WO2013009084A2 - 평행결합 구조의 이중 혼성화 pna 프로브 시스템을 포함하는 실시간 다중 중합효소 연쇄반응에 의한 결핵균 및 비결핵 항산균의 동시 검출용 조성물 및 이를 이용한 검출 방법 - Google Patents
평행결합 구조의 이중 혼성화 pna 프로브 시스템을 포함하는 실시간 다중 중합효소 연쇄반응에 의한 결핵균 및 비결핵 항산균의 동시 검출용 조성물 및 이를 이용한 검출 방법 Download PDFInfo
- Publication number
- WO2013009084A2 WO2013009084A2 PCT/KR2012/005483 KR2012005483W WO2013009084A2 WO 2013009084 A2 WO2013009084 A2 WO 2013009084A2 KR 2012005483 W KR2012005483 W KR 2012005483W WO 2013009084 A2 WO2013009084 A2 WO 2013009084A2
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- pna
- probe
- tuberculosis
- composition
- mycobacterium tuberculosis
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q1/00—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
- C12Q1/68—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
- C12Q1/6876—Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes
- C12Q1/6888—Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for detection or identification of organisms
- C12Q1/689—Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for detection or identification of organisms for bacteria
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q1/00—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
- C12Q1/68—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
- C12Q1/6844—Nucleic acid amplification reactions
- C12Q1/6851—Quantitative amplification
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q2600/00—Oligonucleotides characterized by their use
- C12Q2600/16—Primer sets for multiplex assays
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2333/00—Assays involving biological materials from specific organisms or of a specific nature
- G01N2333/195—Assays involving biological materials from specific organisms or of a specific nature from bacteria
- G01N2333/35—Assays involving biological materials from specific organisms or of a specific nature from bacteria from Mycobacteriaceae (F)
Definitions
- the present invention is a composition for simultaneous detection of Mycobacterium tuberculosis and non-tuberculosis acid bacterium based on a double hybridized Peptide Nucleic Acid (PNA) probe system of parallel binding structure, and a method for simultaneous detection of Mycobacterium tuberculosis and non-tuberculosis acid bacterium using the composition and real-time polymerase chain reaction. It is about.
- the present invention provides a primer, a probe composition and an analysis method for the simultaneous detection of Mycobacterium tuberculosis and non-tuberculosis antibacterial bacterium based on a double-hybrid PNA probe system of parallel binding structure.
- Real-time multiplex polymerase chain reaction using a composition comprising a double-hybrid hybridized PNA probe system of parallel binding structure according to the present invention it is possible to accurately detect tuberculosis bacteria and non-tuberculosis antibacterial bacteria in one tube with excellent sensitivity at the same time. Therefore, there is an advantage that more rapid and accurate clinical diagnosis is possible.
- Tuberculosis is caused by Mycobacterium tuberculosis, a bacterium of 0.2-0.5 ⁇ m in thickness and 1-4 ⁇ m in length, and is the most infectious disease in human history.
- tuberculosis is a wasting chronic disease caused by Mycobacterium tuberculosis (MTB), which is detected in the tuberculosis of a tuberculosis patient, according to the WHO report.
- MTB Mycobacterium tuberculosis
- mycobacterium other than MTB and Mycobacterium bovis was detected in the human body, but it was considered non-pathogenic bacterium just because of contamination or colonization.
- Atypical mycobacteria anonymous mycobacteria , nontuberculous mycobacteria (NTM), mycobacterium other than tuberculosis (MOTT), etc. have been mixed. It is known in the 1950s that such non-tuberculosis mycobacterium can cause disease in humans, but since the 1980s, the mycobacterium avium complex causes systemic disease in many AIDS patients. From the known, increasing interest in non-tuberculosis mycobacterium disease has led to advances in diagnosis and treatment.
- Tuberculosis can be diagnosed by a chest X-ray or by a doctor's clinical judgment that incorporates a variety of other conditions.
- Laboratory diagnostic methods for tuberculosis include smear, culture, immunological and molecular diagnostic tests.
- the smear test is simple and economical, and has the advantage of detecting infectious tuberculosis patients, but has the disadvantage of having to repeat two or three times the test.
- the culture test is a method of isolating and identifying tuberculosis bacteria after the antibacterial culture test, but the only method for confirming tuberculosis has a disadvantage in that it takes a long time to culture.
- Immunological diagnostic methods include tuberculin test and extracorporeal Interferon- ⁇ test to detect the presence of Mycobacterium tuberculosis antibodies by injecting Mycobacterium tuberculosis antigen into the skin layer.
- Non-TB bacterium was classified by colony color, shape and growth rate and identified by biochemical methods such as niacin production, nitrate reduction and Tween-80 hydrolysis. This biochemical method requires accurate, time-consuming, and trained personnel.
- HPLC high performance liquid chromatography
- nucleic acid probe method nucleic acid probe method
- PCR-restriction fragment length polymorphism analysis polymerase chain reaction-restriction fragment length polymorphism analysis
- PRA polymerase chain reaction-restriction fragment length polymorphism analysis
- Molecular diagnostics is an effective method for analyzing human genes (DNA or RNA) to diagnose disease infection or to identify sequencing or mutations of genes to predict and identify disease outbreaks.
- DNA or RNA human genes
- it is considered as the best technology among the existing disease diagnosis methods, and it is one of the technologies currently attracting attention in the medical field.
- Typical examples include methods using real-time PCR, methods using DNA-based probes, methods using PNA-based probes, and the like. The features of each method are briefly described below.
- Real-time PCR analysis involves the PCR amplification product generation process through polymerase chain reaction (PCR) and the intensity of the fluorescence signal in real time by combining with primers or probes labeled with fluorescent material. By showing, more accurate quantitative analysis is possible.
- the target nucleotide detection method used for real-time PCR can be largely divided into two types. The first is primer-based detection, which has the disadvantage of difficulty in design and quantitative analysis. The second method is a probe-based detection method, which is convenient in design and can be applied to both quantitative and qualitative analysis. The advantages and disadvantages of the two detection methods are shown in Table 1 [Meti Buh Ga, et al., Anal. Bioanal. Chem. 396, 2023, 2010].
- TaqMan probes are linear probes that combine a reporter molecule and a quencher molecule at the ends of a DNA sequence capable of complementarily binding to a target nucleotide, and enzymatic cleavage of the probe sequence bound to the target nucleotide. This is a method of detecting a signal of a fluorescent (reporter) material that deviates from [Holland, PM, et al., Proc. Nat'l Acad. Sci. USA, 88, 7276-7280, 1991; Livak, KJ, et al., PCR Methods Appl., 4, 357-362.
- This method has the disadvantage of lowering the discrimination ability of single nucleotide sequence mutations, and thus, MGB tags have been shortened by introducing a minor groove binder (MGB) with a matte material at the 3 'end for the purpose of improving the discrimination ability of single nucleotide sequences.
- MGB minor groove binder
- TaqMan has also been developed by Igor VK, et al, Nucl. Acids Res. 25, 3718-3723, 1997; Igor V. K., et al, Nucl. Acids Res. 28 (2): 655-661, 2000; I. A. Afonina, ea al, BioThechniques, 32, 940-949, 2002; I. A. Afonina, ea al, Nucleic Acids Research, 25, 2657-2660, 1997].
- Molecular Beacons is a new type of probe consisting of a stem (stem) structure to form a loop and hairpin (hairpin) structure of the base sequence complementary to the target nucleotide. While this method has the advantage of distinguishing single nucleotide sequence variation, it is difficult to design and synthesize probes [US 20080064033 A; S. Tyagi, et al., Nat. Biotechnol., 16, 49, 1998; Stryer, L., Ann. Rev. Biochem., 47, 819-846, 1987; S. Tyagi, et al., Nat. Biotechnol., 14, 303-308, 1996; Bonnet, G., Proc. Natl Acad. Sci. USA, 96, 61716176, 1999].
- DNA probe-based detection methods make DNA less stable by damage by enzymes such as nucleases and proteases [Demidov et al., Biochem. Phamacol. 48, 1310-1313, 1994], as well as weak DNA-DNA binding ability due to the charge repulsion between negative charges of the DNA backbone and low single nucleotide sequence discrimination ability due to the use of long sequences to overcome it.
- enzymes such as nucleases and proteases
- PNA-based probes In order to compensate for the shortcomings of using DNA probes, methods using PNA, an analog of DNA, have been studied. Since PNA has no charge in its backbone, it has less repulsion in binding to complementary DNA oligomers with negative charges, which enables faster and stronger binding to target nucleotide sequences than DNA probes and shows high stability without damage by enzymes. Egholm et al., Nature 365, 556-568, 1993 ,; Nielsen et al., Bioconjugate Chem, 5, 3-7, 1994; Demidov, et al., Biochem. Pharmacol. 48, 1310-1313, 1994].
- PNA-based Mycobacterium tuberculosis (MTB) and non -tuberculous mycobacteria (NTM) for simultaneous detection of target nucleotides in a sample can be detected simultaneously.
- MTB Mycobacterium tuberculosis
- NTM non -tuberculous mycobacteria
- the detection method according to the present invention is characterized by performing a real-time PCR method using two real-time nucleic acid amplification PNA probes capable of specifically binding to MTB and NTM and having dual hybridization in a parallel binding structure. It is done.
- MTB and NTM can be detected simultaneously with high sensitivity and specificity, which is very useful for the diagnosis of tuberculosis.
- the present invention provides a kit for diagnosing tuberculosis, comprising two PNA probe systems for amplifying nucleic acids in real time, capable of specifically binding to the MTB and NTM, and capable of double hybridization.
- probe-based detection generally has many advantages over primer-based detection in detecting target nucleotides. Probes used at this time are largely divided into two types, and the pros and cons of each probe are compared in Table 2.
- the structured probe is known to have excellent detection specificity against single nucleotide sequence mutations, but unless designed to have a stable hairpin structure due to the binding force of the stem, quenching may be incomplete and generate nonspecific fluorescence. Can be. Therefore, design and synthesis are difficult because the probe must be manufactured in consideration of the binding energy difference between the binding energy of the stem and the target nucleotide.
- the linear probe has various advantages including convenience of fabrication, but has a disadvantage in that the detection ability against a single nucleotide sequence variation is poor due to the absence of a stem.
- the inventors of the present invention have attempted to fabricate a PNA probe system having both the advantages of a linear probe, which is easy to design and synthesize, and a molecular beacon, which exhibits high detection of single nucleotide sequences.
