Nothing Special   »   [go: up one dir, main page]

WO2012169626A1 - 太陽電池モジュール、太陽電池モジュールの製造方法、接着フィルムの貼り合わせ方法、接着フィルムの検査方法 - Google Patents

太陽電池モジュール、太陽電池モジュールの製造方法、接着フィルムの貼り合わせ方法、接着フィルムの検査方法 Download PDF

Info

Publication number
WO2012169626A1
WO2012169626A1 PCT/JP2012/064828 JP2012064828W WO2012169626A1 WO 2012169626 A1 WO2012169626 A1 WO 2012169626A1 JP 2012064828 W JP2012064828 W JP 2012064828W WO 2012169626 A1 WO2012169626 A1 WO 2012169626A1
Authority
WO
WIPO (PCT)
Prior art keywords
adhesive film
battery cell
solar battery
solar
solar cell
Prior art date
Application number
PCT/JP2012/064828
Other languages
English (en)
French (fr)
Inventor
貴啓 藤井
須賀 保博
秀昭 奥宮
明史 樋口
康正 新
Original Assignee
デクセリアルズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by デクセリアルズ株式会社 filed Critical デクセリアルズ株式会社
Priority to CN201280028117.XA priority Critical patent/CN103733351A/zh
Priority to EP12797499.6A priority patent/EP2722895A1/en
Priority to KR1020147000164A priority patent/KR20140040794A/ko
Publication of WO2012169626A1 publication Critical patent/WO2012169626A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/05Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells
    • H01L31/0504Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells specially adapted for series or parallel connection of solar cells in a module
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1876Particular processes or apparatus for batch treatment of the devices
    • H01L31/188Apparatus specially adapted for automatic interconnection of solar cells in a module
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Definitions

