WO2012147856A1 - チタン酸リチウム製造用チタン原料及びかかる原料を用いたチタン酸リチウムの製造方法 - Google Patents
チタン酸リチウム製造用チタン原料及びかかる原料を用いたチタン酸リチウムの製造方法 Download PDFInfo
- Publication number
- WO2012147856A1 WO2012147856A1 PCT/JP2012/061216 JP2012061216W WO2012147856A1 WO 2012147856 A1 WO2012147856 A1 WO 2012147856A1 JP 2012061216 W JP2012061216 W JP 2012061216W WO 2012147856 A1 WO2012147856 A1 WO 2012147856A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- lithium titanate
- raw material
- lithium
- titanium
- compound
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/48—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
- H01M4/485—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01D—COMPOUNDS OF ALKALI METALS, i.e. LITHIUM, SODIUM, POTASSIUM, RUBIDIUM, CAESIUM, OR FRANCIUM
- C01D15/00—Lithium compounds
- C01D15/02—Oxides; Hydroxides
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01G—COMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
- C01G23/00—Compounds of titanium
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01G—COMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
- C01G23/00—Compounds of titanium
- C01G23/003—Titanates
- C01G23/005—Alkali titanates
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/60—Other road transportation technologies with climate change mitigation effect
- Y02T10/70—Energy storage systems for electromobility, e.g. batteries
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/29—Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
- Y10T428/2982—Particulate matter [e.g., sphere, flake, etc.]
Definitions
- the present invention relates to a titanium raw material for producing lithium titanate and a method for producing lithium titanate using such a raw material. Specifically, the present invention relates to a method for producing lithium titanate that can be efficiently produced at low cost and a titanium raw material suitable for such a method. Moreover, this invention relates to the lithium titanate manufactured by the said method, the electrode active material containing the same, and an electrical storage device.
- Lithium titanate is being developed as a material for an electricity storage device, and is used as an electrode active material having excellent safety and life characteristics as an anode active material for an electricity storage device, particularly a lithium secondary battery.
- Lithium secondary batteries are rapidly spreading for small batteries such as portable device power supplies, and are also being developed for large-sized lithium secondary batteries for the electric power industry and automobiles. Electrode active materials for these large lithium secondary batteries are required to have long-term reliability and high input / output characteristics. Lithium titanate, which has excellent safety and life characteristics, is particularly promising for negative electrode active materials. Yes.
- Patent Document 1 describes a compound in which 0.8 ⁇ x ⁇ 1.4 and 1.6 ⁇ y ⁇ 2.2 in lithium titanate represented by the general formula Li x Ti y O 4 , Typical examples include LiTi 2 O 4 , Li 1.33 Ti 1.66 O 4, and Li 0.8 Ti 2.2 O 4 .
- Patent Document 2 a predetermined amount of a lithium compound and a titanium compound are mixed in a liquid medium, dried and then fired (Patent Document 2).
- Patent Document 3 A spray drying method (Patent Document 3) performed by spray drying, a dry method (Patent Documents 1 and 4) in which a predetermined amount of a lithium compound and a titanium compound are mixed in a dry method and fired are known.
- Lithium titanate is produced by firing a lithium compound and a titanium compound in both the dry method and the wet method, but because of the solid phase diffusion reaction, the reactivity between these raw materials is low, In addition to lithium titanate, by-products having different compositions and unreacted raw materials are likely to remain. For this reason, sufficient electric capacity cannot be obtained when used in a battery.
- a higher firing temperature is advantageous in terms of reactivity, but lithium volatilization loss is likely to occur, and since lithium titanate particles shrink and sinter and grain growth proceeds, the specific surface area of lithium titanate particles And the rate characteristics are likely to deteriorate when used in a battery.
- the present inventors consider that it is important to cause the titanium raw material and the lithium raw material to react in a uniformly mixed state as much as possible.
- a titanium raw material containing a titanium oxide having a specific surface area in a specific range as at least a titanium raw material for producing lithium titanate.
- the present invention has been completed.
- a titanium raw material containing a titanium oxide having a specific surface area of 50 to 450 m 2 / g measured by a BET single point method by nitrogen adsorption is used as a titanium raw material for producing lithium titanate.
- the titanium raw material and the lithium raw material are easily mixed uniformly.
- the reactivity of the titanium raw material and the lithium compound is improved, and the target lithium titanate can be efficiently produced. That is, according to the method of the present invention, the generation of subphases having different compositions and the remaining of unreacted raw materials are small, and the progress of sintering and the decrease in specific surface area are small.
- the target lithium titanate can be reliably and stably manufactured even at a heating temperature lower than the manufacturing method in the case of using a conventional titanium raw material.
- an electricity storage device having excellent battery characteristics, particularly rate characteristics, can be manufactured.
- Specific surface area In the present specification, the specific surface area is measured by the BET one-point method by nitrogen adsorption.
- As the apparatus Monosorb manufactured by Yuasa Ionics or Monosorb model MS-22 manufactured by Quantachrome Instruments was used.
- the average particle diameter of the lithium compound means a volume average particle diameter measured by a laser diffraction method.
- the volume average particle size is determined by using a laser diffraction / scattering type particle size distribution measuring apparatus, using ethanol as the dispersion medium, setting the refractive index to 1.360 for ethanol, and appropriately setting the lithium compound according to the compound type. It is measured. For example, when the lithium compound is lithium carbonate, the refractive index is 1.500.
- LA-950 manufactured by Horiba Ltd. was used as a laser diffraction / scattering particle size distribution analyzer.
- the average particle diameter of the primary particles of the titanium raw material is obtained by measuring the particle diameter of 100 primary particles in an image using a transmission electron microscope and taking the average value (electron microscopy). ).
- the average secondary particle diameter of the secondary particle of a titanium raw material means the volume average particle diameter measured by the laser diffraction method.
- the volume average particle diameter is determined by using a laser diffraction / scattering particle size distribution measuring apparatus, using pure water as a dispersion medium, and having a refractive index of 1.333 for pure water, and for titanium raw materials depending on the type of compound. Set and measured. For example, when the titanium raw material is anatase type titanium oxide, the refractive index is 2.520.
- LA-950 manufactured by Horiba Ltd. was used as a laser diffraction / scattering particle size distribution measuring apparatus.
- the average particle diameter of the lithium titanate precursor mixture refers to a volume average particle diameter measured by a laser diffraction method.
- the volume average particle size is determined by using a laser diffraction / scattering type particle size distribution measuring apparatus, using ethanol as a dispersion medium, a refractive index of 1.360 for ethanol, and the numerical value of the compounded lithium compound for the measurement particles. It was measured using. For example, when the lithium compound is lithium carbonate, the refractive index is 1.567.
- LA-950 manufactured by Horiba Ltd. was used as a laser diffraction / scattering particle size distribution measuring apparatus.
- the average particle size of primary particles of lithium titanate is obtained by measuring the particle size of 100 primary particles in an image using a transmission electron microscope and taking the average value (electron microscope). Law).
- the average secondary particle diameter of the secondary particle of lithium titanate means the volume average particle diameter measured by the laser diffraction method.
- the volume average particle size is determined by using a laser diffraction / scattering type particle size distribution measuring device, using pure water as a dispersion medium, a refractive index of 1.333 for water, and appropriately for lithium titanate depending on the compound type. Set and measure.
- the lithium titanate is Li 4 Ti 5 O 12
- the refractive index is 2.700.
- LA-950 manufactured by Horiba Ltd. was used as the laser diffraction / scattering particle size distribution measuring apparatus.
- the bulk density is determined by a cylinder type (a sample is placed in a measuring cylinder and calculated from volume and mass).
- Impurities such as sodium and potassium are measured by an atomic absorption method, SO 4 and chlorine are measured by an ion chromatography method or a fluorescent X-ray measuring device, and silicon, calcium, iron, chromium, nickel, Other elements such as manganese, copper, zinc, aluminum, magnesium, niobium and zirconium are measured by the ICP method.
- SO 4 a fluorescent X-ray measurement apparatus (RIGAKU RIX-2200) was used.
- the present invention is a titanium raw material for producing lithium titanate, which contains a titanium oxide having a specific surface area of 50 to 450 m 2 / g.
- Titanium raw material for producing lithium titanate means that lithium titanate is produced by mixing at least a lithium compound and the raw material and then heating the mixture. The raw material used when doing.
- the titanium raw material includes titanium oxide, and the titanium oxide is represented by metatitanic acid represented by TiO (OH) 2 or TiO 2 .H 2 O, Ti (OH) 4 or TiO 2 .2H 2 O.
- Contains titanic acid compounds such as orthotitanic acid (also called hydrous titanium oxide), titanium oxide (crystalline titanium oxide or amorphous titanium oxide such as rutile type, anatase type, brookite type, bronze type), or a mixture thereof.
- titanium oxide having an X-ray diffraction pattern having only a diffraction peak from a single crystal structure titanium oxide has a plurality of crystal structures such as those having an anatase type diffraction peak and a rutile type diffraction peak. It may have a diffraction peak.
- crystalline titanium oxide is preferable.
- the titanium raw material may contain a substance other than the above titanium oxide, and may contain, for example, an organic titanium compound such as an inorganic titanium compound or a titanium alkoxide.
- the titanium oxide in the titanium raw material is preferably 50 mol% or more, more preferably 70% or more, and still more preferably 90% or more.
- the titanium oxide contained in the titanium raw material used in the present invention has a specific surface area in the range of 50 to 450 m 2 / g.
- a titanium raw material containing a titanium oxide having a specific surface area in the above range is used, the titanium raw material and the lithium compound are easily mixed uniformly, and the reaction between the titanium raw material and the lithium compound easily proceeds during subsequent heating.
- the target lithium titanate can be produced efficiently. That is, the generation of subphases having different compositions and the remaining of unreacted raw materials are small, and the progress of sintering and the decrease in specific surface area are small. Moreover, the target lithium titanate can be reliably and stably manufactured even at a heating temperature lower than that of the prior art.
- the specific surface area of the titanium oxide is less than 50 m 2 / g, the mixing with the lithium compound tends to be non-uniform and sufficient reactivity cannot be obtained, so the specific surface area of the titanium oxide is less than 450 m 2 / g. Even if it enlarges, the reactivity corresponding to it is hard to be obtained.
- the specific surface area is preferably in the range of 50 to 300 m 2 / g, more preferably in the range of 60 to 300 m 2 / g, and still more preferably in the range of 60 to 100 m 2 / g.
- Titanium oxide having a specific surface area in the above range is obtained by hydrolyzing or neutralizing titanium compounds such as titanium sulfate, titanyl sulfate, titanium chloride, titanyl chloride, titanium alkoxide, and titanic acid compounds (hydrous titanium oxide)
- titanium oxides such as titanium oxide
- it can manufacture by setting reaction temperature and reaction time suitably, and adjusting a specific surface area.
- the titanate compound (hydrous titanium oxide) or titanium oxide thus obtained may be fired at a temperature of 200 to 700 ° C., and the specific surface area may be adjusted or the crystallinity may be improved by firing. it can.
- the titanium oxide contained in the titanium raw material is preferably fine in terms of reactivity with the lithium compound, and the average primary particle diameter (electron microscopy) is preferably in the range of 0.001 ⁇ m to 0.3 ⁇ m, 0.005 Is more preferably in the range of 0.01 ⁇ m to 0.3 ⁇ m, still more preferably in the range of 0.04 to 0.28 ⁇ m.
- the average secondary particle diameter is preferably 0.05 to 5 ⁇ m, more preferably 0.1 to 3.0 ⁇ m. 0.5 to 2.0 ⁇ m is more preferable.
- the titanium oxide contained in the titanium raw material is preferably high-purity, and usually has a purity of 90% by weight or more, more preferably 99% by weight or more.
- the impurity Cl or SO 4 is preferably 1.0% by weight or less, and more preferably 0.5% by weight or less. Moreover, the following ranges are more preferable as other elements. Silicon (1000 ppm or less), calcium (1000 ppm or less), iron (1000 ppm or less), niobium (0.3 wt% or less), zirconium (0.2 wt% or less).
- the titanium oxide contained in the titanium raw material has a low bulk density, specifically, a bulk density in the range of 0.2 to 0.7 g / cm 3 , the titanium raw material and the lithium compound are uniform. This is preferable because the reaction between the titanium raw material and the lithium compound easily proceeds during subsequent heating.
- the range of the bulk density is more preferably 0.2 to 0.6 g / cm 3 , and further preferably 0.2 to 0.5 g / cm 3 .
- this invention is a manufacturing method of lithium titanate, Comprising: The manufacturing method of lithium titanate which heats at least the following 2 types of compounds.
- the manufacturing method of lithium titanate which heats at least the following 2 types of compounds.
- (1) Titanium raw material for producing the lithium titanate (2) Lithium compound
- the above titanium oxide can be used.
- the lithium compound (2) hydroxides, salts, oxides and the like can be used without particular limitation, and examples thereof include lithium hydroxide, lithium carbonate, lithium nitrate, lithium sulfate, and lithium oxide. . These 1 type can be used and 2 or more types may be used together.
- the lithium compounds lithium hydroxide, lithium carbonate, and lithium oxide are preferably used to avoid remaining acidic roots in lithium titanate, and lithium hydroxide and lithium carbonate are more preferably used. Even more preferred.
- the acidic root means a sulfate group (SO 4 ) and a chlorine group (Cl).
- the lithium compound preferably has a high purity, and usually a purity of 98.0% by weight or more is good.
- Li 2 CO 3 is 98.0% by weight or more, preferably 99.0% by weight or more
- an impurity metal element such as Na, Ca, K, or Mg is present.
- 1000 ppm or less, preferably 500 ppm or less, and Cl and SO 4 are 1000 ppm or less, preferably 500 ppm or less.
- the volume average particle diameter of the lithium compound is not particularly limited, and generally available ones can be used. In the case of lithium carbonate, one having a volume average particle size in the range of 10 to 100 ⁇ m is common.
- the lithium compound may be refined alone in advance.
- the volume average particle diameter is adjusted to 5 ⁇ m or less, the miniaturization is preferable because the reactivity between the titanium raw material and the lithium compound increases, and 4 ⁇ m or less is more preferable.
- a known method can be used for the refining treatment.
- the volume average particle size of the lithium compound is preferably 5 ⁇ m or less by pulverization, more preferably 0.5 to 5 ⁇ m, and even more preferably 1 to 5 ⁇ m.
- the volume average particle diameter may be reduced to 4 ⁇ m or less, preferably in the range of 0.5 to 4 ⁇ m, more preferably in the range of 1 to 4 ⁇ m by pulverization.
- a known pulverizer can be used for the refining treatment, such as flake crusher, hammer mill, pin mill, bantam mill, jet mill, cyclone mill, fret mill, pan mill, edge runner, roller mill, mix muller, vibration mill, etc. Is mentioned.
- D90 cumulative frequency 90% diameter
- the thickness is preferably 7 ⁇ m or less.
- lithium carbonate 0.8 m 2 / g or more is preferable, and 1.0 to 3.0 m 2 / g is preferable. More preferred.
- the manufacturing method of lithium titanate is good also as a manufacturing method of lithium titanate which heats at least the following 3 types of compounds.
- (1) Titanium raw material for producing lithium titanate (2) Lithium compound (3) Lithium titanate compound having the same crystal structure as the target lithium titanate
- Lithium titanate compound having the same crystal structure as the target lithium titanate This lithium titanate compound is used as necessary, and suppresses sintering of the generated lithium titanate, or It is thought to act as a seed crystal.
- the heating process described later can be performed at a relatively low temperature, and the particle growth of lithium titanate in the heating process is appropriately controlled, making it easy to produce the target lithium titanate. . For this reason, it is necessary to have the same crystal structure as the target lithium titanate.
- the particle diameter (electron microscopy) of the lithium titanate compound is not particularly limited, and the same particle diameter as that of the target lithium titanate (electron microscopy), for example, about 0.5 to 2.0 ⁇ m.
- the lithium titanate compound can be produced by the method of the present invention.
- the blending amount is preferably 1 to 30 parts by weight and more preferably 5 to 20 parts by weight with respect to 100 parts by weight of the titanium raw material in terms of Ti amount.
- a mixing aid or the like may be used.
- At least (1) the titanium raw material for producing lithium titanate and (2) the lithium compound are optionally (3) titanium having the same crystal structure as the target lithium titanate.
- Lithium titanate is produced by heating a lithium acid compound or the like.
- the ratio (B / A) of the volume average particle diameter (A ⁇ m) of the secondary particles of the titanium raw material to the volume average particle diameter (B ⁇ m) of the lithium compound is preferably 0.1 to 80, preferably 0.1 to 20 is more preferable, and 0.1 to 8 is even more preferable.
- B / A is more preferably 1.0 to 5.0, and further preferably 1.0 to 4.0.
- a mixture Prior to this heating, it is preferable to prepare in advance a mixture (hereinafter sometimes referred to as a “precursor mixture”) by mixing the raw materials.
- the titanium raw material for producing lithium titanate and (2) the lithium compound are preferably dry mixed, and (3) titanic acid having the same crystal structure as the target lithium titanate.
- titanic acid having the same crystal structure as the target lithium titanate.
- the materials (1) to (3) may be individually crushed or pulverized prior to mixing.
- the titanium raw material for producing lithium titanate of the present invention When the titanium raw material for producing lithium titanate of the present invention is dry-mixed with a lithium compound, the titanium raw material of the present invention has a high specific surface area. Therefore, the titanium raw material is easily dispersed in a dry mixing apparatus and is uniform with the lithium compound. It is thought that it is easy to be mixed. In addition, although the factor is unknown, the titanium raw material of the present invention is remarkably suppressed from adhering to the inside of the mixing apparatus (inner wall, piping, etc.) during mixing, so the fluctuation of the component ratio in the precursor mixture It is suppressed. In addition, the yield can be improved and the frequency of equipment cleaning can be reduced, thereby improving productivity.
- a known mixer can be used.
- dry mixers such as a Henschel mixer, a V-type mixer, a powder mixer, a double cone blender, and a tumbler mixer are preferably used.
- a tumbler mixer There is no restriction
- the after mixing pressured precursor mixture, or the after mixing may be applied to the precursor mixture was pulverized and pressure.
- a material having a large specific surface area is bulky (low bulk density) and has a large occupied volume per mass, so that productivity, for example, throughput per unit time or equipment (material input amount) is lowered. Therefore, it is preferable to pulverize the precursor mixture or apply pressure to obtain an appropriate bulk density.
- the titanium raw material and the lithium compound can be easily brought into contact with each other, and a highly reactive precursor mixture of the lithium compound and the titanium raw material is easily obtained.
- the means for pulverization the above-described known pulverizers such as a jet mill and a cyclone mill can be used.
- a means for applying pressure a means for pressurizing (compressing), a means for pressurizing (compressing) and pulverizing can be used, and a known pressure molding machine and a compression molding machine can be used. Examples include a roller compactor, a roller crusher, and a pellet molding machine.
- the bulk density of the precursor mixture preferably 0.2 ⁇ 0.7g / cm 3, more preferably 0.4 ⁇ 0.6g / cm 3.
- the bulk density is lower than the above range, there is less contact between the titanium raw material and the lithium compound, and the reactivity is lowered.
- the bulk density is higher than the above range, the gas generated during the reaction in the heating process becomes difficult to escape or the heat conduction is inhibited. In this case, the reactivity also decreases. As a result, the single phase ratio of the lithium titanate obtained in any case is lowered.
- a precursor mixture having a bulk density in the above range can be easily obtained, and is preferably less than 0.5 t / cm 2. 0.15 to 0.45 t / cm 2 is more preferable.
- a pulverizing mixer may be used (hereinafter, this method may be referred to as “pulverizing and mixing”).
- a known pulverizer may be used, such as a cyclone mill such as a flake crusher, a hammer mill, a pin mill, a bantam mill, a jet mill, a cyclone mill, a fret mill, a pan mill, an edge runner, a roller mill, a mix muller, and a vibration mill.
- a dry pulverizer is preferable, and a fret mill, a pan mill, an edge runner, a roller mill, and a mix muller are more preferable.
- both the titanium raw material and the lithium compound may be charged into a pulverizer. Either one of the pulverizations may be started first, the other may be added later, both may be added and then pulverization may be started, and both may be mixed in advance using a known mixer such as a Henschel mixer. May be put into a pulverizer and pulverized. By performing pulverization in the state where the titanium raw material and the lithium compound coexist in this way, a precursor mixture in which the titanium raw material and the lithium compound are sufficiently mixed is easily obtained.
- the mixing degree of the titanium raw material and the lithium compound is likely to be higher than when only the fine particles are mixed, and in addition, the particle diameters are uniform.
- a precursor mixture containing a lithium compound having a narrow particle size distribution and a titanium raw material is easily obtained. Thereby, a precursor mixture having higher reactivity between the lithium compound and the titanium raw material is easily obtained, which is preferable.
- a titanium material having a low bulk density specifically, a bulk density in the range of 0.2 to 0.7 g / cm 3 is used. Since a highly reactive lithium titanate precursor mixture is obtained, it is preferable. It is considered that such a titanium raw material having a low bulk density is easily dispersed on the air flow in the pulverizer and easily mixed with the lithium compound.
- the range of the bulk density is more preferably 0.2 to 0.6 g / cm 3 , and further preferably 0.2 to 0.5 g / cm 3 .
- Pressure may be applied to the pulverization and pressure pulverization and / or after pulverization and mixing.
- a pulverized mixture is bulky (low bulk density) and has a large occupied volume per mass, so that productivity, for example, throughput per unit time or equipment (material input amount) is lowered. Therefore, it is preferable to apply pressure to the pulverized mixture to suppress bulkiness and to obtain an appropriate bulk density. Furthermore, it is preferable to apply pressure because the titanium raw material and the lithium compound are easily brought into contact with each other, and a highly reactive precursor mixture of the lithium compound and the titanium raw material is easily obtained.
- a means for pressurizing (compressing) a means for pressurizing (compressing) and pulverizing can be used as a means for applying pressure.
- pressure (compression) molding is preferable, and the above-described known pressure molding machine and compression molding machine can be used.
- the pulverized mixture may be further subjected to the following pressure (compression) pulverization.
- a pressure pulverizer or a compression pulverizer can be used as a means for applying pressure simultaneously with pulverization and mixing (pressure (compression) pulverization). Any material can be used as long as it is pulverized by pressure or compression force.
- at least one pulverizer selected from a fret mill, a pan mill, an edge runner, a roller mill, and a mix muller can be used.
- the pulverization principle of these pulverizers is to apply pressure to the sample and pulverize the sample with the high pressure. Taking the fret mill as an example, the operation state will be described. The sample under the roller is ground by rotating the heavy weight roller.
- a plurality of compounds are simultaneously mixed by being ground under a roller for a certain period of time.
- pressure can be applied to the mixed powder simultaneously with pulverization, and it is not necessary to provide a separate compression step, and the process can be simplified.
- the bulk density of the lithium titanate precursor mixture that is pulverized and mixed, and, if necessary, simultaneously and / or after pulverization and mixing, is preferably in the above range. Moreover, when applying a pressure, it is preferable when an additional pressure is made into the above-mentioned range.
- the frequency curve has one peak when the particle size distribution is measured in a state of being dispersed in ethanol.
- the volume average particle diameter is preferably 0.5 ⁇ m or less
- D90 (cumulative frequency 90% diameter) is preferably 10 ⁇ m or less
- the volume average particle diameter is 0.45 ⁇ m or less
- D90 (cumulative frequency 90% diameter). ) Is more preferably 6 ⁇ m or less.
- the raw material is put into a heating furnace, heated to a predetermined temperature, and kept for a certain period of time for reaction.
- a heating furnace it can carry out using a fluidized furnace, a stationary furnace, a rotary kiln, a tunnel kiln etc., for example.
- the heating temperature is preferably 700 ° C. or higher, and preferably 950 ° C. or lower.
- the single phase ratio of the target lithium titanate is decreased, and unreacted titanium raw material is increased. Since an impurity phase (Li 2 TiO 3 or Li 2 Ti 3 O 7 ) is generated, it is not preferable.
- a preferable heating temperature is 700 ° C. to 900 ° C. Within this range, a single phase ratio described later can be set to a preferable range, and lithium titanate with suppressed sintering and grain growth can be stably produced. Can be manufactured.
- the heating time can be appropriately set, and about 3 to 6 hours is appropriate.
- the heating atmosphere is not limited, but is preferably an oxidizing atmosphere such as air or oxygen gas, a non-oxidizing atmosphere such as nitrogen gas or argon gas, or a reducing atmosphere such as hydrogen gas or carbon monoxide gas. Is preferred. Although calcination may be performed, it is not particularly necessary.
- the lithium titanate thus obtained may be crushed or crushed as necessary after cooling.
- the above-mentioned known pulverizer can be used.
- the lithium titanate of the present invention is preferable because it has less sintering and grain growth, so that when pulverized and pulverized, the lithium titanate particles are easily broken and easily dispersed in a paste when an electrode of an electricity storage device is produced.
- the single phase ratio of the lithium titanate is an index that is expressed by the following formula 1 and indicates the target lithium titanate content, preferably 90% or more, more preferably 93% or more, and 95% or more. Is more preferable, 96% or more is more preferable, and 97% or more is more preferable.
- X is the main peak intensity of the target lithium titanate in powder X-ray diffraction measurement using Cuk ⁇ rays
- Y i is the main peak intensity of each subphase.
- the lithium titanate thus obtained has a large specific surface area, specifically 1.0 m 2 / g or more is preferable, 2.0 to 50.0 m 2 / g is more preferable, and 2.0 More preferred is 40.0 m 2 / g.
- the bulk density and volume average particle diameter of lithium titanate can be appropriately set, and the bulk density is preferably 0.1 to 0.8 g / cm 3 , more preferably 0.2 to 0.7 g / cm 3. preferable.
- the volume average particle diameter is preferably 1 to 10 ⁇ m. Moreover, it is preferable that there are few impurities and specifically, the following range is more preferable.
- this invention is an electrode active material, Comprising: It contains the lithium titanate of this invention mentioned above, It is characterized by the above-mentioned.
- the present invention is an electricity storage device, characterized by using lithium titanate obtained by the above-described production method of the present invention.
- This electricity storage device is composed of an electrode, a counter electrode, a separator, and an electrolytic solution, and the electrode is obtained by appropriately forming or applying a conductive material and a binder to the electrode active material.
- the conductive material include conductive assistants such as carbon black, acetylene black, and ketjen black.
- the binder examples include fluorine resins such as polytetrafluoroethylene, polyvinylidene fluoride, and fluorine rubber, and styrene butadiene rubber. Water-soluble resins such as carboxymethyl cellulose and polyacrylic acid.
- the electrode active material can be used as a positive electrode, and a lithium-containing metal, lithium alloy, or a carbon-containing material such as graphite can be used as a counter electrode.
- the electrode active material is used as a negative electrode, and a lithium / manganese composite oxide, a lithium / cobalt composite oxide, a lithium / nickel composite oxide, a lithium / cobalt / manganese / nickel composite oxide, or a lithium / vanadine composite oxide is used as the positive electrode.
- Lithium / transition metal composite oxides such as olivine, and olivine type compounds such as lithium / iron / composite phosphate compounds can be used.
- a porous polypropylene film or the like is used, and for the electrolyte, propylene carbonate, ethylene carbonate, dimethyl carbonate, diethyl carbonate, ethyl methyl carbonate, ⁇ -butyl lactone, 1,2-dimethoxyethane, etc.
- Conventional materials such as those obtained by dissolving lithium salts such as LiPF 6 , LiClO 4 , LiCF 3 SO 3 , LiN (CF 3 SO 2 ) 2 , LiBF 4 in the above solvent can be used.
- the lithium titanate of the present invention is used not only as an active material of a lithium secondary battery, but also attached to the surface of another type of active material, blended with an electrode, contained in a separator, or as a lithium ion conductor. You may use it. Moreover, you may use as an active material of a sodium ion battery.
- Example 1 The powder shown in Table 1 was prepared as a titanium raw material. It was confirmed that both consist of anatase-type titanium dioxide.
- Example 1 Titanium raw material a and lithium carbonate powder (purity 99.2%, volume average particle size 7.5 ⁇ m, specific surface area 1.25 m 2 / g) as a lithium compound, so that the Li / Ti molar ratio is 0.81
- the raw materials were collected and mixed in a Henschel mixer for 20 minutes at 1800 rpm to prepare a precursor mixture. Next, the precursor mixture was heated in the atmosphere at 750 ° C. for 3 hours using an electric furnace to synthesize lithium titanate. The obtained lithium titanate was crushed with a sample mill to obtain Sample 1.
- Example 2 lithium titanate of Sample 2 was obtained in the same manner as Sample 1 except that titanium raw material b was used instead of titanium raw material a.
- Example 3 lithium titanate of Sample 3 was obtained in the same manner as Sample 1 except that titanium raw material c was used instead of titanium raw material a.
- Example 4 lithium titanate of Sample 4 was obtained in the same manner as Sample 1 except that the titanium raw material d was used instead of the titanium raw material a, and the heating temperature was 800 ° C.
- Example 5 Lithium carbonate powder (purity 99.2%, volume average particle diameter 7.5 ⁇ m, specific surface area 1.25 m 2 / g) was jet milled (STJ-200 manufactured by Seishin Enterprise Co., Ltd.) with a volume average particle diameter of 3.7 ⁇ m. Lithium carbonate powder was used. Next, the titanium raw material e and the pulverized lithium carbonate powder as a lithium compound are collected so that the Li / Ti molar ratio is 0.81, and mixed in a Henschel mixer for 10 minutes at 1800 rpm, A body mixture was prepared. Next, the precursor mixture was heated in the atmosphere at 750 ° C. for 3 hours using an electric furnace to synthesize lithium titanate. The obtained lithium titanate was crushed with a jet mill to obtain Sample 5.
- Example 6 Sample 6 was obtained in the same manner as in Example 5, except that the lithium compound was used without being pulverized.
- Example 7 In Example 6, Sample 7 was obtained in the same manner as in Example 6 except that heating was performed at 800 ° C. in the atmosphere for 3 hours.
- Example 8 Sample 8 was obtained in the same manner as in Example 5 except that the lithium compound used was pulverized to a volume average particle size of 2.1 ⁇ m.
- Example 9 Sample 9 was obtained in the same manner as in Example 5 except that the lithium compound used was pulverized to a volume average particle size of 5.0 ⁇ m.
- Example 10 Titanium raw material e and lithium carbonate powder (purity 99.2%, volume average particle size 7.5 ⁇ m, specific surface area 1.25 m 2 / g) were collected so that the Li / Ti molar ratio was 0.81. Furthermore, lithium titanate (Li 4 Ti 5 O 12 , purity 99%, average particle size of primary particles 1 ⁇ m) as a lithium titanate compound having the same crystal structure as the target lithium titanate with respect to 100 parts by weight of the raw material 5 parts by weight were added and mixed / ground / compressed for 15 minutes in a fret mill (grinding roller 40 kg, roller rotation speed 50 rpm) to prepare a lithium titanate precursor.
- lithium titanate Li 4 Ti 5 O 12 , purity 99%, average particle size of primary particles 1 ⁇ m
- the bulk density of this precursor was 0.6 g / cm 3 , the volume average particle size was 0.4 ⁇ m, D90 was 6.2 ⁇ m, and the frequency distribution peak of the particle size distribution was one.
- the lithium titanate precursor was heated in the atmosphere at 750 ° C. for 3 hours using an electric furnace to synthesize lithium titanate.
- the obtained lithium titanate was crushed with a jet mill to obtain Sample 10.
- the resulting sample 10 had a bulk density of 0.6 g / cm 3 .
- the specific surface area was 5 m 2 / g.
- Example 11 In Example 10, after mixing lithium titanate as a titanium raw material, lithium carbonate powder, and a lithium titanate compound having the same crystal structure as the target lithium titanate in a Henschel mixer for 5 minutes at 1020 rpm, a jet mill (seishin) Grinding with STJ-200 (commercial company), and then applying pressure (compression pressure 0.4 ton / cm 2 ) with a roller compactor (WP160 ⁇ 60, Freund Turbo) to produce lithium titanate precursor A sample 11 was obtained in the same manner as in Example 10 except that. The bulk density of the lithium titanate precursor was 0.7 g / cm 2 , the volume average particle size was 0.4 ⁇ m, D90 was 2.2 ⁇ m, and the frequency distribution frequency curve had one peak. Further, the bulk density of Sample 11 was 0.6 g / cm 3 .
- Example 12 In Example 10, after mixing lithium titanate as a titanium raw material, lithium carbonate powder, and a lithium titanate compound having the same crystal structure as the target lithium titanate in a Henschel mixer for 5 minutes at 1020 rpm, a jet mill (seishin) A sample 12 was obtained in the same manner as in Example 10 except that it was pulverized by STJ-200 manufactured by a company and a lithium titanate precursor was produced.
- the bulk density of the lithium titanate precursor was 0.3 g / cm 2 , the volume average particle diameter was 0.4 ⁇ m, D90 was 2.2 ⁇ m, and the frequency distribution frequency curve had one peak. Further, the bulk density of Sample 12 was 0.3 g / cm 3 .
- Example 13 lithium titanate was mixed in a Henschel mixer for 10 minutes at 1800 rpm as a lithium raw material, lithium carbonate powder, and a lithium titanate compound having the same crystal structure as the target lithium titanate, and a lithium titanate precursor
- a sample 13 was obtained in the same manner as in Example 10 except that the body was manufactured.
- the bulk density of the lithium titanate precursor was 0.3 g / cm 2
- the volume average particle size was 0.9 ⁇ m
- D90 was 15.2 ⁇ m
- two peaks were observed in the frequency curve of the particle size distribution.
- the bulk density of Sample 13 was 0.3 g / cm 3 .
- Example 14 In Example 13, the lithium titanate precursor was further subjected to pressure (compression pressure 0.4 ton / cm 2 ) with a roller compactor to produce a lithium titanate precursor, and the heating temperature was 750 ° C. Except for this, lithium titanate (sample 14) was synthesized in the same manner as in Example 13. The bulk density of this precursor was 0.6 g / cm 3 , and the bulk density of Sample 14 was 0.6 g / cm 3 .
- Example 15 lithium titanate of Sample 15 was obtained in the same manner as in Example 4 except that the titanium material f was used instead of the titanium material d.
- Example 4 lithium titanate of Sample 16 was obtained in the same manner as in Example 4 except that the titanium raw material g was used instead of the titanium raw material d.
- Example 2 lithium titanate of Sample 17 was obtained in the same manner as in Example 1 except that the titanium raw material h was used in place of the titanium raw material a, and the heating temperature was 900 ° C.
- the single phase ratio is as low as 94% (sample 17), and the lithium titanate particles are Sintering was progressing and crushing was difficult. It was also found that when a titanium raw material having a specific surface area of 27 m 2 / g was used, the single phase ratio was as low as 95% even when the heating temperature was 800 ° C. (Sample 16).
- SUS316 stainless steel
- non-aqueous electrolyte a mixed solution of ethylene carbonate and dimethyl carbonate (mixed in a volume ratio of 1: 2) in which LiPF 6 was dissolved at a concentration of 1 mol / liter was used.
- the working electrode was placed in a lower can of a coin-type cell, a porous polypropylene film was placed thereon as a separator, and a non-aqueous electrolyte was dropped from above. Furthermore, a negative electrode, a 0.5 mm thick spacer for adjusting the thickness, and a spring (both made of SUS316) are placed thereon, and an upper can with a polypropylene gasket is covered and the outer peripheral edge is caulked and sealed. An electricity storage device (sample A) was obtained.
- An electricity storage device (sample B) was obtained in the same manner as the electricity storage device of sample A, except that sample 6 was used as lithium titanate.
- the target lithium titanate of the present invention can be reliably and stably produced at a low cost and at a heating temperature lower than that of the conventional production method.
- an electricity storage device having excellent battery characteristics, particularly rate characteristics, can be manufactured.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Materials Engineering (AREA)
- Engineering & Computer Science (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Environmental & Geological Engineering (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Geology (AREA)
- Life Sciences & Earth Sciences (AREA)
- Inorganic Compounds Of Heavy Metals (AREA)
- Battery Electrode And Active Subsutance (AREA)
Abstract
Description
すなわち、本発明の方法によれば、組成の異なる副相の生成や未反応の原料の残存が少なく、焼結の進行や比表面積の低下が少ない。また、目的とするチタン酸リチウムを、従来のチタン原料を用いた場合の製造方法よりも低い加熱温度でも確実に安定して製造することができる。
また、上記の方法で製造したチタン酸リチウムを電極活物質として用いると、電池特性、特にレート特性に優れた蓄電デバイスを製造することができる。
比表面積
本願明細書において、比表面積は、窒素吸着によるBET一点法にて測定したものである。装置はユアサアイオニクス社製モノソーブ又はQuantachrome Instruments社製Monosorb型番MS-22を用いた。
本願明細書において、リチウム化合物の平均粒径とは、レーザー回折法で測定した体積平均粒径をいう。体積平均粒径は、レーザー回折/散乱式粒度分布測定装置を用い、分散媒にエタノールを使用し、屈折率をエタノールについては1.360とし、リチウム化合物については化合物種に応じて適宜設定して測定したものである。例えば、リチウム化合物が炭酸リチウムである場合、屈折率は1.500を使用する。レーザー回折/散乱式粒度分布測定装置としては、堀場製作所社製 LA-950を用いた。
本願明細書において、チタン原料の一次粒子の平均粒径は、透過型電子顕微鏡を用い、画像中の一次粒子100個の粒子径を測定し、その平均値を取ったものである(電子顕微鏡法)。
また、本願明細書において、チタン原料の二次粒子の平均二次粒子径とは、レーザー回折法で測定した体積平均粒径をいう。体積平均粒径は、レーザー回折/散乱式粒度分布測定装置を用い、分散媒に純水を使用し、屈折率を、純水については1.333とし、チタン原料については化合物種に応じて適宜設定して測定したものである。例えば、チタン原料がアナターゼ型酸化チタンの場合、屈折率は2.520を使用する。レーザー回折/散乱式粒度分布測定装置は、堀場製作所社製 LA-950を用いた。
本願明細書において、チタン酸リチウム前駆体混合物の平均粒径とは、レーザー回折法で測定した体積平均粒径をいう。体積平均粒径は、レーザー回折/散乱式粒度分布測定装置を用い、分散媒にエタノールを使用し、屈折率を、エタノールについては1.360とし、測定粒子については配合したリチウム化合物種の数値を用いて測定したものである。例えば、リチウム化合物が炭酸リチウムである場合は、屈折率は1.567を使用する。レーザー回折/散乱式粒度分布測定装置は、堀場製作所社製 LA-950を用いた。
本願明細書において、チタン酸リチウムの一次粒子の平均粒径は、透過型電子顕微鏡を用い、画像中の一次粒子100個の粒子径を測定し、その平均値を取ったものである(電子顕微鏡法)。
また、本願明細書において、チタン酸リチウムの二次粒子の平均二次粒子径とは、レーザー回折法で測定した体積平均粒径をいう。体積平均粒径は、レーザー回折/散乱式粒度分布測定装置を用い、分散媒に純水を使用し、屈折率を、水については1.333とし、チタン酸リチウムについては化合物種に応じて適宜設定して測定する。チタン酸リチウムがLi4Ti5O12である場合、屈折率は2.700を使用する。また、本発明においてはレーザー回折/散乱式粒度分布測定装置は、堀場製作所社製 LA-950を用いた。
本願明細書において、嵩密度は、シリンダー式(メスシリンダに試料を入れ、体積と質量から算出)により求める。
本願明細書において、不純物である、ナトリウム、カリウムは原子吸光法により測定し、SO4、塩素はイオンクロマトグラフィー法又は蛍光X線測定装置により測定し、ケイ素、カルシウム、鉄、クロム、ニッケル、マンガン、銅、亜鉛、アルミニウム、マグネシウム、ニオブ、ジルコニウムなどのその他の元素はICP法により測定する。SO4ついては、蛍光X線測定装置(RIGAKU RIX-2200)を用いた。
本発明は、チタン酸リチウム製造用チタン原料であって、比表面積が50~450m2/gのチタン酸化物を含む、チタン酸リチウム製造用チタン原料である。
比表面積が前記範囲のチタン酸化物を含むチタン原料を用いると、チタン原料とリチウム化合物とが均一に混合され易くなり、その後の加熱の際、チタン原料とリチウム化合物との反応が進み易くなるため、目的とするチタン酸リチウムを効率よく製造することができる。すなわち、組成の異なる副相の生成や未反応の原料の残存が少なく、焼結の進行や比表面積の低下が少ない。また、目的とするチタン酸リチウムを、従来よりも低い加熱温度でも確実に安定して製造することができる。
チタン酸化物の比表面積が50m2/gより小さいとリチウム化合物との混合が不均一になり易く、充分な反応性が得られないため好ましくなく、チタン酸化物の比表面積を450m2/gより大きくしてもそれに見合う反応性は得られにくい。比表面積は、50~300m2/gの範囲が好ましく、60~300m2/gの範囲がより好ましく、60~100m2/gの範囲がさらに好ましい。
(1)前記チタン酸リチウム製造用チタン原料
(2)リチウム化合物
本発明において酸性根とは、硫酸根(SO4)及び塩素根(Cl)を意味する。
(1)前記チタン酸リチウム製造用チタン原料
(2)リチウム化合物
(3)目的とするチタン酸リチウムと同じ結晶構造を有するチタン酸リチウム化合物
このチタン酸リチウム化合物は、必要に応じて使用するものであり、生成するチタン酸リチウムの焼結を抑制したり、あるいは、種結晶として作用すると考えられる。このチタン酸リチウム化合物を使用すると、後述の加熱工程を比較的低温で行うことができるとともに、加熱工程におけるチタン酸リチウムの粒子成長が適切に制御され、目的とするチタン酸リチウムを製造しやすくなる。このため、目的とするチタン酸リチウムと同じ結晶構造を有する必要がある。チタン酸リチウム化合物の粒子径(電子顕微鏡法)には特に制限は無く、目的とするチタン酸リチウムの粒子径(電子顕微鏡法)と同程度の粒径、例えば、0.5~2.0μm程度の粒子径のものを用いればよい。チタン酸リチウム化合物は本発明の方法で作製することができる。その配合量は、Ti量換算で、チタン原料100重量部に対し、1~30重量部が好ましく、5~20重量部がより好ましい。なお、前記の(1)、(2)、(3)のほかに、混合助剤などを用いてもよい。
本発明のチタン酸リチウム製造用チタン原料を用い、リチウム化合物と乾式混合を行うと、本発明のチタン原料はその比表面積が高いため、乾式混合装置内で容易に分散され、リチウム化合物と均一に混合され易くなっているものと考えられる。また、要因は不明であるが、本発明のチタン原料は、混合中に、混合装置内部(内壁、配管内等)への付着が著しく抑制されるため、前駆体混合物中の成分比率の変動が抑制される。また、収率の向上や設備清掃頻度の低減が図れ、生産性も向上する。
前記混合後に前駆体混合物を粉砕し、前記混合後に前駆体混合物に圧力をかけ、または前記混合後に前駆体混合物を粉砕しかつ圧力をかけてもよい。一般に、比表面積の大きい材料は嵩が高く(嵩密度が低い)、質量当たりの占有体積が大きいため、生産性、例えば、単位時間や設備当たりの処理量(材料投入量)が低下する。そこで、前駆体混合物を粉砕したり、圧力をかけたりして、適度な嵩密度とすることが好ましい。粉砕したり、圧力をかけたりすることによって、チタン原料とリチウム化合物が接触し易くなり、リチウム化合物とチタン原料の反応性の高い前駆体混合物が得られ易くなるため好ましい。
圧力をかける手段としては、加圧(圧縮)する手段、加圧(圧縮)して粉砕する手段等を用いることができ、公知の加圧成形機、圧縮成形機を用いることができ、例えば、ローラーコンパクター、ローラークラッシャー、ペレット成型機などが挙げられる。
なお、前駆体混合物の調製において、粉砕混合機を用いても良い(以降、この方法を「粉砕混合」と記載することもある。)。この場合、公知の粉砕機を用いてよく、サイクロンミル例えば、フレーククラッシャ、ハンマーミル、ピンミル、バンタムミル、ジェットミル、サイクロンミル、フレットミル、パンミル、エッジランナー、ローラーミル、ミックスマーラー、振動ミルなどの乾式粉砕機が好ましく、フレットミル、パンミル、エッジランナー、ローラーミル、ミックスマーラーがさらに好ましい。
粉砕混合と同時に及び/又は粉砕混合後に、それらに圧力をかけてもよい。一般に、粉砕混合物は嵩が高く(嵩密度が低い)、質量当たりの占有体積が大きいため、生産性、例えば、単位時間や設備当たりの処理量(材料投入量)が低下する。そこで、粉砕混合物に圧力をかけ、嵩高くなることを抑制し、適度な嵩密度とすることが好ましい。更に、圧力をかけることにより、チタン原料とリチウム化合物が接触し易くなり、リチウム化合物とチタン原料の反応性の高い前駆体混合物が得られ易くなるため好ましい。圧力をかける手段としては、加圧(圧縮)する手段、加圧(圧縮)して粉砕する手段等を用いることができる。
粒度分布を前記の範囲とすることで、組成の異なる副相の生成や未反応の原料の残存を更に少なくすることができ、焼結の進行や比表面積の低下の少ない、目的とするチタン酸リチウムを、従来の製造方法よりも低い加熱温度でも確実に安定して製造することができる。
(式1)単相率(%)=100×(1-Σ(Yi/X))
ここで、Xは、Cukα線を用いた粉末X線回折測定における、目的とするチタン酸リチウムのメインピーク強度、Yiは各副相のメインピーク強度である。Li4Ti5O12の場合、Xは2θ=18°付近のピーク強度であり、アナターゼ型又はルチル型TiO2やLi2TiO3が副相として存在しやすいのでYiには2θ=25°付近のピーク強度(アナターゼ型TiO2)、2θ=27°付近のピーク強度(ルチル型TiO2)と2θ=44°付近のピーク強度(Li2TiO3)を用いる。
チタン原料として、表1に示す粉末を準備した。いずれもアナターゼ型の二酸化チタンからなることを確認した。
チタン原料aと、リチウム化合物として炭酸リチウム粉末(純度99.2%、体積平均粒径7.5μm、比表面積1.25m2/g)とを、Li/Tiモル比で0.81となるように原料を採取し、ヘンシェル混合器で20分間、1800rpmで混合し、前駆体混合物を調製した。次いで、前駆体混合物を、電気炉を用い大気中750℃で3時間加熱を行い、チタン酸リチウムを合成した。得られたチタン酸リチウムをサンプルミルで解砕し、試料1を得た。
実施例1において、チタン原料aに代えてチタン原料bを用いた以外は試料1の製造と同様にして、試料2のチタン酸リチウムを得た。
実施例1において、チタン原料aに代えてチタン原料cを用いた以外は試料1の製造と同様にして、試料3のチタン酸リチウムを得た。
実施例1において、チタン原料aに代えてチタン原料dを用いたこと、加熱温度を800℃としたこと以外は試料1の製造と同様にして、試料4のチタン酸リチウムを得た。
炭酸リチウム粉末(純度99.2%、体積平均粒径7.5μm、比表面積1.25m2/g)をジェットミル(セイシン企業社製 STJ-200)を用いて体積平均粒径3.7μmの炭酸リチウム粉末とした。次いで、チタン原料eと、リチウム化合物として前記粉砕した炭酸リチウム粉末とを、Li/Tiモル比で0.81となるように原料を採取し、ヘンシェル混合器で10分間、1800rpmで混合し、前駆体混合物を調製した。次いで、前駆体混合物を、電気炉を用い大気中750℃で3時間加熱を行い、チタン酸リチウムを合成した。得られたチタン酸リチウムをジェットミルで解砕し、試料5を得た。
リチウム化合物として、前記炭酸リチウムの粉砕を行わずに用いた以外は、実施例5と同様して、試料6を得た。
実施例6において、大気中800℃で3時間の加熱を行った以外は実施例6と同様にして、試料7を得た。
リチウム化合物として、前記炭酸リチウムを体積平均粒径2.1μmまで粉砕したものを用いたこと以外は、実施例5と同様して、試料8を得た。
リチウム化合物として、前記炭酸リチウムを体積平均粒径5.0μm、まで粉砕したものを用いたこと以外は、実施例5と同様して、試料9を得た。
チタン原料eと、炭酸リチウム粉末(純度99.2%、体積平均粒径7.5μm、比表面積1.25m2/g)をLi/Tiモル比で0.81となるように原料を採取し、更に、目的とするチタン酸リチウムと同じ結晶構造を有するチタン酸リチウム化合物としてチタン酸リチウム(Li4Ti5O12、純度99%、一次粒子の平均粒径1μm)を原料100重量部に対して5重量部添加し、フレットミル(粉砕ローラー40kg、ローラー回転数50rmp)にて混合/粉砕/圧縮処理を15分行い、チタン酸リチウム前駆体を作製した。この前駆体の嵩密度は0.6g/cm3であり、体積平均粒径は0.4μm、D90は6.2μm、粒度分布の頻度曲線のピークは一つであった。次いで、チタン酸リチウム前駆体を、電気炉を用い大気中750℃で3時間加熱し、チタン酸リチウムを合成した。得られたチタン酸リチウムをジェットミルで解砕し、試料10を得た。得られた試料10の嵩密度は0.6g/cm3であった。比表面積は5m2/gであった。
実施例10において、チタン原料、炭酸リチウム粉末、目的とするチタン酸リチウムと同じ結晶構造を有するチタン酸リチウム化合物としてチタン酸リチウムをヘンシェル混合器で5分間、1020rpmで混合した後、ジェットミル(セイシン企業社製 STJ-200)にて粉砕処理を行い、次いで、ローラーコンパクター(フロイントターボ社製 WP160×60)にて圧力(圧縮圧0.4ton/cm2)をかけてチタン酸リチウム前駆体を作製したこと以外、実施例10と同様にして試料11を得た。
チタン酸リチウム前駆体の嵩密度は0.7g/cm2であり、体積平均粒径は0.4μm、D90は2.2μm、粒度分布の頻度曲線のピークは一つであった。また、試料11の嵩密度は0.6g/cm3であった。
実施例10において、チタン原料、炭酸リチウム粉末、目的とするチタン酸リチウムと同じ結晶構造を有するチタン酸リチウム化合物としてチタン酸リチウムをヘンシェル混合器で5分間、1020rpmで混合した後、ジェットミル(セイシン企業社製 STJ-200)にて粉砕処理を行って、チタン酸リチウム前駆体を作製したこと以外、実施例10と同様にして試料12を得た。
チタン酸リチウム前駆体の嵩密度は0.3g/cm2であり、体積平均粒径は0.4μm、D90は2.2μm、粒度分布の頻度曲線のピークは一つであった。また、試料12の嵩密度は0.3g/cm3であった。
実施例10において、チタン原料、炭酸リチウム粉末、目的とするチタン酸リチウムと同じ結晶構造を有するチタン酸リチウム化合物としてチタン酸リチウムをヘンシェル混合器で10分間、1800rpmで混合して、チタン酸リチウム前駆体を作製したこと以外、実施例10と同様にして試料13を得た。
チタン酸リチウム前駆体の嵩密度は0.3g/cm2であり、体積平均粒径は0.9μm、D90は15.2μmで、粒度分布の頻度曲線には二つのピークが認められた。また、試料13の嵩密度は0.3g/cm3であった。
実施例13において、チタン酸リチウム前駆体に、更にローラーコンパクターにて圧力(圧縮圧0.4ton/cm2)をかけてチタン酸リチウム前駆体を作製すること、さらに、加熱温度を750℃としたこと以外は、実施例13と同様にしてチタン酸リチウム(試料14)を合成した。この前駆体の嵩密度は0.6g/cm3であり、試料14の嵩密度は0.6g/cm3であった。
実施例4において、チタン原料dに代えてチタン原料fを用いたこと以外は実施例4と同様にして、試料15のチタン酸リチウムを得た。
実施例4において、チタン原料dに代えてチタン原料gを用いたこと以外は実施例4と同様にして、試料16のチタン酸リチウムを得た。
実施例1において、チタン原料aに代えてチタン原料hを用いたこと、加熱温度を900℃としたこと以外は実施例1と同様にして、試料17のチタン酸リチウムを得た。
得られた試料1~17について、粉末X線回折装置(リガク社製 UltimaIV Cukα線使用)を用いて粉末X線回折パターンを測定した。その結果、いずれの試料もLi4Ti5O12を主成分とすることを確認した。また、測定されたピーク強度のうち、Xとして、2θ=18°付近のLi4Ti5O12のピーク強度を、Yとして2θ=27°付近のルチル型TiO2のピーク強度、2θ=25°付近のアナターゼ型TiO2のピーク強度及び2θ=44°付近のLi2TiO3のピーク強度を用いて前述の単相率を算出した。結果を表2に示す。
試料5及び試料6について、BET一点法(窒素吸着、ユアサアイオニクス社製モノソーブ)にて比表面積を測定した。その結果、比表面積はそれぞれ4.9m2/g、3.0m2/gであった。このことから、本発明の製造方法により、チタン酸リチウム粒子同士の焼結を抑制し、粉砕が容易で比表面積の低下が抑制されたチタン酸リチウムを合成できることがわかる。
電池特性の評価
(1)蓄電デバイスの作成
試料5のチタン酸リチウムと、導電剤としてのアセチレンブラック粉末、及び結着剤としてのポリフッ化ビニリデン樹脂を重量比で100:5:7で混合し、乳鉢で練り合わせ、ペーストを調製した。このペーストをアルミ箔上に塗布し、120℃の温度で10分乾燥した後、直径12mmの円形に打ち抜き、17MPaでプレスして作用極とした。電極中に含まれる活物質量は、3mgであった。
この作用極を120℃の温度で4時間真空乾燥した後、露点-70℃以下のグローブボックス中で、密閉可能なコイン型セルに正極として組み込んだ。コイン型セルには材質がステンレス製(SUS316)で外径20mm、高さ3.2mmのものを用いた。負極には厚み0.5mmの金属リチウムを直径12mmの円形に成形したものを用いた。非水電解液として1モル/リットルとなる濃度でLiPF6を溶解したエチレンカーボネートとジメチルカーボネートの混合溶液(体積比で1:2に混合)を用いた。
作用極はコイン型セルの下部缶に置き、その上にセパレータとして多孔性ポリプロピレンフィルムを置き、その上から非水電解液を滴下した。さらにその上に負極と、厚み調整用の0.5mm厚スペーサー及びスプリング(いずれもSUS316製)をのせ、ポリプロピレン製ガスケットのついた上部缶を被せて外周縁部をかしめて密封し、本発明の蓄電デバイス(試料A)を得た。
上記で作製した蓄電デバイス(試料A,B)について、種々の電流量で放電容量を測定して容量維持率(%)を算出した。測定は、電圧範囲を1~3Vに、充電電流は0.25Cに、放電電流は0.25C~30Cの範囲に設定して行った。環境温度は25℃とした。容量維持率は、0.25Cでの放電容量の測定値をX0.25、0.5C~30Cの範囲での測定値をXnとすると、(Xn/X0.25)×100の式で算出した。尚、ここで1Cとは、1時間で満充電できる電流値を言い、本評価では、0.48mAが1Cに相当する。容量維持率が高いほうが、レート特性が優れている。結果を、図1に示す。蓄電デバイス(試料A、B)は、いずれもレート特性に優れているが、試料Aのほうが優れていることがわかった。
また、上記の方法で製造したチタン酸リチウムを電極活物質として用いると、電池特性、特にレート特性に優れた蓄電デバイスを製造することができる。
Claims (14)
- 窒素吸着によるBET一点法で測定した比表面積が50~450m2/gのチタン酸化物を含む、チタン酸リチウム製造用チタン原料。
- 前記のチタン酸化物の比表面積が50~300m2/gである請求項1に記載のチタン酸リチウム製造用チタン原料。
- 前記のチタン酸化物の比表面積が60~300m2/gである請求項1に記載のチタン酸リチウム製造用チタン原料。
- 前記のチタン酸化物の比表面積が60~100m2/gである請求項1に記載のチタン酸リチウム製造用チタン原料。
- 前記のチタン酸化物に含まれる硫黄含有量が、SO4換算で1.0重量%以下である請求項1に記載のチタン酸リチウム製造用チタン原料。
- 前記のチタン酸化物のレーザー回折法で測定した体積平均粒径が0.05~5μmである、請求項1に記載のチタン酸リチウム製造用チタン原料。
- 前記のチタン酸化物の嵩密度が0.2~0.7g/cm3である請求項1に記載のチタン酸リチウム製造用チタン原料。
- 少なくとも以下の2種の材料を加熱するチタン酸リチウムの製造方法
(1)請求項1~7のいずれかに記載のチタン酸リチウム製造用チタン原料、
(2)リチウム化合物。 - 加熱の前に、少なくとも前記(1)のチタン原料と、(2)のリチウム化合物とを乾式混合する、請求項8に記載のチタン酸リチウムの製造方法。
- 少なくとも以下の3種の材料を加熱するチタン酸リチウムの製造方法
(1)請求項1~7のいずれかに記載のチタン酸リチウム製造用チタン原料
(2)リチウム化合物
(3)目的とするチタン酸リチウムと同じ結晶構造を有するチタン酸リチウム化合物。 - 加熱の前に、少なくとも、前記(1)のチタン原料と、(2)のリチウム化合物と、(3)目的とするチタン酸リチウムと同じ結晶構造を有するチタン酸リチウム化合物とを乾式混合する、請求項10に記載のチタン酸リチウムの製造方法。
- 請求項9~11のいずれかに記載の製造方法で得られたチタン酸リチウム。
- 請求項12に記載のチタン酸リチウムを含む電極活物質。
- 請求項12に記載のチタン酸リチウムを用いた蓄電デバイス。
Priority Applications (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP12777419.8A EP2703356A4 (en) | 2011-04-28 | 2012-04-26 | TITANIUM HARDWARE FOR LITHIUM TITANATE MANUFACTURE AND METHOD FOR THE PRODUCTION OF LITHIUM TITANATE |
KR1020137030365A KR101867643B1 (ko) | 2011-04-28 | 2012-04-26 | 티탄산리튬 제조용 티탄 원료 및 이러한 원료를 사용한 티탄산리튬의 제조 방법 |
CA2834024A CA2834024A1 (en) | 2011-04-28 | 2012-04-26 | Titanium raw material for lithium titanate production and method for producing lithium titanate using same |
JP2013512432A JP5990512B2 (ja) | 2011-04-28 | 2012-04-26 | チタン酸リチウム製造用チタン原料及びかかる原料を用いたチタン酸リチウムの製造方法 |
US14/114,137 US9786912B2 (en) | 2011-04-28 | 2012-04-26 | Titanium raw material for lithium titanate production and method for producing lithium titanate using same |
CN201280020613.0A CN103502150A (zh) | 2011-04-28 | 2012-04-26 | 用于钛酸锂生产的钛原料和使用它生产钛酸锂的方法 |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011-100669 | 2011-04-28 | ||
JP2011100660 | 2011-04-28 | ||
JP2011-100660 | 2011-04-28 | ||
JP2011100669 | 2011-04-28 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2012147856A1 true WO2012147856A1 (ja) | 2012-11-01 |
Family
ID=47072371
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2012/061216 WO2012147856A1 (ja) | 2011-04-28 | 2012-04-26 | チタン酸リチウム製造用チタン原料及びかかる原料を用いたチタン酸リチウムの製造方法 |
Country Status (8)
Country | Link |
---|---|
US (1) | US9786912B2 (ja) |
EP (1) | EP2703356A4 (ja) |
JP (1) | JP5990512B2 (ja) |
KR (1) | KR101867643B1 (ja) |
CN (1) | CN103502150A (ja) |
CA (1) | CA2834024A1 (ja) |
TW (1) | TWI540101B (ja) |
WO (1) | WO2012147856A1 (ja) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2014196462A1 (ja) | 2013-06-04 | 2014-12-11 | 石原産業株式会社 | チタン酸リチウム及びその製造方法並びにそれを用いた蓄電デバイス |
JP2015037039A (ja) * | 2013-08-13 | 2015-02-23 | トヨタ自動車株式会社 | ナトリウムイオン電池用負極活物質、ナトリウムイオン電池およびナトリウムイオン電池用負極活物質の製造方法 |
JP2015505807A (ja) * | 2011-12-29 | 2015-02-26 | ポスコ | 二酸化チタンナノ粉末、チタネート、リチウムチタネートナノ粉末及びこれらの製造方法 |
WO2024029267A1 (ja) * | 2022-08-04 | 2024-02-08 | 住友金属鉱山株式会社 | 炭酸リチウム粉末 |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101611146B1 (ko) * | 2013-03-29 | 2016-04-08 | 가부시끼 가이샤 구보다 | 산화티타늄 화합물 및 이것을 사용한 전극 및 리튬 이온 2차 전지 |
EP4381546A1 (en) * | 2022-03-07 | 2024-06-12 | Soelect Inc. | A low roughness lithium metal anode produced via multiple compressions |
Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06275263A (ja) | 1993-03-17 | 1994-09-30 | Matsushita Electric Ind Co Ltd | リチウム二次電池およびその負極の製造法 |
JP2000302547A (ja) | 1999-02-16 | 2000-10-31 | Toho Titanium Co Ltd | チタン酸リチウムの製造方法およびリチウムイオン電池ならびにその負極。 |
JP2001192208A (ja) | 1999-06-03 | 2001-07-17 | Titan Kogyo Kk | リチウムチタン複合酸化物及びその製造方法、並びにその用途 |
JP2001213622A (ja) | 2000-01-26 | 2001-08-07 | Toho Titanium Co Ltd | チタン酸リチウムの製造方法およびリチウムイオン電池並びにその電極 |
JP2002289194A (ja) * | 2001-03-27 | 2002-10-04 | Toho Titanium Co Ltd | リチウムイオン二次電池電極活物質製造原料としての二酸化チタン粉、リチウムイオン二次電池電極活物質としてのチタン酸リチウムおよびその製造方法 |
JP2003146658A (ja) * | 2001-11-13 | 2003-05-21 | Japan Whisker Co Ltd | 複合酸化物の製造方法 |
JP2005504693A (ja) * | 2000-12-05 | 2005-02-17 | ハイドロ−ケベック | Li4Ti5O12,Li(4−α)ZαTi5O12,又はLi4ZβTi(5−β)O12を主成分とする粒子群,それらの粒子群の獲得方法、及び、電気化学装置に於けるそれらの粒子群の利用方法 |
WO2008114667A1 (ja) * | 2007-03-16 | 2008-09-25 | Ishihara Sangyo Kaisha, Ltd. | 電極活物質及びそれを用いてなるリチウム電池 |
JP2011063496A (ja) * | 2009-09-18 | 2011-03-31 | Sakai Chem Ind Co Ltd | アナタース型超微粒子酸化チタン、アナタース型超微粒子酸化チタンを含有する分散体、及び該酸化チタンの製造方法 |
JP2011111361A (ja) * | 2009-11-26 | 2011-06-09 | Nippon Chem Ind Co Ltd | リチウム二次電池活物質用チタン酸リチウムの製造方法 |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6139815A (en) * | 1997-07-15 | 2000-10-31 | Sony Corporation | Hydrogen lithium titanate and manufacturing method therefor |
JP4642960B2 (ja) * | 2000-01-26 | 2011-03-02 | 東邦チタニウム株式会社 | チタン酸リチウムの製造方法 |
JP4668539B2 (ja) * | 2004-02-25 | 2011-04-13 | 石原産業株式会社 | チタン酸リチウムの製造方法及びリチウム電池の製造方法 |
CN105375064A (zh) | 2005-10-20 | 2016-03-02 | 三菱化学株式会社 | 锂二次电池以及其中使用的非水电解液 |
CN1792816A (zh) * | 2005-10-26 | 2006-06-28 | 扬州大学 | 金属氧化物纳米粉的制备方法 |
CN100530780C (zh) * | 2006-12-29 | 2009-08-19 | 深圳市贝特瑞电子材料有限公司 | 复合钛酸锂电极材料及其制备方法 |
JP5579981B2 (ja) * | 2008-12-15 | 2014-08-27 | チタン工業株式会社 | 電極用酸化チタン化合物及びそれを用いたリチウム二次電池 |
JP2012053162A (ja) | 2010-08-31 | 2012-03-15 | Sanyo Electric Co Ltd | 投写型映像表示装置 |
WO2012029697A1 (ja) * | 2010-08-31 | 2012-03-08 | 戸田工業株式会社 | チタン酸リチウム粒子粉末及びその製造方法、Mg含有チタン酸リチウム粒子粉末及びその製造法、非水電解質二次電池用負極活物質粒子粉末並びに非水電解質二次電池 |
-
2012
- 2012-04-26 WO PCT/JP2012/061216 patent/WO2012147856A1/ja active Application Filing
- 2012-04-26 CN CN201280020613.0A patent/CN103502150A/zh active Pending
- 2012-04-26 KR KR1020137030365A patent/KR101867643B1/ko active IP Right Grant
- 2012-04-26 EP EP12777419.8A patent/EP2703356A4/en not_active Withdrawn
- 2012-04-26 CA CA2834024A patent/CA2834024A1/en not_active Abandoned
- 2012-04-26 JP JP2013512432A patent/JP5990512B2/ja not_active Expired - Fee Related
- 2012-04-26 US US14/114,137 patent/US9786912B2/en not_active Expired - Fee Related
- 2012-04-27 TW TW101115185A patent/TWI540101B/zh not_active IP Right Cessation
Patent Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06275263A (ja) | 1993-03-17 | 1994-09-30 | Matsushita Electric Ind Co Ltd | リチウム二次電池およびその負極の製造法 |
JP2000302547A (ja) | 1999-02-16 | 2000-10-31 | Toho Titanium Co Ltd | チタン酸リチウムの製造方法およびリチウムイオン電池ならびにその負極。 |
JP2001192208A (ja) | 1999-06-03 | 2001-07-17 | Titan Kogyo Kk | リチウムチタン複合酸化物及びその製造方法、並びにその用途 |
JP2001213622A (ja) | 2000-01-26 | 2001-08-07 | Toho Titanium Co Ltd | チタン酸リチウムの製造方法およびリチウムイオン電池並びにその電極 |
JP2005504693A (ja) * | 2000-12-05 | 2005-02-17 | ハイドロ−ケベック | Li4Ti5O12,Li(4−α)ZαTi5O12,又はLi4ZβTi(5−β)O12を主成分とする粒子群,それらの粒子群の獲得方法、及び、電気化学装置に於けるそれらの粒子群の利用方法 |
JP2002289194A (ja) * | 2001-03-27 | 2002-10-04 | Toho Titanium Co Ltd | リチウムイオン二次電池電極活物質製造原料としての二酸化チタン粉、リチウムイオン二次電池電極活物質としてのチタン酸リチウムおよびその製造方法 |
JP2003146658A (ja) * | 2001-11-13 | 2003-05-21 | Japan Whisker Co Ltd | 複合酸化物の製造方法 |
WO2008114667A1 (ja) * | 2007-03-16 | 2008-09-25 | Ishihara Sangyo Kaisha, Ltd. | 電極活物質及びそれを用いてなるリチウム電池 |
JP2011063496A (ja) * | 2009-09-18 | 2011-03-31 | Sakai Chem Ind Co Ltd | アナタース型超微粒子酸化チタン、アナタース型超微粒子酸化チタンを含有する分散体、及び該酸化チタンの製造方法 |
JP2011111361A (ja) * | 2009-11-26 | 2011-06-09 | Nippon Chem Ind Co Ltd | リチウム二次電池活物質用チタン酸リチウムの製造方法 |
Non-Patent Citations (1)
Title |
---|
See also references of EP2703356A4 * |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2015505807A (ja) * | 2011-12-29 | 2015-02-26 | ポスコ | 二酸化チタンナノ粉末、チタネート、リチウムチタネートナノ粉末及びこれらの製造方法 |
US9260316B2 (en) | 2011-12-29 | 2016-02-16 | Posco | Titanium dioxide nanoparticle, titanate, lithium titanate nanoparticle, and preparation methods thereof |
WO2014196462A1 (ja) | 2013-06-04 | 2014-12-11 | 石原産業株式会社 | チタン酸リチウム及びその製造方法並びにそれを用いた蓄電デバイス |
CN105307979A (zh) * | 2013-06-04 | 2016-02-03 | 石原产业株式会社 | 钛酸锂、其制备方法以及使用其的蓄电装置 |
KR20160014636A (ko) | 2013-06-04 | 2016-02-11 | 이시하라 산교 가부시끼가이샤 | 티탄산 리튬 및 그 제조 방법, 그리고 그것을 사용한 축전 디바이스 |
EP3006403A4 (en) * | 2013-06-04 | 2017-01-25 | Ishihara Sangyo Kaisha, Ltd. | Lithium titanate, production method for same, and electrical storage device employing same |
JPWO2014196462A1 (ja) * | 2013-06-04 | 2017-02-23 | 石原産業株式会社 | チタン酸リチウム及びその製造方法並びにそれを用いた蓄電デバイス |
US9966599B2 (en) | 2013-06-04 | 2018-05-08 | Ishihara Sangyo Kaisha, Ltd. | Process for manufacturing lithium titanium oxides |
JP2015037039A (ja) * | 2013-08-13 | 2015-02-23 | トヨタ自動車株式会社 | ナトリウムイオン電池用負極活物質、ナトリウムイオン電池およびナトリウムイオン電池用負極活物質の製造方法 |
WO2024029267A1 (ja) * | 2022-08-04 | 2024-02-08 | 住友金属鉱山株式会社 | 炭酸リチウム粉末 |
Also Published As
Publication number | Publication date |
---|---|
US9786912B2 (en) | 2017-10-10 |
EP2703356A4 (en) | 2015-01-14 |
US20140079625A1 (en) | 2014-03-20 |
KR20140028003A (ko) | 2014-03-07 |
JPWO2012147856A1 (ja) | 2014-07-28 |
EP2703356A1 (en) | 2014-03-05 |
KR101867643B1 (ko) | 2018-06-15 |
TW201305056A (zh) | 2013-02-01 |
JP5990512B2 (ja) | 2016-09-14 |
CA2834024A1 (en) | 2012-11-01 |
TWI540101B (zh) | 2016-07-01 |
CN103502150A (zh) | 2014-01-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2911223B1 (en) | Titanium-niobium composite oxide-based electrode active material and lithium secondary battery using the same | |
US9966599B2 (en) | Process for manufacturing lithium titanium oxides | |
JP5896994B2 (ja) | チタン酸リチウムの製造方法 | |
JP5990512B2 (ja) | チタン酸リチウム製造用チタン原料及びかかる原料を用いたチタン酸リチウムの製造方法 | |
WO2012002122A1 (ja) | 多孔質チタン酸リチウムの製造方法、多孔質チタン酸リチウム及びそれを用いたリチウム電池 | |
JP4668539B2 (ja) | チタン酸リチウムの製造方法及びリチウム電池の製造方法 | |
JP6434555B2 (ja) | リチウムイオン二次電池用負極活物質複合体及びその製造方法 | |
JP5927182B2 (ja) | チタン酸リチウム前駆体の製造方法およびチタン酸リチウムの製造方法 | |
JP2011051891A (ja) | チタン酸リチウムの製造方法及び該チタン酸リチウムを用いてなるリチウム電池 | |
JP2012051754A (ja) | Mg含有チタン酸リチウム粒子粉末及びその製造法、非水電解質二次電池 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 12777419 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2013512432 Country of ref document: JP Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2012777419 Country of ref document: EP |
|
ENP | Entry into the national phase |
Ref document number: 2834024 Country of ref document: CA |
|
WWE | Wipo information: entry into national phase |
Ref document number: 14114137 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 20137030365 Country of ref document: KR Kind code of ref document: A |