- PNAs can hybridize with PNAs having complementary sequences in two forms, anti-parallel binding and parallel binding [FIG. 1], and the binding energy between them is shown in [FIG. 2] [Stefano Sforza, Eur. J. Org. Chem., 197-204, 1999]. Due to this difference in binding energy, the dual linear PNA probes with parallel binding sequences in the absence of the target nucleotides in the sample do not fluoresce through complementary binding to each other. In addition, fluorescence is generated by dissociation of existing PNA-PNA probes.
- the first PNA probe is synthesized according to the target Tm, and the binding strength between the two PNA probes is completely complementary to each other in the sequence of the PNA-DNA by using the parallel binding, which is relatively weak in binding strength and easy to control.
- the second PNA probe was designed and synthesized such that some of the sequences of perfect-match and PNA-DNA were intermediate between different incomplete complementary mismatches.
- the PNA probe according to the present invention has a form in which a reporter material and a quencher material are bound to one or both ends of a PNA oligomer having a predetermined sequence.
- PNA probe according to the invention is preferably in the form of a combination of the physical properties control site and / or reporter material and the matting material at both ends, such as the structure of formula (1), but is not limited to this, to achieve the object of the present invention It will be apparent to those skilled in the art that any PNA probe structure having any structure can be used.
- P is a PNA base moiety having a sequence complementary to the target nucleotide
- N in the subscript is the number of PNA bases, preferably an integer of 7 to 25, more preferably an integer of 8 to 18. It is the part which forms parallel binding or anti-parallel binding to a target nucleotide.
- a and A ′ may be the same or different materials as reporter molecules or quencher molecules, or only one of them may be present.
- X and X ' may be the same or different materials as the physical property control site, none may be included, and one or more may be included.
- N ' and C' mean N -terminal and C -terminal, respectively.
- the PNA base portion P may have a structure as shown in Chemical Formula 2, but is not limited thereto. It will be apparent to those skilled in the art that PNA base having any structure can be used as long as the object of the present invention can be achieved. .
- B is selected from a natural nucleic acid base or a non-natural nucleic acid base including adenine, cymine, guanine, cytosine, and uracil as a nucleic acid base, and in the simplest case, R or S is hydrogen (H). It may not be present but may be modified with isomeric substituents. R or S may also be in a modified form of a reporter molecule or a quencher molecule with labeled isomeric substituents [Ethan A. et al., Organic Lett. 7 (16), 3465-3467, 2005].
- PNA probes are dual linear structures that form parallel bonds, are easy to design and synthesize, and have high sensitivity and specificity by rapid complementary binding with target nucleotides without non-specific signals.
- composition or kit comprising the PNA probe specific for MTB and NTM according to the present invention has high sensitivity and specificity and can simultaneously detect MTB and NTM. That can be used to diagnose tuberculosis.
- 1 is a diagram showing a parallel binding and anti-paralle binding structure between PNA-PNA.
- FIG 3 shows a method for detecting a target nucleotide using a dual hybridized PNA probe system.
- a second PNA probe is used as a detection probe in the method for detecting a target nucleotide using a double hybridized PNA probe system having a parallel binding structure.
- Example 6 is a view showing a calibration curve and a result of performing PCR for confirming the detection sensitivity of warfarin single nucleotide sequence detection and the applicability of the quantitative method in relation to Example 8 using the method of the present invention.
- Example 7 is a view showing a calibration curve and a result of performing PCR for confirming the ITS gene detection sensitivity and the applicability of the quantitative assay in relation to Example 9 using the method of the present invention.
- FIG. 9 is a diagram showing PCR results of detecting simultaneously Mycobacterium tuberculosis (MTB) and Non-tuberculous mycobacteria (NTM) using PNA probes labeled with different fluorescence.
- delta) means the detection line of non-tuberculous acid bacterium).
- FIG. 10 is a diagram showing the change in melting temperature for a single nucleotide variant by a second probe (right peak represents the melting temperature of the wild type, the left peak represents the melting temperature of the single sequence variant).
- the present invention relates to a method for detecting the presence or the amount of target nucleotides present in a target sample or detecting sequence mutations using a PNA-based real-time PCR probe.
- Hybridization A state in which complementary base pairs form a double helix structure through hydrogen bonding.
- N-terminal forms a complementary relationship in the same direction when a pair of PNAs are hybridized.
- 5'-end is It means the form of complementary binding in the same direction, and when the PNA and DNA are hybridized, it means the form in which the N-terminal of the PNA and the 5'-terminal of the DNA form a complementary relationship in the same direction.
- N-terminal forms complementary binding in opposite directions when a pair of PNAs are hybridized.
- DNA the 5'-terminal complementary relationship is opposite to each other.
- the N-terminus of the PNA and the 3'-end of the DNA form a complementary bond in the same direction.
- Complementary bond refers to a bond in which the base (A, T, G, C) forms a double strand structure through hydrogen bonding, and in the present invention, 5 'of a single strand forming a double strand.
- the parallel bonds in which the bases in the complementary relationship are hydrogen-bonded in the state in which the 5'-ends face the same direction it also means.
- Double hybridization means that two PNA probes bind to sense and anti-sense DNA, respectively, to form two double helix structures.
- Reporter molecule A material that absorbs and emits light of a specific wavelength and emits light, and refers to a material capable of labeling a probe and confirming whether hybridization between the target nucleic acid and the probe has been performed.
- Quencher molecule A material that absorbs light generated by a reporter material and reduces fluorescence intensity.
- Physical property control site means a material for controlling the solubility of a probe, such as a linker or spacer, or for labeling a reporter material or a quenching material, such as a material between PNA and fluorescent or quenching material
- Linkers to facilitate linking, spacers to control distance, materials for improving solubility and binding to target nucleotides known in the art, and the like. Linkers are described in Akira Kishimoto, Chem. Commun., 742 743, 2003; Peter E. Nielsen, Chem Bio Chem, 6668, 2005; Vladimir Guelev, JACS, 2864-2865, 2002; Ethan A. Englund and Daniel H.
- Appella, Organic Lett., 3465-3467, 2005 and the like can be used, but are not limited to such spacers, OlafKchler, ChemBioChem, 6977, 2005; Liisa D., J. Med. Chem., 2326-2340, 2007 and the like can be used, but not limited to, materials used for controlling solubility and binding strength include Irina V. Smolina, Vadim V. Demidov, Nucleic Acids Research, e146, 2005; I.S. Blagbrough, Biochemical Society Transactions part 2, 397-406, 2003; Nathalie Berthet, J. Med.
- the materials described in Chem., 3346-3352, 1997, and the like are possible, but are not limited thereto. Any material may be used when the technical characteristics of the present invention are satisfied. It will be obvious to them.
- Isomer Substituents Compounds that have the same molecular formula and method of linking members but have different spatial arrangements between atoms are called isomers, and are usually present in the case of carbon compounds in which all four atomic groups linked to carbon have different asymmetric carbons. That is, two different kinds of isomers are formed according to the three-dimensional arrangement of the substituents, and the isomeric substituents in the present invention mean substituents that form only one isomer in one direction.
- R or S is based on hydrogen (H), but a natural or unnatural amino acid residue (Anca Dragulescu-Andrasi, JACS, 10258-10267, 2006; Filbert Totsingan, Chirality, 245253, 2009; Stefano Sforza, Eur. J. Org.Chem., 1056-1063, 2003), and alkyl groups, amines, alcohols, carboxylic acids (Shabih Shakeel, Sajjad Karim, J. Chem. Technol. Biotechnol., 892899, 2006), etc. It may be used as a substituent, but is not limited thereto.
- SNP Single nucleotide sequence variation
- Structured probe refers to a probe that forms a secondary structure.
- Linear probe oligonucleotide labeled 5 'end with a fluorescent material, 3' end with a matting material, means a probe that does not form a secondary structure because there is no stem.
- Double linear probe A type of probe in which two linear oligonucleotides in which a reporter material and a quencher material are respectively bonded to each other form a complementary bond.
- Incomplete Complementary Mismatch When two strands of DNA or PNA hybridize, one or more base pairs in complementary relationship do not match.
- Black Hole Quencher (BHQ TM ): A matte material sold by Biosearch Technologies Inc. (USA), classified into BHQ1, BHQ2 and BHQ3 according to the structure and wavelength difference.
- Blackberry Quencher A matting material sold by Berry & Associates, USA, having the following structure:
- the PNA probe of the present invention was designed to specifically bind to the IS6110 gene of Mycobacterium tuberculosis and the ITS gene of Non-TB tuberculosis. In addition, it was designed and manufactured to perfectly bind to warfarin metabolism related genes CYP2C9 430 and VKORC1 3730 wild type gene and single nucleotide sequence gene.
- the PNA probe of the present invention may be composed of any one of SEQ ID NOs: 1 to 14 shown in Table 3 below. It will be appreciated that all of the PNA probe sequences within the range that can be easily modified by those skilled in the art from the above nucleotide sequences are within the scope of the present invention. As long as the PNA probe system capable of parallel binding can detect a target nucleotide using PNA real-time PCR according to the present invention, it is included within the scope of the present invention.
- O is a linker
- bold letters and underlined letters are ⁇ -lysine ( ⁇ -lysine) or ⁇ -glutamic acid-PNA monomer (monomer)
- K is lysine (lysine)
- (+) is aeg [ N- ( ⁇ - alanine)]
- (+) means aeg [ N- (succinicacid)].
- PNA probes were synthesized by solid phase synthesis from a PNA monomer protected with benzothiazolesulfonyl (Bts) and functionalized resin according to the method described in Korean Patent No. 464,261 [Lee et al. , Org. Lett., 2007, 9, 3291-3293].
- PNA can also be synthesized using known 9-fluorenylmetholoxycarbonyl (Fmoc: 9-flourenylmethloxycarbonyl) or t-Boc (t-butoxycarbonyl) synthesis methods [Kim L. et al., J. Org. . Chem. 59, 5767-5773, 1994; Stephen A. et al., Tetrahedron, 51, 6179-6194, 1995]. Reporter materials and quenching materials were labeled on the PNA probe according to methods well known in the art.
- SEQ ID NO: 19 20 primer set for identification of IS6110 gene of Mycobacterium tuberculosis (MTB) and Internal transcribed spacer (ITS) gene for ITS ( Non-tuberculous mycobacteria (NTM) gene) Primer sets were designed. The designed primers were used by Synthetic Co., Ltd. (Korea).
- Y means a mixed base of C and T.
- amplification products were purified using a combination of SEQ ID NOs: 23, 24, and 25 and 26, respectively, using Labopass TM PCR purification kit (Cosmogenetech, Korea), and then pGEM-T.
- a large amount of DNA was obtained by binding to Easy Vector (Promega, USA) and transforming E. coli JM109 cells.
- using a normal clone prepared by the above method using a site-specific mutagenesis kit (stratazine, USA) to obtain a clone with a mutant gene and confirm the mutation by sequencing It was.
- the genotype confirmed clone was used as a standard in gene amplification of the present invention.
- Mycobacterium tuberculosis ⁇ ATCC 25177, USA ⁇ and Mycobacterium asiaticum ⁇ KCTC 9503, Korea Life Resource Center, Korea ⁇ were distributed to obtain clones for the target nucleic acid.
- DNA was extracted from InstaGene Matrix (Biorad, USA) from the strains that had been distributed, and the Mycobacterium tuberculosis (MTB) IS6110 gene and non-TB bacterium were combined with the combination of SEQ ID NOs: 27, 28, and 29, 30, respectively.
- ITS gene of non-tuberculous mycobacteria (NTM) was amplified.
- the amplification product was purified using Labopass TM PCR purification kit (Cosmogenetech, Korea), then bound to pGEM-T easy vector (Promega, USA) and transformed into E. coli JM109 to bulk DNA. Secured.
- Example 5 using a mixed solution of the first probe of SEQ ID NO: 4 and the second probe of SEQ ID NO: 6 to measure the change in fluorescence intensity when the reporter material is introduced into the second probe as well as the first probe Real time detection PCR was performed. The results are shown in FIG. When the reporter material was introduced into the second probe, the fluorescence intensity increased by about 50% compared to the case where the reporter material was introduced only into the first probe.
- the detection C T value increases as the concentration of the reference material decreases. It was confirmed that it can also be applied to quantification. The results are shown in FIG.
- Tests were performed to confirm the sensitivity and quantitative applicability to target nucleotide detection using a first PNA probe (SEQ ID NO: 12) and a second PNA probe (SEQ ID NO: 13).
- the detection limits were determined by diluting the non-tuberculosis mycobacterium clones 10 times from 10 9 copies / ⁇ l to 10 1 copies / ⁇ l, respectively, and detected up to 10 1 copies / ⁇ l.
- the detection C T value increases as the concentration of the standard decreases. Confirmed. The results are shown in FIG.
- DNA probes are used to detect single nucleotide sequence mutations of the warfarin metabolism related genes CYP2C9 430 and VKORC1 3730 of SEQ ID NOs: 30 and 31.
- the corresponding PNA probes used SEQ ID NOs: 8, 9.
- the results of comparing the detection of single nucleotide sequence mutations using the respective probes are shown in FIG. 8. While both DNA probes for detecting a target gene did not detect a single nucleotide sequence, the PNA probe could reliably detect a single nucleotide sequence of two different target genes.
- Example 11 Mycobacterium tuberculosis using different reporter materials ( Mycobacterium tuberculosis , MTB) and non-TB bacteria ( Non-tuberculous mycobacteria , NTM) simultaneous detection method
- PNA probes labeled with different reporter materials were used to detect whether two different types of target nucleic acids could be detected simultaneously.
- MTB Mycobacterium tuberculosis
- NTM non-tuberculous mycobacteria
- the first and second probes (SEQ ID NO: 3) and the second gene, warplin metabolism-related gene CYP2C9 430, were used to confirm that the specificity of the detection of a single nucleotide sequence could be increased when the first and second probes were mixed.
- the melting curve analysis to measure the fluorescence while increasing by 0.5 °C from 25 °C to 95 °C. The results are shown in FIG. There was no change in melting temperature for the wild type with and without the second probe. However, when the second probe was mixed together, it was confirmed that the melting temperature of the single nucleotide sequence variation decreased by about 4 to 6 ° C. That is, when the second probe is used together due to the melting temperature drop for the single nucleotide sequence variation, it was confirmed that the detection specificity for the single nucleotide sequence variation was improved.
- SEQ ID Nos: 1 to 14 are base sequences of PNA probes according to the present invention.
- SEQ ID NO: 15 to 30 is the base sequence of the primer according to the present invention.
- SEQ ID Nos: 31 and 32 are base sequences of DNA probes according to the invention.
Landscapes
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Organic Chemistry (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Health & Medical Sciences (AREA)
- Engineering & Computer Science (AREA)
- Zoology (AREA)
- Wood Science & Technology (AREA)
- Analytical Chemistry (AREA)
- General Engineering & Computer Science (AREA)
- General Health & Medical Sciences (AREA)
- Microbiology (AREA)
- Molecular Biology (AREA)
- Biophysics (AREA)
- Physics & Mathematics (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Biochemistry (AREA)
- Immunology (AREA)
- Biotechnology (AREA)
- Genetics & Genomics (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
- Toxicology (AREA)
Abstract
본 발명은 평행결합 구조의 이중 혼성화 Peptide Nucleic Acid(PNA) 프로브 시스템에 기반한 결핵균과 비결핵 항산균 동시 검출용 조성물 및 상기 조성물과 실시간 중합효소 연쇄반응을 이용한 결핵균 및 비결핵 항산균의 동시 검출 방법에 대한 것이다. 또한 본 발명은 평행결합 구조의 이중 혼성화 PNA 프로브 시스템에 기반한 결핵균과 비결핵 항산균을 동시 검출용 프라이머, 프로브 조성물 및 분석 방법에 대한 것이다. 본 발명에 따른 평행 결합 구조의 이중 혼성화 PNA 프로브 시스템을 포함하는 조성물을 이용하여 실시간 다중 중합효소 연쇄반응을 수행하면, 탁월한 민감도로 한 튜브 내에서 결핵균과 비결핵 항산균을 동시에 정확하게 검출할 수 있기 때문에, 보다 신속하고 정확한 임상 진단이 가능하다는 장점이 있다.
Description
본 발명은 평행결합 구조의 이중 혼성화 Peptide Nucleic Acid(PNA) 프로브 시스템에 기반한 결핵균과 비결핵 항산균 동시 검출용 조성물 및 상기 조성물과 실시간 중합효소 연쇄반응을 이용한 결핵균 및 비결핵 항산균의 동시 검출 방법에 대한 것이다. 또한 본 발명은 평행결합 구조의 이중 혼성화 PNA 프로브 시스템에 기반한 결핵균과 비결핵 항산균을 동시 검출용 프라이머, 프로브 조성물 및 분석 방법을 제공한다.
본 발명에 따른 평행 결합 구조의 이중 혼성화 PNA 프로브 시스템을 포함하는 조성물을 이용하여 실시간 다중 중합효소 연쇄반응을 수행하면, 탁월한 민감도로 한 튜브 내에서 결핵균과 비결핵 항산균을 동시에 정확하게 검출할 수 있기 때문에, 보다 신속하고 정확한 임상 진단이 가능하다는 장점이 있다.
결핵은 굵기 0.2-0.5 ㎛ 및 길이 1-4 ㎛ 크기의 간균인 마이코박테리아 속인 결핵균에 의해 발병하며, 인류 역사상 가장 많은 생명을 앗아간 전염병이다. 일반적으로 결핵은 결핵환자가 기침을 할 때 나오는 비말핵에서 검출되는 결핵균 (Mycobacterium tuberculosis, MTB)에 의해 감염되는 소모성 만성 질환으로, WHO의 보고서에 의하면 현재 결핵균에 감염되어 있는 사람은 전세계 인구의 3분의 1에 해당하는 약 19억 명에 이르며, 이들 감염자 중에서 매년 800만 명의 새로운 결핵(Tuberculosis, TB) 환자가 발생하는 것으로 알려져 있다.
MTB와 마이코박테리움 보비스(Mycobacterium bovis) 이외의 마이코박테리움이 인체에서 검출된다는 사실이 밝혀진 것은 1885년의 일이지만, 단지 오염이나 콜로니 형성(colonization)으로 생각하여 비병원성균으로 간주되었으며, 명칭도 비정형 항산균(atypical mycobacteria), 비특색 항산균(anonymous mycobacteria), 비결핵 항산균(nontuberculous mycobacteria, NTM), 결핵 이외의 항산균(mycobacterium other than tuberculosis, MOTT)등으로 혼용되어 왔다. 이러한 비결핵 마이코박테리움이 인간에게 질병을 일으킬 수 있다는 사실이 알려진 것은 1950년대 이지만, 1980년대 이후 많은 AIDS 환자에게서 마이코박테리움 아비넘 복합체(Mycobacterium avium complex)가 전신질환을 유발한다는 사실이 알려진 다음부터 비결핵 마이코박테리움증에 관한 관심이 높아지면서 진단 및 치료에도 발전이 이루어지고 있다.
병변에서 결핵균이 확인되지 않은 경우에도 흉부 X-선 검사나 다른 여러 가지 상황을 종합한 의사의 임상적 판단으로 결핵을 진단할 수 있지만 현재는 결핵균의 도말과 배양 검사가 결핵의 확진에 필수적이다. 결핵의 검사실 진단 방법으로는 도말 검사, 배양검사, 면역학적 진단, 분자진단 검사 등이 있다.
도말검사는 검사 방법이 간단하고 경제적이며, 전염성 결핵 환자를 찾아낼 수 있는 장점이 있지만, 2~3회 반복 검사를 실시해야 하는 단점 있다. 배양검사는 항산균 배양 검사 후 결핵균을 분리 동정하는 방법으로 결핵을 확진 할 수 있는 유일한 방법이지만, 배양에 오랜 시간이 걸리는 단점이 있다.
면역학적 진단 방법으로는 피부층 내에 결핵균 항원을 주입해서 결핵균 항체가 있는지 알아보는 투베르쿨린 검사와 체외 Interferon-γ 검사 등이 있다.
비결핵항산균은 균 집락의 색, 모양, 성장속도 등으로 구분하였고 니아신(niacin) 생성, 질산염(nitrate) 환원, Tween-80 가수분해와 같은 생화학적 방법을 이용하여 동정하였다. 이 생화학적인 방법은 정확한 균종 동정이 힘들고 시간이 많이 걸리며 숙달된 인력이 필요하다.
최근에는 고작위액체크로마토그래피(high performance liquid chromatography, HPLC)를 이용하여 미콜산(mycolic acid)을 분석하는 방법, 핵산탐색자법, 중합효소연쇄반응-제한 절편 길이 다형성 분석(PCR-restriction fragment length polymorphism analysis, PRA) 등이 비결핵항산균을 동정하는데 사용되고 있다.