  • the present invention relates to a solar cell module in which a plurality of solar cells are connected by tab wires, and in particular, a solar cell module in which an adhesive film for adhering tab wires to solar cell electrodes is bonded onto the solar cell electrodes.
  • the present invention relates to a battery module manufacturing method, an adhesive film bonding method, and an adhesive film inspection method.
  • a plurality of adjacent solar cells are connected by a tab wire serving as an interconnector.
  • One end side of the tab wire is connected to the front surface electrode of one solar battery cell, and the other end side is connected to the back surface electrode of the adjacent solar battery cell, thereby connecting the solar battery cells in series.
  • one surface of the tab wire is bonded to the surface electrode of one solar cell, and the other surface of the other end is bonded to the back electrode of the adjacent solar cell.
  • a bus bar electrode is formed on the light receiving surface and an Ag electrode is formed on the back surface connection portion by screen printing of silver paste.
  • Al electrodes and Ag electrodes are formed in regions other than the connection portion on the back surface of the solar battery cell.
  • the tab wire is formed by providing a solder coat layer on both sides of the ribbon-like copper foil.
  • the tab wire is a rectangular copper wire having a width of 1 to 3 mm obtained by slitting a copper foil rolled to a thickness of about 0.05 to 0.2 mm or rolling a copper wire into a flat plate shape. It is formed by performing solder plating, dip soldering, or the like.
  • connection between the solar battery cell and the tab wire is performed by disposing the tab wire on each electrode of the solar battery cell and applying heat and pressure with a heating bonder to melt and cool the solder formed on the tab wire surface ( Patent Document 1).
  • a conductive adhesive film that can be connected by thermocompression treatment at a relatively low temperature is used to connect the front and back electrodes of the solar battery cell and the tab wire (Patent Document 2).
  • a conductive adhesive film a film obtained by dispersing spherical or scaly conductive particles having an average particle size on the order of several ⁇ m in a thermosetting binder resin composition is used.
  • the conductive adhesive film 50 is bonded to the front electrode and the back electrode, and then the tab wire 51 is superimposed and heated and pressed from above the tab wire 51 by a heating bonder.
  • the conductive adhesive film 50 has a binder resin that exhibits fluidity and flows out from between the electrode and the tab wire 51, and the conductive particles 54 are between the electrode 53 and the tab wire 51.
  • the binder resin is thermoset by being sandwiched and conducting between them. In this way, a string in which a plurality of solar cells 52 are connected in series by the tab wire 51 is formed.
  • the plurality of solar cells 52 in which the tab wire 51 and the front and back electrodes are connected using the conductive adhesive film 50 are made of a surface protecting material having translucency such as glass and translucent plastic, PET ( It is sealed with a light-transmitting sealing material such as ethylene vinyl acetate resin (EVA) between a back protective material made of a film such as Poly Ethylene Terephthalate).
  • a surface protecting material having translucency such as glass and translucent plastic, PET ( It is sealed with a light-transmitting sealing material such as ethylene vinyl acetate resin (EVA) between a back protective material made of a film such as Poly Ethylene Terephthalate).
  • EVA ethylene vinyl acetate resin
  • the bonding area between the tab wire 51 and the electrode 53 is reduced, and the mechanical connection strength and the electrical connection reliability are impaired.
  • the connection failure between the solar battery cell and the tab wire 51 becomes so large that it cannot withstand actual use, and the yield of the string itself is lowered. .
  • the conductive adhesive film 50 if the positional shift of the bonding position can be recognized, the conductive adhesive film 50 can be repaired again, and the solar cell and the tab wire 51 can be repaired. The occurrence of poor connection can be prevented.
  • the present invention provides a solar cell module capable of detecting a positional shift of a bonding position of an adhesive film to be bonded onto an electrode of a solar battery cell, a method for manufacturing a solar cell module, a method for bonding an adhesive film, and an inspection of an adhesive film It aims to provide a method.
  • a solar cell module includes a plurality of solar cells and adhesive films on electrodes formed on a light receiving surface of the solar cell and a back surface of an adjacent solar cell, respectively.
  • the adhesive film is identified as a color different from the color of the adhesive surface of the solar battery cell when image processing is performed. Color.
  • the manufacturing method of the solar cell module according to the present invention includes an adhesive film arranging step of temporarily adhering an adhesive film at a predetermined attachment position on the surface of the solar cell, and the solar cell on which the adhesive film is temporarily attached.
  • An imaging step for imaging the surface a detection step for detecting whether the adhesive film is temporarily attached at a predetermined position by performing image processing on image data on the surface of the solar cell, and a tab line for the solar cell
  • a tab line placement step of temporarily pasting from above the adhesive film to a predetermined pasting position on the surface, and a connection in which the tab wire is connected to the surface of the solar battery cell by the adhesive film by applying heat and pressure from above the tab line.
  • the adhesive film is a color that is identified as a color different from the color of the surface of the solar battery cell when the image data is image-processed.
  • Ri in the detection step, the position information of the adhesive film in the image processing after the solar cells on the surface, to detect whether it is temporarily attached to a predetermined position on the adhesive surface.
  • the bonding method of the adhesive film which concerns on this invention is the adhesive film arrangement
  • the color of the adhesive film on the surface of the solar cell after the image processing in the detection step is a color that is identified as a color different from the color of the surface of the solar cell when the image data is image-processed. From the position information, it is detected whether or not it is temporarily attached at a predetermined position on the bonding surface.
  • the inspection method of the adhesive film which concerns on this invention is the surface of the said photovoltaic cell by which the adhesive film arrangement
  • the image data is image-processed
  • the color is identified as a color different from the color of the solar battery cell surface, and in the detection step, the position of the adhesive film on the solar battery cell surface after image processing From the information, it is detected whether or not it is temporarily attached at a predetermined position on the adhesive surface.
  • the tab wire before the tab wire is connected, since the presence or absence of the positional deviation of the conductive adhesive film is detected, the tab wire can be completely overlapped with the conductive adhesive film for connection.
  • strength and electrical connection reliability of a tab wire can be maintained, and the yield of a string can be improved.
  • FIG. 1 is an exploded perspective view showing a solar cell module.
  • FIG. 2 is a cross-sectional view showing a string of solar cells.
  • FIG. 3 is a plan view showing a back electrode and a connection part of the solar battery cell.
  • FIG. 4 is a cross-sectional view showing a conductive adhesive film.
  • FIG. 5 is a diagram showing a conductive adhesive film wound in a reel shape.
  • FIG. 6 is a flowchart showing a manufacturing process of the solar cell module.
  • FIG. 7 is a side view showing a temporary sticking step of the conductive adhesive film.
  • FIG. 8 is a block diagram showing the configuration of the sticking position inspection apparatus.
  • 9A and 9B are diagrams showing binary images of solar cells.
  • FIGS. 10A and 10B are diagrams illustrating binarized images of solar cells according to the example.
  • 11A and 11B are diagrams illustrating binarized images of the bus barless solar cells according to the example.
  • 12A and 12B are diagrams illustrating a binarized image of a solar battery cell according to a comparative example.
  • FIG. 13A and FIG. 12B are diagrams showing binarized images of solar cells according to a comparative example.
  • 14A and 14B are diagrams showing binarized images of solar cells according to a comparative example.
  • FIG. 15 is a flowchart showing another manufacturing process of the solar cell module.
  • FIG. 16 is a perspective view showing a conventional solar cell module.
  • FIG. 17 is a cross-sectional view showing a tab wire connecting step in a conventional solar cell module.
  • a solar cell module 1 to which the present invention is applied has a string 4 in which a plurality of solar cells 2 are connected in series by a tab wire 3 serving as an interconnector.
  • a matrix 5 in which a plurality of 4 are arranged is provided.
  • the solar cell module 1 is laminated together with the front cover 7 provided on the light receiving surface side and the back sheet 8 provided on the back surface side, with the matrix 5 sandwiched between the sealing adhesive sheets 6.
  • a metal frame 9 such as aluminum is attached to the periphery.
  • sealing adhesive for example, a translucent sealing material such as ethylene vinyl acetate resin (EVA) is used.
  • EVA ethylene vinyl acetate resin
  • surface cover 7 for example, a light-transmitting material such as glass or light-transmitting plastic is used.
  • back sheet 8 a laminated body in which glass or aluminum foil is sandwiched between resin films is used.
  • Each solar cell 2 of the solar cell module 1 has a photoelectric conversion element 10.
  • the photoelectric conversion element 10 includes a single crystal silicon photoelectric conversion element, a crystalline silicon solar cell using a polycrystalline photoelectric conversion element, a thin film silicon solar cell made of amorphous silicon, a cell made of amorphous silicon, a microcrystalline silicon or an amorphous
  • Various photoelectric conversion elements 10 such as a multi-junction thin film silicon solar cell in which cells made of silicon germanium are stacked, a so-called compound thin film solar cell, an organic system, and a quantum dot type can be used.
  • the photoelectric conversion element 10 is provided with a finger electrode 12 for collecting electricity generated inside and a bus bar electrode 11 for collecting electricity of the finger electrode 12 on the light receiving surface side.
  • the bus bar electrode 11 and the finger electrode 12 are formed, for example, by applying an Ag paste on the surface to be a light receiving surface of the solar battery cell 2 by screen printing or the like and then baking it.
  • the finger electrode 12 has a plurality of lines having a width of about 50 to 200 ⁇ m, for example, approximately parallel to each other at a predetermined interval, for example, every 2 mm, over the entire light receiving surface.
  • the bus bar electrodes 11 are formed so as to be substantially orthogonal to the finger electrodes 12, and a plurality of bus bar electrodes 11 are formed according to the area of the solar battery cell 2.
  • the photoelectric conversion element 10 is provided with a back electrode 13 made of aluminum or silver on the back side opposite to the light receiving surface.
  • the back electrode 13 is formed of an electrode made of, for example, aluminum or silver on the back surface of the solar battery cell 2 by screen printing, sputtering, or the like.
  • the back electrode 13 has a tab wire connecting portion 14 to which a tab wire 3 is connected via the conductive adhesive film 17 while a conductive adhesive film 17 to be described later is attached.
  • the solar battery cell 2 is electrically connected to each bus bar electrode 11 formed on the surface by the tab wire 3 and the back electrode 13 of the adjacent solar battery cell 2, thereby connecting the strings connected in series. 4 is configured.
  • the tab wire 3 is connected to the bus bar electrode 11 and the back electrode 13 by a conductive adhesive film 17 described later.
  • Solar cell 2 generally has a light-receiving surface that is dark blue, and a captured image of the light-receiving surface is converted to black by image processing by binarization, for example.
  • the solar battery cell 2 is provided with a back electrode 13 made of aluminum or silver over the entire back surface, so that the captured image of the back surface is converted into white by image processing by binarization, for example.
  • the tab line 3 is a long conductive substrate that electrically connects each of the adjacent solar cells 2X, 2Y, and 2Z.
  • the tab wire 3 is substantially the same as the conductive adhesive film 17 by, for example, slitting a copper foil or aluminum foil rolled to a thickness of 50 to 300 ⁇ m, or rolling a thin metal wire such as copper or aluminum into a flat plate shape. A flat copper wire having a width of 1 to 3 mm is obtained.
  • the tab wire 3 is formed by applying gold plating, silver plating, tin plating, solder plating, or the like to the flat copper wire.
  • the conductive adhesive film 17 is a thermosetting binder resin layer in which spherical conductive particles 23 are contained in the binder resin 22 at a high density.
  • the conductive adhesive film 17 to which the present invention is applied is a color that is identified as a color different from the color of the adhesive surface of the solar battery cell 2 to which the conductive adhesive film 17 is connected when the captured image is processed. It is. Thereby, the solar cell module 1 can detect the position shift of a bonding position correctly by performing image processing based on the image data of the solar cell 2 to which the conductive adhesive film 17 is bonded. Details will be described later.
  • the conductive adhesive film 17 preferably has a minimum melt viscosity of 100 to 100,000 Pa ⁇ s from the viewpoint of indentability. If the minimum melt viscosity of the conductive adhesive film 17 is too low, the resin flows in the process of low pressure bonding to main curing, and connection failure or protrusion to the cell light receiving surface is likely to occur, which causes a decrease in the light receiving rate. Moreover, even if the minimum melt viscosity is too high, defects are likely to occur when the film is adhered, and the connection reliability may be adversely affected.
