Nothing Special   »   [go: up one dir, main page]

WO2012127649A1 - アダプタ、ならびにそれを用いて電力供給を行なう車両および方法 - Google Patents

アダプタ、ならびにそれを用いて電力供給を行なう車両および方法 Download PDF

Info

Publication number
WO2012127649A1
WO2012127649A1 PCT/JP2011/056947 JP2011056947W WO2012127649A1 WO 2012127649 A1 WO2012127649 A1 WO 2012127649A1 JP 2011056947 W JP2011056947 W JP 2011056947W WO 2012127649 A1 WO2012127649 A1 WO 2012127649A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
adapter
charging cable
signal
charging
Prior art date
Application number
PCT/JP2011/056947
Other languages
English (en)
French (fr)
Inventor
遠齢 洪
沖 良二
Original Assignee
トヨタ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by トヨタ自動車株式会社 filed Critical トヨタ自動車株式会社
Priority to JP2013505719A priority Critical patent/JP5708790B2/ja
Priority to CN201180069516.6A priority patent/CN103444042B/zh
Priority to EP11861454.4A priority patent/EP2690741B1/en
Priority to US14/005,353 priority patent/US9614379B2/en
Priority to PCT/JP2011/056947 priority patent/WO2012127649A1/ja
Publication of WO2012127649A1 publication Critical patent/WO2012127649A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/60Monitoring or controlling charging stations
    • B60L53/68Off-site monitoring or control, e.g. remote control
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/0023Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train
    • B60L3/0069Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train relating to the isolation, e.g. ground fault or leak current
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/04Cutting off the power supply under fault conditions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/10Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines
    • B60L50/16Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines with provision for separate direct mechanical propulsion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/40Electric propulsion with power supplied within the vehicle using propulsion power supplied by capacitors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/10Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by the energy transfer between the charging station and the vehicle
    • B60L53/14Conductive energy transfer
    • B60L53/16Connectors, e.g. plugs or sockets, specially adapted for charging electric vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/10Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by the energy transfer between the charging station and the vehicle
    • B60L53/14Conductive energy transfer
    • B60L53/18Cables specially adapted for charging electric vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/60Monitoring or controlling charging stations
    • B60L53/62Monitoring or controlling charging stations in response to charging parameters, e.g. current, voltage or electrical charge
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/60Monitoring or controlling charging stations
    • B60L53/66Data transfer between charging stations and vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L55/00Arrangements for supplying energy stored within a vehicle to a power network, i.e. vehicle-to-grid [V2G] arrangements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L7/00Electrodynamic brake systems for vehicles in general
    • B60L7/10Dynamic electric regenerative braking
    • B60L7/14Dynamic electric regenerative braking for vehicles propelled by ac motors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R31/00Coupling parts supported only by co-operation with counterpart
    • H01R31/06Intermediate parts for linking two coupling parts, e.g. adapter
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J13/00Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network
    • H02J13/00006Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network characterised by information or instructions transport means between the monitoring, controlling or managing units and monitored, controlled or operated power network element or electrical equipment
    • H02J13/00016Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network characterised by information or instructions transport means between the monitoring, controlling or managing units and monitored, controlled or operated power network element or electrical equipment using a wired telecommunication network or a data transmission bus
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J13/00Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network
    • H02J13/00032Systems characterised by the controlled or operated power network elements or equipment, the power network elements or equipment not otherwise provided for
    • H02J13/00036Systems characterised by the controlled or operated power network elements or equipment, the power network elements or equipment not otherwise provided for the elements or equipment being or involving switches, relays or circuit breakers
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2210/00Converter types
    • B60L2210/40DC to AC converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2207/00Indexing scheme relating to details of circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J2207/20Charging or discharging characterised by the power electronics converter
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2310/00The network for supplying or distributing electric power characterised by its spatial reach or by the load
    • H02J2310/40The network being an on-board power network, i.e. within a vehicle
    • H02J2310/48The network being an on-board power network, i.e. within a vehicle for electric vehicles [EV] or hybrid vehicles [HEV]
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/02Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from ac mains by converters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/30Systems integrating technologies related to power network operation and communication or information technologies for improving the carbon footprint of the management of residential or tertiary loads, i.e. smart grids as climate change mitigation technology in the buildings sector, including also the last stages of power distribution and the control, monitoring or operating management systems at local level
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02B90/20Smart grids as enabling technology in buildings sector
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/12Electric charging stations
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/14Plug-in electric vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/16Information or communication technologies improving the operation of electric vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/16Information or communication technologies improving the operation of electric vehicles
    • Y02T90/167Systems integrating technologies related to power network operation and communication or information technologies for supporting the interoperability of electric or hybrid vehicles, i.e. smartgrids as interface for battery charging of electric vehicles [EV] or hybrid vehicles [HEV]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S10/00Systems supporting electrical power generation, transmission or distribution
    • Y04S10/12Monitoring or controlling equipment for energy generation units, e.g. distributed energy generation [DER] or load-side generation
    • Y04S10/126Monitoring or controlling equipment for energy generation units, e.g. distributed energy generation [DER] or load-side generation the energy generation units being or involving electric vehicles [EV] or hybrid vehicles [HEV], i.e. power aggregation of EV or HEV, vehicle to grid arrangements [V2G]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S20/00Management or operation of end-user stationary applications or the last stages of power distribution; Controlling, monitoring or operating thereof
    • Y04S20/20End-user application control systems
    • Y04S20/242Home appliances
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S30/00Systems supporting specific end-user applications in the sector of transportation
    • Y04S30/10Systems supporting the interoperability of electric or hybrid vehicles
    • Y04S30/12Remote or cooperative charging
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S40/00Systems for electrical power generation, transmission, distribution or end-user application management characterised by the use of communication or information technologies, or communication or information technology specific aspects supporting them
    • Y04S40/12Systems for electrical power generation, transmission, distribution or end-user application management characterised by the use of communication or information technologies, or communication or information technology specific aspects supporting them characterised by data transport means between the monitoring, controlling or managing units and monitored, controlled or operated electrical equipment
    • Y04S40/124Systems for electrical power generation, transmission, distribution or end-user application management characterised by the use of communication or information technologies, or communication or information technology specific aspects supporting them characterised by data transport means between the monitoring, controlling or managing units and monitored, controlled or operated electrical equipment using wired telecommunication networks or data transmission busses

Definitions

  • the present invention relates to an adapter and a vehicle and method for supplying electric power using the adapter, and more particularly to a technique for supplying electric power generated by the vehicle to an external electric device.
  • a vehicle that is mounted with a power storage device (for example, a secondary battery or a capacitor) and travels by using a driving force generated from electric power stored in the power storage device as an environment-friendly vehicle.
  • a power storage device for example, a secondary battery or a capacitor
  • Such vehicles include, for example, electric vehicles, hybrid vehicles, fuel cell vehicles, and the like.
  • the technique which charges the electrical storage apparatus mounted in these vehicles with a commercial power source with high electric power generation efficiency is proposed.
  • a vehicle capable of charging an in-vehicle power storage device (hereinafter also simply referred to as “external charging”) from a power source outside the vehicle (hereinafter also simply referred to as “external power source”).
  • external charging an in-vehicle power storage device
  • external power source a power source outside the vehicle
  • plug-in hybrid vehicle is known in which a power storage device can be charged from a general household power source by connecting an outlet provided in a house and a charging port provided in the vehicle with a charging cable. Yes. This can be expected to increase the fuel consumption efficiency of the hybrid vehicle.
  • the vehicle is considered as a power supply source, and a concept of supplying power from the vehicle to general electric devices outside the vehicle has been studied. Yes.
  • a vehicle is used as a power source when an electric device is used for camping or outdoor work.
  • Patent Document 1 discloses a charging cable that can be connected to a power plug of an electric load outside the vehicle for a vehicle that can charge a battery mounted on the vehicle using the charging cable. Discloses a charge / discharge system capable of supplying electric power from a vehicle to an electric load using different power cables dedicated to power supply.
  • Patent Document 1 In the system disclosed in Japanese Patent Application Laid-Open No. 2010-035277 (Patent Document 1), charging and power supply cables are required separately, and it is necessary to replace the power cables used during charging and power supply. There is. For this reason, the cost increases because two types of cables are prepared, and the user's operation may become complicated due to the replacement of the cables.
  • the present invention has been made to solve such problems, and an object of the present invention is to supply electric power from a vehicle to an external electrical device using a charging power cable in a vehicle capable of external charging. Is to provide a conversion adapter.
  • An adapter is a vehicle capable of external charging that uses a power supplied from an external power source via a charging cable to charge the power storage device mounted on the charging cable. It is an adapter used when supplying to the electric equipment outside a vehicle using.
  • the adapter is electrically connected to the first connection portion capable of connecting a power plug connected to an external power source in the charging cable during external charging, and the power plug of the electric device. 2nd connection part which can connect.
  • the adapter further includes a signal generation unit configured to generate a signal instructing power supply when the adapter and the charging cable are connected.
  • the vehicle supplies the electric power from the power source to the electric device via a charging cable connected to the vehicle.
  • the vehicle includes a power conversion device for converting power supplied from a power source and supplying the power to the charging cable, and a first control device for controlling the power conversion device.
  • the charging cable includes a second control device capable of exchanging signals with the first control device.
  • the signal generation unit supplies a signal indicating the connection between the adapter and the charging cable to the second control device by connecting the adapter and the charging cable, and outputs a signal for instructing the second control device to supply power. Output to the first control device.
  • the first control device supplies power from the power source to the electric device by driving the power conversion device in response to a signal instructing power supply.
  • the signal generation unit supplies a signal indicating the connection between the adapter and the charging cable to the second control device by changing the potential of the signal path connected to the second control device.
  • the signal generation unit includes a resistor, and the signal path is electrically connected to the ground via the resistor by connecting the adapter and the charging cable.
  • the signal generation unit includes a switch, and the signal path is electrically connected to the ground via the switch by connecting the adapter and the charging cable.
  • the charging cable includes a switching unit configured to switch between conduction and non-conduction between the signal path and the ground.
  • the signal generation unit includes an operating member configured to be able to change a conduction state of the switching unit by connecting the adapter and the charging cable.
  • the switching unit is a switch.
  • the switch is conductive when the adapter and the charging cable are not connected.
  • the actuating member makes the switch non-conductive when the adapter is connected to the charging cable.
  • the signal generation unit uses, as a signal indicating the connection between the adapter and the charging cable, a signal in response to reception of a signal transmitted from the second control device using the pair of power transmission paths in the charging cable.
  • a signal for instructing the second control device to supply power is output to the first control device.
  • the signal generation unit branches a part of the high-frequency signal transmitted from the second control device to one power transmission path of the pair of power transmission paths, and outputs the branched signal to the second power transmission path.
  • a bypass circuit configured to output to the control device is included.
  • the signal generation unit is a filter configured to pass a high-frequency signal transmitted from the second control device to one power transmission path of the pair of power transmission paths to the other power transmission path.
  • the signal for instructing power supply uses a pilot signal used for transmitting information on the current capacity of the charging cable from the second control device to the first control device when external charging is performed. Is output.
  • the signal instructing power feeding is output using a frequency different from the frequency of the pilot signal used during external charging.
  • the signal instructing power feeding is output using a potential different from the potential of the pilot signal used during external charging.
  • the vehicle includes a power conversion device for converting the power from the power source and supplying the power to the charging cable, and a control device for controlling the power conversion device.
  • the signal generation unit When the adapter and the charging cable are connected, the signal generation unit outputs a signal instructing power supply to the control device via a signal line included in the charging cable.
  • the control device supplies power from the power source to the electric device by driving the power conversion device in response to a signal instructing power supply.
  • the signal generation unit outputs a signal in response to reception of a signal transmitted from the control device through the pair of power transmission paths of the charging cable to the control device as a signal instructing power feeding.
  • the vehicle according to the present invention is capable of external charging for charging a power storage device mounted using electric power supplied from an external power supply via a charging cable, and an external electric device is connected by connecting an adapter to the charging cable. It is a vehicle that can supply power to the vehicle.
  • the vehicle includes a power source including a power storage device, an inlet for connecting a charging cable during external charging, a power converter for converting power from the power source and supplying the power to the inlet, and a power converter
  • a first control device for controlling.
  • the adapter is electrically connected to the first connection portion capable of connecting a power plug connected to an external power source in the charging cable during external charging, and the power plug of the electric device. And a second connection portion capable of connecting the two.
  • the first control device drives the power conversion device to supply power from the power source to the electric device in response to reception of a signal instructing power supply generated by connecting the adapter and the charging cable.
  • the power source further includes an internal combustion engine and a rotating electrical machine configured to generate electric power when driven by the internal combustion engine.
  • the generated power generated by the rotating electrical machine is supplied to the electric device via the charging cable and the adapter.
  • the power storage device is connected by connecting an adapter to the charging cable.
  • This is a method of supplying power from an included power source to an external electrical device.
  • the vehicle includes an inlet for connecting a charging cable at the time of external charging, and a power converter for converting power from a power source and supplying the converted power to the inlet.
  • the adapter is electrically connected to the first connection portion capable of connecting a power plug connected to an external power source in the charging cable during external charging, and the power plug of the electric device. And a second connection portion capable of connecting the two.
  • the method includes the steps of connecting a charging cable to the inlet, connecting the charging cable to the first connection of the adapter, connecting a power plug of the electrical device to the second connection of the adapter, and the adapter.
  • the power converter is controlled to supply power from the power source to the electrical device.
  • the conversion adapter By using the conversion adapter according to the present invention, it is possible to supply electric power from the vehicle to an external electric device using a power cable for charging used for external charging.
  • FIG. 1 is an overall block diagram of a vehicle charging system according to the present embodiment. It is an example of the detailed view of the charging mechanism in FIG. It is a time chart for demonstrating charge control in case external charging is performed. It is the schematic for demonstrating the outline
  • FIG. 3 is a detailed diagram of a circuit in the case where power is supplied through a charging cable by using an adapter in the first embodiment. 3 is a time chart for illustrating control during power feeding in the first embodiment.
  • FIG. 5 is a flowchart for illustrating pilot signal frequency selection control processing executed by the CCID control unit in the first embodiment.
  • Embodiment 1 it is a flowchart for demonstrating the switching control process of a charge process and electric power feeding process performed by vehicle ECU.
  • 6 is a time chart for illustrating control during power feeding in a modification of the first embodiment.
  • 10 is a flowchart for illustrating pilot signal voltage selection control processing executed by a CCID control unit in a modification of the first embodiment.
  • FIG. 6 is a flowchart for illustrating a switching control process between a charging process and a power feeding process, which is executed by a vehicle ECU in a modification of the first embodiment. It is a figure for demonstrating the 1st example of a signal generation part.
  • FIG. 1 is a schematic diagram of a charging system for vehicle 10 according to the first embodiment.
  • the power storage device 150 mounted on the vehicle 10 is charged using electric power from the external power source 402.
  • the configuration of the vehicle 10 is not particularly limited as long as the vehicle 10 can travel with electric power from a power storage device that can be charged by an external power source.
  • Examples of the vehicle 10 include a hybrid vehicle, an electric vehicle, and a fuel cell vehicle.
  • the vehicle is equipped with a rechargeable power storage device, it can be applied to a vehicle that is driven by an internal combustion engine, for example.
  • vehicle 10 includes an inlet 270, a power converter 160, a relay 155, a power storage device 150, a drive unit 20, a vehicle ECU (Electronic Control Unit) 170, and a voltage sensor 182.
  • Drive unit 20 includes a motor drive device 180, a motor generator (hereinafter also referred to as “MG (Motor Generator)”) 120, drive wheels 130, an engine 140, and a power split mechanism 145.
  • MG Motor Generator
  • a connector 310 provided in the charging cable 300 is connected to the inlet 270.
  • the power converter 160 is connected to the inlet 270 by the power lines ACL1 and ACL2. Furthermore, power conversion device 160 is connected to power storage device 150 via relay 155. Then, based on control signal PWE from vehicle ECU 170, power conversion device 160 converts AC power supplied from external power supply 402 of the vehicle into DC power that can be charged by power storage device 150, and stores it in power storage device 150. Supply.
  • the power storage device 150 is a power storage element configured to be chargeable / dischargeable.
  • the power storage device 150 includes, for example, a secondary battery such as a lithium ion battery, a nickel metal hydride battery, or a lead storage battery, and a power storage element such as an electric double layer capacitor.
  • the power storage device 150 stores DC power supplied from the power conversion device 160.
  • Power storage device 150 is connected to motor drive device 180 that drives MG 120, and supplies DC power used to generate a driving force for traveling the vehicle.
  • Power storage device 150 stores the power generated by MG 120.
  • power storage device 150 further includes a voltage sensor for detecting the voltage of power storage device 150 and a current sensor for detecting a current input to and output from power storage device 150. The detected values of voltage and current detected by the sensor are output to vehicle ECU 170.
  • Motor drive device 180 is connected to power storage device 150 and MG 120. Motor drive device 180 is controlled by vehicle ECU 170 to convert the electric power supplied from power storage device 150 into electric power for driving MG 120. Motor drive device 180 is configured to include, for example, a three-phase inverter.
  • MG 120 is connected to motor drive device 180 and drive wheel 130 via power split mechanism 145.
  • MG 120 receives electric power supplied from motor drive device 180 and generates a driving force for causing vehicle 10 to travel.
  • MG 120 receives the rotational force from drive wheel 130 and generates AC power, and generates a regenerative braking force in response to a regenerative torque command from vehicle ECU 170.
  • MG 120 includes, for example, a three-phase AC motor generator including a rotor in which permanent magnets are embedded and a stator having a Y-connected three-phase coil.
  • MG 120 is also connected to engine 140 via power split mechanism 145. Control is performed by vehicle ECU 170 so that the driving forces of the engine and MG 120 are in an optimum ratio.
  • the MG 120 can also operate as a generator when driven by the engine 140.
  • the power generated by MG 120 is stored in power storage device 150. Alternatively, the electric power generated by MG 120 can be supplied to an electric device outside the vehicle through inlet 270 as described later.
  • the voltage sensor 182 is connected between the power lines ACL1 and ACL2, and detects the voltage of the power supplied from the external power supply 402. Voltage sensor 182 outputs detected value VAC of the voltage to vehicle ECU 170.
  • Relay 155 is inserted in a path connecting power converter 160 and power storage device 150. Relay 155 is controlled by control signal SE from vehicle ECU 170 to switch between supply and interruption of power between power conversion device 160 and power storage device 150. Note that in this embodiment, the relays 155 are individually provided, but the relays 155 may be included in the power storage device 150 or the power conversion device 160.
  • the vehicle ECU 170 includes a CPU (Central Processing Unit), a storage device and an input / output buffer (not shown in FIG. 1), receives signals from each sensor and outputs control commands to each device, The vehicle 10 and each device are controlled. Note that these controls are not limited to software processing, and can be constructed and processed by dedicated hardware (electronic circuit).
  • Vehicle ECU 170 receives connection signal CNCT and pilot signal CPLT from charging cable 300 via inlet 270. Further, vehicle ECU 170 receives voltage detection value VAC of received power from voltage sensor 182.
  • the vehicle ECU 170 receives detection values related to current, voltage, and temperature from a sensor (not shown) installed in the power storage device 150 and receives a state quantity indicating the charging state of the power storage device 150 (hereinafter referred to as “SOC (State of Charge)”. ) ”).) Is calculated.
  • SOC State of Charge
  • vehicle ECU170 controls the power converter device 160, the relay 155, etc. in order to charge the electrical storage apparatus 150 based on such information.
  • the charging cable 300 is also referred to as a connector 310 provided at the end of the vehicle, a plug 320 provided at the end of the external power supply, and a charging circuit breaker (hereinafter referred to as “CCID (Charging Circuit Interrupt Device)”). .) 330 and a wire portion 340 for connecting the respective devices and inputting / outputting electric power and control signals.
  • CCID Charging Circuit Interrupt Device
  • the electric wire part 340 includes an electric wire part 340 ⁇ / b> A that connects the plug 320 and the CCID 330, and an electric wire part 340 ⁇ / b> B that connects the connector 310 and the CCID 330.
  • Electric wire portion 340 includes a power line 341 for transmitting power from external power supply 402.
  • the charging cable 300 is connected by an outlet 400 of an external power source 402 (for example, a commercial power source) and a plug 320 of the charging cable 300. Further, an inlet 270 provided on the body of the vehicle 10 and a connector 310 of the charging cable 300 are connected, and electric power from the external power source 402 of the vehicle is transmitted to the vehicle 10. Charging cable 300 is detachable from external power source 402 and vehicle 10.
  • an external power source 402 for example, a commercial power source
  • connection detection circuit 312 for detecting the connection of the connector 310 is provided to detect the connection state between the inlet 270 and the connector 310.
  • Connection detection circuit 312 outputs connection signal CNCT representing the connection state to vehicle ECU 170 of vehicle 10 via inlet 270.
  • connection detection circuit 312 may be configured as a limit switch as shown in FIG. 1, and when the connector 310 is connected to the inlet 270, the potential of the connection signal CNCT may be the ground potential (0V). Alternatively, the connection detection circuit 312 may be configured as a resistor (not shown) having a predetermined resistance value, and the potential of the connection signal CNCT may be lowered to a predetermined potential at the time of connection. In any case, vehicle ECU 170 detects that connector 310 is connected to inlet 270 by detecting the potential of connection signal CNCT.
  • the CCID 330 includes a CCID relay 332 and a control pilot circuit 334.
  • CCID relay 332 is inserted into power line 341 in charging cable 300.
  • the CCID relay 332 is controlled by the control pilot circuit 334.
  • the CCID relay 332 is opened, the electric circuit is cut off in the charging cable 300.
  • the CCID relay 332 is closed, power is supplied from the external power source 402 to the vehicle 10.
  • Control pilot circuit 334 outputs pilot signal CPLT to vehicle ECU 170 via connector 310 and inlet 270.
  • This pilot signal CPLT is a signal for notifying the rated current of charging cable 300 from control pilot circuit 334 to vehicle ECU 170.
  • Pilot signal CPLT is also used as a signal for remotely operating CCID relay 332 from vehicle ECU 170 based on the potential of pilot signal CPLT operated by vehicle ECU 170.
  • the control pilot circuit 334 controls the CCID relay 332 based on the potential change of the pilot signal CPLT.
  • the configuration of the pilot signal CPLT and the connection signal CNCT as well as the shape and terminal arrangement of the inlet 270 and the connector 310 are standardized by, for example, the US SAE (Society of Automotive Engineers) and the Japan Electric Vehicle Association. .
  • FIG. 2 is a diagram for explaining the charging circuit shown in FIG. 1 in more detail.
  • the description of the overlapping elements with the same reference numerals as in FIG. 1 will not be repeated.
  • CCID 330 includes electromagnetic coil 606, leakage detector 608, CCID control unit 610, battery 615, voltage sensor 650, and current sensor. 660.
  • Control pilot circuit 334 includes an oscillation device 602, a resistor R20, and a voltage sensor 604.
  • CCID control unit 610 includes a CPU, a storage device, and an input / output buffer, and inputs / outputs signals of each sensor and control pilot circuit 334 and controls a charging operation of charging cable 300. To do.
  • the CCID control unit 610 is supplied with power from a battery 615 built in the CCID 330.
  • the oscillation device 602 outputs a non-oscillation signal when the potential of the pilot signal CPLT detected by the voltage sensor 604 is a specified potential (for example, 12V), and the potential of the pilot signal CPLT decreases from the specified potential.
  • a specified potential for example, 12V
  • the CCID control unit 610 controls and outputs a signal that oscillates at a specified frequency (for example, 1 kHz) and a duty cycle.
  • pilot signal CPLT is operated by vehicle ECU 170 as will be described later with reference to FIG.
  • the duty cycle is set based on the rated current that can be supplied from the external power supply 402 to the vehicle 10 via the charging cable 300.
  • the pilot signal CPLT oscillates at a specified period when the potential of the pilot signal CPLT drops from the specified potential as described above.
  • the pulse width of pilot signal CPLT is set based on the rated current that can be supplied from external power supply 402 to vehicle 10 via charging cable 300. That is, the rated current is notified from the control pilot circuit 334 to the vehicle ECU 170 of the vehicle 10 using the pilot signal CPLT by the duty indicated by the ratio of the pulse width to the oscillation period.
  • the rated current is determined for each charging cable, and the rated current varies depending on the type of the charging cable 300. Therefore, the duty of pilot signal CPLT is different for each charging cable 300.
  • Vehicle ECU 170 can detect the rated current that can be supplied to vehicle 10 via charging cable 300 based on the duty of pilot signal CPLT received via control pilot line L1.
  • control pilot circuit 334 supplies current to electromagnetic coil 606.
  • the electromagnetic coil 606 When a current is supplied from the control pilot circuit 334, the electromagnetic coil 606 generates an electromagnetic force and closes the contact point of the CCID relay 332 to make it conductive.
  • the leakage detector 608 is provided in the middle of the power line 341 of the charging cable 300 inside the CCID 330 and detects the presence or absence of leakage. Specifically, the leakage detector 608 detects the equilibrium state of currents flowing in opposite directions to the paired power lines 341, and detects the occurrence of leakage when the equilibrium state breaks down. Although not particularly shown, when leakage is detected by the leakage detector 608, the power supply to the electromagnetic coil 606 is cut off, and the contact of the CCID relay 332 is opened and becomes non-conductive.
  • the voltage sensor 650 detects the power supply voltage transmitted from the external power supply 402 and notifies the CCID control unit 610 of the detected value.
  • the current sensor 660 detects a charging current flowing through the power line 341 and notifies the CCID control unit 610 of the detected value.
  • connection detection circuit 312 included in the connector 310 is, for example, a limit switch. The contact is closed while the connector 310 is connected to the inlet 270, and the connector 310 is disconnected from the inlet 270. The contact is opened.
  • connection signal line L3 As connection signal CNCT, a voltage signal determined by the voltage of power supply node 511 and pull-up resistor R10 included in vehicle ECU 170 is generated on connection signal line L3 as connection signal CNCT. Further, in a state where the connector 310 is connected to the inlet 270, the connection signal line L3 is short-circuited to the ground line L2, so that the potential of the connection signal line L3 becomes the ground potential (0 V).
  • connection detection circuit 312 can be a resistor (not shown). In this case, in a state where connector 310 is connected to inlet 270, a voltage signal determined by the voltage of power supply node 511, pull-up resistor R10, and this resistor is generated on connection signal line L3.
  • connection detection circuit 312 is a limit switch or a resistor as described above, the connection detection circuit 312 is generated in the connection signal line L3 when the connector 310 is connected to the inlet 270 and when it is disconnected.
  • the potential that is, the potential of the connection signal CNCT
  • the vehicle ECU 170 can detect the connection state of the connector 310 by detecting the potential of the connection signal line L3.
  • vehicle ECU 170 further includes a resistance circuit 502, input buffers 504 and 506, and CPU 508, in addition to power supply node 511 and pull-up resistor R10.
  • the resistance circuit 502 includes pull-down resistors R1 and R2 and switches SW1 and SW2. Pull-down resistor R1 and switch SW1 are connected in series between control pilot line L1 through which pilot signal CPLT is communicated and vehicle ground 512. Pull-down resistor R2 and switch SW2 are also connected in series between control pilot line L1 and vehicle ground 512. The switches SW1 and SW2 are controlled to be conductive or nonconductive according to control signals S1 and S2 from the CPU 508, respectively.
  • the resistance circuit 502 is a circuit for operating the potential of the pilot signal CPLT from the vehicle 10 side.
  • the input buffer 504 receives the pilot signal CPLT on the control pilot line L1 and outputs the received pilot signal CPLT to the CPU 508.
  • Input buffer 506 receives connection signal CNCT from connection signal line L 3 connected to connection detection circuit 312 of connector 310, and outputs the received connection signal CNCT to CPU 508. Note that, as described above, voltage is applied to the connection signal line L3 from the vehicle ECU 170, and the potential of the connection signal CNCT changes depending on the connection of the connector 310 to the inlet 270.
  • the CPU 508 detects the connection state of the connector 310 by detecting the potential of the connection signal CNCT.
  • CPU 508 receives pilot signal CPLT and connection signal CNCT from input buffers 504 and 506, respectively.
  • CPU 508 detects the potential of connection signal CNCT and detects the connection state of connector 310.
  • the CPU 508 detects the rated current of the charging cable 300 as described above by detecting the oscillation state and duty cycle of the pilot signal CPLT.
  • the CPU 508 operates the potential of the pilot signal CPLT by controlling the control signals S1 and S2 of the switches SW1 and SW2 based on the potential of the connection signal CNCT and the oscillation state of the pilot signal CPLT. As a result, the CPU 508 can remotely control the CCID relay 332. Then, electric power is transmitted from external power supply 402 to vehicle 10 through charging cable 300.
  • FIG. 3 is a time chart for explaining the charging control in the charging system of FIG.
  • the horizontal axis in FIG. 3 indicates time, and the vertical axis indicates the connection state of the plug 320 to the external power source 402, the potential of the pilot signal CPLT, the potential of the connection signal CNCT, the state of the switches SW1 and SW2, and the CCID relay 332 The state and the execution state of the charging process are shown.
  • control pilot circuit 334 At time t10, when plug 320 of charging cable 300 is connected to outlet 400 of external power supply 402, control pilot circuit 334 generates pilot signal CPLT.
  • Pilot signal CPLT has a potential of V1 (for example, 12V), and pilot signal CPLT is in a non-oscillating state.
  • connection detection circuit 312 decreases the potential of the connection signal CNCT.
  • the CPU 508 detects the connection between the connector 310 and the inlet 270 by detecting that the potential of the connection signal CNCT has decreased. In response, the control signal S1 is activated by the CPU 508, and the switch SW1 is turned on. Then, the potential of pilot signal CPLT is lowered to V2 (for example, 9V) by pull-down resistor R1 of resistance circuit 502.
  • V2 for example, 9V
  • the CPU 508 When detecting that the pilot signal CPLT is oscillated, the CPU 508 detects the rated current of the charging cable 300 based on the duty of the pilot signal CPLT as described above.
  • the CPU 508 activates the control signal S2 to turn on the switch SW2 in order to start the charging operation.
  • the potential of pilot signal CPLT is lowered to V3 (for example, 6 V) by pull-down resistor R2 (time t13 in FIG. 3).
  • the CCID control unit 610 detects that the potential of the pilot signal CPLT has dropped to V3
  • the contact of the CCID relay 332 is closed at time t14, and the electric power from the external power supply 402 passes through the charging cable 300. It is transmitted to the vehicle 10.
  • CPU 508 closes the contact of relay 155 (FIG. 1), and power converter 160 (FIG. 1) is controlled to thereby store power storage device 150 (FIG. 1). ) Is started (time t15 in FIG. 3).
  • CPU 508 ends the charging process (time t16 in FIG. 3). Then, the CPU 508 deactivates the control signal S2 to make the switch SW2 non-conductive (time t17 in FIG. 3). As a result, the potential of pilot signal CPLT becomes V2, charging process is stopped accordingly, CCID relay 332 is turned off (time t18), and the charging operation ends. Thereafter, the CPU 508 deactivates the control signal S1 to turn off the switch SW1, thereby shutting down the system.
  • the vehicle is considered as an electric power supply source, and the electric power stored in the vehicle is supplied to an electric device or electric power network outside the vehicle.
  • a vehicle is used as a power source when an electric device is used for camping or outdoor work.
  • the plug 320 of the charging cable 300 used for external charging and the power plug 710 of the electric device 700 outside the vehicle can be connected.
  • a conversion adapter 800 that enables electric power from a vehicle 10 to be supplied to an electric device 700 outside the vehicle (hereinafter also referred to as “external power supply”) via a cable 300.
  • the power conversion device 160 of the vehicle 10 can use the DC power stored in the power storage device 150, which is a power source, for the AC power that can be used by the electric device 700 ( For example, AC 100V, 200V, etc.) and the changed electric power is supplied to the electric device 700.
  • the power source of the vehicle 10 includes the engine 140 and the motor generator 120 in the case of a hybrid vehicle having the engine 140 as shown in FIG.
  • the generated power (AC power) generated by driving motor generator 120 by engine 140 is converted into AC power that can be used by electric device 700 using motor drive device 180 and power conversion device 160. Then, electric power is supplied to the electric device 700.
  • electric power is supplied to the electric device 700.
  • the vehicle 10 is a fuel cell vehicle, it is possible to supply electric power generated by the fuel cell.
  • power conversion device 160 in addition to the function of converting the power from external power supply 402 described above into the charging power for power storage device 150, power conversion device 160 has the power stored in vehicle 10 and / or It is necessary to have a function of converting electric power generated by the vehicle 10 into driving electric power for the external electric device 700.
  • the power conversion device 160 one power conversion device capable of bidirectional power conversion operation of external charging and external power supply may be provided, or a power conversion device dedicated to external charging and an external power supply May be provided separately from the power conversion device that performs the dedicated operation.
  • FIG. 5 is a schematic diagram showing an example of an adapter 800 used when external power feeding is performed as described in FIG.
  • adapter 800 has a connecting portion 801 for connecting plug 320 of charging cable 300 and a connecting portion 805 for connecting a power plug 710 of external electric device 700.
  • connection part 801 on the charging cable 300 side is provided with a terminal part 802 to which the terminal of the plug 320 is connected.
  • Connection unit 801 is further provided with a terminal 803 for transmitting a signal representing the connection between adapter 800 and plug 320.
  • the plug 320 is provided with a terminal portion 322 corresponding to the terminal 803. When the plug 320 and the adapter 800 are connected, the terminal 803 and the terminal portion 322 are electrically coupled.
  • a terminal portion 806 corresponding to the terminal shape of the power plug 710 of the electric device 700 is provided in the connection portion 805 on the electric device 700 side.
  • the shape of the terminal portion 806 is, for example, a shape that conforms to the voltage to be used (100V, 200V, etc.) and the standards of the country to be used.
  • FIG. 5 shows an example in which the connecting portions 801 and 805 have an integrated structure housed in the same housing, but for example, a charging cable 300 like an adapter 800 # shown in FIG.
  • the connector 810 on the side and the connector 820 on the electric device 700 side are separated, and they may be coupled by a cable 830 that is a power transmission medium.
  • FIG. 8 is a detailed diagram of a circuit when power is supplied using adapter 800 according to the first embodiment.
  • the configuration of the vehicle 10 is the same as that in FIG. 2, and some components in the vehicle 10 and the charging cable 300 are not shown in FIG. 8. In FIG. 8, the description of the elements overlapping with those in FIG. 2 will not be repeated.
  • adapter 800 includes signal generation unit 850 in addition to connection units 801 and 805.
  • the signal generator 850 is electrically connected to the signal line L4 of the charging cable 300 when the plug 320 of the charging cable 300 is connected to the adapter 800.
  • the signal generation unit 850 provides the signal CNCT2 indicating the connection between the charging cable 300 and the adapter 800 to the CCID control unit 610 of the charging cable 300.
  • a specific example of the signal generation unit 850 will be described with reference to FIG. 15 and thereafter, but it may be a control device having a CPU or a control circuit that exhibits a desired function.
  • the power supply voltage is supplied from a battery (not shown) built in the adapter 800.
  • the CCID control unit 610 determines whether or not the charging cable 300 and the adapter 800 are connected based on the signal CNCT2 from the signal generation unit 850. When CCID control unit 610 determines that charging cable 300 and adapter 800 are connected, CCID control unit 610 outputs pilot signal CPLT to vehicle ECU 170 using a frequency and / or potential different from that during external charging. Thus, CCID control unit 610 can cause vehicle ECU 170 to perform a power feeding operation.
  • FIG. 9 is a time chart for explaining the power feeding control in the first embodiment.
  • the horizontal axis of FIG. 9 indicates time, and the vertical axis indicates the connection state of the adapter 800, the potential of the pilot signal CPLT, the potential of the connection signal CNCT, the state of the connection signal CNCT2, the state of the switches SW1 and SW2, and the CCID relay 332 And the execution state of the power supply process are shown.
  • pilot signal CPLT is V1 (for example, 12V), and pilot signal CPLT is in a non-oscillating state.
  • connection detection circuit 312 reduces the potential of the connection signal CNCT.
  • CPU 508 detects that charging cable 300 is connected to inlet 270 by detecting that the potential of connection signal CNCT has decreased.
  • control signal S1 is activated by the CPU 508 and the switch SW1 is turned on (time t21).
  • the potential of pilot signal CPLT is lowered to V2 (for example, 9 V) by pull-down resistor R1 of resistance circuit 502, as described in FIG.
  • the CPU 508 detects that the pilot signal CPLT is oscillated, as described above, the oscillation frequency Fsup of the pilot signal CPLT output from the CCID 330 in the power feeding operation is lower than the oscillation frequency Fchr in the charging operation. Based on the difference in oscillation frequency, the CPU 508 recognizes that the adapter 800 is connected to the charging cable 300 and that a power feeding operation is instructed.
  • the CPU 508 closes the contact of the relay 155 and controls the power conversion device 160 (FIG. 1) to start supplying power from the power storage device 150 (FIG. 1) to the electric device 700 (time t23). .
  • the CCID control unit 610 stops the oscillation of the pilot signal CPLT (time t25). In response to this, the CPU 508 stops the power supply process and turns off the switch SW1 (time t26). Thereafter, the CCID relay 332 is cut off by the CCID control unit 610 at time t27.
  • FIG. 10 is a flowchart for explaining the frequency selection control process of pilot signal CPLT, which is executed by CCID control unit 610 in the first embodiment. 10 and the flowcharts of FIGS. 13 and 21 described below are implemented by executing a program stored in advance in the CCID control unit 610 in a predetermined cycle. Alternatively, for some steps, it is also possible to construct dedicated hardware (electronic circuit) and realize processing.
  • CCID control unit 610 obtains connection signal CNCT2 in step (hereinafter, step is abbreviated as S) 300.
  • step S310 the CCID control unit 610 determines whether the connection signal CNCT2 is on, that is, whether the charging cable 300 and the adapter 800 are connected. As will be described later, when the potential of the connection signal CNCT2 changes due to the connection between the charging cable 300 and the adapter 800, the CCID control unit 610 causes the potential of the connection signal CNCT2 to be predetermined in S310. It is determined that the connection signal CNCT2 is turned on due to the change to the level.
  • CCID control unit 610 When connection signal CNCT2 is off (NO in S310), CCID control unit 610 recognizes that adapter 800 is not connected to charging cable 300 and is in a normal external charging mode. Then, CCID control unit 610 oscillates pilot signal CPLT by setting oscillation frequency Fcplt of pilot signal CPLT to frequency Fchr for external charging in S330.
  • CCID control unit 610 recognizes that adapter 800 is connected to charging cable 300 and is in a mode in which external power feeding is performed. In S320, CCID control unit 610 sets pilot signal CPLT oscillation frequency Fcplt to a frequency Fsup (Fsup ⁇ Fchr) lower than frequency Fchr in the case of external charging, and oscillates pilot signal CPLT.
  • FIG. 11 is a flowchart for illustrating the switching control process between the charging process and the power feeding process, which is executed by vehicle ECU 170 in the first embodiment. 11 and the flowcharts of FIGS. 14 and 24 described below are realized by executing a program stored in advance in the CPU 508 of the vehicle ECU 170 at a predetermined cycle. Alternatively, for some steps, it is also possible to construct dedicated hardware (electronic circuit) and realize processing.
  • CPU 508 determines in S100 whether pilot signal CPLT is oscillating.
  • pilot signal CPLT is not oscillating (NO in S100)
  • charging cable 300 is not connected to inlet 270, and CPU 508 ends the process.
  • pilot signal CPLT is oscillating (YES in S100)
  • CPU 508 recognizes that charging cable 300 is connected to inlet 270, and acquires oscillation frequency Fcplt of pilot signal CPLT in S110. .
  • the CPU 508 determines whether or not the acquired oscillation frequency Fcplt is the oscillation frequency Fchr in the case of the charging operation. In the determination in S120, the acquired oscillation frequency Fcplt need not completely match the oscillation frequency Fchr during the charging operation, and the difference between the oscillation frequency Fcplt and the oscillation frequency Fchr is within a predetermined range. (
  • the process proceeds to S140, and the CPU 508 determines whether or not the acquired oscillation frequency Fcplt is the oscillation frequency Fsup during the power feeding operation. judge.
  • the acquired oscillation frequency Fcplt does not need to completely match the oscillation frequency Fsup during the power feeding operation, and the oscillation frequency Fcplt and the oscillation frequency Fsup It is only necessary that the difference falls within a predetermined range (
  • the CPU 508 cannot determine whether the operation is a charging operation or a power feeding operation, and thus ends the process.
  • the oscillation frequency Fsup of the pilot signal CPLT when the adapter 800 is connected to the charging cable 300 is smaller than the oscillation frequency Fchr when the adapter 800 is not connected to the charging cable 300 (that is, In the opposite case, the oscillation frequency Fsup may be set to be larger than the oscillation frequency Fchr.
  • FIG. 12 is a time chart for explaining the control during power feeding in the modification of the first embodiment.
  • the horizontal axis indicates time
  • the vertical axis indicates the connection state of the adapter 800, the potential of the pilot signal CPLT, the potential of the connection signal CNCT, and the connection signal CNCT2.
  • pilot signal CPLT is V1 (for example, 12V), and pilot signal CPLT is in a non-oscillating state.
  • connection detection circuit 312 reduces the potential of the connection signal CNCT.
  • CPU 508 detects that charging cable 300 is connected to inlet 270 by detecting that the potential of connection signal CNCT has decreased.
  • control signal S1 is activated by the CPU 508 and the switch SW1 is turned on (time t31).
  • the potential of pilot signal CPLT is lowered to V2 (for example, 9 V) by pull-down resistor R1 of resistance circuit 502, as described in FIG.
  • the signal generator 850 of the adapter 800 is turned on.
  • the CCID control unit 610 recognizes that the plug 320 of the charging cable 300 is connected to the adapter 800.
  • CCID control unit 610 outputs the potential of pilot signal CPLT as potential V4 (for example, 15 V) that is higher than potential V1 when charging cable 300 is connected.
  • CPU 508 of vehicle ECU 170 recognizes that adapter 800 is connected to charging cable 300 by detecting that the potential of pilot signal CPLT is V4.
  • the control signal S1 of the switch SW1 may remain activated or deactivated.
  • the CCID control unit 610 oscillates the pilot signal CPLT. Since the oscillation frequency at this time can already recognize that the adapter 800 is connected by the potential of the pilot signal CPLT, it may be the same as or different from the oscillation cycle Tchr similar to the case of external charging. May be. Thereafter, the CCID control unit 610 closes the CCID relay 332.
  • CPU 508 When CPU 508 detects oscillation of pilot signal CPLT, CPU 508 controls relay 155 and power conversion device 160 to execute a power feeding operation to electrical device 700 (time t33 in FIG. 12).
  • the CCID control unit 610 stops oscillation of the pilot signal CPLT.
  • the power supply process is ended by the CPU 508 (time t35 in FIG. 12), and the CCID relay 332 is released by the CCID control unit 610 (time t36 in FIG. 12).
  • FIG. 13 is a flowchart for explaining the pilot signal CPLT voltage selection control process executed by the CCID control unit 610 in the modification of the first embodiment.
  • FIG. 13 is obtained by replacing steps S320 and S330 in the flowchart described in FIG. 10 of the first embodiment with S320A and S330A, respectively. In FIG. 13, the description of the same steps as those in FIG. 10 will not be repeated.
  • connection signal CNCT2 when connection signal CNCT2 is off, that is, when it is determined that adapter 800 is not connected to charging cable 300 (NO in S310), CCID control is performed in S330A.
  • Unit 610 oscillates pilot signal CPLT by setting potential Vcplt of pilot signal CPLT to potential V1 for external charging.
  • connection signal CNCT2 when it is determined that adapter 800 is connected to charging cable 300 (NO in S310), CCID control unit 610 determines pilot signal CPLT in S320A. Pilot signal CPLT is oscillated by setting potential Vcplt to potential V4 for external power feeding.
  • FIG. 14 is a flowchart for illustrating the switching control process between the charging process and the power feeding process, which is executed by vehicle ECU 170 in the modification of the first embodiment.
  • CPU 508 determines in S200 whether or not the potential of connection signal CNCT is lowered.
  • connection signal CNCT is not lowered (NO in S200)
  • charging cable 300 is not connected to inlet 270, and CPU 508 ends the process.
  • connection signal CNCT If the potential of connection signal CNCT is lowered (YES in S200), the process proceeds to S210, and CPU 508 acquires potential Vcplt of pilot signal CPLT.
  • the CPU 508 determines whether or not the acquired potential Vcplt is equal to or lower than the potential V1 during the charging operation (Vcplt ⁇ V1).
  • Vcplt V1 or less (YES in S220)
  • CPU 508 recognizes that adapter 800 is not connected to charging cable 300. Then, the process proceeds to S230, and the CPU 508 executes the charging process as described with reference to FIG.
  • the signal generation unit included in the adapter outputs an on signal when the adapter and the charging cable are connected, and outputs an off signal when the adapter and the charging cable are not connected.
  • the case of such a control circuit has been described.
  • a variation of a specific example of the signal generation unit included in the adapter will be described with reference to FIGS.
  • FIG. 15 is a diagram for explaining an adapter 800A including a signal generation unit 850A having a resistor R30.
  • power is supplied from power supply node 616 to signal line L4 in charging cable 300 via pull-up resistor R21.
  • the potential of signal line L4 is a potential determined by power supply node 616.
  • the signal line L4 is connected to the ground via the resistor R30 included in the signal generation unit 850A. As a result, the potential of the signal line L4 is lowered to a potential obtained by dividing the potential of the power supply node 616 by the resistors R21 and R30.
  • the CCID control unit 610 detects that the adapter 800A is connected to the charging cable 300 by detecting such a change in the potential of the signal line L4.
  • FIG. 16 is a diagram for explaining an adapter 800B including a signal generation unit 850B having the switch SW10.
  • the signal line L4 is connected to the ground via the switch SW10 included in the signal generation unit 850B. As a result, the potential of the signal line L4 is lowered to the ground potential.
  • the CCID control unit 610 detects that the adapter 800B is connected to the charging cable 300 by detecting such a change in the potential of the signal line L4.
  • FIG. 17 is a diagram for explaining an adapter 800 ⁇ / b> C having an operation member 860 that operates a switch 321 that is a switching unit included in the charging cable 300 as a signal generation unit.
  • signal line L4 is connected to ground in charging cable 300 via switch 321 included in plug 320. Similarly to FIG. 15, the signal line L4 in the charging cable 300 is supplied with power from the power supply node 616 via the pull-up resistor R21.
  • the switch 321 is closed in a state where the adapter 800C is not connected to the charging cable 300. Therefore, when the adapter 800C is not connected, the potential of the signal line L4 becomes the ground potential.
  • the operating member 860 is, for example, a rod-shaped member provided in place of the terminal 803 shown by the adapter 800 in FIG.
  • the actuating member 860 directly or indirectly opens the contact of the switch 321 in the plug 320.
  • the signal line L4 is disconnected from the ground.
  • the potential of signal line L4 rises from the ground potential to a potential determined by power supply node 616.
  • the CCID control unit 610 detects that the adapter 800C is connected to the charging cable 300 by detecting such a change in the potential of the signal line L4.
  • the switch 321 is configured to be closed when the adapter 800C is not connected to the charging cable 300 and opened when the adapter 800C is connected.
  • the adapter 800C may be opened when the adapter 800C is not connected and closed when the adapter 800C is connected.
  • FIG. 18 is a diagram for explaining an adapter 800D provided with a bypass circuit 870 as a signal generation unit.
  • bypass circuit 870 is electrically connected between one of power lines 341 from vehicle 10 to electric device 700 and the ground. Bypass circuit 870 is also connected to signal line L4 of charging cable 300 when adapter 800D is connected to charging cable 300.
  • the bypass circuit 870 has a configuration such as a circuit 871 shown in FIG. 19 or a circuit 872 shown in FIG.
  • the circuit 871 shown in FIG. 19 includes resistors R50 and R51 connected in series between terminals 50 and 51 that are electrically connected to one of the power lines 341 and the signal line L4, respectively.
  • the connection node of the resistors R50 and R51 is connected to the ground.
  • the circuit 872 shown in FIG. 20 includes a coil L50, a capacitor C50, and a resistor R55 connected in series between the terminal 50 and the ground. A connection node of the capacitor C50 and the resistor R55 is connected to the terminal 51.
  • the CCID control unit 610 applies the high-frequency signal Vin to the power line to which the bypass circuit 870 is connected.
  • the power line 341 is energized, the high frequency signal Vin is superimposed on the power supply voltage.
  • the bypass circuit 870 generates a signal Vout corresponding to the high-frequency signal Vin by a circuit as shown in FIGS. 19 and 20. Then, the generated signal Vout is transmitted to the CCID control unit 610 through the signal line L4.
  • the CCID control unit 610 detects that the adapter 800D is connected to the charging cable 300 by detecting the signal Vout generated by the bypass circuit 870 in the signal line L4.
  • FIG. 21 is a flowchart for explaining the frequency selection control process of pilot signal CPLT, which is executed by CCID control unit 610 when bypass circuit 870 shown in FIG. 18 is used.
  • CCID control unit 610 applies high-frequency signal Vin to one power line continuously or at predetermined intervals in S400.
  • step S410 the CCID control unit 610 detects the presence / absence of the output signal Vout from the bypass circuit 870 on the signal line L4 while applying the high-frequency signal Vin.
  • the CCID control unit 610 recognizes that the adapter 800D is not connected to the charging cable 300. Then, the process proceeds to S440, and CCID control unit 610 oscillates pilot signal CPLT by setting oscillation frequency Fcplt of pilot signal CPLT to frequency Fchr for external charging.
  • CCID control unit 610 recognizes that adapter 800D is connected to charging cable 300. Then, the process proceeds to S430, and the CCID control unit 610 oscillates the pilot signal CPLT by setting the oscillation frequency Fcplt of the pilot signal CPLT to a frequency Fsup (Fsup ⁇ Fchr) lower than the frequency Fchr in the case of external charging. .
  • the charging process and the power supply process are switched based on the oscillation frequency Fcplt of the pilot signal CPLT.
  • FIG. 22 is a diagram for explaining an adapter 800E provided with a filter circuit 870A as a signal generation unit.
  • filter circuit 870 ⁇ / b> A is electrically connected between power lines 341 connecting vehicle 10 and electric device 700.
  • Filter circuit 870A is, for example, a high-pass filter or a band-pass filter that passes a signal having a specific frequency higher than the power supply frequency transmitted through power line 341. For this reason, the filter circuit 870A can pass the high-frequency signal applied to one power line to the other power line.
  • the CCID control unit 610 applies a high frequency signal to one of the power lines. At this time, when the adapter 800E is connected to the charging cable 300, the applied high-frequency signal is passed through the filter circuit 870A. Appears on the other power line 341. Therefore, the CCID control unit 610 detects that the adapter 800E is connected to the charging cable 300 by detecting the high frequency signal in the other power line while applying the high frequency signal to the one power line. To detect.
  • the CCID provided in the charging cable detects that the adapter is connected to the charging cable, and changes the frequency and / or potential of the pilot signal output from the CCID to thereby charge the battery.
  • the configuration for switching between the operation and the power feeding operation has been described.
  • FIG. 23 is a detailed diagram of a circuit when power is supplied through charging cable 300A by using adapter 800F in the second embodiment.
  • charging cable 300A does not have CCID 330 like charging cable 300 described in the first embodiment. Therefore, pilot signal CPLT is not input to CPU 508 of vehicle ECU 170.
  • vehicle ECU 170 when external charging is performed, vehicle ECU 170 generally performs a charging operation based on connection signal CNCT and the presence / absence of a power supply voltage supplied between external power supplies ACL1 and ACL2. Determine whether or not.
  • the signal generation unit 850C included in the adapter 800F is directly connected to the CPU 508 of the vehicle ECU 170 via the signal line L5 in the charging cable 300A, and provides the connection signal CNCT2 to the CPU 508.
  • CPU 508 detects that adapter 800F is connected to charging cable 300A based on connection signal CNCT2, and switches between the charging operation and the power feeding operation.
  • FIG. 24 is a flowchart for illustrating the switching control process between the charging process and the power feeding process, which is executed by vehicle ECU 170 in the second embodiment.
  • CPU 508 of vehicle ECU 170 obtains connection signal CNCT2 from adapter 800F in S500. In S510, CPU 508 determines whether or not connection signal CNCT2 is on.
  • connection signal CNCT2 is off (NO in S510)
  • the process proceeds to S530, and CPU 508 executes a charging process.
  • connection signal CNCT2 is on (YES in S510)
  • the process proceeds to S520, and CPU 508 executes a power supply process.
  • the signal generation unit 850C may include a control circuit that can output a signal corresponding to the pilot signal CPLT of the CCID 330 in the charging cable 300.
  • signal line L5 of charging cable 300A is connected to control pilot line L1 at inlet 270.
  • signal generation unit 850C outputs a signal having a frequency Fsup different from the frequency Fchr of the pilot signal used during external charging to vehicle ECU 170 via charging cable 300A.
  • the CPU 508 detects that the adapter 800F is connected to the charging cable 300A, and switches between the charging operation and the power feeding operation.
  • the signal from the signal generator provided in the adapter is directly detected by the vehicle ECU, so that the electric power from the vehicle is externally transmitted using the charging cable. It becomes possible to supply to other electrical equipment.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

 アダプタ(800)は、信号生成部(850)を備える。信号生成部(850)は、外部電源からの電力による外部充電を行なう際に用いる充電ケーブル(300)のプラグ(320)とアダプタ(800)とが接続されることによって、車両(10)に対して給電を指示する信号を提供する。車両(10)は、この給電を指示する信号に応答して、電力変換装置を駆動することによって、充電ケーブル(300)を用いて、車両からの電力を外部の電気機器(700)へ供給する。

Description

アダプタ、ならびにそれを用いて電力供給を行なう車両および方法
 本発明は、アダプタ、ならびにそれを用いて電力供給を行なう車両および方法に関し、より特定的には、車両により発生される電力を外部の電気機器に供給する技術に関する。
 近年、環境に配慮した車両として、蓄電装置(たとえば二次電池やキャパシタなど)を搭載し、蓄電装置に蓄えられた電力から生じる駆動力を用いて走行する車両が注目されている。このような車両には、たとえば電気自動車、ハイブリッド自動車、燃料電池車などが含まれる。そして、これらの車両に搭載される蓄電装置を発電効率の高い商用電源により充電する技術が提案されている。
 ハイブリッド車においても、電気自動車と同様に、車両外部の電源(以下、単に「外部電源」とも称する。)から車載の蓄電装置の充電(以下、単に「外部充電」とも称する。)が可能な車両が知られている。たとえば、家屋に設けられたコンセントと車両に設けられた充電口とを充電ケーブルで接続することにより、一般家庭の電源から蓄電装置の充電が可能ないわゆる「プラグイン・ハイブリッド車」が知られている。これにより、ハイブリッド自動車の燃料消費効率を高めることが期待できる。
 このような外部充電が可能な車両においては、スマートグリッドなどに見られるように、車両を電力供給源として考え、車両外部の一般の電気機器に対して車両から電力を供給する構想が検討されている。また、キャンプや屋外での作業などで電気機器を使用する場合の電源として、車両が使用される場合もある。
 特開2010-035277号公報(特許文献1)は、充電ケーブルを用いて車両に搭載されたバッテリを充電することができる車両について、車両外部の電気負荷の電源プラグが接続可能な、充電ケーブルとは異なる給電専用の電力ケーブルを用いて、車両からの電力を電気負荷に供給することができる充放電システムを開示する。
特開2010-035277号公報
 しかしながら、特開2010-035277号公報(特許文献1)に開示されたシステムにおいては、充電用および給電用のケーブルとが個別に必要となり、充電時と給電時とで使用する電力ケーブルを取り換える必要がある。そのため、2種類のケーブルを用意するためにコストが増加するとともに、ケーブルの取り換えのためにユーザの操作が煩雑になってしまうおそれがある。
 本発明はこのような課題を解決するためになされたものであって、その目的は、外部充電が可能な車両において、充電用の電力ケーブルを用いて車両から外部の電気機器に電力を供給するための変換アダプタを提供することである。
 本発明によるアダプタは、充電ケーブルを介して外部電源から供給された電力を用いて搭載された蓄電装置を充電する外部充電が可能な車両において、蓄電装置を含む電力源からの電力を、充電ケーブルを用いて車両外部の電気機器に供給する際に用いるアダプタである。アダプタは、外部充電時に充電ケーブルにおいて外部電源に接続される電源プラグを接続することが可能な第1の接続部と、第1の接続部と電気的に接続されるとともに、電気機器の電源プラグを接続することが可能な第2の接続部とを備える。
 好ましくは、アダプタは、アダプタと充電ケーブルとが接続されることによって、給電を指示する信号を生じさせるように構成された信号生成部をさらに備える。車両は、給電を指示する信号に応答して、電力源からの電力を、車両に接続された充電ケーブルを介して電気機器に供給する。
 好ましくは、車両は、電力源からの電力を変換して充電ケーブルへ供給するための電力変換装置と、電力変換装置を制御するための第1の制御装置とを含む。充電ケーブルは、第1の制御装置と信号の授受が可能な第2の制御装置を含む。信号生成部は、アダプタと充電ケーブルとが接続されることによって、アダプタと充電ケーブルとの接続を示す信号を第2の制御装置へ供給して、第2の制御装置に給電を指示する信号を第1の制御装置へ出力させる。第1の制御装置は、給電を指示する信号に応答して、電力変換装置を駆動することによって、電力源からの電力を電気機器に供給する。
 好ましくは、信号生成部は、第2の制御装置に接続される信号経路の電位を変化させることによって、アダプタと充電ケーブルとの接続を示す信号を第2の制御装置へ供給する。
 好ましくは、信号生成部は、抵抗器を含み、アダプタと充電ケーブルとが接続されることによって、抵抗器を介して信号経路を接地に電気的に接続する。
 好ましくは、信号生成部は、スイッチを含み、アダプタと充電ケーブルとが接続されることによって、スイッチを介して信号経路を接地に電気的に接続する。
 好ましくは、充電ケーブルは、信号経路と接地との間の導通と非導通とを切換えるように構成された切換部を含む。信号生成部は、アダプタと充電ケーブルとが接続されることによって、切換部の導通状態を変化させることができるように構成された作動部材を含む。
 好ましくは、切換部は、スイッチである。スイッチは、アダプタと充電ケーブルとが接続されていない状態においては導通状態である。作動部材は、アダプタが充電ケーブルに接続されることによって、スイッチを非導通状態にする。
 好ましくは、信号生成部は、第2の制御装置から充電ケーブルにおける一対の電力伝達経路を用いて伝送される信号の受信に応答した信号を、アダプタと充電ケーブルとの接続を示す信号として第2の制御装置に出力することによって、第2の制御装置に給電を指示する信号を第1の制御装置へ出力させる。
 好ましくは、信号生成部は、第2の制御装置から、一対の電力伝達経路のうちの一方の電力伝達経路に伝送される高周波信号の一部を分岐し、当該分岐された信号を第2の制御装置に出力するように構成されたバイパス回路を含む。
 好ましくは、信号生成部は、第2の制御装置から、一対の電力伝達経路のうちの一方の電力伝達経路に伝送される高周波信号を、他方の電力伝達経路に通過させるように構成されたフィルタ回路を含む。
 好ましくは、給電を指示する信号は、外部充電が行なわれる際に、第2の制御装置から第1の制御装置へ充電ケーブルの電流容量についての情報を伝達するために用いられるパイロット信号を利用して出力される。
 好ましくは、給電を指示する信号は、外部充電の際に使用されるパイロット信号の周波数とは異なる周波数を用いて出力される。
 好ましくは、給電を指示する信号は、外部充電の際に使用されるパイロット信号の電位とは異なる電位を用いて出力される。
 好ましくは、車両は、電力源からの電力を変換して充電ケーブルへ供給するための電力変換装置と、電力変換装置を制御するための制御装置とを含む。信号生成部は、アダプタと充電ケーブルとが接続されることによって、充電ケーブルに含まれる信号線を介して、給電を指示する信号を制御装置へ出力する。制御装置は、給電を指示する信号に応答して、電力変換装置を駆動することによって、電力源からの電力を電気機器に供給する。
 好ましくは、信号生成部は、制御装置から充電ケーブルの一対の電力伝達経路を通して伝送される信号の受信に応答した信号を、給電を指示する信号として制御装置へ出力する。
 本発明による車両は、充電ケーブルを介して外部電源から供給された電力を用いて搭載された蓄電装置を充電する外部充電が可能であり、かつ充電ケーブルにアダプタを接続することによって外部の電気機器への給電が可能な車両である。車両は、蓄電装置を含む電力源と、外部充電の際に充電ケーブルを接続するためのインレットと、電力源からの電力を変換してインレットへ供給するための電力変換装置と、電力変換装置を制御するための第1の制御装置とを備える。アダプタは、外部充電時に充電ケーブルにおいて外部電源に接続される電源プラグを接続することが可能な第1の接続部と、第1の接続部と電気的に接続されるとともに、電気機器の電源プラグを接続することが可能な第2の接続部とを含む。第1の制御装置は、アダプタと充電ケーブルとが接続されることによって生じる給電を指示する信号の受信に応答して、電力変換装置を駆動して電力源からの電力を電気機器に供給する。
 好ましくは、電力源は、内燃機関と、内燃機関によって駆動されることによって発電するように構成された回転電機とをさらに含む。回転電機によって発電された発電電力が、充電ケーブルおよびアダプタを介して電気機器に供給される。
 本発明による方法は、充電ケーブルを介して外部電源から供給された電力を用いて搭載された蓄電装置を充電する外部充電が可能な車両において、充電ケーブルにアダプタを接続することによって、蓄電装置を含む電力源からの電力を外部の電気機器への給電する方法である。車両は、外部充電の際に充電ケーブルを接続するためのインレットと、電力源からの電力を変換してインレットへ供給するための電力変換装置とを含む。アダプタは、外部充電時に充電ケーブルにおいて外部電源に接続される電源プラグを接続することが可能な第1の接続部と、第1の接続部と電気的に接続されるとともに、電気機器の電源プラグを接続することが可能な第2の接続部とを含む。方法は、充電ケーブルをインレットに接続するステップと、アダプタの第1の接続部に充電ケーブルを接続するステップと、電気機器の電源プラグをアダプタの第2の接続部に接続するステップと、アダプタと充電ケーブルとが接続されることによって生じる、給電を指示する信号を受信するステップと、給電を指示する信号に応答して、電力変換装置を制御することによって、電力源からの電力を電気機器へ供給するステップとを備える。
 本発明に従う変換アダプタを用いることによって、外部充電に用いる充電用の電力ケーブルを用いて、車両から外部の電気機器への電力供給を行なうことが可能となる。
本実施の形態に従う車両の充電システムの全体ブロック図である。 図1における充電機構の詳細図の一例である。 外部充電が行なわれる場合の、充電制御を説明するためのタイムチャートである。 本実施の形態の概要を説明するための概略図である。 本実施の形態に従うアダプタの概略を示す図である。 図5のアダプタを説明するための図である。 本実施の形態に従うアダプタの他の例の概略図である。 実施の形態1において、アダプタを用いることによって、充電ケーブルにより給電を行なう場合の回路の詳細図である。 実施の形態1における、給電時の制御を説明するためのタイムチャートである。 実施の形態1において、CCID制御部で実行される、パイロット信号の周波数選択制御処理を説明するためのフローチャートである。 実施の形態1において、車両ECUで実行される、充電処理および給電処理の切換制御処理を説明するためのフローチャートである。 実施の形態1の変形例における、給電時の制御を説明するためのタイムチャートである。 実施の形態1の変形例において、CCID制御部で実行される、パイロット信号の電圧選択制御処理を説明するためのフローチャートである。 実施の形態1の変形例において、車両ECUで実行される、充電処理および給電処理の切換制御処理を説明するためのフローチャートである。 信号生成部の第1の例を説明するための図である。 信号生成部の第2の例を説明するための図である。 信号生成部の第3の例を説明するための図である。 信号生成部の第4の例を説明するための図である。 図18におけるバイパス回路の第1の例を説明するための図である。 図18におけるバイパス回路の第2の例を説明するための図である。 図18において、CCID制御部で実行される、パイロット信号の周波数選択制御処理を説明するためのフローチャートである。 信号生成部の第5の例を説明するための図である。 実施の形態2において、アダプタを用いることによって、充電ケーブルにより給電を行なう場合の回路の詳細図である。 実施の形態2において、車両ECUで実行される、充電処理および給電処理の切換制御処理を説明するためのフローチャートである。
 以下、本発明の実施の形態について、図面を参照しながら詳細に説明する。なお、図中同一または相当部分には同一符号を付してその説明は繰り返さない。
 [充電システムの説明]
 図1は、実施の形態1に従う車両10の充電システムの概略図である。図1においては、外部電源402からの電力を用いて車両10に搭載された蓄電装置150を充電する場合について説明する。
 なお、車両10は、外部電源により充電可能な蓄電装置からの電力によって走行可能であれば、その構成は特に限定されるものではない。車両10には、たとえばハイブリッド自動車,電気自動車および燃料電池自動車などが含まれる。また、充電可能な蓄電装置が搭載された車両であれば、たとえば内燃機関によって走行する車両にも適用可能である。
 図1を参照して、車両10は、インレット270と、電力変換装置160と、リレー155と、蓄電装置150と、駆動部20と、車両ECU(Electronic Control Unit)170と、電圧センサ182とを備える。駆動部20は、モータ駆動装置180と、モータジュネレータ(以下「MG(Motor Generator)」とも称する。)120と、駆動輪130と、エンジン140と、動力分割機構145とを含む。
 インレット270には、充電ケーブル300に備えられるコネクタ310が接続される。
 電力変換装置160は、電力線ACL1,ACL2によってインレット270と接続される。さらに、電力変換装置160は、リレー155を介して蓄電装置150と接続される。そして、電力変換装置160は、車両ECU170からの制御信号PWEに基づいて、車両の外部電源402から供給される交流電力を、蓄電装置150が充電可能な直流電力に変換して、蓄電装置150に供給する。
 蓄電装置150は、充放電可能に構成された電力貯蔵要素である。蓄電装置150は、たとえば、リチウムイオン電池、ニッケル水素電池あるいは鉛蓄電池などの二次電池や、電気二重層キャパシタなどの蓄電素子を含んで構成される。
 蓄電装置150は、電力変換装置160から供給される直流電力を蓄える。蓄電装置150は、MG120を駆動するモータ駆動装置180に接続され、車両を走行するための駆動力の発生に用いられる直流電力を供給する。また蓄電装置150は、MG120で発電された電力を蓄電する。
 また、蓄電装置150は、いずれも図示しないが、蓄電装置150の電圧を検出するための電圧センサ、および、蓄電装置150に入出力される電流を検出するための電流センサをさらに含み、これらのセンサによって検出された電圧,電流の検出値を車両ECU170へ出力する。
 モータ駆動装置180は、蓄電装置150およびMG120に接続される。そして、モータ駆動装置180は、車両ECU170によって制御されて、蓄電装置150から供給される電力を、MG120を駆動するための電力に変換する。モータ駆動装置180は、たとえば三相インバータを含んで構成される。
 MG120は、モータ駆動装置180と、動力分割機構145を介して駆動輪130とに接続される。MG120は、モータ駆動装置180から供給された電力を受けて、車両10を走行させるための駆動力を発生する。また、MG120は、駆動輪130からの回転力を受けて交流電力を発生するとともに、車両ECU170からの回生トルク指令によって回生制動力を発生する。MG120は、たとえば、永久磁石が埋設されたロータとY結線された三相コイルを有するステータとを備える三相交流電動発電機を含んで構成される。
 MG120は、動力分割機構145を介してエンジン140とも接続される。車両ECU170により、エンジンおよびMG120の駆動力が最適な比率となるように制御が実行される。また、MG120は、エンジン140により駆動されることによって、発電機として動作することもできる。MG120による発電電力は、蓄電装置150に蓄電される。あるいは、MG120による発電電力は、後述するようにインレット270を通して車両外部の電気機器に供給され得る。
 電圧センサ182は、電力線ACL1とACL2との間に接続され、外部電源402から供給される電力の電圧を検出する。そして、電圧センサ182は、その電圧の検出値VACを車両ECU170に出力する。
 リレー155は、電力変換装置160と蓄電装置150とを結ぶ経路に介挿される。リレー155は、車両ECU170からの制御信号SEによって制御され、電力変換装置160と蓄電装置150との間の電力の供給と遮断とを切換える。なお、本実施の形態においては、リレー155が個別に設けられる構成としているが、蓄電装置150または電力変換装置160の内部にリレー155が含まれる構成としてもよい。
 車両ECU170は、いずれも図1には図示しないがCPU(Central Processing Unit)、記憶装置および入出力バッファを含み、各センサ等からの信号の受信や各機器への制御指令の出力を行なうとともに、車両10および各機器の制御を行なう。なお、これらの制御については、ソフトウェアによる処理に限られず、専用のハードウェア(電子回路)で構築して処理することも可能である。
 車両ECU170は、充電ケーブル300から、インレット270を介して、接続信号CNCTおよびパイロット信号CPLTを受ける。また、車両ECU170は、電圧センサ182から受電電力の電圧検出値VACを受ける。
 車両ECU170は、蓄電装置150内に設置されたセンサ(図示せず)から電流、電圧、温度に関する検出値の入力を受け、蓄電装置150の充電状態を示す状態量(以下「SOC(State of Charge)」とも称する。)の算出を行なう。
 そして、車両ECU170は、これらの情報に基づいて、蓄電装置150を充電するために、電力変換装置160およびリレー155などを制御する。
 充電ケーブル300は、車両側の端部に設けられたコネクタ310と、外部電源側の端部に設けられたプラグ320と、充電回路遮断装置(以下、「CCID(Charging Circuit Interrupt Device)」とも称する。)330と、それぞれの機器間を接続して電力および制御信号を入出力する電線部340とを備える。
 電線部340は、プラグ320とCCID330との間を接続する電線部340Aと、コネクタ310とCCID330との間を接続する電線部340Bとを含む。また、電線部340は、外部電源402からの電力を伝達するための電力線341を含む。
 充電ケーブル300は、外部電源402(たとえば商用電源)のコンセント400と充電ケーブル300のプラグ320によって接続される。また、車両10のボディに設けられたインレット270と充電ケーブル300のコネクタ310とが接続され、車両の外部電源402からの電力が車両10へ伝達される。充電ケーブル300は、外部電源402および車両10に着脱可能である。
 コネクタ310の内部には、コネクタ310の接続を検知する接続検知回路312が設けられ、インレット270とコネクタ310との接続状態を検知する。接続検知回路312は、接続状態を表わす接続信号CNCTを、インレット270を経由して、車両10の車両ECU170へ出力する。
 接続検知回路312については、図1に示すようなリミットスイッチとする構成とし、コネクタ310をインレット270に接続したときに、接続信号CNCTの電位が接地電位(0V)となるようにしてもよい。あるいは、接続検知回路312を所定の抵抗値を有する抵抗器(図示しない)とする構成とし、接続時に接続信号CNCTの電位を所定の電位に低下させるようにしてもよい。いずれの場合においても、車両ECU170は、接続信号CNCTの電位を検出することによって、コネクタ310がインレット270に接続されたことを検出する。
 CCID330は、CCIDリレー332と、コントロールパイロット回路334とを含む。CCIDリレー332は、充電ケーブル300内の電力線341に介挿される。CCIDリレー332は、コントロールパイロット回路334によって制御される。そして、CCIDリレー332が開放されているときは、充電ケーブル300内で電路が遮断される。一方、CCIDリレー332が閉成されると、外部電源402から車両10へ電力が供給される。
 コントロールパイロット回路334は、コネクタ310およびインレット270を介して車両ECU170へパイロット信号CPLTを出力する。このパイロット信号CPLTは、コントロールパイロット回路334から車両ECU170へ充電ケーブル300の定格電流を通知するための信号である。また、パイロット信号CPLTは、車両ECU170によって操作されるパイロット信号CPLTの電位に基づいて、車両ECU170からCCIDリレー332を遠隔操作するための信号としても使用される。そして、コントロールパイロット回路334は、パイロット信号CPLTの電位変化に基づいてCCIDリレー332を制御する。
 上述のパイロット信号CPLTおよび接続信号CNCT、ならびに、インレット270およびコネクタ310の形状,端子配置などの構成は、たとえば、米国のSAE(Society of Automotive Engineers)や日本電動車両協会等において規格化されている。
 図2は、図1に示した充電回路をより詳細に説明するための図である。なお、図2において、図1と同じ参照符号が付された重複する要素についての説明は繰り返さない。
 図2を参照して、CCID330は、CCIDリレー332およびコントロールパイロット回路334に加えて、電磁コイル606と、漏電検出器608と、CCID制御部610と、バッテリ615と、電圧センサ650と、電流センサ660とをさらに含む。また、コントロールパイロット回路334は、発振装置602と、抵抗R20と、電圧センサ604とを含む。
 CCID制御部610は、いずれも図示しないが、CPUと、記憶装置と、入出力バッファとを含み、各センサおよびコントロールパイロット回路334の信号の入出力を行なうとともに、充電ケーブル300の充電動作を制御する。CCID制御部610は、CCID330に内蔵されるバッテリ615から電源が供給される。
 発振装置602は、電圧センサ604によって検出されるパイロット信号CPLTの電位が規定の電位(たとえば、12V)のときは非発振の信号を出力し、パイロット信号CPLTの電位が上記の規定の電位から低下したとき(たとえば、9V)は、CCID制御部610により制御されて、規定の周波数(たとえば1kHz)およびデューティサイクルで発振する信号を出力する。
 なお、パイロット信号CPLTの電位は、図3で後述するように、車両ECU170によって操作される。また、デューティサイクルは、外部電源402から充電ケーブル300を介して車両10へ供給可能な定格電流に基づいて設定される。
 パイロット信号CPLTは、上述のようにパイロット信号CPLTの電位が規定の電位から低下すると、規定の周期で発振する。ここで、外部電源402から充電ケーブル300を介して車両10へ供給可能な定格電流に基づいてパイロット信号CPLTのパルス幅が設定される。すなわち、この発振周期に対するパルス幅の比で示されるデューティによって、パイロット信号CPLTを用いてコントロールパイロット回路334から車両10の車両ECU170へ定格電流が通知される。
 なお、定格電流は、充電ケーブル毎に定められており、充電ケーブル300の種類が異なれば定格電流も異なる。したがって、充電ケーブル300毎にパイロット信号CPLTのデューティも異なることになる。
 車両ECU170は、コントロールパイロット線L1を介して受信したパイロット信号CPLTのデューティに基づいて、充電ケーブル300を介して車両10へ供給可能な定格電流を検知することができる。
 車両ECU170によってパイロット信号CPLTの電位がさらに低下されると(たとえば、6V)、コントロールパイロット回路334は、電磁コイル606へ電流を供給する。電磁コイル606は、コントロールパイロット回路334から電流が供給されると電磁力を発生し、CCIDリレー332の接点を閉じて導通状態にする。
 漏電検出器608は、CCID330内部において充電ケーブル300の電力線341の途中に設けられ、漏電の有無を検出する。具体的には、漏電検出器608は、対となる電力線341に互いに反対方向に流れる電流の平衡状態を検出し、その平衡状態が破綻すると漏電の発生を検知する。なお、特に図示しないが、漏電検出器608により漏電が検出されると、電磁コイル606への給電が遮断され、CCIDリレー332の接点が開放されて非導通状態となる。
 電圧センサ650は、充電ケーブル300のプラグ320がコンセント400に差し込まれると、外部電源402から伝達される電源電圧を検知し、その検出値をCCID制御部610に通知する。また、電流センサ660は、電力線341に流れる充電電流を検知し、その検出値をCCID制御部610に通知する。
 コネクタ310内に含まれる接続検知回路312は、上述のように、たとえばリミットスイッチであり、コネクタ310がインレット270に接続された状態で接点が閉じられ、コネクタ310がインレット270から切り離された状態で接点が開放される。
 コネクタ310がインレット270から切り離された状態では、車両ECU170に含まれる電源ノード511の電圧およびプルアップ抵抗R10によって定まる電圧信号が接続信号CNCTとして接続信号線L3に発生する。また、コネクタ310がインレット270に接続された状態では、接続信号線L3が接地線L2と短絡されるため、接続信号線L3の電位は接地電位(0V)となる。
 なお、接続検知回路312は抵抗器(図示せず)とすることも可能である。この場合には、コネクタ310がインレット270に接続された状態では、電源ノード511の電圧およびプルアップ抵抗R10と、この抵抗器とによって定まる電圧信号が、接続信号線L3に発生する。
 接続検知回路312が、上記のようにリミットスイッチ,抵抗器のいずれの場合であっても、コネクタ310がインレット270に接続されたときと、切り離されたときとで、接続信号線L3に発生する電位(すなわち、接続信号CNCTの電位)が変化する。したがって、接続信号線L3の電位を検出することによって、車両ECU170は、コネクタ310の接続状態を検出することができる。
 車両10においては、車両ECU170は、上記の電源ノード511およびプルアップ抵抗R10に加えて、抵抗回路502と、入力バッファ504,506と、CPU508とをさらに含む。
 抵抗回路502は、プルダウン抵抗R1,R2と、スイッチSW1,SW2とを含む。プルダウン抵抗R1およびスイッチSW1は、パイロット信号CPLTが通信されるコントロールパイロット線L1と車両アース512との間に直列に接続される。プルダウン抵抗R2およびスイッチSW2も、コントロールパイロット線L1と車両アース512との間に直列に接続される。そして、スイッチSW1,SW2は、それぞれCPU508からの制御信号S1,S2に従って導通または非導通に制御される。
 この抵抗回路502は、車両10側からパイロット信号CPLTの電位を操作するための回路である。
 入力バッファ504は、コントロールパイロット線L1のパイロット信号CPLTを受け、その受けたパイロット信号CPLTをCPU508へ出力する。入力バッファ506は、コネクタ310の接続検知回路312に接続される接続信号線L3から接続信号CNCTを受け、その受けた接続信号CNCTをCPU508へ出力する。なお、接続信号線L3には上記で説明したように車両ECU170から電圧がかけられており、コネクタ310のインレット270への接続によって、接続信号CNCTの電位が変化する。CPU508は、この接続信号CNCTの電位を検出することによって、コネクタ310の接続状態を検出する。
 CPU508は、入力バッファ504,506から、パイロット信号CPLTおよび接続信号CNCTをそれぞれ受ける。
 CPU508は、接続信号CNCTの電位を検出し、コネクタ310の接続状態を検出する。
 また、CPU508は、パイロット信号CPLTの発振状態およびデューティサイクルを検知することによって、上述のように充電ケーブル300の定格電流を検出する。
 そして、CPU508は、接続信号CNCTの電位およびパイロット信号CPLTの発振状態に基づいて、スイッチSW1,SW2の制御信号S1,S2を制御することによって、パイロット信号CPLTの電位を操作する。これによって、CPU508は、CCIDリレー332を遠隔操作することができる。そして、充電ケーブル300を介して外部電源402から車両10への電力の伝達が行なわれる。
 図1および図2を参照して、CCIDリレー332の接点が閉じられると、電力変換装置160に外部電源402からの交流電力が与えられ、外部電源402から蓄電装置150への充電準備が完了する。CPU508は、電力変換装置160に対し制御信号PWEを出力することによって、外部電源402からの交流電力を蓄電装置150が充電可能な直流電力に変換する。そして、CPU508は、制御信号SEを出力してリレー155の接点を閉じることにより、蓄電装置150への充電を実行する。
 図3は、図2の充電システムにおける充電制御を説明するためのタイムチャートである。図3の横軸には時間が示され、縦軸には外部電源402へのプラグ320の接続状態、パイロット信号CPLTの電位、接続信号CNCTの電位、スイッチSW1,SW2の状態、CCIDリレー332の状態、および充電処理の実行状態が示される。
 図2および図3を参照して、時刻t10になるまでは、充電ケーブル300は、車両10および外部電源402のいずれにも接続されていない状態である。この状態においては、スイッチSW1,SW2およびCCIDリレー332はオフの状態であり、パイロット信号CPLTの電位は0Vである。また、接続信号CNCTの電位は、V11(>0V)である。
 時刻t10において、充電ケーブル300のプラグ320が外部電源402のコンセント400に接続されると、コントロールパイロット回路334がパイロット信号CPLTを発生する。
 なお、この時刻t10では、充電ケーブル300のコネクタ310はインレット270に接続されていない。また、パイロット信号CPLTの電位はV1(たとえば12V)であり、パイロット信号CPLTは非発振状態である。
 時刻t11において、コネクタ310がインレット270に接続されると、接続検知回路312によって、接続信号CNCTの電位が低下する。
 そして、CPU508は、接続信号CNCTの電位が低下したことを検出することによって、コネクタ310とインレット270との接続を検出する。それに応じて、CPU508によって制御信号S1が活性化されて、スイッチSW1がオンされる。そうすると、抵抗回路502のプルダウン抵抗R1によってパイロット信号CPLTの電位はV2(たとえば9V)に低下する。
 時刻t12において、CCID制御部610によってパイロット信号CPLTの電位がV2に低下したことが検出される。これに応じて、CCID制御部610は、パイロット信号CPLTを発振周期Tchr(=1/Fchr)で発振させる。なお、Fchrは発振周波数を示す。
 CPU508は、パイロット信号CPLTが発振されたことを検出すると、上述のようにパイロット信号CPLTのデューティによって、充電ケーブル300の定格電流を検出する。
 そして、CPU508は充電動作を開始するために制御信号S2を活性化させてスイッチSW2をオンする。これに応じて、プルダウン抵抗R2によって、パイロット信号CPLTの電位がV3(たとえば6V)に低下する(図3中の時刻t13)。
 このパイロット信号CPLTの電位がV3に低下したことが、CCID制御部610によって検出されると、時刻t14においてCCIDリレー332の接点が閉じられて、外部電源402からの電力が充電ケーブル300を介して車両10に伝達される。
 その後、車両10において交流電圧VACが検出されると、CPU508によってリレー155(図1)の接点が閉じられるとともに、電力変換装置160(図1)が制御されることによって、蓄電装置150(図1)の充電が開始される(図3中の時刻t15)。
 蓄電装置150の充電が進み、蓄電装置150が満充電となったことが判定されると、CPU508は充電処理を終了する(図3中の時刻t16)。そして、CPU508は、制御信号S2を非活性化してスイッチSW2を非導通状態とする(図3中の時刻t17)。これによって、パイロット信号CPLTの電位がV2となり、それに応じて充電処理が停止されるとともにCCIDリレー332が非導通状態とされて(時刻t18)、充電動作が終了する。その後、CPU508が、制御信号S1を非活性化してスイッチSW1を非導通状態とすることによって、システムが遮断される。
 [実施の形態1]
 上記のように外部充電が可能な車両では、商用電源などの車両外部の電源からの電力を車両の蓄電装置に蓄えることが可能である。
 一方で、いわゆるスマートグリッドのように、車両を電力供給源として考え、車両に蓄えられた電力を車両外部の電気機器や電力網へ供給することが検討されている。また、キャンプや屋外での作業などで電気機器を使用する場合の電源として、車両が使用される場合もある。
 この場合、図4に示されるように、外部充電を行なう際に用いる充電ケーブル300を利用して車両からの電力供給を行なうことができれば、電気機器接続用のアウトレットを別個に設ける必要がなく車両側の改造の必要性が不要または削減できるだけでなく、給電専用の電力ケーブルを準備する必要がないので好適である。
 そこで、実施の形態1においては、図4の下段に示されるように、外部充電の際に用いる充電ケーブル300のプラグ320、および車両外部の電気機器700の電源プラグ710が接続可能であり、充電ケーブル300を介して車両10からの電力を車両外部の電気機器700へ給電(以下、「外部給電」とも称する。)可能とするための変換用のアダプタ800を提供する。
 このアダプタ800を接続することによって、以下で説明されるように、車両10の電力変換装置160で、電力源である蓄電装置150に蓄積された直流電力を電気機器700が使用可能な交流電力(たとえば、AC100V,200Vなど)に変換し、変化された電力を電気機器700へ供給する。
 なお、車両10の電力源としては、上記の蓄電装置150の他に、図1に示したようなエンジン140を有するハイブリッド自動車の場合は、電力源にはエンジン140およびモータジェネレータ120が含まれる。この場合には、エンジン140によってモータジェネレータ120を駆動して発生された発電電力(交流電力)を、モータ駆動装置180および電力変換装置160を用いて、電気機器700が使用可能な交流電力に変換し、電気機器700へ電力を供給する。さらに、図1には図示しないが、車両10に含まれる補機装置に電源電圧を供給するための補機バッテリからの電力を用いることも可能である。あるいは、車両10が燃料電池車の場合には、燃料電池によって発電された電力を供給することも可能である。
 したがって、実施の形態1において、電力変換装置160は、上述した外部電源402からの電力を蓄電装置150への充電電力に変換する機能に加えて、車両10に蓄えられた電力、および/または、車両10で生成された電力を外部の電気機器700の駆動電力に変換する機能を有することが必要である。なお、電力変換装置160として、外部充電と外部給電の双方向の電力変換動作が可能な1つの電力変換装置を設けるようにしてもよいし、外部充電を専用に行なう電力変換装置と、外部給電を専用に行なう電力変換装置とを個別に設けるようにしてもよい。
 図5は、図4で説明したような、外部給電を行なう際に用いるアダプタ800の例を示す概略図である。
 図4および図5を参照して、アダプタ800は、充電ケーブル300のプラグ320を接続するための接続部801と、外部電気機器700の電源プラグ710を接続するための接続部805とを有する。
 充電ケーブル300側の接続部801には、プラグ320の端子が接続される端子部802が設けられる。また、接続部801には、アダプタ800とプラグ320との接続を表わす信号を伝達するための端子803がさらに設けられる。プラグ320には、図6に示されるように、端子803に対応した端子部322が設けられる。そして、プラグ320とアダプタ800とを接続した場合に、端子803と端子部322とが電気的に結合される。
 また、電気機器700側の接続部805には、電気機器700の電源プラグ710の端子形状に対応した端子部806が設けられる。この端子部806の形状は、たとえば、使用する電圧(100V,200Vなど)や、使用する国の規格に適合した形状とされる。
 なお、図5においては、接続部801,805は同じ筐体内に収納された一体構造となっている場合の例を示すが、たとえば、図7に示されるアダプタ800#のように、充電ケーブル300側のコネクタ810と、電気機器700側のコネクタ820とが分離され、それらが、電力伝達媒体であるケーブル830によって結合されるような構成とすることもできる。
 次に、アダプタ800を用い、充電ケーブル300を用いて車両10から電気機器700へ給電する際の回路構成について説明する。
 図8は、実施の形態1に従うアダプタ800を用いて給電を行なう場合の回路の詳細図である。車両10の構成は図2と同様であり、図8においては車両10および充電ケーブル300における構成要素の一部は図示されていない。なお、図8において、図2と重複する要素の説明は繰り返さない。
 図8を参照して、アダプタ800は、接続部801,805に加えて、信号生成部850を備える。
 信号生成部850は、アダプタ800に充電ケーブル300のプラグ320が接続されると、充電ケーブル300の信号線L4に電気的に接続される。信号生成部850は、信号線L4に接続されると、充電ケーブル300のCCID制御部610に対して、充電ケーブル300とアダプタ800との接続を示す信号CNCT2を提供する。なお、信号生成部850の具体的な例は図15以降で説明するが、CPUを有する制御装置であってもよいし、所望の機能を発揮する制御回路であってもよい。信号生成部850が駆動用の電源電圧を必要とする場合には、当該電源電圧は、アダプタ800に内蔵されたバッテリ(図示せず)から供給される。
 CCID制御部610は、信号生成部850からの信号CNCT2に基づいて、充電ケーブル300とアダプタ800とが接続されているか否かを判定する。CCID制御部610は、充電ケーブル300とアダプタ800とが接続されていると判定した場合には、パイロット信号CPLTを、外部充電時とは異なる周波数および/または電位を用いて車両ECU170へ出力する。これによって、CCID制御部610は、車両ECU170へ、給電動作を行なわせることができる。
 図9は、実施の形態1における給電制御を説明するためのタイムチャートである。図9の横軸には時間が示され、縦軸にはアダプタ800の接続状態、パイロット信号CPLTの電位、接続信号CNCTの電位、接続信号CNCT2の状態、スイッチSW1,SW2の状態、CCIDリレー332の状態、および給電処理の実行状態が示される。
 図8および図9を参照して、時刻t20までは、充電ケーブル300はインレット270に接続されていない状態である。この状態においては、スイッチSW1,SW2およびCCIDリレー332はオフの状態であり、パイロット信号CPLTの電位は0Vである。また、接続信号CNCTの電位は、V11(>0V)であり、接続信号CNCT2はオフの状態である。
 時刻t20において、充電ケーブル300がインレット270に接続されると、CCID330はパイロット信号CPLTを発生する。なお、この時刻t20では、パイロット信号CPLTの電位はV1(たとえば12V)であり、パイロット信号CPLTは非発振状態である。
 また、充電ケーブル300が接続されると、接続検知回路312によって、接続信号CNCTの電位が低下する。CPU508は、接続信号CNCTの電位が低下したことを検出することによって、充電ケーブル300がインレット270へ接続されたことを検出する。それに応じて、CPU508によって制御信号S1が活性化されてスイッチSW1がオンされる(時刻t21)。そうすると、図3での説明と同様に、抵抗回路502のプルダウン抵抗R1によってパイロット信号CPLTの電位はV2(たとえば9V)に低下する。
 時刻t22において、アダプタ800に充電ケーブル300のプラグ320が接続されると、アダプタ800の信号生成部850がオンの状態になる。これによって、CCID制御部610は、アダプタ800に充電ケーブル300のプラグ320が接続されたことを認識する。これに応答して、CCID制御部610は、図3の外部充電の場合における発振周期Tchrよりも長い発振周期Tsup(=1/Fsup)で、パイロット信号CPLTを発振させる。すなわち、Tchr<Tsup(Fchr>Fsup)である。さらに時刻t22において、CCID制御部610は、CCIDリレー332を閉成する。
 CPU508は、パイロット信号CPLTが発振されたことを検出するが、上述のように、給電動作の場合にCCID330から出力されるパイロット信号CPLTの発振周波数Fsupは充電動作の場合の発振周波数Fchrより低いので、この発振周波数の違いに基づいて、CPU508は、充電ケーブル300にアダプタ800が接続されたこと、および給電動作が指示されたことを認識する。
 そして、CPU508は、リレー155の接点を閉じるとともに、電力変換装置160(図1)を制御することによって、蓄電装置150(図1)から電気機器700への電力の供給を開始する(時刻t23)。
 その後、時刻t24において、充電ケーブル300からアダプタ800が切り離されて接続信号CNCT2がオフになると、CCID制御部610によってパイロット信号CPLTの発振が停止される(時刻t25)。これに応答して、CPU508は給電処理を停止するとともに、スイッチSW1をオフとする(時刻t26)。その後、時刻t27にて、CCID制御部610によりCCIDリレー332が遮断される。
 図10は、実施の形態1において、CCID制御部610で実行される、パイロット信号CPLTの周波数選択制御処理を説明するためのフローチャートである。図10および以降で説明される図13,21のフローチャートは、CCID制御部610に予め格納されたプログラムが所定周期で実行されることによって処理が実現される。あるいは、一部のステップについては、専用のハードウェア(電子回路)を構築して処理を実現することも可能である。
 図8および図10を参照して、CCID制御部610は、ステップ(以下、ステップをSと略す。)300にて、接続信号CNCT2を取得する。そして、CCID制御部610は、S310にて、接続信号CNCT2がオンであるか否か、すなわち充電ケーブル300とアダプタ800とが接続されたか否かを判定する。なお、後述するように、充電ケーブル300とアダプタ800との接続により、接続信号CNCT2の電位が変化するような場合には、このS310においては、CCID制御部610は、接続信号CNCT2の電位が所定のレベルに変化したことによって、接続信号CNCT2がオンとなったと判定する。
 接続信号CNCT2がオフの場合(S310にてNO)は、CCID制御部610は、アダプタ800が充電ケーブル300に接続されておらず、通常の外部充電のモードであると認識する。そして、CCID制御部610は、S330にて、パイロット信号CPLTの発振周波数Fcpltを、外部充電を行なうための周波数Fchrに設定して、パイロット信号CPLTを発振させる。
 一方、接続信号CNCT2がオンの場合(S310にてYES)は、CCID制御部610は、アダプタ800が充電ケーブル300に接続されており、外部給電を行なうモードであると認識する。そして、CCID制御部610は、S320にて、パイロット信号CPLTの発振周波数Fcpltを、外部充電の場合の周波数Fchrより低い周波数Fsup(Fsup<Fchr)に設定して、パイロット信号CPLTを発振させる。
 図11は、実施の形態1において、車両ECU170で実行される、充電処理および給電処理の切換制御処理を説明するためのフローチャートである。図11および以降で説明される図14,24のフローチャートは、車両ECU170のCPU508に予め格納されたプログラムが所定周期で実行されることによって処理が実現される。あるいは、一部のステップについては、専用のハードウェア(電子回路)を構築して処理を実現することも可能である。
 図8および図11を参照して、CPU508は、S100にて、パイロット信号CPLTが発振しているか否かを判定する。
 パイロット信号CPLTが発振していない場合(S100にてNO)は、充電ケーブル300がインレット270に接続されていないので、CPU508は処理を終了する。
 パイロット信号CPLTが発振している場合(S100にてYES)は、CPU508は、充電ケーブル300がインレット270に接続されていることを認識し、S110にて、パイロット信号CPLTの発振周波数Fcpltを取得する。
 次に、CPU508は、S120にて、取得した発振周波数Fcpltが、充電動作の場合の発振周波数Fchrであるか否かを判定する。なお、S120における判定においては、取得した発振周波数Fcpltが充電動作時の発振周波数Fchrと完全に一致している必要はなく、発振周波数Fcpltと発振周波数Fchrとの差が所定の範囲内に入っていればよい(|Fcplt-Fchr|<α1)。
 発振周波数Fcpltが発振周波数Fchrである場合(S120にてYES)は、CPU508は、充電ケーブル300にアダプタ800が接続されていないと認識する。そして、処理がS130に処理が進められて、CPU508は、図3で説明したような充電処理を実行する。
 一方、発振周波数Fcpltが発振周波数Fchrでない場合(S120にてNO)は、処理がS140に進められて、CPU508は、取得した発振周波数Fcpltが、給電動作時の発振周波数Fsupであるか否かを判定する。なお、この場合にも、S120での判定の場合と同様に、取得した発振周波数Fcpltが給電動作時の発振周波数Fsupと完全に一致している必要はなく、発振周波数Fcpltと発振周波数Fsupとの差が所定の範囲内に入っていればよい(|Fcplt-Fsup|<α2)。
 発振周波数Fcpltが発振周波数Fsupである場合(S140にてYES)は、CPU508は、充電ケーブル300にアダプタ800が接続されていると認識する。そして、処理がS150に進められ、図9で説明したような給電処理を実行する。
 一方、発振周波数Fcpltが発振周波数Fsupでない場合(S140にてNO)は、CPU508は、充電動作であるか給電動作であるかが判定できないため、処理を終了する。
 このような処理に従って制御を行なうことによって、外部充電が可能な車両において、充電ケーブル用の変換アダプタを用いて、充電ケーブルにより車両からの電力を車両外部の電気機器に供給することができる。
 なお、上記の例では、アダプタ800が充電ケーブル300に接続された場合のパイロット信号CPLTの発振周波数Fsupが、アダプタ800が充電ケーブル300に接続されていない場合の発振周波数Fchrより小さい場合(すなわち、発振周期が長い場合)について説明したが、それとは逆に、発振周波数Fsupが発振周波数Fchrより大きくなるように設定してもよい。
 [実施の形態1の変形例]
 上記の実施の形態1においては、アダプタが充電ケーブルに接続された場合と、接続されない場合とで、パイロット信号CPLTの発振周波数を変更することによって、車両側のCPUに、充電動作を行なわせるか給電操作をおこなわせるかを認識させる構成について説明した。
 実施の形態1の変形例においては、パイロット信号CPLTの周波数に代えて、パイロット信号CPLTの電位を充電動作時に用いる電位とは異なる電位とすることによって、充電動作と給電動作のいずれを実行するかを認識させる構成について説明する。
 図12は、実施の形態1の変形例における給電時の制御を説明するためのタイムチャートである。図12においては、実施の形態1の図9と同様に、横軸には時間が示され、縦軸にはアダプタ800の接続状態、パイロット信号CPLTの電位、接続信号CNCTの電位、接続信号CNCT2の状態、スイッチSW1,SW2の状態、CCIDリレー332の状態、および給電処理の実行状態が示される。
 図8および図12を参照して、時刻t30にて、充電ケーブル300がインレット270に接続されると、CCID330はパイロット信号CPLTを発生する。なお、この時刻t30では、パイロット信号CPLTの電位はV1(たとえば12V)であり、パイロット信号CPLTは非発振状態である。
 また、充電ケーブル300が接続されると、接続検知回路312によって、接続信号CNCTの電位が低下する。CPU508は、接続信号CNCTの電位が低下したことを検出することによって、充電ケーブル300がインレット270へ接続されたことを検出する。それに応じて、CPU508によって制御信号S1が活性化されてスイッチSW1がオンされる(時刻t31)。そうすると、図3での説明と同様に、抵抗回路502のプルダウン抵抗R1によってパイロット信号CPLTの電位はV2(たとえば9V)に低下する。
 時刻t32において、アダプタ800に充電ケーブル300のプラグ320が接続されると、アダプタ800の信号生成部850がオンの状態になる。これによって、CCID制御部610は、アダプタ800に充電ケーブル300のプラグ320が接続されたことを認識する。これに応答して、CCID制御部610は、パイロット信号CPLTの電位を、充電ケーブル300が接続された場合の電位V1よりも大きい電位V4(たとえば、15V)として出力する。車両ECU170のCPU508は、パイロット信号CPLTの電位がV4であることを検出することによって、アダプタ800が充電ケーブル300に接続されたことを認識する。なお、このとき、スイッチSW1の制御信号S1については、活性化されたままでもよいし、非活性にされてもよい。
 そして、CCID制御部610はパイロット信号CPLTを発振させる。このときの発振周波数は、すでにパイロット信号CPLTの電位によってアダプタ800が接続されていることを認識できているので、外部充電の場合と同様の発振周期Tchrと同じであってもよいし、異なっていてもよい。その後、CCID制御部610は、CCIDリレー332を閉成する。
 CPU508は、パイロット信号CPLTの発振を検出すると、リレー155および電力変換装置160を制御することによって、電気機器700への給電動作を実行する(図12の時刻t33)。
 その後、時刻t34にて、ユーザによって、アダプタ800が充電ケーブル300から切り離されると、CCID制御部610は、パイロット信号CPLTの発振を停止する。これに応答して、CPU508によって給電処理が終了される(図12の時刻t35)とともに、CCID制御部610によってCCIDリレー332が開放される(図12の時刻t36)。
 図13は、実施の形態1の変形例において、CCID制御部610で実行される、パイロット信号CPLTの電圧選択制御処理を説明するためのフローチャートである。図13は、実施の形態1の図10で説明したフローチャートの、ステップS320,S330が、それぞれS320A,S330Aに置き換わったものとなっている。図13において、図10と重複するステップの説明は繰り返さない。
 図8および図13を参照して、接続信号CNCT2がオフである、すなわち、アダプタ800が充電ケーブル300に接続されていないと判定された場合(S310にてNO)は、S330Aにて、CCID制御部610は、パイロット信号CPLTの電位Vcpltを、外部充電を行なうための電位V1に設定してパイロット信号CPLTを発振させる。
 一方、接続信号CNCT2がオンである、すなわち、アダプタ800が充電ケーブル300に接続されていると判定された場合(S310にてNO)は、CCID制御部610は、S320Aにて、パイロット信号CPLTの電位Vcpltを、外部給電を行なうための電位V4に設定してパイロット信号CPLTを発振させる。
 図14は、実施の形態1の変形例において、車両ECU170で実行される、充電処理および給電処理の切換制御処理を説明するためのフローチャートである。
 図8および図14を参照して、CPU508は、S200にて、接続信号CNCTの電位が低下しているか否かを判定する。
 接続信号CNCTの電位が低下していない場合(S200にてNO)は、充電ケーブル300がインレット270に接続されていないので、CPU508は処理を終了する。
 接続信号CNCTの電位が低下している場合(S200にてYES)は、処理がS210に進められて、CPU508は、パイロット信号CPLTの電位Vcpltを取得する。
 次に、CPU508は、S220にて、取得した電位Vcpltが、充電動作時の電位V1以下であるか否か(Vcplt≦V1)を判定する。
 電位VcpltがV1以下である場合(S220にてYES)は、CPU508は、充電ケーブル300にアダプタ800が接続されていないと認識する。そして、処理がS230に処理が進められて、CPU508は、図3で説明したような充電処理を実行する。
 一方、電位VcpltがV1より大きい場合(S220にてNO)は、充電ケーブル300にアダプタ800が接続されていると認識する。そして、処理がS240に進められて、CPU508は、図11で説明したような給電処理を実行する。
 このような処理に従って制御を行なうことによって、外部充電が可能な車両において、充電ケーブル用の変換アダプタを用いて、充電ケーブルにより車両からの電力を車両外部の電気機器に供給することができる。
 [信号生成部の具体例]
 上記においては、アダプタに含まれる信号生成部は、アダプタと充電ケーブルとが接続されているときにオンの信号を出力し、アダプタと充電ケーブルとが接続されていないときにオフの信号を出力するような制御回路である場合について説明した。次に、図15~図22を用いて、アダプタに含まれる信号生成部の具体例のバリエーションについて説明する。
 (例1)
 図15は、抵抗R30を有する信号生成部850Aを含むアダプタ800Aを説明するための図である。
 図15を参照して、充電ケーブル300における信号線L4には、プルアップ抵抗R21を介して電源ノード616から電源が供給される。アダプタ800Aが充電ケーブル300に接続されていないときは、信号線L4の電位は、電源ノード616によって定められる電位となる。
 アダプタ800Aが充電ケーブル300に接続されると、信号線L4は、信号生成部850Aに含まれる抵抗R30を介して接地に接続される。これによって、信号線L4の電位は、電源ノード616の電位を抵抗R21,R30で分圧した電位に低下する。
 CCID制御部610は、このような信号線L4の電位の変化を検出することによって、アダプタ800Aが充電ケーブル300に接続されたことを検出する。
 (例2)
 図16は、スイッチSW10を有する信号生成部850Bを含むアダプタ800Bを説明するための図である。
 図16を参照して、図15と同様に、充電ケーブル300における信号線L4には、プルアップ抵抗R21を介して電源ノード616から電源が供給される。アダプタ800Bが充電ケーブル300に接続されていないときは、信号線L4の電位は、電源ノード616によって定められる電位となる。
 アダプタ800Bが充電ケーブル300に接続されると、信号線L4は、信号生成部850Bに含まれるスイッチSW10を介して接地に接続される。これにより、信号線L4の電位は接地電位まで低下する。
 CCID制御部610は、このような信号線L4の電位の変化を検出することによって、アダプタ800Bが充電ケーブル300に接続されたことを検出する。
 (例3)
 図17は、信号生成部として、充電ケーブル300に含まれる切換部であるスイッチ321を動作させる作動部材860を有するアダプタ800Cを説明するための図である。
 図17を参照して、信号線L4は、プラグ320に含まれるスイッチ321を介して、充電ケーブル300内において接地に接続される。また、信号線L4には、図15と同様に、充電ケーブル300における信号線L4には、プルアップ抵抗R21を介して電源ノード616から電源が供給される。
 スイッチ321は、たとえば、アダプタ800Cが充電ケーブル300に接続されていない状態で接点が閉成される。したがって、アダプタ800Cが未接続の場合には、信号線L4の電位は接地電位となる。
 作動部材860は、図5のアダプタ800で示された端子803に代えて設けられる、たとえば棒状の部材である。作動部材860は、アダプタ800Cが充電ケーブル300のプラグ320と接続されると、プラグ320内のスイッチ321の接点を直接または間接的に開放する。これによって、信号線L4が接地から切り離される。そうすると、信号線L4の電位が、接地電位から電源ノード616によって定められる電位に上昇する。
 CCID制御部610は、このような信号線L4の電位の変化を検出することによって、アダプタ800Cが充電ケーブル300に接続されたことを検出する。
 なお、図17においては、スイッチ321は、充電ケーブル300にアダプタ800Cが非接続のときに閉成されアダプタ800Cが接続のときに開放される構成であったが、それとは反対に、充電ケーブル300にアダプタ800Cが非接続のときに開放されアダプタ800Cが接続のときに閉成される構成としてもよい。
 (例4)
 図18は、信号生成部としてバイパス回路870が設けられるアダプタ800Dを説明するための図である。
 図18を参照して、バイパス回路870は、車両10から電気機器700への電力線341の一方と接地との間に電気的に接続される。また、バイパス回路870は、アダプタ800Dが充電ケーブル300と接続されると、充電ケーブル300の信号線L4とも接続される。
 バイパス回路870は、たとえば、図19に示される回路871、あるいは図20に示される回路872のような構成を有する。
 図19に示される回路871は、電力線341の一方および信号線L4にそれぞれ電気的に接続される端子50,51の間に直列に接続された抵抗R50,R51を含む。抵抗R50,R51の接続ノードは接地に接続される。
 また、図20に示される回路872は、端子50と接地との間に直列に接続された、コイルL50、コンデンサC50、および抵抗R55を含む。コンデンサC50および抵抗R55の接続ノードは、端子51に接続される。
 図18を再び参照して、このような構成において、CCID制御部610は、バイパス回路870が接続される電力線に対して高周波信号Vinを印加する。電力線341が通電されている場合には、その電源電圧に高周波信号Vinが重畳される。
 バイパス回路870は、図19および図20に示すような回路によって、高周波信号Vinに対応した信号Voutを生成する。そして、この生成された信号Voutが、信号線L4を通して、CCID制御部610に伝達される。
 CCID制御部610は、信号線L4において、バイパス回路870で生成された信号Voutを検出することによって、アダプタ800Dが充電ケーブル300に接続されたことを検出する。
 図21は、図18に示すバイパス回路870を用いた場合の、CCID制御部610で実行される、パイロット信号CPLTの周波数選択制御処理を説明するためのフローチャートである。
 図18および図21を参照して、CCID制御部610は、S400にて、継続的にまたは所定の期間ごとに、一方の電力線に対して高周波信号Vinを印加する。そして、CCID制御部610は、S410にて、高周波信号Vinを印加している間に、信号線L4において、バイパス回路870からの出力信号Voutの有無を検出する。
 出力信号Voutが検出されない場合(S410にてNO)は、CCID制御部610は、アダプタ800Dが充電ケーブル300に接続されていないと認識する。そして、処理がS440に進められ、CCID制御部610は、パイロット信号CPLTの発振周波数Fcpltを、外部充電を行なうための周波数Fchrに設定してパイロット信号CPLTを発振させる。
 一方、出力信号Voutが検出された場合(S410にてYES)は、CCID制御部610は、アダプタ800Dが充電ケーブル300に接続されていると認識する。そして、処理がS430に進められ、CCID制御部610は、パイロット信号CPLTの発振周波数Fcpltを、外部充電の場合の周波数Fchrより低い周波数Fsup(Fsup<Fchr)に設定してパイロット信号CPLTを発振させる。
 車両ECU170においては、図11で説明したように、パイロット信号CPLTの発振周波数Fcpltに基づいて、充電処理と給電処理とが切換えられる。
 (例5)
 図22は、信号生成部としてフィルタ回路870Aが設けられるアダプタ800Eを説明するための図である。
 図22を参照して、フィルタ回路870Aは、車両10と電気機器700とを結ぶ電力線341の間に電気的に接続される。フィルタ回路870Aは、たとえば、電力線341により伝達される電源周波数よりも高い特定の周波数の信号を通過させる、ハイパスフィルタあるいはバンドパスフィルタである。このため、フィルタ回路870Aは、一方の電力線に印加された高周波信号を、他方の電力線へ通過させることができる。
 CCID制御部610は、一方の電力線に対して高周波信号を印加する。このとき、アダプタ800Eが充電ケーブル300に接続されている場合は、印加された高周波信号がフィルタ回路870Aにより通過され。他方の電力線341に現れる。したがって、CCID制御部610は、一方の電力線に対して高周波信号を印加している間に、他方の電力線においてこの高周波信号を検出することによって、アダプタ800Eが充電ケーブル300に接続されていることを検出する。
 [実施の形態2]
 実施の形態1においては、充電ケーブルに備えられたCCIDによって、充電ケーブルにアダプタが接続されていることを検出し、CCIDから出力されるパイロット信号の周波数および/または電位を変化させることによって、充電動作と給電動作とを切換える構成について説明した。
 しかしながら、外部充電を行なう場合の充電ケーブルとして、このCCIDが備えられないものが用いられる場合がある。
 そこで、実施の形態2においては、CCIDを有さない充電ケーブルを用いて車両からの電力を、車両外部の電気機器へ供給する構成について説明する。
 図23は、実施の形態2において、アダプタ800Fを用いることによって、充電ケーブル300Aにより給電を行なう場合の回路の詳細図である。
 図23を参照して、充電ケーブル300Aは、実施の形態1において説明した充電ケーブル300のようなCCID330を有しない。そのため、車両ECU170のCPU508には、パイロット信号CPLTは入力されない。
 このような構成において、外部充電を行なう場合には、車両ECU170は、一般的に、接続信号CNCTと、外部電源から電力線ACL1,ACL2間に供給される電源電圧の有無とによって、充電動作を行なうか否かを決定する。
 アダプタ800Fに含まれる信号生成部850Cは、充電ケーブル300A内の信号線L5を介して車両ECU170のCPU508と直接接続され、CPU508に接続信号CNCT2を提供する。CPU508は、接続信号CNCT2に基づいて、アダプタ800Fが充電ケーブル300Aに接続されていることを検出して、充電動作と給電動作とを切換える。
 図24は、実施の形態2において、車両ECU170で実行される、充電処理および給電処理の切換制御処理を説明するためのフローチャートである。
 図24を参照して、車両ECU170のCPU508は、S500にてアダプタ800Fからの接続信号CNCT2を取得する。CPU508は、S510にて、接続信号CNCT2がオンであるか否かを判定する。
 接続信号CNCT2がオフの場合(S510にてNO)は、処理がS530に進められ、CPU508は、充電処理を実行する。
 一方、接続信号CNCT2がオンの場合(S510にてYES)は、処理がS520に進められ、CPU508は、給電処理を実行する。
 なお、上記の信号生成部850Cの具体的な構成としては、上述の具体例のバリエーションが適用可能である。
 あるいは、信号生成部850Cは、充電ケーブル300におけるCCID330のパイロット信号CPLTに相当する信号が出力可能な制御回路を有するものであってもよい。この場合には、充電ケーブル300Aの信号線L5は、インレット270において、コントロールパイロット線L1に接続される。そして、信号生成部850Cは、実施の形態1で説明したように、外部充電時に用いるパイロット信号の周波数Fchrとは異なる周波数Fsupを有する信号を、充電ケーブル300Aを介して車両ECU170へ出力する。この信号により、CPU508は、アダプタ800Fが充電ケーブル300Aに接続されていることを検出して、充電動作と給電動作とを切換える。
 以上のように、CCIDを有さない充電ケーブルの場合においても、アダプタに備えられた信号生成部からの信号を、直接車両ECUで検出することによって、充電ケーブルを用いて車両からの電力を外部の電気機器へ供給することが可能となる。
 今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなく、請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。
 10 車両、20 駆動部、50,51,803 端子、120 モータジェネレータ、130 駆動輪、140 エンジン、145 動力分割機構、150 蓄電装置、155,332 リレー、160 電力変換装置、170 車両ECU、180 モータ駆動装置、182,604,650 電圧センサ、270 インレット、300,300A 充電ケーブル、310,810,820 コネクタ、312 接続検知回路、320 プラグ、321,SW1,SW2,SW10 スイッチ、322,802,806 端子部、330 CCID、334 コントロールパイロット回路、340,340A,340B 電線部、341,ACL1,ACL2 電力線、400 コンセント、402 外部電源、502 抵抗回路、504,506 入力バッファ、508 CPU、511,616 電源ノード、512 車両アース、602 発振装置、606 電磁コイル、608 漏電検出器、610 CCID制御部、615 バッテリ、660 電流センサ、700 電気機器、710 電源プラグ、800,800A~800F アダプタ、801,805 接続部、830 ケーブル、850,850A~850C 信号生成部、860 作動部材、870 バイパス回路、870A フィルタ回路、871,872 回路、C50 コンデンサ、L1 コントロールパイロット線、L2 接地線、L3~L5 接続信号線、L50 コイル、R1,R2,R10,R20,R21,R30,R50,R51,R55 抵抗。

Claims (19)

  1.  充電ケーブル(300)を介して外部電源から供給された電力を用いて搭載された蓄電装置(150)を充電する外部充電が可能な車両(10)において、前記蓄電装置(150)を含む電力源(150;120,140)からの電力を、前記充電ケーブル(300)を用いて前記車両(10)外部の電気機器(700)に供給する際に用いるアダプタであって、
     外部充電時に前記充電ケーブル(300)において前記外部電源に接続される電源プラグ(320)を接続することが可能な第1の接続部(801,811)と、
     前記第1の接続部(801,811)と電気的に接続されるとともに、前記電気機器(700)の電源プラグ(710)を接続することが可能な第2の接続部(805,821)とを備える、アダプタ。
  2.  前記アダプタ(800,800#)と前記充電ケーブル(300)とが接続されることによって、給電を指示する信号を生じさせるように構成された信号生成部(850,850A,850B,850C,860,870,870A)をさらに備え、
     前記車両(10)は、前記給電を指示する信号に応答して、前記電力源(150;120,140)からの電力を、前記車両(10)に接続された前記充電ケーブル(300)を介して前記電気機器(700)に供給する、請求項1に記載のアダプタ。
  3.  前記車両(10)は、前記電力源(150;120,140)からの電力を変換して前記充電ケーブル(300)へ供給するための電力変換装置(160)と、前記電力変換装置(160)を制御するための第1の制御装置(170)とを含み、
     前記充電ケーブル(300)は、前記第1の制御装置(170)と信号の授受が可能な第2の制御装置(330)を含み、
     前記信号生成部(850,850A,850B,860,870,870A)は、前記アダプタ(800,800#)と前記充電ケーブル(300)とが接続されることによって、前記アダプタ(800,800#)と前記充電ケーブル(300)との接続を示す信号を前記第2の制御装置(330)へ供給して、前記第2の制御装置(330)に前記給電を指示する信号を前記第1の制御装置(170)へ出力させ、
     前記第1の制御装置(170)は、前記給電を指示する信号に応答して、前記電力変換装置(160)を駆動することによって、前記電力源(150;120,140)からの電力を前記電気機器(700)に供給する、請求項2に記載のアダプタ。
  4.  前記信号生成部(850A,850B,860)は、前記第2の制御装置(330)に接続される信号経路(L4)の電位を変化させることによって、前記アダプタ(800,800#)と前記充電ケーブル(300)との接続を示す信号を前記第2の制御装置(330)へ供給する、請求項3に記載のアダプタ。
  5.  前記信号生成部(850A)は、抵抗器(R30)を含み、前記アダプタ(800,800#)と前記充電ケーブル(300)とが接続されることによって、前記抵抗器(R30)を介して前記信号経路(L4)を接地に電気的に接続する、請求項4に記載のアダプタ。
  6.  前記信号生成部(850B)は、スイッチ(SW10)を含み、前記アダプタ(800,800#)と前記充電ケーブル(300)とが接続されることによって、前記スイッチ(SW10)を介して前記信号経路(L4)を接地に電気的に接続する、請求項4に記載のアダプタ。
  7.  前記充電ケーブル(300)は、前記信号経路(L4)と接地との間の導通と非導通とを切換えるように構成された切換部(321)を含み、
     前記信号生成部は、前記アダプタ(800,800#)と前記充電ケーブル(300)とが接続されることによって、前記切換部(321)の導通状態を変化させることができるように構成された作動部材(860)を含む、請求項4に記載のアダプタ。
  8.  前記切換部は、スイッチ(321)であり、
     前記スイッチ(321)は、前記アダプタ(800,800#)と前記充電ケーブル(300)とが接続されていない状態においては導通状態であり、
     前記作動部材(860)は、前記アダプタ(800,800#)が前記充電ケーブル(300)に接続されることによって、前記スイッチ(321)を非導通状態にする、請求項7に記載のアダプタ。
  9.  前記信号生成部(870,870A)は、前記第2の制御装置(330)から前記充電ケーブル(300)における一対の電力伝達経路を用いて伝送される信号の受信に応答した信号を、前記アダプタ(800,800#)と前記充電ケーブル(300)との接続を示す信号として前記第2の制御装置(330)に出力することによって、前記第2の制御装置(330)に前記給電を指示する信号を前記第1の制御装置(170)へ出力させる、請求項3に記載のアダプタ。
  10.  前記信号生成部は、前記第2の制御装置(330)から、前記一対の電力伝達経路のうちの一方の電力伝達経路に伝送される高周波信号の一部を分岐し、当該分岐された信号を前記第2の制御装置(330)に出力するように構成されたバイパス回路(870)を含む、請求項9に記載のアダプタ。
  11.  前記信号生成部は、前記第2の制御装置(330)から、前記一対の電力伝達経路のうちの一方の電力伝達経路に伝送される高周波信号を、他方の電力伝達経路に通過させるように構成されたフィルタ回路(870A)を含む、請求項9に記載のアダプタ。
  12.  前記給電を指示する信号は、外部充電が行なわれる際に、前記第2の制御装置(330)から前記第1の制御装置(170)へ前記充電ケーブル(300)の電流容量についての情報を伝達するために用いられるパイロット信号を利用して出力される、請求項3に記載のアダプタ。
  13.  前記給電を指示する信号は、外部充電の際に使用される前記パイロット信号の周波数とは異なる周波数を用いて出力される、請求項12に記載のアダプタ。
  14.  前記給電を指示する信号は、外部充電の際に使用される前記パイロット信号の電位とは異なる電位を用いて出力される、請求項12に記載のアダプタ。
  15.  前記車両(10)は、前記電力源(150;120,140)からの電力を変換して前記充電ケーブル(300)へ供給するための電力変換装置(160)と、前記電力変換装置(160)を制御するための制御装置(170)とを含み、
     前記信号生成部(850C)は、前記アダプタ(800,800#)と前記充電ケーブル(300)とが接続されることによって、前記充電ケーブル(300)に含まれる信号線(L5)を介して、前記給電を指示する信号を前記制御装置(170)へ出力し、
     前記制御装置(170)は、前記給電を指示する信号に応答して、前記電力変換装置(160)を駆動することによって、前記電力源(150;120,140)からの電力を前記電気機器(700)に供給する、請求項2に記載のアダプタ。
  16.  前記信号生成部(850C)は、前記制御装置(170)から前記充電ケーブル(300)の一対の電力伝達経路を通して伝送される信号の受信に応答した信号を、前記給電を指示する信号として前記制御装置(170)へ出力する、請求項15に記載のアダプタ。
  17.  充電ケーブル(300)を介して外部電源から供給された電力を用いて搭載された蓄電装置(150)を充電する外部充電が可能であり、かつ前記充電ケーブル(300)にアダプタ(800,800#)を接続することによって外部の電気機器(700)への給電が可能な車両であって、
     前記蓄電装置(150)を含む電力源(150;120,140)と、
     外部充電の際に前記充電ケーブル(300)を接続するためのインレット(270)と、
     前記電力源(150;120,140)からの電力を変換して前記インレット(270)へ供給するための電力変換装置(160)と、
     前記電力変換装置(160)を制御するための第1の制御装置(170)とを備え、
     前記アダプタ(800,800#)は、
     外部充電時に前記充電ケーブル(300)において前記外部電源に接続される電源プラグ(320)を接続することが可能な第1の接続部(801,811)と、
     前記第1の接続部(801,811)と電気的に接続されるとともに、前記電気機器(700)の電源プラグ(710)を接続することが可能な第2の接続部(805,821)とを含み、
     前記第1の制御装置(170)は、前記アダプタ(800,800#)と前記充電ケーブル(300)とが接続されることによって生じる給電を指示する信号の受信に応答して、前記電力変換装置(160)を駆動して前記電力源(150;120,140)からの電力を前記電気機器(700)に供給する、車両。
  18.  前記電力源は、
     内燃機関(140)と、
     前記内燃機関(140)によって駆動されることによって発電するように構成された回転電機(120)とをさらに含み、
     前記回転電機(120)によって発電された発電電力が、前記充電ケーブル(300)および前記アダプタ(800,800#)を介して前記電気機器(700)に供給される、請求項17に記載の車両。
  19.  充電ケーブル(300)を介して外部電源から供給された電力を用いて搭載された蓄電装置(150)を充電する外部充電が可能な車両(10)において、前記充電ケーブル(300)にアダプタ(800,800#)を接続することによって、前記蓄電装置(150)を含む電力源(150;120,140)からの電力を外部の電気機器(700)への給電する方法であって、
     前記車両(10)は、
     外部充電の際に前記充電ケーブル(300)を接続するためのインレット(270)と、
     前記電力源(150;120,140)からの電力を変換して前記インレット(270)へ供給するための電力変換装置(160)とを含み、
     前記アダプタ(800,800#)は、
     外部充電時に前記充電ケーブル(300)において前記外部電源に接続される電源プラグ(320)を接続することが可能な第1の接続部(801,811)と、
     前記第1の接続部(801,811)と電気的に接続されるとともに、前記電気機器(700)の電源プラグ(710)を接続することが可能な第2の接続部(805,821)とを含み、
     前記方法は、
     前記充電ケーブル(300)を前記インレット(270)に接続するステップと、
     前記アダプタ(800,800#)の前記第1の接続部(801,811)に前記充電ケーブル(300)を接続するステップと、
     前記電気機器(700)の電源プラグ(710)を前記アダプタ(800,800#)の前記第2の接続部(805,821)に接続するステップと、
     前記アダプタ(800,800#)と前記充電ケーブル(300)とが接続されることによって生じる、給電を指示する信号を受信するステップと、
     前記給電を指示する信号に応答して、前記電力変換装置(160)を制御することによって、前記電力源(150;120,140)からの電力を前記電気機器(700)へ供給するステップとを備える、方法。
PCT/JP2011/056947 2011-03-23 2011-03-23 アダプタ、ならびにそれを用いて電力供給を行なう車両および方法 WO2012127649A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2013505719A JP5708790B2 (ja) 2011-03-23 2011-03-23 アダプタ、ならびにそれを用いて電力供給を行なう車両および方法
CN201180069516.6A CN103444042B (zh) 2011-03-23 2011-03-23 适配器、使用该适配器进行电力供给的车辆以及方法
EP11861454.4A EP2690741B1 (en) 2011-03-23 2011-03-23 Adapter, and vehicle and method for supplying power using same
US14/005,353 US9614379B2 (en) 2011-03-23 2011-03-23 Adapter, and vehicle and method for performing power feeding using adapter
PCT/JP2011/056947 WO2012127649A1 (ja) 2011-03-23 2011-03-23 アダプタ、ならびにそれを用いて電力供給を行なう車両および方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2011/056947 WO2012127649A1 (ja) 2011-03-23 2011-03-23 アダプタ、ならびにそれを用いて電力供給を行なう車両および方法

Publications (1)

Publication Number Publication Date
WO2012127649A1 true WO2012127649A1 (ja) 2012-09-27

Family

ID=46878842

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/056947 WO2012127649A1 (ja) 2011-03-23 2011-03-23 アダプタ、ならびにそれを用いて電力供給を行なう車両および方法

Country Status (5)

Country Link
US (1) US9614379B2 (ja)
EP (1) EP2690741B1 (ja)
JP (1) JP5708790B2 (ja)
CN (1) CN103444042B (ja)
WO (1) WO2012127649A1 (ja)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014068782A1 (ja) * 2012-11-05 2014-05-08 トヨタ自動車株式会社 車両
JP5578274B2 (ja) * 2011-03-23 2014-08-27 トヨタ自動車株式会社 アダプタ、およびそれを用いて電力供給を行なう車両
WO2014143013A1 (en) * 2013-03-15 2014-09-18 Schneider Electric USA, Inc. Zone fault detection method and system for electric vehicle charging systems
JP2014193088A (ja) * 2013-03-28 2014-10-06 Toyota Motor Corp 電力伝達用ケーブル
WO2014167778A1 (ja) * 2013-04-12 2014-10-16 パナソニック株式会社 過電流検出装置、及び当該過電流検出装置を用いた充放電システム、分電盤、充電制御装置、車両用充放電装置、車両用電気機器
WO2014207531A3 (en) * 2013-06-28 2015-05-07 Toyota Jidosha Kabushiki Kaisha Vehicle and power receiving device
CN105075048A (zh) * 2013-04-01 2015-11-18 松下知识产权经营株式会社 系统保护装置、电路切换装置以及电力供给系统
EP2940827A4 (en) * 2012-12-26 2016-09-28 Mitsubishi Motors Corp POWER SUPPLY DEVICE FOR AN ELECTRIC VEHICLE
EP2991188A4 (en) * 2013-04-24 2016-12-14 Panasonic Ip Man Co Ltd ENERGY CONVERSION SYSTEM AND CONNECTOR

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103370838B (zh) * 2011-02-15 2016-01-06 丰田自动车株式会社 转接器及具备转接器的车辆、以及车辆的控制方法
JP5960966B2 (ja) 2011-10-21 2016-08-02 株式会社ケーヒン 電子制御装置
JP5852404B2 (ja) * 2011-10-21 2016-02-03 株式会社ケーヒン 電子制御装置
US9150108B2 (en) * 2012-04-16 2015-10-06 Ford Global Technologies, Llc High-frequency signal injection based high voltage interlock
WO2014147781A1 (ja) * 2013-03-21 2014-09-25 トヨタ自動車株式会社 車両
KR101728197B1 (ko) * 2013-07-22 2017-04-18 엘에스산전 주식회사 휴대용 충전기
CN103701166B (zh) * 2013-12-13 2016-06-01 郑州宇通客车股份有限公司 一种电动汽车及其交流充电车辆控制装置供电电路
JP6146435B2 (ja) * 2015-04-23 2017-06-14 トヨタ自動車株式会社 車両
WO2017165099A1 (en) * 2016-03-23 2017-09-28 Cooper Technologies Company Adapters for testing electrical equipment
CN108128176B (zh) * 2016-12-01 2020-02-07 比亚迪股份有限公司 一种电动汽车的充放电控制电路及电动车充放电连接装置
JP6992462B2 (ja) * 2017-12-08 2022-01-13 トヨタ自動車株式会社 外部給電システム及びその漏電検知方法
JP6996638B2 (ja) * 2018-09-26 2022-02-04 日産自動車株式会社 電動車両の制御方法、及び、電動車両システム
FR3090228B1 (fr) * 2018-12-13 2021-05-07 Renault Sas Dispositif d’alimentation en courant électrique utilisant une batterie d’accumulateurs de véhicule automobile
FR3089893B1 (fr) * 2018-12-14 2024-03-08 Renault Sas Système de commande d’alimentation autonome de charges pour un véhicule automobile
US11283228B2 (en) * 2019-11-12 2022-03-22 Toyota Motor Engineering And Manufacturing North America, Inc. Universal adapter for sensors
JP7512974B2 (ja) * 2021-08-16 2024-07-09 トヨタ自動車株式会社 車両制御装置、車両、電力供給システム、プログラムおよび電力供給方法
JP7512973B2 (ja) * 2021-08-16 2024-07-09 トヨタ自動車株式会社 車両制御装置、車両、電力供給システム、プログラム、放電コネクタおよび電力供給方法
DE102022129660A1 (de) 2022-11-09 2024-05-16 Webasto SE Adapter und Adapterbaugruppe

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007236173A (ja) * 2006-03-03 2007-09-13 Toyota Motor Corp 車両、電力授受方法および電気装置
JP2010035277A (ja) 2008-07-25 2010-02-12 Toyota Motor Corp 充放電システムおよび電動車両
WO2010097922A1 (ja) * 2009-02-26 2010-09-02 トヨタ自動車株式会社 プラグ変換アダプタ
JP2011015548A (ja) * 2009-07-02 2011-01-20 Toyota Motor Corp 電動車両

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040155625A1 (en) * 1995-02-17 2004-08-12 Floyd Herbert R. Two cordless activating chargers actuating one another about vehicles and performing the activation of other devices also
JPH09261887A (ja) * 1996-03-18 1997-10-03 Yazaki Corp 車両用電源分配装置における発電制御装置
FR2832262A1 (fr) 2001-11-09 2003-05-16 France Telecom Procede et dispositif d'alimentation en energie electrique d'un appareil
KR101433306B1 (ko) * 2006-03-15 2014-08-22 가부시키가이샤 한도오따이 에네루기 켄큐쇼 전력공급 시스템 및 자동차용 전력공급 시스템
US7642671B2 (en) * 2006-04-28 2010-01-05 Acco Brands Usa Llc Power supply system providing two output voltages
JP4305553B2 (ja) * 2007-10-23 2009-07-29 トヨタ自動車株式会社 電動車両
JP4332861B2 (ja) * 2008-01-16 2009-09-16 トヨタ自動車株式会社 車両の充電制御装置
JP5834229B2 (ja) * 2009-12-22 2015-12-16 パナソニックIpマネジメント株式会社 給電制御装置
US20130154553A1 (en) * 2011-02-22 2013-06-20 Daniel W. Steele Wireless Automated Vehicle Energizing System

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007236173A (ja) * 2006-03-03 2007-09-13 Toyota Motor Corp 車両、電力授受方法および電気装置
JP2010035277A (ja) 2008-07-25 2010-02-12 Toyota Motor Corp 充放電システムおよび電動車両
WO2010097922A1 (ja) * 2009-02-26 2010-09-02 トヨタ自動車株式会社 プラグ変換アダプタ
JP2011015548A (ja) * 2009-07-02 2011-01-20 Toyota Motor Corp 電動車両

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2690741A4

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5578274B2 (ja) * 2011-03-23 2014-08-27 トヨタ自動車株式会社 アダプタ、およびそれを用いて電力供給を行なう車両
WO2014068782A1 (ja) * 2012-11-05 2014-05-08 トヨタ自動車株式会社 車両
EP2940827A4 (en) * 2012-12-26 2016-09-28 Mitsubishi Motors Corp POWER SUPPLY DEVICE FOR AN ELECTRIC VEHICLE
US9841451B2 (en) 2013-03-15 2017-12-12 Schneider Electric USA, Inc. Zone fault detection method and system for electric vehicle charging systems
WO2014143013A1 (en) * 2013-03-15 2014-09-18 Schneider Electric USA, Inc. Zone fault detection method and system for electric vehicle charging systems
JP2014193088A (ja) * 2013-03-28 2014-10-06 Toyota Motor Corp 電力伝達用ケーブル
US10181753B2 (en) 2013-04-01 2019-01-15 Panasonic Intellectual Property Management Co., Ltd. Electric power system protection device, electric path switching device, and electric power supply system
CN105075048A (zh) * 2013-04-01 2015-11-18 松下知识产权经营株式会社 系统保护装置、电路切换装置以及电力供给系统
WO2014167778A1 (ja) * 2013-04-12 2014-10-16 パナソニック株式会社 過電流検出装置、及び当該過電流検出装置を用いた充放電システム、分電盤、充電制御装置、車両用充放電装置、車両用電気機器
JP2014207766A (ja) * 2013-04-12 2014-10-30 パナソニック株式会社 過電流検出装置、及び当該過電流検出装置を用いた充放電システム、分電盤、充電制御装置、車両用充放電装置、車両用電気機器
EP2991188A4 (en) * 2013-04-24 2016-12-14 Panasonic Ip Man Co Ltd ENERGY CONVERSION SYSTEM AND CONNECTOR
JPWO2014174842A1 (ja) * 2013-04-24 2017-02-23 パナソニックIpマネジメント株式会社 電力変換システム、コネクタ
US10536029B2 (en) 2013-04-24 2020-01-14 Panasonic Intellectual Property Management Co., Ltd. Power conversion system and connector
WO2014207531A3 (en) * 2013-06-28 2015-05-07 Toyota Jidosha Kabushiki Kaisha Vehicle and power receiving device

Also Published As

Publication number Publication date
US9614379B2 (en) 2017-04-04
JP5708790B2 (ja) 2015-04-30
CN103444042A (zh) 2013-12-11
CN103444042B (zh) 2016-08-17
EP2690741B1 (en) 2018-10-17
EP2690741A1 (en) 2014-01-29
JPWO2012127649A1 (ja) 2014-07-24
US20140002011A1 (en) 2014-01-02
EP2690741A4 (en) 2015-02-25

Similar Documents

Publication Publication Date Title
JP5708790B2 (ja) アダプタ、ならびにそれを用いて電力供給を行なう車両および方法
JP5601385B2 (ja) アダプタおよびそれを備える車両、ならびに車両の制御方法
JP6156484B2 (ja) 車両
JP5578274B2 (ja) アダプタ、およびそれを用いて電力供給を行なう車両
US9434257B2 (en) Power supply connector, vehicle and control method for vehicle
JP5099279B1 (ja) 給電コネクタ、車両および給電コネクタの認識方法
US10000137B2 (en) Hybrid vehicle with means for disconnection of a depleted auxiliary battery in order to allow for more rapid main battery charging
JP6044460B2 (ja) 車両の電源装置
JP2011035975A (ja) 車両および車両の制御方法
JP6015038B2 (ja) 車両および車両用制御方法
WO2015071712A1 (en) Charging and discharging system with connector lock
CN104584373A (zh) 车辆电力控制系统和电力控制方法
JP5757262B2 (ja) 空調装置およびそれを備える車両
JP2011200071A (ja) 車両の制御装置およびそれを搭載する車両

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11861454

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013505719

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14005353

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2011861454

Country of ref document: EP