WO2013099540A1 - 積層型コモンモードチョークコイル - Google Patents
積層型コモンモードチョークコイル Download PDFInfo
- Publication number
- WO2013099540A1 WO2013099540A1 PCT/JP2012/081452 JP2012081452W WO2013099540A1 WO 2013099540 A1 WO2013099540 A1 WO 2013099540A1 JP 2012081452 W JP2012081452 W JP 2012081452W WO 2013099540 A1 WO2013099540 A1 WO 2013099540A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- annular
- common mode
- coil
- conductor
- mode choke
- Prior art date
Links
- 239000004020 conductor Substances 0.000 claims abstract description 188
- 239000010410 layer Substances 0.000 claims description 132
- 239000000463 material Substances 0.000 claims description 47
- 239000011229 interlayer Substances 0.000 claims description 13
- 239000000696 magnetic material Substances 0.000 claims description 6
- 238000010030 laminating Methods 0.000 claims description 5
- 238000003475 lamination Methods 0.000 abstract description 2
- 238000010586 diagram Methods 0.000 description 12
- 230000004907 flux Effects 0.000 description 12
- 229920005989 resin Polymers 0.000 description 11
- 239000011347 resin Substances 0.000 description 11
- 230000008878 coupling Effects 0.000 description 10
- 238000010168 coupling process Methods 0.000 description 10
- 238000005859 coupling reaction Methods 0.000 description 10
- 239000000919 ceramic Substances 0.000 description 8
- 239000010949 copper Substances 0.000 description 8
- 239000011248 coating agent Substances 0.000 description 6
- 238000000576 coating method Methods 0.000 description 6
- 230000005611 electricity Effects 0.000 description 6
- 238000000034 method Methods 0.000 description 6
- 230000003068 static effect Effects 0.000 description 6
- 230000005540 biological transmission Effects 0.000 description 5
- 239000003990 capacitor Substances 0.000 description 5
- 239000007772 electrode material Substances 0.000 description 5
- 230000035699 permeability Effects 0.000 description 5
- 101001012236 Schistosoma haematobium 23 kDa integral membrane protein Proteins 0.000 description 4
- 238000006243 chemical reaction Methods 0.000 description 4
- 239000007769 metal material Substances 0.000 description 4
- 239000000843 powder Substances 0.000 description 4
- 239000004065 semiconductor Substances 0.000 description 4
- 239000000758 substrate Substances 0.000 description 4
- 229910000859 α-Fe Inorganic materials 0.000 description 4
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 3
- 238000002156 mixing Methods 0.000 description 3
- 239000002904 solvent Substances 0.000 description 3
- 229910018100 Ni-Sn Inorganic materials 0.000 description 2
- 229910018532 Ni—Sn Inorganic materials 0.000 description 2
- 239000012298 atmosphere Substances 0.000 description 2
- 239000011230 binding agent Substances 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 229910010293 ceramic material Inorganic materials 0.000 description 2
- 239000003989 dielectric material Substances 0.000 description 2
- 239000002003 electrode paste Substances 0.000 description 2
- 238000010304 firing Methods 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 238000007747 plating Methods 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 238000003756 stirring Methods 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 229920000178 Acrylic resin Polymers 0.000 description 1
- 239000004925 Acrylic resin Substances 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 239000001856 Ethyl cellulose Substances 0.000 description 1
- ZZSNKZQZMQGXPY-UHFFFAOYSA-N Ethyl cellulose Chemical compound CCOCC1OC(OC)C(OCC)C(OCC)C1OC1C(O)C(O)C(OC)C(CO)O1 ZZSNKZQZMQGXPY-UHFFFAOYSA-N 0.000 description 1
- 239000004743 Polypropylene Substances 0.000 description 1
- 229910004298 SiO 2 Inorganic materials 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 238000007599 discharging Methods 0.000 description 1
- 238000010292 electrical insulation Methods 0.000 description 1
- 229920001249 ethyl cellulose Polymers 0.000 description 1
- 235000019325 ethyl cellulose Nutrition 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 238000003780 insertion Methods 0.000 description 1
- 230000037431 insertion Effects 0.000 description 1
- 238000002386 leaching Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 230000005012 migration Effects 0.000 description 1
- 238000013508 migration Methods 0.000 description 1
- 239000012299 nitrogen atmosphere Substances 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 229920000139 polyethylene terephthalate Polymers 0.000 description 1
- 239000005020 polyethylene terephthalate Substances 0.000 description 1
- -1 polypropylene Polymers 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 230000007261 regionalization Effects 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- 239000004575 stone Substances 0.000 description 1
- 229920005992 thermoplastic resin Polymers 0.000 description 1
- 229920001187 thermosetting polymer Polymers 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F27/00—Details of transformers or inductances, in general
- H01F27/34—Special means for preventing or reducing unwanted electric or magnetic effects, e.g. no-load losses, reactive currents, harmonics, oscillations, leakage fields
- H01F27/343—Preventing or reducing surge voltages; oscillations
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03H—IMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
- H03H7/00—Multiple-port networks comprising only passive electrical elements as network components
- H03H7/42—Networks for transforming balanced signals into unbalanced signals and vice versa, e.g. baluns
- H03H7/425—Balance-balance networks
- H03H7/427—Common-mode filters
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F17/00—Fixed inductances of the signal type
- H01F17/0006—Printed inductances
- H01F17/0013—Printed inductances with stacked layers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F17/00—Fixed inductances of the signal type
- H01F17/0006—Printed inductances
- H01F17/0033—Printed inductances with the coil helically wound around a magnetic core
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F27/00—Details of transformers or inductances, in general
- H01F27/28—Coils; Windings; Conductive connections
- H01F27/2804—Printed windings
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F27/00—Details of transformers or inductances, in general
- H01F27/28—Coils; Windings; Conductive connections
- H01F27/29—Terminals; Tapping arrangements for signal inductances
- H01F27/292—Surface mounted devices
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02H—EMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
- H02H9/00—Emergency protective circuit arrangements for limiting excess current or voltage without disconnection
- H02H9/04—Emergency protective circuit arrangements for limiting excess current or voltage without disconnection responsive to excess voltage
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F17/00—Fixed inductances of the signal type
- H01F2017/0093—Common mode choke coil
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F27/00—Details of transformers or inductances, in general
- H01F27/28—Coils; Windings; Conductive connections
- H01F27/2804—Printed windings
- H01F2027/2809—Printed windings on stacked layers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F27/00—Details of transformers or inductances, in general
- H01F27/34—Special means for preventing or reducing unwanted electric or magnetic effects, e.g. no-load losses, reactive currents, harmonics, oscillations, leakage fields
- H01F2027/348—Preventing eddy currents
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03H—IMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
- H03H1/00—Constructional details of impedance networks whose electrical mode of operation is not specified or applicable to more than one type of network
- H03H2001/0021—Constructional details
- H03H2001/0085—Multilayer, e.g. LTCC, HTCC, green sheets
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03H—IMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
- H03H7/00—Multiple-port networks comprising only passive electrical elements as network components
- H03H7/01—Frequency selective two-port networks
- H03H7/0107—Non-linear filters
Definitions
- the present invention relates to a laminated common mode choke coil applied to a transmission line for high frequency signals.
- the differential transmission method radiation noise and external noise are canceled by a balanced line, so that it is not easily affected by these noises.
- a common mode noise current is generated based on the asymmetry of the signal line. Therefore, a common mode choke coil is used to suppress the common mode noise.
- the common mode choke coil includes two coils (a primary coil and a secondary coil) wound in the same direction as disclosed in FIG. 1 of Patent Document 1 and FIG. 2 of Patent Document 2. It is configured as a small stacked chip component.
- the primary coil and the secondary coil are arranged in the stacking direction inside the stacked body.
- FIG. 13 is a cross-sectional view of the common mode choke coil disclosed in Patent Document 1.
- This common mode choke coil has a structure provided with two coils (laminated coils) 2 and 3 that are wound coaxially in the laminated element 1 and are arranged separately in the axial direction. The start and end portions of the coils 2 and 3 are drawn out to the end faces on both sides of the multilayer element 1 and connected to a predetermined external electrode.
- the coil pattern formation position shift and the sheet stacking shift occur due to process problems.
- the coupling amount between each coil and the ground conductor on the printed wiring board is different, the capacitance between the primary coil and the ground conductor, and the secondary coil and the ground conductor. The capacity between them becomes imbalanced. Therefore, the symmetry between the primary coil and the secondary coil cannot be ensured, and the common mode noise is converted into a normal mode signal. That is, the ability to remove common mode noise is reduced.
- a magnetic material is used as the laminated element body.
- the magnetic material has a relatively large frequency dependency, the loss of the normal mode signal tends to be large especially in a high frequency band.
- a sufficient coupling value cannot be obtained between the primary coil and the secondary coil particularly in the high frequency band, and the loss in the normal mode tends to increase.
- the present invention has been made to solve the above-described problems, and an object of the present invention is to provide a small-sized common mode choke coil with a small loss of normal mode signals and a high common mode noise removal capability. .
- the common mode choke coil of the present invention is A laminated body formed by laminating a plurality of base material layers, and a primary coil and a secondary coil provided in the laminated body and coupled to each other;
- the primary coil includes a first annular conductor provided in the plurality of base material layers, and an interlayer connection conductor that connects the first annular conductors between layers, and the plurality of first annular conductors and the interlayer connection It is formed in a spiral by a conductor
- the secondary coil includes a second annular conductor provided in the plurality of base material layers, and an interlayer connection conductor that connects the second annular conductors between layers, and the plurality of second annular conductors and the interlayers It is formed in a spiral by connecting conductors,
- the plurality of first annular conductors and the plurality of second annular conductors are alternately arranged in the stacking direction of the base material layer, The range of the first annular conductor and the second annular conductor facing in the stacking direction
- the degree of coupling between the primary coil and the secondary coil can be increased without increasing the stray capacitance between the primary coil and the secondary coil. Therefore, it is possible to obtain a small common mode choke coil in which the loss of the normal mode signal is small and the common mode noise is difficult to be converted into the normal mode signal, particularly in the high frequency band.
- FIG. 1 is an exploded plan view showing a conductor pattern and the like of each layer of the common mode choke coil according to the first embodiment.
- FIG. 2 is an external perspective view of the common mode choke coil 101 according to the first embodiment.
- FIG. 3 is an equivalent circuit diagram of the common mode choke coil 101.
- FIG. 4 is a schematic diagram showing the positional relationship between the primary coil and the secondary coil of the common mode choke coil 101.
- 5A is a diagram showing the current of common mode noise and the direction of magnetic flux of the common mode choke coil 101
- FIG. 5B is the direction of the current and magnetic flux of the normal mode (differential mode) signal of the common mode choke coil 101.
- FIG. FIG. 6 is a schematic cross-sectional view of the common mode choke coil 102 of the second embodiment.
- FIG. 7 is an exploded plan view showing conductor patterns and the like of each layer of the common mode choke coil according to the third embodiment.
- FIG. 8 is an external perspective view of the common mode choke coil 103 according to the third embodiment.
- 9A is a cross-sectional view of the common mode choke coil 103
- FIG. 9B is a cross-sectional view of the ESD protection element portion.
- FIG. 10 is a schematic diagram showing a cross-sectional structure of a portion including the discharge electrodes De11 and De12.
- FIG. 11 is an equivalent circuit diagram of the common mode choke coil 103.
- FIG. 12 is a diagram illustrating frequency characteristics of the common mode choke coil according to the third embodiment.
- FIG. 13 is a cross-sectional view of a common mode choke coil disclosed in Patent Document 1. In FIG.
- FIG. 1 is an exploded plan view showing a conductor pattern and the like of each layer of the common mode choke coil according to the first embodiment.
- FIG. 2 is an external perspective view of the common mode choke coil 101 according to the first embodiment.
- the common mode choke coil 101 includes a laminated element body 10 formed by laminating a plurality of substrate layers including the substrate layers indicated by (1) to (9) in FIG.
- a laminated common mode choke coil having a primary coil and a secondary coil.
- (1) is the lowermost layer and (9) is the uppermost layer.
- electrodes of input / output terminals P1 to P4 are formed on the base material layer (1).
- a first annular conductor is formed on the base material layers (2), (4), (6), and (8).
- a second annular conductor is formed on the base material layers (3), (5), (7), and (9).
- a circular pattern in FIG. 1 is a via-hole conductor (interlayer connection conductor). Connection portions (pad portions) with via-hole conductors are provided at both ends or one end of each annular conductor. With this structure, the annular conductors adjacent to each other in the layer direction and the annular conductors are connected between the layers.
- a primary coil is formed by the first annular conductors L1a, L1b, L1c, L1d, L1e, L1f, L1g, L1h and via-hole conductors connecting them.
- a secondary coil is formed by the second annular conductors L2a, L2b, L2c, L2d, L2e, L2f, L2g, L2h and via-hole conductors connecting them.
- the end of the first annular conductor L1a is connected to the input / output terminal P1
- the end of the first annular conductor L1h is connected to the input / output terminal P2.
- the end of the second annular conductor L2a is connected to the input / output terminal P3, and the end of the second annular conductor L2h is connected to the input / output terminal P4.
- input / output terminals P1, P2, P3, and P4 are formed on the outer surface of the multilayer body 10.
- a magnetic material (dielectric with high magnetic permeability) is used in terms of confinement of magnetic energy. Body material).
- a dielectric material having a high electrical insulation resistance in order to suppress eddy current loss in a high frequency region. Since magnetic materials represented by ferrite have frequency dependence on the permeability, loss increases as the frequency band used increases, but dielectrics are relatively small in frequency dependence, so they have a wide frequency band.
- a laminated common mode choke coil with low loss can be realized. That is, as a common mode choke coil used for a high-speed interface including a wide band, particularly a high frequency band, it is preferable to use a dielectric layer which is a non-magnetic layer as a base material layer.
- the base material layer may be a dielectric ceramic layer such as low-temperature fired ceramics (LTCC [Low Temperature Co-fired Ceramics]), or may be a resin layer made of a thermoplastic resin or a thermosetting resin. That is, the laminate body may be a ceramic laminate or a resin laminate. Moreover, it is preferable to use the metal material which has as a main component a metal with small specific resistance, such as copper and silver, for the annular conductor which comprises each coil, an interlayer connection conductor, the surface conductor provided in the surface of a laminated body.
- LTCC Low Temperature Co-fired Ceramics
- FIG. 3 is an equivalent circuit diagram of the common mode choke coil 101.
- the primary coil L1 is formed by the first annular conductors L1a, L1b, L1c, L1d, L1e, L1f, L1g, L1h and via-hole conductors connecting them
- the secondary coil L2 is the second annular conductors L2a, L2b. , L2c, L2d, L2e, L2f, L2g, L2h and via-hole conductors connecting them.
- the primary coil L1 and the secondary coil L2 are strongly magnetically coupled when a common mode current flows.
- stray capacitance is generated between the primary coil L1 and the secondary coil L2.
- this stray capacitance is represented by capacitors C1 and C2 as a lumped constant circuit.
- An equivalent circuit of the common mode choke coil 101 can also be expressed as shown in FIG. In FIG. 3B, the stray capacitance is represented by capacitors C11, C12, C21, and C22.
- FIG. 4 is a schematic diagram showing the positional relationship between the primary coil and the secondary coil of the common mode choke coil 101.
- the first annular conductors L1a, L1b, L1c, and L1d are sequentially arranged from the lower layer to the upper layer, and are formed in a spiral shape.
- the first annular conductors L1e, L1f, L1g, and L1h are sequentially arranged from the upper layer to the lower layer, and are formed in a spiral shape.
- the second annular conductors L2a, L2b, L2c, and L2d are sequentially arranged from the lower layer to the upper layer and are formed in a spiral shape.
- the second annular conductors L2e, L2f, L2g, and L2h are sequentially arranged from the upper layer to the lower layer, and are formed in a spiral shape.
- the first annular conductors L1a, L1b, L1c, L1d and the second annular conductors L2a, L2b, L2c, L2d are alternately arranged in the stacking direction.
- the first annular conductors L1e, L1f, L1g, L1h and the second annular conductors L2e, L2f, L2g, L2h are alternately arranged in the stacking direction.
- the first annular conductors L1a, L1b, L1c, and L1d are arranged so that their centers are aligned on the coil axis CA1, and the centers of the first annular conductors L1e, L1f, L1g, and L1h are already present. It arrange
- the second annular conductors L2a, L2b, L2c, and L2d are arranged such that their centers are aligned on the coil axis CA1, and the second annular conductors L2e, L2f, L2g, and L2h are already at their centers. It arrange
- the coil axes of the first annular conductors L1a, L1b, L1c, and L1d and the coil axes of the second annular conductors L2a, L2b, L2c, and L2d coincide with each other, and the first annular conductors L1e and L1f , L1g, and L1h and the second annular conductors L2e, L2f, L2g, and L2h are coincident with each other, but the coil axis of the first annular conductor is slightly shifted from the coil axis of the second annular conductor. Also good.
- the coil axes of the first annular conductors L1a, L1b, L1c, and L1d and the coil axes of the second annular conductors L2a, L2b, L2c, and L2d need only be within the formation range of these annular conductors in plan view.
- the coil axes of the first annular conductors L1e, L1f, L1g, and L1h and the coil axes of the second annular conductors L2e, L2f, L2g, and L2h need only be within the formation range of these annular conductors in plan view.
- the common mode choke coil 101 since the primary coil and the secondary coil are so-called “bifilar wound”, the degree of coupling between the primary coil and the secondary coil is high, and therefore the insertion loss of the normal mode signal is high. Is small.
- the first annular conductors L1a, L1b, L1c, L1d and the second annular conductors L2a, L2b, L2c, L2d are annular conductors adjacent to each other in the layer direction, and are arranged so that their main parts do not overlap in plan view. .
- the first annular conductors L1e, L1f, L1g, and L1h and the second annular conductors L2e, L2f, L2g, and L2h are annular conductors adjacent to each other in the layer direction and are arranged so that their main parts do not overlap in plan view. Has been.
- the range of the first annular conductor and the second annular conductor facing each other in the stacking direction of the base material layer is half or less of the entire length.
- the first annular conductors L1a, L1b, L1c, and L1d and the second annular conductors L2a, L2b, L2c, and L2d are arranged so that the parallel portions do not overlap in plan view.
- the first annular conductors L1e, L1f, L1g, L1h and the second annular conductors L2e, L2f, L2g, L2h are arranged so that the parallel portions do not overlap in plan view.
- the main part of the annular conductor is almost the entire area excluding the connection part (pad part) of the annular conductor.
- the first annular conductor and the second annular conductor intersect with each other. There may be a part where the second annular conductor overlaps in plan view.
- FIG. 5A is a diagram showing the current of common mode noise and the direction of magnetic flux of the common mode choke coil 101
- FIG. 5B is the direction of the current and magnetic flux of the normal mode (differential mode) signal of the common mode choke coil 101.
- the direction of the magnetic flux generated in the primary coil (half of the primary coil) by the first annular conductors L1e, L1f, L1g, and L1h and the secondary coil (half of the secondary coil) by the second annular conductors L2e, L2f, L2g, and L2h. ) Coincides with the direction of magnetic flux generated. For this reason, the magnetic fields are mutually intensified. Thus, it acts as an inductor having a large inductance value for the common mode current. Therefore, the impedance when the common mode choke coil 101 is viewed from the input / output terminals P1 and P3 is high, and the common mode current (common mode noise) is It is suppressed.
- the direction of the magnetic flux generated in the primary coil (half of the primary coil) by the first annular conductors L1e, L1f, L1g, and L1h and the secondary coil (half of the secondary coil) by the second annular conductors L2e, L2f, L2g, and L2h. ) are opposite to each other.
- the normal mode differential mode signals mutually weaken the magnetic field, and the inductance values of the primary coil L1 and the secondary coil L2 are small. Therefore, the normal mode signal is transmitted with low loss.
- the primary coil L1 and the secondary coil L2 can be strongly coupled without using a magnetic material such as ferrite for the base material layer.
- the loss of normal mode signals in the high frequency band does not increase.
- the first annular conductor and the second annular conductor are arranged so that the range facing the lamination direction is not more than half of the total length, so that the primary coil L1 and the secondary coil L2 The stray capacitance generated between them is small. That is, even if the interlayer distance between the first annular conductor constituting the primary coil and the second annular conductor constituting the secondary coil is reduced in order to increase the magnetic field coupling between the primary coil L1 and the secondary coil L2, the primary The stray capacitance generated between the coil L1 and the secondary coil L2 is small. Therefore, the differential impedance of the common mode choke coil can be ensured appropriately and can be matched with the impedance of the balanced line.
- the stray capacitance is further reduced, and the differential impedance of the common mode choke coil can be secured more appropriately. Matching with the impedance of the balanced line is further facilitated.
- the base material layer provided with the second annular conductor is located between the base material layers provided with the first annular conductor, similarly, the base provided with the second annular conductor is provided. Since the base material layer provided with the first annular conductor is located between the material layers, the line capacitance in the first annular conductor and the line capacitance in the second annular conductor are both small. Therefore, the self-resonant frequency (cut-off frequency) due to the line capacitance and the inductance of the primary coil and the secondary coil can be shifted to the high frequency side, and excellent pass characteristics can be secured in a wide frequency band.
- the capacitance generated between the ground conductor formed on the printed wiring board to be mounted and the first annular conductors L1a to L1h is between the ground conductor and the second annular conductors L2a to L2h. Since it is almost equal to the capacitance generated between them, the symmetry between the primary coil and the secondary coil is ensured. That is, the values of the capacitors C11, C12, C21, and C22 shown in FIG. 3B have a relationship of C11 ⁇ C21, C12 ⁇ C22. Therefore, there is almost no conversion from common mode noise to normal mode signal (noise) due to this capacitance imbalance.
- Two annular conductor groups of L2c and L2d are provided, and the two annular conductor groups are connected in series and arranged so as to be substantially symmetrical with each other in plan view from the stacking direction of the base material layer. Therefore, the symmetry of the circuit including the floating component is high between the input / output terminals P1-P3 and the input / output terminals P2-P4. Therefore, the conversion from the common mode noise to the normal mode signal (noise) is further suppressed.
- the values of the capacitors C11, C12, C21, and C22 are also in a relationship of C11 ⁇ C12 and C21 ⁇ C22. Therefore, the line impedance between the input / output terminals P1-P2 and the line impedance between the input / output terminals P3-P4 are equal, and the common mode choke coil 101 hardly reflects the normal mode signal.
- the primary coil composed of the first annular conductors L1a to L1h and the secondary coil composed of the second annular conductors L2a to L2h are all annular conductors L1a, L1h, Since L2a and L2h face the ground conductor formed on the printed wiring board to be mounted, there is almost no useless wiring in the multilayer body, and unnecessary stray capacitance can be reduced.
- first annular conductors L1e, L1f, L1g, L1h and a plurality of second annular conductors L2a, L2b, L2c, L2d arranged such that their coil axes are aligned on the same axis.
- two or more annular conductor groups are provided, but four or more annular conductor groups are connected in series and substantially symmetrical with each other in plan view from the stacking direction of the base material layer. You may arrange as follows.
- FIG. 6 is a schematic cross-sectional view of the common mode choke coil 102 of the second embodiment.
- the outermost layer is composed of a magnetic layer 10m
- the first annular conductors L1a to L1h and the second annular conductors L2a to L2h are nonmagnetic layers (low magnetic permeability layers, dielectric layers) 10n. Is formed.
- the configuration of this nonmagnetic layer 10n and each annular conductor is the same as that of the common mode choke coil 101 shown in the first embodiment.
- the nonmagnetic layer 10n has a relative permeability ⁇ r of 1
- the magnetic layer 10m has a relative permeability ⁇ r of about 200 to 500.
- the magnetic layer 10m Since the magnetic field generated by the common mode current is as shown in FIG. 5A, the magnetic flux passes through the magnetic layer 10m. Therefore, for common mode noise, the inductance value increases more effectively. Further, the magnetic layer 10m also acts as a magnetic shield, preventing magnetic field noise from entering from the outside, and preventing the magnetic field generated by the common mode noise from leaking to the outside. As shown in FIG. 5B, the normal mode current is not affected by the magnetic layer 10m because the magnetic field by the primary coil and the magnetic field by the secondary coil cancel each other.
- FIG. 7 is an exploded plan view showing conductor patterns and the like of each layer of the common mode choke coil according to the third embodiment.
- FIG. 8 is an external perspective view of the common mode choke coil 103 according to the third embodiment.
- 9A is a cross-sectional view of the common mode choke coil 103
- FIG. 9B is a cross-sectional view of the ESD protection element portion.
- the common mode choke coil 103 is provided on the multilayer body 10 formed by laminating a plurality of base material layers including the base material layers indicated by (1) to (24) in FIG.
- a laminated common mode choke coil having a primary coil and a secondary coil.
- (1) to (24) correspond to each layer of the multilayer body and show the shape of the conductor pattern and the like formed in each layer.
- (1) is the lowermost layer and (24) is the uppermost layer.
- the lower surface (bottom surface) of the lowermost layer (1) is a mounting surface for the wiring board as a mounting destination.
- Input / output terminals P1, P2, P3, P4 and a ground terminal GND are formed on the lower surface of the lowermost layer (1) (see FIG. 8).
- Shield layers Sh11 and Sh13 are formed on the second layer (2).
- Discharge auxiliary electrodes Se1 and Se3 are formed on the third layer (3).
- Discharge electrodes De11, De12, De31, and De32 are formed on the fourth layer (4).
- Cavity layers Ah1 and Ah3 are formed in the fifth layer (5).
- Shield layers Sh21 and Sh23 are formed on the sixth layer (6).
- the second layer (2) to the fifth layer (5) are not formed on individual green sheets, but are overcoated on the upper surface of the lowermost layer (1). The laminated structure of this part will be described in detail later.
- the seventh layer (7) to the ninth layer (9) are dielectric layers having no conductor pattern. These layers are provided to increase the distance between the common mode choke coil section and the ESD protection element section.
- the tenth layer (10), the twelfth layer (12), the fourteenth layer (14), the sixteenth layer (16), the eighteenth layer (18), and the twentieth layer (20) have a first annular conductor L1a. , L1b, L1c, L1d, L1e, and L1f are formed.
- the eleventh layer (11), the thirteenth layer (13), the fifteenth layer (15), the seventeenth layer (17), the nineteenth layer (19), and the twenty-first layer (21) include the second annular conductor L2a. , L2b, L2c, L2d, L2e, and L2f.
- One end of the first annular conductor L1a is electrically connected to the input / output terminal P1, and one end of the first annular conductor L1f is electrically connected to the input / output terminal P2.
- One end of the second annular conductor L2a is electrically connected to the input / output terminal P3, and one end of the second annular conductor L2f is electrically connected to the input / output terminal P4.
- the circular pattern in FIG. 7 is a via-hole conductor (interlayer connection conductor). Connection portions (pad portions) with via-hole conductors are provided at both ends or one end of each annular conductor. With this structure, the annular conductors adjacent to each other in the layer direction and the annular conductors are connected between the layers.
- a primary coil is formed by the first annular conductors L1a to L1f and via-hole conductors connecting them.
- a secondary coil is formed by the second annular conductors L2a to L2f and via-hole conductors connecting them.
- the 22nd layer (22) and the 23rd layer (23) are dielectric layers having no conductor pattern. These layers are provided in order to maintain a predetermined distance between the mounting surface (bottom surface) and the primary and secondary coils. Due to this interval, the capacitance generated between the ground conductor at the mounting destination and the primary and secondary coils is set to a predetermined value.
- the shield layers Sh11 and Sh13, the discharge auxiliary electrodes Se1 and Se3, the discharge electrodes De11, De12, De31, and De32, the cavity layers Ah1 and Ah3, and the shield layers Sh21 and Sh23 are formed in the stacked portion LL1. Yes.
- Each of the annular conductors is formed in the laminated portion LL2.
- FIG. 10 is a schematic diagram showing a cross-sectional structure of a portion including the discharge electrodes De11 and De12.
- the cross-sectional structure of the portion including the discharge electrodes De31 and De32 is the same.
- the shield layer Sh11 is an insulating ceramic layer, and is provided to prevent the glass component from leaching from the base material to the discharge auxiliary electrode Se1 portion when the LTCC green sheet serving as the base material is integrally fired. ing.
- the discharge auxiliary electrode Se1 includes discharge auxiliary materials 39A and 39B.
- the discharge auxiliary material 39A includes a particulate metal material 39A1 and an insulating coating 39A2 provided on the surface of the metal material 39A1.
- the discharge auxiliary electrode Se1 includes a particulate semiconductor material 39B1 and an insulating coating 39B2 provided on the surface of the semiconductor material 39B1.
- the metal material 39A1 is Cu particles
- the semiconductor material 39B1 is SiC particles.
- the insulating coating 39A2 is an alumina coating
- the insulating coating 39B2 is a SiO 2 coating formed by oxidizing the semiconductor material 39B1.
- a glass-like substance 40 is formed on the discharge auxiliary electrode Se1 so as to surround the discharge auxiliary materials 39A and 39B.
- the glass-like substance 40 is not formed artificially, but is formed by a reaction such as oxidation of a constituent material derived from the peripheral member of the sacrificial layer used to form the cavity Ah1.
- the common mode choke coil 103 shown in FIGS. 9 and 10 is manufactured by materials and processes as described below.
- an alumina paste containing alumina powder as a main component is used for the shield layers Sh11 and Sh13 in the laminated portion LL1.
- the electrode paste for forming the discharge electrode is obtained by adding a solvent to a binder resin composed of Cu powder and ethyl cellulose, stirring and mixing.
- the resin paste that is the starting point for forming the cavities Ah1 and Ah3 is also produced by the same method.
- This resin paste consists only of resin and solvent.
- As the resin material a resin that decomposes and disappears upon firing is used.
- PET polypropylene, acrylic resin and the like.
- the mixed paste for forming the discharge auxiliary electrodes Se1 and Se3 is obtained by mixing Cu powder as a conductive material and BAS powder as a ceramic material at a predetermined ratio, adding a binder resin and a solvent, stirring, and mixing. .
- the paste for the shield layers Sh11 and Sh13 is applied to the underlying green sheet, then the electrode paste for the discharge electrode is applied, the resin paste for forming the cavities Ah1 and Ah3 is applied, and the shield layers Sh21 and Sh23 are further applied. Apply the paste.
- the laminated part LL2 shown in FIG. 9 is configured by laminating ceramic green sheets and press-bonding them in the same manner as a normal ceramic multilayer substrate.
- the laminated body that has been bonded and bonded is cut with a micro cutter in the same manner as a chip-type electronic component such as an LC filter, and separated into individual elements. Thereafter, electrode pastes to be various external terminals after firing are applied to the end faces of the respective element bodies.
- the discharge electrodes De11, De12, De31, De32 and the external electrode are electrode materials that are not oxidized, they may be fired in an air atmosphere.
- Ni-Sn plating film is formed by electrolytic Ni-Sn plating on the surface of the external electrode in the same manner as a chip-type electronic component such as an LC filter.
- FIG. 11 is an equivalent circuit diagram of the common mode choke coil 103.
- the primary coil L1 whose first end is the input / output terminal P1, the second end is the input / output terminal P2, the first end is the input / output terminal P3, and the second end is the input / output terminal P4.
- a secondary coil L2 is configured. That is, the primary coil L1 is constituted by a series circuit of annular conductors L1a to L1f.
- the secondary coil L2 is formed of a series circuit of annular conductors L2a to L2f.
- a power feeding circuit is connected between the input / output terminal P1 and the input / output terminal P3.
- a digital signal processing circuit is connected between the input / output terminal P2 and the input / output terminal P4.
- Capacitors C1 and C2 in FIG. 11 represent equivalently the stray capacitance between the primary coil L1 and the secondary coil L2.
- the discharge elements Dg1 and Dg3 are preferably provided on the side where static electricity enters as shown in FIG.
- the common mode choke coil including the primary coil L1 and the secondary coil L2 has high impedance against high-frequency component surges such as ESD. Therefore, the surge is reflected by the common mode choke coil, a high voltage is applied to the discharge elements Dg1 and Dg3, and the discharge elements Dg1 and Dg3 quickly reach the discharge voltage and start discharging. Therefore, the surge can be more reliably prevented from flowing into the circuit connected to the input / output terminals P2 and P4.
- an ESD (Electrostatic Discharge) protection element is easily taken into the surface or inner layer of the multilayer body. (Integrally configured).
- a non-linear resistance element such as a varistor can be used as the ESD protection element.
- an ESD protection element using such a voltage variable resistance method is not very responsive, so that the primary coil or the secondary If it is arranged in front of the coil, the element itself may be broken by an inrush current. Therefore, as an ESD protection element, a so-called interelectrode discharge type (spark gap type) ESD protection element that includes a cavity formed inside a multilayer body and a pair of discharge electrodes provided in the cavity, respectively. It is preferable to constitute.
- the capacitance generated between the ground conductor on the printed wiring board and each annular conductor is primary when the common mode choke coil 103 is mounted on the printed wiring board.
- the symmetry between the coil and the secondary coil is high. Therefore, the relationship of 0 ° phase difference of common mode noise is maintained. Therefore, the signal conversion from the common mode noise to the normal mode component due to the phase difference shift is not performed, and the common mode noise does not flow as a normal mode (differential mode) signal (noise).
- FIG. 12 shows frequency characteristics obtained by actual measurement of the common mode choke coil of the third embodiment when the planar size of the laminate is 1.2 mm ⁇ 1.0 mm, the thickness is 0.6 mm, and the interval between the layers is 25 ⁇ m.
- the meaning of each characteristic curve is as follows.
- Sdd11 Normal mode reflection characteristics Sdd21 Normal mode transmission characteristics
- Scc11 Common mode reflection characteristics Scc21 Common mode transmission characteristics
- Scd21 Frequency characteristics of the amount that the common mode is converted to normal mode Sdd11 in Figure 12 (Normal mode signal reflection characteristics)
- low reflection characteristics are obtained for the normal mode signal in the range of several MHz to 5000 MHz.
- Scc11 common mode noise reflection characteristics
- low reflection characteristics are obtained for common mode noise at a frequency of several tens of MHz or more.
- Scc21 common mode noise passage characteristic
- a large attenuation characteristic is obtained for the common mode signal at a frequency of several hundred MHz or more.
- This characteristic has a pole around 1200 MHz due to the self-resonance of the inductance generated in the common mode. Further, as is apparent from Scd21 (the amount by which the common mode is converted into the normal mode), it is ⁇ 10 db or less in the entire frequency band and is sufficiently suppressed. Note that Sdd21 has a notch at the frequency fn, which is a resonance point caused by the difference in inductance between the primary coil L1 and the secondary coil L2. If this resonance frequency is appropriately set, it is possible to provide a filter function for attenuating the normal signal by a predetermined frequency. Therefore, for example, it is not necessary to separately provide a balanced low-pass filter in addition to the common mode choke coil, and the number of parts can be reduced and the cost can be reduced.
- two ground terminals are provided.
- a common ground terminal may be provided.
- an ESD protection element may be provided only between the input / output terminal P2 and the ground or only between the input / output terminal P4 and the ground.
- the number of turns of the coil and the number of crossings of the primary coil and the secondary coil shown in the configuration diagram of the laminated body are naturally examples, and the number of turns of each annular conductor and the number of crossings The number of times is not limited to those shown in these figures. What is necessary is just to determine according to a desired characteristic.
- the number of turns of the primary coil and the secondary coil contributes to determining the impedance in the normal mode. Further, the number of crossings between the primary coil and the secondary coil contributes to the degree of coupling between the primary coil and the secondary coil.
- the number of turns of the annular conductor per layer is 1 turn or more, the variation in the inductance and the degree of coupling due to the misalignment of the base material layer is reduced. Further, when the number of turns of the annular conductor per layer is 3 turns or more, the interlayer capacitance between the first annular conductor and the second annular conductor adjacent to each other tends to increase. Therefore, the number of turns of the annular conductor per layer is preferably 1 turn or more and 3 turns or less.
- the common mode choke coil of the present invention can be used for high-speed interfaces such as USB and HDMI. Further, it is useful as a filter for a power supply circuit having a high switching frequency (for example, 1 MHz or more) and a BUS line having a high speed (for example, a transfer rate of 600 MBit / sec).
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Coils Or Transformers For Communication (AREA)
- Filters And Equalizers (AREA)
Abstract
第1環状導体(L1a,L1b,L1c,L1d)は下層から上層へ螺旋状に形成されていて、第1環状導体(L1e,L1f,L1g,L1h)は上層から下層へ螺旋状に形成されている。また、第2環状導体(L2a,L2b,L2c,L2d)は下層から上層へ螺旋状に形成されていて、第2環状導体(L2e,L2f,L2g,L2h)は上層から下層へ螺旋状に形成されている。第1環状導体と第2環状導体とは積層方向に交互に配置されている。第1環状導体および第2環状導体は、層方向に隣接する環状導体同士で、その主要部が平面視で重ならないように配置されている。この構造により、ノーマルモード信号の損失が少なく、コモンモードノイズの除去能の高い、小型のコモンモードチョークコイルを構成する。
Description
本発明は、高周波信号の伝送線路に適用される積層型コモンモードチョークコイルに関する。
例えばUSB(Universal Serial Bus)やHDMI(High Definition Multimedia Interface)等の高速インターフェースでは、一対の信号線路(=平衡線路)にて位相が180°異なる信号を伝送する「差動伝送方式」が用いられている。差動伝送方式では、平衡線路にて放射ノイズや外来ノイズが相殺されるため、これらノイズによる影響を受けにくい。しかし、現実には、特に高速インターフェース用の信号線路においては、信号線路の非対称性に基づくコモンモードのノイズ電流が発生してしまう。そこで、このコモンモードノイズを抑制するため、コモンモードチョークコイルが用いられる。
通常、コモンモードチョークコイルは、特許文献1の図1や特許文献2の図2等に開示されているように、同方向に巻回された2つのコイル(一次コイル、二次コイル)を備えた小型の積層型チップ部品として構成されている。ここで、一次コイルおよび二次コイルは、積層素体の内部にて、積層方向に並べられている。
図13は特許文献1に示されているコモンモードチョークコイルの断面図である。このコモンモードチョークコイルは、積層素子1中に、同軸上に巻回され、軸方向に分離して配設された2つのコイル(積層型コイル)2,3を備えた構造を有し、各コイル2,3の始端部及び終端部は、積層素子1の両側の端面に引き出されて、所定の外部電極に接続されている。
しかし、一次コイルと二次コイルを積層素体の内部にて、単純に積層方向に並べただけでは、一次コイルと二次コイルの結合度を高くすることが難しい。一次コイルと二次コイルの結合度が低いと、ノーマルモード信号の通過損失が増えてしまう。他方、結合度を高くするために一次コイルと二次コイルとを近接配置すると、一次コイルと二次コイルとの間に生じる容量(浮遊容量)が増大してしまう。この容量が大きくなると、コモンモードチョークコイルの差動インピーダンスが低くなって、平衡線路のインピーダンスとマッチングできなくなる。
また、一次コイルと二次コイルを積層素体の内部にて積層方向に並べる構造では、コイルパターンの形成位置ずれやシートの積みずれがプロセス上の問題で生じる。また、プリント配線板に搭載したとき、各コイルとプリント配線板上のグランド導体との結合量が異なる等の構造上の問題により、一次コイル-グランド導体間の容量と、二次コイル-グランド導体間の容量とが不均衡になる。そのため、一次コイルと二次コイルの対称性が確保できず、コモンモードノイズがノーマルモード信号に変換されてしまう。すなわちコモンモードノイズの除去能力が低下してしまう。
また、積層素体として磁性体を用いることがあるが、磁性体は比較的大きな周波数依存性を持っているため、特に高周波帯域におけるノーマルモード信号の損失が大きくなりやすい。また、特に高周波帯域で一次コイルと二次コイルとの間で十分な結合値が得られず、ノーマルモードの損失が大きくなりやすい。
本発明は上述の課題を解消するためになされたものであり、その目的は、ノーマルモード信号の損失が少なく、コモンモードノイズの除去能の高い、小型のコモンモードチョークコイルを提供することにある。
本発明のコモンモードチョークコイルは、
複数の基材層を積層してなる積層素体と、前記積層素体に設けられ、互いに結合した一次コイルおよび二次コイルと、を有し、
前記一次コイルは、前記複数の基材層に設けられた第1環状導体と、前記第1環状導体同士を層間で接続する層間接続導体とを含み、前記複数の第1環状導体および前記層間接続導体によって螺旋状に形成されていて、
前記二次コイルは、前記複数の基材層に設けられた第2環状導体と、前記第2環状導体同士を層間で接続する層間接続導体とを含み、前記複数の第2環状導体および前記層間接続導体によって螺旋状に形成されていて、
前記複数の第1環状導体と前記複数の第2環状導体とは、前記基材層の積層方向に交互に配置されていて、
前記第1環状導体および前記第2環状導体は、前記基材層の積層方向に対面する範囲が全長の半分以下である、
ことを特徴とする。
複数の基材層を積層してなる積層素体と、前記積層素体に設けられ、互いに結合した一次コイルおよび二次コイルと、を有し、
前記一次コイルは、前記複数の基材層に設けられた第1環状導体と、前記第1環状導体同士を層間で接続する層間接続導体とを含み、前記複数の第1環状導体および前記層間接続導体によって螺旋状に形成されていて、
前記二次コイルは、前記複数の基材層に設けられた第2環状導体と、前記第2環状導体同士を層間で接続する層間接続導体とを含み、前記複数の第2環状導体および前記層間接続導体によって螺旋状に形成されていて、
前記複数の第1環状導体と前記複数の第2環状導体とは、前記基材層の積層方向に交互に配置されていて、
前記第1環状導体および前記第2環状導体は、前記基材層の積層方向に対面する範囲が全長の半分以下である、
ことを特徴とする。
本発明によれば、一次コイルと二次コイルとの間の浮遊容量を増大させることなく、一次コイルと二次コイルとの結合度を高くできる。ゆえに、特に高周波帯域で、ノーマルモード信号の損失が小さく、かつ、コモンモードノイズがノーマルモード信号に変換されにくい、小型のコモンモードチョークコイルが得られる。
《第1の実施形態》
図1は第1の実施形態のコモンモードチョークコイルの各層の導体パターン等を示す分解平面図である。図2は第1の実施形態のコモンモードチョークコイル101の外観斜視図である。
図1は第1の実施形態のコモンモードチョークコイルの各層の導体パターン等を示す分解平面図である。図2は第1の実施形態のコモンモードチョークコイル101の外観斜視図である。
コモンモードチョークコイル101は、図1において(1)~(9)で示す基材層を含む複数の基材層を積層してなる積層素体10と、この積層素体に設けられ、互いに結合した一次コイルおよび二次コイルと、を有する積層型コモンモードチョークコイルである。
図1において、(1)は最下層、(9)は最上層である。図1に示すように、基材層(1)には入出力端子P1~P4の電極が形成されている。基材層(2),(4),(6),(8)には第1環状導体が形成されている。基材層(3),(5),(7),(9)には第2環状導体が形成されている。図1中の円形のパターンはビアホール導体(層間接続導体)である。各環状導体の両端部または片端部には、ビアホール導体との接続部(パッド部)が設けられている。この構造により、層方向に隣接する環状導体と環状導体とが層間で接続されている。
第1環状導体L1a,L1b,L1c,L1d,L1e,L1f,L1g,L1hとそれらを接続するビアホール導体によって一次コイルが形成されている。また、第2環状導体L2a,L2b,L2c,L2d,L2e,L2f,L2g,L2hとそれらを接続するビアホール導体によって二次コイルが形成されている。
図1において、第1環状導体L1aの端部は入出力端子P1に、第1環状導体L1hの端部は入出力端子P2に、それぞれ接続されている。また、第2環状導体L2aの端部は入出力端子P3に、第2環状導体L2hの端部は入出力端子P4に、それぞれ接続されている。
図2に表れているように、積層素体10の外面には入出力端子P1,P2,P3,P4が形成されている。
基材層用の材料としては、HF帯用のコモンモードチョークコイルを形成する場合は渦電流損失が相対的に小さいので、磁気エネルギーの閉じ込め性の点で、磁性体材料(透磁率の高い誘電体材料)を用いることができる。一方、例えばUHF帯用のコモンモードチョークコイルを形成する場合は、高周波数領域での渦電流損失を抑えるために、電気絶縁抵抗の高い誘電体材料を用いることが好ましい。フェライトに代表される磁性体は透磁率に周波数依存性をもっているため、利用周波数帯が高くなるにつれ、損失が大きくなってしまうが、誘電体は周波数依存性が比較的小さいため、広い周波数帯で損失の小さい積層型コモンモードチョークコイルを実現できる。すなわち、広帯域、特に高周波帯域を含む高速インターフェースに用いられるコモンモードチョークコイルとしては、基材層として非磁性体層である誘電体層を用いることが好ましい。
基材層は低温焼成セラミックス(LTCC[Low Temperature Co-firedCeramics])のような誘電体セラミック層であってもよいし、熱可塑性樹脂や熱硬化性樹脂からなる樹脂層であってもよい。すなわち、積層素体は、セラミック積層体であってもよいし、樹脂積層体であってもよい。また、各コイルを構成する環状導体や層間接続導体、積層素体の表面に設けられる表面導体等は、銅や銀等の比抵抗の小さな金属を主成分とする金属材料を用いることが好ましい。
図3はコモンモードチョークコイル101の等価回路図である。一次コイルL1は、第1環状導体L1a,L1b,L1c,L1d,L1e,L1f,L1g,L1hおよびそれらを接続するビアホール導体によって形成されていて、二次コイルL2は、第2環状導体L2a,L2b,L2c,L2d,L2e,L2f,L2g,L2hおよびそれらを接続するビアホール導体によって形成されている。後に詳述するように、一次コイルL1と二次コイルL2はコモンモード電流が流れることにより強く磁界結合する。また、一次コイルL1と二次コイルL2との間には浮遊容量が生じる。図3(A)においては、この浮遊容量を集中定数回路としてキャパシタC1,C2で表している。コモンモードチョークコイル101の等価回路は図3(B)のように表すこともできる。図3(B)においては、前記浮遊容量をキャパシタC11,C12,C21,C22で表している。
図4はコモンモードチョークコイル101の一次コイルと二次コイルの位置関係を示す模式図である。第1環状導体L1a,L1b,L1c,L1dは下層から上層へ順次配置され、螺旋状に形成されている。第1環状導体L1e,L1f,L1g,L1hは上層から下層へ順次配置され、螺旋状に形成されている。また、第2環状導体L2a,L2b,L2c,L2dは下層から上層へ順次配置され、螺旋状に形成されている。第2環状導体L2e,L2f,L2g,L2hは上層から下層へ順次配置され、螺旋状に形成されている。
第1環状導体L1a,L1b,L1c,L1dと第2環状導体L2a,L2b,L2c,L2dとは、積層方向に交互に配置されている。同様に、第1環状導体L1e,L1f,L1g,L1hと第2環状導体L2e,L2f,L2g,L2hとは、積層方向に交互に配置されている。
また、第1環状導体L1a,L1b,L1c,L1dは、それらの中心がコイル軸CA1上に並ぶように配置されていて、第1環状導体L1e,L1f,L1g,L1hは、それらの中心がもう一つのコイル軸CA2上に並ぶように配置されている。また、第2環状導体L2a,L2b,L2c,L2dは、それらの中心がコイル軸CA1上に並ぶように配置されていて、第2環状導体L2e,L2f,L2g,L2hは、それらの中心がもう一つのコイル軸CA2上に並ぶように配置されている。
図4に示した例では、第1環状導体L1a,L1b,L1c,L1dのコイル軸と第2環状導体L2a,L2b,L2c,L2dのコイル軸が一致していて、第1環状導体L1e,L1f,L1g,L1hのコイル軸と第2環状導体L2e,L2f,L2g,L2hのコイル軸が一致しているが、第1環状導体のコイル軸と第2環状導体のコイル軸とは多少ずれていてもよい。例えば、第1環状導体L1a,L1b,L1c,L1dのコイル軸と第2環状導体L2a,L2b,L2c,L2dのコイル軸は、平面視でこれらの環状導体の形成範囲内にあればよい。同様に、第1環状導体L1e,L1f,L1g,L1hのコイル軸と第2環状導体L2e,L2f,L2g,L2hのコイル軸は、平面視でこれらの環状導体の形成範囲内にあればよい。
このコモンモードチョークコイル101によれば、一次コイルと二次コイルとが、いわゆる「バイファイラ巻き」されているため、一次コイルと二次コイルとの結合度が高く、したがって、ノーマルモード信号の挿入損失は小さい。
第1環状導体L1a,L1b,L1c,L1dおよび第2環状導体L2a,L2b,L2c,L2dは、層方向に隣接する環状導体同士で、その主要部が平面視で重ならないように配置されている。同様に、第1環状導体L1e,L1f,L1g,L1hおよび第2環状導体L2e,L2f,L2g,L2hは、層方向に隣接する環状導体同士で、その主要部が平面視で重ならないように配置されている。端的に表現すると、第1環状導体および第2環状導体は、基材層の積層方向に対面する範囲は全長の半分以下である。第1の実施形態では、第1環状導体L1a,L1b,L1c,L1dおよび第2環状導体L2a,L2b,L2c,L2dは平行部分が平面視で重ならないように配置されている。同様に、第1環状導体L1e,L1f,L1g,L1hおよび第2環状導体L2e,L2f,L2g,L2hは平行部分が平面視で重ならないように配置されている。
前記環状導体の主要部とは、環状導体の接続部(パッド部)を除くほぼ全域であるが、例えば第1環状導体と第2環状導体とが交差する箇所のように、第1環状導体と第2環状導体とが平面視で重なる部分が一部にあっても構わない。
図5(A)はコモンモードチョークコイル101のコモンモードノイズの電流と磁束の向きを示す図、図5(B)はコモンモードチョークコイル101のノーマルモード(ディファレンシャルモード)信号の電流と磁束の向きを示す図である。
図5(A)に示すように、コモンモード電流が流れると、第1環状導体L1a,L1b,L1c,L1dによる一次コイル(一次コイルの半分)に生じる磁束の向きと、第2環状導体L2a,L2b,L2c,L2dによる二次コイル(二次コイルの半分)に生じる磁束の向きとは一致する。そのため、互いに磁界を強め合う。また、第1環状導体L1e,L1f,L1g,L1hによる一次コイル(一次コイルの半分)に生じる磁束の向きと、第2環状導体L2e,L2f,L2g,L2hによる二次コイル(二次コイルの半分)に生じる磁束の向きとは一致する。そのため、互いに磁界を強め合う。このように、コモンモード電流に対しては大きなインダクタンス値のインダクタとして作用し、そのため、入出力端子P1,P3からコモンモードチョークコイル101を見たインピーダンスは高く、コモンモード電流(コモンモードノイズ)は抑制される。
図5(B)に示すように、ノーマルモード電流が流れると、第1環状導体L1a,L1b,L1c,L1dによる一次コイル(一次コイルの半分)に生じる磁束の向きと、第2環状導体L2a,L2b,L2c,L2dによる二次コイル(二次コイルの半分)に生じる磁束の向きとは逆向きとなる。そのため、互いに磁界を弱め合う。また、第1環状導体L1e,L1f,L1g,L1hによる一次コイル(一次コイルの半分)に生じる磁束の向きと、第2環状導体L2e,L2f,L2g,L2hによる二次コイル(二次コイルの半分)に生じる磁束の向きとは互いに逆向きとなる。そのため、ノーマルモード(ディファレンシャルモード)の信号に対しては、互いに磁界を弱め合うことになり、一次コイルL1および二次コイルL2のインダクタンス値は小さい。したがって、ノーマルモード信号は低損失で伝送される。
本発明によれば、基材層にフェライトのような磁性体を用いなくとも一次コイルL1と二次コイルL2とを強く結合させることができるので、基材層に誘電体を用いることにより、特に高周波帯域におけるノーマルモード信号の損失が大きくならない。
また、本発明によれば、第1環状導体および第2環状導体は、積層方向に対面する範囲が全長の半分以下となるように配置されているので、一次コイルL1と二次コイルL2との間に生じる浮遊容量は小さい。すなわち、一次コイルL1と二次コイルL2との磁界結合を高めるために、一次コイルを構成する第1環状導体と二次コイルを構成する第2環状導体との層間距離を小さくしても、一次コイルL1と二次コイルL2との間に生じる浮遊容量は小さい。そのため、コモンモードチョークコイルの差動インピーダンスは適正に確保でき、平衡線路のインピーダンスとマッチングできる。特に、第1環状導体および第2環状導体の大部分が平面視で重ならないように配置されていると、前記浮遊容量はさらに小さくなり、コモンモードチョークコイルの差動インピーダンスはより適正に確保でき、平衡線路のインピーダンスとのマッチングがさらに容易となる。
また、本発明によれば、第1環状導体が設けられた基材層の間に第2環状導体が設けられた基材層が位置するため、同様に、第2環状導体が設けられた基材層の間に第1環状導体が設けられた基材層が位置するため、第1環状導体における線間容量、第2環状導体における線間容量は共に小さい。ゆえに、この線間容量と一次コイルおよび二次コイルのインダクタンスとによる自己共振周波数(カットオフ周波数)を高周波側にシフトさせることができ、広い周波数帯域にて優れた通過特性を確保できる。
第1の実施形態によれば、実装先のプリント配線板に形成されているグランド導体と第1環状導体L1a~L1hとの間に生じる容量は前記グランド導体と第2環状導体L2a~L2hとの間に生じる容量と殆ど等しいので、一次コイルと二次コイルとの対称性は確保される。すなわち、図3(B)に示したキャパシタC11,C12,C21,C22の値は、C11≒C21、C12≒C22の関係である。そのため、このキャパシタンスの不平衡によるコモンモードノイズからノーマルモード信号(ノイズ)への変換は殆どない。
特に、第1の実施形態によれば、互いのコイル軸が同一軸上に並ぶように配置された複数の第1環状導体L1e,L1f,L1g,L1hおよび複数の第2環状導体L2a,L2b,L2c,L2dによる環状導体群を二つ備え、この二つの環状導体群は直列接続されるとともに、基材層の積層方向からの平面視で互いに実質的に対称性を保つように配置されているので、入出力端子P1-P3と入出力端子P2-P4との間での、浮遊成分を含めた回路の対称性も高い。そのため、上述のコモンモードノイズからノーマルモード信号(ノイズ)への変換がより抑制される。
また、前記キャパシタC11,C12,C21,C22の値は、C11≒C12、C21≒C22の関係でもある。そのため、入出力端子P1-P2間の線路インピーダンスと入出力端子P3-P4間の線路インピーダンスとは等しく、コモンモードチョークコイル101でのノーマルモード信号の反射は殆どない。
また、第1の実施形態によれば、第1環状導体L1a~L1hによる一次コイルと第2環状導体L2a~L2hによる二次コイルは、いずれも入出力端子に近い側の環状導体L1a,L1h,L2a,L2hが、実装先のプリント配線板に形成されているグランド導体に対面するので、積層素体内での無駄な配線が殆ど無く、不要な浮遊容量が削減できる。
なお、第1の実施形態では互いのコイル軸が同一軸上に並ぶように配置された複数の第1環状導体L1e,L1f,L1g,L1hおよび複数の第2環状導体L2a,L2b,L2c,L2dによる環状導体群を二つ備えた例を示したが、4つ以上の複数の環状導体群を、直列接続するとともに、基材層の積層方向からの平面視で互いに実質的に対称性を保つように配置してもよい。
《第2の実施形態》
図6は第2の実施形態のコモンモードチョークコイル102の模式断面図である。このコモンモードチョークコイル102は、最外層を磁性体層10mで構成し、第1環状導体L1a~L1hおよび第2環状導体L2a~L2hを非磁性体層(低透磁率層、誘電体層)10nに形成している。この非磁性体層10nと各環状導体の構成は第1の実施形態で示したコモンモードチョークコイル101と同じである。非磁性体層10nの比透磁率μrは1、磁性体層10mの比透磁率μrは約200~500である。
図6は第2の実施形態のコモンモードチョークコイル102の模式断面図である。このコモンモードチョークコイル102は、最外層を磁性体層10mで構成し、第1環状導体L1a~L1hおよび第2環状導体L2a~L2hを非磁性体層(低透磁率層、誘電体層)10nに形成している。この非磁性体層10nと各環状導体の構成は第1の実施形態で示したコモンモードチョークコイル101と同じである。非磁性体層10nの比透磁率μrは1、磁性体層10mの比透磁率μrは約200~500である。
コモンモード電流による生じる磁界は図5(A)に示したとおりであるので、磁性体層10mを磁束が通る。したがってコモンモードノイズにとっては、インダクタンス値がより効果的に大きくなる。また、磁性体層10mは磁気シールドとしても作用し、外部から磁界ノイズが入ってくるのを防ぎ、また、コモンモードノイズにより生じる磁界が外部へ漏れるのを防止する。ノーマルモード電流に対しては、図5(B)に示したとおり、一次コイルによる磁界と二次コイルによる磁界とが打ち消し合っているため、磁性体層10mの影響は無い。
《第3の実施形態》
図7は第3の実施形態のコモンモードチョークコイルの各層の導体パターン等を示す分解平面図である。図8は第3の実施形態のコモンモードチョークコイル103の外観斜視図である。図9(A)はコモンモードチョークコイル103の断面図、図9(B)はESD保護素子部の断面図である。
図7は第3の実施形態のコモンモードチョークコイルの各層の導体パターン等を示す分解平面図である。図8は第3の実施形態のコモンモードチョークコイル103の外観斜視図である。図9(A)はコモンモードチョークコイル103の断面図、図9(B)はESD保護素子部の断面図である。
コモンモードチョークコイル103は、図7において(1)~(24)で示す基材層を含む複数の基材層を積層してなる積層素体10と、この積層素体に設けられ、互いに結合した一次コイルおよび二次コイルと、を有する積層型コモンモードチョークコイルである。
図7において、(1)~(24)は積層素体の各層に対応し、各層に形成された導体パターン等の形状を示している。(1)は最下層、(24)は最上層である。最下層(1)の下面(底面)が、実装先である配線板に対する実装面である。最下層(1)の下面には入出力端子P1,P2,P3,P4およびグランド端子GNDが形成されている(図8参照)。第2層(2)にはシールド層Sh11,Sh13が形成されている。第3層(3)には放電補助電極Se1,Se3が形成されている。第4層(4)には放電電極De11,De12,De31,De32が形成されている。第5層(5)には空洞層Ah1,Ah3が形成されている。第6層(6)にはシールド層Sh21,Sh23が形成されている。但し、第2層(2)~第5層(5)はそれぞれ個別のグリーンシートに形成されているのではなく、最下層(1)の上面に重ね塗りされている。この部分の積層構造については後に詳述する。
第7層(7)~第9層(9)は導体パターンの無い誘電体層である。これらの層は、コモンモードチョークコイル部とESD保護素子部との間隔を大きくするために設けられている。
第10層(10)、第12層(12)、第14層(14)、第16層(16)、第18層(18)、第20層(20)、には、第1環状導体L1a,L1b,L1c,L1d,L1e,L1fが形成されている。
第11層(11)、第13層(13)、第15層(15)、第17層(17)、第19層(19)、第21層(21)、には、第2環状導体L2a,L2b,L2c,L2d,L2e,L2fが形成されている。
前記第1環状導体L1aの一端は入出力端子P1に導通していて、第1環状導体L1fの一端は入出力端子P2に導通している。
前記第2環状導体L2aの一端は入出力端子P3に導通していて、第2環状導体L2fの一端は入出力端子P4に導通している。
図7中の円形のパターンはビアホール導体(層間接続導体)である。各環状導体の両端部または片端部には、ビアホール導体との接続部(パッド部)が設けられている。この構造により、層方向に隣接する環状導体と環状導体とが層間で接続されている。
第1環状導体L1a~L1fとそれらを接続するビアホール導体によって一次コイルが形成されている。また、第2環状導体L2a~L2fとそれらを接続するビアホール導体によって二次コイルが形成されている。
第22層(22)、第23層(23)は導体パターンの無い誘電体層である。これらの層は、実装面(底面)と一次コイルおよび二次コイルとの間隔を所定距離に保つために設けられている。この間隔により、実装先のグランド導体と一次コイルおよび二次コイルとの間に生じる容量が所定値に定められている。
最上層(24)の上面には入出力端子P1,P2,P3,P4およびグランド端子GNDとしての外部電極が形成されている。
図9(A)において積層部LL1に、前記シールド層Sh11,Sh13、放電補助電極Se1,Se3、放電電極De11,De12,De31,De32、空洞層Ah1,Ah3、シールド層Sh21,Sh23が形成されている。積層部LL2には前記各環状導体が形成されている。
図10は放電電極De11,De12を含む部分の断面構造を表す模式図である。放電電極De31,De32を含む部分の断面構造も同様である。この例では、シールド層Sh11は絶縁性セラミック層であり、基材となるLTCCグリーンシートの一体焼成の際に基材からガラス成分が放電補助電極Se1部分へ滲出するのを防止するために設けられている。
放電補助電極Se1は放電補助材39A,39Bを含む。放電補助材39Aは、粒子状の金属材料39A1と、この金属材料39A1の表面に設けられる絶縁性被膜39A2とを備える。また、放電補助電極Se1は、粒子状の半導体材料39B1と、この半導体材料39B1の表面に設けられる絶縁性被膜39B2とを備える。ここでは、金属材料39A1はCu粒子であり、半導体材料39B1はSiC粒子である。また、絶縁性被膜39A2はアルミナ被膜であり、絶縁性被膜39B2は半導体材料39B1が酸化されてなるSiO2被膜である。
また、放電補助電極Se1には、放電補助材39A,39Bを囲むようにガラス様物質40が形成されている。ガラス様物質40は作為的に形成したものではなく、空洞Ah1を形成するために用いる犠牲層の周辺部材由来の構成材料などの酸化等の反応によって形成されるものである。
図10に示した構造により、放電電極De11-De12間に高電圧が掛かると、(1) 放電補助電極Se1の沿面放電、(2) 放電電極De11-De12間の気中放電、(3) 放電補助材39A,39Bを飛び石のように伝搬する放電、が生じる。これらの放電により静電気が放電される。
図9、図10に示したコモンモードチョークコイル103は以降に述べるような材料および工程で製造する。
前記積層部LL1部分のシールド層Sh11,Sh13は、例えば、アルミナ粉を主成分とするアルミナペーストを用いる。また、放電電極を形成するための電極ペーストは、Cu粉とエチルセルロース等からなるバインダー樹脂に溶剤を添加し、撹拌、混合することで得る。
空洞Ah1,Ah3を形成する起点となる樹脂ペーストも同様の方法にて作製する。この樹脂ペーストは樹脂と溶剤のみからなる。樹脂材料には焼成時に分解、消失する樹脂を用いる。例えば、PET、ポリプロピレン、アクリル樹脂などである。
放電補助電極Se1,Se3を形成するための混合ペーストは、導電性材料としてCu粉と、セラミック材料としてBAS粉を所定の割合で調合し、バインダー樹脂と溶剤を添加し撹拌、混合することで得る。
前記シールド層Sh11,Sh13用のペーストは下地のグリーンシートに塗布し、その後、放電電極用の電極ペーストを塗布し、空洞Ah1,Ah3形成用の樹脂ペーストを塗布し、さらにシールド層Sh21,Sh23用のペーストを塗布する。
図9に示した積層部LL2は、通常のセラミック多層基板と同様に、セラミックグリーンシートを積層し、圧着することにより構成する。
接合圧着された積層体は、LCフィルタのようなチップタイプの電子部品と同様にマイクロカッタでカットして、各素体に分離する。その後、各素体の端面に、焼成後に各種外部端子となる電極ペーストを塗布する。
次いで、通常のセラミック多層基板と同様に、N2雰囲気中で焼成する。また、ESDに対する応答電圧を下げるため空洞部にAr,Ne等の希ガスを導入する場合には、セラミック材料の収縮、焼結が行われる温度領域をAr,Neなどの希ガス雰囲気で焼成すればよい。放電電極De11,De12,De31,De32および外部電極が酸化しない電極材料である場合には、大気雰囲気で焼成してもよい。
その後、LCフィルタのようなチップタイプの電子部品と同様に、外部電極の表面に電解Ni-SnめっきによりNi-Snめっき膜を形成する。
ところで、一般に、フェライト中のFeを酸化状態とし、電極材料のCuを酸化させない状態で焼成することは極めて困難であるので、積層素体にフェライトを用いる場合には、電極材料にはAgを用いることが必要となる。しかし、前記放電電極De11,De12,De31,De32をAgで形成すると、マイグレーションが顕著に顕れ、スパークギャップが経時変化する。これに対し、本発明によれば、積層素体にLTCCを用いることで、電極材料にCuを用いることができる。前記放電電極De11,De12,De31,De32をCuで形成すると、放電時のエネルギーで電極表面Cuの酸化膜が形成されるが、この膜は放電電極材としては作用しないので、放電を繰り返しても放電ギャップは実質上一定に保たれる。
図11はコモンモードチョークコイル103の等価回路図である。以上に示した構成により、第1端が入出力端子P1、第2端が入出力端子P2である一次コイルL1と、第1端が入出力端子P3、第2端が入出力端子P4である二次コイルL2とが構成される。すなわち、一次コイルL1は環状導体L1a~L1fの直列回路で構成される。また、二次コイルL2は環状導体L2a~L2fの直列回路で構成される。
入出力端子P1と入出力端子P3との間には例えば給電回路が接続される。入出力端子P2と入出力端子P4との間には例えばデジタル信号処理回路が接続される。図11中のキャパシタC1,C2は一次コイルL1と二次コイルL2間の浮遊容量を等価的に表したものである。
入出力端子P1に保護すべき電圧を超える静電気が印加されると、前記放電電極および放電補助電極による放電素子Dg1が放電(導通)して低インピーダンスとなる。このことにより、入出力端子P1に印加された静電気は放電素子Dg1を介してグランドへシャントされる。同様に、入出力端子P3に保護すべき電圧を超える静電気が印加されると、放電素子Dg3が導通して低インピーダンスとなる。このことにより、入出力端子P3に印加された静電気は放電素子Dg3を介してグランドへシャントされる。
放電素子Dg1,Dg3は図11に示すように、静電気が入ってくる側に設けられていることが好ましい。特に、入出力端子P2,P4に接続される回路の入力インピーダンスが低い場合でも、一次コイルL1および二次コイルL2によるコモンモードチョークコイルはESDのような高周波成分のサージに対して高インピーダンスであるので、サージがコモンモードチョークコイルで反射し、放電素子Dg1,Dg3に高電圧が掛かり、放電素子Dg1,Dg3は速やかに放電電圧に達し、放電を開始する。そのため、入出力端子P2,P4に接続される回路へのサージの流入がより確実に防止される。
このようにして、第3の実施形態のコモンモードチョークコイル103では、基材層が非磁性体層であるため、積層素体の表面または内層に、ESD(Electrostatic Discharge)保護素子を容易に取り込む(一体的に構成する)ことができる。
なお、ESD保護素子として、バリスタ等の非直線性抵抗素子を用いることもできるが、このような電圧可変抵抗方式を利用したESD保護素子は、応答性があまり良くないため、一次コイルや二次コイルの前段に配置しておくと、突入電流により、この素子自体が壊れてしまうことがある。したがって、ESD保護素子としては、積層素体の内部に形成された空洞部と、空洞部内に設けられた一対の放電電極とをそれぞれ含む、いわゆる電極間放電方式(スパークギャップ方式)のESD保護素子を構成することが好ましい。
なお、図7に示した環状導体の配置によれば、コモンモードチョークコイル103がプリント配線板に実装された状態で、プリント配線板上のグランド導体と各環状導体との間に生じる容量が一次コイルと二次コイルとについて対称性が高い。そのため、コモンモードノイズの位相差0°の関係が保たれる。したがって、この位相差のずれによるコモンモードノイズからノーマルモード成分への信号変換がなされず、コモンモードノイズがノーマルモード(ディファレンシャルモード)信号(ノイズ)として流入することがない。
図12は、前記積層体の平面サイズを1.2mm×1.0mm、厚みを0.6mm、各層の間隔を25μmとしたときの第3の実施形態のコモンモードチョークコイルの実測による周波数特性を示す図である。ここで各特性曲線の意味は次のとおりである。
Sdd11 ノーマルモードの反射特性
Sdd21 ノーマルモードの通過特性
Scc11 コモンモードの反射特性
Scc21 コモンモードの通過特性
Scd21 コモンモードがノーマルモードに変換される量の周波数特性
図12のSdd11(ノーマルモード信号の反射特性)から明らかなように、数MHz~5000MHzの範囲でノーマルモード信号について低反射特性が得られている。また、Scc11(コモンモードノイズの反射特性)から明らかなように、数10MHz以上の周波数でコモンモードノイズについて低反射特性が得られている。また、Scc21(コモンモードノイズの通過特性)から明らかなように、数100MHz以上の周波数でコモンモード信号について大きな減衰特性が得られている。この特性で1200MHz付近に極ができているのはコモンモードで発生するインダクタンスの自己共振による。また、Scd21(コモンモードがノーマルモードに変換される量)から明らかなように、全周波数帯域で-10db以下となっており充分に抑制されている。なお、Sdd21は周波数fnにノッチができているが、これは一次コイルL1と二次コイルL2とのインダクタンスの違いにより生じる共振点である。この共振周波数を適宜設定すれば、ノーマル信号を所定の周波数を減衰させるフィルタ機能を持たせることもできる。そのため、コモンモードチョークコイル以外に例えばバランス型ローパスフィルタを別途設ける必要がなく、部品点数が削減され低コスト化が図れる。
Sdd21 ノーマルモードの通過特性
Scc11 コモンモードの反射特性
Scc21 コモンモードの通過特性
Scd21 コモンモードがノーマルモードに変換される量の周波数特性
図12のSdd11(ノーマルモード信号の反射特性)から明らかなように、数MHz~5000MHzの範囲でノーマルモード信号について低反射特性が得られている。また、Scc11(コモンモードノイズの反射特性)から明らかなように、数10MHz以上の周波数でコモンモードノイズについて低反射特性が得られている。また、Scc21(コモンモードノイズの通過特性)から明らかなように、数100MHz以上の周波数でコモンモード信号について大きな減衰特性が得られている。この特性で1200MHz付近に極ができているのはコモンモードで発生するインダクタンスの自己共振による。また、Scd21(コモンモードがノーマルモードに変換される量)から明らかなように、全周波数帯域で-10db以下となっており充分に抑制されている。なお、Sdd21は周波数fnにノッチができているが、これは一次コイルL1と二次コイルL2とのインダクタンスの違いにより生じる共振点である。この共振周波数を適宜設定すれば、ノーマル信号を所定の周波数を減衰させるフィルタ機能を持たせることもできる。そのため、コモンモードチョークコイル以外に例えばバランス型ローパスフィルタを別途設ける必要がなく、部品点数が削減され低コスト化が図れる。
なお、図7、図8に示した例では二つのグランド端子を設けたが、共通の一つのグランド端子を設けてもよい。また、目的によっては、入出力端子P2とグランドとの間にのみ、または入出力端子P4とグランドとの間にのみESD保護素子を設けてもよい。
なお、以上に示した各実施形態において、積層体の構成図で示したコイルのターン数および一次コイルと二次コイルの交差回数は当然ながら例示であり、各環状導体のタ-ン数および交差回数はこれらの図に示したものに限られるものではない。所望の特性に応じて定めればよい。一次コイルおよび二次コイルのターン数はノーマルモードでのインピーダンスを定めることに寄与する。また、一次コイルと二次コイルとの交差回数は一次コイルと二次コイルとの結合度に寄与する。
特に、一層あたりの環状導体のターン数が1ターン以上であると、基材層の積みずれによるインダクタンスおよび結合度のばらつきは小さくなる。また、一層あたりの環状導体のターン数が3ターン以上であると、層間で隣接する第1環状導体と第2環状導体との間の層間容量が増大する傾向がある。したがって、一層あたりの環状導体のターン数は1ターン以上3ターン以下であることが好ましい。
本発明のコモンモードチョークコイルはUSBやHDMI等の高速インターフェースに用いることができる。また、スイッチング周波数の高い(たとえば1MHz以上)電源回路や、高速(たとえば転送レート600MBit/sec)のBUSライン等のフィルタとして有用である。
Ah1,Ah3…空洞層
CA1,CA2…コイル軸
De11,De12,De31,De32…放電電極
Dg1,Dg3…放電素子
GND…グランド端子
L1…一次コイル
L2…二次コイル
L1a,L1b,L1c,L1d,L1e,L1f,L1g,L1h…第1環状導体
L2a,L2b,L2c,L2d,L2e,L2f,L2g,L2h…第2環状導体
LL1,LL2…積層部
P1,P2,P3,P4…入出力端子
Se1,Se3…放電補助電極
Sh11,Sh13,Sh21,Sh23…シールド層
10…積層素体
10m…磁性体層
10n…非磁性体層
101,102,103…コモンモードチョークコイル
CA1,CA2…コイル軸
De11,De12,De31,De32…放電電極
Dg1,Dg3…放電素子
GND…グランド端子
L1…一次コイル
L2…二次コイル
L1a,L1b,L1c,L1d,L1e,L1f,L1g,L1h…第1環状導体
L2a,L2b,L2c,L2d,L2e,L2f,L2g,L2h…第2環状導体
LL1,LL2…積層部
P1,P2,P3,P4…入出力端子
Se1,Se3…放電補助電極
Sh11,Sh13,Sh21,Sh23…シールド層
10…積層素体
10m…磁性体層
10n…非磁性体層
101,102,103…コモンモードチョークコイル
Claims (6)
- 複数の基材層を積層してなる積層素体と、前記積層素体に設けられ、互いに結合した一次コイルおよび二次コイルと、を有する積層型コモンモードチョークコイルであって、
前記一次コイルは、前記複数の基材層に設けられた第1環状導体と、前記第1環状導体同士を層間で接続する層間接続導体とを含み、前記複数の第1環状導体および前記層間接続導体によって螺旋状に形成されていて、
前記二次コイルは、前記複数の基材層に設けられた第2環状導体と、前記第2環状導体同士を層間で接続する層間接続導体とを含み、前記複数の第2環状導体および前記層間接続導体によって螺旋状に形成されていて、
前記複数の第1環状導体と前記複数の第2環状導体とは、前記基材層の積層方向に交互に配置されていて、
前記第1環状導体および前記第2環状導体は、前記基材層の積層方向に対面する範囲が全長の半分以下である、
ことを特徴とする積層型コモンモードチョークコイル。 - 前記基材層は、非磁性体層である、請求項1に記載の積層型コモンモードチョークコイル。
- 前記積層素体の表面または内層に、前記一次コイルに接続された第1のESD保護素子および前記二次コイルに接続された第2のESD保護素子が設けられている、請求項2に記載の積層型コモンモードチョークコイル。
- 前記第1のESD保護素子および前記第2のESD保護素子は、前記積層素体の内部に形成された空洞部と、前記空洞部内に設けられた一対の放電電極とをそれぞれ含む、請求項3に記載の積層型コモンモードチョークコイル。
- 互いのコイル軸が同一軸上に並ぶように配置された前記複数の第1環状導体および前記複数の第2環状導体による環状導体群を複数備え、
前記複数の環状導体群は直列接続されるとともに、前記基材層の積層方向からの平面視で互いに実質的に対称性を保つように配置された、請求項1~4のいずれかに記載の積層型コモンモードチョークコイル。 - 前記基材層の積層方向に互いに隣り合う前記第1環状導体または前記第2環状導体のうち少なくとも一方は、一層あたりのターン数が1ターン以上3ターン以下である、請求項1~5のいずれかに記載の積層型コモンモードチョークコイル。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013551557A JP5700140B2 (ja) | 2011-12-27 | 2012-12-05 | 積層型コモンモードチョークコイル |
US14/314,130 US9245681B2 (en) | 2011-12-27 | 2014-06-25 | Laminated common-mode choke coil |
US14/970,614 US9666356B2 (en) | 2011-12-27 | 2015-12-16 | Laminated common-mode choke coil |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011284712 | 2011-12-27 | ||
JP2011-284712 | 2011-12-27 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US14/314,130 Continuation US9245681B2 (en) | 2011-12-27 | 2014-06-25 | Laminated common-mode choke coil |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2013099540A1 true WO2013099540A1 (ja) | 2013-07-04 |
Family
ID=48697037
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2012/081452 WO2013099540A1 (ja) | 2011-12-27 | 2012-12-05 | 積層型コモンモードチョークコイル |
Country Status (3)
Country | Link |
---|---|
US (2) | US9245681B2 (ja) |
JP (1) | JP5700140B2 (ja) |
WO (1) | WO2013099540A1 (ja) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20160012950A1 (en) * | 2013-11-28 | 2016-01-14 | Murata Manufacturing Co., Ltd. | Electromagnet, camera lens driving device, and production method of electromagnet |
CN106298160A (zh) * | 2015-06-29 | 2017-01-04 | 株式会社村田制作所 | 线圈部件 |
WO2017098896A1 (ja) * | 2015-12-09 | 2017-06-15 | 株式会社村田製作所 | コモンモードチョークコイル及び電子機器 |
US10062501B2 (en) | 2014-11-19 | 2018-08-28 | Murata Manufacturing Co., Ltd. | ESD protection device and common mode choke coil with built-in ESD protection device |
JP2018190822A (ja) * | 2017-05-02 | 2018-11-29 | 太陽誘電株式会社 | 磁気結合型コイル部品 |
WO2018225301A1 (ja) | 2017-06-08 | 2018-12-13 | 三菱電機株式会社 | 電力変換装置 |
Families Citing this family (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI530093B (zh) * | 2014-05-02 | 2016-04-11 | 國立臺灣大學 | 共模雜訊抑制電路 |
KR20160037652A (ko) * | 2014-09-29 | 2016-04-06 | 엘지이노텍 주식회사 | 무선 전력 송신 장치 및 무선 전력 수신 장치 |
US9912315B2 (en) * | 2014-11-14 | 2018-03-06 | Samsung Electro-Mechanics Co., Ltd. | Composite electronic component and board having the same |
US10147534B2 (en) * | 2014-11-18 | 2018-12-04 | Panasonic Intellectual Property Management Co., Ltd. | Common mode noise filter |
JP6678292B2 (ja) * | 2015-02-19 | 2020-04-08 | パナソニックIpマネジメント株式会社 | コモンモードノイズフィルタ |
CN207896660U (zh) * | 2016-03-15 | 2018-09-21 | 株式会社村田制作所 | Esd保护电路、差动传输线路以及共模滤波器电路 |
KR101825695B1 (ko) * | 2016-05-16 | 2018-02-05 | 주식회사 모다이노칩 | 회로 보호 소자 |
JP6828555B2 (ja) | 2017-03-29 | 2021-02-10 | Tdk株式会社 | コイル部品およびその製造方法 |
JP6780589B2 (ja) * | 2017-06-02 | 2020-11-04 | 株式会社村田製作所 | 電子部品 |
JP7031574B2 (ja) * | 2018-12-21 | 2022-03-08 | 株式会社村田製作所 | 電子部品およびその製造方法 |
JP6873217B1 (ja) * | 2019-12-05 | 2021-05-19 | 三菱電機株式会社 | 電力変換装置 |
JP7200958B2 (ja) * | 2020-02-04 | 2023-01-10 | 株式会社村田製作所 | コモンモードチョークコイル |
JP7200957B2 (ja) | 2020-02-04 | 2023-01-10 | 株式会社村田製作所 | コモンモードチョークコイル |
JP7264078B2 (ja) | 2020-02-04 | 2023-04-25 | 株式会社村田製作所 | コモンモードチョークコイル |
JP7200959B2 (ja) | 2020-02-04 | 2023-01-10 | 株式会社村田製作所 | コモンモードチョークコイル |
US11160162B1 (en) | 2020-06-29 | 2021-10-26 | Western Digital Technologies, Inc. | Via-less patterned ground structure common-mode filter |
JP7322833B2 (ja) | 2020-08-05 | 2023-08-08 | 株式会社村田製作所 | コモンモードチョークコイル |
JP7264127B2 (ja) | 2020-08-05 | 2023-04-25 | 株式会社村田製作所 | コモンモードチョークコイル |
US11659650B2 (en) | 2020-12-18 | 2023-05-23 | Western Digital Technologies, Inc. | Dual-spiral common-mode filter |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH11317311A (ja) * | 1998-03-03 | 1999-11-16 | Matsushita Electric Ind Co Ltd | 複合部品およびその製造方法 |
JP3093443U (ja) * | 2002-04-12 | 2003-05-09 | 華新科技股▲ふん▼有限公司 | コモンモードフィルタ |
JP2004072006A (ja) * | 2002-08-09 | 2004-03-04 | Matsushita Electric Ind Co Ltd | 積層コモンモードノイズフィルタ |
JP2004228144A (ja) * | 2003-01-20 | 2004-08-12 | Murata Mfg Co Ltd | コイル部品 |
JP2006294724A (ja) * | 2005-04-07 | 2006-10-26 | Matsushita Electric Ind Co Ltd | 複合電子部品およびその製造方法 |
Family Cites Families (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5769714A (en) * | 1980-10-20 | 1982-04-28 | Tdk Corp | Induction type laminated coil |
JPH0525816U (ja) * | 1991-07-30 | 1993-04-02 | 株式会社村田製作所 | ノイズフイルタ |
JP2770750B2 (ja) * | 1994-10-03 | 1998-07-02 | ネミック・ラムダ株式会社 | インダクタンス素子 |
US6534842B2 (en) | 1998-03-03 | 2003-03-18 | Matsushita Electric Industrial Co., Ltd. | Composite components and the method of manufacturing the same |
US6998939B2 (en) * | 2000-03-08 | 2006-02-14 | Matsushita Electric Industrial Co., Ltd. | Noise filter and electronic device using noise filter |
JP2003068528A (ja) | 2001-08-24 | 2003-03-07 | Murata Mfg Co Ltd | コモンモードチョークコイル |
JP2005064077A (ja) * | 2003-06-20 | 2005-03-10 | Mitsubishi Materials Corp | 積層型コモンモードチョークコイル及びその製造方法 |
CN1914699B (zh) * | 2004-07-23 | 2011-07-13 | 株式会社村田制作所 | 电子元件的制造方法、母板和电子元件 |
JP2006286884A (ja) * | 2005-03-31 | 2006-10-19 | Tdk Corp | コモンモードチョークコイル |
JP4752368B2 (ja) * | 2005-07-15 | 2011-08-17 | 株式会社村田製作所 | 積層コモンモードチョークコイル |
JP2007091538A (ja) * | 2005-09-29 | 2007-04-12 | Tdk Corp | 非磁性Znフェライトおよびこれを用いた複合積層型電子部品 |
JP2007181169A (ja) * | 2005-11-29 | 2007-07-12 | Tdk Corp | コモンモードフィルタ |
JP2008098625A (ja) | 2006-09-12 | 2008-04-24 | Murata Mfg Co Ltd | コモンモードチョークコイル |
JP4749482B2 (ja) * | 2009-07-08 | 2011-08-17 | Tdk株式会社 | 複合電子部品 |
-
2012
- 2012-12-05 WO PCT/JP2012/081452 patent/WO2013099540A1/ja active Application Filing
- 2012-12-05 JP JP2013551557A patent/JP5700140B2/ja active Active
-
2014
- 2014-06-25 US US14/314,130 patent/US9245681B2/en active Active
-
2015
- 2015-12-16 US US14/970,614 patent/US9666356B2/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH11317311A (ja) * | 1998-03-03 | 1999-11-16 | Matsushita Electric Ind Co Ltd | 複合部品およびその製造方法 |
JP3093443U (ja) * | 2002-04-12 | 2003-05-09 | 華新科技股▲ふん▼有限公司 | コモンモードフィルタ |
JP2004072006A (ja) * | 2002-08-09 | 2004-03-04 | Matsushita Electric Ind Co Ltd | 積層コモンモードノイズフィルタ |
JP2004228144A (ja) * | 2003-01-20 | 2004-08-12 | Murata Mfg Co Ltd | コイル部品 |
JP2006294724A (ja) * | 2005-04-07 | 2006-10-26 | Matsushita Electric Ind Co Ltd | 複合電子部品およびその製造方法 |
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10147529B2 (en) * | 2013-11-28 | 2018-12-04 | Murata Manufacturing Co., Ltd. | Electromagnet, camera lens driving device, and production method of electromagnet |
US11309114B2 (en) * | 2013-11-28 | 2022-04-19 | Murata Manufacturing Co., Ltd. | Stacked body and method of producing stacked body |
US10600544B2 (en) * | 2013-11-28 | 2020-03-24 | Murata Manufacturing Co., Ltd. | Stacked body and method of producing stacked body |
US20160012950A1 (en) * | 2013-11-28 | 2016-01-14 | Murata Manufacturing Co., Ltd. | Electromagnet, camera lens driving device, and production method of electromagnet |
US20190066895A1 (en) * | 2013-11-28 | 2019-02-28 | Murata Manufacturing Co., Ltd. | Stacked body and method of producing stacked body |
US10062501B2 (en) | 2014-11-19 | 2018-08-28 | Murata Manufacturing Co., Ltd. | ESD protection device and common mode choke coil with built-in ESD protection device |
CN106298160B (zh) * | 2015-06-29 | 2020-03-06 | 株式会社村田制作所 | 线圈部件 |
CN106298160A (zh) * | 2015-06-29 | 2017-01-04 | 株式会社村田制作所 | 线圈部件 |
WO2017098896A1 (ja) * | 2015-12-09 | 2017-06-15 | 株式会社村田製作所 | コモンモードチョークコイル及び電子機器 |
US11239017B2 (en) | 2015-12-09 | 2022-02-01 | Murata Manufacturing Co., Ltd. | Common mode choke coil and electronic apparatus |
JP2018190822A (ja) * | 2017-05-02 | 2018-11-29 | 太陽誘電株式会社 | 磁気結合型コイル部品 |
WO2018225301A1 (ja) | 2017-06-08 | 2018-12-13 | 三菱電機株式会社 | 電力変換装置 |
US10804814B2 (en) | 2017-06-08 | 2020-10-13 | Mitsubishi Electric Corporation | Power converter |
Also Published As
Publication number | Publication date |
---|---|
JP5700140B2 (ja) | 2015-04-15 |
US9245681B2 (en) | 2016-01-26 |
US20140306787A1 (en) | 2014-10-16 |
JPWO2013099540A1 (ja) | 2015-04-30 |
US9666356B2 (en) | 2017-05-30 |
US20160104569A1 (en) | 2016-04-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5700140B2 (ja) | 積層型コモンモードチョークコイル | |
JP5648768B2 (ja) | コモンモードチョークコイル | |
JP5991453B1 (ja) | Esd保護素子、およびesd保護素子付きコモンモードチョークコイル | |
JP5505564B2 (ja) | 積層型コモンモードチョークコイルおよび高周波部品 | |
KR100769031B1 (ko) | 서지 흡수 소자 및 서지 흡수 회로 | |
JP5617829B2 (ja) | コモンモードチョークコイルおよび高周波部品 | |
US20160344181A1 (en) | Composite electronic component | |
JP2004311877A (ja) | 静電気対策部品 | |
KR20140116678A (ko) | 박막형 공통모드필터 및 그 제조방법 | |
WO2011114859A1 (ja) | コモンモードフィルタ用インダクタおよびコモンモードフィルタ | |
TWI500052B (zh) | Electronic Parts | |
JP4830674B2 (ja) | サージ吸収素子 | |
JP2007214509A (ja) | 積層型電子部品 | |
JP2017041492A (ja) | コモンモードノイズフィルタ | |
CN100557964C (zh) | 电涌吸收元件 | |
WO2017038238A1 (ja) | Esd保護素子 | |
JP4839762B2 (ja) | サージ吸収素子 | |
JP4302683B2 (ja) | サージ吸収素子 | |
JP2010258743A (ja) | 積層型誘電体フィルタ | |
JP2008085365A (ja) | サージ吸収素子 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 12863087 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2013551557 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 12863087 Country of ref document: EP Kind code of ref document: A1 |