に、ガラス転移温度は-10℃以下が好ましい。より好ましくは-20℃以下、さらに好ましくは-40℃以下、最も好ましくは-50℃以下である。下限は特に限定されないが、密着性や耐ブロッキング性を考慮すると-100℃以上が現実的である。
 なおここでダイマー酸とは、不飽和脂肪酸が重合またはDiels-Alder反応等によって二量化して生じる脂肪族または脂環族ジカルボン酸(大部分の2量体の他、3量体、モノマー等を数モル%含有するものが多い)をいい、水添ダイマー酸とは前記ダイマー酸の不飽和結合部に水素を付加させたものをいう。また、ダイマージオール、水添ダイマージオールとは、該ダイマー酸または該水添ダイマー酸の二つのカルボキシル基を水酸基に還元したものをいう。ダイマー酸またはダイマージオールの具体例としてはコグニス社のエンポール(登録商標)若しくはソバモール(登録商標)およびユニケマ社のプリポール等が挙げられる。
 一方、本願のポリエステル樹脂(A)において、低い溶融粘度を保持する範囲内であれば、少量の芳香族系共重合成分も使用できる。好ましい芳香族系共重合成分としては、例えば、イソフタル酸、オルソフタル酸等の芳香族ジカルボン酸、ビスフェノールAのエチレンオキサイド付加物およびプロピレンオキサイド付加物等の芳香族系グリコールが挙げられる。特に、ダイマー酸や、ダイマージオールの様な分子量の比較的高い脂肪族系成分を導入することにより、モールド後の素早い結晶固化による良好な金型離型性が得られる場合がある。
 また、電気電子部品封止体に長期耐久性を付与する上で、高温高湿に耐える耐加水分解性を付与する為に、ポリエステル樹脂(A)のエステル基濃度の上限は8000当量/10gであることが望ましい。好ましい上限は7500当量/10g、より好ましくは7000当量/10gである。また、耐薬品性(ガソリン、エンジンオイル、アルコール、汎用溶剤等)を確保する為に、下限は1000当量/10gであることが望ましい。好ましい下限は1500当量/10g、より好ましくは2000当量/10gである。ここでエステル基濃度の単位は、樹脂10gあたりの当量数で表し、ポリエステル樹脂の組成及びその共重合比から算出される値である。
 ダイマー酸、水添ダイマー酸、ダイマージオール、水添ダイマージオールのような炭素数10以上の脂肪族または脂環族ジカルボン酸および/または炭素数10以上の脂肪族または脂環族ジオールを共重合し、ブロック的なセグメントを本発明のポリエステル樹脂(A)に導入する場合、ポリエステル樹脂(A)の全酸成分と全グリコール成分の合計を200モル%としたとき2モル%以上であることが好ましく、さら好ましくは5モル%以上、より好ましくは10モル%以上、最も好ましくは20モル%以上である。上限は耐熱性やブロッキング等の取り扱い性を考慮すると70モル%以下、好ましくは60モル%以下、より好ましくは50モル%以下である。
 本発明のポリエステル樹脂(A)の数平均分子量は3000以上であることが好ましく、より好ましくは5000以上、さらに好ましくは7000以上である。また、数平均分子量の上限は好ましくは50000以下、より好ましくは40000以下、さらに好ましくは30000以下である。数平均分子量が3000未満であると、封止用樹脂組成物の耐加水分解性や高温高湿下での強伸度保持が不足することがあり、50000を超えると、220℃での溶融粘度が高くなることがある。
 本発明のポリエステル樹脂(A)は、不飽和基を含有していない飽和ポリエステル樹脂であることが望ましい。不飽和ポリエステルであれば、溶融時に架橋が起こる等の可能性があり、溶融安定性に劣る場合がある。
 また、本発明のポリエステル樹脂(A)は、必要に応じて無水トリメリット酸、トリメチロールプロパン等の三官能以上のポリカルボン酸やポリオールを共重合し、分岐を有するポリエステルとしても差し支えない。
 また、ポリエステル樹脂(A)の熱劣化を出来るだけ生じさせずにモールドするためには、210~240℃での速やかな溶融が求められるため、ポリエステル樹脂(A)の融点の上限は210℃が望ましい。好ましくは、200℃、より好ましくは190℃である。下限は、該当する用途で求められる耐熱温度より5~10℃以上高くすると良い。常温での取り扱い性と通常の耐熱性を考慮すると70℃以上、好ましくは100℃以上、さらに好ましくは120℃以上、特に好ましくは140℃以上、最も好ましくは150℃以上である。
 本発明のポリエステル樹脂(A)の製造方法としては、公知の方法をとることができるが、例えば、上記のジカルボン酸及びジオール成分を150~250℃でエステル化反応後、減圧しながら230~300℃で重縮合することにより、目的のポリエステル樹脂を得ることができる。あるいは、上記のジカルボン酸のジメチルエステル等の誘導体とジオール成分を用いて150℃~250℃でエステル交換反応後、減圧しながら230℃~300℃で重縮合することにより、目的のポリエステル樹脂を得ることができる。
 本発明において、ポリエステル樹脂(A)の組成及び組成比を決定する方法としては例えばポリエステル樹脂を重クロロホルム等の溶媒に溶解して測定するH-NMRや13C-NMR、ポリエステル樹脂のメタノリシス後に測定するガスクロマトグラフィーによる定量(以下、メタノリシス-GC法と略記する場合がある)等が挙げられる。本発明においては、ポリエステル樹脂(A)を溶解でき、なおかつH-NMR測定に適する溶剤がある場合には、H-NMRで組成及び組成比を決定することとする。適当な溶剤がない場合やH-NMR測定だけでは組成比が特定できない場合には、13C-NMRやメタノリシス-GC法を採用または併用することとする。
<臭素化エポキシ樹脂(B1)および非臭素化エポキシ樹脂(B2)>
 本発明の樹脂組成物に用いる臭素化エポキシ樹脂(B1)とは、分子中に平均1.1個以上のグリシジル基と1個以上の臭素原子を有するエポキシ樹脂である。例えばブロム化ビスフェノールAジグリシジルエーテル、ブロム化ノボラックグリシジルエーテル等が上げられ、その他、臭素化グリシジルエステルタイプ、脂環族あるいは脂肪族臭素化エポキサイド等が挙げられる。これらのうち、特に、電気電子部品に対する高い密着力と難燃性を付与するためには、共重合ポリエステルエラストマー(X)またはポリエステル樹脂(A)に対して相溶性が良いものが好ましい。臭素化エポキシ樹脂(B1)の数平均分子量は好ましくは100~10000の範囲であり、数平均分子量が100未満では電気電子部品用封止剤組成物が極めて軟化し易く機械的物性が劣ることがあり、10000以上では、共重合ポリエステルエラストマー(X)またはポリエステル樹脂(A)との相溶性が低下し、密着性と難燃性が損なわれる恐れがある。また、以下に示す、非臭素化エポキシ樹脂(B2)と併用することで、接着性の更なる向上が期待できるとともに、電気電子部品用封止剤組成物から臭素化エポキシ樹脂(B1)がブリードアウトすることが抑制される。
 本発明の樹脂組成物に用いる非臭素化エポキシ樹脂(B2)とは、好ましくは数平均分子量が450~40000の範囲にある、分子中に平均1.1個以上のグリシジル基を有するエポキシ樹脂である。非臭素化エポキシ樹脂(B2)の例としては、ビスフェノールAジグリシジルエーテル、ビスフェノールSジグリシジルエーテル、ノボラックグリシジルエーテル、等のグリシジルエーテルタイプ、ヘキサヒドロフタル酸グリシジルエステル、ダイマー酸グリシジルエステル等のグリシジルエステルタイプ、トリグリシジルイソシアヌレート、グリシジルヒンダントイン、テトラグリシジルジアミノジフェニルメタン、トリグリシジルパラアミノフェノール、トリグリシジルメタアミノフェノール、ジグリシジルアニリン、ジグリシジルトルイジン、テトラグリシジルメタキシレンジアミン、ジグリシジルトリブロムアニリン、テトラグリシジルビスアミノメチルシクロヘキサン等のグリシジルアミン、あるいは3,4-エポキシシクロヘキシルメチルカルボキシレート、エポキシ化ポリブタジエン、エポキシ化大豆油等の脂環族あるいは脂肪族エポキサイドなどが挙げられる。本発明の電気電子部品用封止剤組成物に電気電子部品に対する高い密着力を発揮させるためには、非臭素化エポキシ樹脂(B2)として共重合ポリエステルエラストマー(X)またはポリエステル樹脂(A)に対して相溶性が良いものを選択することが好ましい。また、非臭素化エポキシ樹脂(B2)の好ましい数平均分子量は450~40000である。数平均分子量が450未満では密着剤組成物が極めて軟化し易く、機械的物性が劣ることがあり、40000以上では、共重合ポリエステルエラストマー(X)またはポリエステル樹脂(A)との相溶性が低下し、密着性が損なわれる恐れがある。