  • the minimum melt viscosity can be measured while a sample is loaded in a predetermined amount of rotational viscometer and raised at a predetermined temperature increase rate.
  • Examples of the conductive particles 23 used for the conductive adhesive film 17 include metal particles such as nickel, gold, silver, and copper, and those in which resin particles are used as a core material and gold plating is applied to the outermost layer. it can.
  • the conductive adhesive film 17 preferably has a viscosity of about 10 to 10,000 kPa ⁇ s, more preferably 10 to 5,000 kPa ⁇ s near normal temperature.
  • a viscosity in the range of 10 to 10000 kPa ⁇ s
  • the conductive adhesive film 17 is wound in a reel, blocking due to so-called protrusion can be prevented, The tack force can be maintained.
  • the composition of the binder resin 22 of the conductive adhesive film 17 is not particularly limited as long as it does not impair the above-described characteristics, but more preferably a film-forming resin, a liquid epoxy resin, a latent curing agent, a silane cup Contains a ring agent.
  • the film-forming resin corresponds to a high molecular weight resin having an average molecular weight of 10,000 or more, and preferably has an average molecular weight of about 10,000 to 80,000 from the viewpoint of film formation.
  • various resins such as an epoxy resin, a modified epoxy resin, a urethane resin, and a phenoxy resin can be used.
  • a phenoxy resin is preferably used from the viewpoint of the film formation state, connection reliability, and the like. .
  • the liquid epoxy resin is not particularly limited as long as it has fluidity at room temperature, and all commercially available epoxy resins can be used.
  • Specific examples of such epoxy resins include naphthalene type epoxy resins, biphenyl type epoxy resins, phenol novolac type epoxy resins, bisphenol type epoxy resins, stilbene type epoxy resins, triphenolmethane type epoxy resins, phenol aralkyl type epoxy resins.
  • Resins, naphthol type epoxy resins, dicyclopentadiene type epoxy resins, triphenylmethane type epoxy resins, and the like can be used. These may be used alone or in combination of two or more. Moreover, you may use it combining suitably with other organic resins, such as an acrylic resin.
  • the latent curing agent various curing agents such as a heat curing type and a UV curing type can be used.
  • the latent curing agent does not normally react but is activated by some trigger and starts the reaction.
  • the trigger includes heat, light, pressurization, etc., and can be selected and used depending on the application.
  • a thermosetting latent curing agent is suitably used, and the main curing is performed by heating and pressing the bus bar electrode 11 and the back electrode 13.
  • a latent curing agent composed of imidazoles, amines, sulfonium salts, onium salts and the like can be used.
  • silane coupling agent epoxy, amino, mercapto sulfide, ureido, etc. can be used.
  • an epoxy-type silane coupling agent is used preferably. Thereby, the adhesiveness in the interface of an organic material and an inorganic material can be improved.
  • an inorganic filler as another additive composition.
  • an inorganic filler silica, talc, titanium oxide, calcium carbonate, magnesium oxide and the like can be used, and the kind of the inorganic filler is not particularly limited.
  • FIG. 5 is a diagram schematically showing an example of a product form of the conductive adhesive film 17.
  • the conductive adhesive film 17 is formed in a tape shape by laminating a binder resin 22 on a peeling substrate 24. This tape-like conductive adhesive film is wound and laminated on the reel 25 so that the peeling substrate 24 is on the outer peripheral side.
  • the release substrate 24 is not particularly limited, and PET (Poly Ethylene Terephthalate), OPP (Oriented Polypropylene), PMP (Poly-4-methlpentene-1), PTFE (Polytetrafluoroethylene), or the like can be used.
  • the conductive adhesive film 17 may have a transparent cover film on the binder resin 22.
  • the color of the conductive adhesive film 17 is a color that is identified as a color different from the color of the adhesive surface of the solar battery cell 2 when image processing is performed.
  • the color of the conductive adhesive film 17 bonded to the light receiving surface side of the solar battery cell 2 is a color identified as white by the binarized image processing. This is because, in the case of the crystalline silicon solar cell 2, the light receiving surface has a dark blue color peculiar to silicon and is therefore identified as black by the binarized image processing.
  • the color of the conductive adhesive film 17 bonded to the back surface of the solar battery cell 2 is a color identified as black by the binarized image processing. This is because the back surface electrode of Ag or Al is formed on the entire back surface of the crystalline silicon solar cell 2 as described above, so that it is identified as white by binary image processing. is there.
  • the binder resin 22 titanium oxide, zinc oxide, or the like is added to the binder resin 22 so that the conductive adhesive film 17 bonded to the light receiving surface side of the solar battery cell 2 is identified as white by the binarized image processing. As a result, it is colored white. Further, the conductive adhesive film 17 bonded to the back surface of the solar battery cell 2 has a black color by adding carbon black or the like to the binder resin 22 so as to be identified as black by the binarized image processing. Colored.
  • the conductive adhesive film 17 is not limited to a reel shape, but may be a strip shape corresponding to the shape of the tab wire connection portion 14 of the bus bar electrode 11 or the back electrode 13.
  • the viscosity of the conductive adhesive film 17 is set in the range of 10 to 10000 kPa ⁇ s. Deformation can be prevented and a predetermined dimension can be maintained. Similarly, when two or more conductive adhesive films 17 are stacked in a strip shape, deformation can be prevented and a predetermined dimension can be maintained.
  • the manufacturing process of the solar cell module 1 is to manufacture the conductive adhesive film 17 (Step S ⁇ b> 1), and temporarily attach the conductive adhesive film 17 to the light receiving surface and the back surface of the solar cell 2 ( Step S2) is applied to the sticking position inspection process (step S3).
  • Step S3 When a position shift is detected by inspection of the sticking position, it is attached to a repair process (step S4), and the conductive adhesive film 17 is temporarily stuck again.
  • the tab wire 3 is temporarily pasted between the several photovoltaic cells 2, and a string is formed (step S5).
  • the tab wire 3 and each electrode of the solar battery cell 2 are permanently attached via the conductive adhesive film 17 by being hot pressed from above the tab wire 3 (step S6), and a sealing material sheet such as EVA.
  • a sealing material sheet such as EVA.
  • the solar cell module 1 is manufactured by sealing between the front cover and the back sheet (step S7). Details will be described below.
  • the conductive adhesive film 17 described above includes conductive particles 23, a film-forming resin, a liquid epoxy resin, a latent curing agent, a silane coupling agent, and a colorant such as titanium oxide, zinc oxide, or carbon black. Dissolve in solvent. As the solvent, toluene, ethyl acetate or the like, or a mixed solvent thereof can be used. A conductive adhesive film 17 is obtained by applying a resin-generating solution obtained by dissolution onto a release sheet and volatilizing the solvent.
  • the conductive adhesive film 17 is cut into a predetermined length for two of the front electrode and two for the back electrode, and is temporarily attached to a predetermined position on the front and back surfaces of the solar battery cell 2.
  • the conductive adhesive film 17 colored white is temporarily attached on each bus bar electrode 11 formed in plural substantially parallel to the surface of the solar battery cell 2, and the conductive adhesive film colored black.
  • the film 17 is temporarily attached on the tab line connecting portion 14 of the back electrode 13.
  • the conductive adhesive film 17 drawn from the reel 25 is cut according to the length of each electrode 11 and 13. It is carried on each electrode 11, 13.
  • the binder resin layer is not permanently cured by the heating bonder 26 but is temporarily cured to a degree that exhibits fluidity, and then temporarily bonded.
  • the solar battery cell 2 is subjected to a process of detecting a shift in the attachment position of the conductive adhesive film 17.
  • This process can be performed using the sticking position test
  • the sticking position inspection device 30 generates multi-valued data, for example, binarized data based on the luminance or color difference of the surface image of the solar battery cell 2 and compares it with reference data registered in advance. It is determined whether or not the adhesive film 17 is temporarily attached at a predetermined position.
  • the present technology is not limited to the sticking position inspection device 30 described below, and any inspection technology having the same function can be used.
  • the sticking position inspection device 30 performs predetermined signal processing on an imaging unit 31 that captures a surface image of the solar battery cell 2 and an image signal supplied from the imaging unit 31.
  • a value conversion unit 32 a non-volatile storage unit 33 in which appropriate position information of the conductive adhesive film 17 after signal processing is registered, a position shift detection unit 34 that detects a position shift of the conductive adhesive film 17, and an apparatus And a control unit 35 for controlling the whole.
  • the imaging unit 31 includes an imaging lens unit 31a that captures an image, and an imaging element unit 31b such as a CCD or a CMOS that captures an image incident through the imaging lens unit 31a. And the imaging part 31 performs alignment with reference
  • the binarization unit 32 includes an AD conversion unit 32a that performs A / D conversion on a signal captured by the image sensor unit 31b, and a binarization processing unit 32b that performs binarization processing on the data converted by the AD conversion unit 32a.
  • the binarization processing unit 32b binarizes the digital data supplied from the AD conversion unit 32a by a predetermined method.
  • the image data of the solar cells 2 subjected to the binarization process is converted into a binary image in which each pixel constituting the surface of the solar cells 2 and the conductive adhesive film 17 has a value of 0 or 1.
  • a known method such as a method of comparing the average value of the entire image with the size of each pixel or a method of comparing the average value of an appropriate range around the pixel of interest with the size is used. be able to.
  • the binarization unit 32 converts the white conductive adhesive film 17 into a white image in the light receiving surface image of the solar battery cell 2 and converts the other areas of the light receiving surface as a black image. Further, the binarization unit 32 converts the black conductive adhesive film 17 into a black image on the back surface of the solar battery cell 2 on which the Al electrode or the Ag electrode is formed over the entire surface. The area of is converted as white.
  • the non-volatile storage unit 33 is configured by, for example, an EEPROM or a flash ROM, and is formed of the conductive adhesive film 17 appropriately temporarily pasted on the bus bar electrode 11 or the tab wire connection unit 14 of the solar battery cell 2 in advance.
  • Reference position information (coordinate values) is stored and held.
  • the reference position information includes, for example, the coordinates of each pixel and binarized information associated with each coordinate, and is set with reference to an alignment mark provided in advance in the solar battery cell 2 or the outer edge of the solar battery cell 2.
  • the positional deviation detection unit 34 includes a binarized data area 34a in which data binarized by the binarizing unit 32 is temporarily stored, reference position information (coordinate values) stored in the nonvolatile storage unit 33, and 2
  • the collation unit 34b that collates the position information (coordinate values) of the conductive adhesive film 17 on the solar battery cell 2 generated by the value conversion unit 32, and whether the positional deviation amount is within a predetermined range as a result of the collation And a determination unit 34c for determination.
  • the collation unit 34b compares the binarized information of the coordinates of the solar battery cell 2 stored in the binarized data area 34a and the corresponding coordinates stored in the nonvolatile storage unit 33, and the conductive adhesive film It calculates how much the 17 sticking positions deviate from the predetermined positions stored in the nonvolatile storage unit 33.
  • the determination unit 34c determines whether or not the deviation amount calculated by the verification unit 34b is within a predetermined allowable value.
  • the control unit 35 takes an image of the surface (light receiving surface and back surface) of the solar battery cell 2 on which the conductive adhesive film 17 is temporarily attached by the imaging part 31. Then, the binarization unit 32 generates binary image data (coordinate values) on the surface of the solar battery cell 2.
  • the controller 35 detects the position information (coordinate values) of the conductive adhesive film 17 by the positional deviation detection unit 34 and the conductive adhesive film 17 appropriately temporarily pasted in the nonvolatile storage unit 33 in advance.
  • the reference position information (coordinate values) is collated.
  • the control unit 35 determines whether the amount of positional deviation is within a predetermined range by the determination unit 34c based on the collation result.
  • the solar battery cell 2 in which the temporary bonding position of the conductive adhesive film 17 is not shifted or the amount of shift is within a predetermined range is attached to the connection process of the tab wire 3 as being properly temporarily bonded. Then, the solar battery cell 2 in which the amount of deviation exceeds the predetermined range is subjected to a repair process in which the conductive adhesive film 17 is peeled off and temporarily attached again.