최근에는 분자진단을 이용한 결핵의 검사 방법이 주목을 받고 있다. 분자진단이란 인간의 유전자(DNA 또는 RNA)를 분석해 질병의 감염 여부를 진단하거나 유전자의 염기서열 변이나 돌연변이를 규명하여, 질병의 발병 여부 등을 예측하고 확인하는 데 효과적인 방법이다. 특히 현존하는 질병 진단 방법 중 가장 최고 수준의 기술로 꼽히고 있으며, 현재 의약학 분야에서 관심이 집중되고 있는 기술 중 하나이다.
분자진단을 위해서 다양한 검출 방법이 사용되고 있다. 대표적인 예로는 실시간(real-time) PCR을 이용하는 방법, DNA 기반 프로브를 이용하는 방법, PNA 기반 프로브를 이용하는 방법 등이 있다. 이하 각 방법의 특징을 간략히 살핀다.
실시간 PCR을 이용한 분자진단 : 실시간 PCR 분석은 중합효소 연쇄반응(PCR: polymerase chain reaction)을 통해 PCR 증폭산물 생성과정을 형광물질로 표지된 프라이머 또는 프로브와의 결합을 통해 형광신호의 세기를 실시간으로 보여주는 방법으로, 보다 정확한 정량적 분석이 가능하다. 실시간 PCR에 사용되는 표적 뉴클레오타이드 검출법은 크게 2가지로 나눌 수 있다. 첫 번째는 프라이머 기반의 검출법으로 이 방법은 디자인의 어려움과 정량분석에 취약하다는 단점이 있다. 두 번째 방식은 프로브 기반의 검출법으로서 디자인이 편리하며 정량 및 정성분석에 모두 적용할 수 있다는 장점을 지닌다. 두 가지 검출방법에 대한 장단점을 표 1에 비교하여 나타내었다[Meti Buh Ga, et al., Anal. Bioanal. Chem. 396, 2023, 2010].
DNA 기반 프로브를 이용한 표적 뉴클레오타이드의 검출 : 보편적으로 널리 이용되는 DNA 기반의 프로브에는 크게 두 가지 형태가 있다. 태크만(TaqMan) 프로브는 표적 뉴클레오타이드와 상보 결합할 수 있는 DNA 서열 말단에 리포터 물질(reporter molecule) 및 소광 물질(quencher molecule)이 결합된 선형 프로브로서 표적 뉴클레오타이드와 결합된 프로브 서열의 효소적 분해 단계에서 이탈되는 형광(리포터) 물질의 신호를 검출하는 방식이다[Holland, P. M., et al., Proc. Nat'l Acad. Sci. USA, 88, 7276-7280, 1991; Livak, K. J., et al., PCR Methods Appl., 4, 357-362].
이 방법은 단일염기서열변이 구별능 저하의 단점을 가지므로, 단일염기서열변이 구별능 향상을 목적으로 3’ 말단에 소광물질과 함께 MGB(minor groove binder)를 도입하여 서열 길이를 짧게 한 MGB 태크만(TaqMan)도 개발되었다 [Igor V. K.,et al, Nucl. Acids Res. 25, 3718-3723, 1997; Igor V. K., et al, Nucl. Acids Res. 28 (2): 655-661, 2000; I. A. Afonina, ea al, BioThechniques, 32, 940-949, 2002; I. A. Afonina, ea al, Nucleic Acids Research, 25, 2657-2660, 1997].
분자 비컨(MB, Molecular Beacon)은 표적 뉴클레오타이드와 상보적인 염기서열의 루프(loop)와 헤어핀(hairpin) 구조를 형성하기 위한 스템(stem) 구조로 구성된 새로운 형태의 프로브이다. 이 방법은 뛰어난 단일염기서열변이 구별능을 나타내는 장점이 있는 반면, 프로브의 설계(design) 및 합성이 어렵다는 단점이 있다[US 20080064033 A; S. Tyagi, et al., Nat. Biotechnol., 16, 49, 1998; Stryer, L., Ann. Rev. Biochem., 47, 819-846, 1987; S. Tyagi, et al., Nat. Biotechnol., 14, 303-308, 1996; Bonnet,G., Proc. Natl Acad. Sci. USA, 96, 61716176, 1999].
하지만 DNA 프로브를 기반으로 하는 검출법은 DNA는 뉴클레아제(nucleases)나 프로테아제(protease)와 같은 효소들에 의한 손상에 의해 안정성이 떨어지며[Demidov et al., Biochem. Phamacol. 48, 1310-1313, 1994], 또한 DNA 골격의 음전하(negative charge)들 사이의 전하적 반발력에 따른 약한 DNA-DNA 결합력과 이를 극복하기 위한 긴 서열의 사용으로 인한 낮은 단일염기서열변이 구별능력 등의 단점이 있다.
PNA 기반의 프로브를 이용한 표적 뉴클레오타이드의 검출 : DNA 프로브를 이용하는 경우의 단점을 보완하기 위해 DNA의 유사체인 PNA를 사용한 방법들이 연구 되어지고 있다. PNA는 골격에 전하가 없기 때문에 음전하를 가진 상보적인 DNA 올리고머와의 결합에 있어서 반발력이 적어, DNA 프로브보다 빠르고 강하게 표적 뉴클레오타이드 서열과 결합할 수 있으며, 효소들에 의한 손상이 없어 높은 안정성을 보인다[Egholm et al., Nature 365, 556-568, 1993,; Nielsen et al., Bioconjugate Chem, 5, 3-7, 1994; Demidov, et al., Biochem. Pharmacol. 48, 1310-1313, 1994].
최근에 이중 선형 프로브 구조를 이용한 새로운 방법이 보고되었다. 이 방법은 긴 서열을 갖는 DNA 프로브의 단점인 낮은 단일염기서열변이 구별능력을 향상시키기 위해 짧은 2차 프로브를 사용하였고, 두 개의 프로브가 서로 역평행 결합(anti-parallel binding)을 이루게 디자인 되어 있다[James M. Coull, et al., US 6607889].
근래에 들어 결핵균을 검출하기 위한 다양한 분자진단 기술 등이 개발되어 왔지만, 여전히 특히 높은 민감도 및 특이성을 가지고 짧은 분석시간 안에 결핵균을 검출할 수 있는 기술개발의 필요성은 절실하다.
본 발명에서는 상기와 같은 분자진단 기술의 단점을 극복하여 시료 내 표적 뉴클레오타이드를 정확하게 검출할 수 있는 PNA에 기반한 결핵균(Mycobacterium tuberculosis, MTB) 및 비결핵 항산균(Non-tuberculous mycobacteria, NTM) 동시 검출용 조성물 및 이를 이용한 MTB와 NTM의 동시 검출 방법을 제공한다.
본 발명에 따른 검출방법은 MTB 및 NTM에 특이적으로 결합가능하며, 2중으로 혼성화가 가능한 평행 결합(parallel binding) 구조의 2개의 실시간 핵산 증폭용 PNA 프로브를 이용하여 실시간 PCR 방법을 수행하는 것을 특징으로 한다.
본 발명에 따른 검출방법을 이용하면, 높은 민감도 및 특이도를 가지고 MTB와 NTM을 동시 검출할 수 있어, 결핵의 진단에 매우 유용하게 적용가능하다.
또한 본 발명은 상기 MTB 및 NTM에 특이적으로 결합가능하며, 2중으로 혼성화가 가능한 평행 결합(parallel binding) 구조의 2개의 실시간 핵산 증폭용 PNA 프로브 시스템을 포함하는 결핵 진단용 키트를 제공한다.
본 발명의 다른 목적 및 장점은 하기의 과제의 해결 수단 및 효과, 발명의 상세한 설명에 의해 보다 명확하게 된다.
본 발명에서는, 기존 DNA 기반의 실시간 PCR 프로브들이 가지고 있는 안정성의 한계를 극복하기 위하여 열 및 생물학적 안정성을 가지며, DNA 보다 표적 뉴클레오타이드에 대한 인식 능력 및 결합능력이 뛰어난 PNA를 활용하여 높은 민감도 및 특이도 MTB 및 NTM을 동시에 검출할 수 있는 조성물, 그러한 조성물을 포함하는 MTB 및 NTM 진단 키트 및 상기 조성물 또는 키트를 이용하여 실시간 PCR 방법을 통해 MTB 및 NTM를 검출하는 방법을 개발하였다.
이미 알려진 바와 같이, 일반적으로 표적 뉴클레오타이드를 검출함에 있어서 프로브 기반의 검출법이 프라이머 기반의 검출법에 비해 많은 장점을 가지고 있다. 이 때 사용되는 프로브는 크게 두 가지 형태로 구분되며, 각 프로브의 장단점을 표 2에 비교하였다.
상기 표 2에서 구조적(Structured) 프로브는 단일염기서열변이에 대한 검출 특이성이 뛰어난 것으로 알려져 있으나, 스템의 결합력에 의해 안정한 헤어핀 구조를 갖도록 설계하지 않으면 소광(quenching)이 불완전하게 되어 비특이적 형광을 발생시킬 수 있다. 따라서, 스템의 결합에너지와 표적 뉴클레오타이드와의 결합에너지 차이를 고려하여 프로브를 제작하여야 하므로 디자인 및 합성이 어렵다. 이에 반해 선형 프로브는 제작의 편리성을 비롯하여 여러 가지 장점을 가지고 있으나, 스템의 부재로 인해 단일염기서열변이에 대한 검출 능력이 떨어지는 단점이 있다.
이에 본 발명자들은 디자인과 합성이 용이한 선형 프로브와 단일염기서열변이에 대한 높은 검출능을 나타내는 분자 비컨(Molecular Beacon)의 장점을 모두 갖춘 PNA 프로브 시스템을 제작하고자 하였다.
PNA는 상보적 염기서열을 갖는 PNA와 역평행 결합(anti-parallel binding) 및 평행 결합(parallel binding)의 두 가지 형태로 혼성화 할 수 있으며[도 1], 이들 간의 결합에너지 크기는 아래의 [도 2]에 나타낸 바와 같다[Stefano Sforza, Eur. J. Org. Chem., 197-204, 1999]. 이러한 결합에너지의 차이에 따라 시료 내에 표적 뉴클레오타이드 부재시 평행 결합 서열을 갖는 이중 선형 PNA 프로브는 서로 상보 결합을 통해 형광을 발생하지 않으나, 표적 뉴클레오타이드가 존재하면 검출 프로브는 표적 뉴클레오타이드와 보다 안정한 상보 결합을 이루게 되고 기존의 PNA-PNA 프로브 간 결합이 해리되면서 형광을 발생하게 된다.
따라서 본 발명에서는 목표 Tm에 맞춰 제 1 PNA 프로브를 합성하고, 상대적으로 결합력이 약하여 그 조절이 용이한 평행 결합을 이용하여 두 PNA 프로브 간 결합세기를 PNA-DNA의 모든 서열이 일치하는 완전한 상보 결합(perfect-match)와 PNA-DNA의 서열 중 일부가 상이한 불완전한 상보 결합(mismatch)의 중간이 되도록 제 2 PNA 프로브를 설계 및 합성하였다. 이러한 2개의 PNA 선형(linear) 프로브를 사용하여 스템의 기능을 갖게 함으로써 단일염기서열변이 검출능을 향상시키면서 서열(sequence)에 제한적이지 않아 디자인 및 합성이 편리한 검출 시스템을 개발하였다(도 3 참조).
본 발명에 따른 PNA 프로브는 일정 염기서열의 PNA 올리고머 한쪽 또는 양쪽말단에 리포터 물질 및 소광 물질이 결합된 형태이다.
본 발명에 따른 PNA 프로브는 하기 화학식 1의 구조와 같이 양 말단에 물성조절용 부위 및/또는 리포터 물질 및 소광 물질이 결합된 형태인 것이 바람직하지만, 이에 한정되는 것은 아니며, 본 발명의 목적을 달성할 수 있는 것이라면 어떠한 구조를 가지는 PNA 프로브 구조라도 사용가능함은 통상의 기술자에게는 자명한 것이다.
상기 화학식 1에서, P는 표적 뉴클레오타이드에 상보적인 서열을 가지는 PNA 염기부분으로 아래 첨자로 표시된 N은 PNA 염기의 개수로서, 바람직하게는 7~25의 정수, 보다 바람직하게는 8~18의 정수를 의미하며 표적 뉴클레오타이드에 평행 결합(parallel binding) 또는 역평행 결합(anti-parallel binding)을 이루는 부분이다. A 및 A'은 리포터 물질(reporter molecule) 또는 소광 물질(quencher molecule)로서 서로 같거나 다른 물질일 수 있고, 둘 중 하나만 존재할 수도 있다. X 및 X'는 물성조절 부위로서 서로 같거나 다른 물질일 수 있고, 어느 것도 포함되지 않을 수도 있으며, 하나 이상이 포함될 수도 있다. N’ 및 C’은 각각 N-말단 및 C-말단을 의미한다.
특히 PNA 염기 부분인 P는 하기 화학식 2와 같은 구조를 가질 수 있지만 이에 한정되는 것은 아니며, 본 발명의 목적을 달성할 수 있는 것이라면 어떠한 구조를 가지는 PNA 염기라도 사용가능함은 통상의 기술자에게는 자명한 것이다.
상기 화학식 2에서 B는 핵산염기로서 아데닌, 싸이민, 구아닌, 싸이토신, 그리고 우라실을 포함하는 천연 핵산염기나 비천연 핵산염기 중에서 선택되며, R 또는 S는 가장 간단한 경우 수소(H)로서 이성질체가 존재하지 않을 수 있으나, 이성질성 치환체로 변형될 수 있다. 또한 R 또는 S는 리포터 물질(reporter molecule) 또는 소광 물질(quencher molecule)이 표지된 이성질성 치환체로 변형된 형태일 수 있다[Ethan A. et al., Organic Lett. 7(16), 3465-3467, 2005].
PNA 프로브는 평행 결합을 이루는 이중 선형 구조로서 설계와 합성이 쉽고, 비특이 신호 없이 표적 뉴클레오타이드와 신속한 상보 결합을 이루어 높은 민감도 및 특이도를 가지고 있다.
따라서, 본 발명에 따른 MTB 및 NTM에 특이적인 PNA 프로브를 포함하는 조성물 또는 이를 포함하는 키트는 높은 민감도 및 특이도를 가지고 MTB 및 NTM이 동시 검출이 가능하여, 정확하고 신속한 MTB 및 NTM 감염여부, 즉 결핵의 진단에 이용될 수 있다.
도 1은 PNA-PNA 사이의 평행 결합(parallel binding)과 역평행 결합(anti-paralle binding) 구조를 나타내는 도면.
도 2는 PNA-PNA 및 PNA-DNA의 상대적 결합력 세기를 나타내는 도면.
도 3은 이중 혼성화 PNA 프로브 시스템을 이용한 표적 뉴클레오티드 검출방법을 나타내는 도면.
(a) 평행 결합 구조의 이중 혼성화 PNA 프로브 시스템을 이용한 표적 뉴클레오타이드의 검출방법 중 제1 PNA 프로브를 검출용 프로브로 사용한 경우.
(b) 평행 결합 구조의 이중 혼성화 PNA 프로브 시스템을 이용한 표적 뉴클레오타이드의 검출방법 중 제 2 PNA 프로브를 검출용 프로브로 사용한 경우.
도 4는 프로브의 안정성을 나타내는 도면.
(a) 제 1 프로브와 제 2 프로브를 혼합한 직후 수행한 PCR 결과.
(b) 제 1 프로브와 제 2 프로브를 혼합한 상태로 6개월 간 상온보관 후 수행한 PCR 결과.
도 5는 이중 형광 표지를 통한 형광 세기 증가를 나타내는 도면.
(a) 형광표지되지 않은 제 2 프로브와 제 1 프로브를 혼합하여 PCR을 수행한 결과.
(b) 형광표지된 제 2 프로브와 제 1 프로브를 혼합하여 PCR을 수행한 결과.
도 6은 본 발명의 방법을 이용한 실시예 8과 관련하여, 와파린 단일염기서열변이 검출 민감도 확인 및 정량법 적용 가능성 확인을 위해 PCR을 수행한 결과 및 검량선을 나타내는 도면.
도 7은 본 발명의 방법을 이용한 실시예 9와 관련하여, ITS유전자 검출 민감도 확인 및 정량법 적용 가능성 확인을 위해 PCR을 수행한 결과 및 검량선을 나타내는 도면.
도 8은 DNA 프로브를 이용한 PCR 결과를 나타내는 도면.
(a) DNA 프로브를 이용하여 와파린 대사관련 유전자 CYP2C9 430 유전자의 야생형과 단일 염기서열 변이체를 이용한 PCR 결과 (○는 야생형 유전자 검출선이고, ×는 단일염기서열변이체의 검출선을 의미).
(b) DNA 프로브를 이용하여 와파린 대사관련 유전자 VKORC1 3730 유전자의 야생형과 단일 염기서열 변이체를 이용한 PCR 결과 (○는 야생형 유전자 검출선이고, ×는 단일염기서열변이체의 검출선을 의미).
(c) PNA 프로브를 이용하여 와파린 대사관련 유전자 CYP2C9 430 유전자의 야생형과 단일 염기서열 변이체를 이용한 PCR 결과 (○는 야생형 유전자 검출선이고, 직선은 단일염기서열변이체의 검출선을 의미).
(d) PNA 프로브를 이용하여 와파린 대사관련 유전자 VKORC1 3730 유전자의 야생형과 단일염기서열변이체를 이용한 PCR 결과 (○는 야생형 유전자 검출선이고, 직선은 단일염기서열변이체의 검출선을 의미).
도 9는 서로 다른 형광으로 표지된 PNA 프로브를 이용하여 결핵균(Mycobacterium tuberculosis, MTB)과 비결핵항산균(Non-tuberculous mycobacteria, NTM)을 각각 특이적으로 동시에 검출한 PCR 결과를 나타내는 도면 (○는 결핵균의 검출선이고, △는 비결핵항산균의 검출선을 의미).
도 10은 제 2 프로브에 의한 단일 염기서열 변이체에 대한 용융온도의 변화를 나타내는 도면 (오른쪽 봉우리는 야생형의 용융온도를 나타내고, 왼쪽 봉우리는 단일 염기서열 변이체의 용융온도를 의미).
이하, 실시예를 통하여 본 발명을 더욱 상세히 설명하고자 한다. 아래의 실시예는 본 발명을 보다 구체적으로 설명하기 위한 것으로, 본 발명의 권리범위는 실시예에 한정되는 것이 아님은 명확한 것이다.
본 발명은 PNA 기반의 실시간 PCR 프로브를 이용하여 목적 샘플 속에 존재하는 표적 뉴클레오타이드의 존재 유무 또는 양을 검출하거나 서열 변이를 검출하는 방법에 관한 것이다.
본 발명에서 사용된 용어 및 약어의 정의는 다음과 같다.
혼성화 : 상보적 관계의 염기쌍이 수소결합을 통해 이중나선구조를 형성한 상태를 의미한다.
평행 결합(parallel binding) : 한 쌍의 PNA가 혼성화될 때 N-말단(N-term)이 같은 방향으로 상보적 관계를 이루고 있는 형태로서, DNA의 경우 5’-말단(5’-end)이 같은 방향으로 상보 결합을 이루고 있는 형태를 의미하며, PNA와 DNA가 혼성화 될 때 PNA의 N-말단과 DNA의 5’-말단이 같은 방향으로 상보적 관계를 이루고 있는 형태를 의미한다.
역평행 결합(anti-parallel binding) : 한 쌍의 PNA가 혼성화될 때 N-말단이 서로 반대 방향으로 상보 결합을 이루고 있는 형태로서, DNA의 경우 5’-말단이 서로 반대 방향으로 상보적 관계를 이루고 있는 형태를 의미하며, PNA와 DNA가 혼성화될 때 PNA의 N-말단과 DNA의 3’-말단(3’-end)이 서로 같은 방향으로 상보 결합을 이루고 있는 형태를 의미한다.
상보 결합 : 염기(A, T, G, C)가 수소결합을 통해 이중가닥(double strand) 구조를 형성하는 결합을 의미하며, 본 발명에서는 이중가닥을 형성하는 단일가닥(single strand)의 5’-말단은 서로 반대 방향을 향하는 상태에서 상보적 관계에 있는 염기가 수소결합하는 역평행결합 뿐 아니라, 5‘-말단이 서로 같은 방향을 향하는 상태에서 상보적 관계에 있는 염기가 수소결합하는 평행결합도 의미한다.
이중 혼성화 : 두 개의 PNA 프로브가 센스(sense) 및 안티-센스(anti-sense) DNA에 각각 결합하여 두 개의 이중나선 구조를 형성하는 것을 의미한다.
리포터 물질(reporter molecule) : 특정 파장의 빛을 흡수, 방출하여 형광을 발하는 물질로써, 프로브에 표지하여 표적 핵산과 프로브 사이의 혼성화가 이루어졌는지 확인할 수 있는 물질을 의미한다.
소광 물질(quencher molecule) : 리포터 물질이 발생시킨 빛을 흡수하여 형광세기를 감소시키는 물질을 의미한다.
물성조절 부위 : 링커(linker) 또는 스페이서(spacer) 등, 프로브의 용해도를 조절하거나 리포터 물질 또는 소광 물질을 표지하는데 이용하기 위한 물질을 의미하며, 그러한 물질로는 PNA와 형광물질 또는 소광물질 사이에 연결을 용이하게 하기 위한 링커, 거리를 조절하기 위한 스페이서, 당업계에 공지된 용해도 향상 및 표적 뉴클레오타이드와의 결합력 향상을 위한 물질 등이 포함된다. 링커는 Akira Kishimoto, Chem. Commun., 742743, 2003; Peter E. Nielsen, ChemBioChem, 6668, 2005; Vladimir Guelev, JACS, 2864-2865, 2002; Ethan A. Englund and Daniel H. Appella, Organic Lett., 3465-3467, 2005 등에 기재된 것들이 사용될 수 있으나 이에 한정되는 것은 아니고, 스페이서는 OlafKchler, ChemBioChem, 6977, 2005; Liisa D., J. Med. Chem., 2326-2340, 2007 등에 기재된 것들이 사용될 수 있으나 이에 한정되는 것은 아니며, 용해도 및 결합력 조절을 위해 사용되는 물질은 Irina V. Smolina, Vadim V. Demidov, Nucleic Acids Research, e146, 2005; I.S. Blagbrough, Biochemical Society Transactions part 2, 397-406, 2003; Nathalie Berthet, J. Med. Chem., 3346-3352, 1997 등에 기재된 물질 등이 가능하나 이에 한정되는 것은 아니며, 본 발명의 기술적 특징을 만족하는 경우 그 어떤 물질도 사용될 수 있음은 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자들에게 자명할 것이다.
이성질성 치환체 : 분자식 및 구성원자의 연결 방법은 같으나 원자 사이의 공간적 배치가 서로 다른 화합물을 이성질체라 일컫는데, 주로 탄소에 연결된 4개의 원자단이 모두 다른 비대칭 탄소를 가진 탄소화합물의 경우에 존재하게 된다. 즉, 치환체의 입체적 배치에 따라 서로 다른 두 종류의 이성질체를 형성하며, 본 발명에서의 이성질성 치환체는 한쪽 방향의 이성질체만을 형성하게 하는 치환체를 의미한다. 본 발명의 화학식 2에서 R 또는 S는 수소(H)인 것을 기본으로 하나 천연 아미노산이나 비천연 아미노산 잔기(Anca Dragulescu-Andrasi, JACS, 10258-10267, 2006; Filbert Totsingan, Chirality, 245253, 2009; Stefano Sforza, Eur. J. Org. Chem., 1056-1063, 2003), 및 알킬기, 아민, 알코올, 카르복시산(Shabih Shakeel, Sajjad Karim, J. Chem. Technol. Biotechnol., 892899, 2006) 등이 이성질성 치환체로서 사용될 수 있지만, 이에 한정되는 것은 아니다.
단일염기서열변이(SNP) : 특정 유전자의 DNA 염기서열 하나가 다른 것을 의미하며, 생식세포 돌연변이(germline mutation)와 체세포 돌연변이(somatic mutation)를 모두 포함한다.
구조적 프로브(structured probe) : 2차 구조를 형성하는 프로브를 의미한다.
선형 프로브(linear probe) : 5’ 말단을 형광 물질로, 3’ 말단을 소광 물질로 표지한 올리고뉴클레오타이드로, 스템이 없어 2차 구조를 형성하지 않는 프로브를 의미한다.
이중 선형 프로브 : 리포터 물질과 소광 물질이 각각 결합된 두 개의 선형 올리고뉴클레오타이드가 서로 상보 결합을 이루는 형태의 프로브를 의미한다.
완전 상보 결합(perfect match) : 두 가닥의 DNA 또는 PNA가 혼성화 될 때 상보적 관계에 있는 염기쌍이 완벽하게 맞는 상태를 의미한다.
불완전 상보 결합(mis-match) : 두 가닥의 DNA 또는 PNA가 혼성화 될 때 상보적 관계에 있는 염기쌍이 하나 이상 맞지 않는 상태를 의미한다.
FAM : 6 - Carboxyfluorescein
Dabcyl : 4,4 - Dimethylamino-azobenzene-4'-carboxylic acid
블랙 홀 소광물질(Black Hole Quencher, BHQTM) : Biosearch Technologies Inc.(미국)에서 판매하는 소광 물질로서, 구조 및 파장 차이에 따라 BHQ1, BHQ2, BHQ3로 구분된다.
블랙베리 퀸처(Blackberry Quencher) : 미국 Berry & Associates에서 판매하는 소광 물질로서, 다음의 구조를 갖는 화합물.
[실시예 1] PNA 프로브의 설계 및 제작
본 발명의 PNA 프로브는 결핵균의 IS6110 유전자와 비결핵항산균의 ITS 유전자에 각각 특이적으로 결합할 수 있도록 제작되었다. 또한 와파린 대사관련 유전자인 CYP2C9 430 및 VKORC1 3730 야생형 유전자와 단일염기서열변이체 유전자에 각각 완벽하게 결합할 수 있도록 설계 및 제작되었다.
예를 들어, 본 발명의 PNA 프로브는 하기 표 3에 기재한 서열번호 1 내지 14 중 어느 하나의 염기서열로 구성될 수 있다. 상기 염기서열로부터 당업자가 통상의 지식을 이용하여 용이하게 변형 할 수 있는 범위 내의 PNA 프로브 서열은 모두 본 발명의 범위 내에 속하는 것으로 보아야 할 것이다. 평행 결합을 할 수 있는 PNA 프로브 시스템으로서 본 발명에 따른 PNA 실시간 PCR을 이용하여 표적 뉴클레오타이드를 검출해 낼 수 있는 것인 한, 본 발명의 권리범위 내에 포함되는 것이다.
상기 표 3에서 O는 링커, 굵은 글씨체 및 밑줄로 표시된 문자는 γ-라이신(lysine) 또는 γ-글루탐산(glutamic acid)-PNA 모노머(monomer), K는 라이신(lysine), (+)는 aeg[N-(β-alanine)], (-)는 aeg[N-(succinicacid)]를 의미한다.
PNA 프로브는 한국등록특허 제 464,261호에 기재된 방법에 따라 PNA 올리고머를 벤조티아졸설포닐(Bts : Benzothiazolesulfonyl)기로 보호된 PNA 단량체와 기능화된 레진으로부터 고체상 합성법(solid phase synthesis)으로 합성하였다[Lee et al., Org. Lett., 2007, 9, 3291-3293]. 이 방법 이외에도 알려진 9-플루오레닐메톨시카르보닐(Fmoc : 9-flourenylmethloxycarbonyl) 또는 t-Boc(t-butoxycarbonyl) 합성법을 사용하여 PNA를 합성할 수도 있다[Kim L. et al., J. Org. Chem. 59, 5767-5773, 1994; Stephen A. et al., Tetrahedron, 51, 6179-6194, 1995]. 리포터 물질 및 소광 물질은 당업계에 널리 공지된 방법에 따라 PNA 프로브에 표지하였다.
[실시예 2]: CYP2C9 430, VKORC1 3730 및 결핵/비결핵항산균의 표적핵산을 증폭하기 위한 프라이머 합성 및 사용
본 발명에서는 와파린 대사관련 유전자 CYP2C9 430, VKORC1 3730 및 결핵균(Mycobacterium tuberculosis, MTB)과 비결핵항산균(Non-tuberculous mycobacteria, NTM) 유전자의 표적핵산 증폭을 위하여 각 유전자의 부위를 분석하여 특이적인 증폭이 이루어지도록 프라이머를 제작하였다. CYP2C9 430 유전자 확인을 위하여 서열번호 15, 16 프라이머 세트와 VKORC1 3730 유전자 확인을 위하여 서열번호 17, 18 프라이머 세트를 디자인 하였다. 또한 결핵균(Mycobacterium tuberculosis, MTB)의 IS6110 유전자 확인을 위하여 서열번호 19, 20 프라이머 세트와 비결핵항산균(Non-tuberculous mycobacteria, NTM) 유전자 ITS(Internal transcribed spacer)의 확인을 위하여 서열번호 21, 22 프라이머 세트를 디자인 하였다. 디자인된 프라이머는 ㈜ 바이오니아(한국)에 합성 의뢰하여 사용하였다.
상기 표 4에서 Y는 C와 T의 혼합된 염기를 의미한다.
[실시예 3] 와파린 대사관련 유전자 CYP2C9 430 및 VKORC1 3730 클론 확보
CYP2C9 430 및 VKORC1 3730의 클론 확보를 위하여 각각 서열번호 23, 24번의 조합, 25, 26번의 조합으로 증폭산물을 LabopassTMPCR 정제 키트(코스모진텍, 한국)을 사용하여 정제한 다음, pGEM-T 이지 벡터(프로메가, 미국)에 결합시키고 대장균(E.coli) JM109세포에 형질 전환하여 DNA를 대량 확보하였다. 단일 염기 서열 변이체를 확보하기 위하여 상기의 방법으로 제조된 정상 클론을 이용하고 부위특이적 돌연변이유발 키트(스트라타진, 미국)를 사용하여 변이 유전자를 가진 클론을 확보하고 염기서열 분석으로 변이 여부를 확인 하였다. 유전자형이 확인된 클론은 본 발명의 유전자 증폭 시에 표준물질로 사용하였다.
[실시예 4] 결핵균 유전자 IS6110 및 비결핵 항산균 유전자 ITS의 클론 확보
표적 핵산을 위한 클론을 확보하기 위하여 Mycobacterium tuberculosis {ATCC 25177, 미국}와 Mycobacterium asiaticum{KCTC 9503, 한국생명자원센터, 한국}을 분양받았다. 분양받은 균주로부터 InstaGene Matrix(바이오라드, 미국)를 이용하여 DNA를 추출하였고, 서열번호 27, 28번의 조합, 29, 30번의 조합으로 각각 결핵균(Mycobacterium tuberculosis, MTB) IS6110 유전자와 비결핵항산균(Non-tuberculous mycobacteria, NTM)의 ITS 유전자를 증폭하였다. 증폭산물을 LabopassTMPCR 정제 키트(코스모진텍, 한국)을 사용하여 정제한 다음, pGEM-T 이지 벡터(프로메가, 미국)에 결합시키고 대장균(E. coli) JM109에 형질 전환하여 DNA를 대량 확보하였다.
[실시예 5] 실시간 PCR 반응
상기의 실시예 3, 4의 방법으로 확보된 클론을 사용하여 PNA 프로브를 사용한 실시간 검출 방법을 확립하였다. 주형 DNA(105 copies/㎕) 2 ㎕, 제 1 프로브 (5 pmoles/㎕)와 제 2 프로브 (10 pmoles/㎕)의 혼합 용액 10 ㎕, 프라이머 세트(서열번호 15, 16 세트 또는 17, 18 세트 또는 19, 20 세트 또는 21, 22 세트, 정방향 프라이머 50 pmoles/㎕, 역방향 프라이머 6.25 pmoles/㎕) 2 ㎕, 10X Taq 중합효소 완충용액(솔젠트, 한국) 5 ㎕, 10mM dNTP 혼합용액(솔젠트, 한국) 1 ㎕, Taq 중합효소 (5 U/㎕, 솔젠트, 한국) 0.4 ㎕, 증류수 27.6 ㎕를 혼합한 뒤 실시간 유전자 증폭기(Real-time PCR machine, CFX96TM Real-time PCR System, 바이오라드, 미국)를 이용하여 95℃ 에서 3분 동안 반응 후, 95℃ 10초, 그리고 프라이머와 함께 제 1 프로브 및 제 2 프로브가 혼성화되도록 60℃ 30초, 72℃ 15초 반응과정을 반복하였다. 형광 세기는 60℃ 혼성화 반응 뒤에 측정하였다.
[실시예 6] 평행 결합 PNA 기반 실시간 PCR 프로브의 안정성
제 1 프로브(서열번호 2)와 제 2 프로브(서열번호 5)의 보관 안정성을 시험하기 위하여, 상기 실시예 5의 방법대로 제 1 프로브와 제 2 프로브 혼합 용액을 각각 이용하여 실시간 검출 PCR을 수행하였고, 6 개월간 상온에 보관한 뒤에 동일한 방법으로 실시간 검출 PCR을 수행하고 그 효과를 비교하였다. 그 결과를 도 4에 나타내었다. 그 결과 상온에서 6개월간 보관하여도 형광 세기가 감소하지 않음을 확인하였다.
[실시예 7] 제 2 프로브에 추가 리포터 물질 도입을 통한 신호세기 증가
제 1 프로브 뿐만 아니라 제 2 프로브에도 리포터 물질을 도입한 경우의 형광 세기의 변화를 측정하기 위하여 서열번호 4의 제 1 프로브와 서열번호 6의 제 2 프로브 혼합 용액을 사용하고 상기 실시예 5의 방법을 이용하여 실시간 검출 PCR을 수행하였다. 그 결과를 도 5에 나타내었다. 제 2 프로브에 리포터 물질을 도입한 경우, 제 1 프로브에만 리포터 물질을 도입한 경우에 비해 형광 세기가 약 50% 증가함을 확인할 수 있었다.
[실시예 8] 제 1 프로브의 단일염기서열변이 검출에 대한 민감도 확인 및 정량법 적용 가능성 확인
제 1 PNA 프로브(서열번호 1)과 제 2 PNA 프로브(서열번호 5)를 이용하여 단일염기서열변이 검출에 대한 민감도 및 정량법 적용 가능성을 확인하기 위한 테스트를 실시하였다. CYP2C9 430 야생형과 단일 염기서열 변이체 클론을 각각 109 copies/㎕에서 101 copies/㎕까지 10배씩 순차적으로 희석하여 검출 한계를 측정하였으며, 101 copies/㎕까지 검출이 가능함을 확인하였다. 또한 단일염기서열변이 유전자의 카피(copy) 수에 따른 CT(cycle threshold) 사이의 상관관계를 분석한 결과 표준물질의 농도가 감소함에 따라 검출 CT 값이 증가함을 나타내어 본 발명은 핵산의 정량에도 적용할 수 있음을 확인하였다. 그 결과를 도 6에 나타내었다.
[실시예 9] 제 1 프로브의 표적 뉴클레오타이드 검출에 대한 민감도 확인 및 정량법 적용 가능성 확인
제 1 PNA 프로브(서열번호 12)와 제 2 PNA 프로브(서열번호 13)을 이용하여 표적 뉴클레오타이드 검출에 대한 민감도 및 정량법 적용 가능성을 확인하기 위한 테스트를 실시하였다. 비결핵항산균 클론을 각각 109 copies/㎕에서 101 copies/㎕까지 10배씩 순차적으로 희석하여 검출 한계를 측정하였으며, 101 copies/㎕까지 검출이 가능함을 확인하였다. 또한 표적 뉴클레오타이드의 카피 수에 따른 CT 사이의 상관관계를 분석한 결과, 표준물질의 농도가 감소함에 따라 검출 CT 값이 증가함을 보이므로, 본 발명은 핵산의 정량에도 적용할 수 있음을 확인하였다. 그 결과를 도 7에 나타내었다.
[실시예 10] PNA 프로브 및 DNA 프로브의 단일염기서열변이 검출능 비교
PNA 프로브와 마찬가지로 DNA 프로브(태크만 프로브)을 이용할 경우 단일염기서열변이의 검출이 가능한지를 확인하기 위하여 서열번호 30 및 31의 와파린 대사관련 유전자 CYP2C9 430, VKORC1 3730의 단일염기서열변이 검출용 DNA 프로브를 ㈜ 바이오니아(한국)에 합성 의뢰하여 사용하였으며(표 5 참조). 이에 상응하는 PNA 프로브는 서열번호 8, 9를 사용하였다. 각 프로브를 이용하여 단일염기서열변이 검출능을 비교한 결과를 도 8에 나타내었다. 두 가지 표적 유전자 검출용 DNA 프로브는 모두 단일염기서열변이를 검출하지 못한 반면, PNA 프로브는 서로 다른 두 가지 표적 유전자의 단일염기서열변이를 확실하게 검출할 수 있었다.
상기 표 5에서 굵은 글씨체는 단일 염기서열 변이 위치를 나타낸다.
[실시예 11] 서로 다른 리포터 물질을 사용한 결핵균(
Mycobacterium tuberculosis
, MTB)과 비결핵항산균(
Non-tuberculous mycobacteria
, NTM)의 동시 검출 방법
서로 다른 리포터 물질을 표지한 PNA 프로브를 이용하여 서로 다른 두 종류의 표적 핵산을 동시에 검출할 수 있는지를 확인하였다.
서열번호 10 및 14에 따른 결핵균(Mycobacterium tuberculosis, MTB) 특이적 PNA 프로브와 서열번호 11 및 13에 따른 비결핵 항산균(Non-tuberculous mycobacteria, NTM) 특이적 PNA 프로브를 이용하여, 결핵균과 비결핵 항산균을 각각 특이적으로 동시에 검출하였고, 그 결과는 도 9에 나타내었다.
[실시예 12] 단일염기서열변이에 대한 검출 특이성 확인
제 1 프로브와 제 2 프로브를 혼합하여 사용할 경우 단일염기서열변이에 대한 검출 특이성을 높일 수 있음을 확인하기 위하여 와파린 대사관련 유전자 CYP2C9 430을 타겟 유전자로 한 제 1 프로브(서열번호 3), 제 2 프로브(서열번호 7)을 이용하여 상기 실시예 5의 방법대로 실시간 PCR 반응을 수행한 뒤, 25℃부터 95℃까지 0.5℃씩 상승시키며 형광을 측정하는 용융곡선 분석을 수행하였다. 그 결과는 도 10에 나타내었다. 제 2 프로브를 함께 사용한 경우와 그렇지 않은 경우 모두 야생형에 대한 용융온도에는 변화가 없었다. 하지만 제 2 프로브를 함께 혼합한 경우 단일염기서열변이에 대한 용융 온도가 4~6℃ 가량 하강하는 것을 확인할 수 있었다. 즉, 단일염기서열변이에 대한 용융 온도 하강으로 인하여 제 2 프로브를 함께 사용한 경우 단일염기서열변이에 대한 검출 특이성이 향상되는 결과를 확인 되었다.
서열목록 1 내지 14는 본 발명에 따른 PNA 프로브의 염기서열이다.
서열목록 15 내지 30은 본 발명에 따른 프라이머의 염기서열이다.
서열목록 31 및 32는 본 발명에 따른 DNA 프로브의 염기서열이다.
Claims (11)
- 결핵균(Mycobacterium tuberculosis, MTB) 특이적으로 결합하는 PNA 프로브 및 결핵균에 특이적으로 결합하는 PNA 프로브와 평행 결합하는 PNA 프로브; 및비결핵 항산균(Non-tuberculous mycobacteria, NTM) 특이적으로 결합하는 PNA 프로브 및 비결핵 항산균과 특이적으로 결합하는 PNA 프로브와 평행 결합하는 PNA 프로브;를 포함하는 결핵균과 비결핵 항산균 동시 검출용 조성물.
- 제1항에 있어서,상기 결핵균 특이적 PNA 프로브 및 이와 평행 결합하는 PNA 프로브는 서열번호 10 및 서열번호 14로 표시되는 서열을 가지고,비결핵 항산균 특이적 PNA 프로브 및 이와 평행 결합하는 PNA 프로브는 서열번호 11 또는 12에서 선택되는 하나와 서열번호 13로 표시되는 서열을 가짐을 특징으로 하는 조성물.
- 제 1 항 또는 제2항에 있어서,상기 각 PNA 프로브는 하나 이상의 말단에 물성조절 부위를 더 포함함을 특징으로 하는 조성물.
- 제 1 항에 있어서,상기 각 PNA 프로브는 리포터 물질(reporter molecule) 및 소광물질(quencher molecule)에서 선택된 하나 이상의 물질을 추가로 포함함을 특징으로 하는 조성물.
- 제 4 항에 있어서,상기 리포터 물질 또는 소광물질은 PNA 말단에 직접 결합되거나, PNA 말단에 연결된 물성조절 부위를 통해 결합된 것임을 특징으로 하는 조성물.
- 제 4 항에 있어서,상기 리포터 물질은 플루오레신(fluorescein), 플루오레신 클로로트리아지닐(fluorescein chlorotriazinyl), 로다민 그린(rhodamine green), 로다민 레드(rhodamine red), 테트라메틸로다민(tetramethylrhodamine), FITC, 오레곤 그린(Oregon green), 알렉사 플루오로(Alexa Fluor), FAM, JOE, ROX, HEX, 텍사스 레드(Texas Red), TET, TRITC, TAMRA, 시아닌(Cyanine) 계열 염료 및 씨아디카르보시아닌(thiadicarbocyanine) 염료로 구성된 군으로부터 선택된 하나 이상의 형광물질임을 특징으로 하는 조성물.
- 제 4 항에 있어서,상기 소광물질은 답실(Dabcyl), TAMRA, Eclipse, DDQ, QSY, 블랙베리 퀸처(Blackberry Quencher), 블랙홀 퀸처(Black Hole Quencher), Qxl, 아이오와 블랙(Iowa black) FQ, 아이오와 블랙 RQ, IRDye QC-1 군으로부터 선택된 하나 이상임을 특징으로 하는 조성물.
- 제 3 항에 있어서,상기 PNA 프로브 말단에 결합되어 있는 물성조절 부위는 친수성 잔기, 소수성 잔기, 이온성 잔기 및 수소 결합 잔기로 구성된 군으로부터 선택된 것임을 특징으로 하는 조성물.
- 제 3 항에 있어서,상기 각 PNA 프로브 말단에 결합되어 있는 물성조절 부위는 이온성 잔기로서, 양전하, 음전하 또는 쯔비터 이온을 포함하는 것을 특징으로 하는 조성물.
- 제 1 항 또는 제 2 항에 따른 조성물을 포함하는 결핵균과 비결핵 항산균 동시 검출용 키트.
- 제 1 항 및 제 2 항에서 선택된 어느 하나의 조성물, 또는 그러한 조성물을 포함하는 키트를 이용한 결핵균과 비결핵 항산균 동시 검출 방법.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR10-2011-0068939 | 2011-07-12 | ||
KR1020110068939A KR20130008283A (ko) | 2011-07-12 | 2011-07-12 | 평행결합 구조의 이중 혼성화 pna 프로브 시스템을 포함하는 실시간 다중 중합효소 연쇄반응에 의한 결핵균 및 비결핵 항산균의 동시 검출용 조성물 및 이를 이용한 검출 방법 |
Publications (3)
Publication Number | Publication Date |
---|---|
WO2013009084A2 true WO2013009084A2 (ko) | 2013-01-17 |
WO2013009084A9 WO2013009084A9 (ko) | 2013-03-28 |
WO2013009084A3 WO2013009084A3 (ko) | 2013-05-16 |
Family
ID=47506703
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/KR2012/005483 WO2013009084A2 (ko) | 2011-07-12 | 2012-07-11 | 평행결합 구조의 이중 혼성화 pna 프로브 시스템을 포함하는 실시간 다중 중합효소 연쇄반응에 의한 결핵균 및 비결핵 항산균의 동시 검출용 조성물 및 이를 이용한 검출 방법 |
Country Status (2)
Country | Link |
---|---|
KR (1) | KR20130008283A (ko) |
WO (1) | WO2013009084A2 (ko) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105671211A (zh) * | 2016-04-07 | 2016-06-15 | 广东省农业科学院动物卫生研究所 | 小反刍兽疫病毒、施马伦贝格病毒和库布病毒分子鉴别诊断方法及其应用 |
JP2018500024A (ja) * | 2014-12-18 | 2018-01-11 | エフ.ホフマン−ラ ロシュ アーゲーF. Hoffmann−La Roche Aktiengesellschaft | 薬物耐性結核菌の検出のための組成物及び方法 |
CN113025729A (zh) * | 2020-12-24 | 2021-06-25 | 复旦大学 | 结核分枝杆菌对氨基水杨酸耐药相关的基因突变位点及其应用 |
CN114592036A (zh) * | 2022-04-02 | 2022-06-07 | 予果生物科技(北京)有限公司 | 放线菌核酸提取检测试剂、试剂盒及其方法和应用 |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR102008454B1 (ko) * | 2012-08-28 | 2019-08-08 | 주식회사 파나진 | 평행결합 구조의 이중 혼성화 pna 프로브 시스템을 포함하는 c형 간염바이러스(hcv) 유전자형 감별용 조성물 및 이를 이용한 감별방법 |
KR101403507B1 (ko) * | 2013-03-21 | 2014-06-09 | 주식회사 현일바이오 | 결핵균 및 비결핵 마이코박테리아의 선택적 검출 방법, 그리고 이를 이용한 키트 |
US10301310B2 (en) * | 2014-05-09 | 2019-05-28 | Biosearch Technologies, Inc. | Cosmic quenchers |
KR101985378B1 (ko) | 2017-05-02 | 2019-06-10 | 주식회사 레이 | 치아 촬영용 엑스레이 촬영기 |
KR101899371B1 (ko) | 2017-07-25 | 2018-10-29 | (주)엔바이오텍 | 핵산 복합체 페어, 핵산 복합체 페어를 포함하는 pcr용 키트, 및 핵산 복합체 페어를 이용한 타겟 검출 방법 |
KR20200045212A (ko) * | 2018-10-22 | 2020-05-04 | (주)바이오니아 | 옥타민 또는 옥타민 유도체가 결합된 프로브 및 이의 용도 |
KR102097721B1 (ko) * | 2019-01-24 | 2020-04-06 | 주식회사 시선바이오머티리얼스 | 태그서열 snp를 이용한 단일 검출 프로브 기반 다중 표적 검출방법 |
KR20240028084A (ko) | 2022-08-24 | 2024-03-05 | 주식회사 멀티렉스 | 표지자가 결합된 태그 프로브 및 이의 용도 |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6355421B1 (en) * | 1997-10-27 | 2002-03-12 | Boston Probes, Inc. | Methods, kits and compositions pertaining to PNA molecular beacons |
-
2011
- 2011-07-12 KR KR1020110068939A patent/KR20130008283A/ko not_active Application Discontinuation
-
2012
- 2012-07-11 WO PCT/KR2012/005483 patent/WO2013009084A2/ko active Application Filing
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6355421B1 (en) * | 1997-10-27 | 2002-03-12 | Boston Probes, Inc. | Methods, kits and compositions pertaining to PNA molecular beacons |
Non-Patent Citations (4)
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2018500024A (ja) * | 2014-12-18 | 2018-01-11 | エフ.ホフマン−ラ ロシュ アーゲーF. Hoffmann−La Roche Aktiengesellschaft | 薬物耐性結核菌の検出のための組成物及び方法 |
JP7036595B2 (ja) | 2014-12-18 | 2022-03-15 | エフ.ホフマン-ラ ロシュ アーゲー | 薬物耐性結核菌の検出のための組成物及び方法 |
CN105671211A (zh) * | 2016-04-07 | 2016-06-15 | 广东省农业科学院动物卫生研究所 | 小反刍兽疫病毒、施马伦贝格病毒和库布病毒分子鉴别诊断方法及其应用 |
CN113025729A (zh) * | 2020-12-24 | 2021-06-25 | 复旦大学 | 结核分枝杆菌对氨基水杨酸耐药相关的基因突变位点及其应用 |
CN114592036A (zh) * | 2022-04-02 | 2022-06-07 | 予果生物科技(北京)有限公司 | 放线菌核酸提取检测试剂、试剂盒及其方法和应用 |
Also Published As
Publication number | Publication date |
---|---|
WO2013009084A9 (ko) | 2013-03-28 |
WO2013009084A3 (ko) | 2013-05-16 |
KR20130008283A (ko) | 2013-01-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2013009084A9 (ko) | 평행결합 구조의 이중 혼성화 pna 프로브 시스템을 포함하는 실시간 다중 중합효소 연쇄반응에 의한 결핵균 및 비결핵 항산균의 동시 검출용 조성물 및 이를 이용한 검출 방법 | |
JP7210203B2 (ja) | リコンビナーゼポリメラーゼ増幅を多重化するための方法 | |
KR100238835B1 (ko) | 클라미디아 트라코마티스 검출용 조성물 및 검출 방법 | |
EP0759091B1 (en) | MATERIALS AND METHODS FOR THE DETECTION OF $i(MYCOBACTERIUM TUBERCULOSIS) | |
WO2013009070A9 (ko) | 평행 결합 구조의 이중 혼성화 pna 프로브 시스템 | |
US20090136956A1 (en) | Use of Dual-Tags for the Evaluation of Genomic Variable Repeat Regions | |
CN101935709B (zh) | 结核菌检测用的引物和探针以及使用它们检测人型结核菌的方法 | |
AU2023203519C1 (en) | Compositions and methods for detecting group B Streptococcus nucleic acid | |
US9458513B2 (en) | Primer and probe for detecting chlamydia trachomatis, and method for detecting chlamydia trachomatis using same | |
WO2012064035A2 (ko) | Pna 기반의 실시간 pcr 클램핑을 이용한 bcr-abl 융합 유전자의 돌연변이 검출 방법 및 키트 | |
WO2010081493A1 (en) | Oligonucleotides, methods and kits for detecting and identifying vancomycin-resistant enterococcus | |
US20080199878A1 (en) | Detection, identification and differentiation of eubacterial taxa using a hybridization assay | |
JP4090498B2 (ja) | マイコバクテリウム・ツベルクロシスのための核酸プロセスプローブ | |
CA2816060C (en) | Rapid salmonella serotyping assay | |
CA2190090A1 (en) | Materials and methods for the detection of mycobacteria | |
KR20010042167A (ko) | 검출 복합체에 관한 방법, 키트 및 조성물 | |
KR102008454B1 (ko) | 평행결합 구조의 이중 혼성화 pna 프로브 시스템을 포함하는 c형 간염바이러스(hcv) 유전자형 감별용 조성물 및 이를 이용한 감별방법 | |
NL2033870B1 (en) | Kit for detection of mycoplasma pneumoniae, detection method and use thereof | |
EP4382623A2 (en) | Compositions and methods for detecting stec and at least one of salmonella, c. jejuni, c. coli, and shigella |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 12811254 Country of ref document: EP Kind code of ref document: A2 |
|
NENP | Non-entry into the national phase in: |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 12811254 Country of ref document: EP Kind code of ref document: A2 |