 本発明において、臭素化エポキシ樹脂(B1)および非臭素化エポキシ(B2)を封止用樹脂組成物に配合することにより、電気電子部品の封止に際し、良好な初期密着性と冷熱サイクルや高湿高温環境負荷に対する密着耐久性といった優れた特性を付与しつつ難燃化することができる。
 臭素化エポキシ樹脂(B1)は、難燃剤としての効果のみならず、ポリエステル樹脂(A)の結晶化遅延による応力緩和効果、共重合ポリエステルエラストマー(X)または結晶性ポリエステル樹脂(A)とポリオレフィン樹脂(C)との相溶化剤としての効果、さらには官能基導入による基材への濡れ性向上の効果を発揮するものと考えられる。
 非臭素化エポキシ樹脂(B2)を臭素化エポキシ樹脂(B1)と併用することにより、臭素化エポキシ樹脂(B1)が電気電子部品封止用樹脂組成物からブリードアウトすることを抑制でき、また、共重合ポリエステルエラストマー(X)またはポリエステル樹脂(A)の結晶化遅延による応力緩和効果、結晶性ポリエステル樹脂(A)とポリオレフィン樹脂(C)との相溶化剤としての効果、さらには官能基導入による基材への濡れ性向上の効果を更に付加することができる。
 本発明の電気電子部品封止用樹脂組成物における臭素化エポキシ樹脂(B1)および非臭素化エポキシ樹脂(B2)の合計配合量は、共重合ポリエステルエラストマー(X)またはポリエステル樹脂(A)100質量部に対して5~100質量部であることが好ましい。臭素化エポキシ樹脂(B1)と非臭素化エポキシ樹脂(B2)の合計配合量が5質量部未満の場合、結晶化遅延による応力緩和効果が弱くなる傾向にあり、またポリオレフィン樹脂(C)とエポキシ樹脂(B)の相溶化剤としての働きも弱くなる傾向にある。また、臭素化エポキシ樹脂(B1)および非臭素化エポキシ樹脂(B2)の合計配合量が100質量部以上の場合、樹脂組成物の生産性に劣り、さらには封止体の耐熱性等の特性が劣ることがある。
 非臭素化エポキシ樹脂(B2)として臭素化エポキシ樹脂(B1)と共通の化学構造を持つものを用いると、臭素化エポキシ樹脂(B1)のブリードアウト抑制効果が高まる傾向にあり、より好ましい。たとえば、(B1)成分としてブロム化ビスフェノールA型エポキシ樹脂を使用する場合は、(B2)成分としてビスフェノールA型エポキシ樹脂を使用することが好ましく、(B1)成分としてノボラック型臭素化エポキシ樹脂を使用する場合は、(B2)成分としてノボラック型エポキシ樹脂を使用することが好ましい。非臭素化エポキシ樹脂(B2)の配合比率は、臭素化エポキシ樹脂(B1)に対して、10重量%以上50重量%以下とすることが好ましい。非臭素化エポキシ樹脂(B2)の配合比率が10重量%以下ではブリードアウト抑制効果が発揮できない可能性があり、50重量%以上では難燃性が発現できない可能性がある。
<ポリオレフィン樹脂(C)>
 本発明において、ポリオレフィン樹脂(C)を封止用樹脂組成物に配合することは、電気電子部品の封止に際し、良好な密着性と冷熱サイクルや高温硬質環境負荷に対する密着耐久性といった優れた特性を発揮する。ポリオレフィン樹脂(C)は共重合ポリエステルエラストマー(X)またはポリエステル樹脂(A)の結晶化やエンタルピー緩和によるひずみエネルギーの緩和効果を発揮するものと考えられる。本発明におけるポリオレフィン樹脂(C)の配合量は、共重合ポリエステルエラストマー(X)またはポリエステル樹脂(A)100重量部に対して、0.1~100重量部であり、好ましくは0.5~50質量部である。ポリオレフィン樹脂(C)が0.5質量部未満の場合、共重合ポリエステルエラストマー(X)またはポリエステル樹脂(A)の結晶化やエンタルピー緩和によるひずみエネルギーの緩和が難しいため、密着強度が低下する傾向がある。また、ポリオレフィン樹脂(C)を50質量部以上配合した場合、逆に密着性や樹脂物性を低下させてしまう傾向がある。また、共重合ポリエステルエラストマー(X)またはポリエステル樹脂(A)と、ポリオレフィン樹脂(C)とがマクロな相分離を起こして破断伸度が低下し、また平滑な表面を得られないなど成型性に悪影響を及ぼす場合がある。
 本発明に用いるポリオレフィン樹脂(C)は、密度が0.75g/cm以上0.91g/cm未満であることが好ましい。このような超低密度のポリオレフィンを使用することによって、元来非相溶の共重合ポリエステルエラストマー(X)またはポリエステル樹脂(A)に対して、ポリオレフィン樹脂(C)を容易に微分散・混合することができ、特別な混練設備を必要とせず、たとえば、一軸押出機や二軸押出機等の一般的な混練設備によって均質な樹脂組成物を得ることができる。また、低密度で結晶性も低いことで、共重合ポリエステルエラストマー(X)または結晶性ポリエステル樹脂(A)に生じた射出成型時の残存応力の経時的な緩和にも適切に作用し、封止樹脂として長期密着耐久性付与や環境負荷による発生応力の軽減といった好ましい特性を発揮する。このような特性を有するポリオレフィン樹脂(C)としては、ポリエチレンおよびエチレン共重合体が、入手容易、安価、金属やフィルムへの密着性に悪影響しない点で、特に好ましい。具体的には低密度ポリエチレン、超低密度ポリエチレン、直鎖状低密度ポリエチレン、エチレンプロピレンエラストマー、エチレン-酢酸ビニル共重合体、エチレン-アクリル酸エチル共重合体、エチレン-酢酸ビニル-無水マレイン酸三元共重合体、エチレン-アクリル酸エチル-無水マレイン酸三元共重合体、エチレン-メタクリル酸グリシジル共重合体、エチレン-酢酸ビニル-メタクリル酸グリシジル三元共重合体、エチレン-アクリル酸メチル-メタクリル酸グリシジル三元共重合体が挙げられる。
 また、ポリオレフィン樹脂(C)にはカルボキシル基、グリシジル基等のポリエステル樹脂(A)と反応しうる極性基を含まないものが好ましい。極性基が存在すると、共重合ポリエステルエラストマー(X)またはポリエステル樹脂(A)との相溶性が変化し、共重合ポリエステルエラストマー(X)またはポリエステル樹脂(A)の結晶化時のひずみエネルギーをかえって緩和できないことがある。一般に極性基を有するポリオレフィンは、極性基を有しないポリオレフィンに比べてポリエステル樹脂に対する相溶性が高い傾向にあるが、本発明では相溶性が高くなるとかえって経時的な密着性低下が大きくなる傾向にある。
<フェノール樹脂および/またはフェノール変性アルキルベンゼン樹脂(D)>
 本発明に用いる(D)成分は、フェノール樹脂(D1)および/またはフェノール変性アルキルベンゼン樹脂(D2)である。本発明の電気電子部品用樹脂組成物において、フェノール変性アルキルベンゼン樹脂(D2)および/またはフェノール樹脂(D1)の両方またはいずれか一方を用いることができる。その配合比率は、ポリエステル樹脂100質量部に対して、フェノール変性アルキルベンゼン樹脂(D2)および/またはフェノール樹脂(D1)の合計を0~50質量部とすることが好ましい。(D1)成分および(D2)成分は必須成分ではないが、これを添加することによって、臭素化エポキシ樹脂(B1)のブリードアウトを抑制する効果および/または本発明の樹脂組成物と封止対象となる電気電子部品との密着性を改善する効果を発揮することができる場合がある。とくに臭素化エポキシ樹脂(B1)と非臭素化エポキシ樹脂(B2)の化学構造の共通性が乏しい場合には顕著なブリードアウト抑制効果を発揮する傾向にある。