  • FIG. 9 shows an example of a binarized image of the solar battery cell 2.
  • the finger electrodes 12 and The conductive adhesive film 17 is converted to white, and the other areas of the light receiving surface are inverted to black.
  • a back electrode 13 made of Al or Ag is formed over the entire surface, and two conductive adhesive films 17 are formed on the tab line connection portion 14. In the temporarily attached state, the conductive adhesive film 17 is converted to black, and the other areas on the back surface are converted to white.
  • the control unit 35 temporarily attaches the conductive adhesive film 17 among the data stored in the binarized data area 34a and the binarized image data stored in the nonvolatile storage unit 33 in the collating unit 34b. Focusing on the region and surrounding pixels, the coordinates of the pixel of interest and the binarization information associated with the coordinates are compared, and the amount of deviation is calculated. And the control part 35 determines whether the deviation
  • the tab wire 3 cut to a predetermined length is disposed on the conductive adhesive film 17 in an overlapping manner. Thereafter, the conductive adhesive film 17 is heated and pressed at a predetermined temperature and pressure from above the tab wire 3 by a heating bonder, so that the excess binder resin 22 is placed between the electrodes 11 and 13 and the tab wire 3. Further, the conductive particles 23 are sandwiched between the tab wire 3 and the electrodes 11 and 13, and the binder resin 22 is cured in this state. Thereby, the conductive adhesive film 17 can bond the tab wires 3 on each electrode, and the conductive particles 23 can be brought into contact with the bus bar electrode 11 and the back electrode 13 to be conductively connected.
  • the solar cells 2 are sequentially connected by the tab wires 3 to form the strings 4 and the matrix 5.
  • the plurality of solar battery cells 2 constituting the matrix 5 are made of a surface cover 7 having translucency such as glass and translucent plastic, and a back sheet 8 made of glass, PET (Poly Ethylene Terephthalate) film, or the like. In between, it seals with the sheet
  • EVA ethylene vinyl acetate resin
  • the solar cell module 1 is formed by attaching a metal frame 9 such as aluminum around the periphery.
  • the solar cell module 1 is provided with the bus bar electrode 11 substantially orthogonal to the finger electrode 12 on the light receiving surface side of the solar cell 2, and the conductive adhesive film 17 and the tab wire 3 are provided on the bus bar electrode 11.
  • the bus bar-less structure in which the conductive adhesive film 17 and the tab wire 3 are laminated so as to be orthogonal to the finger electrode 12 without providing the bus bar electrode 11 may be employed.
  • the solar cell module 1 arrange
  • a conductive adhesive film 17, a tab wire 3, and a translucent sealing material sheet such as EVA for sealing the solar battery cell 2 are sequentially laminated on the front and back surfaces of the solar battery cell 2, and a reduced pressure laminator is used.
  • the tab wire 3 may be heat-pressed on each of the electrodes 11 and 13 by laminating all together.
  • the solar cell module 1 can secure the adhesive area between the tab wire 3 and the bus bar electrode 11 or the tab wire connecting portion 14, and can maintain mechanical connection strength and electrical connection reliability. Moreover, the yield of the string can be improved.
  • the present invention it is possible to detect the presence / absence of displacement of the conductive adhesive film 17 before connection of the tab wire 3 and to perform a repair process when a displacement that exceeds an allowable amount occurs.
  • the tab wire 3 is not connected in a state where the deviation has occurred.
  • the conductive adhesive film 17 which is a color identified as a color different from the color of the adhesive surface of the solar battery cell 2 when image processing is performed.
  • the example which contrasted the case where it used and the case where another conductive adhesive film was used is demonstrated.
  • a conductive adhesive film is temporarily attached to the light receiving surface and the back surface of the solar battery cell, and as described above, the image data of the solar battery cell temporarily attached with the conductive adhesive film is binarized. Then, the binarization information associated with each coordinate and the coordinates is obtained, and the positional deviation amount is obtained by comparing with the reference position information of the conductive adhesive film appropriately temporarily attached.
  • one of the two conductive adhesive films was temporarily attached to a proper temporary attachment position, and the other was temporarily attached to a position shifted from the proper temporary attachment position, and it was verified whether or not the position deviation could be detected.
  • the solar battery cell is a 6-inch polycrystalline silicon cell, and the heat and pressure conditions of each conductive adhesive film are 180 ° C., 15 seconds, and 2 MPa.
  • Each conductive adhesive film has a constant thickness (25 ⁇ m after drying) on a release substrate with a resin-forming solution in which conductive particles are uniformly dispersed in a mixed solution in which an epoxy resin and a wire curing agent are dissolved in an organic solvent. It was created by applying and drying. The size of each conductive adhesive film was 2 mm ⁇ 150 mm.
  • Example 1 the conductive adhesive film 17 having a color that is identified as a color different from the color of the adhesive surface of the solar battery cell 2 when image processing is performed is used. That is, the conductive adhesive film 17 temporarily attached to the light receiving surface side of the solar battery cell 2 is colored white by adding titanium oxide or zinc oxide to the resin generating solution, and is temporarily attached to the back surface. Is colored black by adding carbon black to the resin production solution.
  • Comparative Example 1 a conventional conductive adhesive film 18 that was not colored at all was used.
  • the conductive adhesive film 18 of Comparative Example 1 is translucent.
  • Comparative Example 2 a conductive adhesive film 19 that was colored white by adding titanium oxide or zinc oxide to the resin-generating solution was used.
  • Comparative Example 3 the conductive adhesive film 20 that was colored black by adding carbon black to the resin-generating solution was used.
  • FIGS. 10 to 14 show binarized images according to Examples and Comparative Examples.
  • FIG. 10 shows a binarized image of the solar battery cell according to Example 1.
  • the conductive adhesive film is converted to white on the light receiving surface converted to black on the light receiving surface (FIG. 10A), and the conductive adhesive film is converted to black on the back surface converted to white on the back surface. (FIG. 10B). Therefore, Example 1 can reliably perform the comparison and determination of the binarized data in the target pixel including the vicinity of the appropriate temporary pasting position.
  • FIG. 10A it can be seen that the left conductive adhesive film 17 is temporarily attached to an appropriate position on the light receiving surface.
  • the conductive adhesive film 17 on the right side is temporarily pasted with a deviation from an appropriate temporary pasting position, the bus bar electrode 11 converted to white is exposed. For this reason, since the coordinate which should be converted into black originally is converted into white, it turns out that the conductive adhesive film 17 is temporarily pasted and shifted from an appropriate temporary pasting position.
  • the coordinates that should be converted to white are converted to black by the conductive adhesive film 17 and black. Since the coordinates to be converted into white are converted into white by the back electrode 13, it can be seen that the conductive adhesive film 17 is temporarily pasted with a deviation from the proper temporary pasting position.
  • the deviation from the temporary attachment position can be easily understood. That is, as shown in FIG. 11A, when the light receiving surface is temporarily pasted from the proper temporary pasting position, the coordinates that should be converted to white are converted to black by the light receiving surface and converted to black. Since the coordinates to be converted into white by the conductive adhesive film 17, it can be seen that the conductive adhesive film 17 is temporarily pasted with a deviation from the proper temporary pasting position.
  • FIG. 12 shows a binarized image of the solar battery cell according to Comparative Example 1.
  • Comparative Example 1 since the conductive adhesive film 18 is translucent, it is converted to black by being binarized. For this reason, on the light-receiving surface side, the conductive adhesive film 18 and the light-receiving surface of the solar battery cell could not be distinguished, and the presence or absence or amount of misalignment could not be detected.
  • FIG. 13 shows a binarized image of the solar battery cell according to Comparative Example 2.
  • Comparative Example 2 since the conductive adhesive film 19 is colored so as to be converted into white by being binarized, the conductive adhesive film 19 and the solar battery cell are formed on the back surface side.
  • the back electrode 13 could not be distinguished from each other, and the presence / absence or amount of misalignment could not be detected.
  • FIG. 14 shows a binarized image of the solar battery cell according to Comparative Example 3.
  • Comparative Example 3 since the conductive adhesive film 20 is colored so as to be converted to black by being binarized, the conductive adhesive film 20 and the solar cell are formed on the light receiving surface side. It was impossible to distinguish from the light receiving surface of the cell, and it was impossible to detect the presence / absence or amount of misalignment.
  • the solar cell 2 having a bus bar-less structure since the bus bar electrode 12 that is converted into white is not provided, the amount of positional deviation cannot be detected from the relative positional relationship with the bus bar electrode 12.
  • the conductive adhesive film 17 is temporarily attached to the solar battery cell 2, the tab wire 3 is temporarily attached on the conductive adhesive film 17, and then the main bonding is performed. You may inspect the sticking position before. That is, as shown in FIG. 15, the solar cell module 1 manufactures a conductive adhesive film 17 (Step S ⁇ b> 11), and after temporarily attaching the conductive adhesive film 17 to the light receiving surface and the back surface of the solar cell 2 (Step S ⁇ b> 11). S12), the tab wires 3 are temporarily pasted between the plurality of solar cells 2, and the strings 4 are formed (step S13).
  • step S14 it is attached to the inspection process of the sticking position (step S14), and when the positional deviation is detected by the inspection of the sticking position, it is attached to the repair process (step S15), and the conductive adhesive film 17 is temporarily attached again.
  • step S15 the repair process
  • step S15 the conductive adhesive film 17 is temporarily attached again.
  • the tab wire 3 and each electrode of the solar battery cell 2 are permanently attached through the conductive adhesive film 17 by being heated and pressed from above the tab wire 3 (step) S16)
  • the solar cell module 1 is manufactured by sealing between the front cover 7 and the back sheet 8 with a sealing material sheet such as EVA (step S17).
  • the tab wire 3 is converted into white when binarized by being coated with solder or the like, and is formed to have a width equal to or larger than the width of the conductive adhesive film 17.
  • the solar battery cell 2 has the tab wire 3 converted to white on the light receiving surface side.
  • variety of the electroconductive adhesive film 17 spreads more than predetermined width. Therefore, the position information (coordinate values) of the tab line 3 and the conductive adhesive film 17 matches the reference position information (coordinate values) of the tab line 3 when the tab line 3 is temporarily pasted at an appropriate temporary pasting position. It can be seen that sticking deviation occurs.
  • the conductive adhesive film 17 and the tab wire 3 are temporarily attached at appropriate positions, the conductive adhesive film 17 is covered with the tab wire 3 on the back surface side, and the back surface The front is converted to white. Accordingly, the position information (coordinate value) of the tab line 3 and the reference position information (coordinate value) of the tab line 3 when the tab line 3 is temporarily pasted at an appropriate temporary pasting position coincide with each other. It can be seen that the film 17 and the tab wire 3 are both temporarily attached at appropriate positions.
  • the solar battery cell 2 is converted to black on the back side. Is exposed. Therefore, the position information (coordinate values) of the tab line 3 and the conductive adhesive film 17 matches the reference position information (coordinate values) of the tab line 3 when the tab line 3 is temporarily pasted at an appropriate temporary pasting position. It can be seen that sticking deviation occurs.
  • the tab wire 3 is made of a material having a color different from that of the light receiving surface, the back surface, and the conductive adhesive film 17 of the solar battery cell 2.
  • ternary data may be generated based on the luminance or color difference of the surface image of the solar battery cell 2 on which the tab line 3 is temporarily attached, and collated with reference data registered in advance.
  • the solar battery cell 2 is subjected to the main crimping process of the tab wire 3 when both the tab wire 3 and the conductive adhesive film 17 are temporarily attached at appropriate positions.
  • a translucent sealing material sheet such as EVA that seals the solar battery cell 2 on the front and back surfaces of the solar battery cell 2 in addition to the method of heat-pressing the tab wire 3 with a heating bonder is sequentially applied.
  • the tab wire 3 may be heat-pressed on each of the electrodes 11 and 13 by laminating and performing a laminating process in a lump using a reduced pressure laminator.
  • the solar cell module according to the present embodiment can be applied to a so-called double-sided light receiving type solar cell in which both sides of the solar cell are light receiving surfaces.

Landscapes

  • Engineering & Computer Science (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Sustainable Development (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Sustainable Energy (AREA)
  • Manufacturing & Machinery (AREA)
  • Photovoltaic Devices (AREA)

Abstract

太陽電池セルの電極への接着フィルムの貼り合わせ位置の位置ズレを検出する。複数の太陽電池セル(2)と、太陽電池セル2の受光面及び隣接する太陽電池セル(2)の裏面にそれぞれ形成された電極(11),(13)上に接着フィルム(17)を介して接着され、複数の太陽電池セル(2)同士を接続するタブ線(3)とを備え、接着フィルム(17)は、画像処理されたときに、太陽電池セル(2)の接着面の色と異なる色として識別される色である。

Description

太陽電池モジュール、太陽電池モジュールの製造方法、接着フィルムの貼り合わせ方法、接着フィルムの検査方法
 本発明は、タブ線によって複数の太陽電池セルが接続された太陽電池モジュールに関し、特にタブ線を太陽電池セルの電極に接着する接着フィルムを太陽電池セルの電極上に貼り合わせる太陽電池モジュール、太陽電池モジュールの製造方法、接着フィルムの貼り合わせ方法、接着フィルムの検査方法に関するものである。
 本出願は、日本国において2011年6月8日に出願された日本特許出願番号特願2011-128507を基礎として優先権を主張するものであり、この出願は参照されることにより、本出願に援用される。
 例えば結晶シリコン系太陽電池モジュールでは、複数の隣接する太陽電池セルが、インターコネクタとなるタブ線により接続されている。タブ線は、その一端側を一の太陽電池セルの表面電極に接続され、他端側を隣接する太陽電池セルの裏面電極に接続することにより、各太陽電池セルを直列に接続する。このとき、タブ線は、一端側の一面側が一の太陽電池セルの表面電極に接着され、他端側の他面側が隣接する太陽電池セルの裏面電極に接着されている。
 具体的に、太陽電池セルは、銀ペーストをスクリーン印刷すること等により、受光面にバスバー電極が形成され、裏面接続部にAg電極が形成されている。なお、太陽電池セル裏面の接続部以外の領域はAl電極やAg電極が形成されている。
 また、タブ線は、リボン状銅箔の両面にハンダコート層が設けられること等により形成される。具体的に、タブ線は、厚さ0.05~0.2mm程度に圧延した銅箔をスリットし、あるいは銅ワイヤーを平板状に圧延するなどして得た幅1~3mmの平角銅線に、ハンダメッキやディップハンダ付け等を施すことにより形成される。
 太陽電池セルとタブ線との接続は、タブ線を太陽電池セルの各電極上に配置し、加熱ボンダーによって熱加圧することにより、タブ線表面に形成したハンダを溶融、冷却することにより行う(特許文献1)。
 しかし、ハンダ付けでは約260℃と高温による接続処理が行われるため、太陽電池セルの反りや割れ、タブ線と表面電極及び裏面電極との接続部に生じる内部応力、さらにフラックスの残渣等により、太陽電池セルの表面電極及び裏面電極とタブ線との間の接続信頼性が低下することが懸念される。
 そこで、従来、太陽電池セルの表面電極及び裏面電極とタブ線との接続に、比較的低い温度での熱圧着処理による接続が可能な導電性接着フィルムが使用されている(特許文献2)。このような導電性接着フィルムとしては、平均粒径が数μmオーダーの球状または鱗片状の導電性粒子を熱硬化型バインダー樹脂組成物に分散してフィルム化したものが使用されている。
 図16に示すように、導電性接着フィルム50は、表面電極及び裏面電極上に貼り合わせた後、タブ線51が重畳され、タブ線51の上から加熱ボンダーによって熱加圧される。これにより、図17に示すように、導電性接着フィルム50は、バインダー樹脂が流動性を示して電極、タブ線51間より流出されるとともに、導電性粒子54が電極53とタブ線51間に挟持されてこの間の導通を図り、この状態でバインダー樹脂が熱硬化する。
このように、タブ線51によって複数の太陽電池セル52が直列接続されたストリングスが形成される。
 導電性接着フィルム50を用いてタブ線51と表面電極及び裏面電極とが接続された複数の太陽電池セル52は、ガラス、透光性プラスチックなどの透光性を有する表面保護材と、PET(Poly Ethylene Terephthalate)等のフィルムからなる背面保護材との間に、エチレンビニルアセテート樹脂(EVA)等の透光性を有する封止材により封止される。
特開2004-356349号公報 特開2008-135654号公報 特開2010-16245号公報
 ところで、導電性接着フィルム50を太陽電池セルの電極53上に貼り合わせる工程で位置ズレが発生した場合、タブ線51を貼り付ける装置側ではこの位置ズレを認識せずにタブ線51の貼り付けを行う。そして、タブ線51は、導電性接着フィルム50と完全に重畳せずに位置ズレが生じた状態で、熱加圧工程に付され、本圧着されてしまう。
 これにより、太陽電池モジュールは、タブ線51と電極53との接着面積が少なくなり、機械的な接続強度や、電気的な接続信頼性を損なってしまう。導電性接着フィルム50の貼り合わせ位置の位置ズレが大きい場合には、太陽電池セルとタブ線51との接続不良が実使用に耐えられない程度まで大きくなり、ストリングそのものの歩留まりが低下してしまう。
 一方で、導電性接着フィルム50の貼り合わせ工程において、貼り合わせ位置の位置ズレが認識できれば、再度導電性接着フィルム50を張り直す(リペア)ことが可能であり、太陽電池セルとタブ線51との接続不良の発生を防止することができる。
 そこで、本発明は、太陽電池セルの電極上に貼り合わせる接着フィルムの貼り合わせ位置の位置ズレを検出可能な太陽電池モジュール、太陽電池モジュールの製造方法、接着フィルムの貼り合わせ方法、接着フィルムの検査方法を提供することを目的とする。
 上述した課題を解決するために、本発明に係る太陽電池モジュールは、複数の太陽電池セルと、上記太陽電池セルの受光面及び隣接する太陽電池セルの裏面にそれぞれ形成された電極上に接着フィルムを介して接着され、複数の上記太陽電池セル同士を接続するタブ線とを備え、上記接着フィルムは、画像処理されたときに、上記太陽電池セルの接着面の色と異なる色として識別される色である。
 また、本発明に係る太陽電池モジュールの製造方法は、太陽電池セル表面の所定の貼り付け位置に接着フィルムを仮貼りする接着フィルム配置工程と、上記接着フィルムが仮貼りされた上記太陽電池セルの表面を撮像する撮像工程と、上記太陽電池セル表面の画像データを画像処理することにより、上記接着フィルムが所定の位置に仮貼りされているかを検出する検出工程と、タブ線を上記太陽電池セル表面の所定の貼り付け位置に上記接着フィルム上から仮貼りするタブ線配置工程と、上記タブ線の上から熱加圧し、上記接着フィルムによって上記タブ線を上記太陽電池セルの表面に接続する接続工程とを有し、上記接着フィルムは、上記画像データが画像処理されたときに、上記太陽電池セル表面の色と異なる色として識別される色であり、上記検出工程において、画像処理後の上記太陽電池セル表面上における上記接着フィルムの位置情報より、上記接着面における所定の位置に仮貼りされているか否かを検出する。
 また、本発明に係る接着フィルムの貼り合わせ方法は、太陽電池セル表面の所定の貼り付け位置に接着フィルムを仮貼りする接着フィルム配置工程と、上記接着フィルムが仮貼りされた上記太陽電池セルの表面を撮像する撮像工程と、上記太陽電池セル表面の画像データを画像処理することにより、上記接着フィルムが所定の位置に仮貼りされているかを検出する検出工程とを有し、上記接着フィルムは、上記画像データが画像処理されたときに、上記太陽電池セル表面の色と異なる色として識別される色であり、上記検出工程において、画像処理後の上記太陽電池セル表面上における上記接着フィルムの位置情報より、上記接着面における所定の位置に仮貼りされているか否かを検出する。
 また、本発明に係る接着フィルムの検査方法は、太陽電池セル表面の所定の貼り付け位置に接着フィルムを仮貼りする接着フィルム配置工程と、上記接着フィルムが仮貼りされた上記太陽電池セルの表面を撮像する撮像工程と、上記太陽電池セル表面の画像データを画像処理することにより、上記接着フィルムが所定の位置に仮貼りされているかを検出する検出工程とを有し、上記接着フィルムは、上記画像データが画像処理されたときに、上記太陽電池セル表面の色と異なる色として識別される色であり、上記検出工程において、画像処理後の上記太陽電池セル表面上における上記接着フィルムの位置情報より、上記接着面における所定の位置に仮貼りされているか否かを検出する。
 本発明によれば、タブ線の接続前に、導電性接着フィルムの位置ズレの有無を検出するため、タブ線を導電性接着フィルムに完全に重畳させて接続することができる。これにより、本発明では、タブ線の機械的な接続強度や、電気的な接続信頼性を維持することができ、またストリングの歩留まりを向上させることができる。
図1は、太陽電池モジュールを示す分解斜視図である。 図2は、太陽電池セルのストリングを示す断面図である。 図3は、太陽電池セルの裏面電極及び接続部を示す平面図である。 図4は、導電性接着フィルムを示す断面図である。 図5は、リール状に巻回された導電性接着フィルムを示す図である。 図6は、太陽電池モジュールの製造工程を示すフローチャートである。 図7は、導電性接着フィルムの仮貼り工程を示す側面図である。 図8は、貼着位置検査装置の構成を示すブロック図である。 図9A及び図9Bは、太陽電池セルの2値化画像を示す図である。 図10A及び図10Bは、実施例に係る太陽電池セルの2値化画像を示す図である。 図11A及び図11Bは、実施例に係るバスバーレス太陽電池セルの2値化画像を示す図である。 図12A及び図12Bは、比較例に係る太陽電池セルの2値化画像を示す図である。 図13A及び図12Bは、比較例に係る太陽電池セルの2値化画像を示す図である。 図14A及び図14Bは、比較例に係る太陽電池セルの2値化画像を示す図である。 図15は、太陽電池モジュールの他の製造工程を示すフローチャートである。 図16は、従来の太陽電池モジュールを示す斜視図である。 図17は、従来の太陽電池モジュールにおけるタブ線の接続工程を示す断面図である。
 以下、本発明が適用された太陽電池モジュール、太陽電池モジュールの製造方法、接着フィルムの貼り合わせ方法、接着フィルムの検査方法について、図面を参照しながら詳細に説明する。
 [太陽電池モジュール]
 本発明が適用された太陽電池モジュール1は、図1~図3に示すように、複数の太陽電池セル2がインターコネクタとなるタブ線3によって直列に接続されたストリングス4を有し、このストリングス4を複数配列したマトリクス5を備える。そして、太陽電池モジュール1は、このマトリクス5が封止接着剤のシート6で挟まれ、受光面側に設けられた表面カバー7及び裏面側に設けられたバックシート8とともに一括してラミネートされ、最後に、周囲にアルミニウムなどの金属フレーム9が取り付けられることにより形成される。
 封止接着剤としては、例えばエチレンビニルアセテート樹脂(EVA)等の透光性封止材が用いられる。また、表面カバー7としては、例えば、ガラスや透光性プラスチック等の透光性の材料が用いられる。また、バックシート8としては、ガラスや、アルミニウム箔を樹脂フィルムで挟持した積層体等が用いられる。
 太陽電池モジュール1の各太陽電池セル2は、光電変換素子10を有する。光電変換素子10は、単結晶型シリコン光電変換素子、多結晶型光電変換素子を用いる結晶シリコン系太陽電池や、アモルファスシリコンからなる薄膜シリコン系太陽電池、アモルファスシリコンからなるセルと微結晶シリコンやアモルファスシリコンゲルマニウムからなるセルとを積層させた多接合型の薄膜シリコン系太陽電池、いわゆる化合物薄膜系太陽電池、有機系、量子ドット型など、各種光電変換素子10を用いることができる。
 また、光電変換素子10は、受光面側に内部で発生した電気を集電するフィンガー電極12とフィンガー電極12の電気を集電するバスバー電極11とが設けられている。バスバー電極11及びフィンガー電極12は、太陽電池セル2の受光面となる表面に、例えばAgペーストがスクリーン印刷等により塗布された後、焼成されることにより形成される。また、フィンガー電極12は、受光面の全面に亘って、例えば約50~200μm程度の幅を有するラインが、所定間隔、例えば2mmおきに、ほぼ平行に複数形成されている。バスバー電極11は、フィンガー電極12と略直交するように形成され、また、太陽電池セル2の面積に応じて複数形成されている。
 また、光電変換素子10は、受光面と反対の裏面側に、アルミニウムや銀からなる裏面電極13が設けられている。裏面電極13は、図2及び図3に示すように、例えばアルミニウムや銀からなる電極が、スクリーン印刷やスパッタ等により太陽電池セル2の裏面に形成される。裏面電極13は、後述する導電性接着フィルム17が貼り付けられるとともに、この導電性接着フィルム17を介してタブ線3が接続されるタブ線接続部14を有する。
 そして、太陽電池セル2は、タブ線3によって、表面に形成された各バスバー電極11と、隣接する太陽電池セル2の裏面電極13とが電気的に接続され、これにより直列に接続されたストリングス4を構成する。タブ線3とバスバー電極11及び裏面電極13とは、後述する導電性接着フィルム17によって接続される。
 太陽電池セル2は、一般に受光面が濃紺とされ、受光面の撮影画像は例えば2値化による画像処理によって黒に変換される。また、太陽電池セル2は、裏面全面に亘ってアルミニウムや銀からなる裏面電極13が設けられることにより、裏面の撮影画像は例えば2値化による画像処理によって白に変換される。
 [タブ線]
 タブ線3は、図2に示すように、隣接する太陽電池セル2X、2Y、2Zの各間を電気的に接続する長尺状の導電性基材である。タブ線3は、例えば厚さ50~300μmに圧延された銅箔やアルミ箔をスリットし、あるいは銅やアルミなどの細い金属ワイヤーを平板状に圧延することにより、導電性接着フィルム17とほぼ同じ幅の1~3mm幅の平角の銅線を得る。そして、タブ線3は、この平角銅線に、金メッキ、銀メッキ、スズメッキ、ハンダメッキ等を施すことにより形成される。
 [導電性接着フィルム]
 導電性接着フィルム17は、図4に示すように、バインダー樹脂22に球状の導電性粒子23が高密度に含有された熱硬化性のバインダー樹脂層である。本発明が適用された導電性接着フィルム17は、撮影画像が画像処理されたときに、当該導電性接着フィルム17が接続される太陽電池セル2の接着面の色と異なる色として識別される色である。これにより、太陽電池モジュール1は、導電性接着フィルム17を貼り合わせた太陽電池セル2の画像データを元に画像処理を行うことで、正確に貼り合わせ位置の位置ズレを検出することができる。詳しくは後述する。
 なお、導電性接着フィルム17は、押し込み性の観点から、バインダー樹脂22の最低溶融粘度が、100~100000Pa・sであることが好ましい。導電性接着フィルム17は、最低溶融粘度が低すぎると低圧着から本硬化の過程で樹脂が流動してしまい接続不良やセル受光面へのはみ出しが生じやすく、受光率低下の原因ともなる。また、最低溶融粘度が高すぎてもフィルム貼着時に不良を発生しやすく、接続信頼性に悪影響が出る場合もある。なお、最低溶融粘度については、サンプルを所定量回転式粘度計に装填し、所定の昇温速度で上昇させながら測定することができる。
 [導電性粒子]
 導電性接着フィルム17に用いられる導電性粒子23は、例えば、ニッケル、金、銀、銅などの金属粒子や、樹脂粒子をコア材とし最外層に金めっきなどを施したものなどを挙げることができる。
 なお、導電性接着フィルム17は、常温付近での粘度が10~10000kPa・sであることが好ましく、さらに好ましくは、10~5000kPa・sである。導電性接着フィルム17の粘度が10~10000kPa・sの範囲であることにより、導電性接着フィルム17をリール状に巻装した場合において、いわゆるはみ出しによるブロッキングを防止することができ、また、所定のタック力を維持することができる。
 [バインダー樹脂]
 導電性接着フィルム17のバインダー樹脂22の組成は、上述のような特徴を害さない限り、特に制限されないが、より好ましくは、膜形成樹脂と、液状エポキシ樹脂と、潜在性硬化剤と、シランカップリング剤とを含有する。
 膜形成樹脂は、平均分子量が10000以上の高分子量樹脂に相当し、フィルム形成性の観点から、10000~80000程度の平均分子量であることが好ましい。膜形成樹脂としては、エポキシ樹脂、変性エポキシ樹脂、ウレタン樹脂、フェノキシ樹脂等の種々の樹脂を使用することができ、その中でも膜形成状態、接続信頼性等の観点からフェノキシ樹脂が好適に用いられる。
 液状エポキシ樹脂としては、常温で流動性を有していれば、特に制限はなく、市販のエポキシ樹脂が全て使用可能である。このようなエポキシ樹脂としては、具体的には、ナフタレン型エポキシ樹脂、ビフェニル型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、ビスフェノール型エポキシ樹脂、スチルベン型エポキシ樹脂、トリフェノールメタン型エポキシ樹脂、フェノールアラルキル型エポキシ樹脂、ナフトール型エポキシ樹脂、ジシクロペンタジエン型エポキシ樹脂、トリフェニルメタン型エポキシ樹脂などを用いることができる。これらは単独でも、2種以上を組み合わせて用いてもよい。また、アクリル樹脂など他の有機樹脂と適宜組み合わせて使用してもよい。
 潜在性硬化剤としては、加熱硬化型、UV硬化型などの各種硬化剤が使用できる。潜在性硬化剤は、通常では反応せず、何かしらのトリガーにより活性化し、反応を開始する。トリガーには、熱、光、加圧などがあり、用途により選択して用いることができる。なかでも、本願では、加熱硬化型の潜在性硬化剤が好適に用いられ、バスバー電極11や裏面電極13に加熱押圧されることにより本硬化される。液状エポキシ樹脂を使用する場合は、イミダゾール類、アミン類、スルホニウム塩、オニウム塩などからなる潜在性硬化剤を使用することができる。
 シランカップリング剤としては、エポキシ系、アミノ系、メルカプト・スルフィド系、ウレイド系などを用いることができる。これらの中でも、本実施の形態では、エポキシ系シランカップリング剤が好ましく用いられる。これにより、有機材料と無機材料の界面における接着性を向上させることができる。
 また、その他の添加組成物として、無機フィラーを含有することが好ましい。無機フィラーを含有することにより、圧着時における樹脂層の流動性を調整し、粒子捕捉率を向上させることができる。無機フィラーとしては、シリカ、タルク、酸化チタン、炭酸カルシウム、酸化マグネシウム等を用いることができ、無機フィラーの種類は特に限定されるものではない。
 図5は、導電性接着フィルム17の製品形態の一例を模式的に示す図である。この導電性接着フィルム17は、剥離基材24上にバインダー樹脂22が積層され、テープ状に成型されている。このテープ状の導電性接着フィルムは、リール25に剥離基材24が外周側となるように巻回積層される。剥離基材24としては、特に制限はなく、PET(Poly Ethylene Terephthalate)、OPP(Oriented Polypropylene)、PMP(Poly-4-methlpentene-1)、PTFE(Polytetrafluoroethylene)などを用いることができる。また、導電性接着フィルム17は、バインダー樹脂22上に透明なカバーフィルムを有する構成としてもよい。
 [着色剤の添加]
 導電性接着フィルム17の色は、画像処理されたときに、太陽電池セル2の接着面の色と異なる色として識別される色である。例えば、太陽電池セル2の受光面側に貼り合わせられる導電性接着フィルム17の色は、2値化画像処理によって白と識別される色である。これは、結晶シリコン系の太陽電池セル2の場合、受光面がシリコン特有の濃紺色をしていることから2値化画像処理によって黒と識別されるためである。また、太陽電池セル2の裏面に貼り合わせられる導電性接着フィルム17の色は、2値化画像処理によって黒と識別される色である。これは、結晶シリコン系の太陽電池セル2の裏面には、上述したようにAgやAlによる裏面電極が全面に亘って形成されていることから2値化画像処理によって白と識別されるためである。
 この場合、太陽電池セル2の受光面側に貼り合わせられる導電性接着フィルム17は、2値化画像処理によって白と識別されるように、バインダー樹脂22に酸化チタンや酸化亜鉛等を添加することにより白色系の色に着色される。また、太陽電池セル2の裏面に貼り合わせられる導電性接着フィルム17は、2値化画像処理によって黒と識別されるように、バインダー樹脂22にカーボンブラック等を添加することにより黒色系の色に着色される。
 なお、導電性接着フィルム17は、リール形状に限らず、バスバー電極11や裏面電極13のタブ線接続部14の形状に応じた短冊形状であってもよい。
 図5に示すように導電性接着フィルム17が巻き取られたリール製品として提供される場合、導電性接着フィルム17の粘度を10~10000kPa・sの範囲とすることにより、導電性接着フィルム17の変形を防止し、所定の寸法を維持することができる。また、導電性接着フィルム17が短冊形状で2枚以上積層された場合も同様に、変形を防止し、所定の寸法を維持することができる。
 [製造方法・検査方法]
 太陽電池モジュール1の製造工程は、図6に示すように、導電性接着フィルム17を製造し(ステップS1)、導電性接着フィルム17を太陽電池セル2の受光面及び裏面に仮貼りした後(ステップS2)、貼着位置の検査工程に付される(ステップS3)。貼着位置の検査によって位置ズレが検出された場合はリペア工程に付され(ステップS4)、再度導電性接着フィルム17が仮貼りされる。また、位置ズレが検出されなかった場合は、複数の太陽電池セル2間に亘ってタブ線3が仮貼りされ、ストリングスが形成される(ステップS5)。その後、タブ線3上より熱加圧されることにより導電性接着フィルム17を介してタブ線3と太陽電池セル2の各電極とが本厚着され(ステップS6)、EVA等の封止材シートによって、表面カバー及びバックシートの間に封止されることにより(ステップS7)、太陽電池モジュール1が製造される。以下、詳述する。
 上述した導電性接着フィルム17は、導電性粒子23と、膜形成樹脂と、液状エポキシ樹脂と、潜在性硬化剤と、シランカップリング剤と、酸化チタンや酸化亜鉛あるいはカーボンブラック等の着色材を溶剤に溶解させる。溶剤としては、トルエン、酢酸エチルなど、又はこれらの混合溶剤を用いることができる。溶解させて得られた樹脂生成用溶液を剥離シート上に塗布し、溶剤を揮発させることにより、導電性接着フィルム17を得る。
 そして、導電性接着フィルム17は、表面電極用2本及び裏面電極用2本を所定の長さにカットされ、太陽電池セル2の表裏面の所定位置に仮貼りされる。このとき、白色系に着色された導電性接着フィルム17は、太陽電池セル2の表面にほぼ平行に複数形成されている各バスバー電極11上に仮貼りされ、黒色系に着色された導電性接着フィルム17は、裏面電極13のタブ線接続部14上に仮貼りされる。
 導電性接着フィルム17を電極11,13上に仮貼りする工程では、図7に示すように、リール25より引き出された導電性接着フィルム17を各電極11,13の長さに応じてカットし各電極11,13上に搬送する。次いで、加熱ボンダー26によってバインダー樹脂層が本硬化しないが流動性を示す程度に仮硬化させて仮貼りする。
 次いで、太陽電池セル2は、導電性接着フィルム17の貼り位置のズレを検出する工程に付される。この工程は、例えば貼着位置検査装置30を用いて行うことができる。貼着位置検査装置30は、太陽電池セル2の表面画像の輝度ないし色差に基づいて多値化データ、例えば2値化データを生成し、予め登録されている基準データと照合することにより、導電性接着フィルム17が所定の位置に仮貼りされているかどうかを判定するものである。なお、本技術は、以下に説明する貼着位置検査装置30に限らず、同様の機能を奏するあらゆる検査技術を用いることができることはもちろんである。
 貼着位置検査装置30は、図8に示すように、太陽電池セル2の表面画像を撮像する撮像部31と、撮像部31から供給された画像信号に対して、所定の信号処理を行う2値化部32と、信号処理後の導電性接着フィルム17の適正な位置情報が登録される不揮発性記憶部33と、導電性接着フィルム17の位置ズレを検出する位置ズレ検出部34と、装置全体を制御する制御部35とを備える。
 撮像部31は、画像を取り込む撮像レンズユニット31aと、撮像レンズユニット31aを介して入射した映像を取り込むCCDやCMOS等の撮像素子ユニット31bとを備える。そして、撮像部31は、太陽電池セル2の受光面や裏面に予め設けられたアライメントマークや、太陽電池セル2の外側縁などの基準との位置合わせを行ったうえで、導電性接着フィルム17が仮貼りされた太陽電池セル2の受光面や裏面を撮影する。
 2値化部32は、撮像素子ユニット31bに取り込まれた信号をA/D変換するAD変換部32aと、AD変換部32aで変換されたデータを2値化処理する2値化処理部32bとを有する。2値化処理部32bは、AD変換部32aから供給されたデジタルデータを所定の方式で2値化処理する。2値化処理された太陽電池セル2の画像データは、太陽電池セル2の表面と導電性接着フィルム17を構成する各画素が、それぞれ0又は1の値をもつ2値画像に変換される。2値化処理の方式には、画像全体の平均値と各画素の大小を比べる方式や、注目している画素の周囲の適当な範囲の平均値と大小を比べる方式等、公知の方式を用いることができる。
 2値化部32は、太陽電池セル2の受光面画像においては、白系の導電性接着フィルム17を白色の画像に変換し、受光面のその他の領域は黒の画像として変換する。また、2値化部32は、全面に亘ってAl電極あるいはAg電極が形成された太陽電池セル2の裏面においては、黒系の導電性接着フィルム17を黒色の画像に変換し、裏面のその他の領域は白色として変換する。
 不揮発性記憶部33は、例えば、EEPROM又はフラッシュROM等で構成されており、予め太陽電池セル2のバスバー電極11上あるいはタブ線接続部14上に適正に仮貼りされた導電性接着フィルム17の基準位置情報(座標値)を記憶保持する。基準位置情報は、例えば、各画素の座標と各座標に対応付けられた2値化情報からなり、太陽電池セル2に予め設けられたアライメントマークや太陽電池セル2の外側縁を基準に設定される。
 位置ズレ検出部34は、2値化部32において2値化されたデータが一時記憶される2値化データエリア34aと、不揮発性記憶部33に格納された基準位置情報(座標値)と2値化部32で生成された太陽電池セル2上における導電性接着フィルム17の位置情報(座標値)とを照合する照合部34bと、照合の結果、位置ズレ量が所定の範囲内であるか判定する判定部34cとからなる。照合部34bは、2値化データエリア34aに記憶された太陽電池セル2の座標と不揮発性記憶部33に記憶されている対応する座標との各2値化情報を対比し、導電性接着フィルム17の貼着位置が不揮発性記憶部33に記憶されている所定の位置からどの程度ずれているかを算出する。判定部34cは、照合部34bによって算出されたズレ量が、所定の許容値以内か否かを判定する。
 制御部35は、太陽電池セル2に導電性接着フィルム17が仮貼りされると、撮像部31によって導電性接着フィルム17が仮貼りされた太陽電池セル2の表面(受光面及び裏面)を撮像し、2値化部32によって太陽電池セル2表面の2値化画像データ(座標値)を生成する。
 次いで、制御部35は、位置ズレ検出部34によって、導電性接着フィルム17の位置情報(座標値)と、不揮発性記憶部33に予め記憶されている適正に仮貼りされた導電性接着フィルム17の基準位置情報(座標値)とを照合する。そして、制御部35は、照合結果を元に判定部34cによって位置ズレの量が所定の範囲か否かを判定する。
 判定の結果、導電性接着フィルム17の仮貼り位置がズレていないか、ズレ量が所定の範囲内である太陽電池セル2は、適正に仮貼りされたものとしてタブ線3の接続工程に付され、ズレ量が所定の範囲を超えている太陽電池セル2は、導電性接着フィルム17を剥がし、再度仮貼りするリペア工程に付される。
 図9に、太陽電池セル2の2値化画像の一例を示す。図9Aに示すように、太陽電池セル2の受光面側において、2本のバスバー電極11が設けられ、各バスバー電極11上に導電性接着フィルム17が仮貼りされた状態では、フィンガー電極12及び導電性接着フィルム17が白く変換され、受光面のその他の領域は黒く反転される。また、図9Bに示すように、太陽電池セル2の裏面においては、AlあるいはAgからなる裏面電極13が全面に亘って形成され、タブ線接続部14上に2本の導電性接着フィルム17が仮貼りされた状態では、導電性接着フィルム17が黒く変換され、裏面のその他の領域は白く変換される。
 制御部35は、照合部34bにおいて、2値化データエリア34aに格納されたデータ及び不揮発性記憶部33に記憶されている2値化画像データのうち、導電性接着フィルム17が仮貼りされる領域及びその周辺の画素に注目し、当該注目画素における座標及び当該座標に対応付けられた2値化情報を対比し、ズレ量を算出する。そして、制御部35は、判定部34cにおいて、ズレ量が所定の範囲にあるか否かを判定し、ズレ量が所定の範囲内である太陽電池セル2は、適正に仮貼りされたものとしてタブ線3の接続工程に付される。
 [タブ線接続工程]
 導電性接着フィルム17が適正に仮貼りされた太陽電池セル2は、所定の長さにカットされたタブ線3が導電性接着フィルム17上に重畳配置される。その後、導電性接着フィルム17は、タブ線3の上から加熱ボンダーによって所定の温度、圧力で熱加圧されることにより、余剰のバインダー樹脂22が各電極11,13とタブ線3との間より流出されるとともに導電性粒子23がタブ線3と各電極11,13との間で挟持され、この状態でバインダー樹脂22が硬化する。これにより、導電性接着フィルム17は、タブ線3を各電極上に接着させると共に、導電性粒子23がバスバー電極11や裏面電極13に接触し導通接続させることができる。
 このようにして、太陽電池セル2を順次タブ線3によって接続し、ストリングス4、マトリクス5を形成していく。次いで、マトリクス5を構成する複数の太陽電池セル2は、ガラス、透光性プラスチックなどの透光性を有する表面カバー7と、ガラスやPET(Poly Ethylene Terephthalate)フィルム等からなるバックシート8との間に、エチレンビニルアセテート樹脂(EVA)等の透光性を有する封止材のシート6により封止される。
最後に、周囲にアルミニウムなどの金属フレーム9が取り付けられることにより太陽電池モジュール1が形成される。
 [バスバーレス]
 なお、太陽電池モジュール1は、上述したように、太陽電池セル2の受光面側にフィンガー電極12と略直交するバスバー電極11を設け、当該バスバー電極11上に導電性接着フィルム17及びタブ線3を積層させる構成の他、バスバー電極11を設けることなく、フィンガー電極12と直交するように導電性接着フィルム17及びタブ線3を積層させるいわゆるバスバーレス構造としてもよい。
 [一括ラミネート]
 また、太陽電池モジュール1は、上述したように太陽電池セル2の各電極11,13上に導電性接着フィルム17及びタブ線3を配置した後、加熱ボンダーによってタブ線3上を熱加圧させる工法の他、太陽電池セル2の表面及び裏面に導電性接着フィルム17、タブ線3及び太陽電池セル2を封止するEVA等の透光性封止材シートを順次積層させ、減圧ラミネータを用いて一括してラミネート処理を行うことにより、タブ線3を各電極11,13上に熱加圧してもよい。
 [本発明の効果]
 本発明によれば、タブ線3の接続前に、導電性接着フィルム17の位置ズレの有無を検出するため、タブ線3を導電性接着フィルム17に完全に重畳させて接続することができる。これにより、太陽電池モジュール1は、タブ線3とバスバー電極11あるいはタブ線接続部14との接着面積を確保し、機械的な接続強度や、電気的な接続信頼性を維持することができ、またストリングの歩留まりを向上させることができる。
 また、本発明によれば、タブ線3の接続前に導電性接着フィルム17の位置ズレの有無を検出し、許容量を超える位置ズレが生じた場合にはリペア工程に付すことができ、位置ズレが生じた状態でタブ線3の接続を行うこともない。
 次いで、2値化画像を用いた導電性接着フィルムの位置ズレ検査において、画像処理されたときに太陽電池セル2の接着面の色と異なる色として識別される色である導電性接着フィルム17を用いた場合と、その他の導電性接着フィルムを用いた場合とを対比した実施例について説明する。
 この位置ズレ検査は、太陽電池セルの受光面及び裏面に導電性接着フィルムを仮貼りし、上述したように、導電性接着フィルムが仮貼りされた太陽電池セルの画像データを2値化処理し、各座標及び座標に対応付けられた2値化情報を求め、適正に仮貼りされた導電性接着フィルムの基準位置情報と対比することにより位置ズレ量を求めるものである。本実施例では、2本の導電性接着フィルムの一方を適正な仮貼り位置に、他方を適正な仮貼り位置よりズレた位置に仮貼りし、位置ズレを検出できるか否か検証した。
 太陽電池セルは、6インチの多結晶シリコンセルを用い、各導電性接着フィルムの熱加圧条件は、180℃、15秒、2MPaである。各導電性接着フィルムは、エポキシ樹脂と線材硬化剤を有機溶剤で溶解した混合液に導電性粒子を均一に分散させた樹脂生成用溶液を剥離基材上に一定の厚み(乾燥後25μm)に塗布し、乾燥させることにより作成した。また各導電性接着フィルムのサイズは、2mm×150mmとした。
 実施例1では、画像処理されたときに太陽電池セル2の接着面の色と異なる色として識別される色である導電性接着フィルム17を用いた。すなわち、太陽電池セル2の受光面側に仮貼りされる導電性接着フィルム17は樹脂生成用溶液に酸化チタンや酸化亜鉛を添加し白系に着色され、裏面に仮貼りされる導電性接着フィルム17は樹脂生成用溶液にカーボンブラックを添加し黒系に着色されている。
 比較例1では、なんら着色処理をしていない従来の導電性接着フィルム18を用いた。比較例1の導電性接着フィルム18は半透明である。
 比較例2では、樹脂生成用溶液に酸化チタンや酸化亜鉛を添加し白色に着色した導電性接着フィルム19を用いた。
 比較例3では、樹脂生成用溶液にカーボンブラックを添加し黒色に着色した導電性接着フィルム20を用いた。
 検出結果を表1に示すとともに、図10~図14に、実施例及び各比較例に係る2値化画像を示す。
Figure JPOXMLDOC01-appb-T000001
 図10に実施例1にかかる太陽電池セルの2値化画像を示す。実施例1では、受光面においては黒に変換された受光面に対して導電性接着フィルムが白く変換され(図10A)、裏面においては白く変換された裏面に対して導電性接着フィルムが黒く変換される(図10B)。したがって、実施例1は、適正な仮貼り位置周辺を含む注目画素における2値化データの対比、判定を確実に行うことができる。
 すなわち、図10Aに示すように、受光面において、左側の導電性接着フィルム17は適正な位置に仮貼りされていることがわかる。一方、右側の導電性接着フィルム17は適正な仮貼り位置よりズレて仮貼りされているため、白く変換されたバスバー電極11が露出している。このため、本来は黒に変換されるべき座標が白く変換されていることから、導電性接着フィルム17が適正な仮貼り位置よりズレて仮貼りされていることがわかる。
 また、図10Bに示すように、裏面においても、適正な仮貼り位置よりズレて仮貼りされている場合は、本来は白に変換されるべき座標が導電性接着フィルム17によって黒く変換され、黒に変換されるべき座標が裏面電極13によって白く変換されることから、導電性接着フィルム17が適正な仮貼り位置よりズレて仮貼りされていることがわかる。
 また、実施例1にかかる導電性接着フィルム17を用いることにより、バスバー電極12を有しない、いわゆるバスバーレス構造の太陽電池セルにおいても、仮貼り位置からのズレが容易に分かる。すなわち、図11Aに示すように、受光面において、適正な仮貼り位置よりズレて仮貼りされている場合は、本来は白に変換されるべき座標が受光面によって黒く変換され、黒に変換されるべき座標が導電性接着フィルム17によって白く変換されることから、導電性接着フィルム17が適正な仮貼り位置よりズレて仮貼りされていることがわかる。
 また、図11Bに示すように、裏面においても、適正な仮貼り位置よりズレて仮貼りされている場合は、本来は白に変換されるべき座標が導電性接着フィルム17によって黒く変換され、黒に変換されるべき座標が裏面電極13によって白く変換されることから、導電性接着フィルム17が適正な仮貼り位置よりズレて仮貼りされていることがわかる。
 図12に比較例1にかかる太陽電池セルの2値化画像を示す。図12Aに示すように、比較例1では、導電性接着フィルム18が半透明であるため、2値化されることにより黒く変換される。このため、受光面側では、導電性接着フィルム18と太陽電池セルの受光面とを区別できず、位置ズレの有無や量を検出することができなかった。
 図13に比較例2にかかる太陽電池セルの2値化画像を示す。図13Bに示すように、比較例2では、導電性接着フィルム19が2値化されることにより白く変換されるように着色されているため、裏面側では、導電性接着フィルム19と太陽電池セルの裏面電極13とを区別できず、位置ズレの有無や量を検出することができなかった。
 図14に比較例3にかかる太陽電池セルの2値化画像を示す。図14Aに示すように、比較例3では、導電性接着フィルム20が2値化されることにより黒く変換されるように着色されているため、受光面側では、導電性接着フィルム20と太陽電池セルの受光面とを区別できず、位置ズレの有無や量を検出することができなかった。特にバスバーレス構造の太陽電池セル2においては、白く変換されるバスバー電極12が設けられていないため、バスバー電極12との相対的な位置関係より位置ズレの量を検出することもできない。
 [タブ線の仮貼り位置の検査]
 また、他の実施の形態として、図15に示すように、太陽電池セル2に導電性接着フィルム17を仮貼りし、導電性接着フィルム17上にタブ線3を仮貼りした後、本圧着する前に貼着位置の検査を行ってもよい。すなわち、太陽電池モジュール1は、図15に示すように、導電性接着フィルム17を製造し(ステップS11)、導電性接着フィルム17を太陽電池セル2の受光面及び裏面に仮貼りした後(ステップS12)、複数の太陽電池セル2間に亘ってタブ線3が仮貼りされ、ストリングス4が形成される(ステップS13)。その後、貼着位置の検査工程に付され(ステップS14)、貼着位置の検査によって位置ズレが検出された場合はリペア工程に付され(ステップS15)、再度導電性接着フィルム17が仮貼りされる。また、位置ズレが検出されなかった場合は、タブ線3上より熱加圧されることにより導電性接着フィルム17を介してタブ線3と太陽電池セル2の各電極とが本厚着され(ステップS16)、EVA等の封止材シートによって、表面カバー7及びバックシート8の間に封止されることにより(ステップS17)、太陽電池モジュール1が製造される。
 ここで、タブ線3は、ハンダ等によってコーティングされることにより2値化されると白色に変換され、また、導電性接着フィルム17の幅以上の幅に形成されている。
 太陽電池セル2は、導電性接着フィルム17及びタブ線3がいずれも適正な位置に仮貼りされている場合、受光面側においては、タブ線3のみが写る。したがって、このタブ線3の位置情報(座標値)とタブ線3が適正な仮貼り位置に仮貼りされたときのタブ線3の基準位置情報(座標値)とがほぼ一致することで導電性接着フィルム17及びタブ線3がいずれも適正な位置に仮貼りされていることがわかる。
 一方、太陽電池セル2は、導電性接着フィルム17又はタブ線3のいずれかが適正な仮貼り位置よりズレて仮貼りされている場合、受光面側においては、白色に変換されたタブ線3及び導電性接着フィルム17の幅が所定の幅よりも広がる。したがって、これらタブ線3及び導電性接着フィルム17の位置情報(座標値)とタブ線3が適正な仮貼り位置に仮貼りされたときのタブ線3の基準位置情報(座標値)とが一致せず、貼りズレが生じていることがわかる。
 また、太陽電池セル2は、導電性接着フィルム17及びタブ線3がいずれも適正な位置に仮貼りされている場合、裏面側においては、導電性接着フィルム17がタブ線3によって覆われ、裏面前面が白く変換される。したがって、このタブ線3の位置情報(座標値)とタブ線3が適正な仮貼り位置に仮貼りされたときのタブ線3の基準位置情報(座標値)とが一致することで導電性接着フィルム17及びタブ線3がいずれも適正な位置に仮貼りされていることがわかる。
 一方、太陽電池セル2は、導電性接着フィルム17又はタブ線3のいずれかが適正な仮貼り位置よりズレて仮貼りされている場合、裏面側においては、黒く変換された導電性接着フィルム17が露出する。したがって、これらタブ線3及び導電性接着フィルム17の位置情報(座標値)とタブ線3が適正な仮貼り位置に仮貼りされたときのタブ線3の基準位置情報(座標値)とが一致せず、貼りズレが生じていることがわかる。
 照合の結果、タブ線3及び導電性接着フィルム17が適正な仮貼り位置に仮貼りされている場合には、太陽電池セル2は、タブ線3の本圧着工程に移る。照合の結果、タブ線3が適正な仮貼り位置に仮貼りされていない場合には、太陽電池セル2は、タブ線3を張り直すリペア工程に付される。
 なお、タブ線3を仮貼りした後、本圧着する前に貼着位置の検査を行う場合、タブ線3を太陽電池セル2の受光面、裏面及び導電性接着フィルム17と異なる色の材料でコーティングすると共に、タブ線3が仮貼りされた太陽電池セル2の表面画像の輝度ないし色差に基づいて3値化データを生成し、予め登録されている基準データと照合してもよい。このように、導電性接着フィルム17とタブ線3と太陽電池セル2表面のその他の領域とを識別し、基準データの座標値と照合することで、導電性接着フィルム17とタブ線3のいずれが、どの程度ズレて仮貼りされているかを判定することができる。
 貼着位置の検査の結果、太陽電池セル2は、タブ線3及び導電性接着フィルム17のいずれも適正な位置に仮貼りされている場合は、タブ線3の本圧着工程に付される。本圧着工程では、加熱ボンダーによってタブ線3上を熱加圧させる工法の他、太陽電池セル2の表面及び裏面に太陽電池セル2を封止するEVA等の透光性封止材シートを順次積層させ、減圧ラミネータを用いて一括してラミネート処理を行うことにより、タブ線3を各電極11,13上に熱加圧してもよい。
 [両面受光タイプ]
 また、本実施の形態に係る太陽電池モジュールでは、太陽電池セルの両面が受光面となるいわゆる両面受光タイプの太陽電池セルに適用することもできる。
1 太陽電池モジュール、2 太陽電池セル、3 タブ線、4 ストリングス、5 マトリクス、6 シート、7 表面カバー、8 バックシート、9 金属フレーム、10 光電変換素子、11 バスバー電極、12 フィンガー電極、13 裏面電極、14 タブ線接続部、17 導電性接着フィルム、22 バインダー樹脂、23 導電性粒子、24 剥離基材、25 リール、30 貼着位置検査装置、31 撮像部

Claims (21)

  1.  複数の太陽電池セルと、上記太陽電池セルの受光面及び隣接する太陽電池セルの裏面にそれぞれ形成された電極上に接着フィルムを介して接着され、複数の上記太陽電池セル同士を接続するタブ線とを備え、
     上記接着フィルムは、画像処理されたときに、上記太陽電池セルの接着面の色と異なる色として識別される色である太陽電池モジュール。
  2.  上記接着フィルムは、画像処理されたときに、上記太陽電池セルの接着面の色と異なる色に着色されている請求項1記載の太陽電池モジュール。
  3.  上記画像処理は、少なくとも上記太陽電池セルの接着面と上記接着フィルムとを区別する請求項1又は請求項2記載の太陽電池モジュール。
  4.  上記画像処理は、2値化処理である請求項3記載の太陽電池モジュール。
  5.  バスバー電極を有しないバスバーレス構造である請求項1~請求項4のいずれか1項に記載の太陽電池モジュール。
  6.  上記画像処理は、さらに上記接着フィルムを介して上記太陽電池セルの接着面に接着されるタブ線とを区別する請求項3記載の太陽電池モジュール。
  7.  上記太陽電池セルの受光面に配置される上記接着フィルムと、上記太陽電池セルの裏面に配置される上記接着フィルムとで、画像処理されたときに、互いに異なる色として認識される請求項1~請求項6のいずれか1項に記載の太陽電池モジュール。
  8.  上記太陽電池セルの受光面に配置される上記接着フィルムは、2値化画像処理されたときに白色に識別される色であり、上記太陽電池セルの裏面に配置される上記接着フィルムは、2値化画像処理されたときに黒色に識別される色である請求項7に記載の太陽電池モジュール。
  9.  太陽電池セル表面の所定の貼り付け位置に接着フィルムを仮貼りする接着フィルム配置工程と、
     上記接着フィルムが仮貼りされた上記太陽電池セルの表面を撮像する撮像工程と、
     上記太陽電池セル表面の画像データを画像処理することにより、上記接着フィルムが所定の位置に仮貼りされているかを検出する検出工程と、
     タブ線を上記太陽電池セル表面の所定の貼り付け位置に上記接着フィルム上から仮貼りするタブ線配置工程と、
     上記タブ線の上から熱加圧し、上記接着フィルムによって上記タブ線を上記太陽電池セルの表面に接続する接続工程とを有し、
     上記接着フィルムは、上記画像データが画像処理されたときに、上記太陽電池セル表面の色と異なる色として識別される色であり、
     上記検出工程において、画像処理後の上記太陽電池セル表面上における上記接着フィルムの位置情報より、上記接着面における所定の位置に仮貼りされているか否かを検出する太陽電池モジュールの製造方法。
  10.  上記検出工程において、上記接着フィルムの配置ズレが検出された場合、上記接着フィルムを剥離し、再度、上記接着フィルム配置工程に付す請求項9記載の太陽電池モジュールの製造方法。
  11.  上記検出工程は、上記接着フィルム配置工程、上記タブ線配置工程に次いで行う請求項9記載の太陽電池モジュールの製造方法。
  12.  上記画像処理は、2値化処理である請求項9~請求項11のいずれか1項に記載の太陽電池モジュールの製造方法。
  13.  上記画像処理は、さらに上記接着フィルムを介して上記太陽電池セルの接着面に接着されるタブ線とを区別する請求項9~請求項11のいずれか1項に記載の太陽電池モジュールの製造方法。
  14.  上記太陽電池セルの受光面に配置される上記接着フィルムと、上記太陽電池セルの裏面に配置される上記接着フィルムとで、画像処理されたときに、互いに異なる色として認識される請求項9~請求項12のいずれか1項に記載の太陽電池モジュールの製造方法。
  15.  上記太陽電池セルの受光面に配置される上記接着フィルムは、2値化画像処理されたときに白色に識別される色であり、上記太陽電池セルの裏面に配置される上記接着フィルムは、2値化画像処理されたときに黒色に識別される色である請求項14に記載の太陽電池モジュールの製造方法。
  16.  太陽電池セル表面の所定の貼り付け位置に接着フィルムを仮貼りする接着フィルム配置工程と、
     上記接着フィルムが仮貼りされた上記太陽電池セルの表面を撮像する撮像工程と、
     上記太陽電池セル表面の画像データを画像処理することにより、上記接着フィルムが所定の位置に仮貼りされているかを検出する検出工程とを有し、
     上記接着フィルムは、上記画像データが画像処理されたときに、上記太陽電池セル表面の色と異なる色として識別される色であり、
     上記検出工程において、画像処理後の上記太陽電池セル表面上における上記接着フィルムの位置情報より、上記接着面における所定の位置に仮貼りされているか否かを検出する接着フィルムの貼り合わせ方法。
  17.  上記検出工程において、上記接着フィルムの配置ズレが検出された場合、上記接着フィルムを剥離し、再度、上記接着フィルム配置工程に付す請求項16記載の接着フィルムの貼り合わせ方法。
  18.  上記画像処理は、2値化処理である請求項16又は請求項17に記載の接着フィルムの貼り合わせ方法。
  19.  上記太陽電池セルの受光面に配置される上記接着フィルムと、上記太陽電池セルの裏面に配置される上記接着フィルムとで、画像処理されたときに、互いに異なる色として認識される請求項16~請求項18のいずれか1項に記載の接着フィルムの貼り合わせ方法。
  20.  上記太陽電池セルの受光面に配置される上記接着フィルムは、2値化画像処理されたときに白色に識別される色であり、上記太陽電池セルの裏面に配置される上記接着フィルムは、2値化画像処理されたときに黒色に識別される色である請求項19に記載の接着フィルムの貼り合わせ方法。
  21.  太陽電池セル表面の所定の貼り付け位置に接着フィルムを仮貼りする接着フィルム配置工程と、
     上記接着フィルムが仮貼りされた上記太陽電池セルの表面を撮像する撮像工程と、
     上記太陽電池セル表面の画像データを画像処理することにより、上記接着フィルムが所定の位置に仮貼りされているかを検出する検出工程とを有し、
     上記接着フィルムは、上記画像データが画像処理されたときに、上記太陽電池セル表面の色と異なる色として識別される色であり、
     上記検出工程において、画像処理後の上記太陽電池セル表面上における上記接着フィルムの位置情報より、上記接着面における所定の位置に仮貼りされているか否かを検出する接着フィルムの検査方法。
PCT/JP2012/064828 2011-06-08 2012-06-08 太陽電池モジュール、太陽電池モジュールの製造方法、接着フィルムの貼り合わせ方法、接着フィルムの検査方法 WO2012169626A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201280028117.XA CN103733351A (zh) 2011-06-08 2012-06-08 太阳能电池模块、太阳能电池模块的制造方法、粘接膜的粘合方法、粘接膜的检查方法
EP12797499.6A EP2722895A1 (en) 2011-06-08 2012-06-08 Solar cell module, method for manufacturing solar cell module, method for bonding adhesive film, and method for inspecting adhesive film
KR1020147000164A KR20140040794A (ko) 2011-06-08 2012-06-08 태양 전지 모듈, 태양 전지 모듈의 제조 방법, 접착 필름의 접합 방법, 접착 필름의 검사 방법

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-128507 2011-06-08
JP2011128507A JP5816466B2 (ja) 2011-06-08 2011-06-08 太陽電池モジュールの製造方法、接着フィルムの貼り合わせ方法、接着フィルムの検査方法

Publications (1)

Publication Number Publication Date
WO2012169626A1 true WO2012169626A1 (ja) 2012-12-13

Family

ID=47296179

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/064828 WO2012169626A1 (ja) 2011-06-08 2012-06-08 太陽電池モジュール、太陽電池モジュールの製造方法、接着フィルムの貼り合わせ方法、接着フィルムの検査方法

Country Status (5)

Country Link
EP (1) EP2722895A1 (ja)
JP (1) JP5816466B2 (ja)
KR (1) KR20140040794A (ja)
CN (1) CN103733351A (ja)
WO (1) WO2012169626A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150059829A1 (en) * 2013-09-04 2015-03-05 Sanyo Electric Co., Ltd. Solar cell module, solar cell and method of manufacturing the same

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE112014000655T5 (de) * 2013-02-01 2015-10-08 Panasonic Intellectual Property Management Co., Ltd. Herstellungsverfahren für ein Solarzellenmodul und Herstellungsvorrichtung für ein Solarzellenmodul
WO2015008610A1 (ja) * 2013-07-19 2015-01-22 三洋電機株式会社 太陽電池モジュール
KR20170017776A (ko) * 2015-08-05 2017-02-15 엘지전자 주식회사 태양 전지 패널용 리본 및 이의 제조 방법, 그리고 태양 전지 패널
JP6865610B2 (ja) * 2017-03-27 2021-04-28 日本光電工業株式会社 生体電極、生体電極ユニット、及び、生体電極パッケージ

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10279904A (ja) * 1997-04-08 1998-10-20 Matsushita Electric Ind Co Ltd 電子部品接着用ボンドおよび電子部品の接着方法
JPH10313126A (ja) * 1997-05-13 1998-11-24 Sharp Corp 太陽電池素子及びその電極の表面処理方法及び太陽電池モジュール
JP2004356349A (ja) 2003-05-28 2004-12-16 Kyocera Corp 太陽電池モジュールの製造方法
JP2008135654A (ja) 2006-11-29 2008-06-12 Sanyo Electric Co Ltd 太陽電池モジュール
JP2009043801A (ja) * 2007-08-07 2009-02-26 Sanyo Electric Co Ltd 太陽電池モジュール
JP2010016245A (ja) 2008-07-04 2010-01-21 Sharp Corp 被接続物の接続方法およびそれを用いた太陽電池モジュールの製造方法ならびに接合状態検査方法
JP2010225801A (ja) * 2009-03-23 2010-10-07 Sanyo Electric Co Ltd 太陽電池モジュールの製造方法
JP2010232690A (ja) * 2010-07-12 2010-10-14 Sanyo Electric Co Ltd 太陽電池モジュール

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5084146B2 (ja) * 2006-01-30 2012-11-28 三洋電機株式会社 光起電力モジュール
CN101779298B (zh) * 2007-08-09 2012-02-01 三菱电机株式会社 太阳能电池板

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10279904A (ja) * 1997-04-08 1998-10-20 Matsushita Electric Ind Co Ltd 電子部品接着用ボンドおよび電子部品の接着方法
JPH10313126A (ja) * 1997-05-13 1998-11-24 Sharp Corp 太陽電池素子及びその電極の表面処理方法及び太陽電池モジュール
JP2004356349A (ja) 2003-05-28 2004-12-16 Kyocera Corp 太陽電池モジュールの製造方法
JP2008135654A (ja) 2006-11-29 2008-06-12 Sanyo Electric Co Ltd 太陽電池モジュール
JP2009043801A (ja) * 2007-08-07 2009-02-26 Sanyo Electric Co Ltd 太陽電池モジュール
JP2010016245A (ja) 2008-07-04 2010-01-21 Sharp Corp 被接続物の接続方法およびそれを用いた太陽電池モジュールの製造方法ならびに接合状態検査方法
JP2010225801A (ja) * 2009-03-23 2010-10-07 Sanyo Electric Co Ltd 太陽電池モジュールの製造方法
JP2010232690A (ja) * 2010-07-12 2010-10-14 Sanyo Electric Co Ltd 太陽電池モジュール

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150059829A1 (en) * 2013-09-04 2015-03-05 Sanyo Electric Co., Ltd. Solar cell module, solar cell and method of manufacturing the same
EP2846360A1 (en) * 2013-09-04 2015-03-11 Sanyo Electric Co., Ltd Solar cell module, solar cell and method of manufacturing the same
JP2015050412A (ja) * 2013-09-04 2015-03-16 三洋電機株式会社 太陽電池モジュール、太陽電池及びその製造方法

Also Published As

Publication number Publication date
KR20140040794A (ko) 2014-04-03
CN103733351A (zh) 2014-04-16
EP2722895A1 (en) 2014-04-23
JP5816466B2 (ja) 2015-11-18
JP2012256697A (ja) 2012-12-27

Similar Documents

Publication Publication Date Title
TWI495137B (zh) Manufacture method of solar cell module and solar cell module
WO2012169626A1 (ja) 太陽電池モジュール、太陽電池モジュールの製造方法、接着フィルムの貼り合わせ方法、接着フィルムの検査方法
TWI542025B (zh) Solar cell module and solar cell module manufacturing method
KR101431404B1 (ko) 태양 전지 모듈, 태양 전지 모듈의 제조 방법, 탭선이 권장된 릴 권장체
TWI462312B (zh) Solar cell module, solar cell module manufacturing method
TWI495122B (zh) Method for manufacturing solar cell module, solar cell module, connection method of solar cell and mark line
WO2013035667A1 (ja) 太陽電池モジュールの製造方法、太陽電池モジュール及びタブ線の接続方法
EP2624311A1 (en) Solar cell module and method for producing solar cell module
EP2592657A1 (en) Solar cell module and method for manufacturing solar cell module
WO2012133338A1 (ja) 太陽電池モジュール、太陽電池モジュールの製造方法、タブ線
TW201320374A (zh) 太陽電池模組、太陽電池模組之製造方法
TW201308632A (zh) 太陽電池模組、太陽電池模組之製造方法、及薄膜太陽電池用標記線
US20140373339A1 (en) Method for producing solar battery module, method for measuring output of solar cell, and device for measuring output of solar cell
TWI565784B (zh) 導電性接著劑、太陽電池模組及太陽電池模組的製造方法
TW201304161A (zh) 太陽電池模組、太陽電池模組之製造方法
WO2012099257A1 (ja) 太陽電池モジュール及び太陽電池モジュールの製造方法
WO2017043518A1 (ja) 太陽電池モジュールの製造方法、太陽電池モジュール、及び太陽電池セルの接続方法
JP5643620B2 (ja) 太陽電池モジュール及び太陽電池モジュールの製造方法
JP2013048201A (ja) 太陽電池モジュール及び太陽電池モジュールの製造方法
JP2017055112A (ja) 太陽電池モジュールの製造方法、太陽電池モジュール、及び太陽電池セルの接続方法
JP2014107356A (ja) 太陽電池モジュールの製造方法、及び太陽電池モジュール
JP2016167641A (ja) 太陽電池モジュール及び太陽電池モジュールの製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12797499

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20147000164

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2012797499

Country of ref document: EP