JP2017055112A - 太陽電池モジュールの製造方法、太陽電池モジュール、及び太陽電池セルの接続方法 - Google Patents
太陽電池モジュールの製造方法、太陽電池モジュール、及び太陽電池セルの接続方法 Download PDFInfo
- Publication number
- JP2017055112A JP2017055112A JP2016173970A JP2016173970A JP2017055112A JP 2017055112 A JP2017055112 A JP 2017055112A JP 2016173970 A JP2016173970 A JP 2016173970A JP 2016173970 A JP2016173970 A JP 2016173970A JP 2017055112 A JP2017055112 A JP 2017055112A
- Authority
- JP
- Japan
- Prior art keywords
- type electrode
- solar cell
- solar
- resin
- conductive
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
Landscapes
- Photovoltaic Devices (AREA)
Abstract
【課題】太陽電池セルの反りやクラックを抑制する太陽電池モジュール製造方法を提供する。【解決手段】裏面にp型電極3及びn型電極4が交互に設けられた複数の太陽電池セルを、太陽電池セル2Aの各p型電極と、太陽電池セル2B,2Cの各n型電極とが隣接し、太陽電池セル2Aの各n型電極と、太陽電池セル2B,2Cの各p型電極とが隣接するように配置する工程と、太陽電池セル2Aのp型電極と、太陽電池セル2Bのn型電極とに跨るように、導電性基材と導電性接着フィルムとを有する積層体9を貼付し、太陽電池セル2Aのn型電極と、太陽電池セル2Cのp型電極とに跨るように、積層体を貼付する工程と、積層体を、p型電極及びn型電極に180℃未満の温度で圧着する工程と、太陽電池セルと封止用樹脂と表面カバーとバックシートとを180℃未満の温度でラミネートし、p型電極と導電性基材、及びn型電極と導電性基材を接続させる工程とを含む。【選択図】図3
Description
本発明は、バックコンタクト型の太陽電池セル同士を、導電性基材と導電性接着フィルムとを備える積層体を用いて接続させる太陽電池モジュールの製造方法、太陽電池モジュール、及び太陽電池セルの接続方法に関する。
従来、p型電極及びn型電極が太陽電池セルの受光面(表面)と反対側の裏面に設けられた、いわゆるバックコンタクト型の太陽電池モジュールがある。バックコンタクト型の太陽電池モジュールは、p型電極及びn型電極がともに太陽電池セルの裏面に設けられている。複数の太陽電池セルを接続する際には、例えば、インターコネクタとなるタブ線で太陽電池セルの裏面同士を接続する。
特許文献1には、バックコンタクト型の太陽電池セルの電極を接続するための配線を有する配線シートを、はんだや導電性接着剤を用いて、太陽電池セルに接続する方法が記載されている。しかしながら、特許文献1に記載の技術は、配線シートが高価であるため、太陽電池モジュールのコストが増えてしまう。
そのため、例えば特許文献2に記載されているように、一の太陽電池セルのp型電極集電部と、他の太陽電池セルのn型電極集電部とを隣接するように配置し、一の太陽電池セルのp型電極集電部と、他の太陽電池セルのn型電極集電部とをタブ線ではんだ接続する方法が採用されている。
図12は、従来のバックコンタクト型の太陽電池モジュールの一例を示す底面図である。太陽電池セル100には、p型電極101及びn型電極102が太陽電池セル100の裏面に交互に並設され、一側縁部に沿ってp型電極101の各一端と連続するp型電極集電部103が形成され、他側縁部に沿ってn型電極102の各一端と連続するn型電極集電部104が形成されている。p型電極集電部103及びn型電極集電部104は、相対向する位置にタブ線105との接続点106が数カ所設けられている。そして、各太陽電池セル100は、p型電極集電部103と、n型電極集電部104とが隣接するように配置され、各接続点106同士が細線状のタブ線105ではんだ接続されている。
しかし、特許文献2に記載の技術では、約260℃程度の高温ではんだ接続が行われるため、太陽電池セルの反りやクラックの発生が懸念される。
本発明は、このような従来の実情に鑑みて提案されたものであり、太陽電池セルの反りやクラックを抑制することができる太陽電池モジュールの製造方法を提供する。
本発明に係る太陽電池モジュールの製造方法は、太陽電池セルの受光面と反対側の裏面にp型電極及びn型電極が交互に設けられた複数の太陽電池セルを、一の太陽電池セルの各p型電極と、一の太陽電池セルの一側縁部側及び他側縁部側の他の太陽電池セルの各n型電極とが隣接するように配置するとともに、一の太陽電池セルの各n型電極と、他の太陽電池セルの各p型電極とが隣接するように配置する工程と、一の太陽電池セルのp型電極と、他側縁部側の他の太陽電池セルのn型電極とに跨るように、導電性基材と、接着剤及び導電性粒子を含有する導電性接着フィルムとを備える積層体を貼付するとともに、一の太陽電池セルのn型電極と、一側縁部側の他の太陽電池セルのp型電極とに跨るように、積層体を貼付する工程と、積層体を、p型電極及びn型電極に180℃未満の温度で圧着する工程と、圧着後の複数の太陽電池セルと、太陽電池セルの受光面及び裏面に積層された封止用樹脂と、太陽電池セルの受光面側の封止用樹脂上に配置された表面カバーと、太陽電池セルの裏面側の封止用樹脂上に配置されたバックシートとを180℃未満の温度でラミネート圧着し、p型電極と導電性基材、及びn型電極と導電性基材を接続させる工程とを含む。
本発明に係る太陽電池モジュールの製造方法は、太陽電池セルの受光面と反対側の裏面にp型電極及びn型電極が交互に設けられた複数の太陽電池セルを、一の太陽電池セルの各p型電極と、一の太陽電池セルの一側縁部側及び他側縁部側の他の太陽電池セルの各n型電極とが隣接するように配置するとともに、一の太陽電池セルの各n型電極と、他の太陽電池セルの各p型電極とが隣接するように配置する工程と、一の太陽電池セルのp型電極と、他側縁部側の他の太陽電池セルのn型電極とに跨るように、導電性基材と、接着剤及び導電性粒子を含有する導電性接着フィルムとを備える積層体を貼付するとともに、一の太陽電池セルのn型電極と、一側縁部側の他の太陽電池セルのp型電極とに跨るように、積層体を貼付する工程と、積層体を、p型電極及びn型電極に200℃以下の温度で圧着することにより、p型電極と導電性基材、及びn型電極と導電性基材を接続させる工程と、圧着後の複数の太陽電池セルと、太陽電池セルの受光面及び裏面に積層された封止用樹脂と、太陽電池セルの受光面側の封止用樹脂上に配置された表面カバーと、太陽電池セルの裏面側の封止用樹脂上に配置されたバックシートとを180℃未満の温度でラミネート圧着する工程とを含む。
本発明に係る太陽電池モジュールは、太陽電池モジュールの製造方法で得られたものである。
本発明に係る太陽電池セルの接続方法は、太陽電池セルの受光面と反対側の裏面にp型電極及びn型電極が交互に設けられた複数の太陽電池セルを、一の太陽電池セルの各p型電極と、一の太陽電池セルの一側縁部側及び他側縁部側の他の太陽電池セルの各n型電極とが隣接するように配置するとともに、一の太陽電池セルの各n型電極と、他の太陽電池セルの各p型電極とが隣接するように配置する工程と、一の太陽電池セルのp型電極と、他側縁部側の他の太陽電池セルのn型電極とに跨るように、導電性基材と、接着剤及び導電性粒子を含有する導電性接着フィルムとを備える積層体を貼付するとともに、一の太陽電池セルのn型電極と、一側縁部側の他の太陽電池セルのp型電極とに跨るように、積層体を貼付する工程と、積層体を、p型電極及びn型電極に180℃未満の温度で圧着する工程と、圧着後の複数の太陽電池セルと、太陽電池セルの受光面及び裏面に積層された封止用樹脂と、太陽電池セルの受光面側の封止用樹脂上に配置された表面カバーと、太陽電池セルの裏面側の封止用樹脂上に配置されたバックシートとを180℃未満の温度でラミネート圧着し、p型電極と導電性基材、及びn型電極と導電性基材を接続させる工程とを含む。
本発明は、導電性基材と、接着剤及び導電性粒子を含有する導電性接着フィルムとを備える積層体を、200℃以下の温度で圧着し、180℃未満の温度でラミネート圧着することにより、太陽電池セルの反りやクラックを抑制することができる。
以下、本発明の実施の形態について、図面を参照しながら下記順序にて詳細に説明する。なお、図面は、模式的なものであり、各寸法の比率等が現実のものとは異なることがある。また、図面において、具体的な寸法等は、以下の説明を参酌して判断されるべきである。また、図面相互間において、互いの寸法や比率が異なる部分が含まれる場合がある。
1.太陽電池モジュールの製造方法
2.太陽電池モジュール
3.実施例
1.太陽電池モジュールの製造方法
2.太陽電池モジュール
3.実施例
<太陽電池モジュールの製造方法>
[第1の実施の形態]
[配置工程]
図1は、太陽電池モジュールの製造方法の一例を示す図であり、太陽電池セルを所定の配列で配置した状態を示す底面図である。配置工程において、図1に示すように、受光面2c(後述する図6を参照。)と反対側の裏面2dにp型電極3及びn型電極4が交互に設けられた複数の太陽電池セル2を、一の太陽電池セル2Aの各p型電極3と、一の太陽電池セル2Aの一側縁部2a側の他の太陽電池セル2C,他側縁部2b側の他の太陽電池セル2Bの各n型電極4とが隣接するように配置するとともに、一の太陽電池セル2Aの各n型電極4と、他の太陽電池セル2B,2Cの各p型電極3とが隣接するように配置する。例えば、一の太陽電池セル2Aの各p型電極3の一端3aと、他の太陽電池セル2Cの各n型電極4の一端4aとが隣接するように配置するとともに、一の太陽電池セル2Aの各n型電極4の一端4aと、他の太陽電池セル2Cの各p型電極3の一端3aとが隣接するように配置する。
[第1の実施の形態]
[配置工程]
図1は、太陽電池モジュールの製造方法の一例を示す図であり、太陽電池セルを所定の配列で配置した状態を示す底面図である。配置工程において、図1に示すように、受光面2c(後述する図6を参照。)と反対側の裏面2dにp型電極3及びn型電極4が交互に設けられた複数の太陽電池セル2を、一の太陽電池セル2Aの各p型電極3と、一の太陽電池セル2Aの一側縁部2a側の他の太陽電池セル2C,他側縁部2b側の他の太陽電池セル2Bの各n型電極4とが隣接するように配置するとともに、一の太陽電池セル2Aの各n型電極4と、他の太陽電池セル2B,2Cの各p型電極3とが隣接するように配置する。例えば、一の太陽電池セル2Aの各p型電極3の一端3aと、他の太陽電池セル2Cの各n型電極4の一端4aとが隣接するように配置するとともに、一の太陽電池セル2Aの各n型電極4の一端4aと、他の太陽電池セル2Cの各p型電極3の一端3aとが隣接するように配置する。
図2(A)は、太陽電池セルの受光面側を示す斜視図であり、図2(B)は、太陽電池セルの受光面と反対側の面を示す底面図である。太陽電池セル2は、光電変換素子6を有する。光電変換素子6としては、例えば、単結晶型シリコン光電変換素子、多結晶型光電変換素子を用いることができる。光電変換素子6は、図2(A)に示すように、受光面6aとなる面には電極が形成されておらず、図2(B)に示すように、受光面6aとは反対側の裏面6bに、極性の異なるp型電極3及びn型電極4が形成されている。
光電変換素子6の裏面6bには、両側縁間に亘って延びるライン状のp型電極3及びn型電極4が、その幅方向に、略等間隔で交互に形成されている。光電変換素子6は、p型電極3の一端3a及びn型電極4の一端4aが、太陽電池セル2の一側縁部2a側に沿って、略一直線上に位置している。また、光電変換素子6は、p型電極3の一端3b及びn型電極4の一端4bが、太陽電池セル2の他側縁部2b側に沿って、略一直線上に位置している。
p型電極3及びn型電極4は、例えば、光電変換素子6の裏面6bに、銀ペースト等の導電性ペーストを所定のパターンで塗布、焼成することにより形成することができる。
[貼付工程]
図3は、太陽電池モジュールの製造方法の一例を示す図であり、太陽電池セルに積層体を貼付したストリングを示す底面図である。太陽電池モジュールの製造方法は、貼付工程において、図3に示すように、複数の太陽電池セル2を、一の太陽電池セル2Aのp型電極3と、他の太陽電池セル2Bのn型電極4とに跨るように、導電性基材7と導電性接着フィルム8とを備える積層体9を貼付するとともに、一の太陽電池セル2Aのn型電極4と、他の太陽電池セル2Cのp型電極3とに跨るように、積層体9を貼付する。
図3は、太陽電池モジュールの製造方法の一例を示す図であり、太陽電池セルに積層体を貼付したストリングを示す底面図である。太陽電池モジュールの製造方法は、貼付工程において、図3に示すように、複数の太陽電池セル2を、一の太陽電池セル2Aのp型電極3と、他の太陽電池セル2Bのn型電極4とに跨るように、導電性基材7と導電性接着フィルム8とを備える積層体9を貼付するとともに、一の太陽電池セル2Aのn型電極4と、他の太陽電池セル2Cのp型電極3とに跨るように、積層体9を貼付する。
[積層体]
図4は、積層体の一例を示す断面図である。積層体9は、導電性基材7と、接着層となる導電性接着フィルム8とが積層している。積層体9は、導電性接着フィルム8側が、一の太陽電池セル2Aのp型電極3と、他の太陽電池セル2Bのn型電極4とに跨るように貼付けされる。また、積層体9は、導電性接着フィルム8側が、一の太陽電池セル2Aのn型電極4と、他の太陽電池セル2Cのp型電極3とに跨るように貼付けされる。
図4は、積層体の一例を示す断面図である。積層体9は、導電性基材7と、接着層となる導電性接着フィルム8とが積層している。積層体9は、導電性接着フィルム8側が、一の太陽電池セル2Aのp型電極3と、他の太陽電池セル2Bのn型電極4とに跨るように貼付けされる。また、積層体9は、導電性接着フィルム8側が、一の太陽電池セル2Aのn型電極4と、他の太陽電池セル2Cのp型電極3とに跨るように貼付けされる。
積層体9の長さは、一の太陽電池セル2Aのp型電極3と他の太陽電池セル2Bのn型電極4とに跨るように貼付けできる長さ、又は一の太陽電池セル2Aのn型電極4と他の太陽電池セル2Cのp型電極3とに跨るように貼付けできる長さであれば、適宜選択することができる。例えば、図3に示すように、複数の太陽電池セル2において、一の太陽電池セル2Aのp型電極3の表面全体と、他の太陽電池セル2Bのn型電極4の表面全体を覆う長さにすることができる。
[導電性基材]
導電性基材7は、例えば金属製の導電性基材を用いることができる。導電性基材7は、例えば銅箔を用いることができる。銅箔としては、電解銅箔や圧延銅箔を用いることができる。また、導電性基材7は、必要に応じてめっき層を有していてもよい。めっき層は、例えば、金めっき、銀めっき、スズめっき、はんだめっき等を施すことで形成することができる。
導電性基材7は、例えば金属製の導電性基材を用いることができる。導電性基材7は、例えば銅箔を用いることができる。銅箔としては、電解銅箔や圧延銅箔を用いることができる。また、導電性基材7は、必要に応じてめっき層を有していてもよい。めっき層は、例えば、金めっき、銀めっき、スズめっき、はんだめっき等を施すことで形成することができる。
導電性基材7の厚みは、使用目的に応じて適宜選択することができ、例えば30〜100μmとすることができ、20〜40μmとすることもできる。
導電性基材7の幅は、積層体9を太陽電池セル2に貼付した際に、隣接する導電性基材7と接触しない範囲で適宜選択することができ、p型電極3又はn型電極4の幅と略同じにすることができ、例えば、0.1〜10mmとすることができる。導電性基材7の長さは、上述した積層体9の長さと同様の長さにすることができる。
[導電性接着フィルム]
図5は、積層体における導電性接着フィルムの一例を示す断面図である。導電性接着フィルム8は、例えば図5に示すようにフィルム形状であり、熱硬化型のバインダー樹脂10及び導電性粒子11を含有する。
図5は、積層体における導電性接着フィルムの一例を示す断面図である。導電性接着フィルム8は、例えば図5に示すようにフィルム形状であり、熱硬化型のバインダー樹脂10及び導電性粒子11を含有する。
バインダー樹脂10は、膜形成樹脂と、硬化性樹脂と、硬化剤とを含有し、さらに必要に応じて他の成分をさらに含有していてもよい。
膜形成樹脂は、平均分子量が10000以上の樹脂であることが好ましい。特に、膜形成樹脂の平均分子量は、フィルム形成性の観点から、10000〜80000程度であることが好ましい。膜形成樹脂としては、フェノキシ樹脂、不飽和ポリエステル樹脂、飽和ポリエステル樹脂、ウレタン樹脂、ブタジエン樹脂、ポリイミド樹脂、ポリアミド樹脂、ポリオレフィン樹脂などが挙げられる。膜形成樹脂は、1種単独で用いてもよいし、2種以上を組み合わせて用いてもよい。
硬化性樹脂としては、例えば、エポキシ樹脂、アクリレート樹脂などが挙げられ、エポキシ樹脂が好ましい。
エポキシ樹脂としては、市販のエポキシ樹脂を用いることができ、常温で流動性を有する液状のエポキシ樹脂が好ましい。エポキシ樹脂としては、具体的には、ナフタレン型エポキシ樹脂、ビフェニル型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、ビスフェノール型エポキシ樹脂、スチルベン型エポキシ樹脂、トリフェノールメタン型エポキシ樹脂、フェノールアラルキル型エポキシ樹脂、ナフトール型エポキシ樹脂、ジシクロペンタジエン型エポキシ樹脂、トリフェニルメタン型エポキシ樹脂などを用いることができる。
アクリレート樹脂としては、例えば、メチルアクリレート、エチルアクリレート、イソプロピルアクリレート、イソブチルアクリレート、エポキシアクリレート、エチレングリコールジアクリレート、ジエチレングリコールジアクリレート、トリメチロールプロパントリアクリレート、ジメチロールトリシクロデカンジアクリレート、テトラメチレングリコールテトラアクリレート、2−ヒドロキシ−1,3−ジアクリロキシプロパン、2,2−ビス[4−(アクリロキシメトキシ)フェニル]プロパン、2,2−ビス[4−(アクリロキシエトキシ)フェニル]プロパン、ジシクロペンテニルアクリレート、トリシクロデカニルアクリレート、トリス(アクリロキシエチル)イソシアヌレート、ウレタンアクリレートなどが挙げられる。硬化性樹脂は、1種単独で用いてもよいし、2種以上を組み合わせて用いてもよい。
硬化剤としては、例えば、2−エチル4−メチルイミダゾールに代表されるイミダゾール類;ラウロイルパーオキサイド、ブチルパーオキサイド、ベンジルパーオキサイド、ジラウロイルパーオキサイド、ジブチルパーオキサイド、ベンジルパーオキサイド、パーオキシジカーボネート、ベンゾイルパーオキサイド等の有機過酸化物;有機アミン類等のアニオン系硬化剤;スルホニウム塩、オニウム塩、アルミニウムキレート剤等のカチオン系硬化剤などが挙げられる。特に、硬化性樹脂としてエポキシ樹脂を用いる場合はイミダゾール類が好ましく、硬化性樹脂としてアクリレート樹脂を用いる場合は有機過酸化物が好ましい。硬化剤は、1種単独で用いてもよいし、2種以上を組み合わせて用いてもよい。
特に、バインダー樹脂10は、フェノキシ樹脂、不飽和ポリエステル樹脂、飽和ポリエステル樹脂、ウレタン樹脂、ブタジエン樹脂、ポリイミド樹脂、ポリアミド樹脂、及びポリオレフィン樹脂から選択される少なくとも1種の膜形成樹脂と、エポキシ樹脂と、イミダゾール類、アニオン系硬化剤、及びカチオン系硬化剤から選択される少なくとも1種の硬化剤を含有することが好ましい。
その他の成分としては、例えば、シランカップリング剤、充填剤、軟化剤、促進剤、老化防止剤、着色剤(顔料、染料)、有機溶剤、イオンキャッチャー剤などが挙げられる。
導電性粒子11は、例えば、ニッケル、金、銀、銅などの金属粒子、樹脂粒子に金めっきなどを施したもの、樹脂粒子に金めっきを施した粒子の最外層に絶縁被覆を施したものなどを用いることができる。導電性粒子18の形状としては、球形、扁平形状が好ましい。導電性粒子11の平均粒子径は、1〜50μmが好ましく、1〜10μmがより好ましい。
導電性接着フィルム8の厚みは、太陽電池セル2の厚み以下であることが好ましい。また、導電性接着フィルム8の厚みは、導電性基材7の厚み以下であることが好ましい。このような構成とすることにより、太陽電池セルの反りやクラックをより効果的に抑制することができる。例えば、導電性接着フィルム8の厚みは、15〜25μmとすることができる。
[剥離シート]
積層体9は、導電性接着フィルム8の導電性基材7が積層されている面とは反対側の面に剥離シートを有していてもよい。剥離シートとしては、例えば、PET(Poly Ethylene Terephthalate)、OPP(Oriented Polypropylene)、PMP(Poly-4-methylpentene-1)、PTFE(Polytetrafluoroethylene)などを用いることができる。
積層体9は、導電性接着フィルム8の導電性基材7が積層されている面とは反対側の面に剥離シートを有していてもよい。剥離シートとしては、例えば、PET(Poly Ethylene Terephthalate)、OPP(Oriented Polypropylene)、PMP(Poly-4-methylpentene-1)、PTFE(Polytetrafluoroethylene)などを用いることができる。
積層体9は、例えば図4に示すように、テープ状に形成されており、リール12に巻回されている。積層体9は、実使用時においては、リール12から引き出され、所定の長さに切断された後導電性接着フィルム8を一の太陽電池セル2Aのn型電極4と、他の太陽電池セル2Cのp型電極3とに跨るように貼付けする。また、積層体9は、導電性接着フィルム8を一の太陽電池セル2Aのp型電極3と、他の太陽電池セル2Bのn型電極4とに跨るように貼付けする。これにより、導電性基材7とp型電極3及びn型電極4とを接続することができる。
なお、剥離シート及び導電性基材7は、p型電極3及びn型電極4の幅と略同じ幅を有するように形成されている。
積層体9は、例えば次のような製造方法により得ることができる。まず、膜形成樹脂と、液状エポキシ樹脂と、潜在性硬化剤と、シランカップリング剤と、導電性粒子11とを溶剤に溶解させて導電性接着フィルム形成用溶液を得る。溶剤としては、トルエン、酢酸エチル、又はこれらの混合溶剤等を用いることができる。得られた導電性接着フィルム形成用溶液を剥離シート上に塗布し、溶剤を揮発させることにより、剥離シート付の導電性接着フィルム8を得る。次に、剥離シート付の導電性接着フィルム8は、ロールラミネート等により、導電性接着フィルム8を導電性基材7の一面に積層することにより、積層体9が得られる。
[圧着工程]
圧着工程は、積層体9を、p型電極3及びn型電極4に180℃未満の温度で圧着する。圧着工程は、導電性基材7上から、例えば加熱ボンダーによって導電性接着フィルム8が流動性を示しつつ本硬化が生じない程度の温度、圧力で、所定時間、熱加圧することにより行うことが好ましい。加熱温度は、例えば、100℃以下とすることができ、70〜80℃とすることもできる。熱加圧時間は、例えば、0.1秒間〜10分間とすることができ、0.1秒〜10秒間とすることもできる。圧着工程における圧力は、例えば、1MPa以下とすることができ、0.01〜0.5MPaとすることもできる。
圧着工程は、積層体9を、p型電極3及びn型電極4に180℃未満の温度で圧着する。圧着工程は、導電性基材7上から、例えば加熱ボンダーによって導電性接着フィルム8が流動性を示しつつ本硬化が生じない程度の温度、圧力で、所定時間、熱加圧することにより行うことが好ましい。加熱温度は、例えば、100℃以下とすることができ、70〜80℃とすることもできる。熱加圧時間は、例えば、0.1秒間〜10分間とすることができ、0.1秒〜10秒間とすることもできる。圧着工程における圧力は、例えば、1MPa以下とすることができ、0.01〜0.5MPaとすることもできる。
[ラミネート工程]
図6は、太陽電池モジュールの製造方法の一例を示す図であり、ラミネート工程で得られる太陽電池モジュールを示す断面図である。ラミネート工程では、圧着工程後の複数の太陽電池セル2と、太陽電池セル2の受光面2c及び裏面2dに積層された封止用樹脂13と、受光面2c側の封止用樹脂13上に配置された表面カバー14と、裏面2d側の封止用樹脂13上に配置されたバックシート15とをラミネート圧着し、p型電極3と導電性基材7、及びn型電極4と導電性基材7を接続させる。
図6は、太陽電池モジュールの製造方法の一例を示す図であり、ラミネート工程で得られる太陽電池モジュールを示す断面図である。ラミネート工程では、圧着工程後の複数の太陽電池セル2と、太陽電池セル2の受光面2c及び裏面2dに積層された封止用樹脂13と、受光面2c側の封止用樹脂13上に配置された表面カバー14と、裏面2d側の封止用樹脂13上に配置されたバックシート15とをラミネート圧着し、p型電極3と導電性基材7、及びn型電極4と導電性基材7を接続させる。
ラミネート工程における加熱温度は、180℃未満であり、150〜170℃とすることができる。ラミネート工程における熱加圧時間は、1秒間〜1時間とすることができる。ラミネート工程における圧力は、0.01〜1MPaとすることができ、0.01〜0.5MPaとすることもできる。
封止用樹脂13は、例えば、エチレン/酢酸ビニル共重合体(EVA)、エチレン/酢酸ビニル/トリアリルイソシアヌレート(EVAT)、ポリビニルブチラート(PVB)、ポリイソブチレン(PIB)、シリコーン樹脂、ポリウレタン樹脂等を用いることができる。
表面カバー14は、例えば、ガラス、プラスチック等の透光性の材料を用いることができる。
バックシート15は、ガラス、ポリエチレンテレフタレート、アルミニウム等を用いることができる。
ラミネート工程において、積層体9は、導電性基材7側からラミネーターによって熱加圧されることにより、導電性基材7とp型電極3及びn型電極4との間から導電性接着フィルム8を構成するバインダー樹脂10が流出する。そして、導電性基材7とp型電極3との間、及び導電性基材7とn型電極4との間に導電性粒子11が挟持された状態でバインダー樹脂10が硬化し、導電性接着フィルム8が接着剤層16となる。これにより、導電性接着フィルム8中の導電性粒子11を介して、導電性基材7とp型電極3、及び導電性基材7とn型電極4とが接続され、隣接する太陽電池セル2が直列に接続される。そして、ラミネート工程後の太陽電池セル2の周囲にアルミニウムなどの金属フレーム17が取り付けられ、太陽電池モジュール1が完成する。
以上のように、本実施の形態に係る太陽電池モジュールの製造方法では、180℃未満の温度で圧着する工程と、180℃未満の温度でラミネート圧着してp型電極3と導電性基材7、及びn型電極4と導電性基材7を接続させる工程とを有することにより、太陽電池セル2への負荷を少なくすることができるため、太陽電池セル2の反りやクラックを抑制することができる。そのため、太陽電池モジュール1の出力低下を抑制することができ、また、太陽電池モジュール1の歩留まりを抑制することができる。
また、本実施の形態に係る太陽電池モジュールの製造方法では、導電性基材と導電性接着フィルムとを備える積層体を用いることにより、ラミネート工程において、太陽電池セルのストリングが複数配列されたマトリクスを一括してラミネートすることができるため、製造工程をより簡略化することができる。
さらに、本実施の形態に係る太陽電池モジュールの製造方法では、従来のはんだ接続する方法で用いられていたフラックスが不要となるため、フラックスを用いることに起因して発生しやすい導電性基材と封止用樹脂との界面の剥離を抑制することができる。そのため、太陽電池モジュールの信頼性をより向上させることができる。
上述した方法以外に、太陽電池セルの反り量が実用上許容される範囲となり、かつ、太陽電池セルのクラックが発生しない範囲で、後述する第2の実施の形態に係る製造方法のような圧着工程及びラミネート工程を適用してもよい。
[第2の実施の形態]
第2の実施の形態に係る太陽電池モジュールの製造方法は、上述した配置工程、貼付工程の後に、積層体9を、p型電極3及びn型電極4に200℃以下の温度で圧着することにより、p型電極3と導電性基材7、及びn型電極4と導電性基材7を接続させる工程と、圧着後の複数の太陽電池セル2と、封止用樹脂13と、表面カバー14と、バックシート15とを180℃未満の温度でラミネート圧着する工程とを含む。
第2の実施の形態に係る太陽電池モジュールの製造方法は、上述した配置工程、貼付工程の後に、積層体9を、p型電極3及びn型電極4に200℃以下の温度で圧着することにより、p型電極3と導電性基材7、及びn型電極4と導電性基材7を接続させる工程と、圧着後の複数の太陽電池セル2と、封止用樹脂13と、表面カバー14と、バックシート15とを180℃未満の温度でラミネート圧着する工程とを含む。
第2の実施の形態に係る太陽電池モジュールの製造方法における配置工程及び貼付工程の条件は、第1の実施の形態に係る太陽電池モジュールの製造方法における配置工程及び貼付工程と同義であり、好ましい範囲も同様である。
[圧着工程]
圧着工程では、例えば、導電性基材7上から、導電性接着フィルム8の本硬化が生じる程度の温度、圧力で、所定時間、熱加圧することにより、p型電極3と導電性基材7、及びn型電極4と導電性基材7を接続させる。圧着工程における加熱温度は、200℃未満であり、190℃以下とすることもできる。熱加圧時間は、例えば、0.1秒間〜10分間とすることができる。熱加圧工程における圧力は、例えば、2MPa以下とすることができる。
圧着工程では、例えば、導電性基材7上から、導電性接着フィルム8の本硬化が生じる程度の温度、圧力で、所定時間、熱加圧することにより、p型電極3と導電性基材7、及びn型電極4と導電性基材7を接続させる。圧着工程における加熱温度は、200℃未満であり、190℃以下とすることもできる。熱加圧時間は、例えば、0.1秒間〜10分間とすることができる。熱加圧工程における圧力は、例えば、2MPa以下とすることができる。
[ラミネート工程]
ラミネート工程の条件は、第1の実施の形態に係る太陽電池モジュールの製造方法におけるラミネート工程と同義であり、好ましい範囲も同様である。
ラミネート工程の条件は、第1の実施の形態に係る太陽電池モジュールの製造方法におけるラミネート工程と同義であり、好ましい範囲も同様である。
なお、貼付工程では、図3に示す方法以外に、一の太陽電池セル2のp型電極3の一端と、他の太陽電池セル2のn型電極4の一端とに跨るように積層体9を貼付けしてもよい。
図7は、太陽電池モジュールの製造方法の他の例を示す図であり、太陽電池セルに積層体を貼付したストリングを示す底面図である。貼付工程では、図7に示すように、隣接する一対の太陽電池セル2において、一の太陽電池セル2Aのp型電極3の一端3aと、他の太陽電池セル2Cのn型電極4の一端4aとに跨るように積層体9を貼付するとともに、一の太陽電池セル2Aのn型電極4の一端4bと、他の太陽電池セル2Bのp型電極3の一端3bとに跨るように、積層体9を貼付するようにしてもよい。
<太陽電池モジュール>
本実施の形態に係る太陽電池モジュールは、上述した太陽電池モジュールの製造方法によって作製することができる。図8は、太陽電池モジュール1の一例を示す分解斜視図である。太陽電池モジュール1は、複数の太陽電池セル2が導電性基材7によって直列に接続されたストリングを有し、ストリングを複数配列したマトリクスを備える。また、太陽電池モジュール1は、マトリクスの受光面側及び受光面とは反対側の裏面に積層された封止用樹脂13と、受光面側に設けられた表面カバー14と、マトリクスの裏面に設けられたバックシート15とともに積層されている。また、太陽電池モジュール1は、周囲に金属フレーム17が取り付けられている。
本実施の形態に係る太陽電池モジュールは、上述した太陽電池モジュールの製造方法によって作製することができる。図8は、太陽電池モジュール1の一例を示す分解斜視図である。太陽電池モジュール1は、複数の太陽電池セル2が導電性基材7によって直列に接続されたストリングを有し、ストリングを複数配列したマトリクスを備える。また、太陽電池モジュール1は、マトリクスの受光面側及び受光面とは反対側の裏面に積層された封止用樹脂13と、受光面側に設けられた表面カバー14と、マトリクスの裏面に設けられたバックシート15とともに積層されている。また、太陽電池モジュール1は、周囲に金属フレーム17が取り付けられている。
本実施の形態に係る太陽電池モジュールは、上述した製造方法によって作製されることにより、太陽電池セル2への負荷がより少なくなるため、太陽電池セル2の反りやクラックを抑制することができる。
以下、本発明の実施例について説明する。本実施例では、一の太陽電池セルのp型電極と、他の太陽電池セルのn型電極とに跨るように貼付し、圧着した後の太陽電池セルの反り量を確認した。また、太陽電池セルの反り量を確認した後、EVAシート、カバーガラス及びバックシートとともに太陽電池セルをラミネート圧着し、ラミネート圧着後の太陽電池セルにおけるクラックの有無を確認した。なお、本発明は、以下の実施例に限定されるものではない。
[第1の実施例]
[実施例1]
太陽電池セルとして、6インチ単結晶シリコンセルを用いた。具体的には、図9に示すように、光電変換素子6の裏面6bにライン状のp型電極3及びn型電極4が交互に2本ずつ形成された太陽電池セル2を用いた。
[実施例1]
太陽電池セルとして、6インチ単結晶シリコンセルを用いた。具体的には、図9に示すように、光電変換素子6の裏面6bにライン状のp型電極3及びn型電極4が交互に2本ずつ形成された太陽電池セル2を用いた。
図10は、太陽電池セルを所定の配列で配置した状態を示す底面図である。まず、3つの太陽電池セル2A,2B,2Cを準備し、一の太陽電池セル2Aの各p型電極と、他の太陽電池セル2B,2Cの各n型電極とが隣接するように配置するとともに、一の太陽電池セル2Aの各n型電極と、他の太陽電池セル2B,2Cの各p型電極とが隣接するように配置した。
次に、一の太陽電池セル2Aのp型電極と、他の太陽電池セル2Bのn型電極とに跨るように、銅箔(平均厚み35μm、幅5mm)と、接着剤及び導電性粒子を含有する導電性接着フィルム(平均厚み15μm)とが積層した積層体(DT101、デクセリアルズ株式会社製)を貼付した。また、一の太陽電池セル2Aのn型電極と、他の太陽電池セル2Cのp型電極とに跨るように、上記積層体を貼付した。
次に、貼付けした積層体の銅箔側から、加熱ボンダーによって熱加圧することにより、積層体をp型電極、及びn型電極に仮圧着した。熱加圧は、80℃、0.3MPa、5秒間の条件(圧着条件A)で行った。
仮圧着後の太陽電池セルの受光面及び裏面に設けられたEVAシートと、太陽電池セルの受光面側のEVAシート上に設けられた強化ガラスと、太陽電池セルの裏面側のEVAシート上に設けられたTPTバックシートとを、ラミネーターによって一括してラミネート圧着した。これにより、p型電極と銅箔、及びn型電極と銅箔を接続させた。ラミネート圧着は、160℃、0.1MPa、15分間の条件で行った。
[実施例2]
太陽電池セルとして、図2(A)、(B)に示すように、光電変換素子6の裏面6bにp型電極3及びn型電極4が交互に3本ずつ設けられた太陽電池セル2を用いたこと以外は、実施例1と同様の方法で行った。
太陽電池セルとして、図2(A)、(B)に示すように、光電変換素子6の裏面6bにp型電極3及びn型電極4が交互に3本ずつ設けられた太陽電池セル2を用いたこと以外は、実施例1と同様の方法で行った。
[実施例3]
積層体として、銅箔(平均厚み70μm、幅5mm)と、接着剤及び導電性粒子を含有する導電性接着フィルム(平均厚み15μm)とが積層した積層体(DT101、デクセリアルズ株式会社製)を用いたこと以外は、実施例1と同様の方法で行った。
積層体として、銅箔(平均厚み70μm、幅5mm)と、接着剤及び導電性粒子を含有する導電性接着フィルム(平均厚み15μm)とが積層した積層体(DT101、デクセリアルズ株式会社製)を用いたこと以外は、実施例1と同様の方法で行った。
[実施例4]
太陽電池セルとして、図2(A)、(B)に示すように、光電変換素子6の裏面6bにp型電極3及びn型電極4が交互に3本ずつ設けられた太陽電池セル2を用いたこと以外は、実施例3と同様の方法で行った。
太陽電池セルとして、図2(A)、(B)に示すように、光電変換素子6の裏面6bにp型電極3及びn型電極4が交互に3本ずつ設けられた太陽電池セル2を用いたこと以外は、実施例3と同様の方法で行った。
[実施例5]
積層体として、銅箔(平均厚み100μm、幅5mm)と、接着剤及び導電性粒子を含有する導電性接着フィルム(平均厚み15μm)とが積層した積層体(DT101、デクセリアルズ株式会社製)を用いたこと以外は、実施例1と同様の方法で行った。
積層体として、銅箔(平均厚み100μm、幅5mm)と、接着剤及び導電性粒子を含有する導電性接着フィルム(平均厚み15μm)とが積層した積層体(DT101、デクセリアルズ株式会社製)を用いたこと以外は、実施例1と同様の方法で行った。
[実施例6]
太陽電池セルとして、図2(A)、(B)に示すように、光電変換素子6の裏面6bにp型電極3及びn型電極4が交互に3本ずつ設けられた太陽電池セル2を用いたこと以外は、実施例5と同様の方法で行った。
太陽電池セルとして、図2(A)、(B)に示すように、光電変換素子6の裏面6bにp型電極3及びn型電極4が交互に3本ずつ設けられた太陽電池セル2を用いたこと以外は、実施例5と同様の方法で行った。
[第2の実施例]
[実施例7]
実施例1と同様の方法で、一の太陽電池セル2Aのp型電極と、他の太陽電池セル2Bのn型電極とに跨るように積層体を貼付するとともに、一の太陽電池セル2Aのn型電極と、他の太陽電池セル2Cのp型電極とに跨るように、積層体を貼付した。
[実施例7]
実施例1と同様の方法で、一の太陽電池セル2Aのp型電極と、他の太陽電池セル2Bのn型電極とに跨るように積層体を貼付するとともに、一の太陽電池セル2Aのn型電極と、他の太陽電池セル2Cのp型電極とに跨るように、積層体を貼付した。
貼付した積層体を加熱ボンダーによって、熱加圧することにより、導電性基材をp型電極、及びn型電極に接続させた。熱加圧は、180℃、2MPa、15秒間の条件(圧着条件B)で行った。
熱加圧後の太陽電池セルの受光面及び裏面に設けられたEVAシートと、太陽電池セルの受光面側のEVAシート上に設けられた強化ガラスと、太陽電池セルの裏面側のEVAシート上に設けられたTPTバックシートとを、ラミネーターによってラミネート圧着した。ラミネート圧着は、160℃、0.1MPa、15分間の条件で行った。
[太陽電池セルの反り状態]
上記圧着条件A又は圧着条件Bで熱加圧した後の太陽電池セルの反り量を観察した。具体的には、図11に示すように、太陽電池セル2の設置面Gと設置面から最も離れている太陽電池セル2の一端部との距離Tを反り量として測定した。実用上、反り量が5mm以下であることが好ましい。結果を表1に示す。
上記圧着条件A又は圧着条件Bで熱加圧した後の太陽電池セルの反り量を観察した。具体的には、図11に示すように、太陽電池セル2の設置面Gと設置面から最も離れている太陽電池セル2の一端部との距離Tを反り量として測定した。実用上、反り量が5mm以下であることが好ましい。結果を表1に示す。
[クラックの有無]
ラミネート圧着後の太陽電池セルのクラックの有無を、EL検査装置(株式会社アイテス社製、装置名:PVX100CS、素子分解能:約50μm(35mm/F1.8レンズ、視野160mm×110mm))により測定した。その結果、全くクラックが検出できなかった場合、又は発生したクラックが50μm以下の場合を「クラック無し」と評価した。結果を表1に示す。
ラミネート圧着後の太陽電池セルのクラックの有無を、EL検査装置(株式会社アイテス社製、装置名:PVX100CS、素子分解能:約50μm(35mm/F1.8レンズ、視野160mm×110mm))により測定した。その結果、全くクラックが検出できなかった場合、又は発生したクラックが50μm以下の場合を「クラック無し」と評価した。結果を表1に示す。
実施例1〜6では、導電性基材と、接着剤及び導電性粒子を含有する導電性接着フィルムとを備える積層体を180℃未満の温度で圧着し、さらに、180℃未満の温度でラミネート圧着したため、太陽電池セルの反りやクラックの発生を抑制できることが分かった。また、実施例7でも、太陽電池セルの反りやクラックの発生を抑制できることが分かった。
1 太陽電池モジュール、2 太陽電池セル、3 p型電極、4 n型電極、5 ストリング、6 光電変換素子、7 導電性基材、8 導電性接着フィルム、9 積層体、10 バインダー樹脂、11 導電性粒子、12 リール、13 封止用樹脂、14 表面カバー、15 バックシート、16 接着剤層、17 金属フレーム
Claims (10)
- 太陽電池セルの受光面と反対側の裏面にp型電極及びn型電極が交互に設けられた複数の太陽電池セルを、一の太陽電池セルの各p型電極と、上記一の太陽電池セルの一側縁部側及び他側縁部側の他の太陽電池セルの各n型電極とが隣接するように配置するとともに、上記一の太陽電池セルの各n型電極と、上記他の太陽電池セルの各p型電極とが隣接するように配置する工程と、
上記一の太陽電池セルのp型電極と、上記他側縁部側の他の太陽電池セルのn型電極とに跨るように、導電性基材と、接着剤及び導電性粒子を含有する導電性接着フィルムとを備える積層体を貼付するとともに、上記一の太陽電池セルのn型電極と、上記一側縁部側の他の太陽電池セルのp型電極とに跨るように、上記積層体を貼付する工程と、
上記積層体を、上記p型電極及び上記n型電極に180℃未満の温度で圧着する工程と、
上記圧着後の複数の太陽電池セルと、上記太陽電池セルの受光面及び裏面に積層された封止用樹脂と、上記太陽電池セルの受光面側の上記封止用樹脂上に配置された表面カバーと、上記太陽電池セルの裏面側の封止用樹脂上に配置されたバックシートとを180℃未満の温度でラミネート圧着し、上記p型電極と導電性基材、及び上記n型電極と導電性基材を接続させる工程とを含む、太陽電池モジュールの製造方法。 - 上記圧着する工程は、100℃以下の温度、1MPa以下の圧力で圧着する、請求項1記載の太陽電池モジュールの製造方法。
- 上記導電性接着フィルムは、
フェノキシ樹脂、不飽和ポリエステル樹脂、飽和ポリエステル樹脂、ウレタン樹脂、ブタジエン樹脂、ポリイミド樹脂、ポリアミド樹脂、及びポリオレフィン樹脂から選択される少なくとも1種の膜形成樹脂と、
エポキシ樹脂と、
イミダゾール類、アニオン系硬化剤、及びカチオン系硬化剤から選択される少なくとも1種の硬化剤と、
導電性粒子とを含有する、請求項1又は2に記載の太陽電池モジュールの製造方法。 - 上記導電性接着フィルムの厚みが、上記太陽電池セルの厚み以下である、請求項1〜3のいずれか1項に記載の太陽電池モジュールの製造方法。
- 上記導電性接着フィルムの厚みが、上記導電性基材の厚み以下である、請求項1〜4のいずれか1項に記載の太陽電池モジュールの製造方法。
- 上記導電性基材が銅箔である、請求項1〜5のいずれか1項に記載の太陽電池モジュールの製造方法。
- 太陽電池セルの受光面と反対側の裏面にp型電極及びn型電極が交互に設けられた複数の太陽電池セルを、一の太陽電池セルの各p型電極と、上記一の太陽電池セルの一側縁部側及び他側縁部側の他の太陽電池セルの各n型電極とが隣接するように配置するとともに、上記一の太陽電池セルの各n型電極と、上記他の太陽電池セルの各p型電極とが隣接するように配置する工程と、
上記一の太陽電池セルのp型電極と、上記他側縁部側の他の太陽電池セルのn型電極とに跨るように、導電性基材と、接着剤及び導電性粒子を含有する導電性接着フィルムとを備える積層体を貼付するとともに、上記一の太陽電池セルのn型電極と、上記一側縁部側の他の太陽電池セルのp型電極とに跨るように、上記積層体を貼付する工程と、
上記積層体を、上記p型電極及び上記n型電極に200℃以下の温度で圧着することにより、上記p型電極と導電性基材、及び上記n型電極と導電性基材を接続させる工程と、
上記圧着後の複数の太陽電池セルと、上記太陽電池セルの受光面及び裏面に積層された封止用樹脂と、上記太陽電池セルの受光面側の上記封止用樹脂上に配置された表面カバーと、上記太陽電池セルの裏面側の封止用樹脂上に配置されたバックシートとを180℃未満の温度でラミネート圧着する工程とを含む、太陽電池モジュールの製造方法。 - 上記導電性接着フィルムは、
フェノキシ樹脂、不飽和ポリエステル樹脂、飽和ポリエステル樹脂、ウレタン樹脂、ブタジエン樹脂、ポリイミド樹脂、ポリアミド樹脂、及びポリオレフィン樹脂から選択される少なくとも1種の膜形成樹脂と、
エポキシ樹脂と、
イミダゾール類、アニオン系硬化剤、及びカチオン系硬化剤から選択される少なくとも1種の硬化剤と、
導電性粒子とを含有する、請求項7に記載の太陽電池モジュールの製造方法。 - 請求項1〜8のいずれか1項に記載の太陽電池モジュールの製造方法で得られた太陽電池モジュール。
- 太陽電池セルの受光面と反対側の裏面にp型電極及びn型電極が交互に設けられた複数の太陽電池セルを、一の太陽電池セルの各p型電極と、上記一の太陽電池セルの一側縁部側及び他側縁部側の他の太陽電池セルの各n型電極とが隣接するように配置するとともに、上記一の太陽電池セルの各n型電極と、上記他の太陽電池セルの各p型電極とが隣接するように配置する工程と、
上記一の太陽電池セルのp型電極と、上記他側縁部側の他の太陽電池セルのn型電極とに跨るように、導電性基材と、接着剤及び導電性粒子を含有する導電性接着フィルムとを備える積層体を貼付するとともに、上記一の太陽電池セルのn型電極と、上記一側縁部側の他の太陽電池セルのp型電極とに跨るように、上記積層体を貼付する工程と、
上記積層体を、上記p型電極及び上記n型電極に180℃未満の温度で圧着する工程と、
上記圧着後の複数の太陽電池セルと、上記太陽電池セルの受光面及び裏面に積層された封止用樹脂と、上記太陽電池セルの受光面側の上記封止用樹脂上に配置された表面カバーと、上記太陽電池セルの裏面側の封止用樹脂上に配置されたバックシートとを180℃未満の温度でラミネート圧着し、上記p型電極と導電性基材、及び上記n型電極と導電性基材を接続させる工程とを含む、太陽電池セルの接続方法。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2016/076272 WO2017043518A1 (ja) | 2015-09-08 | 2016-09-07 | 太陽電池モジュールの製造方法、太陽電池モジュール、及び太陽電池セルの接続方法 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015176593 | 2015-09-08 | ||
JP2015176593 | 2015-09-08 |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2017055112A true JP2017055112A (ja) | 2017-03-16 |
Family
ID=58317437
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2016173970A Pending JP2017055112A (ja) | 2015-09-08 | 2016-09-06 | 太陽電池モジュールの製造方法、太陽電池モジュール、及び太陽電池セルの接続方法 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2017055112A (ja) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112789735A (zh) * | 2018-09-26 | 2021-05-11 | 阿特拉斯科技控股有限公司 | 生产在两个方向上弯曲的太阳能面板的方法 |
CN113314637A (zh) * | 2021-05-28 | 2021-08-27 | 宁夏小牛自动化设备有限公司 | 一种单面焊接的密栅太阳能电池串的制备方法 |
-
2016
- 2016-09-06 JP JP2016173970A patent/JP2017055112A/ja active Pending
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112789735A (zh) * | 2018-09-26 | 2021-05-11 | 阿特拉斯科技控股有限公司 | 生产在两个方向上弯曲的太阳能面板的方法 |
CN112789735B (zh) * | 2018-09-26 | 2022-08-19 | 阿特拉斯科技控股有限公司 | 生产在两个方向上弯曲的太阳能面板的方法 |
CN113314637A (zh) * | 2021-05-28 | 2021-08-27 | 宁夏小牛自动化设备有限公司 | 一种单面焊接的密栅太阳能电池串的制备方法 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5899400B2 (ja) | 太陽電池モジュールの製造方法 | |
JP5604236B2 (ja) | 太陽電池モジュールの製造方法、太陽電池セルの接続装置、太陽電池モジュール | |
JP5415396B2 (ja) | 太陽電池モジュールの製造方法及び太陽電池モジュール | |
JP2013080982A (ja) | 太陽電池モジュールの製造方法及び太陽電池モジュール製造装置 | |
JP2010225777A (ja) | 太陽電池モジュールの製造方法 | |
JPWO2009060753A1 (ja) | 太陽電池モジュールおよび太陽電池モジュールの製造方法 | |
WO2011118688A1 (ja) | 太陽電池、太陽電池モジュール、電子部品及び太陽電池の製造方法 | |
TWI495122B (zh) | Method for manufacturing solar cell module, solar cell module, connection method of solar cell and mark line | |
WO2012005318A1 (ja) | 太陽電池モジュール、太陽電池モジュールの製造方法 | |
JP6110244B2 (ja) | 導電性接着テープ及び導電性接着テープの接続方法、並びに太陽電池モジュール及びその製造方法 | |
WO2017043518A1 (ja) | 太陽電池モジュールの製造方法、太陽電池モジュール、及び太陽電池セルの接続方法 | |
KR102099246B1 (ko) | 결정계 태양 전지 모듈 및 그의 제조 방법 | |
JP5545569B2 (ja) | 太陽電池用バックシートの製造方法 | |
JP2014060278A (ja) | ストリングのリペア方法、及び結晶系太陽電池モジュールの製造方法 | |
JP5889738B2 (ja) | 太陽電池モジュール及びその製造方法 | |
JP2011222744A (ja) | 太陽電池接続用タブ線、接続方法、及び太陽電池モジュール | |
JP2017055112A (ja) | 太陽電池モジュールの製造方法、太陽電池モジュール、及び太陽電池セルの接続方法 | |
JP2012079838A (ja) | 太陽電池モジュールとその製造方法 | |
JP5479222B2 (ja) | 太陽電池モジュール | |
JP5652911B2 (ja) | 太陽電池モジュールの製造方法 | |
WO2014020674A1 (ja) | 太陽電池モジュールの製造方法 | |
JP6492570B2 (ja) | 結晶系太陽電池モジュール及びその製造方法 | |
JP6097483B2 (ja) | 結晶系太陽電池モジュール | |
JP2017175016A (ja) | 太陽電池モジュールの製造方法、太陽電池モジュール、太陽電池セルの接続方法、及び積層体 | |
JP2016100438A (ja) | 結晶系太陽電池モジュール及びその製造方法 |