 本発明の樹脂組成物に用いるフェノール変性アルキルベンゼン樹脂(D2)は、アルキルベンゼン樹脂をフェノールおよび/またはアルキルフェノールで変性したものであり、数平均分子量が450~40,000の範囲にあるものが好ましい。フェノール変性アルキルベンゼン樹脂(D2)は、例えば、キシレン、メシチレン等のアルキルベンゼンとホルムアルデヒド等のアルデヒド類を酸性触媒の存在下で反応させてアルキルベンゼン樹脂を製造し、これを酸性触媒の存在下でフェノール類およびアルデヒド類と反応させることによって製造することができる。フェノール変性アルキルベンゼン樹脂(D2)は、アルキルフェノール変性キシレン樹脂またはアルキルフェノール変性メシチレン樹脂であることが好ましい。キシレン樹脂とは、キシレン構造がメチレン基やエーテル結合で架橋した基本構造の多量体組成物であり、典型的にはメタキシレンとホルムアルデヒドを硫酸の存在下に加熱することによって得ることができる。メシチレン樹脂とは、メシチレン構造がメチレン基やエーテル結合で架橋した基本構造の多量体組成物であり、典型的にはメシチレンとホルムアルデヒドを硫酸の存在下に加熱することによって得ることができる。キシレン樹脂およびメシチレン樹脂は、アルキルベンゼン樹脂の典型的なものである。また、本発明のフェノール変性アルキルベンゼン樹脂(D2)は水酸基価が100当量/10g以上であることが好ましく、1000当量/10g以上であることがより好ましく、5000当量/10g以上が更に好ましい。また、20000当量/10g以下であることが好ましく、15000当量/10g以下であることがより好ましい。水酸基価が低すぎるとアルミ材に対する密着性が悪くなる傾向があり、水酸基価が高すぎると吸水性が高くなり絶縁性が低下する傾向がある。なお、ここで言う水酸基価とは、JIS K 1557-1:2007A法にて測定されたものである。
 本発明の樹脂組成物に用いるフェノール樹脂(D1)はフェノール類とアルデヒド類の反応により得られる樹脂であり、ノボラック型フェノール樹脂でもクレゾール型フェノール樹脂でもよく、また数平均分子量が450~40,000の範囲にあるものが好ましい。フェノール樹脂の出発原料として用いることのできるフェノール類としては、o-クレゾール、p-クレゾール、p-tert-ブチルフェノール、p-エチルフェノール、2,3-キシレノールおよび2,5-キシレノール等の2官能性フェノール、フェノール、m-クレゾール、m-エチルフェノール、3,5-キシレノールおよびm-メトキシフェノール等の3官能性フェノール、および、ビスフェノールAおよびビスフェノールF等の4官能性フェノール、およびこれら各種のフェノール類の1種または2種以上の併用、を挙げることができる。また、フェノール樹脂の製造に使用されるホルムアルデヒド類としては、ホルムアルデヒド、パラホルムアルデヒド、トリオキサン等の1種または2種以上の併用することができる。その他、フェノールアラルキルやフェノール変性キシレン樹脂等のフェノール変性樹脂が挙げられる。これらのうち、特に、高い密着力を発揮させるためにはポリエステル樹脂(A)に対して相溶性が良いものが好ましい。共重合ポリエステルエラストマー(X)またはポリエステル樹脂(A)に対して相溶性が良いフェノール樹脂を得るには、溶融粘度が近く、水酸基を有することが好ましい。また、本発明のフェノール樹脂(D1)は水酸基価が100当量/10g以上であることが好ましく、500当量/10g以上あることがより好ましく、1000当量/10g以上であることが更に好ましい。また、10000当量/10g以下であることが好ましく、5000当量/10g以下であることがより好ましい。水酸基価が低すぎるとアルミ材に対する密着性が悪くなる傾向があり、水酸基価が高すぎると吸水性が高くなり絶縁性が低下する傾向がある。なお、ここで言う水酸基価とは、JIS K 1557-1:2007A法にて測定されたものである。
<電気電子部品封止用樹脂組成物>
 本発明の電気電子部品封止用樹脂組成物は、共重合ポリエステルエラストマー(X)またはポリエーテルジオールが共重合されている結晶性ポリエステル樹脂(A)、臭素化エポキシ樹脂(B1)、非臭素化エポキシ樹脂(B2)およびポリオレフィン樹脂(C)を含有し、水分率0.1%以下に乾燥して220℃に加熱し圧力1MPaを付与し、孔径1.0mm、厚み10mmのダイより押し出したときの溶融粘度が5dPa・s以上3000dPa・s以下である、電気電子部品封止用樹脂組成物である。また、共重合ポリエステルエラストマー(X)または結晶性ポリエステル樹脂(A)100質量部に対して、臭素化エポキシ樹脂(B1)と非臭素化エポキシ樹脂(B2)の合計5~100質量部、ポリオレフィン樹脂(C)0.1~100質量部およびフェノール樹脂(D1)および/またはフェノール変性キシレン樹脂(D2)0~50質量部を含有し、なおかつ非臭素化エポキシ樹脂(B2)が臭素化ポリエステル樹脂(B1)の10質量%以上50質量%以下配合されていることが好ましい。
 本発明の電気電子部品封止用樹脂組成物は220℃での溶融粘度が5~3000dPa・sであることが望ましく、共重合ポリエステルエラストマー(X)または結晶性ポリエステル樹脂(A)、臭素化エポキシ樹脂(B1)、非臭素化エポキシ樹脂(B2)、ポリオレフィン樹脂(C)、およびフェノール樹脂(D1)および/またはフェノール変性キシレン樹脂(D2)の種類と配合比率を適切に調整することにより、達成することができる。例えば、結晶性ポリエステル樹脂(A)に共重合するポリエーテルジオールの共重合比率を高くすることや、結晶性ポリエステル樹脂(A)の分子量を低くすることは、本発明の樹脂組成物の溶融粘度を低くする方向に作用する傾向にあり、結晶性ポリエステル(A)の分子量を高くすることは本発明の樹脂組成物の溶融粘度を高くする方向に作用する傾向にあるここで220℃での溶融粘度は以下のようにして測定した値である。すなわち、封止用樹脂組成物を水分率0.1%以下に乾燥し、次いで島津製作所株式会社製フローテスター(型番CFT-500C)にて、220℃に加温安定した封止用樹脂組成物を、1.0mmの孔径を有する厚み10mmのダイを98N/cmの圧力で通過させたときの粘度の測定値である。3000dPa・s以上の高溶融粘度になると、高い樹脂凝集力や耐久性が得られるが、複雑な形状の部品への封止の際には高圧の射出成型が必要となるため、部品の破壊を生じることがある。1500dPa・s以下、好ましくは1000dPa・s以下、より好ましくは800dPa・s以下の溶融粘度を有する封止用樹脂組成物を使用することで、0.1~100MPaの比較的低い射出圧力で、電気絶縁性に優れたモールド部品が得られると共に、電気電子部品の特性も損ねない。また、封止用樹脂組成物注入操作の観点からは220℃での溶融粘度は低いほうが好ましいが、樹脂組成物の密着性や凝集力を考慮すると下限としては5dPa・s以上が望ましく、さらに好ましくは10dPa・s以上、より好ましくは50dPa・s以上、最も好ましくは100dPa・s以上であることが好ましい。
<その他の構成成分>
 本発明の電気電子部品封止用樹脂組成物には、密着性、柔軟性、耐久性等を改良する目的で共重合ポリエステルエラストマー(X)またはポリエステル樹脂(A)、臭素化エポキシ樹脂(B1)、非臭素化エポキシ樹脂(B2)およびポリオレフィン樹脂(C)以外の成分として、ポリエステル、ポリアミド、ポリオレフィン、エポキシ、ポリカーボネート、アクリル、エチレンビニルアセテート、フェノール等の(X)、(A)、(B1)、(B2)および(C)以外の樹脂、イソシアネート化合物、メラミン等の硬化剤、タルクや雲母等の充填材、カーボンブラック、酸化チタン等の顔料、三酸化アンチモン、臭素化ポリスチレン等の(B1)以外の難燃剤を配合しても全く差し支えない。その際のポリエステル樹脂(A)は、組成物全体に対して40重量%以上含有することが好ましく、より好ましくは50重量%以上である。共重合ポリエステルエラストマー(X)またはポリエステル樹脂(A)の含有量が40重量%未満であると共重合ポリエステルエラストマー(X)またはポリエステル樹脂(A)自身が有する、優れた電気電子部品に対する密着性、密着耐久性、伸度保持性、耐加水分解性、耐水性が低下する虞がある。
 本発明の電気電子部品封止体が高温高湿度環境に長期間曝される場合には、本発明の電気電子部品封止用樹脂組成物に酸化防止剤を添加することが好ましい。好ましい酸化防止剤としては、例えば、ヒンダードフェノール系として、1,3,5-トリス(3,5-ジ-t-ブチル-4-ヒドロキシベンジル)イソシアヌレート、1,1,3-トリ(4-ヒドロキシ-2-メチル-5-t-ブチルフェニル)ブタン、1,1-ビス(3-t-ブチル-6-メチル-4-ヒドロキシフェニル)ブタン、3,5-ビス(1,1-ジメチルエチル)-4-ヒドロキシ-ベンゼンプロパノイック酸、ペンタエリトリチルテトラキス(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート、3-(1,1-ジメチルエチル)-4-ヒドロキシ-5-メチル-ベンゼンプロパノイック酸、3,9-ビス[1,1-ジメチル-2-[(3-t-ブチル-4-ヒドロキシ-5-メチルフェニル)プロピオニロキシ]エチル]-2,4,8,10-テトラオキサスピロ[5.5]ウンデカン、1,3,5-トリメチル-2,4,6-トリス(3’,5’-ジ-t-ブチル-4’-ヒドロキシベンジル)ベンゼン、リン系として、3,9-ビス(p-ノニルフェノキシ)-2,4,8,10-テトラオキサ-3,9-ジフォスファスピロ[5.5]ウンデカン、3,9-ビス(オクタデシロキシ)-2,4,8,10-テトラオキサ-3,9-ジフォスファスピロ[5.5]ウンデカン、トリ(モノノニルフェニル)フォスファイト、トリフェノキシフォスフィン、イソデシルフォスファイト、イソデシルフェニルフォスファイト、ジフェニル2-エチルヘキシルフォスファイト、ジノニルフェニルビス(ノニルフェニル)エステルフォスフォラス酸、1,1,3-トリス(2-メチル-4-ジトリデシルフォスファイト-5-t-ブチルフェニル)ブタン、トリス(2,4-ジ-t-ブチルフェニル)フォスファイト、ペンタエリスリトールビス(2,4-ジ-t-ブチルフェニルフォスファイト)、2,2’-メチレンビス(4,6-ジ-t-ブチルフェニル)2-エチルヘキシルフォスファイト、ビス(2,6-ジ-t-ブチル-4-メチルフェニル)ペンタエリスリトールジフォスファイト、チオエーテル系として4,4’-チオビス[2-t-ブチル-5-メチルフェノール]ビス[3-(ドデシルチオ)プロピオネート]、チオビス[2-(1,1-ジメチルエチル)-5-メチル-4,1-フェニレン]ビス[3-(テトラデシルチオ)-プロピオネート]、ペンタエリスリトールテトラキス(3-n-ドデシルチオプロピオネート)、ビス(トリデシル)チオジプロピオネートが挙げられ、これらを単独に、または複合して使用できる。添加量は封止用樹脂組成物全体に対して0.1重量%以上5重量%以下が好ましい。0.1重量%未満だと劣化防止効果に乏しくなることがある。また、5重量%を超えると、密着性等に悪影響を与える場合がある。
<電気電子部品封止体の製造方法>
 本発明の電気電子部品封止体は、本発明の電気電子部品封止用樹脂組成物を加熱して混練した後、電気電子部品を挿入した金型に注入することによって製造することができる。ここで、本発明の電気電子部品封止用樹脂組成物は、樹脂組成物を構成する全成分が別途あらかじめ加熱混練されたものであっても、構成成分の一部または全部が金型注入直前に混合され加熱混練されるものであってもよい。
 金型注入の際の樹脂組成物温度および樹脂組成物圧力は特に限定されないが、樹脂組成物温度130℃以上260℃以下かつ樹脂組成物圧力0.1MPa以上10MPa以下とすると電気電子部品へのダメージが少なくなり、好ましい。樹脂の注入には、たとえばスクリュータイプのホットメルト成型加工用アプリケーターを用いることができる。ホットメルト成型加工用アプリケーターの型式は特に限定されないが、例えば独国Nordson社製ST2、井元製作所製竪型押し出し成型機等が挙げられる。
 本発明をさらに詳細に説明するために以下に実施例、比較例を挙げるが、本発明は実施例によってなんら限定されるものではない。尚、実施例、比較例に記載された各測定値は次の方法によって測定したものである。
<融点、ガラス転移温度の測定>
 セイコー電子工業株式会社製の示差走査熱量分析計「DSC220型」にて、測定試料5mgをアルミパンに入れ、蓋を押さえて密封し、一度250℃で5分ホールドした後、液体窒素で急冷して、その後-150℃から250℃まで、20℃/minの昇温速度で測定した。得られた曲線の変曲点をガラス転移温度、吸熱ピークを融点とした。
<十点平均粗さの測定>
 株式会社ミツトヨ製のサーフテスト600を使用し、基材4および5の封止樹脂組成物と接触する面の任意の5箇所について測定長を各5mmとして測定し、JIS B 0601-1994に従い、十点表面粗さを算出した。なお、測定に用いたスタイラスには下記の仕様のものを用いた。
 スタイラス先端材質:   ダイヤモンド
 スタイラス先端形状:   90°円錐形
 スタイラス先端曲率半径: 2μm
<密着強度試験>
密着強度試験片の作成方法
 ニッカン工業製FR-4ガラスエポキシ板NIKAPLEXからなる基材4(幅25mm×長さ48mm×厚み2mm)および基材5(幅25mm×長さ70mm×厚み2mm)を、平板成型用金型1(金型内面寸法:幅100mm×長さ100mm×厚み5mm)に、スペーサー3とともに設置した。次いでスクリュー型ホットメルト成型加工用アプリケーター(井元製作所製竪型低圧押し出し成型機)を用いてゲート2から封止用樹脂組成物を注入し、射出成型を行った。射出成型条件は、成型樹脂温度220℃、成型圧力3MPa、保圧圧力3MPa、冷却時間15秒、射出速度50%設定とした。図1~3は金型1の断面の模式図であり、封止用樹脂組成物の注入が終了した時点の状態を示し、図1のA-A’断面が図2、図1のB-B’断面が図3、図2および図3のC-C’断面が図1にあたる。成型物を離型し、平板4と平板5の重なり部分以外の封止用樹脂組成物を切り落とし、密着強度試験片を得た。以下、この試験片をガラスエポキシ密着試験片と呼ぶ。ガラスエポキシ密着試験片は、ガラスエポキシ板同士の重なり部分(幅25mm×長さ18mm)に厚み1mmの封止用樹脂組成物を充填して接着した構造をとっており、ガラスエポキシ板と樹脂組成物の接着面積は25×18=450mmである。なお、ここでガラスエポキシ板は、接着部表面の十点平均粗さが0.5~3μmの範囲内のものを使用した。
 前記密着試験片を23℃、50%RHの雰囲気下にて3時間以上100時間以内放置後、試験片の長手方向に引張りを加えてせん断力を付加し、破壊時の強力を測定した。引張り速度は50mm/分とした。密着面積(450mm)あたりの破壊時の強力をせん断密着強度とした。
 評価基準 
  ◎:せん断密着強度1.0MPa以上
  ○:せん断密着強度1.0MPa未満0.5MPa以上
  ×:せん断密着強度0.5MPa未満
<溶融特性試験>
樹脂および封止用樹脂組成物の溶融粘度の評価方法
 島津製作所製、フローテスター(CFT-500C型)にて、220℃に設定した加熱体中央のシリンダー中に水分率0.1%以下に乾燥した樹脂または封止用樹脂組成物を充填し、充填1分経過後、プランジャーを介して試料に荷重を加え、圧力1MPaで、シリンダー底部のダイ(孔径:1.0mm、厚み:10mm)より、溶融した試料を押出し、プランジャーの降下距離と降下時間を記録し、溶融粘度を算出した。
<低圧成型性試験>
 平板成型用金型を使用し、ホットメルト成型加工用アプリケーターとしてNordson製ST-2を用いて封止用樹脂組成物からなる平板(100mm×100mm×10mm)を成型した。なお、ゲート位置は100mm×100mmの面の中心とした。
成型条件:成型樹脂温度220℃、成型圧力3MPa、保圧圧力3MPa、冷却時間15秒、射出速度50%設定
 評価基準 
  ○:完全に充填され、ヒケ無し。
  △:ショートショット無く充填されるが、ヒケ有り。
  ×:ショートショット有り。
<難燃性試験>
 UL-94の評価方法に従い、0.8mm厚、1.6mm厚の2種類の難燃試験片の難燃性を評価した。
 試験片の成型条件 
  成型樹脂温度220℃、成型圧力10MPa、保圧圧力10MPa、冷却時間25秒、射出速度20g/秒。
 評価基準 
  ○:上記2種類の難燃試験片の両方が、V0、V1またはV2のいずれかである
  ×:上記2種類の難燃試験片のいずれかまたは両方が、V0、V1およびV2のいずれでもない
<ブリードアウト試験>
 上記難燃性試験と同様の方法で作製した試験片を2ヶ月間、25℃×50%RH環境下に静置したのち、目視確認でブリードアウトの有無を確認し、ついで前記難燃性試験の方法により難燃性を評価した。
 評価基準 
  ◎:2ヶ月経過時点で目視確認できるブリードアウトがなく、かつブリードアウト試験後の難燃性が「○」である
  ○:2ヶ月経過時点で目視確認できるブリードアウトがあるが、ブリードアウト試験後の難燃性が「○」である
  ×:2ヶ月経過時点で目視確認できるブリードアウトがあり、かつブリードアウト試験後の難燃性が「×」である
<共重合ポリエステルエラストマーの製造例>
 撹拌機、温度計、溜出用冷却器を装備した反応缶内にテレフタル酸166質量部、1,4-ブタンジオール180質量部、テトラブチルチタネート0.25質量部を加え、170~220℃で2時間エステル化反応を行った。エステル化反応終了後、数平均分子量1000のポリテトラメチレングリコール「PTMG1000」(三菱化学社製)を300質量部とヒンダードフェノール系酸化防止剤「イルガノックス(登録商標)1330」(チバガイギー社製)を0.5質量部投入し、255℃まで昇温する一方、系内をゆっくり減圧にしてゆき、60分かけて255℃で665Paとした。そしてさらに133Pa以下で30分間重縮合反応を行い、共重合ポリエステルエラストマーAを得た。この共重合ポリエステルエラストマーAの融点は165℃で、溶融粘度は250dPa・sであった。
共重合ポリエステルエラストマーB~Eは、共重合ポリエステルエラストマーAと同様な方法により合成した。それぞれの組成及び物性値を表1、2に示す。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
表中の略号は以下の通りである。
TPA:テレフタル酸、NDC:ナフタレンジカルボン酸、BD:1,4-ブタンジオール、PTMG1000:ポリテトラメチレンエーテルグリコール(数平均分子量1000)、PTMG2000:ポリテトラメチレンエーテルグリコール(数平均分子量2000)
<電気電子部品封止用樹脂組成物の製造例>
 電気電子部品封止用樹脂組成物1は、共重合ポリエステルエラストマーA100質量部、ポリオレフィン樹脂Aを30質量部、臭素化エポキシ樹脂Aを30質量部、非臭素化エポキシ樹脂Aを20質量部を均一に混合した後、二軸押し出し機を用いてダイ温度220℃において溶融混練することによって得た。封止用樹脂組成物2~22は、封止用樹脂組成物1と同様な方法によって調製した。それぞれの組成及び物性値を表3~6に示した。
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
 表3~6で用いた成分は下記のとおりである。
 ポリオレフィン樹脂A:エクセレン(登録商標)VL EUL731、住友化学(株)製、α-オレフィン共重合超低密度ポリエチレン、密度0.90。
 ポリオレフィン樹脂B:アドマー(登録商標)SF-600、三井化学(株)製、接着性ポリオレフィン、密度0.88。
 ポリオレフィン樹脂C:ハイゼックス(登録商標) 2100J、三井化学(株)製、高密度ポリエチレン、密度0.93。
 臭素化エポキシ樹脂A:BREN-S、日本化薬(株)製、ブロム化ノボラック型エポキシ樹脂
 臭素化エポキシ樹脂B:JER5050、三菱化学(株)製、ブロム化ビスフェノールA型エポキシ樹脂
 非臭素化エポキシ樹脂A:YDCN-704A、新日鐵化学(株)製、ノボラック型エポキシ樹脂
 非臭素化エポキシ樹脂B:JER1007K、三菱化学(株)製、ビスフェノールA型エポキシ樹脂
 非臭素化エポキシ樹脂C:YD-017、新日鐵化学(株)製、ビスフェノールA型エポキシ樹脂
 フェノール変性アルキルベンゼン樹脂A:HP-150、三菱ガス化学(株)製
 フェノール樹脂A:EP4020、旭有機材工業(株)製、クレゾールノボラック型フェノール樹脂
実施例1
 封止用樹脂組成物として封止用樹脂組成物1を用い、<溶融特性試験>、<密着強度試験>、<ブリードアウト試験>、<低圧成型性試験>、<難燃性試験>を実施した。<溶融特性試験>において、554dPa・sと良好な溶融特性であった。<密着強力試験>において、ガラスエポキシ板密着試験片について、初期密着強度は1.3MPaとなった。<難燃性試験>についてはV2相当となり、<ブリードアウト試験>においては目視確認でブリードアウト無く、ブリードアウト試験後の難燃性もV2以上を維持、<低圧成型性試験>はヒケやショートも無く良好とすべての項目において良好な結果となった。評価結果を表3に示した。
実施例2~17
 封止用樹脂組成物として封止用樹脂組成物2~17を用い、実施例1と同様にして<溶融特性試験>、<密着強度試験>、<ブリードアウト試験>、<低圧成型性試験>、<難燃性試験>を実施した。評価結果を表3~5に示した。
比較例1
 封止用樹脂組成物として封止用樹脂組成物16を用い、実施例1と同様にして<溶融特性試験>、<密着強度試験>、<ブリードアウト試験>、<低圧成型性試験>、<難燃性試験>を実施した。<溶融特性試験>において、554dPa・sとなり、また、<密着強力試験>においても、ガラスエポキシ板への接着強度が1.0MPaと良好な結果となった。<難燃試験>についてもV2相当と良好な結果となったが、<ブリードアウト試験>において、評価結果目視でブリードアウトが確認されNGとなった。
比較例2~5
 封止用樹脂組成物として封止用樹脂組成物18~22を用い、実施例1と同様にして<溶融特性試験>、<密着強度試験>、<ブリードアウト試験>、<低圧成型性試験>、<難燃性試験>を実施した。評価結果を表6に示した。
 実施例1~17は特許請求の範囲を満たし、<溶融特性試験>、<密着強度試験>、<ブリードアウト試験>、<低圧成型性試験>、<難燃性試験>の結果すべてが良好となった。これに対し、比較例1は非臭素化エポキシ樹脂が含まれていないため本発明の範囲外であり、<ブリードアウト試験>結果が不良である。また、比較例2、5は臭素化エポキシ樹脂が含まれていないため本発明の範囲外であり、難燃試験がHBと不良であった。比較例3は溶融粘度が高く本発明の範囲外であり、低圧成型性が不良であった。比較例4は比較例1同様、非臭素化エポキシ樹脂が含まれないため本発明の範囲外であり、難燃性試験でHB相当と不良であった。
 本発明の電気電子部品封止用樹脂組成物は、実用レベルの封止剤の充填性および封止剤と電気電子部品との接着性を維持しながら難燃剤のブリードアウトのない難燃性電気電子部品封止体を提供することのでき、例えば自動車、通信、コンピュータ、家電用途各種のコネクター、ハーネスやあるいは電子部品、プリント基板を有するスイッチ、センサー等の電気電子部品封止体用に用いる封止剤として有用である。
 1:金型 
 2:ゲート 
 3:スペーサー 
 4、5:基材 
 6:樹脂組成物 

Claims (7)

  1.  共重合ポリエステルエラストマー(X)、臭素化エポキシ樹脂(B1)、非臭素化エポキシ樹脂(B2)およびポリオレフィン樹脂(C)を含有し、水分率0.1%以下に乾燥して220℃に加熱し圧力1MPaを付与し、孔径1.0mm、厚み10mmのダイより押し出したときの溶融粘度が5dPa・s以上3.0×10dPa・s以下である、電気電子部品封止用樹脂組成物。
  2.  ポリエーテルジオールが共重合されている結晶性ポリエステル樹脂(A)、臭素化エポキシ樹脂(B1)、非臭素化エポキシ樹脂(B2)およびポリオレフィン樹脂(C)を含有し、水分率0.1%以下に乾燥して220℃に加熱し圧力1MPaを付与し、孔径1.0mm、厚み10mmのダイより押し出したときの溶融粘度が5dPa・s以上3000dPa・s以下である、電気電子部品封止用樹脂組成物。
  3.  臭素化エポキシ樹脂(B1)、非臭素化エポキシ樹脂(B2)の両方が、ビスフェノールA型もしくはノボラック型のエポキシ樹脂であることを特徴とする請求項1または2に記載の電気電子部品封止用樹脂組成物。
  4.  共重合ポリエステルエラストマー(X)または結晶性ポリエステル樹脂(A)100質量部、臭素化エポキシ樹脂(B1)と非臭素化エポキシ樹脂(B2)の合計5~100質量部およびポリオレフィン樹脂(C)0.1~100質量部を含有し、なおかつ非臭素化エポキシ樹脂(B2)が臭素化エポキシ樹脂(B1)の10質量%以上50質量%以下配合されている請求項1~3のいずれかに記載の電気電子部品封止用樹脂組成物。
  5.  さらにフェノール樹脂および/またはフェノール変性アルキルベンゼン樹脂(D)を含有することを特徴とする請求項1~4のいずれかに記載の電気電子部品封止用樹脂組成物。
  6.  請求項1~5のいずれかに記載の樹脂組成物を、加熱して混練した後、電気電子部品を挿入した金型に樹脂組成物温度130℃以上260℃以下かつ樹脂組成物圧力0.1MPa以上10MPa以下で注入する、電気電子部品封止体の製造方法。
  7.  請求項1~5のいずれかに記載の樹脂組成物で封止された電気電子部品封止体。
     
PCT/JP2012/071154 2011-08-30 2012-08-22 電気電子部品封止用樹脂組成物、電気電子部品封止体の製造方法および電気電子部品封止体 WO2013031593A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP12827752.2A EP2752455A1 (en) 2011-08-30 2012-08-22 Resin composition for sealing electrical and electronic parts, method for producing sealed electrical and electronic parts, and sealed electrical and electronic parts
KR1020137033043A KR20140058437A (ko) 2011-08-30 2012-08-22 전기 전자 부품 밀봉용 수지 조성물, 전기 전자 부품 밀봉체의 제조 방법 및 전기 전자 부품 밀봉체
US14/241,662 US20140221578A1 (en) 2011-08-30 2012-08-22 Resin composition for sealing electrical and electronic parts, method for producing sealed electrical and electronic parts, and sealed electrical and electronic parts
CN201280041612.4A CN103764756A (zh) 2011-08-30 2012-08-22 电气电子零部件密封用树脂组合物、电气电子零部件密封体的制造方法和电气电子零部件密封体

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2011186937 2011-08-30
JP2011-186937 2011-08-30
JP2011-283624 2011-12-26
JP2011283624 2011-12-26

Publications (1)

Publication Number Publication Date
WO2013031593A1 true WO2013031593A1 (ja) 2013-03-07

Family

ID=47756085

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/071154 WO2013031593A1 (ja) 2011-08-30 2012-08-22 電気電子部品封止用樹脂組成物、電気電子部品封止体の製造方法および電気電子部品封止体

Country Status (7)

Country Link
US (1) US20140221578A1 (ja)
EP (1) EP2752455A1 (ja)
JP (1) JPWO2013031593A1 (ja)
KR (1) KR20140058437A (ja)
CN (1) CN103764756A (ja)
TW (1) TW201319161A (ja)
WO (1) WO2013031593A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015013933A (ja) * 2013-07-04 2015-01-22 Dic株式会社 活性エネルギー線硬化型樹脂組成物、これを含有する下塗り用コーティング剤及び成形体
EP2832812A1 (en) * 2013-07-29 2015-02-04 Nitto Shinko Corporation Sealant

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112739772B (zh) * 2018-09-20 2022-12-02 东丽株式会社 热塑性聚酯树脂组合物及成型品

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62549A (ja) * 1985-03-26 1987-01-06 Dainippon Ink & Chem Inc 電子部品封止用樹脂組成物
JPS6274955A (ja) * 1985-09-30 1987-04-06 Unitika Ltd 封止用ポリエステル樹脂組成物
JPS62112652A (ja) * 1985-11-12 1987-05-23 Unitika Ltd 封止用ポリエステル樹脂組成物
JP3553559B2 (ja) 2001-09-18 2004-08-11 東洋紡績株式会社 モールディング用ポリエステル樹脂組成物及びそれを用いた成型品
JP2004269625A (ja) * 2003-03-06 2004-09-30 Toyobo Co Ltd 樹脂組成物
JP2005068576A (ja) * 2003-08-21 2005-03-17 Kaneka Corp 難燃性ポリエステル系人工毛髪用繊維
JP2010150471A (ja) 2008-12-26 2010-07-08 Toyobo Co Ltd 電気電子部品封止用樹脂組成物、電気電子部品封止体の製造方法および電気電子部品封止体

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2825712A (en) * 1954-03-08 1958-03-04 Gen Electric Modified aromatic hydrocarbon-aldehyde resins
US4254001A (en) * 1980-01-30 1981-03-03 The Goodyear Tire & Rubber Company Random elastomeric copolyesters
US5304593A (en) * 1986-09-30 1994-04-19 Sumitomo Chemical Co., Ltd. Blends of dispersing phase of polyphenylene ether, a crystalline thermoplastic matrix resin and a mutual compatiblizer
US5698632A (en) * 1995-06-07 1997-12-16 General Electric Company Compatible compositions of poly(phenylene ether) resins and semi-crystalline resins
JP3487083B2 (ja) * 1996-02-09 2004-01-13 日立化成工業株式会社 熱硬化性樹脂組成物及びその硬化物
MY142518A (en) * 2001-01-10 2010-12-15 Hitachi Chemical Co Ltd Dihydrobenzoxazine ring-containing resin, phenolic-triazine-aldehyde condensate and epoxy resin
US6942922B2 (en) * 2002-02-15 2005-09-13 Kansai Paint Co., Ltd. Cationic paint composition
EP2192167A4 (en) * 2007-09-19 2013-07-03 Toray Industries ADHESIVE COMPOSITION FOR ELECTRONIC COMPONENTS AND ADHESIVE SHEET FOR ELECTRONIC COMPONENTS USING THE SAME

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62549A (ja) * 1985-03-26 1987-01-06 Dainippon Ink & Chem Inc 電子部品封止用樹脂組成物
JPS6274955A (ja) * 1985-09-30 1987-04-06 Unitika Ltd 封止用ポリエステル樹脂組成物
JPS62112652A (ja) * 1985-11-12 1987-05-23 Unitika Ltd 封止用ポリエステル樹脂組成物
JP3553559B2 (ja) 2001-09-18 2004-08-11 東洋紡績株式会社 モールディング用ポリエステル樹脂組成物及びそれを用いた成型品
JP2004269625A (ja) * 2003-03-06 2004-09-30 Toyobo Co Ltd 樹脂組成物
JP2005068576A (ja) * 2003-08-21 2005-03-17 Kaneka Corp 難燃性ポリエステル系人工毛髪用繊維
JP2010150471A (ja) 2008-12-26 2010-07-08 Toyobo Co Ltd 電気電子部品封止用樹脂組成物、電気電子部品封止体の製造方法および電気電子部品封止体

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015013933A (ja) * 2013-07-04 2015-01-22 Dic株式会社 活性エネルギー線硬化型樹脂組成物、これを含有する下塗り用コーティング剤及び成形体
EP2832812A1 (en) * 2013-07-29 2015-02-04 Nitto Shinko Corporation Sealant

Also Published As

Publication number Publication date
CN103764756A (zh) 2014-04-30
KR20140058437A (ko) 2014-05-14
US20140221578A1 (en) 2014-08-07
JPWO2013031593A1 (ja) 2015-03-23
EP2752455A1 (en) 2014-07-09
TW201319161A (zh) 2013-05-16

Similar Documents

Publication Publication Date Title
JP5077502B2 (ja) 電気電子部品封止用樹脂組成物、電気電子部品の製造方法および電気電子部品封止体
JP5359263B2 (ja) 電気電子部品封止用樹脂組成物、電気電子部品封止体の製造方法および電気電子部品封止体
JP6269783B2 (ja) 電気電子部品封止用樹脂組成物、電気電子部品封止体の製造方法および電気電子部品封止体
US7381358B2 (en) Polyester resin and resin composition for molding, and formed product thereof
WO2013031593A1 (ja) 電気電子部品封止用樹脂組成物、電気電子部品封止体の製造方法および電気電子部品封止体
JP6098521B2 (ja) 電気電子部品封止用樹脂組成物、電気電子部品封止体の製造方法および電気電子部品封止体
WO2014167993A1 (ja) 熱伝導性樹脂組成物およびそれを使用した熱伝導性封止体
WO2022158385A1 (ja) 樹脂組成物および電気電子部品封止体
WO2022158384A1 (ja) 樹脂組成物および電気電子部品封止体
TWI772426B (zh) 密封用樹脂組成物
JP4534115B2 (ja) モールディング用ポリエステル樹脂、樹脂組成物及びそれを用いた成型品
TWI627228B (zh) 電氣電子零件封裝用樹脂組成物、電氣電子零件封裝體之製造方法及電氣電子零件封裝體
JP2013112771A (ja) 電気電子部品封止用樹脂組成物、電気電子部品封止体の製造方法および電気電子部品封止体
JP2013112772A (ja) 電気電子部品封止用樹脂組成物、電気電子部品封止体の製造方法および電気電子部品封止体
JP5293754B2 (ja) モールディング用ポリエステル樹脂、樹脂組成物及びそれを用いた成型品
JPWO2012165206A1 (ja) 電気電子部品封止用樹脂組成物、電気電子部品の製造方法および電気電子部品封止体
JP2010043286A (ja) モールディング用ポリエステル樹脂、樹脂組成物及びそれを用いた成型品

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12827752

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013531228

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20137033043

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14241662

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE