Nothing Special   »   [go: up one dir, main page]

WO2012140749A1 - オゾン発生システム、およびオゾン発生システムの運転方法 - Google Patents

オゾン発生システム、およびオゾン発生システムの運転方法 Download PDF

Info

Publication number
WO2012140749A1
WO2012140749A1 PCT/JP2011/059170 JP2011059170W WO2012140749A1 WO 2012140749 A1 WO2012140749 A1 WO 2012140749A1 JP 2011059170 W JP2011059170 W JP 2011059170W WO 2012140749 A1 WO2012140749 A1 WO 2012140749A1
Authority
WO
WIPO (PCT)
Prior art keywords
ozone
ozone generation
flow rate
gas flow
generation amount
Prior art date
Application number
PCT/JP2011/059170
Other languages
English (en)
French (fr)
Inventor
中谷 元
田村 哲也
江崎 徳光
佳明 尾台
智昭 竹田
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2011/059170 priority Critical patent/WO2012140749A1/ja
Priority to CA2832718A priority patent/CA2832718C/en
Priority to US13/979,585 priority patent/US9233848B2/en
Priority to JP2011536690A priority patent/JP4950362B1/ja
Priority to EP11863484.9A priority patent/EP2698342B1/en
Priority to CN201180069317.5A priority patent/CN103443024B/zh
Publication of WO2012140749A1 publication Critical patent/WO2012140749A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B13/00Oxygen; Ozone; Oxides or hydroxides in general
    • C01B13/10Preparation of ozone
    • C01B13/11Preparation of ozone by electric discharge
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2201/00Preparation of ozone by electrical discharge
    • C01B2201/60Feed streams for electrical dischargers
    • C01B2201/64Oxygen
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2201/00Preparation of ozone by electrical discharge
    • C01B2201/70Cooling of the discharger; Means for making cooling unnecessary
    • C01B2201/74Cooling of the discharger; Means for making cooling unnecessary by liquid
    • C01B2201/76Water
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2201/00Preparation of ozone by electrical discharge
    • C01B2201/90Control of the process

Definitions

  • the present invention relates to an ozone generation system that generates ozone for ozone treatment such as clean water, sewage, industrial wastewater, pulp bleaching, oxidation treatment, and the like.
  • the outline of the water treatment ozone treatment system is as follows.
  • the raw material gas (a gas obtained by adding a small amount of nitrogen gas to oxygen gas or air) is supplied to the ozone generator, and the raw material gas is discharged in a discharge tube inside the generator at a high frequency and high voltage supplied from a power source.
  • the oxygen gas in the raw material gas changes to ozone gas.
  • the generator cools the heat generated by the discharge with cooling water.
  • the ozonized gas generated in the generator is sent to the diffuser from the lower part of the ozone contact tank, and the ozonized gas is sent into the water to be treated as small bubbles and dissolved in the water. Odorous components and organic substances such as bacteria in the water to be treated are oxidized and decomposed by ozone and discharged from the contact tank as sterilized water without odor.
  • the amount of ozone required for the treatment of the ozone contact tank is determined by the flow rate of water to be treated, water quality, water temperature, etc.
  • the amount of ozone required is determined in advance by testing, the dissolved ozone concentration inside the ozone contact tank is measured and fed back. There is a method to apply.
  • the ozone concentration is kept constant and the ozonized gas flow rate is adjusted. I was driving.
  • (Ozone generation amount) (ozone concentration) x (ozonized gas flow rate)
  • the running cost of the device is the sum of the electricity bill consumed by the ozone generator and the gas bill for liquid oxygen.
  • the higher the ozone concentration the lower the efficiency of the ozone generator, resulting in higher electricity consumption and higher electricity costs.
  • the higher the ozone concentration the lower the required ozonized gas flow rate and the lower the gas cost.
  • the running cost is lowest at a certain ozone concentration (for example, Patent Document 1 and Non-Patent Document 1).
  • the ozone concentration at which the running cost is minimized is affected by the discharge tube structure of the ozone generator, the cooling water temperature, and the like.
  • an injector as a device often used in Europe and the United States to dissolve ozonized gas in water, and an injector pump is used to feed water into the injector.
  • the ozone concentration increases, the ozonized gas flow rate decreases and the amount of water flowing through the injector also decreases, so the power of the injector pump decreases and the electricity cost of the injector decreases.
  • the running cost may be lower when operating at a high ozone concentration. Since the ozone concentration that is often used in the past is 10 wt%, for example, running at a concentration of 16 wt% may lower the running cost.
  • Patent Document 2 As a method of improving the ozone generation efficiency at a high ozone concentration, for example, there is a method of shortening the discharge tube gap length (Patent Document 2).
  • JP-A-61-68195 (FIG. 2) Japanese Patent No. 3545257
  • the running cost is lower when the ozone concentration is increased, but there is a problem that the initial cost is increased when the ozone concentration is increased. If the ozone concentration is increased under the condition that the amount of ozone generated is constant, the ozone generation efficiency of the ozone generator decreases, so it is necessary to increase the power capacity of the power supply and increase the number of discharge tubes installed in the generator.
  • the initial cost of the generator increases.
  • the life cycle cost is the sum of the initial cost and the running cost. For example, in an ozone generator in which the running cost is the lowest at an ozone concentration of 14 wt%, the life cycle cost may be the lowest at an ozone concentration of 10 wt%. Accordingly, in designing the apparatus, the apparatus is designed and manufactured at an ozone concentration of 10 wt% at which the life cycle cost is minimum, and the user operates at an ozone concentration of 10 wt% (constant).
  • the present invention has been made to solve the above-described problems, and an object of the present invention is to provide a method for reducing running cost without increasing the initial cost of the apparatus, and such an ozone generation system. To do.
  • An ozone generation system includes an ozone generator having a discharge tube, a raw material gas supply device for supplying a raw material gas containing oxygen to the ozone generator, and an ozone for applying a high frequency high voltage to the discharge tube.
  • Generator power supply cooling device for flowing cooling water around discharge tube, gas flow controller for controlling flow rate of ozonized gas output from ozone generator, ozone concentration meter for measuring ozone concentration of ozonized gas
  • an ozone generation system comprising a controller for controlling the power of the ozone generator power source and the gas flow rate regulator, the controller includes an electricity unit price storage unit for storing an electricity unit price, and a gas unit price.
  • Gas unit price storage unit for storing, electricity unit price stored in the electricity unit price storage unit, gas unit price stored in the gas unit price storage unit, and necessary ozone required for ozonized gas Based on the amount of production, the ozone concentration and gas flow, which are the basic parameters of ozone generation, are determined to have the lowest running cost, and the gas flow controller is controlled to achieve the determined gas flow.
  • the power of the ozone generator power supply is controlled so that
  • the ozone generation system Since the ozone generation system according to the present invention is configured as described above, it can generate the necessary amount of ozone generation under the operating conditions that minimize the running cost, and thus provides an ozone generation system with a low running cost. it can.
  • FIG. 1 is a block diagram of an ozone generation system according to Embodiment 1 of the present invention.
  • Source gas is supplied from the source gas supply device 2 to the ozone generator 1.
  • the source gas is mainly composed of oxygen gas, and a small amount of nitrogen gas is added.
  • the source gas supply device 2 is a liquid oxygen storage tank, for example.
  • the ozone generator 1 is connected to an ozone generator power source 3 that generates a high-frequency high voltage, and a discharge is generated in a discharge tube inside the ozone generator 1, and a part of the oxygen gas in the raw material gas is changed to ozone by the discharge.
  • a flow control valve 4 and a gas flow meter 5 are connected to the outlet pipe of the ozone generator 1, and a part of the ozonized gas is sampled and enters the ozone concentration meter 6.
  • the heat generated by the discharge of the ozone generator 1 is cooled by the cooling water from the cooling device 7.
  • the temperature of the cooling water is measured by the cooling water thermometer 8.
  • a part of the water to be treated 10 to be treated with the ozonized gas is sent to the injector 12 through the injector pump 11, and the ozonized gas guided to the injector 12 is dispersed as fine bubbles in the water by the injector 12 and is ozone in the water. Melts.
  • the water containing ozone from the injector 12 merges with the water to be treated, and is guided to the ozone reaction tank to oxidatively decompose organic substances in the water.
  • FIG. 2 is a cross-sectional view showing the basic structure of an ozone generator used for water treatment and the like.
  • a metal film 102 serving as a high-voltage electrode is formed on the inner wall of a dielectric tube 101 such as a cylindrical glass tube, and a cylindrical metal tube 103 serving as a ground electrode is disposed concentrically outside the dielectric tube 101.
  • the metal tube 103 is attached to an ozone generation tank 104 that is electrically grounded.
  • the dielectric tube 101 and the metal tube 103 on which the metal film 102 is formed constitute the discharge tube 100.
  • the discharge gap 110 is a very narrow gap with a discharge gap length D of, for example, 0.3 mm.
  • the source gas is introduced from the source gas supply device 2 through the source gas input port pipe 106.
  • the introduced raw material gas becomes ozonized gas by discharge while passing through the discharge gap 110, and the ozonized gas is output from the outlet pipe 107.
  • the control unit 20 that controls the ozone generation system receives the electricity unit price and the oxygen gas unit price from the input unit 21 and stores them in the electricity unit price storage unit 22 and the gas cost unit price storage unit 23, respectively.
  • a power measurement value of the power source from the ozone generator power source 3 a gas flow rate measurement value from the gas flow meter 5, an ozone concentration measurement value from the ozone concentration meter 6, and a cooling water temperature measurement value from the cooling water temperature meter 8 are input.
  • the required ozone generation amount is input to the control device 20 as a command value from another control device.
  • control parameter setting unit 24 evaluates the running cost in real time, determines each parameter so that the ozone generation system operates at the parameter at which the running cost is the lowest, and the ozone generator power source 3. Power command value, an opening command value to the flow rate adjusting valve 4, and an output command value to the pump 11 to the injector pump.
  • the cooling water temperature becomes maximum, and in the case of clean water, the amount of water taken from rivers and lakes is poor, so the maximum amount of ozone generation is required. Therefore, in summer, the operation is performed at the maximum output of the ozone generation amount of 10 kg / h at the ozone concentration of 10 wt%.
  • FIG. 3 shows this situation.
  • the horizontal axis of FIG. 3 indicates the cooling water temperature of the ozone generator 1, and the vertical axis indicates the maximum ozone concentration at which the ozone generator 1 can be operated.
  • the maximum ozone concentration is 10 wt% at the operating point indicated by the point where the broken lines intersect in the figure, that is, at a water temperature of 30 ° C.
  • the ozone generator power supply 3 operates at a maximum power of about 100 kW.
  • the water temperature falls to 10 ° C.
  • the ozone generation efficiency increases, so the power source power is reduced to about 85 kW, and there is room for the power source.
  • the ozone generation amount of 10 kg / h can be generated by increasing the power supply power to 100 kW.
  • the maximum ozone concentration can be increased to about 13 wt%.
  • the maximum ozone concentration at a water temperature of 10 ° C. can be increased to 16 wt%. If the ozone concentration is increased, the efficiency becomes worse and more electric power than 10 wt% is required. However, since the power source has a margin of output compared to the rated time, the electric power can be increased.
  • Fig. 4 shows the running cost when the ozone generation system having the characteristic example shown in Fig. 3 is used.
  • the horizontal axis represents the ozone concentration
  • the vertical axis represents the running cost.
  • a portion indicated by a solid line indicates a region where operation can be performed below the maximum rated power of the power supply 3 for the ozone generator
  • a portion indicated by a broken line indicates a region where operation is not possible due to insufficient power supply capacity.
  • the ozone generation amount of 10 kg / h is required at a water temperature of 30 ° C., and therefore the ozone concentration is operated at an ozone concentration of 10 wt% (point A) where the running cost is the lowest in the operable region (solid line).
  • the ozone generation amount of 7 kg / h is required at a water temperature of 20 ° C., so the ozone concentration is operated at an ozone concentration of 12.5 wt% (point B), which is the cheapest running cost in the operable region.
  • an ozone generation amount of 5 kg / h is required at a water temperature of 10 ° C., and therefore the ozone concentration is operated at an ozone concentration of 14.5 wt% (point C), which is the cheapest running cost in the operable region.
  • the control method at the optimal point of ozone concentration where the running cost is the lowest, that is, the running cost minimum control method is as follows.
  • the controller 20 uses the cooling water temperature and the required ozone generation amount as parameters, and previously inputs the characteristics of the electricity consumption of the ozone generator 1 and the ozone generator power supply 3 and the maximum rated power of the power supply, and the electricity consumption characteristic storage unit 25. I remember it.
  • the electricity bill is calculated from the stored characteristics and the electricity bill unit price stored in the electricity bill unit storage unit 22.
  • the oxygen gas cost is calculated from the oxygen gas cost unit price stored in the gas cost unit price storage unit 23, and the running cost is calculated as the sum of the electricity cost.
  • the operating point (point A, point B, point C) of the optimum ozone concentration is calculated from this characteristic curve.
  • the cooling cost and the necessary ozone generation amount are used as parameters, and the running cost is set for each set of the cooling temperature and the necessary ozone generation amount.
  • the lowest ozone concentration is calculated, and data of the optimum ozone concentration table as shown in FIG. 5 is created.
  • the ozone generation amount is obtained by multiplying the ozone concentration and the gas flow rate.
  • the required ozone generation amount is a value required by the system.
  • the ozone concentration and the gas flow rate are referred to as ozone generation amount basic parameters.
  • the data of the optimum ozone concentration table of FIG. 5 is stored in the ozone generation amount basic parameter optimum value storage unit 26.
  • FIG. 6 is a diagram of operating characteristics with the horizontal axis representing the gas flow rate and the vertical axis representing the running cost in the same apparatus as the operating characteristics shown in FIG.
  • a portion indicated by a solid line indicates an operable region that is equal to or less than the maximum rated power of the ozone generator power source 3
  • a portion indicated by a broken line indicates an area where the operation is impossible due to insufficient power supply capacity.
  • ozone is generated at a water temperature of 30 ° C. and an ozone generation amount of 10 kg / h is required.
  • the gas flow rate is operated at a gas flow rate of 100 kg / h (point A) at the lowest running cost in the operable region (solid line).
  • the ozone generation amount of 7 kg / h is required at a water temperature of 20 ° C., so the gas flow rate is operated at a gas flow rate of 56 kg / h (point B), which is the cheapest running cost in the operable region.
  • an ozone generation amount of 5 kg / h is required at a water temperature of 10 ° C., and therefore, the ozone concentration is operated at a gas flow rate of 34.5 kg / h (C point) that provides the lowest running cost in the operable region.
  • the operation method at the optimum point of the gas flow rate is as follows.
  • the control device 20 inputs in advance the characteristics of the electricity consumption of the ozone generator 1 and the ozone generator power source 3 with the cooling water temperature and the required ozone generation amount as parameters, and stores them in the electricity consumption characteristic storage unit 25.
  • the electricity bill is calculated from the stored characteristics and the electricity bill unit price stored in the electricity bill unit storage unit 22.
  • the oxygen gas cost is calculated from the oxygen gas cost unit price stored in the gas cost unit price storage unit 23, and the running cost is calculated as the sum of the electricity cost.
  • the operating point (point A, point B, point C in FIG. 6) of the optimum gas flow rate is calculated from this characteristic curve.
  • control parameter setting unit 24 when the electricity unit price and the oxygen gas unit price are input, the running cost is determined for each set of the cooling temperature and the necessary ozone generation amount using the cooling water temperature and the necessary ozone generation amount as parameters. The lowest gas flow rate is calculated, and data of the optimum gas flow rate table as shown in FIG. 7 is created. Data of the optimum gas flow rate table as shown in FIG. 7 is stored in the ozone generation amount basic parameter optimum value storage unit 26.
  • the S / W design / manufacturing cost of the control device can be reduced by storing as data the ozone concentration or gas flow rate at which the running cost is the lowest for each set of cooling temperature and required ozone generation amount. There is an advantage that it can be reduced.
  • the control parameter setting unit 24 reads the optimum gas flow rate or the optimum ozone concentration from the cooling water temperature during operation and the necessary ozone generation amount based on the data stored in the ozone generation amount basic parameter optimum value storage unit 26.
  • the optimum gas flow rate or the optimum ozone concentration is determined, the other is calculated from the following equation, and the optimum ozone concentration and the optimum gas flow rate are determined.
  • (Required ozone generation amount) (Optimum gas flow rate) x (Optimum ozone concentration)
  • the above is the ozone generation amount basic parameter value determining step for determining the ozone generation amount basic parameter value according to the first embodiment.
  • the ozone generation amount basic parameter optimum storage unit 26 has been described as storing one of the optimum ozone concentration and the optimum gas flow rate, but a set of optimum ozone concentration and optimum gas flow rate is stored. You can leave it. In this case, there is no need to calculate one from the other.
  • the opening degree of the flow rate adjusting valve 4 is controlled so that the output value of the gas flow meter becomes the determined optimum gas flow rate.
  • the power command value to the ozone generator power source 3 is adjusted to control the power source power so that the output of the ozone concentration meter becomes the determined optimum ozone concentration.
  • both parameters of the cooling water temperature and the required ozone generation amount are stored in the control device 20. It is necessary to enter.
  • running costs are affected by oxygen gas unit price and electricity unit price.
  • Electricity costs vary depending on the country / region / location where the ozone generator is operated.
  • the unit cost of oxygen gas varies depending on whether it is close to the liquid oxygen supply factory, as transportation costs vary.
  • the electricity bill may vary depending on the season and time.
  • the running cost is always the lowest even if the electricity cost changes. Can be operated.
  • this ozone generator In the case of a large-capacity ozone generator used in water treatment, an ozone generator in which a plurality of discharge tubes are connected in parallel is used. In order to efficiently generate ozone at a high concentration of 10 wt% or higher ozone concentration that is currently used in water treatment, this ozone generator has a discharge gap length D shown in FIG. 2 and a gas pressure in the discharge tube. Discharge gap length D: 0.3 mm or less (preferably 0.2 mm or less) Gas pressure: 0.08-0.20 MPa (G) It is good to drive at. Such an ozone generator can efficiently generate ozone even at an ozone concentration of 12 wt%.
  • the ozone concentration can be efficiently generated up to 14 wt%.
  • the ozone generation efficiency is worse than the normal concentration of 10 wt%, and as a result, the power output must be increased.
  • the initial cost of the apparatus becomes high. For this reason, it is possible to manufacture a device capable of generating even high-concentration ozone, but the use of ozone at a concentration exceeding 10 wt% has not been widespread in terms of initial cost.
  • the initial cost is equivalent to that of a normal ozone generation system.
  • an ozone generation system that can reduce running costs can be provided.
  • the running cost reduction effect was as small as 2% or less as compared with the case of operating at a constant ozone concentration of 10 wt%.
  • a running cost reduction of 3% or more can be realized.
  • the running cost can be reduced by 5% or more.
  • the present invention is highly effective when applied to an ozone generator having a discharge gap length as small as 0.3 mm or less, more preferably 0.2 mm or less.
  • FIG. FIG. 8 is a block diagram showing an outline of an ozone generation system according to Embodiment 2 of the present invention. 8, the same reference numerals as those in FIG. 1 denote the same or corresponding parts. Moreover, the control flow in the control apparatus 200 is shown in FIG. In the first embodiment, the optimum ozone concentration or the optimum gas flow rate at which the running cost is lowest is stored in advance in the ozone generation amount basic parameter optimum value storage unit 26. On the other hand, in the ozone generation system of the second embodiment, the running cost is calculated while varying the ozone concentration, and the control device 200 itself finds the ozone concentration and the gas flow rate at which the running cost is minimum. In the second embodiment, a cooling water thermometer is unnecessary, and an input to the control device 200 for the cooling water temperature is also unnecessary. However, the coolant temperature may be input as a guideline for setting the initial instruction value.
  • the electricity unit price and oxygen gas unit price are read from the electricity unit price storage unit 22 and the gas unit price storage unit 23 (ST1).
  • an initial instruction value of ozone concentration (10 wt% in FIG. 9) is set (ST2), and a necessary ozone generation amount is read (ST3).
  • the required ozone generation amount that is, the ozone generation amount generated by the ozone generator and the gas flow rate to be set from the ozone concentration are obtained by the following equation (ST4).
  • (Gas flow) (Ozone generation) ⁇ (Ozone concentration)
  • the flow rate adjustment valve is controlled so that the measured value of the gas flow meter becomes equal to the gas flow rate obtained by the above equation (ST5).
  • the power supply power is adjusted, and the power of the ozone generator power supply 3 is adjusted so that the measured value of the ozone concentration meter becomes the indicated value of the ozone concentration (ST6).
  • the electricity cost is calculated from the power consumption of the power source, the gas cost is calculated from the gas flow rate, and the running cost at this ozone concentration is calculated (ST7).
  • the above is the running cost calculation control step, and after performing this running cost calculation control step, it is determined whether or not the ozone concentration at which the running cost is minimum can be determined (ST8).
  • the ozone concentration instruction value is increased by a predetermined value, for example, 0.5 wt% (ST9), the same operation as described above is performed, and the running cost at this operating point is calculated. If the running cost decreases, the ozone concentration instruction value is further increased. Conversely, if the running cost increases, the ozone concentration instruction value is decreased.
  • the above is the running cost comparison step, and this running cost comparison step is repeatedly performed while changing the ozone concentration until the ozone concentration at which the running cost is lowest can be determined, and the ozone concentration at which the running cost is lowest is determined.
  • the above is the ozone generation amount basic parameter value determining step for determining the ozone generation amount basic parameter value according to the second embodiment.
  • the ozone generation system is continuously operated by setting the ozone concentration and gas flow rate (ST10).
  • the ozone concentration is set first, but the gas flow rate may be set first. If one is set, the other can be calculated from the required ozone generation amount.
  • the indicated value of the required ozone generation amount changes in about 1 hour, for example.
  • the time for the control loop for adjusting the gas flow rate to be stable is about 1 minute, and the time for the control loop for ozone concentration control to be stable is about 1 to 5 minutes. Therefore, the time required to obtain the optimal concentration point by changing the ozone concentration by 3 to 4 points is within 5 to 30 minutes, which is shorter than the time for the indicated value of the ozone generation amount to change. It is possible to calculate.
  • the optimum point of ozone concentration is always obtained, which is effective even when the ozone generator 1 deteriorates over time. For example, when the discharge tube is deteriorated, predetermined ozone generation efficiency cannot be obtained, and as a result, the optimum point of ozone concentration is deviated from the optimum point immediately after production. According to the second embodiment, since the optimal ozone concentration point is always calculated, it is possible to operate at the lowest running cost without being affected by the aging of the discharge tube.
  • FIG. 10 is a block diagram showing an outline of an ozone generation system according to Embodiment 3 of the present invention. 10, the same reference numerals as those in FIGS. 1 and 8 denote the same or corresponding parts.
  • the third embodiment is an embodiment in which the control can be further improved by combining the first embodiment and the second embodiment.
  • the control device 210 sets the optimum ozone concentration as shown in FIG. 5 as an initial value in the ozone generation amount basic parameter optimum value storage unit 260 for the two parameters, the cooling water temperature and the ozone generation amount. (Optimum ozone concentration table) or optimum gas flow rate data (optimum gas flow rate table) as shown in FIG. 7 is stored.
  • the ozone generation amount basic parameter optimum value storage unit 260 stores data on the optimum ozone concentration.
  • the aging deterioration state of the device can be reflected in the optimum ozone concentration table, so it is only necessary to always perform the running cost minimum control around the ozone concentration optimum point, and the range in which the ozone concentration varies. Since it can be narrow, control can be performed quickly. Further, since the amount of ozone concentration deviating from the optimum point is small, the running cost can be controlled to the lowest.
  • Embodiment 4 the running cost considers only the electricity cost and gas cost of the ozone generator. However, as shown in FIG. 1 and the like, the ozonized gas is dissolved in water as an auxiliary device.
  • the injector 12 if the electricity cost of the power consumption of the injector pump 11 is also added to the running cost and evaluated, an operation with a lower running cost can be performed.
  • the ratio of the gas amount G flowing to the injector 12 and the water amount L (G / L ratio) is adjusted to be constant to increase the dissolution rate of ozone in water.
  • the gas flow rate G changes depending on the ozone concentration, so it is necessary to adjust the water amount L, and the power of the ejector pump 11 changes. Since the optimum ozone concentration is determined so that the running cost including the power cost of the injector pump 11 becomes the minimum value, the running cost of the entire system can be reduced.
  • PSA PressurePressSwing Absorption
  • VPSA Vauum Pressure SwingsorptionAbsorption
  • PSA PressurePressSwing Absorption
  • VPSA Vauum Pressure SwingsorptionAbsorption
  • This is an apparatus for concentrating oxygen gas from the air using an adsorbent.
  • PSA or VPSA
  • a compressor or blower that sends air to the PSA (or VPSA) is used. Since the air flow rate is changed, the power consumption of the auxiliary devices such as the compressor and the blower changes depending on the air flow rate, and the electricity cost also changes.
  • the ozone concentration is optimized including the running cost up to the electricity bill of the equipment such as compressor and blower used for PSA (or VPSA). By doing so, the running cost of the entire system can be reduced.
  • the power consumption of the cooling device 7 for sending the cooling water to the ozone generator 1 or the exhaust ozone decomposition device for decomposing unconsumed ozone in the ozone reaction layer ( Evaluation including power consumption used for (not shown), that is, power consumption of the auxiliary device, further leads to reduction of the running cost of the entire system.
  • the cooling device 7 of the ozone generator 1 can reduce power consumption because the required amount of water decreases when the amount of ozone generated decreases. Further, when the gas flow rate is reduced, the power consumption of the exhaust ozone fan driving motor can be reduced. Therefore, the cost can be reduced by controlling the ozone concentration so as to minimize the overall running cost.
  • Embodiment 5 the case where the running cost minimum control in which the running cost is minimized by the optimum ozone concentration and the optimum gas flow rate is always performed is shown, but the user may use the ozone concentration at a constant level. Therefore, the running cost minimum control ON / OFF switching may be performed.
  • a running cost minimum control ON button (economy mode button) and a switch (economy mode switch) may be provided in the control device, or may be switched by an operation on the touch panel of the control device. The user can select a running cost minimum control operation as necessary, and can perform an operation that reduces the running cost.
  • the running cost minimum control is displayed on the control device display screen to show how much the running cost has been reduced.
  • a reference ozone concentration for example, 10 wt% is input, and the running cost minimum control is performed to display how much the running cost has been reduced as compared with the case of operating at the reference ozone concentration.
  • the running cost reduction amount may be displayed as the accumulated value of the day, the accumulated value after the start of operation may be displayed as the accumulated value of the cost reduction amount, and the daily, weekly, monthly, and annual trends can be displayed. It may be displayed in a table or graph. By displaying in this way, the user can accurately grasp the reduction amount.
  • the displayed numerical value can be grasped as a whole by displaying not only the running cost reduction amount but also the running cost value, or the gas cost and the electricity cost may be displayed separately.
  • a diffuser tube or a diffuser disk as a device for dissolving ozone in water
  • the gas flow rate is too low, the diffuser tube or diffuser disk is likely to be clogged, so a lower limit of the gas flow rate may be provided.
  • an upper limit of the ozone concentration can be set, or a lower limit of the gas flow rate can be set. By doing in this way, running cost can be minimized while demonstrating ozone treatment performance.
  • the gas supply capacity of the raw material gas supply device 2 there is an upper limit of the gas supply capacity of the raw material gas supply device 2, and if the ozone generator 1 also flows too much gas, the pressure loss of the ozone generator 1 may increase and the efficiency may decrease, so the ozone concentration lower limit can be set.
  • the upper limit of the gas flow rate can be set, highly reliable operation is possible according to the supply capacity of the apparatus.
  • Embodiment 6 In an ordinary ozone treatment system, a plurality of ozone generators are often used. In such a case, as shown in FIG. 11, during the rated operation, for example, two ozone generators 1a and 1b are operating at full power at an ozone generation amount of 10 kg / h and an ozone concentration of 10 wt%, respectively. The required amount of ozone generation is gradually reduced. For example, in the case of 80% rated ozone generation, it is the lowest running cost that two units operate at an ozone generation rate of 8 kg / h and an ozone concentration of 12 wt%, respectively. It becomes.
  • one ozone generation is generated as shown in FIG. 12 rather than the two ozone generators 1a and 1b operating at 1 kg / h. It is cheaper to stop the unit 1b and operate only one of the ozone generators 1a with an ozone generation amount of 2 kg / h and an ozone concentration of 16 wt%. This is because when the output decreases, the ratio of no-load loss (power transformer loss, power cooling fan power consumption, generator cooling water pump power consumption, etc.) increases, and the electrical input to the entire ozone generator power supply This is because the ozone generation efficiency deteriorates.
  • no-load loss power transformer loss, power cooling fan power consumption, generator cooling water pump power consumption, etc.
  • FIG. 13 shows an example in which two oxygen generators (PSA) 2a and 2b are used as the source gas supply device 2 as the source gas source and two ozone generators 1a and 1b are used.
  • the ozone generators 1a and 1b are operated at an ozone generation amount of 10 kg / h and an ozone concentration of 10 wt%, respectively.
  • the PSAs 2a and 2b supply an oxygen gas flow rate of 100 kg / h, respectively.
  • PSA it is difficult to change the gas flow rate. Therefore, when the ozone generation amount is lowered from the rated amount, the gas flow rate remains constant and the ozone generation amount is often adjusted by lowering the ozone concentration.
  • FIG. 14 shows the oxygen gas flow rate, ozone generation amount, and ozone concentration of each part when the ozone generation amount is set to 70% of the rating.
  • the running cost when the number of operating PSA is changed and the ozone concentration is changed is calculated to obtain the optimum operating number and the ozone concentration.
  • the operation shown in FIG. 15 is performed.
  • the PSA 2b stops operating, and only one of the PSA 2a supplies 100 kg / h oxygen gas.
  • Each of the two ozone generators 1a and 1b is supplied with 50 kg / h of oxygen gas, and the ozone generators 1a and 1b are operated at an ozone concentration of 14 wt% at which the running cost is minimum, and each of the ozone generators 1a and 1b is 7 kg / h. Ozone is generated.
  • the electricity consumption of the PSA is reduced by half.
  • Ozone generator 2 Raw material gas supply device 3: Ozone generator power supply 4: Gas flow control valve 5: Gas flow meter 6: Ozone concentration meter 7: Cooling device 8: Cooling water temperature meter 10: Water to be treated 12: Injector 20, 200, 210: Control device 21: Input unit 22: Electricity unit price storage unit 23: Gas unit price storage unit 24: Control parameter setting unit 25: Electricity consumption characteristic storage unit 26, 260: Ozone generation basic parameter optimum Value storage unit 27: running cost calculation unit 100: discharge tube 110: discharge gap

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Oxygen, Ozone, And Oxides In General (AREA)
  • Treatment Of Water By Oxidation Or Reduction (AREA)

Abstract

 ランニングコストが低いオゾン発生システムを提供する。 電気代単価を記憶する電気代単価記憶部と、ガス代単価を記憶するガス代単価記憶部とを備え、電気代単価記憶部に記憶された電気代単価と、ガス代単価記憶部に記憶されたガス代単価と、オゾン化ガスに求められる必要オゾン発生量とに基づき、オゾン発生量基礎パラメータであるオゾン濃度およびガス流量についてランニングコストが最低となる値を決定し、この決定したガス流量となるようガス流量調節器を制御し、決定したオゾン濃度となるようオゾン発生器用電源の電力を制御するようにした。

Description

オゾン発生システム、およびオゾン発生システムの運転方法
 この発明は、上水、下水、工業排水、パルプ漂白、酸化処理などのオゾン処理用のオゾンを発生するオゾン発生システムに関するものである。
 上水のオゾン処理システムの概要は以下のようである。オゾン発生器に原料ガス(酸素ガスに窒素ガスを微量添加したガス、もしくは空気)が供給され、電源から供給される高周波高電圧にて発生器内部の放電管で原料ガスが放電し、この放電により原料ガス中の酸素ガスがオゾンガスに変化する。発生器は放電により生じる熱を冷却水で冷却する。発生器で生じたオゾン化ガスはオゾン接触槽の下部から散気装置に送り込まれ、オゾン化ガスは小さな気泡として被処理水中に送り込まれて水中に溶け込む。被処理水中の臭い成分や細菌などの有機物はオゾンにより酸化分解され、臭いのない殺菌された水として接触槽から排出される。
 オゾン接触槽の処理に必要なオゾン発生量は、被処理水流量、水質、水温などにより決まり、予め試験により必要なオゾン量を決める場合と、オゾン接触槽内部の溶存オゾン濃度を測定してフィードバックをかける方法などがある。このようにして求められた必要オゾン発生量を出すため、原料ガスに酸素ガス(微量の窒素を含む)を用いる従来の装置においては、オゾン濃度を一定とし、オゾン化ガス流量を調整するように運転していた。
  (オゾン発生量)=(オゾン濃度)×(オゾン化ガス流量)
 装置のランニングコストは、オゾン発生器で消費される電気代と、液体酸素のガス代の和である。通常、オゾン濃度が高くなるほど、オゾン発生器の効率が低下するので電気消費量が多くなり電気代がアップする。反面、オゾン濃度が高くなるほど必要なオゾン化ガス流量は少なくなりガス代は減る。その結果として、あるオゾン濃度のところでランニングコストが最低となることが知られている(例えば特許文献1、非特許文献1)。このランニングコストが最低となるオゾン濃度は、オゾン発生器の放電管構造、冷却水温などの影響を受ける。
 また、オゾン化ガスを水中に溶かすために欧米でよく用いられている装置としてインジェクターがあり、インジェクターに水を送り込むためにインジェクターポンプを用いている。オゾン濃度が高くなるとオゾン化ガス流量が下がり、インジェクターを流れる水量も減るためインジェクターポンプの動力が減り、インジェクターの電気代が低下する。例えば、高オゾン濃度で運転する方が、ランニングコストが安価となる場合もある。従来良く使用されているオゾン濃度は10wt%であるので、例えば濃度16wt%で運転する方が、ランニングコストが安価となる場合がある。
 一方、高オゾン濃度にてオゾン発生効率を向上させる方法として、例えば、放電管ギャップ長を短くする方法がある(特許文献2)。
特開昭61-68195号公報(図2) 特許第3545257号公報
"High Efficiency, High Concentration Ozone Generator Based on Narrow Gap Technology" Paper presented in World Congress on Ozone & Ultraviolet Technologies (Aug. 27 to 29, 2007 in Los Angeles, Calif.)(Figure 7)
 従来の装置においてオゾン濃度を上げる方がランニングコストは下がるが、一方、オゾン濃度を上げるとイニシャルコストがアップするという課題があった。オゾン発生量一定の条件でオゾン濃度を増すと、オゾン発生器のオゾン発生効率が低下するために電源の電力容量を増やすと共に、発生器に搭載する放電管本数を増やす必要があり、このためオゾン発生装置のイニシャルコストがアップする。ライフサイクルコストは、イニシャルコストとランニングコストの合計であり、例えばオゾン濃度14wt%でランニングコストが最低となるオゾン発生装置において、ライフサイクルコストがオゾン濃度10wt%で最低となる場合もある。従って、装置設計はライフサイクルコストが最低となるオゾン濃度10wt%で装置を設計・製造し、使用者はオゾン濃度10wt%(一定)で運転することとなる。
 この発明は、上記のような課題を解決するためになされたものであり、装置のイニシャルコストをアップせずに、ランニングコストを下げる方法、及びこのようなオゾン発生システムを提供することを目的とする。
 この発明に係るオゾン発生システムは、放電管を備えたオゾン発生器と、このオゾン発生器に酸素を含む原料ガスを供給する原料ガス供給装置と、放電管に高周波高電圧を印加するためのオゾン発生器用電源と、冷却水を放電管周囲に流す冷却装置と、オゾン発生器から出力されるオゾン化ガスの流量を制御するガス流量調節器と、オゾン化ガスのオゾン濃度を計測するオゾン濃度計と、オゾン発生器用電源の電力と、ガス流量調節器とを制御する制御装置とを備えたオゾン発生システムにおいて、制御装置は、電気代単価を記憶する電気代単価記憶部と、ガス代単価を記憶するガス代単価記憶部とを備え、電気代単価記憶部に記憶された電気代単価と、ガス代単価記憶部に記憶されたガス代単価と、オゾン化ガスに求められる必要オゾン発生量とに基づき、オゾン発生量基礎パラメータであるオゾン濃度およびガス流量についてランニングコストが最低となる値を決定し、この決定したガス流量となるようガス流量調節器を制御し、決定したオゾン濃度となるようオゾン発生器用電源の電力を制御するものである。
 この発明に係るオゾン発生システムは上記のように構成されているため、ランニングコストが最低となる運転条件で、必要なオゾン発生量を発生することができるので、ランニングコストが低いオゾン発生システムを提供できる。
この発明の実施の形態1によるオゾン発生システムの概略構成を示すブロック図である。 この発明の実施の形態1によるオゾン発生システムを構成するオゾン発生器の概略構成を示す断面図である。 この発明を適用するオゾン発生システムの動作特性の一例を示す線図である。 この発明の実施の形態1によるオゾン発生システムの動作特性の一例を、従来例と比較して説明する線図である。 この発明の実施の形態1によるオゾン発生システムを構成するオゾン発生量基礎パラメータ最適値記憶部に記憶するデータの一例を示す表である。 この発明の実施の形態1によるオゾン発生システムの動作特性の別の例を、従来例と比較して説明する線図である。 この発明の実施の形態1によるオゾン発生システムを構成するオゾン発生量基礎パラメータ最適値記憶部に記憶するデータの別の例を示す表である。 この発明の実施の形態2によるオゾン発生システムの概略構成を示すブロック図である。 この発明の実施の形態2によるオゾン発生システムの制御のフローを示すフロー図である。 この発明の実施の形態3によるオゾン発生システムの概略構成を示すブロック図である。 この発明の実施の形態6によるオゾン発生システムの主要部の動作の基本例を示すブロック図である。 この発明の実施の形態6によるオゾン発生システムの主要部の動作の別の例を示すブロック図である。 この発明の実施の形態7によるオゾン発生システムの主要部の動作の基本例を示すブロック図である。 この発明の実施の形態7によるオゾン発生システムの主要部の動作の比較例を示すブロック図である。 この発明の実施の形態7によるオゾン発生システムの主要部の動作の一例を示すブロック図である。
実施の形態1.
 図1は、この発明の実施の形態1によるオゾン発生システムのブロック図である。ここでは、被処理水として例えば上水をオゾン化ガスにより処理するシステムを例に取り上げて説明する。オゾン発生器1に原料ガス供給装置2から原料ガスが供給される。原料ガスは酸素ガスを主成分とし、窒素ガスが微量添加されている。原料ガス供給装置2は、例えば液体酸素貯留タンクである。オゾン発生器1には高周波高電圧を発生するオゾン発生器用電源3が接続され、オゾン発生器1内部の放電管で放電が発生し、放電により原料ガス中の酸素ガスの一部がオゾンに変化し、オゾン化ガスとなる。オゾン発生器1の出口配管には流量調節バルブ4とガス流量計5が接続され、またオゾン化ガスの一部はサンプリングされてオゾン濃度計6に入る。オゾン発生器1の放電により発生した熱は冷却装置7からの冷却水で冷却される。冷却水の温度が冷却水温計8により測定される。オゾン化ガスによる処理の対象である被処理水10の一部はインジェクターポンプ11を通じてインジェクター12に送水され、インジェクター12に導かれたオゾン化ガスはインジェクター12により水中に微細気泡として分散し水中にオゾンが溶け込む。インジェクター12から出たオゾンを含む水は被処理水と合流し、オゾン反応槽に導かれて水中の有機物がオゾンにより酸化分解処理される。
 ここで、オゾン発生器1の概要について説明する。図2は、水処理などに用いられるオゾン発生器の基本構造を示す断面図である。円筒形状のガラス管などの誘電体管101の内壁に高圧電極となる金属膜102を形成し、誘電体管101の外部に同心円状に接地電極となる円筒状の金属管103を配置する。金属管103は、電気的に接地されたオゾン発生タンク104に取り付けられている。金属膜102が形成された誘電体管101と金属管103とで放電管100を構成している。オゾン発生器用電源3から金属膜102に高周波高電圧を給電し、金属膜102と金属管103の間に高周波高電圧を印加すると誘電体管101と金属管103との間の放電ギャップ110で放電が発生する。放電ギャップ110は、放電ギャップ長Dが例えば0.3mmといった非常に狭いギャップとなっている。金属管103の周囲は放電による熱を冷却するための冷却水105が冷却装置7から循環して流されるようになっている。原料ガス供給装置2から原料ガス入力口配管106を通して原料ガスが導入される。導入された原料ガスは放電ギャップ110を通る間に放電によりオゾン化ガスとなり、オゾン化ガスが出口配管107より出力される。図2では放電管100を1本だけ示しているが、大容量のオゾン発生器1では、1台の、すなわち一つのオゾンタンク104に放電管100が複数、多いものでは1000本程度並列に設置されている。
 オゾン発生システムを制御する制御装置20には、入力部21から電気代単価、酸素ガス代単価を入力し、それぞれ電気代単価記憶部22、ガス代単価記憶部23に記憶される。一方、オゾン発生器用電源3から電源の電力測定値、ガス流量計5からガス流量測定値、オゾン濃度計6からオゾン濃度測定値、冷却水温計8から冷却水温度測定値が入力される。また制御装置20には、別の制御装置から必要オゾン発生量が指令値として入力される。制御装置20では、制御パラメータ設定部24で、リアルタイムにランニングコストを評価して、その時点でランニングコストが最低となるパラメータでオゾン発生システムが動作するよう各パラメータを決定し、オゾン発生器用電源3に電力指令値、流量調節バルブ4に開度指令値、インジェクターポンプへポンプ11に出力指令値が出力される。
 次に動作の詳細について説明する。オゾン発生器1およびオゾン発生器用電源3は、定格最大電力として、冷却水温度最大値30℃、オゾン濃度10wt%にて最大オゾン発生量=10kg/hが得られるように設計されているとする。通常、夏場の温度の高い時に冷却水温度が最大となり、上水の場合は河川や湖から取水する水質も悪いので最大オゾン発生量が必要とされる。従って、夏場はオゾン濃度10wt%にてオゾン発生量10kg/hの最大出力で運転することとなる。ところが、秋、春、特に冬は、水質が良くなるのでオゾン発生量の必要量が少なくなる。また、冷却水温が例えば冬場は10℃まで下がるので、オゾン発生器1の効率が向上する。
 この様子を示したのが図3である。図3の横軸はオゾン発生器1の冷却水温度、縦軸はオゾン発生器1が運転可能な最大オゾン濃度を示す。定格オゾン発生量10kg/hのオゾンを発生する場合、図中破線の交差する点で示す動作点、すなわち水温30℃では最大オゾン濃度は10wt%である。この時オゾン発生器用電源3は最大電力約100kWで動作する。水温が10℃に下がるとオゾン発生効率が高くなるため、電源電力は約85kW程度に下がり、電源としては余裕ができる。電源の余裕があるためオゾン濃度を上げてオゾン発生効率が低下しても、電源電力を100kWまで上げると、オゾン発生量10kg/hを発生することができる。図3の例では最大オゾン濃度約13wt%まで上げることができる。
 また、オゾン発生量が定格より低く、例えば5kg/hの場合、水温10℃での最大オゾン濃度は16wt%まで上げることができる。オゾン濃度を上げると効率が悪くなり10wt%よりも多くの電力を必要とするが、電源は定格時に比べて出力の余裕があるため電力を増大することが可能である。
 図3で示した特性例のオゾン発生システムを使用した場合のランニングコストを図4に示す。横軸はオゾン濃度、縦軸はランニングコストを示す。図4において、実線で示す部分が、オゾン発生器用電源3の最大定格電力以下の運転可能な領域を示し、破線で示す部分は、電源容量が不足して、運転が不可能な領域を示す。夏場は水温30℃にてオゾン発生量10kg/hが必要なため、オゾン濃度は運転可能な領域(実線)で一番ランニングコストの安くなるオゾン濃度10wt%(A点)で運転する。春・秋は、水温20℃にてオゾン発生量7kg/hが必要なため、オゾン濃度は運転可能な領域で一番ランニングコストの安くなるオゾン濃度12.5wt%(B点)で運転する。冬は、水温10℃にてオゾン発生量5kg/hが必要なため、オゾン濃度は運転可能な領域で一番ランニングコストの安くなるオゾン濃度14.5wt%(C点)で運転する。
 ランニングコストが最低となる、オゾン濃度の最適点での制御方法、すなわちランニングコストミニマム制御の方法は次の通りである。制御装置20は、冷却水温、必要オゾン発生量をパラメータとして、オゾン発生器1とオゾン発生器用電源3の電気消費量の特性および電源の最大定格電力を予め入力し、電気消費量特性記憶部25に記憶している。制御パラメータ設定部24において、この記憶されている特性と電気代単価記憶部22に記憶されている電気代単価より電気代を算出する。またガス代単価記憶部23に記憶されている酸素ガス代単価から酸素ガス代を算出し、電気代との和としてランニングコストを算出する。この特性カーブから最適なオゾン濃度の動作点(A点、B点、C点)を算出する。一方、制御パラメータ設定部24では、電気代単価、酸素ガス代単価を入力された時点で、冷却水温、必要オゾン発生量をパラメータとして、それぞれの冷却温度、必要オゾン発生量の組においてランニングコストが最低となるオゾン濃度を計算し、図5に示すような最適オゾン濃度表のデータを作成する。ここで、オゾン濃度とガス流量とを乗じたものがオゾン発生量である。必要オゾン発生量はシステムが必要とする値であり、予め決定される値であるオゾン濃度とガス流量の一方が決定できれば他方も決定できる。このため、オゾン濃度およびガス流量をオゾン発生量基礎パラメータと称することとする。図5の最適オゾン濃度表のデータをオゾン発生量基礎パラメータ最適値記憶部26に記憶させる。
 ここで、オゾン濃度の代わりにガス流量の最適値をオゾン発生量基礎パラメータ最適値記憶部26に記憶させても良い。図6に、図4の動作特性で示したと同じ装置において、横軸をガス流量として縦軸をランニングコストとした動作特性の図を示す。図6において、実線で示す部分が、オゾン発生器用電源3の最大定格電力以下の運転可能な領域を示し、破線で示す部分は、電源容量が不足して、運転が不可能な領域を示す。夏場は水温30℃にてオゾン発生量10kg/hが必要なため、ガス流量は運転可能な領域(実線)で一番ランニングコストの安くなるガス流量100kg/h(A点)で運転する。春・秋は、水温20℃にてオゾン発生量7kg/hが必要なため、ガス流量は運転可能な領域で一番ランニングコストの安くなるガス流量56kg/h(B点)で運転する。冬は、水温10℃にてオゾン発生量5kg/hが必要なため、オゾン濃度は運転可能な領域で一番ランニングコストの安くなるガス流量34.5kg/h(C点)で運転する。
 ガス流量の最適点での運転方法は次の通りである。制御装置20は、冷却水温、必要オゾン発生量をパラメータとしてオゾン発生器1とオゾン発生器用電源3の電気消費量の特性を予め入力し、電気消費量特性記憶部25に記憶している。制御パラメータ設定部24において、この記憶されている特性と電気代単価記憶部22に記憶されている電気代単価より電気代を算出する。またガス代単価記憶部23に記憶されている酸素ガス代単価から酸素ガス代を算出し、電気代との和としてランニングコストを算出する。この特性カーブから最適なガス流量の動作点(図6のA点、B点、C点)を算出する。一方、制御パラメータ設定部24では、電気代単価、酸素ガス代単価を入力された時点で、冷却水温、必要オゾン発生量をパラメータとして、それぞれの冷却温度、必要オゾン発生量の組においてランニングコストが最低となるガス流量を計算し、図7に示すような最適ガス流量表のデータを作成する。図7に示すような最適ガス流量表のデータをオゾン発生量基礎パラメータ最適値記憶部26に記憶させる。
 以上のように、予め、それぞれの冷却温度、必要オゾン発生量の組においてランニングコストが最低となるオゾン濃度またはガス流量をデータとし記憶しておくことにより制御装置のS/W設計・製作コストを低減できるというメリットがある。
 制御パラメータ設定部24では、オゾン発生量基礎パラメータ最適値記憶部26に記憶されているデータにより、運転時の冷却水温度と必要オゾン発生量とから、最適ガス流量、または最適オゾン濃度を読み出す。最適ガス流量または最適オゾン濃度が決まれば、次式より他方を算出し、最適オゾン濃度と最適ガス流量を決定する。
  (必要オゾン発生量)=(最適ガス流量)×(最適オゾン濃度)
以上が、本実施の形態1によるオゾン発生量基礎パラメータ値を決定する、オゾン発生量基礎パラメータ値決定ステップである。
 なお、上記の説明では、オゾン発生量基礎パラメータ最適記憶部26には、最適オゾン濃度または最適ガス流量の一方を記憶するものを説明したが、最適オゾン濃度と最適ガス流量の組を記憶させておいても良い。この場合は、一方から他方を算出する必要がなくなる。
 次に、流量調節バルブ4の開度を制御し、ガス流量計の出力値が決定された最適ガス流量となるようにする。その後、オゾン発生器用電源3への電力指令値を調整して、オゾン濃度計の出力が決定された最適オゾン濃度となるように電源電力を制御する。以上のランニングコストミニマム制御により、ランニングコスト最低となる運転ができる。
 従来のオゾン発生システムでは、図4や図6に示すように、オゾン濃度は一定で運転するため、春・秋はB1点で、冬はC1点で運転していた。従来の動作点B1点及びC1点に比べ、図4や図6のB点及びC点の方が、ランニングコストが安くなる。同じ季節でも、昼と夜とで浄水場で使用する水量が異なるので、必要なオゾン発生量が異なり、従って最適なオゾン濃度は一日のうちの時間帯により変動する。また、本実施の形態1の説明でわかるように、冷却水温度、必要オゾン発生量により運転オゾン濃度や運転ガス流量が変わるため、冷却水温度と必要オゾン発生量の両パラメータを制御装置20に入力することが必要である。
 また、ランニングコストは、酸素ガス代単価、電気代単価の影響を受ける。オゾン発生装置を運転する国・地域・場所において、電気代が異なる。また液体酸素供給工場から近いかどうかにより輸送コストなどが変わるため酸素ガス代単価が変わる。このような電気代単価、ガス代単価を記憶しておき、上記のような決定方法で動作点を決定することで、季節による冷却水温度変動によるオゾン発生器効率の変動や、季節や時間帯による被処理水の処理水量変動や水質変動が生じても、常にランニングコストが最低となる運転ができる。
 さらに、季節や時刻によっても電気代が異なる場合もある。この場合には、代表的な電気単価ごとに、図5や図7で示す最適オゾン濃度または最適ガス流量の表を作成しておくことにより、電気代が変化しても常にランニングコストが最低となる運転ができる。
 水処理で使用する大容量オゾン発生器の場合には、放電管が複数本並列に接続されたオゾン発生器が用いられる。現在水処理で使用されているオゾン濃度10wt%以上の高濃度でオゾンを効率良く発生するためには、このオゾン発生器を図2に示した放電ギャップ長D、および放電管のガス圧力について、
  放電ギャップ長D:0.3mm以下(好ましくは0.2mm以下)
  ガス圧力:0.08~0.20MPa(G)
で運転するのが良い。このようなオゾン発生器では、オゾン濃度12wt%でも効率良くオゾンを発生できる。特に放電ギャップ長を0.3mm以下とすることにより、オゾン濃度を14wt%まで効率良く発生できる。但し、本発明の課題で説明したように、12~14wt%のような高濃度で装置を設計すると通常濃度の10wt%よりもオゾン発生効率が悪く、その結果電源出力を大きくする必要があり、またオゾン発生器に用いる放電管の本数を多くする必要があるため、装置のイニシャルコストが高くなるという欠点があった。このため、高濃度オゾンまで発生できる装置の製作は可能であるが、イニシャルコスト面から10wt%を超える濃度でのオゾン利用は普及に到っていなかった。
 放電ギャップ長D、および放電管のガス圧力が上記のように設計されたオゾン発生器に、本実施の形態1のランニングコストミニマム制御を組合せることにより、イニシャルコストを通常のオゾン発生システムと同等とし、かつランニングコストを削減できるオゾン発生システムを提供できる。
 上記の動作条件以外では高オゾン濃度でのオゾン発生効率が悪くなるため、オゾン濃度10wt%一定で運転した場合に比べてランニングコスト低減効果は2%以下と小さかった。放電ギャップ長が0.3mm以下のオゾン発生器では、3%以上のランニングコスト低減を実現できる。さらに、放電ギャップ長が0.2mm以下のオゾン発生器では、ランニングコストは5%以上低減できる。本発明は、このように放電ギャップ長が0.3mm以下、より好ましくは0.2mm以下と、小さい放電ギャップ長のオゾン発生器に適用することにより高い効果を奏する。
実施の形態2.
 図8は、本発明の実施の形態2によるオゾン発生システムの概要を示すブロック図である。図8において図1と同一符号は同一、または相当する部分を示す。また、制御装置200における制御フローを図9に示す。実施の形態1では、ランニングコストが最低となる最適オゾン濃度または最適ガス流量をオゾン発生量基礎パラメータ最適値記憶部26に予め記憶しているとした。これに対し、本実施の形態2のオゾン発生システムは、オゾン濃度を変動させながらランニングコストを計算し、ランニングコスト最低となるオゾン濃度とガス流量を制御装置200自身が見つけ出すものである。本実施の形態2においては、冷却水温度計は不要で、冷却水温度の制御装置200への入力も不要である。ただし、初期指示値を設定する目安として冷却水温度を入力しても良い。
 具体的な動作の詳細は、次の通りである。まず、電気代単価記憶部22およびガス代単価記憶部23から電気代単価、酸素ガス代単価を読み込む(ST1)。次に、オゾン濃度の初期指示値(図9では10wt%としている。)を設定し(ST2)、必要オゾン発生量を読み込む(ST3)。必要オゾン発生量、すなわちオゾン発生器で発生させるオゾン発生量と、オゾン濃度から設定すべきガス流量を次式で求める(ST4)。
  (ガス流量)=(オゾン発生量)÷(オゾン濃度)
流量調節バルブを制御し、ガス流量計の測定値が上式で求まるガス流量に等しくなるようにする(ST5)。その後、電源電力を調整し、オゾン濃度計測定値がオゾン濃度の指示値となるようにオゾン発生器用電源3の電力を調整する(ST6)。ランニングコスト演算部27において、電源の消費電力から電気代を計算し、ガス流量からガス代を計算し、このオゾン濃度におけるランニングコストを算出する(ST7)。以上がランニングコスト算出制御ステップであり、このランニングコスト算出制御ステップを実施した後、ランニングコスト最低となるオゾン濃度が決定できたかどうか判断する(ST8)。決定できない場合は、オゾン濃度指示値を所定の値だけ、例えば0.5wt%増加し(ST9)、上記と同様のことを行い、この動作点におけるランニングコストを算出する。ランニングコストが下がれば、更にオゾン濃度指示値を増加させる。逆にランニングコストが上がれば、オゾン濃度指示値を低下させる。以上がランニングコスト比較ステップであり、このランニングコスト比較ステップを、ランニングコストが最低となるオゾン濃度が決定できるまでオゾン濃度を変化させて繰り返し行い、ランニングコストが最低となるオゾン濃度を決定する。以上が、本実施の形態2によるオゾン発生量基礎パラメータ値を決定する、オゾン発生量基礎パラメータ値決定ステップである。このオゾン発生量基礎パラメータ値決定ステップにより、ランニングコストが最低となるオゾン濃度およびガス流量が決定できれば、そのオゾン濃度およびガス流量に設定してオゾン発生システムの運転を続ける(ST10)。以上では、最初にオゾン濃度を設定するとしたが、最初にガス流量を設定しても構わない。一方を設定すれば他方は必要オゾン発生量から算出できる。
 この実施の形態2において、被処理水が上水の場合、必要オゾン発生量の指示値は、例えば1時間程度で変化する。これに対して、ガス流量調整の制御ループが安定となる時間は1分程度、オゾン濃度制御の制御ループが安定となる時間は1~5分程度である。従って、オゾン濃度を3~4点変化させて濃度最適点を求めるのに要する時間は5~30分以内であり、オゾン発生量の指示値が変化する時間よりも短いので、オゾン濃度最適点を算出することが可能である。
 本実施の形態2では、常にオゾン濃度最適点を求めるので、オゾン発生器1が経年劣化する場合にも有効である。例えば放電管が劣化した場合、所定のオゾン発生効率が得られなくなり、この結果オゾン濃度最適点が製作直後の最適点よりもずれる。本実施の形態2によれば、常にオゾン濃度最適点を算出するので放電管の経年劣化の影響を受けずに、ランニングコスト最低で運転させることが可能である。
実施の形態3.
 図10は、本発明の実施の形態3によるオゾン発生システムの概要を示すブロック図である。図10において図1および図8と同一符号は同一、または相当する部分を示す。本実施の形態3は、実施の形態1と実施の形態2を合わせることにより、更に制御の改善を行うことができる実施の形態である。この実施の形態3では、制御装置210は、2つのパラメータ、冷却水温度とオゾン発生量に対して、オゾン発生量基礎パラメータ最適値記憶部260に、初期値として図5のような最適オゾン濃度のデータ(最適オゾン濃度表)、または図7のような最適ガス流量のデータ(最適ガス流量表)を記憶している。以下では、オゾン発生量基礎パラメータ最適値記憶部260に最適オゾン濃度のデータを記憶しているとして説明する。
 まず、最適オゾン濃度表に従って運転を開始する。運転開始後、最適オゾン濃度表を元に、実施の形態2と同様のステップで最適オゾン濃度の前後でオゾン濃度を変動させて、その時点でのオゾン濃度の最適値を求める。その際に、その結果をもとに最適オゾン濃度表を更新する。このようにすることで制御S/Wを簡単にできるので装置コストを低減できる。
 また上記のような制御を行うことにより、装置の経年劣化状況を最適オゾン濃度表に反映できるため、ランニングコストミニマム制御を常にオゾン濃度最適点の周囲で行うだけで良く、オゾン濃度を変動させる範囲が狭くて済むため、制御を迅速に行える。また、オゾン濃度が最適点からずれる量が少ないため、ランニングコストをより最低に制御することが可能である。
 図5や図7の例では、冷却水温度の刻みを5℃、オゾン発生量定格を10kg/hとし、その刻みを1kg/hとする場合の例を示したが、刻み幅を細かくすることで更にランニングコストの最低化を図ることが可能である。
実施の形態4.
 実施の形態1から実施の形態3において、ランニングコストはオゾン発生装置の電気代とガス代のみを考慮していたが、図1などに示すように付帯装置としてオゾン化ガスを水に溶解するためのインジェクター12を使用する場合には、インジェクターポンプ11の消費電力の電気代もランニングコストに加算して評価すると、よりランニングコストの小さい運転ができる。本実施の形態4では、インジェクター12に流すガス量Gと水量Lの比(G/L比)を一定となるように調整しオゾンの水中への溶解率を高めている。従って、必要オゾン濃度が同じでも、オゾン濃度によりガス流量Gが変わるため水量Lを調整する必要があり、イジェクターポンプ11の電力が変化する。このインジェクターポンプ11の電力代も含めてランニングコストが最低値となるように最適オゾン濃度を決めるため、システム全体のランニングコストを下げることができる。
 また、原料ガス供給装置としてPSA(Pressure Swing Absorption)、またはVPSA(Vacuum Pressure Swing Absorption)を使用する場合がある。これは吸着剤を用いて空気中から酸素ガスを濃縮する装置である。通常PSA(またはVPSA)は、ガス流量一定で使用する場合が多いが、近年、ガス流量を調整できる装置が製造され始めており、この場合には空気をPSA(またはVPSA)に送り込むコンプレッサやブロワの空気流量を変えることになるので、空気流量によりコンプレッサやブロワなどの付帯装置の消費電力量が変化し、電気代も変化する。従って、PSA(またはVPSA)を用い、原料ガス流量を変化させて使用する場合には、PSA(またはVPSA)に用いるコンプレッサやブロワなどの機器の電気代までランニングコストに含めてオゾン濃度最適化を行うことにより、システム全体のランニングコスト低減を図ることができる。
 また、この他に使用する消費電力は少ないが、オゾン発生器1に冷却水を送るための冷却装置7の消費電力や、オゾン反応層で未消費のオゾンを分解するための排オゾン分解装置(図示しない)に用いる消費電力、すなわち付帯装置の消費電力まで含めて評価することにより、更にシステム全体のランニングコスト低減につながる。オゾン発生器1の冷却装置7は、オゾン発生量が減ると必要水量が減るため消費電力を減らすことができる。また、ガス流量が少なくなると排オゾンファン駆動用モータの消費電力を下げることができる。従って、全体のランニングコストを最低となるようにオゾン濃度を制御することでコストを削減できる。
実施の形態5.
 実施の形態1~実施の形態4では、最適オゾン濃度や最適ガス流量によりランニングコストが最低となるランニングコストミニマム制御を常に行う場合を示したが、使用者がオゾン濃度一定で使用する場合があるため、ランニングコストミニマム制御ON/OFF切替えをできるようにしても良い。たとえば、ランニングコストミニマム制御ONボタン(エコノミーモードボタン)、スイッチ(エコノミーモードスイッチ)を制御装置に設ける、もしくは制御装置のタッチパネル上での操作で切り替えできるようにしても良い。使用者は、必要に応じてランニングコストミニマム制御運転を選択でき、ランニングコストを低減する運転を行うことができる。
 また、制御装置の表示画面に、ランニングコストミニマム制御を行うことにより、ランニングコストをいくら削減できたかを表示する。そのために基準となるオゾン濃度(例えば10wt%)を入力し、基準オゾン濃度で運転した場合に比べて、ランニングコストミニマム制御を行うことによりランニングコストをいくら削減できたかを表示する。ランニングコスト低減額は、一日の積算値で表示しても良いし、運転開始以降の積算値をコスト削減額実績累計値として表示して良いし、一日、週間、月間、年間のトレンドを表またはグラフに表示しても良い。このように表示することにより、使用者は削減額を正確に把握することができる。また、表示する数値は、ランニングコスト削減額だけでなく、ランニングコストの値も表示すると全体が把握できるし、また、ガス代、電気代に分離して表示しても良い。
 更に、過去にランニングコストミニマム制御運転を行わずにオゾン濃度一定制御で運転していたケースを評価し、ランニングコストミニマム制御運転をすればランニングコストをいくらからいくらに改善できるかの予想値を評価し、画面上に表示する。特に、この表示をランニングコストミニマム制御ON/OFF切替えができる構成に適用すると、使用者はランニングコストミニマム制御運転に切替えるかどうかの判断を行いやすくなる。
 また、オゾンを水中に溶解する装置として散気管や散気デイスクを用いる場合、ガス流量を下げすぎると散気管や散気デイスクが目詰まりを起こしやすくなるため、ガス流量の下限を設ける場合がある。このような状況に対応するため、オゾン濃度の上限を設定できる、もしくはガス流量の下限を設定できるようにする。このようにすることにより、オゾン処理性能を発揮しつつ、ランニングコストを最低にすることができる。また、原料ガス供給装置2のガス供給能力上限があり、またオゾン発生器1もガスを流しすぎるとオゾン発生器1の圧損が大きくなり効率の低下する場合があるため、オゾン濃度下限を設定できる、もしくはガス流量上限を設定できるようにすると、装置の供給能力に応じ、信頼性の高い運転が可能となる。
実施の形態6.
 通常のオゾン処理システムにおいて、複数台のオゾン発生器を用いる場合が多い。このような場合、定格運転時には図11に示すように、例えば、2台のオゾン発生器1a、1bがそれぞれオゾン発生量10kg/h、オゾン濃度10wt%にてフルパワー運転を行っている。オゾン発生量の必要量が徐々に減り、例えば、定格の80%のオゾン発生量の場合には、2台がそれぞれオゾン発生量8kg/h、オゾン濃度12wt%で運転するのがランニングコストが最低となる。更にオゾン発生量を絞り、定格の10%のオゾン発生量の場合、2台のオゾン発生器1a、1bがそれぞれ1kg/hで運転するよりも、図12に示すように、1台のオゾン発生器1bを停止し、オゾン発生器1aの1台のみをオゾン発生量2kg/h、オゾン濃度16wt%で運転する方が安くなる。これは、出力が低下すると無負荷損(電源変圧器のロス、電源冷却用ファンの電力消費、発生器冷却水ポンプの電力消費など)の割合が増加し、オゾン発生器用電源全体の電気入力に対するオゾン発生効率が悪くなるためである。
 オゾン発生器を複数台で運転する場合は、オゾン発生器の台数を変更した場合のランニングコストを算出し、ランニングコストが最低値となるように運転台数とオゾン濃度を決定する。このようにすることにより、全体システムのランニングコストを低減することができる。
実施の形態7.
 図13は原料ガス源として原料ガス供給装置2として2台の酸素発生装置(PSA)2a、2bを用い、2台のオゾン発生器1a、1bを使用する例である。オゾン発生器1a、1bは、それぞれオゾン発生量10kg/h、オゾン濃度10wt%で運転している。PSA2a、2bは、それぞれ酸素ガス流量100kg/hを供給している。PSAはガス流量を変化させることが難しく、従って、オゾン発生量を定格量から下げる場合にはガス流量は一定のままで、オゾン濃度を下げてオゾン発生量を調整する場合が多い。この場合、PSA内部のガスを圧送する装置は一定量のガスを送り続けるため、電気消費量が多い。オゾン発生量が下がってもPSAの電気消費量を下げることはできず、経済的な運転となっていない。例えば、図14はオゾン発生量を定格の70%にする場合の各部の酸素ガス流量とオゾン発生量、オゾン濃度を示す。
 本実施の形態7では、PSAの運転台数を変えオゾン濃度を変化させた場合のランニングコストを算出して最適運転台数とオゾン濃度を求め、その結果、図15に示す運転を行う。PSA2bは運転を停止し、PSA2aの1台のみが100kg/hの酸素ガスを供給する。2台のオゾン発生器1a、1bにはそれぞれ50kg/hの酸素ガスが供給され、オゾン発生器1a、1bは、ランニングコストが最低となるオゾン濃度14wt%で運転し、それぞれが7kg/hのオゾンを発生する。この例では、PSAは1台しか運転しないので、PSAの電気消費量は半分に減る。本実施の形態7では、全体としてランニングコストを抑える運転が可能となる。
 1:オゾン発生器           2:原料ガス供給装置
3:オゾン発生器用電源         4:ガス流量調節バルブ
5:ガス流量計             6:オゾン濃度計
7:冷却装置              8:冷却水温計
10:被処理水             12:インジェクター
20、200、210:制御装置     21:入力部
22:電気代単価記憶部         23:ガス代単価記憶部
24:制御パラメータ設定部       25:電気消費量特性記憶部
26、260:オゾン発生量基礎パラメータ最適値記憶部
27:ランニングコスト演算部
100:放電管             110:放電ギャップ

Claims (10)

  1.  放電管を備えたオゾン発生器と、
    このオゾン発生器に酸素を含む原料ガスを供給する原料ガス供給装置と、
    上記放電管に高周波高電圧を印加するためのオゾン発生器用電源と、
    冷却水を上記放電管周囲に流す冷却装置と、
    上記オゾン発生器から出力されるオゾン化ガスの流量を制御するガス流量調節器と、
    上記オゾン化ガスのオゾン濃度を計測するオゾン濃度計と、
    上記オゾン発生器用電源の電力と、上記ガス流量調節器とを制御する制御装置と
    を備えたオゾン発生システムにおいて、
    上記制御装置は、電気代単価を記憶する電気代単価記憶部と、ガス代単価を記憶するガス代単価記憶部とを備え、上記電気代単価記憶部に記憶された電気代単価と、上記ガス代単価記憶部に記憶されたガス代単価と、上記オゾン化ガスに求められる必要オゾン発生量とに基づき、オゾン発生量基礎パラメータであるオゾン濃度およびガス流量についてランニングコストが最低となる値を決定し、この決定したガス流量となるよう上記ガス流量調節器を制御し、上記決定したオゾン濃度となるよう上記オゾン発生器用電源の電力を制御することを特徴とするオゾン発生システム。
  2.  上記冷却水の水温を計測する冷却水温計を備え、
    上記制御装置は、冷却水温とオゾン発生量とをパラメータとして、オゾン発生量基礎パラメータのうち一方のオゾン発生量基礎パラメータについてランニングコストが最低となる最適値を記憶するオゾン発生量基礎パラメータ最適値記憶部を有し、このオゾン発生量基礎パラメータ最適値記憶部から、上記冷却水温計の冷却水温計測値と上記必要オゾン発生量とに対応するオゾン発生量基礎パラメータ最適値を読み取り、この読み取ったオゾン発生量基礎パラメータ最適値と上記必要オゾン発生量とにより、運転するオゾン濃度およびガス流量を決定し、この決定したガス流量になるように上記ガス流量調節器を制御するとともに、上記オゾン濃度計のオゾン濃度計測値が上記決定したオゾン濃度になるよう上記オゾン発生器用電源の電力を制御することを特徴とする請求項1に記載のオゾン発生システム。
  3.  上記制御装置は、オゾン発生量基礎パラメータのうち一方のオゾン発生量基礎パラメータの所定の値と上記必要オゾン発生量とから、運転するオゾン濃度とガス流量を決定し、この決定したガス流量となるよう上記ガス流量調節器を制御するとともに、上記決定したオゾン濃度となるように上記オゾン発生器用電源の電力を制御し、この時の上記オゾン発生器用電源の電力と上記決定したガス流量とによりランニングコストを算出するランニングコスト算出制御ステップを実行し、
    このランニングコスト算出制御ステップの後、上記一方のオゾン発生量基礎パラメータの所定の値を増加または減少させて、次に運転するオゾン濃度とガス流量を決定し、この決定した次に運転するガス流量となるよう上記ガス流量調節器を制御するとともに、上記決定した次に運転するオゾン濃度となるように上記オゾン発生器用電源の電力を制御し、この時の上記オゾン発生器用電源の電力と上記決定した次に運転するガス流量とによりランニングコストを算出し、この算出したランニングコストとそれまでに算出したランニングコストとを比較するランニングコスト比較ステップを実行し、
    さらに上記ランニングコスト比較ステップを順次繰り返すことによりランニングコスト最低となるオゾン発生量基礎パラメータの値を見つけ出し、この見つけ出したオゾン発生量基礎パラメータの値となるよう、上記ガス流量調節器およびオゾン発生器用電源を制御して運転を継続することを特徴とする請求項1に記載のオゾン発生システム。
  4.  上記冷却水の水温を計測する冷却水温計を備え、
    上記制御装置は、冷却水温とオゾン発生量とをパラメータとして、オゾン発生量基礎パラメータのうち一方のオゾン発生量基礎パラメータについてランニングコストが最低となる最適値を記憶するオゾン発生量基礎パラメータ最適値記憶部を有し、このオゾン発生量基礎パラメータ最適値記憶部から、上記冷却水温計の冷却水温計測値と、上記必要オゾン発生量とに対応するオゾン発生量基礎パラメータの最適値を読み取り、この読み取ったオゾン発生量基礎パラメータの最適値を最初の上記オゾン発生量基礎パラメータの所定の値とすることを特徴とする請求項3に記載のオゾン発生システム。
  5.  付帯装置の消費電力を含んでランニングコストを算出することを特徴とする請求項1から請求項4のいずれか1項に記載のオゾン発生システム。
  6.  上記放電管の放電ギャップ長が0.3mm以下で、オゾン発生器内部のガス圧力が0.08MPaから0.2MPaの範囲の圧力であることを特徴とする請求項1から請求項5のいずれか1項に記載のオゾン発生システム。
  7.  複数のオゾン発生器を備え、ランニングコストが最低となるオゾン発生器の運転台数を見つけ出し、この見つけ出した運転台数でオゾン発生器の運転を行うことを特徴とする請求項1から請求項6のいずれか1項に記載のオゾン発生システム。
  8.  複数の原料ガス供給装置を備え、ランニングコストが最低となる原料ガス供給装置の運転台数を見つけ出し、この見つけ出した運転台数で原料ガス供給装置の運転を行うことを特徴とする請求項1から請求項7のいずれか1項に記載のオゾン発生システム。
  9.  放電管を備えたオゾン発生器と、
    このオゾン発生器に酸素を含む原料ガスを供給する原料ガス供給装置と、
    上記放電管に高周波高電圧を印加するためのオゾン発生器用電源と、
    冷却水を上記放電管周囲に流す冷却装置と、
    上記オゾン発生器から出射されるオゾン化ガスの流量を制御するガス流量調節器と、
    上記オゾン化ガスのオゾン濃度を計測するオゾン濃度計と、
    電気代単価を記憶する電気代単価記憶部と、ガス代単価を記憶するガス代単価記憶部とを有する制御装置とを備えたオゾン発生システムの運転方法において、
    上記電気代単価記憶部に記憶された電気代単価と、上記ガス代単価記憶部に記憶されたガス代単価と、上記オゾン化ガスに求められる必要オゾン発生量とに基づき、オゾン発生量基礎パラメータであるオゾン濃度およびガス流量についてランニングコストが最低となる値を決定するオゾン発生量基礎パラメータ値決定ステップと、
    この決定されたガス流量になるよう上記ガス流量調節器を制御するとともに、上記決定されたオゾン濃度になるよう上記オゾン発生器用電源の電力を制御するステップとを含むオゾン発生システムの運転方法。
  10. 上記オゾン発生量基礎パラメータ値決定ステップは、
    オゾン発生量基礎パラメータのうち一方のオゾン発生量基礎パラメータの所定の値と上記必要オゾン発生量とから、運転するガス流量およびオゾン濃度を決定し、この決定したガス流量となるよう上記ガス流量調節器を制御するとともに、上記決定したオゾン濃度となるように上記オゾン発生器用電源の電力を制御し、この時の上記オゾン発生器用電源の電力と上記ガス流量とによりランニングコストを算出するランニングコスト算出制御ステップと、
    このランニングコスト算出制御ステップの後、上記一方のオゾン発生量基礎パラメータの所定の値を増加または減少させて、次に運転するオゾン濃度とガス流量を決定し、この決定した次に運転するガス流量となるよう上記ガス流量調節器を制御するとともに、上記決定した次に運転するオゾン濃度となるように上記オゾン発生器用電源の電力を制御し、この時の上記オゾン発生器用電源の電力と上記決定した次に運転するガス流量とによりランニングコストを算出し、この算出したランニングコストとそれまでに算出したランニングコストとを比較するランニングコスト比較ステップと、
    さらに上記ランニングコスト比較ステップを順次繰り返すことによりランニングコスト最低となるオゾン発生量基礎パラメータの値を決定するステップとを含むことを特徴とする請求項9に記載のオゾン発生システムの運転方法。
PCT/JP2011/059170 2011-04-13 2011-04-13 オゾン発生システム、およびオゾン発生システムの運転方法 WO2012140749A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
PCT/JP2011/059170 WO2012140749A1 (ja) 2011-04-13 2011-04-13 オゾン発生システム、およびオゾン発生システムの運転方法
CA2832718A CA2832718C (en) 2011-04-13 2011-04-13 Ozone generation system and method for operating ozone generation system
US13/979,585 US9233848B2 (en) 2011-04-13 2011-04-13 Ozone generation system and method for operating ozone generation system
JP2011536690A JP4950362B1 (ja) 2011-04-13 2011-04-13 オゾン発生システム、およびオゾン発生システムの運転方法
EP11863484.9A EP2698342B1 (en) 2011-04-13 2011-04-13 Method for operating ozone generation system
CN201180069317.5A CN103443024B (zh) 2011-04-13 2011-04-13 臭氧产生系统、及臭氧产生系统的运行方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2011/059170 WO2012140749A1 (ja) 2011-04-13 2011-04-13 オゾン発生システム、およびオゾン発生システムの運転方法

Publications (1)

Publication Number Publication Date
WO2012140749A1 true WO2012140749A1 (ja) 2012-10-18

Family

ID=46498746

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/059170 WO2012140749A1 (ja) 2011-04-13 2011-04-13 オゾン発生システム、およびオゾン発生システムの運転方法

Country Status (6)

Country Link
US (1) US9233848B2 (ja)
EP (1) EP2698342B1 (ja)
JP (1) JP4950362B1 (ja)
CN (1) CN103443024B (ja)
CA (1) CA2832718C (ja)
WO (1) WO2012140749A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021155251A (ja) * 2020-03-26 2021-10-07 株式会社オーク製作所 オゾン生成装置、オゾン生成方法および窒素酸化物検出方法

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5677344B2 (ja) 2012-03-16 2015-02-25 株式会社東芝 オゾン発生装置
CN105752934B (zh) * 2016-01-08 2018-08-10 冷光君 智能氧气分离机
EP3208233B1 (de) * 2016-02-17 2018-08-22 Xylem IP Management S.à.r.l. Ozonerzeugung bei hohen drücken
CN105947988B (zh) * 2016-04-29 2017-12-22 韩文智 臭氧发生功率可调的臭氧发生装置
ES2741747T3 (es) * 2016-12-07 2020-02-12 Xylem Europe Gmbh Procedimiento para el control de un generador de ozono
JP6616910B2 (ja) * 2016-12-19 2019-12-04 東芝三菱電機産業システム株式会社 ガス発生装置
JP6877255B2 (ja) * 2017-06-14 2021-05-26 三菱電機株式会社 廃水処理システム及び廃水処理方法
CN116906229B (zh) * 2023-06-02 2024-04-26 苏州快捷智能科技有限公司 一种节能减排装置及控制系统

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6168195A (ja) 1984-09-13 1986-04-08 Ebara Infilco Co Ltd オゾンによる水処理方法
JPH0873203A (ja) * 1994-09-08 1996-03-19 Hitachi Ltd オゾン発生設備の空気源供給装置
JPH08322918A (ja) * 1995-06-05 1996-12-10 Mitsubishi Electric Corp オゾン発生装置
JPH0919695A (ja) * 1995-07-07 1997-01-21 Hitachi Ltd 浄化処理用のオゾン処理施設
JPH09315803A (ja) * 1996-05-30 1997-12-09 Fuji Electric Co Ltd オゾン発生装置
JPH11171505A (ja) * 1997-12-17 1999-06-29 Mitsubishi Electric Corp オゾン発生装置及びこのオゾン発生装置を用いた化学反応処理装置
JP3545257B2 (ja) 1994-04-28 2004-07-21 三菱電機株式会社 オゾン発生装置およびオゾン発生方法
JP2009500855A (ja) * 2005-07-07 2009-01-08 エム ケー エス インストルメンツ インコーポレーテッド マルチ・チャンバ・ツールのためのオゾン・システム

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4908189A (en) * 1988-07-15 1990-03-13 Henkel Corporation Concentric tube ozonator
US5106589A (en) 1990-12-11 1992-04-21 Conrad Richard H Method of controlling ozone generator
JPH07277708A (ja) * 1994-04-15 1995-10-24 Meidensha Corp オゾン発生装置
JP2983153B2 (ja) 1994-04-28 1999-11-29 三菱電機株式会社 オゾン発生装置
JP3407241B2 (ja) * 1996-07-02 2003-05-19 富士電機株式会社 オゾン製造設備の運転方法
JPH10167703A (ja) * 1996-12-10 1998-06-23 Meidensha Corp オゾン発生装置のオゾン発生量制御装置
US7706023B2 (en) * 2005-06-30 2010-04-27 Canon Kabushiki Kaisha Data processing method, printing apparatus, host apparatus, and printing system
CN2841629Y (zh) * 2005-11-17 2006-11-29 同方股份有限公司 组合板式高频大型臭氧发生器
JP4373990B2 (ja) * 2006-03-17 2009-11-25 三菱電機株式会社 オゾン製造装置
CN102496442B (zh) 2006-12-20 2015-04-01 普利莫宗产品公司 高压变压器
CN201722145U (zh) * 2010-06-30 2011-01-26 深圳市深港产学研环保工程技术股份有限公司 一种臭氧制取系统及污水处理系统

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6168195A (ja) 1984-09-13 1986-04-08 Ebara Infilco Co Ltd オゾンによる水処理方法
JP3545257B2 (ja) 1994-04-28 2004-07-21 三菱電機株式会社 オゾン発生装置およびオゾン発生方法
JPH0873203A (ja) * 1994-09-08 1996-03-19 Hitachi Ltd オゾン発生設備の空気源供給装置
JPH08322918A (ja) * 1995-06-05 1996-12-10 Mitsubishi Electric Corp オゾン発生装置
JPH0919695A (ja) * 1995-07-07 1997-01-21 Hitachi Ltd 浄化処理用のオゾン処理施設
JPH09315803A (ja) * 1996-05-30 1997-12-09 Fuji Electric Co Ltd オゾン発生装置
JPH11171505A (ja) * 1997-12-17 1999-06-29 Mitsubishi Electric Corp オゾン発生装置及びこのオゾン発生装置を用いた化学反応処理装置
JP2009500855A (ja) * 2005-07-07 2009-01-08 エム ケー エス インストルメンツ インコーポレーテッド マルチ・チャンバ・ツールのためのオゾン・システム

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
"High Efficiency, High Concentration Ozone Generator Based on Narrow Gap Technology", WORLD CONGRESS ON OZONE & ULTRAVIOLET TECHNOLOGIES, 27 August 2007 (2007-08-27)
ITOH, H. ET AL.: "Recent Topics Related to Ozone Generation Technology in Japan", OZONE: SCIENCE & ENGINEERING, vol. 33, no. 2, 24 March 2011 (2011-03-24), pages 93 - 97, XP008171688 *
MOON, J.-D.: "High Efficiency Ozone Generation Using a Pyramidally Embossed Rod-to-Cylinder Electrode and a Pulse Conora Discharge", PROCEEDING OF THE INSTITUTE OF ELECTROSTATICS JAPAN, vol. 16, no. 3, May 1992 (1992-05-01), pages 224 - 229, XP055128598 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021155251A (ja) * 2020-03-26 2021-10-07 株式会社オーク製作所 オゾン生成装置、オゾン生成方法および窒素酸化物検出方法
JP7518644B2 (ja) 2020-03-26 2024-07-18 株式会社オーク製作所 オゾン生成装置、オゾン生成方法および窒素酸化物検出方法

Also Published As

Publication number Publication date
JPWO2012140749A1 (ja) 2014-07-28
US9233848B2 (en) 2016-01-12
EP2698342A1 (en) 2014-02-19
US20130313106A1 (en) 2013-11-28
CA2832718A1 (en) 2012-10-18
JP4950362B1 (ja) 2012-06-13
CN103443024A (zh) 2013-12-11
EP2698342B1 (en) 2021-06-02
EP2698342A4 (en) 2014-10-15
CN103443024B (zh) 2015-06-17
CA2832718C (en) 2016-12-13

Similar Documents

Publication Publication Date Title
JP4950362B1 (ja) オゾン発生システム、およびオゾン発生システムの運転方法
US7029587B2 (en) Water purification
US5106589A (en) Method of controlling ozone generator
US9186647B2 (en) Ozone gas generation unit and ozone gas supply system
CN103058352B (zh) 一种臭氧发生及水处理的自动控制系统
US20120251395A1 (en) Ozone gas supply system
JP6129289B2 (ja) 水処理システム及び水処理方法
US9142424B2 (en) Cleaning system and cleaning method
JP2009114003A (ja) オゾン発生装置
JP2012217917A (ja) 水処理装置
CN101985756A (zh) 一种保持电解臭氧发生器活性的方法
JP2002079250A (ja) 次亜塩素酸水生成装置
JPH1143307A (ja) オゾン製造装置
JP2013203582A (ja) オゾン発生装置及びオゾン発生方法
JP2010207668A (ja) 電解水生成装置
JP3087572B2 (ja) オゾン発生供給装置
JP4994024B2 (ja) 燃料電池装置およびその運転方法
KR100725658B1 (ko) 음용수의 은 전해 살균시스템
JP2008302337A (ja) オゾン処理システム
JP5110929B2 (ja) 燃料電池装置
JP7024916B1 (ja) オゾン供給装置及びオゾン供給方法
CN212024773U (zh) 一种臭氧发生器自动切换加载控制系统
JP5020151B2 (ja) オゾン製造装置およびオゾン製造方法
MX2013001366A (es) Metodo y sistema para el control de energia de limpiadores ionicos para maquinas de hielo utilizando modulacion de ancho de pulso.
JP2001259639A (ja) 燃料電池を用いた塩水電解槽の制御方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2011536690

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11863484

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13979585

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2011863484

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2832718

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE