WO2012014653A1 - ガスバリア性フィルム、ガスバリア性フィルムの製造方法及び電子デバイス - Google Patents
ガスバリア性フィルム、ガスバリア性フィルムの製造方法及び電子デバイス Download PDFInfo
- Publication number
- WO2012014653A1 WO2012014653A1 PCT/JP2011/065568 JP2011065568W WO2012014653A1 WO 2012014653 A1 WO2012014653 A1 WO 2012014653A1 JP 2011065568 W JP2011065568 W JP 2011065568W WO 2012014653 A1 WO2012014653 A1 WO 2012014653A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- barrier layer
- film
- layer
- gas
- gas barrier
- Prior art date
Links
- 230000004888 barrier function Effects 0.000 title claims abstract description 534
- 238000000034 method Methods 0.000 title claims description 203
- 230000008569 process Effects 0.000 title claims description 39
- 238000004519 manufacturing process Methods 0.000 title claims description 29
- 239000000463 material Substances 0.000 claims abstract description 91
- 238000000576 coating method Methods 0.000 claims abstract description 62
- 239000011248 coating agent Substances 0.000 claims abstract description 50
- 150000003377 silicon compounds Chemical class 0.000 claims abstract description 29
- 239000010410 layer Substances 0.000 claims description 627
- 239000000758 substrate Substances 0.000 claims description 107
- 230000004048 modification Effects 0.000 claims description 63
- 238000012986 modification Methods 0.000 claims description 63
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 52
- 229920001709 polysilazane Polymers 0.000 claims description 39
- 229910052710 silicon Inorganic materials 0.000 claims description 33
- 239000010703 silicon Substances 0.000 claims description 33
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims description 32
- 229910052814 silicon oxide Inorganic materials 0.000 claims description 28
- 238000005229 chemical vapour deposition Methods 0.000 claims description 27
- 239000007788 liquid Substances 0.000 claims description 11
- 229910052581 Si3N4 Inorganic materials 0.000 claims description 10
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 claims description 10
- 239000002344 surface layer Substances 0.000 claims description 7
- 238000006243 chemical reaction Methods 0.000 abstract description 100
- 238000005452 bending Methods 0.000 abstract description 25
- 238000005520 cutting process Methods 0.000 abstract description 25
- 238000005234 chemical deposition Methods 0.000 abstract 1
- 239000010408 film Substances 0.000 description 349
- 239000007789 gas Substances 0.000 description 268
- -1 polysiloxane Polymers 0.000 description 94
- 229920005989 resin Polymers 0.000 description 87
- 239000011347 resin Substances 0.000 description 87
- 229910052751 metal Inorganic materials 0.000 description 72
- 230000015572 biosynthetic process Effects 0.000 description 71
- 239000002184 metal Substances 0.000 description 71
- 208000028659 discharge Diseases 0.000 description 63
- NIXOWILDQLNWCW-UHFFFAOYSA-M Acrylate Chemical compound [O-]C(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-M 0.000 description 58
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 47
- 238000010438 heat treatment Methods 0.000 description 45
- 239000010409 thin film Substances 0.000 description 41
- 239000000203 mixture Substances 0.000 description 38
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 35
- 239000002585 base Substances 0.000 description 34
- 239000004065 semiconductor Substances 0.000 description 32
- 238000010248 power generation Methods 0.000 description 31
- 238000005268 plasma chemical vapour deposition Methods 0.000 description 30
- 239000005020 polyethylene terephthalate Substances 0.000 description 27
- 238000012545 processing Methods 0.000 description 27
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 26
- 239000002070 nanowire Substances 0.000 description 26
- 229910052760 oxygen Inorganic materials 0.000 description 26
- 239000001301 oxygen Substances 0.000 description 26
- 229920000139 polyethylene terephthalate Polymers 0.000 description 26
- 239000000243 solution Substances 0.000 description 26
- 238000007789 sealing Methods 0.000 description 25
- 150000001875 compounds Chemical class 0.000 description 24
- 239000011888 foil Substances 0.000 description 23
- 229910052782 aluminium Inorganic materials 0.000 description 21
- 230000005684 electric field Effects 0.000 description 21
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 20
- 239000000919 ceramic Substances 0.000 description 18
- 230000005525 hole transport Effects 0.000 description 18
- 238000005259 measurement Methods 0.000 description 18
- 239000012298 atmosphere Substances 0.000 description 17
- 230000005540 biological transmission Effects 0.000 description 17
- 238000002360 preparation method Methods 0.000 description 17
- 239000011575 calcium Substances 0.000 description 16
- 230000006870 function Effects 0.000 description 16
- 238000002407 reforming Methods 0.000 description 16
- 229910001873 dinitrogen Inorganic materials 0.000 description 15
- 238000011156 evaluation Methods 0.000 description 15
- XMWRBQBLMFGWIX-UHFFFAOYSA-N C60 fullerene Chemical compound C12=C3C(C4=C56)=C7C8=C5C5=C9C%10=C6C6=C4C1=C1C4=C6C6=C%10C%10=C9C9=C%11C5=C8C5=C8C7=C3C3=C7C2=C1C1=C2C4=C6C4=C%10C6=C9C9=C%11C5=C5C8=C3C3=C7C1=C1C2=C4C6=C2C9=C5C3=C12 XMWRBQBLMFGWIX-UHFFFAOYSA-N 0.000 description 14
- 238000001816 cooling Methods 0.000 description 14
- 230000006866 deterioration Effects 0.000 description 14
- 238000001035 drying Methods 0.000 description 14
- 230000000694 effects Effects 0.000 description 14
- 238000010894 electron beam technology Methods 0.000 description 14
- 238000007740 vapor deposition Methods 0.000 description 14
- LIVNPJMFVYWSIS-UHFFFAOYSA-N silicon monoxide Chemical compound [Si-]#[O+] LIVNPJMFVYWSIS-UHFFFAOYSA-N 0.000 description 13
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 12
- 238000007791 dehumidification Methods 0.000 description 12
- LYCAIKOWRPUZTN-UHFFFAOYSA-N ethylene glycol Natural products OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 12
- 239000002904 solvent Substances 0.000 description 12
- 229910052791 calcium Inorganic materials 0.000 description 11
- 230000001678 irradiating effect Effects 0.000 description 11
- 239000011777 magnesium Substances 0.000 description 11
- 229910052709 silver Inorganic materials 0.000 description 11
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 10
- CBENFWSGALASAD-UHFFFAOYSA-N Ozone Chemical compound [O-][O+]=O CBENFWSGALASAD-UHFFFAOYSA-N 0.000 description 10
- 229910052749 magnesium Inorganic materials 0.000 description 10
- 229910052757 nitrogen Inorganic materials 0.000 description 10
- 239000003960 organic solvent Substances 0.000 description 10
- 239000002245 particle Substances 0.000 description 10
- 239000002994 raw material Substances 0.000 description 10
- 239000004332 silver Substances 0.000 description 10
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 9
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 9
- BOTDANWDWHJENH-UHFFFAOYSA-N Tetraethyl orthosilicate Chemical compound CCO[Si](OCC)(OCC)OCC BOTDANWDWHJENH-UHFFFAOYSA-N 0.000 description 9
- 238000009832 plasma treatment Methods 0.000 description 9
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 8
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 8
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 8
- 239000000370 acceptor Substances 0.000 description 8
- MTHSVFCYNBDYFN-UHFFFAOYSA-N anhydrous diethylene glycol Natural products OCCOCCO MTHSVFCYNBDYFN-UHFFFAOYSA-N 0.000 description 8
- 229910052786 argon Inorganic materials 0.000 description 8
- 239000010949 copper Substances 0.000 description 8
- 230000007547 defect Effects 0.000 description 8
- 238000000151 deposition Methods 0.000 description 8
- 230000008021 deposition Effects 0.000 description 8
- 238000009826 distribution Methods 0.000 description 8
- 229910044991 metal oxide Inorganic materials 0.000 description 8
- 150000002894 organic compounds Chemical class 0.000 description 8
- 230000003746 surface roughness Effects 0.000 description 8
- 238000001771 vacuum deposition Methods 0.000 description 8
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 7
- YMWUJEATGCHHMB-UHFFFAOYSA-N Dichloromethane Chemical compound ClCCl YMWUJEATGCHHMB-UHFFFAOYSA-N 0.000 description 7
- 239000004743 Polypropylene Substances 0.000 description 7
- 239000000654 additive Substances 0.000 description 7
- 125000004429 atom Chemical group 0.000 description 7
- 230000000052 comparative effect Effects 0.000 description 7
- 229920001577 copolymer Polymers 0.000 description 7
- 229910003472 fullerene Inorganic materials 0.000 description 7
- 239000010931 gold Substances 0.000 description 7
- 229910052734 helium Inorganic materials 0.000 description 7
- 230000001965 increasing effect Effects 0.000 description 7
- 239000011261 inert gas Substances 0.000 description 7
- 150000004706 metal oxides Chemical class 0.000 description 7
- 230000003287 optical effect Effects 0.000 description 7
- 229920001155 polypropylene Polymers 0.000 description 7
- 230000002265 prevention Effects 0.000 description 7
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 6
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 6
- 229910004298 SiO 2 Inorganic materials 0.000 description 6
- BLRPTPMANUNPDV-UHFFFAOYSA-N Silane Chemical compound [SiH4] BLRPTPMANUNPDV-UHFFFAOYSA-N 0.000 description 6
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 6
- 230000000903 blocking effect Effects 0.000 description 6
- 229910052799 carbon Inorganic materials 0.000 description 6
- 230000008859 change Effects 0.000 description 6
- 229910052802 copper Inorganic materials 0.000 description 6
- 230000007797 corrosion Effects 0.000 description 6
- 238000005260 corrosion Methods 0.000 description 6
- 238000005401 electroluminescence Methods 0.000 description 6
- 239000011521 glass Substances 0.000 description 6
- 239000010954 inorganic particle Substances 0.000 description 6
- 230000005865 ionizing radiation Effects 0.000 description 6
- 150000002500 ions Chemical class 0.000 description 6
- 238000010030 laminating Methods 0.000 description 6
- 239000006224 matting agent Substances 0.000 description 6
- QSHDDOUJBYECFT-UHFFFAOYSA-N mercury Chemical compound [Hg] QSHDDOUJBYECFT-UHFFFAOYSA-N 0.000 description 6
- 229910052753 mercury Inorganic materials 0.000 description 6
- 239000000178 monomer Substances 0.000 description 6
- POPVULPQMGGUMJ-UHFFFAOYSA-N octasilsesquioxane cage Chemical compound O1[SiH](O[SiH](O2)O[SiH](O3)O4)O[SiH]4O[SiH]4O[SiH]1O[SiH]2O[SiH]3O4 POPVULPQMGGUMJ-UHFFFAOYSA-N 0.000 description 6
- 230000035699 permeability Effects 0.000 description 6
- 239000012071 phase Substances 0.000 description 6
- 229920006254 polymer film Polymers 0.000 description 6
- 230000001681 protective effect Effects 0.000 description 6
- 239000010453 quartz Substances 0.000 description 6
- 229910000077 silane Inorganic materials 0.000 description 6
- 125000003808 silyl group Chemical group [H][Si]([H])([H])[*] 0.000 description 6
- 239000007787 solid Substances 0.000 description 6
- 229910052724 xenon Inorganic materials 0.000 description 6
- DURPTKYDGMDSBL-UHFFFAOYSA-N 1-butoxybutane Chemical compound CCCCOCCCC DURPTKYDGMDSBL-UHFFFAOYSA-N 0.000 description 5
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 5
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 description 5
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 5
- GQPLMRYTRLFLPF-UHFFFAOYSA-N Nitrous Oxide Chemical compound [O-][N+]#N GQPLMRYTRLFLPF-UHFFFAOYSA-N 0.000 description 5
- 239000004698 Polyethylene Substances 0.000 description 5
- 238000000560 X-ray reflectometry Methods 0.000 description 5
- 230000001133 acceleration Effects 0.000 description 5
- 239000000853 adhesive Substances 0.000 description 5
- 230000001070 adhesive effect Effects 0.000 description 5
- 238000004458 analytical method Methods 0.000 description 5
- 239000004020 conductor Substances 0.000 description 5
- 230000006378 damage Effects 0.000 description 5
- 238000000354 decomposition reaction Methods 0.000 description 5
- 229910001882 dioxygen Inorganic materials 0.000 description 5
- 239000007772 electrode material Substances 0.000 description 5
- 239000005038 ethylene vinyl acetate Substances 0.000 description 5
- 229910052737 gold Inorganic materials 0.000 description 5
- 238000009499 grossing Methods 0.000 description 5
- 229930195733 hydrocarbon Natural products 0.000 description 5
- 125000004435 hydrogen atom Chemical group [H]* 0.000 description 5
- 229910052738 indium Inorganic materials 0.000 description 5
- APFVFJFRJDLVQX-UHFFFAOYSA-N indium atom Chemical compound [In] APFVFJFRJDLVQX-UHFFFAOYSA-N 0.000 description 5
- 239000003999 initiator Substances 0.000 description 5
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical compound CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 description 5
- 238000000059 patterning Methods 0.000 description 5
- 229920003023 plastic Polymers 0.000 description 5
- 239000004033 plastic Substances 0.000 description 5
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 5
- 229920001200 poly(ethylene-vinyl acetate) Polymers 0.000 description 5
- 229920000573 polyethylene Polymers 0.000 description 5
- 238000007639 printing Methods 0.000 description 5
- 239000000377 silicon dioxide Substances 0.000 description 5
- 238000001228 spectrum Methods 0.000 description 5
- 238000004544 sputter deposition Methods 0.000 description 5
- 239000011135 tin Substances 0.000 description 5
- 229920002554 vinyl polymer Polymers 0.000 description 5
- VVBLNCFGVYUYGU-UHFFFAOYSA-N 4,4'-Bis(dimethylamino)benzophenone Chemical compound C1=CC(N(C)C)=CC=C1C(=O)C1=CC=C(N(C)C)C=C1 VVBLNCFGVYUYGU-UHFFFAOYSA-N 0.000 description 4
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 4
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 4
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 4
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 4
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 4
- 239000012790 adhesive layer Substances 0.000 description 4
- 125000000217 alkyl group Chemical group 0.000 description 4
- ISAOCJYIOMOJEB-UHFFFAOYSA-N benzoin Chemical compound C=1C=CC=CC=1C(O)C(=O)C1=CC=CC=C1 ISAOCJYIOMOJEB-UHFFFAOYSA-N 0.000 description 4
- 230000003197 catalytic effect Effects 0.000 description 4
- 238000001723 curing Methods 0.000 description 4
- 238000003618 dip coating Methods 0.000 description 4
- 238000000605 extraction Methods 0.000 description 4
- 239000000835 fiber Substances 0.000 description 4
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 4
- 239000001307 helium Substances 0.000 description 4
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 4
- FFUAGWLWBBFQJT-UHFFFAOYSA-N hexamethyldisilazane Chemical compound C[Si](C)(C)N[Si](C)(C)C FFUAGWLWBBFQJT-UHFFFAOYSA-N 0.000 description 4
- WGCNASOHLSPBMP-UHFFFAOYSA-N hydroxyacetaldehyde Natural products OCC=O WGCNASOHLSPBMP-UHFFFAOYSA-N 0.000 description 4
- 238000002347 injection Methods 0.000 description 4
- 239000007924 injection Substances 0.000 description 4
- 229910052743 krypton Inorganic materials 0.000 description 4
- 229910052744 lithium Inorganic materials 0.000 description 4
- 150000002739 metals Chemical class 0.000 description 4
- 238000002156 mixing Methods 0.000 description 4
- 229910052754 neon Inorganic materials 0.000 description 4
- 238000007254 oxidation reaction Methods 0.000 description 4
- FVDOBFPYBSDRKH-UHFFFAOYSA-N perylene-3,4,9,10-tetracarboxylic acid Chemical compound C=12C3=CC=C(C(O)=O)C2=C(C(O)=O)C=CC=1C1=CC=C(C(O)=O)C2=C1C3=CC=C2C(=O)O FVDOBFPYBSDRKH-UHFFFAOYSA-N 0.000 description 4
- 229920000301 poly(3-hexylthiophene-2,5-diyl) polymer Polymers 0.000 description 4
- 229920000767 polyaniline Polymers 0.000 description 4
- 229920000123 polythiophene Polymers 0.000 description 4
- BBEAQIROQSPTKN-UHFFFAOYSA-N pyrene Chemical compound C1=CC=C2C=CC3=CC=CC4=CC=C1C2=C43 BBEAQIROQSPTKN-UHFFFAOYSA-N 0.000 description 4
- 230000006798 recombination Effects 0.000 description 4
- 238000005215 recombination Methods 0.000 description 4
- 239000011342 resin composition Substances 0.000 description 4
- 239000003566 sealing material Substances 0.000 description 4
- 238000003980 solgel method Methods 0.000 description 4
- 238000004528 spin coating Methods 0.000 description 4
- 238000005507 spraying Methods 0.000 description 4
- 239000000126 substance Substances 0.000 description 4
- 238000012360 testing method Methods 0.000 description 4
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 description 4
- 238000009281 ultraviolet germicidal irradiation Methods 0.000 description 4
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 description 4
- FHNFHKCVQCLJFQ-UHFFFAOYSA-N xenon atom Chemical compound [Xe] FHNFHKCVQCLJFQ-UHFFFAOYSA-N 0.000 description 4
- ZWEHNKRNPOVVGH-UHFFFAOYSA-N 2-Butanone Chemical compound CCC(C)=O ZWEHNKRNPOVVGH-UHFFFAOYSA-N 0.000 description 3
- SVONRAPFKPVNKG-UHFFFAOYSA-N 2-ethoxyethyl acetate Chemical compound CCOCCOC(C)=O SVONRAPFKPVNKG-UHFFFAOYSA-N 0.000 description 3
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 3
- 229920000178 Acrylic resin Polymers 0.000 description 3
- 239000004925 Acrylic resin Substances 0.000 description 3
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 3
- XEKOWRVHYACXOJ-UHFFFAOYSA-N Ethyl acetate Chemical compound CCOC(C)=O XEKOWRVHYACXOJ-UHFFFAOYSA-N 0.000 description 3
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 3
- CTQNGGLPUBDAKN-UHFFFAOYSA-N O-Xylene Chemical compound CC1=CC=CC=C1C CTQNGGLPUBDAKN-UHFFFAOYSA-N 0.000 description 3
- 239000002202 Polyethylene glycol Substances 0.000 description 3
- DNIAPMSPPWPWGF-UHFFFAOYSA-N Propylene glycol Chemical compound CC(O)CO DNIAPMSPPWPWGF-UHFFFAOYSA-N 0.000 description 3
- 238000004833 X-ray photoelectron spectroscopy Methods 0.000 description 3
- 238000010521 absorption reaction Methods 0.000 description 3
- 230000000996 additive effect Effects 0.000 description 3
- HSFWRNGVRCDJHI-UHFFFAOYSA-N alpha-acetylene Natural products C#C HSFWRNGVRCDJHI-UHFFFAOYSA-N 0.000 description 3
- MWPLVEDNUUSJAV-UHFFFAOYSA-N anthracene Chemical compound C1=CC=CC2=CC3=CC=CC=C3C=C21 MWPLVEDNUUSJAV-UHFFFAOYSA-N 0.000 description 3
- 238000005266 casting Methods 0.000 description 3
- 229920001940 conductive polymer Polymers 0.000 description 3
- 238000012790 confirmation Methods 0.000 description 3
- 229920000547 conjugated polymer Polymers 0.000 description 3
- 239000013078 crystal Substances 0.000 description 3
- 238000002425 crystallisation Methods 0.000 description 3
- 230000008025 crystallization Effects 0.000 description 3
- 238000006073 displacement reaction Methods 0.000 description 3
- 238000005530 etching Methods 0.000 description 3
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 3
- 238000001704 evaporation Methods 0.000 description 3
- 230000005284 excitation Effects 0.000 description 3
- 229910052809 inorganic oxide Inorganic materials 0.000 description 3
- 239000002346 layers by function Substances 0.000 description 3
- 238000000691 measurement method Methods 0.000 description 3
- 229910001507 metal halide Inorganic materials 0.000 description 3
- 150000005309 metal halides Chemical class 0.000 description 3
- 150000004767 nitrides Chemical class 0.000 description 3
- 229910000510 noble metal Inorganic materials 0.000 description 3
- 230000003647 oxidation Effects 0.000 description 3
- 150000002923 oximes Chemical class 0.000 description 3
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 3
- 238000004806 packaging method and process Methods 0.000 description 3
- 238000005240 physical vapour deposition Methods 0.000 description 3
- 239000004417 polycarbonate Substances 0.000 description 3
- 229920000515 polycarbonate Polymers 0.000 description 3
- 229920001223 polyethylene glycol Polymers 0.000 description 3
- 229920000642 polymer Polymers 0.000 description 3
- 239000002861 polymer material Substances 0.000 description 3
- 125000001436 propyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])[H] 0.000 description 3
- 239000002356 single layer Substances 0.000 description 3
- 241000894007 species Species 0.000 description 3
- 238000003860 storage Methods 0.000 description 3
- 125000001424 substituent group Chemical group 0.000 description 3
- 238000004381 surface treatment Methods 0.000 description 3
- 238000010301 surface-oxidation reaction Methods 0.000 description 3
- LFQCEHFDDXELDD-UHFFFAOYSA-N tetramethyl orthosilicate Chemical compound CO[Si](OC)(OC)OC LFQCEHFDDXELDD-UHFFFAOYSA-N 0.000 description 3
- 229920001187 thermosetting polymer Polymers 0.000 description 3
- 229910052718 tin Inorganic materials 0.000 description 3
- 239000010936 titanium Substances 0.000 description 3
- 239000008096 xylene Substances 0.000 description 3
- GETTZEONDQJALK-UHFFFAOYSA-N (trifluoromethyl)benzene Chemical compound FC(F)(F)C1=CC=CC=C1 GETTZEONDQJALK-UHFFFAOYSA-N 0.000 description 2
- POILWHVDKZOXJZ-ARJAWSKDSA-M (z)-4-oxopent-2-en-2-olate Chemical compound C\C([O-])=C\C(C)=O POILWHVDKZOXJZ-ARJAWSKDSA-M 0.000 description 2
- LEJBBGNFPAFPKQ-UHFFFAOYSA-N 2-(2-prop-2-enoyloxyethoxy)ethyl prop-2-enoate Chemical compound C=CC(=O)OCCOCCOC(=O)C=C LEJBBGNFPAFPKQ-UHFFFAOYSA-N 0.000 description 2
- OEPOKWHJYJXUGD-UHFFFAOYSA-N 2-(3-phenylmethoxyphenyl)-1,3-thiazole-4-carbaldehyde Chemical compound O=CC1=CSC(C=2C=C(OCC=3C=CC=CC=3)C=CC=2)=N1 OEPOKWHJYJXUGD-UHFFFAOYSA-N 0.000 description 2
- GOXQRTZXKQZDDN-UHFFFAOYSA-N 2-Ethylhexyl acrylate Chemical compound CCCCC(CC)COC(=O)C=C GOXQRTZXKQZDDN-UHFFFAOYSA-N 0.000 description 2
- XNWFRZJHXBZDAG-UHFFFAOYSA-N 2-METHOXYETHANOL Chemical compound COCCO XNWFRZJHXBZDAG-UHFFFAOYSA-N 0.000 description 2
- INQDDHNZXOAFFD-UHFFFAOYSA-N 2-[2-(2-prop-2-enoyloxyethoxy)ethoxy]ethyl prop-2-enoate Chemical compound C=CC(=O)OCCOCCOCCOC(=O)C=C INQDDHNZXOAFFD-UHFFFAOYSA-N 0.000 description 2
- TXBCBTDQIULDIA-UHFFFAOYSA-N 2-[[3-hydroxy-2,2-bis(hydroxymethyl)propoxy]methyl]-2-(hydroxymethyl)propane-1,3-diol Chemical compound OCC(CO)(CO)COCC(CO)(CO)CO TXBCBTDQIULDIA-UHFFFAOYSA-N 0.000 description 2
- ZNQVEEAIQZEUHB-UHFFFAOYSA-N 2-ethoxyethanol Chemical compound CCOCCO ZNQVEEAIQZEUHB-UHFFFAOYSA-N 0.000 description 2
- OMIGHNLMNHATMP-UHFFFAOYSA-N 2-hydroxyethyl prop-2-enoate Chemical compound OCCOC(=O)C=C OMIGHNLMNHATMP-UHFFFAOYSA-N 0.000 description 2
- XLLIQLLCWZCATF-UHFFFAOYSA-N 2-methoxyethyl acetate Chemical compound COCCOC(C)=O XLLIQLLCWZCATF-UHFFFAOYSA-N 0.000 description 2
- KUDUQBURMYMBIJ-UHFFFAOYSA-N 2-prop-2-enoyloxyethyl prop-2-enoate Chemical compound C=CC(=O)OCCOC(=O)C=C KUDUQBURMYMBIJ-UHFFFAOYSA-N 0.000 description 2
- GSOFREOFMHUMMZ-UHFFFAOYSA-N 3,4-dicarbamoylnaphthalene-1,2-dicarboxylic acid Chemical compound C1=CC=CC2=C(C(O)=N)C(C(=N)O)=C(C(O)=O)C(C(O)=O)=C21 GSOFREOFMHUMMZ-UHFFFAOYSA-N 0.000 description 2
- QZPSOSOOLFHYRR-UHFFFAOYSA-N 3-hydroxypropyl prop-2-enoate Chemical compound OCCCOC(=O)C=C QZPSOSOOLFHYRR-UHFFFAOYSA-N 0.000 description 2
- HCFAJYNVAYBARA-UHFFFAOYSA-N 4-heptanone Chemical compound CCCC(=O)CCC HCFAJYNVAYBARA-UHFFFAOYSA-N 0.000 description 2
- JHWGFJBTMHEZME-UHFFFAOYSA-N 4-prop-2-enoyloxybutyl prop-2-enoate Chemical compound C=CC(=O)OCCCCOC(=O)C=C JHWGFJBTMHEZME-UHFFFAOYSA-N 0.000 description 2
- 229920003026 Acene Polymers 0.000 description 2
- KWOLFJPFCHCOCG-UHFFFAOYSA-N Acetophenone Chemical compound CC(=O)C1=CC=CC=C1 KWOLFJPFCHCOCG-UHFFFAOYSA-N 0.000 description 2
- VTYYLEPIZMXCLO-UHFFFAOYSA-L Calcium carbonate Chemical compound [Ca+2].[O-]C([O-])=O VTYYLEPIZMXCLO-UHFFFAOYSA-L 0.000 description 2
- GUUVPOWQJOLRAS-UHFFFAOYSA-N Diphenyl disulfide Chemical compound C=1C=CC=CC=1SSC1=CC=CC=C1 GUUVPOWQJOLRAS-UHFFFAOYSA-N 0.000 description 2
- 229920000219 Ethylene vinyl alcohol Polymers 0.000 description 2
- 229910001111 Fine metal Inorganic materials 0.000 description 2
- 239000004831 Hot glue Substances 0.000 description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- BAPJBEWLBFYGME-UHFFFAOYSA-N Methyl acrylate Chemical compound COC(=O)C=C BAPJBEWLBFYGME-UHFFFAOYSA-N 0.000 description 2
- SECXISVLQFMRJM-UHFFFAOYSA-N N-Methylpyrrolidone Chemical compound CN1CCCC1=O SECXISVLQFMRJM-UHFFFAOYSA-N 0.000 description 2
- 239000004677 Nylon Substances 0.000 description 2
- 229920000144 PEDOT:PSS Polymers 0.000 description 2
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 description 2
- OFBQJSOFQDEBGM-UHFFFAOYSA-N Pentane Chemical compound CCCCC OFBQJSOFQDEBGM-UHFFFAOYSA-N 0.000 description 2
- 239000004642 Polyimide Substances 0.000 description 2
- 229920000265 Polyparaphenylene Polymers 0.000 description 2
- 239000004793 Polystyrene Substances 0.000 description 2
- KJTLSVCANCCWHF-UHFFFAOYSA-N Ruthenium Chemical compound [Ru] KJTLSVCANCCWHF-UHFFFAOYSA-N 0.000 description 2
- 244000028419 Styrax benzoin Species 0.000 description 2
- 235000000126 Styrax benzoin Nutrition 0.000 description 2
- PPBRXRYQALVLMV-UHFFFAOYSA-N Styrene Chemical compound C=CC1=CC=CC=C1 PPBRXRYQALVLMV-UHFFFAOYSA-N 0.000 description 2
- RAHZWNYVWXNFOC-UHFFFAOYSA-N Sulphur dioxide Chemical compound O=S=O RAHZWNYVWXNFOC-UHFFFAOYSA-N 0.000 description 2
- 235000008411 Sumatra benzointree Nutrition 0.000 description 2
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 2
- YTPLMLYBLZKORZ-UHFFFAOYSA-N Thiophene Chemical compound C=1C=CSC=1 YTPLMLYBLZKORZ-UHFFFAOYSA-N 0.000 description 2
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 2
- HVVWZTWDBSEWIH-UHFFFAOYSA-N [2-(hydroxymethyl)-3-prop-2-enoyloxy-2-(prop-2-enoyloxymethyl)propyl] prop-2-enoate Chemical compound C=CC(=O)OCC(CO)(COC(=O)C=C)COC(=O)C=C HVVWZTWDBSEWIH-UHFFFAOYSA-N 0.000 description 2
- NIXOWILDQLNWCW-UHFFFAOYSA-N acrylic acid group Chemical group C(C=C)(=O)O NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 2
- 125000003342 alkenyl group Chemical group 0.000 description 2
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 2
- 238000000149 argon plasma sintering Methods 0.000 description 2
- 125000003118 aryl group Chemical group 0.000 description 2
- TZCXTZWJZNENPQ-UHFFFAOYSA-L barium sulfate Chemical compound [Ba+2].[O-]S([O-])(=O)=O TZCXTZWJZNENPQ-UHFFFAOYSA-L 0.000 description 2
- 229960002130 benzoin Drugs 0.000 description 2
- RWCCWEUUXYIKHB-UHFFFAOYSA-N benzophenone Chemical compound C=1C=CC=CC=1C(=O)C1=CC=CC=C1 RWCCWEUUXYIKHB-UHFFFAOYSA-N 0.000 description 2
- 239000012965 benzophenone Substances 0.000 description 2
- 239000011230 binding agent Substances 0.000 description 2
- WERYXYBDKMZEQL-UHFFFAOYSA-N butane-1,4-diol Chemical compound OCCCCO WERYXYBDKMZEQL-UHFFFAOYSA-N 0.000 description 2
- XJHCXCQVJFPJIK-UHFFFAOYSA-M caesium fluoride Chemical compound [F-].[Cs+] XJHCXCQVJFPJIK-UHFFFAOYSA-M 0.000 description 2
- 239000001569 carbon dioxide Substances 0.000 description 2
- 229910002092 carbon dioxide Inorganic materials 0.000 description 2
- 239000002041 carbon nanotube Substances 0.000 description 2
- 229910021393 carbon nanotube Inorganic materials 0.000 description 2
- 239000003795 chemical substances by application Substances 0.000 description 2
- MVPPADPHJFYWMZ-UHFFFAOYSA-N chlorobenzene Chemical compound ClC1=CC=CC=C1 MVPPADPHJFYWMZ-UHFFFAOYSA-N 0.000 description 2
- WDECIBYCCFPHNR-UHFFFAOYSA-N chrysene Chemical compound C1=CC=CC2=CC=C3C4=CC=CC=C4C=CC3=C21 WDECIBYCCFPHNR-UHFFFAOYSA-N 0.000 description 2
- 238000004140 cleaning Methods 0.000 description 2
- 239000000498 cooling water Substances 0.000 description 2
- VPUGDVKSAQVFFS-UHFFFAOYSA-N coronene Chemical compound C1=C(C2=C34)C=CC3=CC=C(C=C3)C4=C4C3=CC=C(C=C3)C4=C2C3=C1 VPUGDVKSAQVFFS-UHFFFAOYSA-N 0.000 description 2
- 125000004122 cyclic group Chemical group 0.000 description 2
- 125000000753 cycloalkyl group Chemical group 0.000 description 2
- JHIVVAPYMSGYDF-UHFFFAOYSA-N cyclohexanone Chemical compound O=C1CCCCC1 JHIVVAPYMSGYDF-UHFFFAOYSA-N 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 125000004386 diacrylate group Chemical group 0.000 description 2
- RAABOESOVLLHRU-UHFFFAOYSA-N diazene Chemical compound N=N RAABOESOVLLHRU-UHFFFAOYSA-N 0.000 description 2
- 229910000071 diazene Inorganic materials 0.000 description 2
- XXJWXESWEXIICW-UHFFFAOYSA-N diethylene glycol monoethyl ether Chemical compound CCOCCOCCO XXJWXESWEXIICW-UHFFFAOYSA-N 0.000 description 2
- 239000003085 diluting agent Substances 0.000 description 2
- JJQZDUKDJDQPMQ-UHFFFAOYSA-N dimethoxy(dimethyl)silane Chemical compound CO[Si](C)(C)OC JJQZDUKDJDQPMQ-UHFFFAOYSA-N 0.000 description 2
- YYLGKUPAFFKGRQ-UHFFFAOYSA-N dimethyldiethoxysilane Chemical compound CCO[Si](C)(C)OCC YYLGKUPAFFKGRQ-UHFFFAOYSA-N 0.000 description 2
- 239000000428 dust Substances 0.000 description 2
- 238000005538 encapsulation Methods 0.000 description 2
- 239000003822 epoxy resin Substances 0.000 description 2
- GCSJLQSCSDMKTP-UHFFFAOYSA-N ethenyl(trimethyl)silane Chemical compound C[Si](C)(C)C=C GCSJLQSCSDMKTP-UHFFFAOYSA-N 0.000 description 2
- 125000005678 ethenylene group Chemical group [H]C([*:1])=C([H])[*:2] 0.000 description 2
- 125000001033 ether group Chemical group 0.000 description 2
- 150000002170 ethers Chemical class 0.000 description 2
- 235000019439 ethyl acetate Nutrition 0.000 description 2
- UHESRSKEBRADOO-UHFFFAOYSA-N ethyl carbamate;prop-2-enoic acid Chemical compound OC(=O)C=C.CCOC(N)=O UHESRSKEBRADOO-UHFFFAOYSA-N 0.000 description 2
- SBRXLTRZCJVAPH-UHFFFAOYSA-N ethyl(trimethoxy)silane Chemical compound CC[Si](OC)(OC)OC SBRXLTRZCJVAPH-UHFFFAOYSA-N 0.000 description 2
- 125000002534 ethynyl group Chemical group [H]C#C* 0.000 description 2
- 230000008020 evaporation Effects 0.000 description 2
- 238000001125 extrusion Methods 0.000 description 2
- GVEPBJHOBDJJJI-UHFFFAOYSA-N fluoranthrene Natural products C1=CC(C2=CC=CC=C22)=C3C2=CC=CC3=C1 GVEPBJHOBDJJJI-UHFFFAOYSA-N 0.000 description 2
- 238000007756 gravure coating Methods 0.000 description 2
- 235000019382 gum benzoic Nutrition 0.000 description 2
- CATSNJVOTSVZJV-UHFFFAOYSA-N heptan-2-one Chemical compound CCCCCC(C)=O CATSNJVOTSVZJV-UHFFFAOYSA-N 0.000 description 2
- UQEAIHBTYFGYIE-UHFFFAOYSA-N hexamethyldisiloxane Chemical compound C[Si](C)(C)O[Si](C)(C)C UQEAIHBTYFGYIE-UHFFFAOYSA-N 0.000 description 2
- 238000004770 highest occupied molecular orbital Methods 0.000 description 2
- 150000002430 hydrocarbons Chemical class 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- AMGQUBHHOARCQH-UHFFFAOYSA-N indium;oxotin Chemical compound [In].[Sn]=O AMGQUBHHOARCQH-UHFFFAOYSA-N 0.000 description 2
- 229920000592 inorganic polymer Polymers 0.000 description 2
- 239000012948 isocyanate Substances 0.000 description 2
- 150000002513 isocyanates Chemical class 0.000 description 2
- DNNSSWSSYDEUBZ-UHFFFAOYSA-N krypton atom Chemical compound [Kr] DNNSSWSSYDEUBZ-UHFFFAOYSA-N 0.000 description 2
- 238000003475 lamination Methods 0.000 description 2
- 239000004973 liquid crystal related substance Substances 0.000 description 2
- PQXKHYXIUOZZFA-UHFFFAOYSA-M lithium fluoride Chemical compound [Li+].[F-] PQXKHYXIUOZZFA-UHFFFAOYSA-M 0.000 description 2
- 238000004768 lowest unoccupied molecular orbital Methods 0.000 description 2
- 230000007246 mechanism Effects 0.000 description 2
- 239000002923 metal particle Substances 0.000 description 2
- 238000001465 metallisation Methods 0.000 description 2
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 2
- QPJVMBTYPHYUOC-UHFFFAOYSA-N methyl benzoate Chemical compound COC(=O)C1=CC=CC=C1 QPJVMBTYPHYUOC-UHFFFAOYSA-N 0.000 description 2
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 2
- 239000002105 nanoparticle Substances 0.000 description 2
- GKAOGPIIYCISHV-UHFFFAOYSA-N neon atom Chemical compound [Ne] GKAOGPIIYCISHV-UHFFFAOYSA-N 0.000 description 2
- 239000012299 nitrogen atmosphere Substances 0.000 description 2
- MWUXSHHQAYIFBG-UHFFFAOYSA-N nitrogen oxide Inorganic materials O=[N] MWUXSHHQAYIFBG-UHFFFAOYSA-N 0.000 description 2
- 239000001272 nitrous oxide Substances 0.000 description 2
- 229920001778 nylon Polymers 0.000 description 2
- HMMGMWAXVFQUOA-UHFFFAOYSA-N octamethylcyclotetrasiloxane Chemical compound C[Si]1(C)O[Si](C)(C)O[Si](C)(C)O[Si](C)(C)O1 HMMGMWAXVFQUOA-UHFFFAOYSA-N 0.000 description 2
- 239000011368 organic material Substances 0.000 description 2
- 125000004430 oxygen atom Chemical group O* 0.000 description 2
- SLIUAWYAILUBJU-UHFFFAOYSA-N pentacene Chemical compound C1=CC=CC2=CC3=CC4=CC5=CC=CC=C5C=C4C=C3C=C21 SLIUAWYAILUBJU-UHFFFAOYSA-N 0.000 description 2
- WXZMFSXDPGVJKK-UHFFFAOYSA-N pentaerythritol Chemical compound OCC(CO)(CO)CO WXZMFSXDPGVJKK-UHFFFAOYSA-N 0.000 description 2
- FDPIMTJIUBPUKL-UHFFFAOYSA-N pentan-3-one Chemical compound CCC(=O)CC FDPIMTJIUBPUKL-UHFFFAOYSA-N 0.000 description 2
- AZVQGIPHTOBHAF-UHFFFAOYSA-N perfluoropentacene Chemical compound FC1=C(F)C(F)=C(F)C2=C(F)C3=C(F)C4=C(F)C5=C(F)C(F)=C(F)C(F)=C5C(F)=C4C(F)=C3C(F)=C21 AZVQGIPHTOBHAF-UHFFFAOYSA-N 0.000 description 2
- 230000000737 periodic effect Effects 0.000 description 2
- GBROPGWFBFCKAG-UHFFFAOYSA-N picene Chemical compound C1=CC2=C3C=CC=CC3=CC=C2C2=C1C1=CC=CC=C1C=C2 GBROPGWFBFCKAG-UHFFFAOYSA-N 0.000 description 2
- 239000002985 plastic film Substances 0.000 description 2
- 229920006255 plastic film Polymers 0.000 description 2
- 229910052697 platinum Inorganic materials 0.000 description 2
- 229920000553 poly(phenylenevinylene) Polymers 0.000 description 2
- 229920001197 polyacetylene Polymers 0.000 description 2
- 229920006122 polyamide resin Polymers 0.000 description 2
- 229920001707 polybutylene terephthalate Polymers 0.000 description 2
- 229920000015 polydiacetylene Polymers 0.000 description 2
- 229920000647 polyepoxide Polymers 0.000 description 2
- 229920000728 polyester Polymers 0.000 description 2
- 229920001225 polyester resin Polymers 0.000 description 2
- 239000004645 polyester resin Substances 0.000 description 2
- 239000011112 polyethylene naphthalate Substances 0.000 description 2
- 229920001721 polyimide Polymers 0.000 description 2
- 229920001451 polypropylene glycol Polymers 0.000 description 2
- 229920000128 polypyrrole Polymers 0.000 description 2
- 239000002243 precursor Substances 0.000 description 2
- KCTAWXVAICEBSD-UHFFFAOYSA-N prop-2-enoyloxy prop-2-eneperoxoate Chemical compound C=CC(=O)OOOC(=O)C=C KCTAWXVAICEBSD-UHFFFAOYSA-N 0.000 description 2
- BDERNNFJNOPAEC-UHFFFAOYSA-N propan-1-ol Chemical compound CCCO BDERNNFJNOPAEC-UHFFFAOYSA-N 0.000 description 2
- 239000001294 propane Substances 0.000 description 2
- 230000005855 radiation Effects 0.000 description 2
- 229910052704 radon Inorganic materials 0.000 description 2
- SYUHGPGVQRZVTB-UHFFFAOYSA-N radon atom Chemical compound [Rn] SYUHGPGVQRZVTB-UHFFFAOYSA-N 0.000 description 2
- 239000012495 reaction gas Substances 0.000 description 2
- 229910052703 rhodium Inorganic materials 0.000 description 2
- 239000010948 rhodium Substances 0.000 description 2
- MHOVAHRLVXNVSD-UHFFFAOYSA-N rhodium atom Chemical compound [Rh] MHOVAHRLVXNVSD-UHFFFAOYSA-N 0.000 description 2
- 229910052707 ruthenium Inorganic materials 0.000 description 2
- 238000007650 screen-printing Methods 0.000 description 2
- 238000000926 separation method Methods 0.000 description 2
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 description 2
- 229910010271 silicon carbide Inorganic materials 0.000 description 2
- PUZPDOWCWNUUKD-UHFFFAOYSA-M sodium fluoride Chemical compound [F-].[Na+] PUZPDOWCWNUUKD-UHFFFAOYSA-M 0.000 description 2
- 239000010935 stainless steel Substances 0.000 description 2
- 229910001220 stainless steel Inorganic materials 0.000 description 2
- 150000003505 terpenes Chemical class 0.000 description 2
- 235000007586 terpenes Nutrition 0.000 description 2
- QEMXHQIAXOOASZ-UHFFFAOYSA-N tetramethylammonium Chemical compound C[N+](C)(C)C QEMXHQIAXOOASZ-UHFFFAOYSA-N 0.000 description 2
- CZDYPVPMEAXLPK-UHFFFAOYSA-N tetramethylsilane Chemical compound C[Si](C)(C)C CZDYPVPMEAXLPK-UHFFFAOYSA-N 0.000 description 2
- FHCPAXDKURNIOZ-UHFFFAOYSA-N tetrathiafulvalene Chemical compound S1C=CSC1=C1SC=CS1 FHCPAXDKURNIOZ-UHFFFAOYSA-N 0.000 description 2
- 230000003685 thermal hair damage Effects 0.000 description 2
- 229920002803 thermoplastic polyurethane Polymers 0.000 description 2
- 229920005992 thermoplastic resin Polymers 0.000 description 2
- YRHRIQCWCFGUEQ-UHFFFAOYSA-N thioxanthen-9-one Chemical compound C1=CC=C2C(=O)C3=CC=CC=C3SC2=C1 YRHRIQCWCFGUEQ-UHFFFAOYSA-N 0.000 description 2
- 229910001887 tin oxide Inorganic materials 0.000 description 2
- 229910052719 titanium Inorganic materials 0.000 description 2
- 238000002834 transmittance Methods 0.000 description 2
- CPUDPFPXCZDNGI-UHFFFAOYSA-N triethoxy(methyl)silane Chemical compound CCO[Si](C)(OCC)OCC CPUDPFPXCZDNGI-UHFFFAOYSA-N 0.000 description 2
- JLGLQAWTXXGVEM-UHFFFAOYSA-N triethylene glycol monomethyl ether Chemical compound COCCOCCOCCO JLGLQAWTXXGVEM-UHFFFAOYSA-N 0.000 description 2
- JLGNHOJUQFHYEZ-UHFFFAOYSA-N trimethoxy(3,3,3-trifluoropropyl)silane Chemical compound CO[Si](OC)(OC)CCC(F)(F)F JLGNHOJUQFHYEZ-UHFFFAOYSA-N 0.000 description 2
- BPSIOYPQMFLKFR-UHFFFAOYSA-N trimethoxy-[3-(oxiran-2-ylmethoxy)propyl]silane Chemical compound CO[Si](OC)(OC)CCCOCC1CO1 BPSIOYPQMFLKFR-UHFFFAOYSA-N 0.000 description 2
- AXJAWMUPFHKOHY-UHFFFAOYSA-N trimethyl(octadecyl)silane Chemical compound CCCCCCCCCCCCCCCCCC[Si](C)(C)C AXJAWMUPFHKOHY-UHFFFAOYSA-N 0.000 description 2
- 238000009966 trimming Methods 0.000 description 2
- RIOQSEWOXXDEQQ-UHFFFAOYSA-N triphenylphosphine Chemical compound C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1 RIOQSEWOXXDEQQ-UHFFFAOYSA-N 0.000 description 2
- 229910021642 ultra pure water Inorganic materials 0.000 description 2
- 239000012498 ultrapure water Substances 0.000 description 2
- 238000004506 ultrasonic cleaning Methods 0.000 description 2
- 239000006097 ultraviolet radiation absorber Substances 0.000 description 2
- 239000011787 zinc oxide Substances 0.000 description 2
- CNGTXGHYZBQUQS-UHFFFAOYSA-N ((1-(2-methoxyethoxy)ethoxy)methyl)benzene Chemical compound COCCOC(C)OCC1=CC=CC=C1 CNGTXGHYZBQUQS-UHFFFAOYSA-N 0.000 description 1
- DTGKSKDOIYIVQL-WEDXCCLWSA-N (+)-borneol Chemical group C1C[C@@]2(C)[C@@H](O)C[C@@H]1C2(C)C DTGKSKDOIYIVQL-WEDXCCLWSA-N 0.000 description 1
- FGOSBCXOMBLILW-UHFFFAOYSA-N (2-oxo-1,2-diphenylethyl) benzoate Chemical compound C=1C=CC=CC=1C(=O)OC(C=1C=CC=CC=1)C(=O)C1=CC=CC=C1 FGOSBCXOMBLILW-UHFFFAOYSA-N 0.000 description 1
- MLIWQXBKMZNZNF-PWDIZTEBSA-N (2e,6e)-2,6-bis[(4-azidophenyl)methylidene]-4-methylcyclohexan-1-one Chemical compound O=C1\C(=C\C=2C=CC(=CC=2)N=[N+]=[N-])CC(C)C\C1=C/C1=CC=C(N=[N+]=[N-])C=C1 MLIWQXBKMZNZNF-PWDIZTEBSA-N 0.000 description 1
- LNAZSHAWQACDHT-XIYTZBAFSA-N (2r,3r,4s,5r,6s)-4,5-dimethoxy-2-(methoxymethyl)-3-[(2s,3r,4s,5r,6r)-3,4,5-trimethoxy-6-(methoxymethyl)oxan-2-yl]oxy-6-[(2r,3r,4s,5r,6r)-4,5,6-trimethoxy-2-(methoxymethyl)oxan-3-yl]oxyoxane Chemical compound CO[C@@H]1[C@@H](OC)[C@H](OC)[C@@H](COC)O[C@H]1O[C@H]1[C@H](OC)[C@@H](OC)[C@H](O[C@H]2[C@@H]([C@@H](OC)[C@H](OC)O[C@@H]2COC)OC)O[C@@H]1COC LNAZSHAWQACDHT-XIYTZBAFSA-N 0.000 description 1
- JHPBZFOKBAGZBL-UHFFFAOYSA-N (3-hydroxy-2,2,4-trimethylpentyl) 2-methylprop-2-enoate Chemical compound CC(C)C(O)C(C)(C)COC(=O)C(C)=C JHPBZFOKBAGZBL-UHFFFAOYSA-N 0.000 description 1
- LGPAKRMZNPYPMG-UHFFFAOYSA-N (3-hydroxy-2-prop-2-enoyloxypropyl) prop-2-enoate Chemical compound C=CC(=O)OC(CO)COC(=O)C=C LGPAKRMZNPYPMG-UHFFFAOYSA-N 0.000 description 1
- PSGCQDPCAWOCSH-UHFFFAOYSA-N (4,7,7-trimethyl-3-bicyclo[2.2.1]heptanyl) prop-2-enoate Chemical compound C1CC2(C)C(OC(=O)C=C)CC1C2(C)C PSGCQDPCAWOCSH-UHFFFAOYSA-N 0.000 description 1
- LTQBNYCMVZQRSD-UHFFFAOYSA-N (4-ethenylphenyl)-trimethoxysilane Chemical compound CO[Si](OC)(OC)C1=CC=C(C=C)C=C1 LTQBNYCMVZQRSD-UHFFFAOYSA-N 0.000 description 1
- OAKFFVBGTSPYEG-UHFFFAOYSA-N (4-prop-2-enoyloxycyclohexyl) prop-2-enoate Chemical compound C=CC(=O)OC1CCC(OC(=O)C=C)CC1 OAKFFVBGTSPYEG-UHFFFAOYSA-N 0.000 description 1
- RUJPNZNXGCHGID-UHFFFAOYSA-N (Z)-beta-Terpineol Natural products CC(=C)C1CCC(C)(O)CC1 RUJPNZNXGCHGID-UHFFFAOYSA-N 0.000 description 1
- IDXCKOANSQIPGX-UHFFFAOYSA-N (acetyloxy-ethenyl-methylsilyl) acetate Chemical compound CC(=O)O[Si](C)(C=C)OC(C)=O IDXCKOANSQIPGX-UHFFFAOYSA-N 0.000 description 1
- UOCLXMDMGBRAIB-UHFFFAOYSA-N 1,1,1-trichloroethane Chemical compound CC(Cl)(Cl)Cl UOCLXMDMGBRAIB-UHFFFAOYSA-N 0.000 description 1
- KKYDYRWEUFJLER-UHFFFAOYSA-N 1,1,2,2,3,3,4,4,5,5,6,6,7,7,10,10,10-heptadecafluorodecyl(trimethoxy)silane Chemical compound CO[Si](OC)(OC)C(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)CCC(F)(F)F KKYDYRWEUFJLER-UHFFFAOYSA-N 0.000 description 1
- YQQFFTNDQFUNHB-UHFFFAOYSA-N 1,1-dimethylsiletane Chemical compound C[Si]1(C)CCC1 YQQFFTNDQFUNHB-UHFFFAOYSA-N 0.000 description 1
- SCEFCWXRXJZWHE-UHFFFAOYSA-N 1,2,3-tribromo-4-(2,3,4-tribromophenyl)sulfonylbenzene Chemical compound BrC1=C(Br)C(Br)=CC=C1S(=O)(=O)C1=CC=C(Br)C(Br)=C1Br SCEFCWXRXJZWHE-UHFFFAOYSA-N 0.000 description 1
- MYWOJODOMFBVCB-UHFFFAOYSA-N 1,2,6-trimethylphenanthrene Chemical compound CC1=CC=C2C3=CC(C)=CC=C3C=CC2=C1C MYWOJODOMFBVCB-UHFFFAOYSA-N 0.000 description 1
- GJZFGDYLJLCGHT-UHFFFAOYSA-N 1,2-diethylthioxanthen-9-one Chemical compound C1=CC=C2C(=O)C3=C(CC)C(CC)=CC=C3SC2=C1 GJZFGDYLJLCGHT-UHFFFAOYSA-N 0.000 description 1
- JZLWSRCQCPAUDP-UHFFFAOYSA-N 1,3,5-triazine-2,4,6-triamine;urea Chemical compound NC(N)=O.NC1=NC(N)=NC(N)=N1 JZLWSRCQCPAUDP-UHFFFAOYSA-N 0.000 description 1
- YFKBXYGUSOXJGS-UHFFFAOYSA-N 1,3-Diphenyl-2-propanone Chemical compound C=1C=CC=CC=1CC(=O)CC1=CC=CC=C1 YFKBXYGUSOXJGS-UHFFFAOYSA-N 0.000 description 1
- RYHBNJHYFVUHQT-UHFFFAOYSA-N 1,4-Dioxane Chemical compound C1COCCO1 RYHBNJHYFVUHQT-UHFFFAOYSA-N 0.000 description 1
- VNQXSTWCDUXYEZ-UHFFFAOYSA-N 1,7,7-trimethylbicyclo[2.2.1]heptane-2,3-dione Chemical compound C1CC2(C)C(=O)C(=O)C1C2(C)C VNQXSTWCDUXYEZ-UHFFFAOYSA-N 0.000 description 1
- WGYZMNBUZFHYRX-UHFFFAOYSA-N 1-(1-methoxypropan-2-yloxy)propan-2-ol Chemical compound COCC(C)OCC(C)O WGYZMNBUZFHYRX-UHFFFAOYSA-N 0.000 description 1
- QWOZZTWBWQMEPD-UHFFFAOYSA-N 1-(2-ethoxypropoxy)propan-2-ol Chemical compound CCOC(C)COCC(C)O QWOZZTWBWQMEPD-UHFFFAOYSA-N 0.000 description 1
- VMCRQYHCDSXNLW-UHFFFAOYSA-N 1-(4-tert-butylphenyl)-2,2-dichloroethanone Chemical compound CC(C)(C)C1=CC=C(C(=O)C(Cl)Cl)C=C1 VMCRQYHCDSXNLW-UHFFFAOYSA-N 0.000 description 1
- XUIXZBXRQFZHIT-UHFFFAOYSA-N 1-[1-(1-hydroxypropan-2-yloxy)propan-2-yloxy]-3-methoxypropan-2-ol Chemical compound COCC(O)COC(C)COC(C)CO XUIXZBXRQFZHIT-UHFFFAOYSA-N 0.000 description 1
- MVPFPGOWZLIWRV-UHFFFAOYSA-N 1-azido-4-[[3-[(4-azidophenyl)methylidene]cyclohexylidene]methyl]benzene Chemical compound C1=CC(N=[N+]=[N-])=CC=C1C=C(CCC1)CC1=CC1=CC=C(N=[N+]=[N-])C=C1 MVPFPGOWZLIWRV-UHFFFAOYSA-N 0.000 description 1
- KFBUECDOROPEBI-UHFFFAOYSA-N 1-butoxyethane-1,2-diol;prop-2-enoic acid Chemical compound OC(=O)C=C.CCCCOC(O)CO KFBUECDOROPEBI-UHFFFAOYSA-N 0.000 description 1
- JOLQKTGDSGKSKJ-UHFFFAOYSA-N 1-ethoxypropan-2-ol Chemical compound CCOCC(C)O JOLQKTGDSGKSKJ-UHFFFAOYSA-N 0.000 description 1
- LIPRQQHINVWJCH-UHFFFAOYSA-N 1-ethoxypropan-2-yl acetate Chemical compound CCOCC(C)OC(C)=O LIPRQQHINVWJCH-UHFFFAOYSA-N 0.000 description 1
- GKMWWXGSJSEDLF-UHFFFAOYSA-N 1-methoxyethane-1,2-diol;prop-2-enoic acid Chemical compound OC(=O)C=C.COC(O)CO GKMWWXGSJSEDLF-UHFFFAOYSA-N 0.000 description 1
- ARXJGSRGQADJSQ-UHFFFAOYSA-N 1-methoxypropan-2-ol Chemical compound COCC(C)O ARXJGSRGQADJSQ-UHFFFAOYSA-N 0.000 description 1
- SFSLTRCPISPSKB-UHFFFAOYSA-N 10-methylideneanthracen-9-one Chemical compound C1=CC=C2C(=C)C3=CC=CC=C3C(=O)C2=C1 SFSLTRCPISPSKB-UHFFFAOYSA-N 0.000 description 1
- OZAIFHULBGXAKX-UHFFFAOYSA-N 2,2'-azo-bis-isobutyronitrile Substances N#CC(C)(C)N=NC(C)(C)C#N OZAIFHULBGXAKX-UHFFFAOYSA-N 0.000 description 1
- FIADVASZMLCQIF-UHFFFAOYSA-N 2,2,4,4,6,6,8,8-octamethyl-1,3,5,7,2,4,6,8-tetrazatetrasilocane Chemical compound C[Si]1(C)N[Si](C)(C)N[Si](C)(C)N[Si](C)(C)N1 FIADVASZMLCQIF-UHFFFAOYSA-N 0.000 description 1
- WGGNJZRNHUJNEM-UHFFFAOYSA-N 2,2,4,4,6,6-hexamethyl-1,3,5,2,4,6-triazatrisilinane Chemical compound C[Si]1(C)N[Si](C)(C)N[Si](C)(C)N1 WGGNJZRNHUJNEM-UHFFFAOYSA-N 0.000 description 1
- ANZPUCVQARFCDW-UHFFFAOYSA-N 2,2,4,4,6,6-hexamethyl-1,3,5,7,2,4,6,8-tetraoxatetrasilocane Chemical compound C[Si]1(C)O[SiH2]O[Si](C)(C)O[Si](C)(C)O1 ANZPUCVQARFCDW-UHFFFAOYSA-N 0.000 description 1
- GKZPEYIPJQHPNC-UHFFFAOYSA-N 2,2-bis(hydroxymethyl)propane-1,3-diol prop-2-enoic acid Chemical compound OC(=O)C=C.OC(=O)C=C.OC(=O)C=C.OC(=O)C=C.OC(=O)C=C.OC(=O)C=C.OCC(CO)(CO)CO GKZPEYIPJQHPNC-UHFFFAOYSA-N 0.000 description 1
- PIZHFBODNLEQBL-UHFFFAOYSA-N 2,2-diethoxy-1-phenylethanone Chemical compound CCOC(OCC)C(=O)C1=CC=CC=C1 PIZHFBODNLEQBL-UHFFFAOYSA-N 0.000 description 1
- KWVGIHKZDCUPEU-UHFFFAOYSA-N 2,2-dimethoxy-2-phenylacetophenone Chemical compound C=1C=CC=CC=1C(OC)(OC)C(=O)C1=CC=CC=C1 KWVGIHKZDCUPEU-UHFFFAOYSA-N 0.000 description 1
- MIGVPIXONIAZHK-UHFFFAOYSA-N 2,2-dimethylpropane-1,3-diol;prop-2-enoic acid Chemical compound OC(=O)C=C.OC(=O)C=C.OCC(C)(C)CO MIGVPIXONIAZHK-UHFFFAOYSA-N 0.000 description 1
- PUGOMSLRUSTQGV-UHFFFAOYSA-N 2,3-di(prop-2-enoyloxy)propyl prop-2-enoate Chemical compound C=CC(=O)OCC(OC(=O)C=C)COC(=O)C=C PUGOMSLRUSTQGV-UHFFFAOYSA-N 0.000 description 1
- QRIMLDXJAPZHJE-UHFFFAOYSA-N 2,3-dihydroxypropyl 2-methylprop-2-enoate Chemical compound CC(=C)C(=O)OCC(O)CO QRIMLDXJAPZHJE-UHFFFAOYSA-N 0.000 description 1
- OWPUOLBODXJOKH-UHFFFAOYSA-N 2,3-dihydroxypropyl prop-2-enoate Chemical compound OCC(O)COC(=O)C=C OWPUOLBODXJOKH-UHFFFAOYSA-N 0.000 description 1
- URZHQOCYXDNFGN-UHFFFAOYSA-N 2,4,6-trimethyl-2,4,6-tris(3,3,3-trifluoropropyl)-1,3,5,2,4,6-trioxatrisilinane Chemical compound FC(F)(F)CC[Si]1(C)O[Si](C)(CCC(F)(F)F)O[Si](C)(CCC(F)(F)F)O1 URZHQOCYXDNFGN-UHFFFAOYSA-N 0.000 description 1
- BVTLTBONLZSBJC-UHFFFAOYSA-N 2,4,6-tris(ethenyl)-2,4,6-trimethyl-1,3,5,2,4,6-trioxatrisilinane Chemical compound C=C[Si]1(C)O[Si](C)(C=C)O[Si](C)(C=C)O1 BVTLTBONLZSBJC-UHFFFAOYSA-N 0.000 description 1
- STTGYIUESPWXOW-UHFFFAOYSA-N 2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline Chemical compound C=12C=CC3=C(C=4C=CC=CC=4)C=C(C)N=C3C2=NC(C)=CC=1C1=CC=CC=C1 STTGYIUESPWXOW-UHFFFAOYSA-N 0.000 description 1
- OAYXUHPQHDHDDZ-UHFFFAOYSA-N 2-(2-butoxyethoxy)ethanol Chemical compound CCCCOCCOCCO OAYXUHPQHDHDDZ-UHFFFAOYSA-N 0.000 description 1
- VXQBJTKSVGFQOL-UHFFFAOYSA-N 2-(2-butoxyethoxy)ethyl acetate Chemical compound CCCCOCCOCCOC(C)=O VXQBJTKSVGFQOL-UHFFFAOYSA-N 0.000 description 1
- FPZWZCWUIYYYBU-UHFFFAOYSA-N 2-(2-ethoxyethoxy)ethyl acetate Chemical compound CCOCCOCCOC(C)=O FPZWZCWUIYYYBU-UHFFFAOYSA-N 0.000 description 1
- YHYCMHWTYHPIQS-UHFFFAOYSA-N 2-(2-hydroxyethoxy)-1-methoxyethanol Chemical compound COC(O)COCCO YHYCMHWTYHPIQS-UHFFFAOYSA-N 0.000 description 1
- SBASXUCJHJRPEV-UHFFFAOYSA-N 2-(2-methoxyethoxy)ethanol Chemical compound COCCOCCO SBASXUCJHJRPEV-UHFFFAOYSA-N 0.000 description 1
- CWNOEVURTVLUNV-UHFFFAOYSA-N 2-(propoxymethyl)oxirane Chemical compound CCCOCC1CO1 CWNOEVURTVLUNV-UHFFFAOYSA-N 0.000 description 1
- WFSMVVDJSNMRAR-UHFFFAOYSA-N 2-[2-(2-ethoxyethoxy)ethoxy]ethanol Chemical compound CCOCCOCCOCCO WFSMVVDJSNMRAR-UHFFFAOYSA-N 0.000 description 1
- LCZVSXRMYJUNFX-UHFFFAOYSA-N 2-[2-(2-hydroxypropoxy)propoxy]propan-1-ol Chemical compound CC(O)COC(C)COC(C)CO LCZVSXRMYJUNFX-UHFFFAOYSA-N 0.000 description 1
- HEQOJEGTZCTHCF-UHFFFAOYSA-N 2-amino-1-phenylethanone Chemical compound NCC(=O)C1=CC=CC=C1 HEQOJEGTZCTHCF-UHFFFAOYSA-N 0.000 description 1
- DZZAHLOABNWIFA-UHFFFAOYSA-N 2-butoxy-1,2-diphenylethanone Chemical compound C=1C=CC=CC=1C(OCCCC)C(=O)C1=CC=CC=C1 DZZAHLOABNWIFA-UHFFFAOYSA-N 0.000 description 1
- NQBXSWAWVZHKBZ-UHFFFAOYSA-N 2-butoxyethyl acetate Chemical compound CCCCOCCOC(C)=O NQBXSWAWVZHKBZ-UHFFFAOYSA-N 0.000 description 1
- PTJDGKYFJYEAOK-UHFFFAOYSA-N 2-butoxyethyl prop-2-enoate Chemical compound CCCCOCCOC(=O)C=C PTJDGKYFJYEAOK-UHFFFAOYSA-N 0.000 description 1
- FPKCTSIVDAWGFA-UHFFFAOYSA-N 2-chloroanthracene-9,10-dione Chemical compound C1=CC=C2C(=O)C3=CC(Cl)=CC=C3C(=O)C2=C1 FPKCTSIVDAWGFA-UHFFFAOYSA-N 0.000 description 1
- ZCDADJXRUCOCJE-UHFFFAOYSA-N 2-chlorothioxanthen-9-one Chemical compound C1=CC=C2C(=O)C3=CC(Cl)=CC=C3SC2=C1 ZCDADJXRUCOCJE-UHFFFAOYSA-N 0.000 description 1
- KYFDXXXNUGBKLT-UHFFFAOYSA-N 2-ethoxyethynyl(dimethyl)silane Chemical compound CCOC#C[SiH](C)C KYFDXXXNUGBKLT-UHFFFAOYSA-N 0.000 description 1
- XMLYCEVDHLAQEL-UHFFFAOYSA-N 2-hydroxy-2-methyl-1-phenylpropan-1-one Chemical compound CC(C)(O)C(=O)C1=CC=CC=C1 XMLYCEVDHLAQEL-UHFFFAOYSA-N 0.000 description 1
- 125000000954 2-hydroxyethyl group Chemical group [H]C([*])([H])C([H])([H])O[H] 0.000 description 1
- GWZMWHWAWHPNHN-UHFFFAOYSA-N 2-hydroxypropyl prop-2-enoate Chemical compound CC(O)COC(=O)C=C GWZMWHWAWHPNHN-UHFFFAOYSA-N 0.000 description 1
- 125000004200 2-methoxyethyl group Chemical group [H]C([H])([H])OC([H])([H])C([H])([H])* 0.000 description 1
- HFCUBKYHMMPGBY-UHFFFAOYSA-N 2-methoxyethyl prop-2-enoate Chemical compound COCCOC(=O)C=C HFCUBKYHMMPGBY-UHFFFAOYSA-N 0.000 description 1
- CFVWNXQPGQOHRJ-UHFFFAOYSA-N 2-methylpropyl prop-2-enoate Chemical compound CC(C)COC(=O)C=C CFVWNXQPGQOHRJ-UHFFFAOYSA-N 0.000 description 1
- MYISVPVWAQRUTL-UHFFFAOYSA-N 2-methylthioxanthen-9-one Chemical compound C1=CC=C2C(=O)C3=CC(C)=CC=C3SC2=C1 MYISVPVWAQRUTL-UHFFFAOYSA-N 0.000 description 1
- UMWZLYTVXQBTTE-UHFFFAOYSA-N 2-pentylanthracene-9,10-dione Chemical compound C1=CC=C2C(=O)C3=CC(CCCCC)=CC=C3C(=O)C2=C1 UMWZLYTVXQBTTE-UHFFFAOYSA-N 0.000 description 1
- RZVINYQDSSQUKO-UHFFFAOYSA-N 2-phenoxyethyl prop-2-enoate Chemical compound C=CC(=O)OCCOC1=CC=CC=C1 RZVINYQDSSQUKO-UHFFFAOYSA-N 0.000 description 1
- KTALPKYXQZGAEG-UHFFFAOYSA-N 2-propan-2-ylthioxanthen-9-one Chemical compound C1=CC=C2C(=O)C3=CC(C(C)C)=CC=C3SC2=C1 KTALPKYXQZGAEG-UHFFFAOYSA-N 0.000 description 1
- 125000003903 2-propenyl group Chemical group [H]C([*])([H])C([H])=C([H])[H] 0.000 description 1
- YTPSFXZMJKMUJE-UHFFFAOYSA-N 2-tert-butylanthracene-9,10-dione Chemical compound C1=CC=C2C(=O)C3=CC(C(C)(C)C)=CC=C3C(=O)C2=C1 YTPSFXZMJKMUJE-UHFFFAOYSA-N 0.000 description 1
- WWZPKECNXMOJPN-UHFFFAOYSA-N 3-(4-azidophenyl)-1-phenylpropan-1-one Chemical compound C1=CC(N=[N+]=[N-])=CC=C1CCC(=O)C1=CC=CC=C1 WWZPKECNXMOJPN-UHFFFAOYSA-N 0.000 description 1
- GBCNIMMWOPWZEG-UHFFFAOYSA-N 3-(diethoxymethylsilyl)-n,n-dimethylpropan-1-amine Chemical compound CCOC(OCC)[SiH2]CCCN(C)C GBCNIMMWOPWZEG-UHFFFAOYSA-N 0.000 description 1
- VLZDYNDUVLBNLD-UHFFFAOYSA-N 3-(dimethoxymethylsilyl)propyl 2-methylprop-2-enoate Chemical compound COC(OC)[SiH2]CCCOC(=O)C(C)=C VLZDYNDUVLBNLD-UHFFFAOYSA-N 0.000 description 1
- HHHPYRGQUSPESB-UHFFFAOYSA-N 3-(dimethoxymethylsilyl)propyl prop-2-enoate Chemical compound COC(OC)[SiH2]CCCOC(=O)C=C HHHPYRGQUSPESB-UHFFFAOYSA-N 0.000 description 1
- GLISOBUNKGBQCL-UHFFFAOYSA-N 3-[ethoxy(dimethyl)silyl]propan-1-amine Chemical compound CCO[Si](C)(C)CCCN GLISOBUNKGBQCL-UHFFFAOYSA-N 0.000 description 1
- VXOAPUIMMKQAFU-UHFFFAOYSA-N 3-ethenylsulfanylpropyl(trimethyl)silane Chemical compound C[Si](C)(C)CCCSC=C VXOAPUIMMKQAFU-UHFFFAOYSA-N 0.000 description 1
- QMYGFTJCQFEDST-UHFFFAOYSA-N 3-methoxybutyl acetate Chemical compound COC(C)CCOC(C)=O QMYGFTJCQFEDST-UHFFFAOYSA-N 0.000 description 1
- SJECZPVISLOESU-UHFFFAOYSA-N 3-trimethoxysilylpropan-1-amine Chemical compound CO[Si](OC)(OC)CCCN SJECZPVISLOESU-UHFFFAOYSA-N 0.000 description 1
- CCOQPNDCFRSIOZ-UHFFFAOYSA-N 3-trimethoxysilylpropyl 2,2,2-trifluoroacetate Chemical compound CO[Si](OC)(OC)CCCOC(=O)C(F)(F)F CCOQPNDCFRSIOZ-UHFFFAOYSA-N 0.000 description 1
- XDLMVUHYZWKMMD-UHFFFAOYSA-N 3-trimethoxysilylpropyl 2-methylprop-2-enoate Chemical group CO[Si](OC)(OC)CCCOC(=O)C(C)=C XDLMVUHYZWKMMD-UHFFFAOYSA-N 0.000 description 1
- KBQVDAIIQCXKPI-UHFFFAOYSA-N 3-trimethoxysilylpropyl prop-2-enoate Chemical compound CO[Si](OC)(OC)CCCOC(=O)C=C KBQVDAIIQCXKPI-UHFFFAOYSA-N 0.000 description 1
- OKISUZLXOYGIFP-UHFFFAOYSA-N 4,4'-dichlorobenzophenone Chemical compound C1=CC(Cl)=CC=C1C(=O)C1=CC=C(Cl)C=C1 OKISUZLXOYGIFP-UHFFFAOYSA-N 0.000 description 1
- MGWGWNFMUOTEHG-UHFFFAOYSA-N 4-(3,5-dimethylphenyl)-1,3-thiazol-2-amine Chemical compound CC1=CC(C)=CC(C=2N=C(N)SC=2)=C1 MGWGWNFMUOTEHG-UHFFFAOYSA-N 0.000 description 1
- BMVWCPGVLSILMU-UHFFFAOYSA-N 5,6-dihydrodibenzo[2,1-b:2',1'-f][7]annulen-11-one Chemical compound C1CC2=CC=CC=C2C(=O)C2=CC=CC=C21 BMVWCPGVLSILMU-UHFFFAOYSA-N 0.000 description 1
- XAMCLRBWHRRBCN-UHFFFAOYSA-N 5-prop-2-enoyloxypentyl prop-2-enoate Chemical compound C=CC(=O)OCCCCCOC(=O)C=C XAMCLRBWHRRBCN-UHFFFAOYSA-N 0.000 description 1
- JTHZUSWLNCPZLX-UHFFFAOYSA-N 6-fluoro-3-methyl-2h-indazole Chemical compound FC1=CC=C2C(C)=NNC2=C1 JTHZUSWLNCPZLX-UHFFFAOYSA-N 0.000 description 1
- DXPPIEDUBFUSEZ-UHFFFAOYSA-N 6-methylheptyl prop-2-enoate Chemical compound CC(C)CCCCCOC(=O)C=C DXPPIEDUBFUSEZ-UHFFFAOYSA-N 0.000 description 1
- HUKPVYBUJRAUAG-UHFFFAOYSA-N 7-benzo[a]phenalenone Chemical compound C1=CC(C(=O)C=2C3=CC=CC=2)=C2C3=CC=CC2=C1 HUKPVYBUJRAUAG-UHFFFAOYSA-N 0.000 description 1
- RSWGJHLUYNHPMX-UHFFFAOYSA-N Abietic-Saeure Natural products C12CCC(C(C)C)=CC2=CCC2C1(C)CCCC2(C)C(O)=O RSWGJHLUYNHPMX-UHFFFAOYSA-N 0.000 description 1
- HRPVXLWXLXDGHG-UHFFFAOYSA-N Acrylamide Chemical group NC(=O)C=C HRPVXLWXLXDGHG-UHFFFAOYSA-N 0.000 description 1
- 229910000838 Al alloy Inorganic materials 0.000 description 1
- CIWBSHSKHKDKBQ-JLAZNSOCSA-N Ascorbic acid Natural products OC[C@H](O)[C@H]1OC(=O)C(O)=C1O CIWBSHSKHKDKBQ-JLAZNSOCSA-N 0.000 description 1
- 229910001369 Brass Inorganic materials 0.000 description 1
- DKPFZGUDAPQIHT-UHFFFAOYSA-N Butyl acetate Natural products CCCCOC(C)=O DKPFZGUDAPQIHT-UHFFFAOYSA-N 0.000 description 1
- NLZUEZXRPGMBCV-UHFFFAOYSA-N Butylhydroxytoluene Chemical compound CC1=CC(C(C)(C)C)=C(O)C(C(C)(C)C)=C1 NLZUEZXRPGMBCV-UHFFFAOYSA-N 0.000 description 1
- WGDZVXNMVCZBIR-UHFFFAOYSA-N C1=CC(CC=2C3=CC4=C(C=5C=CC=C6C=CC=C(C=56)C4)C=2)=C2C3=CC=CC2=C1 Chemical compound C1=CC(CC=2C3=CC4=C(C=5C=CC=C6C=CC=C(C=56)C4)C=2)=C2C3=CC=CC2=C1 WGDZVXNMVCZBIR-UHFFFAOYSA-N 0.000 description 1
- ATLMFJTZZPOKLC-UHFFFAOYSA-N C70 fullerene Chemical compound C12=C(C3=C4C5=C67)C8=C9C%10=C%11C%12=C%13C(C%14=C%15C%16=%17)=C%18C%19=C%20C%21=C%22C%23=C%24C%21=C%21C(C=%25%26)=C%20C%18=C%12C%26=C%10C8=C4C=%25C%21=C5C%24=C6C(C4=C56)=C%23C5=C5C%22=C%19C%14=C5C=%17C6=C5C6=C4C7=C3C1=C6C1=C5C%16=C3C%15=C%13C%11=C4C9=C2C1=C34 ATLMFJTZZPOKLC-UHFFFAOYSA-N 0.000 description 1
- KSAYSSBBYMJKSA-UHFFFAOYSA-N CN(C)[SiH](C=CC)N(C)C.CN(C)[Si](C)(C)N(C)C Chemical compound CN(C)[SiH](C=CC)N(C)C.CN(C)[Si](C)(C)N(C)C KSAYSSBBYMJKSA-UHFFFAOYSA-N 0.000 description 1
- GGWSEDLARZFJRY-UHFFFAOYSA-N COC(OC)[SiH2]C1=CC=CC=C1.C1(=CC=CC=C1)[Si](C)(C)C Chemical compound COC(OC)[SiH2]C1=CC=CC=C1.C1(=CC=CC=C1)[Si](C)(C)C GGWSEDLARZFJRY-UHFFFAOYSA-N 0.000 description 1
- QOGFQIGEQMWCJB-UHFFFAOYSA-N COC(OC)[Si]CCC(F)(F)F Chemical compound COC(OC)[Si]CCC(F)(F)F QOGFQIGEQMWCJB-UHFFFAOYSA-N 0.000 description 1
- UJOBWOGCFQCDNV-UHFFFAOYSA-N Carbazole Natural products C1=CC=C2C3=CC=CC=C3NC2=C1 UJOBWOGCFQCDNV-UHFFFAOYSA-N 0.000 description 1
- 229920000049 Carbon (fiber) Polymers 0.000 description 1
- 239000004215 Carbon black (E152) Substances 0.000 description 1
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 description 1
- 229920000298 Cellophane Polymers 0.000 description 1
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 1
- KZBUYRJDOAKODT-UHFFFAOYSA-N Chlorine Chemical compound ClCl KZBUYRJDOAKODT-UHFFFAOYSA-N 0.000 description 1
- 229910000881 Cu alloy Inorganic materials 0.000 description 1
- XDTMQSROBMDMFD-UHFFFAOYSA-N Cyclohexane Chemical compound C1CCCCC1 XDTMQSROBMDMFD-UHFFFAOYSA-N 0.000 description 1
- YYLLIJHXUHJATK-UHFFFAOYSA-N Cyclohexyl acetate Chemical compound CC(=O)OC1CCCCC1 YYLLIJHXUHJATK-UHFFFAOYSA-N 0.000 description 1
- XMSXQFUHVRWGNA-UHFFFAOYSA-N Decamethylcyclopentasiloxane Chemical compound C[Si]1(C)O[Si](C)(C)O[Si](C)(C)O[Si](C)(C)O[Si](C)(C)O1 XMSXQFUHVRWGNA-UHFFFAOYSA-N 0.000 description 1
- RWSOTUBLDIXVET-UHFFFAOYSA-N Dihydrogen sulfide Chemical compound S RWSOTUBLDIXVET-UHFFFAOYSA-N 0.000 description 1
- 239000004593 Epoxy Substances 0.000 description 1
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 description 1
- JIGUQPWFLRLWPJ-UHFFFAOYSA-N Ethyl acrylate Chemical compound CCOC(=O)C=C JIGUQPWFLRLWPJ-UHFFFAOYSA-N 0.000 description 1
- ZZSNKZQZMQGXPY-UHFFFAOYSA-N Ethyl cellulose Chemical compound CCOCC1OC(OC)C(OCC)C(OCC)C1OC1C(O)C(O)C(OC)C(CO)O1 ZZSNKZQZMQGXPY-UHFFFAOYSA-N 0.000 description 1
- 239000001856 Ethyl cellulose Substances 0.000 description 1
- KRHYYFGTRYWZRS-UHFFFAOYSA-N Fluorane Chemical compound F KRHYYFGTRYWZRS-UHFFFAOYSA-N 0.000 description 1
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 description 1
- 238000005033 Fourier transform infrared spectroscopy Methods 0.000 description 1
- CTKINSOISVBQLD-UHFFFAOYSA-N Glycidol Chemical compound OCC1CO1 CTKINSOISVBQLD-UHFFFAOYSA-N 0.000 description 1
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 1
- 229910000799 K alloy Inorganic materials 0.000 description 1
- 125000000174 L-prolyl group Chemical group [H]N1C([H])([H])C([H])([H])C([H])([H])[C@@]1([H])C(*)=O 0.000 description 1
- 239000004640 Melamine resin Substances 0.000 description 1
- 229920000877 Melamine resin Polymers 0.000 description 1
- NQSMEZJWJJVYOI-UHFFFAOYSA-N Methyl 2-benzoylbenzoate Chemical compound COC(=O)C1=CC=CC=C1C(=O)C1=CC=CC=C1 NQSMEZJWJJVYOI-UHFFFAOYSA-N 0.000 description 1
- FXHOOIRPVKKKFG-UHFFFAOYSA-N N,N-Dimethylacetamide Chemical compound CN(C)C(C)=O FXHOOIRPVKKKFG-UHFFFAOYSA-N 0.000 description 1
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 description 1
- WHNWPMSKXPGLAX-UHFFFAOYSA-N N-Vinyl-2-pyrrolidone Chemical compound C=CN1CCCC1=O WHNWPMSKXPGLAX-UHFFFAOYSA-N 0.000 description 1
- 229910000990 Ni alloy Inorganic materials 0.000 description 1
- 239000000020 Nitrocellulose Substances 0.000 description 1
- 239000004696 Poly ether ether ketone Substances 0.000 description 1
- 229920001609 Poly(3,4-ethylenedioxythiophene) Polymers 0.000 description 1
- 239000004695 Polyether sulfone Substances 0.000 description 1
- 239000004697 Polyetherimide Substances 0.000 description 1
- 239000004721 Polyphenylene oxide Substances 0.000 description 1
- KHPCPRHQVVSZAH-HUOMCSJISA-N Rosin Natural products O(C/C=C/c1ccccc1)[C@H]1[C@H](O)[C@@H](O)[C@@H](O)[C@@H](CO)O1 KHPCPRHQVVSZAH-HUOMCSJISA-N 0.000 description 1
- 229910018557 Si O Inorganic materials 0.000 description 1
- 229910007991 Si-N Inorganic materials 0.000 description 1
- 229910008051 Si-OH Inorganic materials 0.000 description 1
- 229910006294 Si—N Inorganic materials 0.000 description 1
- 229910006358 Si—OH Inorganic materials 0.000 description 1
- 229910006404 SnO 2 Inorganic materials 0.000 description 1
- 229920004933 Terylene® Polymers 0.000 description 1
- XBDYBAVJXHJMNQ-UHFFFAOYSA-N Tetrahydroanthracene Natural products C1=CC=C2C=C(CCCC3)C3=CC2=C1 XBDYBAVJXHJMNQ-UHFFFAOYSA-N 0.000 description 1
- 241001422033 Thestylus Species 0.000 description 1
- GSEJCLTVZPLZKY-UHFFFAOYSA-N Triethanolamine Chemical compound OCCN(CCO)CCO GSEJCLTVZPLZKY-UHFFFAOYSA-N 0.000 description 1
- ZJCCRDAZUWHFQH-UHFFFAOYSA-N Trimethylolpropane Chemical compound CCC(CO)(CO)CO ZJCCRDAZUWHFQH-UHFFFAOYSA-N 0.000 description 1
- DAKWPKUUDNSNPN-UHFFFAOYSA-N Trimethylolpropane triacrylate Chemical compound C=CC(=O)OCC(CC)(COC(=O)C=C)COC(=O)C=C DAKWPKUUDNSNPN-UHFFFAOYSA-N 0.000 description 1
- YZCKVEUIGOORGS-NJFSPNSNSA-N Tritium Chemical compound [3H] YZCKVEUIGOORGS-NJFSPNSNSA-N 0.000 description 1
- XTXRWKRVRITETP-UHFFFAOYSA-N Vinyl acetate Chemical compound CC(=O)OC=C XTXRWKRVRITETP-UHFFFAOYSA-N 0.000 description 1
- BZHJMEDXRYGGRV-UHFFFAOYSA-N Vinyl chloride Chemical compound ClC=C BZHJMEDXRYGGRV-UHFFFAOYSA-N 0.000 description 1
- 229920002978 Vinylon Polymers 0.000 description 1
- SMEGJBVQLJJKKX-HOTMZDKISA-N [(2R,3S,4S,5R,6R)-5-acetyloxy-3,4,6-trihydroxyoxan-2-yl]methyl acetate Chemical compound CC(=O)OC[C@@H]1[C@H]([C@@H]([C@H]([C@@H](O1)O)OC(=O)C)O)O SMEGJBVQLJJKKX-HOTMZDKISA-N 0.000 description 1
- GJWAPAVRQYYSTK-UHFFFAOYSA-N [(dimethyl-$l^{3}-silanyl)amino]-dimethylsilicon Chemical compound C[Si](C)N[Si](C)C GJWAPAVRQYYSTK-UHFFFAOYSA-N 0.000 description 1
- KNSXNCFKSZZHEA-UHFFFAOYSA-N [3-prop-2-enoyloxy-2,2-bis(prop-2-enoyloxymethyl)propyl] prop-2-enoate Chemical class C=CC(=O)OCC(COC(=O)C=C)(COC(=O)C=C)COC(=O)C=C KNSXNCFKSZZHEA-UHFFFAOYSA-N 0.000 description 1
- MCEWYIDBDVPMES-UHFFFAOYSA-N [60]pcbm Chemical compound C123C(C4=C5C6=C7C8=C9C%10=C%11C%12=C%13C%14=C%15C%16=C%17C%18=C(C=%19C=%20C%18=C%18C%16=C%13C%13=C%11C9=C9C7=C(C=%20C9=C%13%18)C(C7=%19)=C96)C6=C%11C%17=C%15C%13=C%15C%14=C%12C%12=C%10C%10=C85)=C9C7=C6C2=C%11C%13=C2C%15=C%12C%10=C4C23C1(CCCC(=O)OC)C1=CC=CC=C1 MCEWYIDBDVPMES-UHFFFAOYSA-N 0.000 description 1
- XQAXGZLFSSPBMK-UHFFFAOYSA-M [7-(dimethylamino)phenothiazin-3-ylidene]-dimethylazanium;chloride;trihydrate Chemical compound O.O.O.[Cl-].C1=CC(=[N+](C)C)C=C2SC3=CC(N(C)C)=CC=C3N=C21 XQAXGZLFSSPBMK-UHFFFAOYSA-M 0.000 description 1
- WYUIWUCVZCRTRH-UHFFFAOYSA-N [[[ethenyl(dimethyl)silyl]amino]-dimethylsilyl]ethene Chemical compound C=C[Si](C)(C)N[Si](C)(C)C=C WYUIWUCVZCRTRH-UHFFFAOYSA-N 0.000 description 1
- PEGHITPVRNZWSI-UHFFFAOYSA-N [[bis(trimethylsilyl)amino]-dimethylsilyl]methane Chemical compound C[Si](C)(C)N([Si](C)(C)C)[Si](C)(C)C PEGHITPVRNZWSI-UHFFFAOYSA-N 0.000 description 1
- RQVFGTYFBUVGOP-UHFFFAOYSA-N [acetyloxy(dimethyl)silyl] acetate Chemical compound CC(=O)O[Si](C)(C)OC(C)=O RQVFGTYFBUVGOP-UHFFFAOYSA-N 0.000 description 1
- CNOSLBKTVBFPBB-UHFFFAOYSA-N [acetyloxy(diphenyl)silyl] acetate Chemical compound C=1C=CC=CC=1[Si](OC(C)=O)(OC(=O)C)C1=CC=CC=C1 CNOSLBKTVBFPBB-UHFFFAOYSA-N 0.000 description 1
- NOZAQBYNLKNDRT-UHFFFAOYSA-N [diacetyloxy(ethenyl)silyl] acetate Chemical compound CC(=O)O[Si](OC(C)=O)(OC(C)=O)C=C NOZAQBYNLKNDRT-UHFFFAOYSA-N 0.000 description 1
- TVJPBVNWVPUZBM-UHFFFAOYSA-N [diacetyloxy(methyl)silyl] acetate Chemical compound CC(=O)O[Si](C)(OC(C)=O)OC(C)=O TVJPBVNWVPUZBM-UHFFFAOYSA-N 0.000 description 1
- 238000002679 ablation Methods 0.000 description 1
- 238000000862 absorption spectrum Methods 0.000 description 1
- 239000011354 acetal resin Substances 0.000 description 1
- 229940081735 acetylcellulose Drugs 0.000 description 1
- 229920006243 acrylic copolymer Polymers 0.000 description 1
- 125000003647 acryloyl group Chemical group O=C([*])C([H])=C([H])[H] 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 230000003213 activating effect Effects 0.000 description 1
- 150000001298 alcohols Chemical class 0.000 description 1
- 150000001338 aliphatic hydrocarbons Chemical class 0.000 description 1
- 150000001339 alkali metal compounds Chemical class 0.000 description 1
- 150000004703 alkoxides Chemical class 0.000 description 1
- 125000003545 alkoxy group Chemical group 0.000 description 1
- 125000003282 alkyl amino group Chemical group 0.000 description 1
- 125000005103 alkyl silyl group Chemical group 0.000 description 1
- 125000000304 alkynyl group Chemical group 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 230000004075 alteration Effects 0.000 description 1
- WNROFYMDJYEPJX-UHFFFAOYSA-K aluminium hydroxide Chemical compound [OH-].[OH-].[OH-].[Al+3] WNROFYMDJYEPJX-UHFFFAOYSA-K 0.000 description 1
- 150000001412 amines Chemical class 0.000 description 1
- 125000003277 amino group Chemical group 0.000 description 1
- 238000000137 annealing Methods 0.000 description 1
- PYKYMHQGRFAEBM-UHFFFAOYSA-N anthraquinone Natural products CCC(=O)c1c(O)c2C(=O)C3C(C=CC=C3O)C(=O)c2cc1CC(=O)OC PYKYMHQGRFAEBM-UHFFFAOYSA-N 0.000 description 1
- 150000004056 anthraquinones Chemical class 0.000 description 1
- RJGDLRCDCYRQOQ-UHFFFAOYSA-N anthrone Chemical compound C1=CC=C2C(=O)C3=CC=CC=C3CC2=C1 RJGDLRCDCYRQOQ-UHFFFAOYSA-N 0.000 description 1
- 239000003963 antioxidant agent Substances 0.000 description 1
- 230000003078 antioxidant effect Effects 0.000 description 1
- 235000006708 antioxidants Nutrition 0.000 description 1
- 239000004760 aramid Substances 0.000 description 1
- 150000004945 aromatic hydrocarbons Chemical class 0.000 description 1
- 229920003235 aromatic polyamide Polymers 0.000 description 1
- 235000010323 ascorbic acid Nutrition 0.000 description 1
- 229960005070 ascorbic acid Drugs 0.000 description 1
- 239000011668 ascorbic acid Substances 0.000 description 1
- 238000007611 bar coating method Methods 0.000 description 1
- 239000010953 base metal Substances 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- WPYMKLBDIGXBTP-UHFFFAOYSA-N benzoic acid Chemical compound OC(=O)C1=CC=CC=C1 WPYMKLBDIGXBTP-UHFFFAOYSA-N 0.000 description 1
- 125000001797 benzyl group Chemical group [H]C1=C([H])C([H])=C(C([H])=C1[H])C([H])([H])* 0.000 description 1
- GCTPMLUUWLLESL-UHFFFAOYSA-N benzyl prop-2-enoate Chemical compound C=CC(=O)OCC1=CC=CC=C1 GCTPMLUUWLLESL-UHFFFAOYSA-N 0.000 description 1
- MRIWRLGWLMRJIW-UHFFFAOYSA-N benzyl(trimethyl)silane Chemical compound C[Si](C)(C)CC1=CC=CC=C1 MRIWRLGWLMRJIW-UHFFFAOYSA-N 0.000 description 1
- RFXODRCAZTVEOH-UHFFFAOYSA-N benzyl-ethoxy-dimethylsilane Chemical compound CCO[Si](C)(C)CC1=CC=CC=C1 RFXODRCAZTVEOH-UHFFFAOYSA-N 0.000 description 1
- ZNAAXKXXDQLJIX-UHFFFAOYSA-N bis(2-cyclohexyl-3-hydroxyphenyl)methanone Chemical compound C1CCCCC1C=1C(O)=CC=CC=1C(=O)C1=CC=CC(O)=C1C1CCCCC1 ZNAAXKXXDQLJIX-UHFFFAOYSA-N 0.000 description 1
- QRHCILLLMDEFSD-UHFFFAOYSA-N bis(ethenyl)-dimethylsilane Chemical compound C=C[Si](C)(C)C=C QRHCILLLMDEFSD-UHFFFAOYSA-N 0.000 description 1
- ZPOLOEWJWXZUSP-AATRIKPKSA-N bis(prop-2-enyl) (e)-but-2-enedioate Chemical compound C=CCOC(=O)\C=C\C(=O)OCC=C ZPOLOEWJWXZUSP-AATRIKPKSA-N 0.000 description 1
- ZDWYFWIBTZJGOR-UHFFFAOYSA-N bis(trimethylsilyl)acetylene Chemical group C[Si](C)(C)C#C[Si](C)(C)C ZDWYFWIBTZJGOR-UHFFFAOYSA-N 0.000 description 1
- BNZSPXKCIAAEJK-UHFFFAOYSA-N bis(trimethylsilyl)methyl-trimethylsilane Chemical compound C[Si](C)(C)C([Si](C)(C)C)[Si](C)(C)C BNZSPXKCIAAEJK-UHFFFAOYSA-N 0.000 description 1
- RYQHWGXLBQHJST-UHFFFAOYSA-N bisanthene Chemical compound C1=CC(C2=CC=CC=3C2=C2C=4C(C=3)=CC=CC=43)=C4C2=C2C3=CC=CC2=CC4=C1 RYQHWGXLBQHJST-UHFFFAOYSA-N 0.000 description 1
- 230000004397 blinking Effects 0.000 description 1
- 238000007664 blowing Methods 0.000 description 1
- 229930006711 bornane-2,3-dione Natural products 0.000 description 1
- 239000010951 brass Substances 0.000 description 1
- 230000005587 bubbling Effects 0.000 description 1
- NTXGQCSETZTARF-UHFFFAOYSA-N buta-1,3-diene;prop-2-enenitrile Chemical compound C=CC=C.C=CC#N NTXGQCSETZTARF-UHFFFAOYSA-N 0.000 description 1
- 125000006226 butoxyethyl group Chemical group 0.000 description 1
- CQEYYJKEWSMYFG-UHFFFAOYSA-N butyl acrylate Chemical compound CCCCOC(=O)C=C CQEYYJKEWSMYFG-UHFFFAOYSA-N 0.000 description 1
- 125000000484 butyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 229920005549 butyl rubber Polymers 0.000 description 1
- HDJVQYDDUMXQHT-UHFFFAOYSA-N butyl(2,2-dimethoxyethenyl)silane Chemical compound C(CCC)[SiH2]C=C(OC)OC HDJVQYDDUMXQHT-UHFFFAOYSA-N 0.000 description 1
- SXPLZNMUBFBFIA-UHFFFAOYSA-N butyl(trimethoxy)silane Chemical compound CCCC[Si](OC)(OC)OC SXPLZNMUBFBFIA-UHFFFAOYSA-N 0.000 description 1
- FQRWAZOLUJHNDT-UHFFFAOYSA-N c12c3c4c5c6c7c8c9c%10c%11c%12c%13c%14c%15c%16c%17c(c1c1c4c7c%10c%13c%161)c1c2c2c4c7c%10c%13c%16c%18c%19c%20c%21c%22c%23c%24c%25c%26c%27c%28c%29c(c7c7c%13c%19c%22c%25c%287)c4c1c1c%17c%15c(c%27c%291)c1c%14c%12c(c%24c%261)c1c%11c9c(c%21c%231)c1c8c6c(c%18c%201)c1c5c3c2c%10c%161 Chemical compound c12c3c4c5c6c7c8c9c%10c%11c%12c%13c%14c%15c%16c%17c(c1c1c4c7c%10c%13c%161)c1c2c2c4c7c%10c%13c%16c%18c%19c%20c%21c%22c%23c%24c%25c%26c%27c%28c%29c(c7c7c%13c%19c%22c%25c%287)c4c1c1c%17c%15c(c%27c%291)c1c%14c%12c(c%24c%261)c1c%11c9c(c%21c%231)c1c8c6c(c%18c%201)c1c5c3c2c%10c%161 FQRWAZOLUJHNDT-UHFFFAOYSA-N 0.000 description 1
- 229910000019 calcium carbonate Inorganic materials 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- QGJOPFRUJISHPQ-NJFSPNSNSA-N carbon disulfide-14c Chemical compound S=[14C]=S QGJOPFRUJISHPQ-NJFSPNSNSA-N 0.000 description 1
- 239000004917 carbon fiber Substances 0.000 description 1
- 229910002091 carbon monoxide Inorganic materials 0.000 description 1
- 239000011852 carbon nanoparticle Substances 0.000 description 1
- 150000007942 carboxylates Chemical class 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 239000003054 catalyst Substances 0.000 description 1
- 239000001913 cellulose Substances 0.000 description 1
- 229920002678 cellulose Polymers 0.000 description 1
- 229920002301 cellulose acetate Polymers 0.000 description 1
- 239000012700 ceramic precursor Substances 0.000 description 1
- 229910000420 cerium oxide Inorganic materials 0.000 description 1
- 239000003638 chemical reducing agent Substances 0.000 description 1
- WEDMWEAVHLDAAH-UHFFFAOYSA-N circumanthracene Chemical compound C1=C(C2=C34)C=CC3=CC=C(C=C3C5=C6C=7C8=C9C%10=C6C(=C3)C=CC%10=CC=C9C=CC8=CC(C=73)=C6)C4=C5C3=C2C6=C1 WEDMWEAVHLDAAH-UHFFFAOYSA-N 0.000 description 1
- 239000004927 clay Substances 0.000 description 1
- 229910052570 clay Inorganic materials 0.000 description 1
- 238000003776 cleavage reaction Methods 0.000 description 1
- 229920006026 co-polymeric resin Polymers 0.000 description 1
- 229910017052 cobalt Inorganic materials 0.000 description 1
- 239000010941 cobalt Substances 0.000 description 1
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 239000012141 concentrate Substances 0.000 description 1
- 230000008602 contraction Effects 0.000 description 1
- 239000002826 coolant Substances 0.000 description 1
- 238000003851 corona treatment Methods 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 238000005336 cracking Methods 0.000 description 1
- 238000004132 cross linking Methods 0.000 description 1
- 238000010227 cup method (microbiological evaluation) Methods 0.000 description 1
- 125000000113 cyclohexyl group Chemical group [H]C1([H])C([H])([H])C([H])([H])C([H])(*)C([H])([H])C1([H])[H] 0.000 description 1
- KBLWLMPSVYBVDK-UHFFFAOYSA-N cyclohexyl prop-2-enoate Chemical compound C=CC(=O)OC1CCCCC1 KBLWLMPSVYBVDK-UHFFFAOYSA-N 0.000 description 1
- VMFHCJPMKUTMMQ-UHFFFAOYSA-N cyclopenta-2,4-dien-1-yl(trimethyl)silane Chemical compound C[Si](C)(C)C1C=CC=C1 VMFHCJPMKUTMMQ-UHFFFAOYSA-N 0.000 description 1
- DDJSWKLBKSLAAZ-UHFFFAOYSA-N cyclotetrasiloxane Chemical compound O1[SiH2]O[SiH2]O[SiH2]O[SiH2]1 DDJSWKLBKSLAAZ-UHFFFAOYSA-N 0.000 description 1
- 238000013481 data capture Methods 0.000 description 1
- FOTKYAAJKYLFFN-UHFFFAOYSA-N decane-1,10-diol Chemical compound OCCCCCCCCCCO FOTKYAAJKYLFFN-UHFFFAOYSA-N 0.000 description 1
- 230000006837 decompression Effects 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- FWLDHHJLVGRRHD-UHFFFAOYSA-N decyl prop-2-enoate Chemical compound CCCCCCCCCCOC(=O)C=C FWLDHHJLVGRRHD-UHFFFAOYSA-N 0.000 description 1
- GWUJPMKBSYJFCK-UHFFFAOYSA-N decyl-dimethoxy-methylsilane Chemical compound CCCCCCCCCC[Si](C)(OC)OC GWUJPMKBSYJFCK-UHFFFAOYSA-N 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 238000006297 dehydration reaction Methods 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- AFZSMODLJJCVPP-UHFFFAOYSA-N dibenzothiazol-2-yl disulfide Chemical compound C1=CC=C2SC(SSC=3SC4=CC=CC=C4N=3)=NC2=C1 AFZSMODLJJCVPP-UHFFFAOYSA-N 0.000 description 1
- PHSNFACJRATEMO-UHFFFAOYSA-N dibenzyl(dimethyl)silane Chemical compound C=1C=CC=CC=1C[Si](C)(C)CC1=CC=CC=C1 PHSNFACJRATEMO-UHFFFAOYSA-N 0.000 description 1
- 238000007607 die coating method Methods 0.000 description 1
- 239000003989 dielectric material Substances 0.000 description 1
- OTARVPUIYXHRRB-UHFFFAOYSA-N diethoxy-methyl-[3-(oxiran-2-ylmethoxy)propyl]silane Chemical compound CCO[Si](C)(OCC)CCCOCC1CO1 OTARVPUIYXHRRB-UHFFFAOYSA-N 0.000 description 1
- MNFGEHQPOWJJBH-UHFFFAOYSA-N diethoxy-methyl-phenylsilane Chemical compound CCO[Si](C)(OCC)C1=CC=CC=C1 MNFGEHQPOWJJBH-UHFFFAOYSA-N 0.000 description 1
- VSYLGGHSEIWGJV-UHFFFAOYSA-N diethyl(dimethoxy)silane Chemical compound CC[Si](CC)(OC)OC VSYLGGHSEIWGJV-UHFFFAOYSA-N 0.000 description 1
- QIGCTKTXDFYSPE-UHFFFAOYSA-N diethyl-methyl-phenylsilane Chemical compound CC[Si](C)(CC)C1=CC=CC=C1 QIGCTKTXDFYSPE-UHFFFAOYSA-N 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- AJNVQOSZGJRYEI-UHFFFAOYSA-N digallium;oxygen(2-) Chemical compound [O-2].[O-2].[O-2].[Ga+3].[Ga+3] AJNVQOSZGJRYEI-UHFFFAOYSA-N 0.000 description 1
- IJKVHSBPTUYDLN-UHFFFAOYSA-N dihydroxy(oxo)silane Chemical compound O[Si](O)=O IJKVHSBPTUYDLN-UHFFFAOYSA-N 0.000 description 1
- 238000010790 dilution Methods 0.000 description 1
- 239000012895 dilution Substances 0.000 description 1
- AHUXYBVKTIBBJW-UHFFFAOYSA-N dimethoxy(diphenyl)silane Chemical compound C=1C=CC=CC=1[Si](OC)(OC)C1=CC=CC=C1 AHUXYBVKTIBBJW-UHFFFAOYSA-N 0.000 description 1
- 125000000118 dimethyl group Chemical group [H]C([H])([H])* 0.000 description 1
- OIKHZBFJHONJJB-UHFFFAOYSA-N dimethyl(phenyl)silicon Chemical compound C[Si](C)C1=CC=CC=C1 OIKHZBFJHONJJB-UHFFFAOYSA-N 0.000 description 1
- ZBMGMUODZNQAQI-UHFFFAOYSA-N dimethyl(prop-2-enyl)silicon Chemical compound C[Si](C)CC=C ZBMGMUODZNQAQI-UHFFFAOYSA-N 0.000 description 1
- HQXKAHJBFCGGGP-UHFFFAOYSA-N dimethyl-[2-(3-methylbutoxy)ethenyl]silane Chemical compound CC(C)CCOC=C[SiH](C)C HQXKAHJBFCGGGP-UHFFFAOYSA-N 0.000 description 1
- HGSPSFLCJIQBDT-UHFFFAOYSA-N dimethyl-[2-(4-methylphenyl)ethenyl]silane Chemical compound C[SiH](C=CC1=CC=C(C=C1)C)C HGSPSFLCJIQBDT-UHFFFAOYSA-N 0.000 description 1
- KZFNONVXCZVHRD-UHFFFAOYSA-N dimethylamino(dimethyl)silicon Chemical compound CN(C)[Si](C)C KZFNONVXCZVHRD-UHFFFAOYSA-N 0.000 description 1
- UKXCWLFBHULELL-UHFFFAOYSA-N diphenylmethanone;n-ethylethanamine Chemical compound CCNCC.C=1C=CC=CC=1C(=O)C1=CC=CC=C1 UKXCWLFBHULELL-UHFFFAOYSA-N 0.000 description 1
- PVQHOAILLPEZSC-UHFFFAOYSA-N diphenylmethanone;n-methylmethanamine Chemical compound CNC.C=1C=CC=CC=1C(=O)C1=CC=CC=C1 PVQHOAILLPEZSC-UHFFFAOYSA-N 0.000 description 1
- 125000005982 diphenylmethyl group Chemical group [H]C1=C([H])C([H])=C(C([H])=C1[H])C([H])(*)C1=C([H])C([H])=C([H])C([H])=C1[H] 0.000 description 1
- KPUWHANPEXNPJT-UHFFFAOYSA-N disiloxane Chemical class [SiH3]O[SiH3] KPUWHANPEXNPJT-UHFFFAOYSA-N 0.000 description 1
- 239000012769 display material Substances 0.000 description 1
- 238000004090 dissolution Methods 0.000 description 1
- JTGAUXSVQKWNHO-UHFFFAOYSA-N ditert-butylsilicon Chemical compound CC(C)(C)[Si]C(C)(C)C JTGAUXSVQKWNHO-UHFFFAOYSA-N 0.000 description 1
- 125000003438 dodecyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- ZHKRBCQSLSTSAO-UHFFFAOYSA-N dodecyl(trimethyl)silane Chemical compound CCCCCCCCCCCC[Si](C)(C)C ZHKRBCQSLSTSAO-UHFFFAOYSA-N 0.000 description 1
- 239000003814 drug Substances 0.000 description 1
- 239000000975 dye Substances 0.000 description 1
- 239000012776 electronic material Substances 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000002708 enhancing effect Effects 0.000 description 1
- YQGOJNYOYNNSMM-UHFFFAOYSA-N eosin Chemical compound [Na+].OC(=O)C1=CC=CC=C1C1=C2C=C(Br)C(=O)C(Br)=C2OC2=C(Br)C(O)=C(Br)C=C21 YQGOJNYOYNNSMM-UHFFFAOYSA-N 0.000 description 1
- 150000002148 esters Chemical class 0.000 description 1
- DOGXYPDTORJOGJ-UHFFFAOYSA-N ethenyl(diethyl)silicon Chemical compound CC[Si](CC)C=C DOGXYPDTORJOGJ-UHFFFAOYSA-N 0.000 description 1
- NKSJNEHGWDZZQF-UHFFFAOYSA-N ethenyl(trimethoxy)silane Chemical compound CO[Si](OC)(OC)C=C NKSJNEHGWDZZQF-UHFFFAOYSA-N 0.000 description 1
- VLNRSEGRGSDKLS-UHFFFAOYSA-N ethenyl-[4-[ethenyl(dimethyl)silyl]phenyl]-dimethylsilane Chemical compound C=C[Si](C)(C)C1=CC=C([Si](C)(C)C=C)C=C1 VLNRSEGRGSDKLS-UHFFFAOYSA-N 0.000 description 1
- BITPLIXHRASDQB-UHFFFAOYSA-N ethenyl-[ethenyl(dimethyl)silyl]oxy-dimethylsilane Chemical compound C=C[Si](C)(C)O[Si](C)(C)C=C BITPLIXHRASDQB-UHFFFAOYSA-N 0.000 description 1
- JEWCZPTVOYXPGG-UHFFFAOYSA-N ethenyl-ethoxy-dimethylsilane Chemical compound CCO[Si](C)(C)C=C JEWCZPTVOYXPGG-UHFFFAOYSA-N 0.000 description 1
- NUFVQEIPPHHQCK-UHFFFAOYSA-N ethenyl-methoxy-dimethylsilane Chemical compound CO[Si](C)(C)C=C NUFVQEIPPHHQCK-UHFFFAOYSA-N 0.000 description 1
- 125000002573 ethenylidene group Chemical group [*]=C=C([H])[H] 0.000 description 1
- RSIHJDGMBDPTIM-UHFFFAOYSA-N ethoxy(trimethyl)silane Chemical compound CCO[Si](C)(C)C RSIHJDGMBDPTIM-UHFFFAOYSA-N 0.000 description 1
- HHBOIIOOTUCYQD-UHFFFAOYSA-N ethoxy-dimethyl-[3-(oxiran-2-ylmethoxy)propyl]silane Chemical compound CCO[Si](C)(C)CCCOCC1CO1 HHBOIIOOTUCYQD-UHFFFAOYSA-N 0.000 description 1
- ADLWTVQIBZEAGJ-UHFFFAOYSA-N ethoxy-methyl-diphenylsilane Chemical compound C=1C=CC=CC=1[Si](C)(OCC)C1=CC=CC=C1 ADLWTVQIBZEAGJ-UHFFFAOYSA-N 0.000 description 1
- BHXIWUJLHYHGSJ-UHFFFAOYSA-N ethyl 3-ethoxypropanoate Chemical compound CCOCCC(=O)OCC BHXIWUJLHYHGSJ-UHFFFAOYSA-N 0.000 description 1
- 229920001249 ethyl cellulose Polymers 0.000 description 1
- 235000019325 ethyl cellulose Nutrition 0.000 description 1
- 239000004715 ethylene vinyl alcohol Substances 0.000 description 1
- 229920006244 ethylene-ethyl acrylate Polymers 0.000 description 1
- 239000005042 ethylene-ethyl acrylate Substances 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- YLQWCDOCJODRMT-UHFFFAOYSA-N fluoren-9-one Chemical compound C1=CC=C2C(=O)C3=CC=CC=C3C2=C1 YLQWCDOCJODRMT-UHFFFAOYSA-N 0.000 description 1
- RMBPEFMHABBEKP-UHFFFAOYSA-N fluorene Chemical compound C1=CC=C2C3=C[CH]C=CC3=CC2=C1 RMBPEFMHABBEKP-UHFFFAOYSA-N 0.000 description 1
- 229910052731 fluorine Inorganic materials 0.000 description 1
- 239000011737 fluorine Substances 0.000 description 1
- 125000001153 fluoro group Chemical group F* 0.000 description 1
- 235000013305 food Nutrition 0.000 description 1
- 229910001195 gallium oxide Inorganic materials 0.000 description 1
- 238000007429 general method Methods 0.000 description 1
- 230000009477 glass transition Effects 0.000 description 1
- 125000003055 glycidyl group Chemical group C(C1CO1)* 0.000 description 1
- 238000007646 gravure printing Methods 0.000 description 1
- 239000004519 grease Substances 0.000 description 1
- 230000005283 ground state Effects 0.000 description 1
- 150000008282 halocarbons Chemical class 0.000 description 1
- 229910052736 halogen Inorganic materials 0.000 description 1
- 125000005843 halogen group Chemical group 0.000 description 1
- RBTKNAXYKSUFRK-UHFFFAOYSA-N heliogen blue Chemical compound [Cu].[N-]1C2=C(C=CC=C3)C3=C1N=C([N-]1)C3=CC=CC=C3C1=NC([N-]1)=C(C=CC=C3)C3=C1N=C([N-]1)C3=CC=CC=C3C1=N2 RBTKNAXYKSUFRK-UHFFFAOYSA-N 0.000 description 1
- KDEZIUOWTXJEJK-UHFFFAOYSA-N heptacene Chemical compound C1=CC=CC2=CC3=CC4=CC5=CC6=CC7=CC=CC=C7C=C6C=C5C=C4C=C3C=C21 KDEZIUOWTXJEJK-UHFFFAOYSA-N 0.000 description 1
- 125000001072 heteroaryl group Chemical group 0.000 description 1
- 125000005842 heteroatom Chemical group 0.000 description 1
- RZXDTJIXPSCHCI-UHFFFAOYSA-N hexa-1,5-diene-2,5-diol Chemical compound OC(=C)CCC(O)=C RZXDTJIXPSCHCI-UHFFFAOYSA-N 0.000 description 1
- QSQIGGCOCHABAP-UHFFFAOYSA-N hexacene Chemical compound C1=CC=CC2=CC3=CC4=CC5=CC6=CC=CC=C6C=C5C=C4C=C3C=C21 QSQIGGCOCHABAP-UHFFFAOYSA-N 0.000 description 1
- NEXSMEBSBIABKL-UHFFFAOYSA-N hexamethyldisilane Chemical compound C[Si](C)(C)[Si](C)(C)C NEXSMEBSBIABKL-UHFFFAOYSA-N 0.000 description 1
- XXMIOPMDWAUFGU-UHFFFAOYSA-N hexane-1,6-diol Chemical compound OCCCCCCO XXMIOPMDWAUFGU-UHFFFAOYSA-N 0.000 description 1
- FUZZWVXGSFPDMH-UHFFFAOYSA-M hexanoate Chemical compound CCCCCC([O-])=O FUZZWVXGSFPDMH-UHFFFAOYSA-M 0.000 description 1
- LNMQRPPRQDGUDR-UHFFFAOYSA-N hexyl prop-2-enoate Chemical compound CCCCCCOC(=O)C=C LNMQRPPRQDGUDR-UHFFFAOYSA-N 0.000 description 1
- CZWLNMOIEMTDJY-UHFFFAOYSA-N hexyl(trimethoxy)silane Chemical compound CCCCCC[Si](OC)(OC)OC CZWLNMOIEMTDJY-UHFFFAOYSA-N 0.000 description 1
- 238000002173 high-resolution transmission electron microscopy Methods 0.000 description 1
- 238000004050 hot filament vapor deposition Methods 0.000 description 1
- 239000012943 hotmelt Substances 0.000 description 1
- 150000004678 hydrides Chemical class 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 229910000040 hydrogen fluoride Inorganic materials 0.000 description 1
- 229910000037 hydrogen sulfide Inorganic materials 0.000 description 1
- 238000006460 hydrolysis reaction Methods 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 238000007373 indentation Methods 0.000 description 1
- 229910003437 indium oxide Inorganic materials 0.000 description 1
- PJXISJQVUVHSOJ-UHFFFAOYSA-N indium(iii) oxide Chemical compound [O-2].[O-2].[O-2].[In+3].[In+3] PJXISJQVUVHSOJ-UHFFFAOYSA-N 0.000 description 1
- 230000000977 initiatory effect Effects 0.000 description 1
- 239000012784 inorganic fiber Substances 0.000 description 1
- 229910021331 inorganic silicon compound Inorganic materials 0.000 description 1
- 239000002198 insoluble material Substances 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 238000007733 ion plating Methods 0.000 description 1
- 229910052741 iridium Inorganic materials 0.000 description 1
- GKOZUEZYRPOHIO-UHFFFAOYSA-N iridium atom Chemical compound [Ir] GKOZUEZYRPOHIO-UHFFFAOYSA-N 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 150000002576 ketones Chemical class 0.000 description 1
- TYQCGQRIZGCHNB-JLAZNSOCSA-N l-ascorbic acid Chemical compound OC[C@H](O)[C@H]1OC(O)=C(O)C1=O TYQCGQRIZGCHNB-JLAZNSOCSA-N 0.000 description 1
- PBOSTUDLECTMNL-UHFFFAOYSA-N lauryl acrylate Chemical compound CCCCCCCCCCCCOC(=O)C=C PBOSTUDLECTMNL-UHFFFAOYSA-N 0.000 description 1
- 239000007791 liquid phase Substances 0.000 description 1
- 229920001684 low density polyethylene Polymers 0.000 description 1
- 239000004702 low-density polyethylene Substances 0.000 description 1
- ZLNQQNXFFQJAID-UHFFFAOYSA-L magnesium carbonate Chemical compound [Mg+2].[O-]C([O-])=O ZLNQQNXFFQJAID-UHFFFAOYSA-L 0.000 description 1
- 239000001095 magnesium carbonate Substances 0.000 description 1
- 229910000021 magnesium carbonate Inorganic materials 0.000 description 1
- 239000000395 magnesium oxide Substances 0.000 description 1
- CPLXHLVBOLITMK-UHFFFAOYSA-N magnesium oxide Inorganic materials [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 description 1
- AXZKOIWUVFPNLO-UHFFFAOYSA-N magnesium;oxygen(2-) Chemical compound [O-2].[Mg+2] AXZKOIWUVFPNLO-UHFFFAOYSA-N 0.000 description 1
- BJEPYKJPYRNKOW-UHFFFAOYSA-L malate(2-) Chemical group [O-]C(=O)C(O)CC([O-])=O BJEPYKJPYRNKOW-UHFFFAOYSA-L 0.000 description 1
- 238000004949 mass spectrometry Methods 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 150000001247 metal acetylides Chemical class 0.000 description 1
- 239000007769 metal material Substances 0.000 description 1
- 229910052976 metal sulfide Inorganic materials 0.000 description 1
- CERQOIWHTDAKMF-UHFFFAOYSA-M methacrylate group Chemical group C(C(=C)C)(=O)[O-] CERQOIWHTDAKMF-UHFFFAOYSA-M 0.000 description 1
- 125000005395 methacrylic acid group Chemical group 0.000 description 1
- 125000000956 methoxy group Chemical group [H]C([H])([H])O* 0.000 description 1
- POPACFLNWGUDSR-UHFFFAOYSA-N methoxy(trimethyl)silane Chemical compound CO[Si](C)(C)C POPACFLNWGUDSR-UHFFFAOYSA-N 0.000 description 1
- 229940095102 methyl benzoate Drugs 0.000 description 1
- 229920000609 methyl cellulose Polymers 0.000 description 1
- DLNFKXNUGNBIOM-UHFFFAOYSA-N methyl(silylmethyl)silane Chemical compound C[SiH2]C[SiH3] DLNFKXNUGNBIOM-UHFFFAOYSA-N 0.000 description 1
- 239000001923 methylcellulose Substances 0.000 description 1
- 229960000907 methylthioninium chloride Drugs 0.000 description 1
- BFXIKLCIZHOAAZ-UHFFFAOYSA-N methyltrimethoxysilane Chemical compound CO[Si](C)(OC)OC BFXIKLCIZHOAAZ-UHFFFAOYSA-N 0.000 description 1
- 230000005012 migration Effects 0.000 description 1
- 238000013508 migration Methods 0.000 description 1
- 239000012046 mixed solvent Substances 0.000 description 1
- 238000001451 molecular beam epitaxy Methods 0.000 description 1
- 229910000476 molybdenum oxide Inorganic materials 0.000 description 1
- 125000004573 morpholin-4-yl group Chemical group N1(CCOCC1)* 0.000 description 1
- 239000002048 multi walled nanotube Substances 0.000 description 1
- KSVMTHKYDGMXFJ-UHFFFAOYSA-N n,n'-bis(trimethylsilyl)methanediimine Chemical compound C[Si](C)(C)N=C=N[Si](C)(C)C KSVMTHKYDGMXFJ-UHFFFAOYSA-N 0.000 description 1
- ZSMNRKGGHXLZEC-UHFFFAOYSA-N n,n-bis(trimethylsilyl)methanamine Chemical compound C[Si](C)(C)N(C)[Si](C)(C)C ZSMNRKGGHXLZEC-UHFFFAOYSA-N 0.000 description 1
- NLSXOLJPOYUIKX-UHFFFAOYSA-N n-(3-trimethylsilylpropyl)butan-1-amine Chemical compound CCCCNCCC[Si](C)(C)C NLSXOLJPOYUIKX-UHFFFAOYSA-N 0.000 description 1
- BOYBHDHQCOROOJ-UHFFFAOYSA-N n-[butylamino(dimethyl)silyl]butan-1-amine Chemical compound CCCCN[Si](C)(C)NCCCC BOYBHDHQCOROOJ-UHFFFAOYSA-N 0.000 description 1
- NGAVXENYOVMGDJ-UHFFFAOYSA-N n-[ethylamino(dimethyl)silyl]ethanamine Chemical compound CCN[Si](C)(C)NCC NGAVXENYOVMGDJ-UHFFFAOYSA-N 0.000 description 1
- QHUOBLDKFGCVCG-UHFFFAOYSA-N n-methyl-n-trimethylsilylacetamide Chemical compound CC(=O)N(C)[Si](C)(C)C QHUOBLDKFGCVCG-UHFFFAOYSA-N 0.000 description 1
- 125000000740 n-pentyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- 239000002086 nanomaterial Substances 0.000 description 1
- MZYHMUONCNKCHE-UHFFFAOYSA-N naphthalene-1,2,3,4-tetracarboxylic acid Chemical compound C1=CC=CC2=C(C(O)=O)C(C(=O)O)=C(C(O)=O)C(C(O)=O)=C21 MZYHMUONCNKCHE-UHFFFAOYSA-N 0.000 description 1
- DASJFYAPNPUBGG-UHFFFAOYSA-N naphthalene-1-sulfonyl chloride Chemical compound C1=CC=C2C(S(=O)(=O)Cl)=CC=CC2=C1 DASJFYAPNPUBGG-UHFFFAOYSA-N 0.000 description 1
- SLCVBVWXLSEKPL-UHFFFAOYSA-N neopentyl glycol Chemical compound OCC(C)(C)CO SLCVBVWXLSEKPL-UHFFFAOYSA-N 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 229910000480 nickel oxide Inorganic materials 0.000 description 1
- 229920001220 nitrocellulos Polymers 0.000 description 1
- 125000004433 nitrogen atom Chemical group N* 0.000 description 1
- JCXJVPUVTGWSNB-UHFFFAOYSA-N nitrogen dioxide Inorganic materials O=[N]=O JCXJVPUVTGWSNB-UHFFFAOYSA-N 0.000 description 1
- 229910052756 noble gas Inorganic materials 0.000 description 1
- QGLKJKCYBOYXKC-UHFFFAOYSA-N nonaoxidotritungsten Chemical compound O=[W]1(=O)O[W](=O)(=O)O[W](=O)(=O)O1 QGLKJKCYBOYXKC-UHFFFAOYSA-N 0.000 description 1
- NIHNNTQXNPWCJQ-UHFFFAOYSA-N o-biphenylenemethane Natural products C1=CC=C2CC3=CC=CC=C3C2=C1 NIHNNTQXNPWCJQ-UHFFFAOYSA-N 0.000 description 1
- ANISOHQJBAQUQP-UHFFFAOYSA-N octyl prop-2-enoate Chemical compound CCCCCCCCOC(=O)C=C ANISOHQJBAQUQP-UHFFFAOYSA-N 0.000 description 1
- 238000007645 offset printing Methods 0.000 description 1
- 125000000962 organic group Chemical group 0.000 description 1
- 150000002902 organometallic compounds Chemical class 0.000 description 1
- 150000003961 organosilicon compounds Chemical class 0.000 description 1
- 229910052762 osmium Inorganic materials 0.000 description 1
- SYQBFIAQOQZEGI-UHFFFAOYSA-N osmium atom Chemical compound [Os] SYQBFIAQOQZEGI-UHFFFAOYSA-N 0.000 description 1
- LSQODMMMSXHVCN-UHFFFAOYSA-N ovalene Chemical compound C1=C(C2=C34)C=CC3=CC=C(C=C3C5=C6C(C=C3)=CC=C3C6=C6C(C=C3)=C3)C4=C5C6=C2C3=C1 LSQODMMMSXHVCN-UHFFFAOYSA-N 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- BMMGVYCKOGBVEV-UHFFFAOYSA-N oxo(oxoceriooxy)cerium Chemical compound [Ce]=O.O=[Ce]=O BMMGVYCKOGBVEV-UHFFFAOYSA-N 0.000 description 1
- PQQKPALAQIIWST-UHFFFAOYSA-N oxomolybdenum Chemical compound [Mo]=O PQQKPALAQIIWST-UHFFFAOYSA-N 0.000 description 1
- GNRSAWUEBMWBQH-UHFFFAOYSA-N oxonickel Chemical compound [Ni]=O GNRSAWUEBMWBQH-UHFFFAOYSA-N 0.000 description 1
- 125000001820 oxy group Chemical group [*:1]O[*:2] 0.000 description 1
- RVTZCBVAJQQJTK-UHFFFAOYSA-N oxygen(2-);zirconium(4+) Chemical compound [O-2].[O-2].[Zr+4] RVTZCBVAJQQJTK-UHFFFAOYSA-N 0.000 description 1
- 239000005022 packaging material Substances 0.000 description 1
- 238000012856 packing Methods 0.000 description 1
- 229910052763 palladium Inorganic materials 0.000 description 1
- DSQPRECRRGZSCV-UHFFFAOYSA-N penta-1,4-dien-3-yl(phenyl)silane Chemical compound C=CC([SiH2]c1ccccc1)C=C DSQPRECRRGZSCV-UHFFFAOYSA-N 0.000 description 1
- 150000002964 pentacenes Chemical class 0.000 description 1
- ULDDEWDFUNBUCM-UHFFFAOYSA-N pentyl prop-2-enoate Chemical compound CCCCCOC(=O)C=C ULDDEWDFUNBUCM-UHFFFAOYSA-N 0.000 description 1
- PNJWIWWMYCMZRO-UHFFFAOYSA-N pent‐4‐en‐2‐one Natural products CC(=O)CC=C PNJWIWWMYCMZRO-UHFFFAOYSA-N 0.000 description 1
- VLTRZXGMWDSKGL-UHFFFAOYSA-N perchloric acid Substances OCl(=O)(=O)=O VLTRZXGMWDSKGL-UHFFFAOYSA-N 0.000 description 1
- WCXXBFNWCCIYQO-UHFFFAOYSA-N peropyren Chemical compound C12=C3C4=CC=C2C=CC=C1C=CC3=C1C=CC2=CC=CC3=CC=C4C1=C32 WCXXBFNWCCIYQO-UHFFFAOYSA-N 0.000 description 1
- 150000002978 peroxides Chemical class 0.000 description 1
- 125000002080 perylenyl group Chemical group C1(=CC=C2C=CC=C3C4=CC=CC5=CC=CC(C1=C23)=C45)* 0.000 description 1
- CSHWQDPOILHKBI-UHFFFAOYSA-N peryrene Natural products C1=CC(C2=CC=CC=3C2=C2C=CC=3)=C3C2=CC=CC3=C1 CSHWQDPOILHKBI-UHFFFAOYSA-N 0.000 description 1
- 238000005191 phase separation Methods 0.000 description 1
- 150000002987 phenanthrenes Chemical class 0.000 description 1
- 239000005011 phenolic resin Substances 0.000 description 1
- XVCSANIKJQVZCJ-UHFFFAOYSA-N phenylsilylmethyl acetate Chemical compound C(C)(=O)OC[SiH2]C1=CC=CC=C1 XVCSANIKJQVZCJ-UHFFFAOYSA-N 0.000 description 1
- 238000000016 photochemical curing Methods 0.000 description 1
- 238000000206 photolithography Methods 0.000 description 1
- 238000000053 physical method Methods 0.000 description 1
- 230000019612 pigmentation Effects 0.000 description 1
- 239000004014 plasticizer Substances 0.000 description 1
- 229920000548 poly(silane) polymer Polymers 0.000 description 1
- 229920002492 poly(sulfone) Polymers 0.000 description 1
- 229920002037 poly(vinyl butyral) polymer Polymers 0.000 description 1
- 229920001230 polyarylate Polymers 0.000 description 1
- 229920000323 polyazulene Polymers 0.000 description 1
- 229920001088 polycarbazole Polymers 0.000 description 1
- 229920000570 polyether Polymers 0.000 description 1
- 229920006393 polyether sulfone Polymers 0.000 description 1
- 229920002530 polyetherether ketone Polymers 0.000 description 1
- 229920001601 polyetherimide Polymers 0.000 description 1
- 229920013716 polyethylene resin Polymers 0.000 description 1
- 230000000379 polymerizing effect Effects 0.000 description 1
- 229920000417 polynaphthalene Polymers 0.000 description 1
- 229920005862 polyol Polymers 0.000 description 1
- 229920006324 polyoxymethylene Polymers 0.000 description 1
- 229920001296 polysiloxane Polymers 0.000 description 1
- 229920002223 polystyrene Polymers 0.000 description 1
- 229920005990 polystyrene resin Polymers 0.000 description 1
- 239000004800 polyvinyl chloride Substances 0.000 description 1
- 150000004032 porphyrins Chemical class 0.000 description 1
- BITYAPCSNKJESK-UHFFFAOYSA-N potassiosodium Chemical compound [Na].[K] BITYAPCSNKJESK-UHFFFAOYSA-N 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- QCTJRYGLPAFRMS-UHFFFAOYSA-N prop-2-enoic acid;1,3,5-triazine-2,4,6-triamine Chemical compound OC(=O)C=C.NC1=NC(N)=NC(N)=N1 QCTJRYGLPAFRMS-UHFFFAOYSA-N 0.000 description 1
- QTECDUFMBMSHKR-UHFFFAOYSA-N prop-2-enyl prop-2-enoate Chemical compound C=CCOC(=O)C=C QTECDUFMBMSHKR-UHFFFAOYSA-N 0.000 description 1
- LYBIZMNPXTXVMV-UHFFFAOYSA-N propan-2-yl prop-2-enoate Chemical compound CC(C)OC(=O)C=C LYBIZMNPXTXVMV-UHFFFAOYSA-N 0.000 description 1
- 125000004368 propenyl group Chemical group C(=CC)* 0.000 description 1
- PNXMTCDJUBJHQJ-UHFFFAOYSA-N propyl prop-2-enoate Chemical compound CCCOC(=O)C=C PNXMTCDJUBJHQJ-UHFFFAOYSA-N 0.000 description 1
- LLHKCFNBLRBOGN-UHFFFAOYSA-N propylene glycol methyl ether acetate Chemical compound COCC(C)OC(C)=O LLHKCFNBLRBOGN-UHFFFAOYSA-N 0.000 description 1
- 239000011241 protective layer Substances 0.000 description 1
- LNKHTYQPVMAJSF-UHFFFAOYSA-N pyranthrene Chemical compound C1=C2C3=CC=CC=C3C=C(C=C3)C2=C2C3=CC3=C(C=CC=C4)C4=CC4=CC=C1C2=C34 LNKHTYQPVMAJSF-UHFFFAOYSA-N 0.000 description 1
- 238000011002 quantification Methods 0.000 description 1
- 238000010791 quenching Methods 0.000 description 1
- 230000000171 quenching effect Effects 0.000 description 1
- VHXJRLYFEJAIAM-UHFFFAOYSA-N quinoline-2-sulfonyl chloride Chemical compound C1=CC=CC2=NC(S(=O)(=O)Cl)=CC=C21 VHXJRLYFEJAIAM-UHFFFAOYSA-N 0.000 description 1
- 150000003254 radicals Chemical class 0.000 description 1
- 229910052761 rare earth metal Inorganic materials 0.000 description 1
- 150000002910 rare earth metals Chemical class 0.000 description 1
- 230000009257 reactivity Effects 0.000 description 1
- 230000008707 rearrangement Effects 0.000 description 1
- 230000008439 repair process Effects 0.000 description 1
- 239000013557 residual solvent Substances 0.000 description 1
- 238000005096 rolling process Methods 0.000 description 1
- 238000004439 roughness measurement Methods 0.000 description 1
- 230000007017 scission Effects 0.000 description 1
- 238000012883 sequential measurement Methods 0.000 description 1
- SCPYDCQAZCOKTP-UHFFFAOYSA-N silanol Chemical compound [SiH3]O SCPYDCQAZCOKTP-UHFFFAOYSA-N 0.000 description 1
- 150000003376 silicon Chemical class 0.000 description 1
- 125000004469 siloxy group Chemical group [SiH3]O* 0.000 description 1
- 229940100890 silver compound Drugs 0.000 description 1
- 150000003379 silver compounds Chemical class 0.000 description 1
- 239000002109 single walled nanotube Substances 0.000 description 1
- 238000009751 slip forming Methods 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- 239000011775 sodium fluoride Substances 0.000 description 1
- 235000013024 sodium fluoride Nutrition 0.000 description 1
- 239000006104 solid solution Substances 0.000 description 1
- 239000002195 soluble material Substances 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
- 238000000992 sputter etching Methods 0.000 description 1
- 125000004079 stearyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 150000003440 styrenes Chemical class 0.000 description 1
- 125000005504 styryl group Chemical group 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 238000005987 sulfurization reaction Methods 0.000 description 1
- 239000004094 surface-active agent Substances 0.000 description 1
- QJVXKWHHAMZTBY-GCPOEHJPSA-N syringin Chemical compound COC1=CC(\C=C\CO)=CC(OC)=C1O[C@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 QJVXKWHHAMZTBY-GCPOEHJPSA-N 0.000 description 1
- 239000000454 talc Substances 0.000 description 1
- 229910052623 talc Inorganic materials 0.000 description 1
- 238000010345 tape casting Methods 0.000 description 1
- 239000013076 target substance Substances 0.000 description 1
- ISXSCDLOGDJUNJ-UHFFFAOYSA-N tert-butyl prop-2-enoate Chemical compound CC(C)(C)OC(=O)C=C ISXSCDLOGDJUNJ-UHFFFAOYSA-N 0.000 description 1
- 150000003512 tertiary amines Chemical class 0.000 description 1
- UQMOLLPKNHFRAC-UHFFFAOYSA-N tetrabutyl silicate Chemical compound CCCCO[Si](OCCCC)(OCCCC)OCCCC UQMOLLPKNHFRAC-UHFFFAOYSA-N 0.000 description 1
- IFLREYGFSNHWGE-UHFFFAOYSA-N tetracene Chemical compound C1=CC=CC2=CC3=CC4=CC=CC=C4C=C3C=C21 IFLREYGFSNHWGE-UHFFFAOYSA-N 0.000 description 1
- VELSFHQDWXAPNK-UHFFFAOYSA-N tetracontacyclo[25.6.5.516,28.44,32.35,11.321,34.28,10.212,15.222,35.229,31.113,20.124,38.02,6.014,19.017,25.018,23.030,37.033,36.547,54.446,53.448,58.126,51.150,52.03,45.07,42.09,61.039,40.041,43.044,63.049,76.055,78.056,62.057,68.059,64.060,67.065,69.066,71.070,73.072,75.074,77]octaheptaconta-1,3(45),4(48),5(61),6,8,10,12,14,16,18,20,22,24(39),25,27(38),28,30,32,34(42),35(40),36,41(43),44(63),46,49(76),50(77),51,53,55(78),56(62),57,59,64,66,68,70(73),71,74-nonatriacontaene Chemical compound c12c3c4c5c6c1c1c7c8c2c2c3c3c9c4c4c5c5c%10c%11c%12c%13c%14c%15c%12c%12c%16c%17c%18c%19c%20c%21c%17c%17c%22c%21c%21c%23c%20c%20c%19c%19c%24c%18c%16c%15c%15c%24c%16c(c7c%15c%14c1c6c5%13)c8c1c2c2c3c3c(c%21c5c%22c(c%11c%12%17)c%10c4c5c93)c%23c2c%20c1c%19%16 VELSFHQDWXAPNK-UHFFFAOYSA-N 0.000 description 1
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 1
- UVVUGWBBCDFNSD-UHFFFAOYSA-N tetraisocyanatosilane Chemical compound O=C=N[Si](N=C=O)(N=C=O)N=C=O UVVUGWBBCDFNSD-UHFFFAOYSA-N 0.000 description 1
- UFHILTCGAOPTOV-UHFFFAOYSA-N tetrakis(ethenyl)silane Chemical compound C=C[Si](C=C)(C=C)C=C UFHILTCGAOPTOV-UHFFFAOYSA-N 0.000 description 1
- 125000003698 tetramethyl group Chemical group [H]C([H])([H])* 0.000 description 1
- ZUEKXCXHTXJYAR-UHFFFAOYSA-N tetrapropan-2-yl silicate Chemical compound CC(C)O[Si](OC(C)C)(OC(C)C)OC(C)C ZUEKXCXHTXJYAR-UHFFFAOYSA-N 0.000 description 1
- ZQZCOBSUOFHDEE-UHFFFAOYSA-N tetrapropyl silicate Chemical compound CCCO[Si](OCCC)(OCCC)OCCC ZQZCOBSUOFHDEE-UHFFFAOYSA-N 0.000 description 1
- 238000002230 thermal chemical vapour deposition Methods 0.000 description 1
- 125000000101 thioether group Chemical group 0.000 description 1
- 125000003396 thiol group Chemical group [H]S* 0.000 description 1
- 229930192474 thiophene Natural products 0.000 description 1
- XOLBLPGZBRYERU-UHFFFAOYSA-N tin dioxide Chemical compound O=[Sn]=O XOLBLPGZBRYERU-UHFFFAOYSA-N 0.000 description 1
- 239000004408 titanium dioxide Substances 0.000 description 1
- KHPCPRHQVVSZAH-UHFFFAOYSA-N trans-cinnamyl beta-D-glucopyranoside Natural products OC1C(O)C(O)C(CO)OC1OCC=CC1=CC=CC=C1 KHPCPRHQVVSZAH-UHFFFAOYSA-N 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
- YZVRVDPMGYFCGL-UHFFFAOYSA-N triacetyloxysilyl acetate Chemical compound CC(=O)O[Si](OC(C)=O)(OC(C)=O)OC(C)=O YZVRVDPMGYFCGL-UHFFFAOYSA-N 0.000 description 1
- 125000005259 triarylamine group Chemical group 0.000 description 1
- FRGPKMWIYVTFIQ-UHFFFAOYSA-N triethoxy(3-isocyanatopropyl)silane Chemical compound CCO[Si](OCC)(OCC)CCCN=C=O FRGPKMWIYVTFIQ-UHFFFAOYSA-N 0.000 description 1
- XVYIJOWQJOQFBG-UHFFFAOYSA-N triethoxy(fluoro)silane Chemical compound CCO[Si](F)(OCC)OCC XVYIJOWQJOQFBG-UHFFFAOYSA-N 0.000 description 1
- JCVQKRGIASEUKR-UHFFFAOYSA-N triethoxy(phenyl)silane Chemical compound CCO[Si](OCC)(OCC)C1=CC=CC=C1 JCVQKRGIASEUKR-UHFFFAOYSA-N 0.000 description 1
- ZNOCGWVLWPVKAO-UHFFFAOYSA-N trimethoxy(phenyl)silane Chemical compound CO[Si](OC)(OC)C1=CC=CC=C1 ZNOCGWVLWPVKAO-UHFFFAOYSA-N 0.000 description 1
- LBNVCJHJRYJVPK-UHFFFAOYSA-N trimethyl(4-trimethylsilylbuta-1,3-diynyl)silane Chemical compound C[Si](C)(C)C#CC#C[Si](C)(C)C LBNVCJHJRYJVPK-UHFFFAOYSA-N 0.000 description 1
- CDGIKLPUDRGJQN-UHFFFAOYSA-N trimethyl(octoxy)silane Chemical compound CCCCCCCCO[Si](C)(C)C CDGIKLPUDRGJQN-UHFFFAOYSA-N 0.000 description 1
- KXFSUVJPEQYUGN-UHFFFAOYSA-N trimethyl(phenyl)silane Chemical compound C[Si](C)(C)C1=CC=CC=C1 KXFSUVJPEQYUGN-UHFFFAOYSA-N 0.000 description 1
- DCGLONGLPGISNX-UHFFFAOYSA-N trimethyl(prop-1-ynyl)silane Chemical compound CC#C[Si](C)(C)C DCGLONGLPGISNX-UHFFFAOYSA-N 0.000 description 1
- HYWCXWRMUZYRPH-UHFFFAOYSA-N trimethyl(prop-2-enyl)silane Chemical compound C[Si](C)(C)CC=C HYWCXWRMUZYRPH-UHFFFAOYSA-N 0.000 description 1
- GYIODRUWWNNGPI-UHFFFAOYSA-N trimethyl(trimethylsilylmethyl)silane Chemical compound C[Si](C)(C)C[Si](C)(C)C GYIODRUWWNNGPI-UHFFFAOYSA-N 0.000 description 1
- SIOVKLKJSOKLIF-HJWRWDBZSA-N trimethylsilyl (1z)-n-trimethylsilylethanimidate Chemical compound C[Si](C)(C)OC(/C)=N\[Si](C)(C)C SIOVKLKJSOKLIF-HJWRWDBZSA-N 0.000 description 1
- VFFKJOXNCSJSAQ-UHFFFAOYSA-N trimethylsilyl benzoate Chemical compound C[Si](C)(C)OC(=O)C1=CC=CC=C1 VFFKJOXNCSJSAQ-UHFFFAOYSA-N 0.000 description 1
- CWMFRHBXRUITQE-UHFFFAOYSA-N trimethylsilylacetylene Chemical group C[Si](C)(C)C#C CWMFRHBXRUITQE-UHFFFAOYSA-N 0.000 description 1
- GIRKRMUMWJFNRI-UHFFFAOYSA-N tris(dimethylamino)silicon Chemical compound CN(C)[Si](N(C)C)N(C)C GIRKRMUMWJFNRI-UHFFFAOYSA-N 0.000 description 1
- PKRKCDBTXBGLKV-UHFFFAOYSA-N tris(ethenyl)-methylsilane Chemical compound C=C[Si](C)(C=C)C=C PKRKCDBTXBGLKV-UHFFFAOYSA-N 0.000 description 1
- FUJPAQRDHMJPBB-UHFFFAOYSA-N tris(ethenyl)-phenylsilane Chemical compound C=C[Si](C=C)(C=C)C1=CC=CC=C1 FUJPAQRDHMJPBB-UHFFFAOYSA-N 0.000 description 1
- SCHZCUMIENIQMY-UHFFFAOYSA-N tris(trimethylsilyl)silicon Chemical compound C[Si](C)(C)[Si]([Si](C)(C)C)[Si](C)(C)C SCHZCUMIENIQMY-UHFFFAOYSA-N 0.000 description 1
- 229910052722 tritium Inorganic materials 0.000 description 1
- 229910001930 tungsten oxide Inorganic materials 0.000 description 1
- 230000005641 tunneling Effects 0.000 description 1
- 229920006337 unsaturated polyester resin Polymers 0.000 description 1
- 238000001291 vacuum drying Methods 0.000 description 1
- 239000012808 vapor phase Substances 0.000 description 1
- 238000009834 vaporization Methods 0.000 description 1
- 230000008016 vaporization Effects 0.000 description 1
- 238000001039 wet etching Methods 0.000 description 1
- 238000004804 winding Methods 0.000 description 1
- 229910001928 zirconium oxide Inorganic materials 0.000 description 1
- 239000002076 α-tocopherol Substances 0.000 description 1
- 235000004835 α-tocopherol Nutrition 0.000 description 1
- GVJHHUAWPYXKBD-IEOSBIPESA-N α-tocopherol Chemical compound OC1=C(C)C(C)=C2O[C@@](CCC[C@H](C)CCC[C@H](C)CCCC(C)C)(C)CCC2=C1C GVJHHUAWPYXKBD-IEOSBIPESA-N 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D1/00—Coating compositions, e.g. paints, varnishes or lacquers, based on inorganic substances
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B9/00—Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B05—SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
- B05D—PROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
- B05D5/00—Processes for applying liquids or other fluent materials to surfaces to obtain special surface effects, finishes or structures
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B7/00—Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
- B32B7/02—Physical, chemical or physicochemical properties
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J7/00—Chemical treatment or coating of shaped articles made of macromolecular substances
- C08J7/04—Coating
- C08J7/042—Coating with two or more layers, where at least one layer of a composition contains a polymer binder
- C08J7/0423—Coating with two or more layers, where at least one layer of a composition contains a polymer binder with at least one layer of inorganic material and at least one layer of a composition containing a polymer binder
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J7/00—Chemical treatment or coating of shaped articles made of macromolecular substances
- C08J7/04—Coating
- C08J7/046—Forming abrasion-resistant coatings; Forming surface-hardening coatings
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J7/00—Chemical treatment or coating of shaped articles made of macromolecular substances
- C08J7/04—Coating
- C08J7/048—Forming gas barrier coatings
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J7/00—Chemical treatment or coating of shaped articles made of macromolecular substances
- C08J7/12—Chemical modification
- C08J7/123—Treatment by wave energy or particle radiation
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/13—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L31/00—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L31/04—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2323/00—Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
- C08J2323/02—Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
- C08J2323/04—Homopolymers or copolymers of ethene
- C08J2323/06—Polyethene
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2483/00—Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen, or carbon only; Derivatives of such polymers
- C08J2483/16—Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen, or carbon only; Derivatives of such polymers in which all the silicon atoms are connected by linkages other than oxygen atoms
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/24—Structurally defined web or sheet [e.g., overall dimension, etc.]
- Y10T428/24355—Continuous and nonuniform or irregular surface on layer or component [e.g., roofing, etc.]
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/24—Structurally defined web or sheet [e.g., overall dimension, etc.]
- Y10T428/24942—Structurally defined web or sheet [e.g., overall dimension, etc.] including components having same physical characteristic in differing degree
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/24—Structurally defined web or sheet [e.g., overall dimension, etc.]
- Y10T428/24942—Structurally defined web or sheet [e.g., overall dimension, etc.] including components having same physical characteristic in differing degree
- Y10T428/2495—Thickness [relative or absolute]
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/24—Structurally defined web or sheet [e.g., overall dimension, etc.]
- Y10T428/24942—Structurally defined web or sheet [e.g., overall dimension, etc.] including components having same physical characteristic in differing degree
- Y10T428/2495—Thickness [relative or absolute]
- Y10T428/24967—Absolute thicknesses specified
- Y10T428/24975—No layer or component greater than 5 mils thick
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/24—Structurally defined web or sheet [e.g., overall dimension, etc.]
- Y10T428/24942—Structurally defined web or sheet [e.g., overall dimension, etc.] including components having same physical characteristic in differing degree
- Y10T428/24992—Density or compression of components
Definitions
- the present invention relates to a gas barrier film, a production method thereof, and an organic photoelectric conversion element using the gas barrier film, and more specifically, mainly a package such as an electronic device, a plastic substrate such as a solar cell, an organic EL element, and a liquid crystal.
- the present invention relates to a gas barrier film used for a display material, a manufacturing method thereof, and an electronic device using the gas barrier film.
- a gas barrier film in which a metal oxide thin film such as aluminum oxide, magnesium oxide, silicon oxide or the like is formed on the surface of a plastic substrate or film is used for packaging an article that requires blocking of various gases such as water vapor and oxygen. It is widely used in packaging applications to prevent the deterioration of food, industrial goods and pharmaceuticals. In addition to the above packaging applications, it is used in liquid crystal display elements, solar cells, organic electroluminescence (EL) substrates and the like.
- EL organic electroluminescence
- a method for producing such a gas barrier film mainly, a method of forming a gas barrier layer by a plasma CVD method (Chemical Vapor Deposition) or a main component is polysilazane.
- a method of applying a surface treatment after applying a coating solution, or a method of using them together is known (see, for example, Patent Documents 1 to 3).
- Patent Document 1 it is necessary to form a polysilazane film having a thickness of 250 nm or less by a wet method, and then irradiate with vacuum ultraviolet light. It is disclosed to achieve by a method of forming a layer by repeating two or more times.
- Patent Document 1 still has a problem that the flexibility is not always sufficient when the lamination is simply repeated in order to obtain a higher gas barrier property. Furthermore, due to the stress applied when cutting, the phenomenon that the edge of the cutting breaks vigorously with the film like glass occurs, and the effective area as a product decreases due to cracks in the cutting surface, resulting in poor productivity. Newly found.
- Patent Document 3 discloses a manufacturing method for forming a conductive film after applying and smoothing a polysilazane to a gas barrier layer obtained by an atmospheric pressure plasma CVD method. Although this method can achieve both high barrier properties and surface smoothness, the stress applied during bending is concentrated on the gas barrier layer, and the barrier layer is destroyed by unrelieved stress, resulting in inferior flexibility. This is the current situation.
- JP 2009-255040 A Japanese Patent No. 3511325 JP 2008-235165 A
- the present invention has been made in view of the above problems, and its purpose is to use a gas barrier film having high barrier performance, bending resistance, smoothness, and suitable for cutting, a method for producing the same, and a gas barrier film thereof. Is to provide an electronic device.
- a gas barrier layer unit is provided on at least one surface side of the substrate, the gas barrier layer unit is formed by applying a silicon compound on the first barrier layer formed by chemical vapor deposition and the first barrier layer A second barrier layer obtained by modifying the coated film, and the second barrier layer has a non-modified region on the substrate surface side and a modified region on the surface layer side.
- Gas barrier film characterized by
- the surface of the side on which the first barrier layer is formed has a pencil hardness specified by JIS K 5400 of H or higher and the maximum cross-sectional height specified by JIS B 0601 2.
- JIS K 5400 of H or higher
- JIS B 0601 2 the maximum cross-sectional height specified by JIS B 0601 2.
- the second barrier layer is a coating film formed by applying a polysilazane-containing liquid and is subjected to a modification treatment. the film.
- the thickness of the modified region located on the surface layer side of the second barrier layer is 0.2 to 0.9 in thickness ratio with respect to the total thickness of the second barrier layer, 6.
- the first barrier layer formed by the chemical vapor deposition method includes silicon oxide or silicon oxynitride, and the elastic modulus of the modified region in the second barrier layer is E1 when the elastic modulus of the first barrier layer is E1. Any one of 1 to 6 above, wherein the elastic modulus satisfies a relationship of E1> E2> E3 when the elastic modulus is E2 and the elastic modulus of the non-modified region in the second barrier layer is E3. 2.
- the film density of the first barrier layer is D1
- the film density of the modified region in the second barrier layer is D2
- the film density of the non-modified region in the second barrier layer is D3, 8.
- the film density difference (D1-D2) between the film density D1 and the film density D2 is 0.05 or more and 1.30 or less
- the film density difference (D1-D3) between the film density D1 and the film density D3 is 0.15 or more and 1.40 or less
- the thickness of the first barrier layer is a silicon oxide or silicon oxynitride layer having a thickness of 50 nm to 300 nm, and the thickness of the second barrier layer is 60 nm to 600 nm.
- the gas barrier film according to Item is a silicon oxide or silicon oxynitride layer having a thickness of 50 nm to 300 nm, and the thickness of the second barrier layer is 60 nm to 600 nm.
- An electronic device comprising the gas barrier film according to any one of 1 to 11 above.
- the present invention it was possible to provide a gas barrier film having high barrier performance, bending resistance and smoothness, and having a cutting processability, a production method thereof, and an organic photoelectric conversion element using the gas barrier film.
- the present inventor has a gas barrier layer unit on at least one surface side of the substrate, and the gas barrier layer unit is a first barrier layer formed by a chemical vapor deposition method. And a second barrier layer obtained by modifying a coating film formed by applying a silicon compound on the first barrier layer, and the second barrier layer is formed on the substrate surface.
- a gas barrier film that has a non-modified region on the side and a modified region on the surface layer side, and realizes a gas barrier film having high barrier performance, bending resistance, smoothness, and suitable for cutting. It is up to the present invention to be found.
- the pencil hardness of the surface on which the first barrier layer is formed is H or more and the maximum cross-sectional height Rt (p) is 10 nm ⁇ Rt ⁇ 30 nm. It is preferable that a smoothing layer is provided, and it is preferable to have a layer for alleviating the occurrence of defects in the first barrier layer due to stress during the formation of the second barrier layer.
- a gas barrier layer unit is provided on at least one surface side of the substrate, the gas barrier layer unit is formed by a chemical vapor deposition method, and the first barrier layer is formed. It is preferable to have a second barrier layer that is formed by applying a polysilazane-containing liquid on the layer and then subjected to a modification treatment. Thereby, it is possible to realize a gas barrier film which is further excellent in high barrier performance, bending resistance and smoothness and has cutting processability.
- FIG. 1 is a schematic cross-sectional view showing an example of the layer structure of the gas barrier film of the present invention.
- a gas barrier film 1 of the present invention includes a first barrier layer 3 formed on a substrate 2 by a chemical vapor deposition method, and a second barrier formed by applying a polysilazane-containing liquid thereon.
- the gas barrier layer unit 5 is composed of the layer 4.
- the reforming process is performed from above using a modification processing means L, for example, irradiation of vacuum ultraviolet rays having a wavelength component of 180 nm or less. Applied.
- the modification proceeds on the surface layer side on the modification treatment means L side, and the modification does not proceed on the first barrier layer 3 surface side, or No modification occurs, and a modified region 4A that has been modified in the layer and a non-modified region 4B that has not been modified are formed.
- a method for confirming the modified region 4A subjected to the modification and the non-modified region 4B not subjected to the modification is as follows. While trimming the second barrier layer 4 in the depth direction, characteristic values such as density, elastic modulus, and composition ratio (for example, the ratio of x in SiO x ) are sequentially measured, and the inflection point of the characteristic value Can be obtained as an interface between the modified region 4A and the non-modified region 4B. Furthermore, as the most effective method, a cross section of the produced gas barrier film is cut out with a microtome, and the obtained ultrathin section is observed with a transmission electron microscope.
- the interface between the modified region 4A and the unmodified region 4B appears clearly, and by determining the position, the thickness of the modified region 4A and the non-modified region The thickness of 4B can be easily obtained.
- the non-modified region 4B exists between the dense first barrier layer 3 and the modified region 4A of the second barrier layer 4
- stress concentration during bending to a specific layer can be reduced. It has been found that the bending resistance can be drastically improved and the present invention has been achieved.
- the coating liquid containing a silicon compound used for forming the second barrier layer 4 according to the present invention contains polysilazane as a silicon compound.
- the thickness of the modified region 4A formed on the surface side of the second barrier layer 4 according to the present invention is 0.2 or more and 0.9 or less with respect to the total film thickness of the second barrier layer 4.
- the film thickness ratio is preferably 0.4 or more and 0.8 or less.
- the first barrier layer 3 formed by the chemical vapor deposition method according to the present invention includes silicon oxide or silicon oxynitride, and the elastic modulus of the first barrier layer 3 is E1, and the second barrier layer 4
- the elastic modulus of the modified region 4A at E2 is E2
- the elastic modulus of the non-modified region 4B of the second barrier layer 4 is E3
- the elastic modulus preferably satisfies the relationship of E1> E2> E3.
- the film density of the first barrier layer 3 is D1
- the film density of the modified region 4A in the second barrier layer 4 according to the present invention is D2
- the non-modified in the second barrier layer 4 according to the present invention is D3
- the film density of the mass region 4B is D3
- the film density difference (D1-D2) between the film density D1 and the film density D2 is 0.05 or more and 1.30 or less, and the film density difference (D1-D3) between the film density D1 and the film density D3. ) Is 0.15 or more and 1.40 or less, and the film density difference (D2 ⁇ D3) between the film density D2 and the film density D3 is preferably 0.10 or more.
- the thickness of the first barrier layer is preferably a silicon oxide or silicon oxynitride layer of 50 nm to 300 nm, and more preferably, the thickness of the first barrier layer is 50 nm to 200 nm.
- the thickness of the second barrier layer is preferably 60 nm to 600 nm, and more preferably 60 nm to 300 nm.
- the modification treatment applied to the second barrier layer is preferably a treatment of irradiating vacuum ultraviolet rays having a wavelength component of 180 nm or less.
- the organic photoelectric conversion element of the present invention is characterized by using the gas barrier film of the present invention.
- the gas barrier film of the present invention has a gas barrier layer unit on at least one surface side of the substrate.
- the gas barrier layer unit referred to in the present invention refers to a first barrier layer formed by chemical vapor deposition, and a silicon compound, for example, a polysilazane-containing liquid is applied on the first barrier layer.
- the gas barrier property can be further improved by including the applied second barrier layer and forming the gas barrier layer unit by a plurality of units.
- positioned the gas barrier layer unit on both surfaces of a base material may be sufficient.
- the gas barrier property referred to in the present invention is a water vapor transmission rate (60 ⁇ 0.5 ° C., relative humidity (90 ⁇ 2)% RH) measured by a method according to JIS K 7129-1992 is 1 ⁇ 10 ⁇ 3 g / (m 2 ⁇ 24 h) or less, and the oxygen permeability measured by a method according to JIS K 7126-1987 is 1 ⁇ 10 ⁇ 3 ml / m 2 ⁇ 24 h ⁇ atm or less (1 atm is 1.01325 ⁇ 10 5 Pa).
- the first barrier layer is formed by chemical vapor deposition.
- vapor deposition is performed in the vapor phase.
- a thin film of a target substance for example, a carbon film
- vapor deposition resistance heating method, electron beam vapor deposition, molecular beam epitaxy
- ion plating method a sputtering method, and the like.
- the chemical vapor deposition method (chemical vapor deposition method)
- a raw material gas containing a target thin film component is supplied onto a base material, and a film is deposited by a chemical reaction on the substrate surface or in the gas phase. It is a method to do.
- there is a method of generating plasma etc. for the purpose of activating chemical reaction and known CVD methods such as thermal CVD method, catalytic chemical vapor deposition method, photo CVD method, plasma CVD method, atmospheric pressure plasma CVD method, etc. In the present invention, any of them can be advantageously used.
- the plasma CVD method is preferable from the viewpoint of film forming speed and processing area.
- FIG. 5 represents an example of a vacuum plasma CVD apparatus that can be used in the present invention.
- the vacuum plasma CVD apparatus 101 has a vacuum chamber 102, and a susceptor 105 is disposed on the bottom surface inside the vacuum chamber 102.
- a cathode electrode 103 is disposed at a position facing the susceptor 105 on the ceiling side inside the vacuum chamber 102.
- a heat medium circulation system 106, a vacuum exhaust system 107, a gas introduction system 108, and a high-frequency power source 109 are disposed outside the vacuum chamber 102.
- a heat medium is arranged in the heat medium circulation system 106.
- the heat medium circulation system 106 stores a pump that moves the heat medium, a heating device that heats the heat medium, a cooling device that cools, a temperature sensor that measures the temperature of the heat medium, and a set temperature of the heat medium.
- a heating / cooling device 160 having a storage device is provided.
- the heating / cooling device 160 is configured to measure the temperature of the heat medium, heat or cool the heat medium to a stored set temperature, and supply the heat medium to the susceptor 5.
- the supplied heat medium flows inside the susceptor 105, heats or cools the susceptor 5, and returns to the heating / cooling device 160.
- the temperature of the heat medium is higher or lower than the set temperature, and the heating and cooling device 160 heats or cools the heat medium to the set temperature and supplies the heat medium to the susceptor 105.
- the cooling medium circulates between the susceptor and the heating / cooling device 160, and the susceptor 105 is heated or cooled by the supplied heating medium having the set temperature.
- the vacuum chamber 102 is connected to an evacuation system 107, and before the film formation process is started by the plasma CVD apparatus 101, the inside of the vacuum chamber 102 is evacuated in advance and the heating medium is heated to set from room temperature. The temperature is raised to a temperature, and a heat medium having a set temperature is supplied to the susceptor 105. The susceptor 105 is at room temperature at the start of use, and when a heat medium having a set temperature is supplied, the susceptor 105 is heated.
- the substrate 110 to be deposited is carried into the vacuum chamber 102 while maintaining the vacuum atmosphere in the vacuum chamber 102 and placed on the susceptor 105.
- a large number of nozzles (holes) are formed on the surface of the cathode electrode 103 facing the susceptor 105.
- the cathode electrode 103 is connected to a gas introduction system 108.
- a CVD gas is introduced from the gas introduction system 108 into the cathode electrode 103, the CVD gas is ejected from the nozzle of the cathode electrode 103 into the vacuum chamber 102 in a vacuum atmosphere.
- the cathode electrode 103 is connected to a high frequency power source 109, and the susceptor 105 and the vacuum chamber 102 are connected to the ground potential.
- a high-frequency power source 109 is activated while a heating medium having a constant temperature is supplied from the heating / cooling device 160 to the susceptor 105, and a high-frequency voltage is applied to the cathode electrode 103, Plasma of the introduced CVD gas is formed.
- a heating medium having a constant temperature is supplied from the heating / cooling device 160 to the susceptor 105, and the susceptor 105 is heated or cooled by the heating medium, and a thin film is formed while being maintained at a constant temperature.
- the lower limit temperature of the growth temperature when forming a thin film is determined by the film quality of the thin film
- the upper limit temperature is determined by the allowable range of damage to the thin film already formed on the substrate 110.
- the lower limit temperature and upper limit temperature vary depending on the material of the thin film to be formed, the material of the thin film already formed, etc., but when forming a SiN film or SiON film used for a high barrier film, etc., the lower limit temperature is required to ensure the film quality.
- the temperature is 50 ° C.
- the upper limit temperature is lower than the heat resistant temperature of the substrate.
- the correlation between the film quality of the thin film formed by the plasma CVD method and the film formation temperature, and the correlation between the damage to the film formation target (substrate 110) and the film formation temperature are obtained in advance.
- the lower limit temperature of the substrate 110 during the plasma CVD process is 50 ° C.
- the upper limit temperature is 250 ° C.
- the relationship between the temperature of the heat medium supplied to the susceptor 105 and the temperature of the substrate 110 when a plasma is formed by applying a high frequency voltage of 13.56 MHz or more to the cathode electrode 103 is measured in advance, during the plasma CVD process.
- the temperature of the heat medium supplied to the susceptor 105 is required in order to maintain the substrate 110 temperature at or above the lower limit temperature and below the upper limit temperature.
- the lower limit temperature (here, 50 ° C.) is stored, and the heat medium whose temperature is controlled to be equal to or higher than the lower limit temperature is set to be supplied to the susceptor 105.
- the heat medium refluxed from the susceptor 105 is heated or cooled, and a heat medium having a set temperature of 50 ° C. is supplied to the susceptor 105.
- a mixed gas of silane gas, ammonia gas, and nitrogen gas is supplied as the CVD gas, and the SiN film is formed in a state where the substrate 110 is maintained at a temperature that is higher than the lower limit temperature and lower than the upper limit temperature.
- the susceptor 105 is at room temperature, and the temperature of the heat medium returned from the susceptor 105 to the heating / cooling apparatus 160 is lower than the set temperature. Therefore, immediately after the start-up, the heating / cooling device 160 heats the refluxed heat medium to raise the temperature to the set temperature and supplies it to the susceptor 105. In this case, the susceptor 105 and the substrate 110 are heated and heated by the heat medium, and the substrate 110 is maintained in a range between the lower limit temperature and the upper limit temperature.
- the susceptor 105 When a thin film is continuously formed on a plurality of substrates 110, the susceptor 105 is heated by heat flowing from the plasma. In this case, since the heat medium recirculated from the susceptor 105 to the heating / cooling device 160 is higher than the lower limit temperature (50 ° C.), the heating / cooling device 160 cools the heat medium and converts the heat medium at the set temperature into the susceptor. It supplies to 105. Thereby, it is possible to form a thin film while maintaining the substrate 110 in a range between the lower limit temperature and the upper limit temperature.
- the heating / cooling device 160 heats the heating medium when the temperature of the refluxed heating medium is lower than the set temperature, and cools the heating medium when the temperature is higher than the set temperature.
- a heat medium having a set temperature is supplied to the susceptor, and as a result, the substrate 110 is maintained in a temperature range between the lower limit temperature and the upper limit temperature.
- the substrate 110 is unloaded from the vacuum chamber 102, the undeposited substrate 110 is loaded into the vacuum chamber 102, and a heating medium having a set temperature is supplied as described above. A thin film is formed.
- the atmospheric pressure plasma CVD method which does not require a vacuum can also be used as a formation method of the 1st barrier layer.
- the atmospheric pressure plasma CVD method which performs plasma CVD processing near atmospheric pressure, does not need to be reduced in pressure and is more productive than the plasma CVD method under vacuum.
- the film speed is high, and further, under a high pressure condition of atmospheric pressure as compared with the conditions of a normal CVD method, the gas mean free path is very short, so that a very homogeneous film can be obtained.
- nitrogen gas or 18th group atom of the periodic table specifically helium, neon, argon, krypton, xenon, radon, etc. are used as the discharge gas.
- nitrogen, helium, and argon are preferably used, and nitrogen is particularly preferable because of low cost.
- the atmospheric pressure plasma treatment is one in which two or more electric fields having different frequencies are formed in the discharge space, as described in the specification of International Publication No. 2007-026545. It is preferable to use a method in which an electric field is formed by superimposing two high-frequency electric fields.
- the frequency ⁇ 2 of the second high-frequency electric field is higher than the frequency ⁇ 1 of the first high-frequency electric field, the strength V1 of the first high-frequency electric field, the strength V2 of the second high-frequency electric field, and the discharge
- the relationship with the starting electric field strength IV is V1 ⁇ IV> V2 or V1> IV ⁇ V2
- the filled, the output density of the second high-frequency electric field is preferably not 1W / cm 2 or more.
- the discharge can be started and a high density and stable plasma state can be maintained, and a high performance thin film can be formed. It can be carried out.
- a discharge gas having a high discharge starting electric field strength such as nitrogen gas
- the discharge start electric field intensity IV (1/2 V p-p ) is about 3.7 kV / mm. Therefore, in the above relationship, the first applied electric field intensity is Is applied as V1 ⁇ 3.7 kV / mm, whereby the nitrogen gas can be excited to be in a plasma state.
- the frequency of the first power source is preferably 200 kHz or less.
- the electric field waveform may be a continuous wave or a pulse wave.
- the lower limit is preferably about 1 kHz.
- the frequency of the second power source is preferably 800 kHz or more.
- the upper limit is preferably about 200 MHz.
- the formation of a high-frequency electric field from such two power sources is necessary for initiating the discharge of a discharge gas having a high discharge starting electric field strength by the first high-frequency electric field, and the high frequency of the second high-frequency electric field.
- the atmospheric pressure or the pressure in the vicinity thereof is about 20 kPa to 110 kPa, and 93 kPa to 104 kPa is preferable in order to obtain the good effects described in the present invention.
- the excited gas as used in the present invention means that at least a part of the molecules in the gas move from the existing state to a higher state by obtaining energy.
- Excited gas molecules, radicalized gas molecules A gas containing ionized gas molecules corresponds to this.
- the first barrier layer according to the present invention mixes a gas containing a source gas containing silicon with an excited discharge gas in a discharge space where a high-frequency electric field is generated under atmospheric pressure or a pressure in the vicinity thereof.
- a secondary excitation gas is formed and the substrate is exposed to the secondary excitation gas to form an inorganic film.
- the pressure between the counter electrodes (discharge space) is set to atmospheric pressure or a pressure near it, a discharge gas is introduced between the counter electrodes, a high frequency voltage is applied between the counter electrodes, and the discharge gas is converted into plasma. Then, the discharge gas and the raw material gas that are in a plasma state are mixed outside the discharge space, and the base material is exposed to the mixed gas (secondary excitation gas), so that the first barrier is formed on the base material. Form a layer.
- the first barrier layer formed by the chemical vapor deposition method in the present invention can be selected from metal oxide, metal nitride, metal carbide, or a composite compound thereof from the viewpoint of permeability. Also.
- the first barrier layer is desirably formed substantially or completely as an inorganic layer. Among these, the first barrier layer preferably includes silicon oxide, silicon oxynitride, or silicon nitride.
- the second barrier layer according to the present invention is formed by laminating and applying a coating solution containing a silicon compound on the first barrier layer formed by chemical vapor deposition.
- any appropriate method can be adopted as a coating method.
- a coating method includes a spin coating method, a roll coating method, a flow coating method, an ink jet method, a spray coating method, a printing method, a dip coating method, a casting film forming method, a bar coating method, and a gravure printing method.
- the coating thickness can be appropriately set according to the purpose.
- the coating thickness can be set so that the thickness after drying is preferably about 1 nm to 100 ⁇ m, more preferably about 10 nm to 10 ⁇ m, and most preferably about 10 nm to 1 ⁇ m.
- the second barrier layer according to the present invention is formed by laminating and applying a coating solution containing a silicon compound on the first barrier layer formed by chemical vapor deposition.
- the silicon compound according to the present invention is not particularly limited as long as a coating solution containing a silicon compound can be prepared, but a polysilazane compound, polysiloxane and the like are preferable.
- silicon compound according to the present invention examples include perhydropolysilazane, silsesquioxane, tetramethylsilane, trimethylmethoxysilane, dimethyldimethoxysilane, methyltrimethoxysilane, trimethylethoxysilane, dimethyldiethoxysilane, and methyltriethoxysilane.
- silsesquioxane Mayaterials made Q8 series of Octakis (tetramethylammonium) pentacyclo-octasiloxane-octakis (yloxide) hydrate; Octa (tetramethylammonium) silsesquioxane, Octakis (dimethylsiloxy) octasilsesquioxane, Octa [[3 - [(3-ethyl-3 -Oxetyll) methoxy] propyl] dimethylsiloxy] octasilsesquioxane; Octaallyloxetanes sesquioxane, Octa [(3-Propylglycidylether) dim thylsiloxy] silsesquioxane; Octakis [[3- (2,3-epoxypropoxy) propyl] dimethylsiloxy] octasilsesquioxane, Octakis [[[
- silicon compounds inorganic silicon compounds are preferable, particularly silicon compounds that are solid at room temperature are preferable, and perhydropolysilazane, silsesquioxane hydride, and the like are more preferably used.
- the “polysilazane” used in the present invention is a polymer having a silicon-nitrogen bond, and is composed of Si—N, Si—H, N—H, etc. SiO 2 , Si 3 N 4 and both intermediate solid solutions SiO x N y. Such as a ceramic precursor inorganic polymer.
- a compound which is converted to silica by being ceramicized at a relatively low temperature is preferable.
- it is represented by the following general formula (1) described in JP-A-8-112879.
- a compound having a main skeleton composed of the following units is preferred.
- R 1 , R 2 and R 3 each independently represent a hydrogen atom, an alkyl group, an alkenyl group, a cycloalkyl group, an aryl group, an alkylsilyl group, an alkylamino group or an alkoxy group. .
- the perhydropolysilazane in which all of R 1 , R 2 , and R 3 are hydrogen atoms is particularly preferable.
- the organopolysilazane in which a part of the hydrogen atom portion bonded to Si is substituted with an alkyl group or the like has improved adhesion to the base material as a base by having an alkyl group such as a methyl group and is hard.
- the ceramic film made of brittle polysilazane can be toughened, and there is an advantage that the occurrence of cracks can be suppressed even when the (average) film thickness is increased.
- Perhydropolysilazane is presumed to have a linear structure and a ring structure centered on 6- and 8-membered rings.
- the number average molecular weight (Mn) is about 600 to 2000 (polystyrene conversion), and there are liquid or solid substances, and the state varies depending on the molecular weight. These are marketed in a solution state dissolved in an organic solvent, and the commercially available product can be used as it is as a polysilazane-containing coating solution.
- a silicon alkoxide-added polysilazane obtained by reacting a silicon alkoxide with a polysilazane having a main skeleton composed of a unit represented by the above general formula (1) (for example, Japanese Patent Laid-Open No. Hei. No.
- glycidol-added polysilazane obtained by reacting glycidol (for example, see JP-A-6-122852), alcohol-added polysilazane obtained by reacting alcohol (for example, JP-A-6-240208)
- a metal carboxylate-added polysilazane obtained by reacting a metal carboxylate (see, for example, JP-A-6-299118), and an acetylacetonate complex obtained by reacting a metal-containing acetylacetonate complex
- Additional polysilazanes eg, Unexamined see JP 6-306329
- fine metal particles added polysilazane obtained by adding metal particles (e.g., Japanese Unexamined see JP 7-196986), and the like.
- organic solvent for preparing a coating liquid containing polysilazane it is not preferable to use an alcohol or water-containing one that easily reacts with polysilazane. Therefore, specifically, hydrocarbon solvents such as aliphatic hydrocarbons, alicyclic hydrocarbons and aromatic hydrocarbons, halogenated hydrocarbon solvents, ethers such as aliphatic ethers and alicyclic ethers can be used. .
- hydrocarbons such as pentane, hexane, cyclohexane, toluene, xylene, solvesso and turben, halogen hydrocarbons such as methylene chloride and trichloroethane, ethers such as dibutyl ether, dioxane and tetrahydrofuran.
- organic solvents may be selected according to characteristics such as the solubility of polysilazane and the evaporation rate of the organic solvent, and a plurality of organic solvents may be mixed.
- the polysilazane concentration in the polysilazane-containing coating solution is preferably about 0.2 to 35% by mass, although it varies depending on the film thickness of the target second barrier layer and the pot life of the coating solution.
- an amine or a metal catalyst can be added in order to promote conversion to a silicon oxide compound.
- Specific examples include Aquamica NAX120-20, NN110, NN310, NN320, NL110A, NL120A, NL150A, NP110, NP140, and SP140 manufactured by AZ Electronic Materials.
- the second barrier layer formed from the polysilazane-containing coating solution according to the present invention preferably has moisture removed before or during the modification treatment. Therefore, it is preferable to divide into the 1st process aiming at the removal of the organic solvent in a 2nd barrier layer, and the 2nd process aiming at the removal of the water
- the drying conditions can be appropriately determined by a method such as heat treatment, and at this time, the moisture may be removed.
- the heat treatment temperature is preferably a high temperature from the viewpoint of rapid processing, but it is preferable to appropriately determine the temperature and treatment time in consideration of thermal damage to the resin film substrate.
- Tg glass transition temperature
- the heat treatment temperature can be set to 200 ° C. or less.
- the treatment time is preferably set to a short time so that the solvent is removed and thermal damage to the substrate is reduced. If the heat treatment temperature is 200 ° C. or less, the treatment time can be set within 30 minutes.
- the second step is a step for removing moisture in the second barrier layer, and the method for removing moisture is preferably a mode of dehumidification while maintaining a low humidity environment. Since humidity in a low-humidity environment varies depending on temperature, a preferable form is shown for the relationship between temperature and humidity by defining the dew point temperature.
- a preferable dew point temperature is 4 ° C. or lower (temperature 25 ° C./humidity 25%), a more preferable dew point temperature is ⁇ 8 ° C. (temperature 25 ° C./humidity 10%) or lower, and a more preferable dew point temperature is ⁇ 31 ° C. (temperature 25 ° C./temperature).
- the maintained time is preferably set appropriately depending on the film thickness of the second barrier layer.
- the dew point temperature is ⁇ 8 ° C. or less and the maintaining time is 5 minutes or more.
- the pressure in the vacuum drying can be selected from normal pressure to 0.1 MPa.
- the dew point of the second step is 4 ° C. or less.
- the treatment time can be selected from 5 minutes to 120 minutes to remove moisture.
- the first process and the second process can be distinguished by a change in dew point, and the difference can be made by changing the dew point of the process environment by 10 ° C. or more.
- the second barrier layer according to the present invention is preferably subjected to a modification treatment while maintaining its state even after moisture is removed in the second step.
- the moisture content of the second barrier layer according to the present invention can be measured according to the analysis method described below.
- the moisture content in the second barrier layer in the present invention is defined as a value obtained by dividing the moisture content obtained by the above analysis method by the volume of the second barrier layer, and the state in which moisture is removed by the second step. Is preferably 0.1% or less, and more preferably 0.01% or less (below the detection limit).
- removal of moisture before or during the reforming treatment is a preferable form from the viewpoint of promoting the dehydration reaction of the second barrier layer converted to silanol.
- Modification treatment of second barrier layer refers to a conversion reaction of a silicon compound into silicon oxide or silicon oxynitride.
- a known method based on the conversion reaction of the second barrier layer can be selected.
- the formation of a silicon oxide film or a silicon oxynitride layer by a substitution reaction of a silicon compound requires a high temperature of 450 ° C. or more, and is difficult to adapt to a flexible substrate such as plastic.
- the gas barrier film of the present invention from the viewpoint of adapting to a plastic substrate, a conversion reaction using plasma, ozone, or ultraviolet light that can be converted at a lower temperature is preferable.
- Plasma treatment In the present invention, a known method can be used as the plasma treatment that can be used as the modification treatment, and the above-mentioned atmospheric pressure plasma treatment and the like can be preferably used.
- reformation process can be performed by heat-processing the coating film containing a silicon compound.
- a method of heating a coating film by contacting a substrate with a heating element such as a heat block a method of heating an atmosphere by an external heater such as a resistance wire, an infrared region such as an IR heater, etc.
- a method using light can be raised, but is not particularly limited. Moreover, you may select suitably the method which can maintain the smoothness of the coating film containing a silicon compound.
- the temperature of the coating film during the heat treatment is preferably adjusted appropriately in the range of 50 ° C to 250 ° C, more preferably in the range of 100 ° C to 250 ° C.
- the heating time is preferably in the range of 1 second to 10 hours, more preferably in the range of 10 seconds to 1 hour.
- UV irradiation treatment treatment by ultraviolet irradiation is also preferable as one of the modification treatment methods.
- Ozone and active oxygen atoms generated by ultraviolet light have high oxidation ability, and can form a silicon oxide film or silicon oxynitride film having high density and insulation at low temperatures. It is.
- the base material is heated, and O 2 and H 2 O contributing to ceramicization (silica conversion), an ultraviolet absorber, and polysilazane itself are excited and activated.
- the conversion to ceramics is promoted, and the resulting ceramic film becomes denser. Irradiation with ultraviolet rays is effective at any time after the formation of the coating film.
- any commonly used ultraviolet ray generator can be used.
- the ultraviolet ray referred to in the present invention generally means an electromagnetic wave having a wavelength of 10 to 400 nm, but in the case of an ultraviolet irradiation treatment other than the vacuum ultraviolet ray (10 to 200 nm) treatment described later, it is preferably 210 to 350 nm. Use ultraviolet light.
- the irradiation intensity and the irradiation time are set within a range in which the substrate carrying the second barrier layer to be irradiated is not damaged.
- the distance between the base material and the ultraviolet irradiation lamp is set so as to be 2, and irradiation can be performed for 0.1 seconds to 10 minutes.
- the substrate temperature during ultraviolet irradiation treatment is 150 ° C. or more
- the properties of the substrate are impaired, such as deformation of the substrate or deterioration of its strength.
- a modification treatment at a higher temperature is possible.
- the substrate temperature at the time of ultraviolet irradiation there is no general upper limit for the substrate temperature at the time of ultraviolet irradiation, and it can be appropriately set by those skilled in the art depending on the type of substrate.
- ultraviolet ray generating means examples include metal halide lamps, high-pressure mercury lamps, low-pressure mercury lamps, xenon arc lamps, carbon arc lamps, and excimer lamps (single wavelengths of 172 nm, 222 nm, and 308 nm, for example, USHIO INC. )), UV light laser, and the like.
- the ultraviolet rays from the generation source are reflected by the reflector and then applied to the second barrier layer. It is desirable to guess.
- UV irradiation can be applied to both batch processing and continuous processing, and can be appropriately selected depending on the shape of the substrate used.
- a substrate for example, a silicon wafer
- the ultraviolet baking furnace itself is generally known, and for example, an ultraviolet baking furnace manufactured by Eye Graphics Co., Ltd. can be used.
- the base material which has a 2nd barrier layer on the surface is a elongate film form, it irradiates an ultraviolet-ray continuously in the drying zone equipped with the above ultraviolet-ray generation sources, conveying this. Can be made into ceramics.
- the time required for ultraviolet irradiation is generally 0.1 seconds to 10 minutes, preferably 0.5 seconds to 3 minutes, although it depends on the composition and concentration of the substrate used and the second barrier layer.
- the most preferable modification treatment method is treatment by vacuum ultraviolet irradiation (excimer irradiation treatment).
- the treatment by vacuum ultraviolet irradiation uses light energy of 100 to 200 nm, preferably light energy having a wavelength of 100 to 180 nm, which is larger than the interatomic bonding force in the polysilazane compound, and only bonds photons called photon processes.
- a silicon oxide film is formed at a relatively low temperature by causing an oxidation reaction with active oxygen or ozone to proceed while cutting directly.
- a rare gas excimer lamp is preferably used.
- noble gas atoms such as Xe, Kr, Ar, Ne, and the like are chemically bonded and do not form molecules, they are called inert gases.
- rare gas atoms excited atoms
- the rare gas is xenon, e + Xe ⁇ e + Xe * Xe * + Xe + Xe ⁇ Xe 2 * + Xe
- excimer light of 172 nm is emitted.
- ⁇ Excimer lamps are characterized by high efficiency because radiation concentrates on one wavelength and almost no other light is emitted. Further, since no extra light is emitted, the temperature of the object can be kept low. Furthermore, since no time is required for starting and restarting, instantaneous lighting and blinking are possible.
- Dielectric barrier discharge is a lightning generated in a gas space by arranging a gas space between both electrodes via a dielectric (transparent quartz in the case of an excimer lamp) and applying a high frequency high voltage of several tens of kHz to the electrode.
- a dielectric transparent quartz in the case of an excimer lamp
- a high frequency high voltage of several tens of kHz to the electrode.
- the micro discharge streamer reaches the tube wall (dielectric)
- the electric discharge accumulates on the surface of the dielectric, and the micro discharge disappears.
- This micro discharge spreads over the entire tube wall, and is a discharge that repeatedly generates and disappears. For this reason, flickering of light that can be seen with the naked eye occurs.
- a very high temperature streamer reaches a pipe wall directly locally, there is a possibility that deterioration of the pipe wall may be accelerated.
- electrodeless field discharge is possible in addition to dielectric barrier discharge.
- Electrode-free electric field discharge due to capacitive coupling also called RF discharge.
- the lamp, the electrode, and the arrangement thereof may be basically the same as those of the dielectric barrier discharge, but the high frequency applied between the two electrodes is lit at several MHz. Since the electrodeless field discharge can provide a spatially and temporally uniform discharge in this way, a long-life lamp without flickering can be obtained.
- the outer electrode covers the entire outer surface and transmits light to extract light to the outside in order to cause discharge in the entire discharge space.
- an electrode in which a fine metal wire is formed in a net shape is used. Since this electrode uses as thin a line as possible so as not to block light, it is easily damaged by ozone generated by vacuum ultraviolet light in an oxygen atmosphere.
- Synthetic quartz windows are not only expensive consumables, but also cause light loss.
- the outer diameter of the double-cylindrical lamp is about 25 mm, the difference in distance to the irradiation surface cannot be ignored directly below the lamp axis and on the side of the lamp, resulting in a large difference in illuminance. Therefore, even if the lamps are closely arranged, a uniform illuminance distribution cannot be obtained. If the irradiation device is provided with a synthetic quartz window, the distance in the oxygen atmosphere can be made uniform, and a uniform illuminance distribution can be obtained.
- the biggest feature of the capillary excimer lamp is its simple structure.
- the quartz tube is closed at both ends, and only gas for excimer light emission is sealed inside. Therefore, a very inexpensive light source can be provided.
- Double-cylindrical lamps are easily damaged by handling and transportation compared to thin-tube lamps because they are processed by connecting both ends of the inner and outer tubes.
- the outer diameter of the tube of the thin tube lamp is about 6 to 12 mm. If it is too thick, a high voltage is required for starting.
- the discharge mode can be either dielectric barrier discharge or electrodeless field discharge.
- the electrode may have a flat surface in contact with the lamp, but if the shape is matched to the curved surface of the lamp, the lamp can be firmly fixed, and the discharge is more stable when the electrode is in close contact with the lamp. Also, if the curved surface is made into a mirror surface with aluminum, it also becomes a light reflector.
- the Xe excimer lamp is excellent in luminous efficiency because it emits ultraviolet light having a short wavelength of 172 nm at a single wavelength. Since this light has a large oxygen absorption coefficient, it can generate radical oxygen atom species and ozone at a high concentration with a very small amount of oxygen. In addition, it is known that the energy of light having a short wavelength of 172 nm for dissociating the bonds of organic substances has high ability. Due to the high energy of the active oxygen, ozone and ultraviolet radiation, the polysilazane film can be modified in a short time.
- ⁇ Excimer lamps have high light generation efficiency and can be lit with low power.
- light having a long wavelength that causes a temperature increase due to light is not emitted, and energy of a single wavelength is irradiated in the ultraviolet region, so that an increase in the surface temperature of the irradiation object is suppressed.
- flexible film materials such as polyethylene terephthalate which are considered to be easily affected by heat.
- the second barrier layer has a low modified region on the substrate surface side and a high modified region on the surface layer side.
- the quality region can be confirmed by various methods, but the method of confirming the cross section of the second barrier layer after the modification treatment by observing with a transmission electron microscope (TEM) is the most effective.
- TEM transmission electron microscope
- a thin piece of the gas barrier film is prepared by the following FIB processing apparatus, and then a cross-sectional TEM observation is performed. At this time, if the sample is continuously irradiated with an electron beam, a contrast difference appears between a portion that is damaged by the electron beam and a portion that is not.
- the modified region according to the present invention is less susceptible to electron beam damage because it is densified by the modification process, but in the non-modified region, it is damaged due to electron beam damage, and alteration is confirmed.
- the thickness of the modified region and the non-modified region can be calculated by the cross-sectional TEM observation confirmed in this way.
- the gas barrier film may be subjected to sequential measurement of the composition ratio while trimming in the depth direction to obtain the bending point of the composition ratio, which may be obtained as the interface between the modified region and the non-modified region.
- the value can be measured using an XPS (X-ray photoelectron spectroscopy) surface analyzer.
- ESCALAB-200R manufactured by VG Scientific, Inc. was used in the present invention.
- Mg was used for the X-ray anode, and measurement was performed at an output of 600 W (acceleration voltage: 15 kV, emission current: 40 mA).
- the energy resolution was set to be 1.5 eV to 1.7 eV when defined by the half width of a clean Ag3d5 / 2 peak.
- the measurement was performed by first analyzing the composition of the surface of the second barrier layer and then sequentially removing the layer corresponding to 1% of the thickness of the second barrier layer by etching.
- the second barrier layer was sequentially removed using Ar ion etching.
- Ar ion etching As the measurement, first, the range of the binding energy from 0 eV to 1100 eV was measured at a data acquisition interval of 1.0 eV to determine what elements were detected. Next, with respect to all the detected elements except for the etching ion species, the data capture interval was set to 0.2 eV, and the photoelectron peak giving the maximum intensity was subjected to narrow scan, and the spectrum of each element was measured.
- COMMON DATA PROCESSING SYSTEM (Ver. 2.3 or later is preferable) manufactured by VAMAS-SCA-JAPAN. After being transferred to the top, processing was performed with the same software, and the content value of each analysis target element (carbon, oxygen, silicon, titanium, etc.) was determined as an atomic concentration (at%). Before performing the quantification process, calibration of the count scale was performed for each element, and a 5-point smoothing process was performed. In the quantitative process, the peak area intensity (cps ⁇ eV) from which the background was removed was used. For the background treatment, the method by Shirley was used. For the Shirley method, see D.C. A. Shirley, Phys. Rev. , B5, 4709 (1972).
- the silicon compound is a polysilazane modified region is SiO x
- unmodified area is SiO x N y is detected as the main component.
- the film thickness of the modified region 4A estimated in this way is preferably 0.2 or more and 0.9 or less as a film thickness ratio with respect to the thickness of the second barrier layer 4. More preferably, it is 0.4 or more and 0.8 or less.
- the film thickness of the modified region 4A with respect to the total film thickness of the second barrier layer 4 is less than 0.2, the barrier performance of the second barrier layer is unfavorably deteriorated. This is not preferable because the second barrier layer is homogeneously modified and the flexibility is poor.
- the total film thickness of the second barrier layer is preferably 60 nm to 600 nm, more preferably 60 nm to 300 nm.
- the gas barrier layer obtained by subjecting the second barrier layer to the modification treatment causes stress concentration by setting the ratio of the modified region in the second barrier layer to the range specified above. It is possible to prevent cracks and achieve both a high barrier property and a stress relaxation function.
- surface treatment can be efficiently performed with vacuum ultraviolet light in a short time, which is preferable because the effects of the present invention are remarkably exhibited.
- the first barrier layer 3 formed by chemical vapor deposition is composed of silicon oxide or silicon oxynitride, and the elastic modulus of the first barrier layer 3 is E1.
- the elastic modulus of the modified region 4A in the second barrier layer 4 is E2
- the elastic modulus of the non-modified region 4B in the second barrier layer 4 is E3
- the elastic modulus is E1>E2> E3. It is preferable to satisfy.
- the elastic modulus of the modified region and the non-modified region in the first barrier layer and the second barrier layer can be determined by a conventionally known elastic modulus measurement method.
- Vibron DDV-2 manufactured by Orientec A second barrier layer was formed on a transparent substrate using RSA-II (manufactured by Rheometrics) as a measuring device and a method for measuring under a condition that a constant strain is applied at a constant frequency (Hz). Later, a method for obtaining a measured value obtained by changing the applied strain at a constant frequency, or a nanoindenter to which a nanoindentation method is applied, for example, a nanoindenter manufactured by MTS System (Nano Indenter TMXP / DCM) ).
- the “nanoindentation method” here refers to a triangular pyramid having a tip radius of about 0.1 to 1 ⁇ m with a very small load applied to the second barrier layer provided on the transparent base material to be measured. After applying the indenter, apply the load, unload the indenter, create a load-displacement curve, and measure the elastic modulus (reduced modulus) from the load and indentation depth obtained from the load-displacement curve. It is a method to do. In this nanoindentation method, it is possible to measure with a high accuracy of 0.01 nm as a displacement resolution using a head assembly having an ultra-low load, for example, a maximum load of 20 mN and a load resolution of 1 nN.
- an indenter of an extremely fine triangular pyramid is pushed in from the cross-sectional portion, and the elastic modulus on the side opposite to the substrate side in the cross-sectional portion
- a nanoindenter operating in a scanning electron microscope has been developed from the viewpoint of improving accuracy, and it can be obtained by applying them.
- the relationship of the elastic modulus of each layer satisfies the relationship of E1> E2> E3.
- E1 as the elastic modulus value depends on the material constituting the first barrier layer, for example, in the case of silicon oxide or silicon oxynitride, it is preferably 10 to 100 GPa, more preferably 20 to 50 GPa.
- E2 and E3 of the second barrier layer can be arbitrarily adjusted under the conditions of the modification treatment within a range satisfying the above relational expression.
- the first barrier layer 3 formed by chemical vapor deposition is composed of at least one selected from silicon oxide, silicon oxynitride, and silicon nitride.
- the film density is D1
- the film density of the modified region 4A in the second barrier layer 4 is D2
- the film density of the non-modified region 4B in the second barrier layer 4 is D3
- the film density is D1>. It is preferable to satisfy the relationship of D2> D3.
- the second barrier layer 4 When the second barrier layer 4 is present on the first barrier layer 3 and the film density satisfies the relationship of D1> D2> D3 described above, water and oxygen that have passed through such a defect are greatly affected by the maze effect. In addition, it is possible to suppress deterioration of bending resistance and adhesion, and further, the second barrier layer 4 also serves as a protective film for the first barrier layer 3, thereby achieving high barrier performance and bending resistance. A gas barrier film having excellent and cutting processability can be realized.
- the film density difference (D1-D2) between the film density D1 and the film density D2 is 0.05 or more and 1.30 or less, and the film density difference (D1-D3) between the film density D1 and the film density D3. ) Is 0.15 or more and 1.40 or less, and the film density difference (D2 ⁇ D3) between the film density D2 and the film density D3 is preferably 0.10 or more, and more preferably the film density D2 And the film density difference D3 (D2 ⁇ D3) is 0.10 or more and 0.40 or less.
- the film density D1 of the first barrier layer 3, the film density D2 of the modified region 4A in the second barrier layer 4, and the film density D3 of the unmodified region 4B in the second barrier layer 4 are Can be determined according to the following method.
- -X-ray reflectivity measuring device Rigaku Electric's thin film structure evaluation device ATX-G ⁇ X-ray source target: Copper (1.2kW)
- the modified region 4A is preferably present, but the modified region according to the present invention has the following characteristics.
- the second barrier layer 4 according to the present invention is a modification treatment of a coating film composed of a silicon compound, it does not generate dislocation lines that are likely to occur during deposition of gas phase molecules, and has no interface properties. It is assumed that different areas can be formed.
- a high density region is formed in the modified region 4A. Further, from the FT-IR analysis in the depth direction, Si—O atoms in the high density region are formed. When the distance is measured, a microcrystalline region is confirmed, and a crystallized region is confirmed in a region having the highest density.
- the surface region SiO 2 of the second barrier layer according to the present invention is treated at a low temperature of 200 ° C. or lower on the resin substrate. But crystallization can be achieved. Although the reason is not clear, the present inventor considered that the cyclic structure of 3 to 5 contained in the polysilazane has an interatomic distance advantageous for forming a crystal structure. The process of dissolution, rearrangement, and crystallization is unnecessary, and it is assumed that the modification process is involved in the existing short-range order and can be ordered with less energy.
- the modification treatment by vacuum ultraviolet irradiation is most preferred for forming the modified region.
- the mechanism by which this modified region is formed is not clear, but the present inventor simultaneously proceeds with a direct cleavage of the silazane compound by light energy and a surface oxidation reaction by active oxygen or ozone generated in the gas phase, It is presumed that a reforming speed difference occurs between the surface side and the inside of the reforming process, and as a result, a reforming region is formed. Further, as a means for positively controlling the difference in the reforming rate, there is a method of controlling the surface oxidation reaction by active oxygen or ozone generated in the gas phase.
- the desired composition, film thickness, and density of the modified region can be obtained.
- the conditions that contribute to the surface oxidation reaction such as oxygen concentration, processing temperature, humidity, irradiation distance, and irradiation time, during the irradiation.
- the desired composition, film thickness, and density of the modified region can be obtained.
- a mode in which the oxygen concentration is changed during irradiation is preferable, and the nitrogen content on the surface side can be reduced and the film thickness can be increased by increasing the oxygen concentration in accordance with the change in the conditions.
- the thickness of the second barrier layer is 50 to 1000 nm
- the vacuum ultraviolet illuminance is 10 to 200 mJ / cm 2
- the irradiation distance is 0.1 to 10 mm
- the oxygen concentration is 0 to 5%
- a dew point temperature of 10 to -50 ° C, a temperature of 25 to 200 ° C, and a treatment time of 0.1 to 150 seconds can be selected.
- the surface roughness (Ra) of the surface on the modification treatment side of the second barrier layer according to the present invention is preferably 2 nm or less, more preferably 1 nm or less.
- the surface roughness (Ra) of the gas barrier layer according to the present invention can be measured by the following method.
- the surface roughness is calculated from an uneven sectional curve continuously measured with an AFM (Atomic Force Microscope), for example, DI3100 manufactured by Digital Instruments, with a detector having a stylus with a minimum tip radius. This is a roughness related to the amplitude of fine irregularities measured by a stylus many times in a section whose measurement direction is several tens of ⁇ m.
- AFM Acoustic Force Microscope
- the gas barrier film of the present invention is excellent in cutting processability. That is, even if cutting is performed, there is no fraying on the cut surface, and an effective area can be earned.
- the conventional gas barrier film has a phenomenon in which the edge of the cutting breaks vigorously for each film like glass due to the stress applied during cutting, and the effective area as a product is reduced due to cracks in the cutting surface. There was a problem that productivity was bad.
- the inventor has eagerly pursued the cause of the conventional gas barrier film breaking like glass at the time of cutting, but the mechanism could not be clarified.
- the second barrier layer having a modified region and a non-modified region is used particularly in the modification treatment of the second barrier layer, so that the end portion at the time of cutting processing is used.
- the present inventors have found that such a stress can be dispersed and the phenomenon of breaking like glass can be improved.
- the cutting method is not particularly limited, but is preferably performed by ablation processing using a high energy laser such as an ultraviolet laser (for example, wavelength 266 nm), an infrared laser, a carbon dioxide gas laser or the like. Since the gas barrier film has an inorganic thin film that is easily broken, cracks may occur in detail when cut with a normal cutter. Furthermore, the cracking at the time of cutting can also be suppressed by installing a protective layer containing an organic component on the surface of the first barrier layer.
- a high energy laser such as an ultraviolet laser (for example, wavelength 266 nm), an infrared laser, a carbon dioxide gas laser or the like. Since the gas barrier film has an inorganic thin film that is easily broken, cracks may occur in detail when cut with a normal cutter. Furthermore, the cracking at the time of cutting can also be suppressed by installing a protective layer containing an organic component on the surface of the first barrier layer.
- the base material (hereinafter also referred to as a base material) of the gas barrier film of the present invention is formed of an organic material that can hold a gas barrier layer (first barrier layer + second barrier layer) having gas barrier properties. There is no particular limitation as long as it is the same.
- examples thereof include a heat-resistant transparent film having a skeleton (product name: Sila-DEC, manufactured by Chisso Corporation), and a resin film formed by laminating two or more layers of the resin.
- polyethylene terephthalate (PET), polybutylene terephthalate, polyethylene naphthalate (PEN), polycarbonate (PC), etc. are preferably used, and optical transparency, heat resistance, first
- a heat-resistant transparent film having a basic skeleton of silsesquioxane having an organic-inorganic hybrid structure can be preferably used.
- the thickness of the substrate is preferably about 5 to 500 ⁇ m, more preferably 25 to 250 ⁇ m.
- the base material according to the present invention is preferably transparent. Since the base material is transparent and the layer formed on the base material is also transparent, it becomes possible to make a transparent gas barrier film, so that it becomes possible to make a transparent substrate such as an organic EL element. It is.
- the base material using the above-described resins or the like may be an unstretched film or a stretched film.
- the base material used in the present invention can be produced by a conventionally known general method.
- an unstretched substrate that is substantially amorphous and not oriented can be produced by melting a resin as a material with an extruder, extruding it with an annular die or a T-die, and quenching.
- the unstretched base material is subjected to a known method such as uniaxial stretching, tenter-type sequential biaxial stretching, tenter-type simultaneous biaxial stretching, tubular simultaneous biaxial stretching, etc.
- a stretched substrate can be produced by stretching in the direction perpendicular to the flow direction of the substrate (horizontal axis).
- the draw ratio in this case can be appropriately selected according to the resin as the raw material of the base material, but is preferably 2 to 10 times in each of the vertical axis direction and the horizontal axis direction.
- the corona treatment may be performed before forming the first barrier layer.
- an anchor coat layer may be formed on the surface of the base material according to the present invention for the purpose of improving the adhesion with the first barrier layer.
- the anchor coating agent used in this anchor coat layer include polyester resin, isocyanate resin, urethane resin, acrylic resin, ethylene vinyl alcohol resin, vinyl modified resin, epoxy resin, modified styrene resin, modified silicon resin, and alkyl titanate. One or two or more can be used in combination. Conventionally known additives can be added to these anchor coating agents.
- the above-mentioned anchor coating agent is coated on a substrate by a known method such as roll coating, gravure coating, knife coating, dip coating, spray coating, and the like, and is coated by drying and removing the solvent, diluent, etc. Can do.
- the application amount of the anchor coating agent is preferably about 0.1 to 5 g / m 2 (dry state).
- the surface of the base material according to the present invention has a surface having a maximum cross-sectional height Rt (p) defined by JIS B 0601 of 10 nm ⁇ It is preferable to provide a smooth layer such that Rt (p) ⁇ 30 nm.
- the film thickness of the smooth layer is not particularly limited. However, in order to form a smooth surface covering the unevenness of the resin substrate surface and ensure flexibility, smoothness is required.
- the thickness of the layer is preferably 0.1 ⁇ m to 10 ⁇ m, and more preferably 0.5 ⁇ m to 6 ⁇ m.
- the second barrier layer when the second barrier layer is formed by modifying the coating film of the silicon compound on the first barrier layer by the chemical vapor deposition method as in the present invention, the second barrier layer repairs the defect of the first barrier layer. While it has the merit of smoothing the surface and the surface, the shrinkage is accompanied by the modification process from the coating film to the high density inorganic film with high gas barrier property, so that the first barrier layer receives the stress and the defect is generated.
- the configuration of the present invention may not be fully utilized.
- the second barrier layer is provided by providing a smooth layer in which the lower layer of the first barrier layer has a pencil hardness of H or more and the maximum surface height difference Rt is 10 nm ⁇ Rt ⁇ 30 nm. It was found that the contraction stress during the formation was prevented from being concentrated on the first barrier layer, and the effect of the configuration of the present invention could be exhibited most.
- the smooth layer may be an organic-inorganic hybrid composition such as a mixture of an organic resin binder (photosensitive resin) and inorganic particles, or may be an inorganic layer that can be formed by a sol-gel method or the like.
- a layer obtained by curing an inorganic polymer (oligomer) such as polysilazane with heat or ultraviolet light may be used as the smoothing layer. Furthermore, it is also possible to make these layers into a laminated structure in accordance with the purpose.
- the smooth layer also flattens the rough surface of the transparent resin film substrate where protrusions and the like are present, or unevenness and pinholes generated in the transparent first barrier layer due to the protrusions present on the transparent resin film substrate. Is provided to fill and flatten.
- Such a smooth layer is basically formed by curing a photosensitive resin.
- Examples of the photosensitive resin used for forming the smooth layer include a resin composition containing an acrylate compound having a radical-reactive unsaturated compound, a resin composition containing an acrylate compound and a mercapto compound having a thiol group, epoxy acrylate, Examples thereof include resin compositions in which polyfunctional acrylate monomers such as urethane acrylate, polyester acrylate, polyether acrylate, polyethylene glycol acrylate, and glycerol methacrylate are dissolved. It is also possible to use an arbitrary mixture of the above resin compositions, and any photosensitive resin containing a reactive monomer having one or more photopolymerizable unsaturated bonds in the molecule can be used. There are no particular restrictions.
- Examples of reactive monomers having at least one photopolymerizable unsaturated bond in the molecule include methyl acrylate, ethyl acrylate, n-propyl acrylate, isopropyl acrylate, n-butyl acrylate, isobutyl acrylate, tert-butyl acrylate, and n-pentyl.
- composition of the photosensitive resin contains a photopolymerization initiator.
- photopolymerization initiator examples include benzophenone, methyl o-benzoylbenzoate, 4,4-bis (dimethylamine) benzophenone, 4,4-bis (diethylamine) benzophenone, ⁇ -amino acetophenone, 4,4-dichloro Benzophenone, 4-benzoyl-4-methyldiphenyl ketone, dibenzyl ketone, fluorenone, 2,2-diethoxyacetophenone, 2,2-dimethoxy-2-phenylacetophenone, 2-hydroxy-2-methylpropiophenone, p- tert-Butyldichloroacetophenone, thioxanthone, 2-methylthioxanthone, 2-chlorothioxanthone, 2-isopropylthioxanthone, diethylthioxanthone, benzyldimethyl ketal, benzylmethoxyethyl acetal, benzo Methyl ether
- the method for forming the smooth layer is not particularly limited, but is preferably formed by a wet coating method such as a spin coating method, a spray method, a blade coating method, a dip method, or a dry coating method such as an evaporation method.
- a wet coating method such as a spin coating method, a spray method, a blade coating method, a dip method, or a dry coating method such as an evaporation method.
- additives such as an antioxidant, an ultraviolet absorber, and a plasticizer can be added to the above-described photosensitive resin as necessary.
- an appropriate resin or additive may be used in order to improve the film formability and prevent the generation of pinholes in the film.
- Solvents used when forming a smooth layer using a coating solution in which a photosensitive resin is dissolved or dispersed in a solvent include alcohols such as methanol, ethanol, n-propanol, isopropanol, ethylene glycol and propylene glycol, ⁇ -Or terpenes such as ⁇ -terpineol, etc., ketones such as acetone, methyl ethyl ketone, cyclohexanone, N-methyl-2-pyrrolidone, diethyl ketone, 2-heptanone, 4-heptanone, aroma such as toluene, xylene, tetramethylbenzene Group hydrocarbons, cellosolve, methyl cellosolve, ethyl cellosolve, carbitol, methyl carbitol, ethyl carbitol, butyl carbitol, propylene glycol monomethyl ether, propylene glycol monoethyl
- the smoothness of the smooth layer is a value expressed by the surface roughness specified by JIS B 0601, and the maximum cross-sectional height Rt (p) is preferably 10 nm or more and 30 nm or less.
- the thickness is smaller than 10 nm, not only a very long time is required for production of the smooth layer, but also the adhesiveness with the first barrier layer may be deteriorated.
- the thickness is larger than 30 nm, defects are likely to be generated when the first barrier layer is formed, and furthermore, the unevenness of the surface of the first barrier layer is increased, so that the second barrier layer is formed. After applying the silicon compound, it may be difficult to smooth the unevenness, and the gas barrier properties are deteriorated.
- the surface roughness is calculated from an uneven cross-sectional curve continuously measured by an AFM (Atomic Force Microscope) with a detector having a stylus having a minimum tip radius, and the measurement direction is several tens by the stylus having a minimum tip radius. It is the roughness related to the amplitude of fine irregularities measured in a section of ⁇ m many times.
- AFM Anamic Force Microscope
- One preferred embodiment includes reactive silica particles (hereinafter also simply referred to as “reactive silica particles”) in which a photosensitive group having photopolymerization reactivity is introduced on the surface of the photosensitive resin.
- the photopolymerizable photosensitive group include a polymerizable unsaturated group represented by a (meth) acryloyloxy group.
- the photosensitive resin contains a photopolymerizable photosensitive group introduced on the surface of the reactive silica particles and a compound capable of photopolymerization, for example, an unsaturated organic compound having a polymerizable unsaturated group. It may be.
- a photosensitive resin what adjusted solid content by mixing a general-purpose dilution solvent suitably with such a reactive silica particle or the unsaturated organic compound which has a polymerizable unsaturated group can be used.
- the average particle size of the reactive silica particles is preferably 0.001 to 0.1 ⁇ m.
- the average particle size in such a range, the antiglare property and the resolution, which are the effects of the present invention, can be obtained by using in combination with a matting agent composed of inorganic particles having an average particle size of 1 to 10 ⁇ m described later. It becomes easy to form a smooth layer having both optical properties satisfying a good balance and hard coat properties. From the viewpoint of making it easier to obtain such effects, it is more preferable to use an average particle size of 0.001 to 0.01 ⁇ m.
- the smooth layer used in the present invention preferably contains 10% or more of the above-described inorganic particles as a mass ratio. Furthermore, it is preferable to contain 20% or more. Addition of 10% or more improves adhesion with the gas barrier layer.
- a polymerizable unsaturated group-modified hydrolyzable silane is chemically bonded to a silica particle by generating a silyloxy group by a hydrolysis reaction of a hydrolyzable silyl group.
- hydrolyzable silyl group examples include a carboxylylate silyl group such as an alkoxylyl group and an acetoxysilyl group, a halogenated silyl group such as a chlorosilyl group, an aminosilyl group, an oxime silyl group, and a hydridosilyl group.
- Examples of the polymerizable unsaturated group include acryloyloxy group, methacryloyloxy group, vinyl group, propenyl group, butadienyl group, styryl group, ethynyl group, cinnamoyl group, malate group, and acrylamide group.
- the thickness of the smooth layer is 0.1 to 10 ⁇ m, preferably 1 to 6 ⁇ m.
- the thickness is 1 ⁇ m or more, the smoothness of the film having a smooth layer is sufficient, and the surface hardness is easily improved.
- the thickness is 10 ⁇ m or less, the balance of optical properties of the smooth film can be easily adjusted.
- the smooth layer is provided only on one surface of the transparent polymer film, curling of the smooth film can be easily suppressed.
- a bleed-out prevention layer In the gas barrier film of the present invention, a bleed-out prevention layer can be provided.
- the bleed-out prevention layer is used for the purpose of suppressing the phenomenon that unreacted oligomers migrate from the film base material to the surface when the film having the smooth layer is heated and contaminate the contact surface. It is provided on the opposite surface of the substrate.
- the bleed-out prevention layer may basically have the same configuration as the smooth layer as long as it has this function.
- Examples of the unsaturated organic compound having a polymerizable unsaturated group that can be included in the bleed-out prevention layer include a polyunsaturated organic compound having two or more polymerizable unsaturated groups in the molecule, or in the molecule And monounsaturated organic compounds having one polymerizable unsaturated group.
- the polyunsaturated organic compound for example, ethylene glycol di (meth) acrylate, diethylene glycol di (meth) acrylate, glycerol di (meth) acrylate, glycerol tri (meth) acrylate, 1,4-butanediol di (Meth) acrylate, 1,6-hexanediol di (meth) acrylate, neopentyl glycol di (meth) acrylate, trimethylolpropane tri (meth) acrylate, dicyclopentanyl di (meth) acrylate, pentaerythritol tri (meth) ) Acrylate, pentaerythritol tetra (meth) acrylate, dipentaerythritol hexa (meth) acrylate, dipentaerythritol monohydroxypenta (meth) acrylate, ditrimethylolprop Tetra (meth) acrylate, di
- Examples of monounsaturated organic compounds include methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, butyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, isodecyl (meth) acrylate, and lauryl.
- Matting agents may be added as other additives.
- the matting agent inorganic particles having an average particle diameter of about 0.1 to 5 ⁇ m are preferable.
- inorganic particles one or more of silica, alumina, talc, clay, calcium carbonate, magnesium carbonate, barium sulfate, aluminum hydroxide, titanium dioxide, zirconium oxide and the like can be used in combination. .
- the matting agent composed of inorganic particles is 2 parts by mass or more, preferably 4 parts by mass or more, more preferably 6 parts by mass or more and 20 parts by mass or less, preferably 100 parts by mass of the solid content of the hard coating agent. It is desirable that they are mixed in a proportion of 18 parts by mass or less, more preferably 16 parts by mass or less.
- the bleed-out prevention layer may contain a thermoplastic resin, a thermosetting resin, an ionizing radiation curable resin, a photopolymerization initiator and the like as other components of the hard coat agent and the matting agent.
- thermoplastic resins examples include cellulose derivatives such as acetylcellulose, nitrocellulose, acetylbutylcellulose, ethylcellulose, methylcellulose, vinyl acetate and copolymers thereof, vinyl chloride and copolymers thereof, vinylidene chloride and copolymers thereof.
- Vinyl resins such as polyvinyl acetal resins such as polyvinyl formal and polyvinyl butyral, acrylic resins and copolymers thereof, acrylic resins such as methacrylic resins and copolymers thereof, polystyrene resins, polyamide resins, linear polyester resins, polycarbonates Examples thereof include resins.
- thermosetting resin examples include thermosetting urethane resin composed of acrylic polyol and isocyanate prepolymer, phenol resin, urea melamine resin, epoxy resin, unsaturated polyester resin, and silicon resin.
- an ionizing radiation curable resin an ionizing radiation (ultraviolet ray or electron beam) is irradiated to an ionizing radiation curable coating material in which one or more of a photopolymerizable prepolymer or a photopolymerizable monomer is mixed. Those that cure can be used.
- a photopolymerizable prepolymer an acrylic prepolymer having two or more acryloyl groups in one molecule and having a three-dimensional network structure by crosslinking and curing is particularly preferably used.
- urethane acrylate, polyester acrylate, epoxy acrylate, melamine acrylate and the like can be used.
- the photopolymerizable monomer the polyunsaturated organic compounds described above can be used.
- photopolymerization initiators include acetophenone, benzophenone, Michler ketone, benzoin, benzylmethyl ketal, benzoin benzoate, hydroxycyclohexyl phenyl ketone, 2-methyl-1- (4- (methylthio) phenyl) -2- (4-morpholinyl). ) -1-propane, ⁇ -acyloxime ester, thioxanthone and the like.
- the bleed-out prevention layer as described above is prepared as a coating solution by mixing a hard coating agent, a matting agent, and other components as necessary, and appropriately using a diluent solvent as necessary. It can be formed by coating the film surface with a conventionally known coating method and then curing it by irradiating with ionizing radiation.
- irradiating with ionizing radiation ultraviolet rays having a wavelength range of 100 to 400 nm, preferably 200 to 400 nm, emitted from an ultrahigh pressure mercury lamp, a high pressure mercury lamp, a low pressure mercury lamp, a carbon arc, a metal halide lamp, or the like are irradiated or scanned.
- the irradiation can be performed by irradiating an electron beam having a wavelength region of 100 nm or less emitted from a type or curtain type electron beam accelerator.
- the thickness of the bleed-out preventing layer in the present invention is 1 to 10 ⁇ m, preferably 2 to 7 ⁇ m. By making it 1 ⁇ m or more, it becomes easy to make the heat resistance as a film sufficient, and by making it 10 ⁇ m or less, it becomes easy to adjust the balance of the optical properties of the smooth film, and the smooth layer is one of the transparent polymer films. When it is provided on this surface, curling of the barrier film can be easily suppressed.
- the gas barrier film of the present invention can be continuously produced and wound into a roll form (so-called roll-to-roll production). In that case, it is preferable to stick and wind up a protective sheet on the surface in which the gas barrier layer was formed.
- a protective sheet is pasted in a highly clean place. It is very effective to prevent the adhesion of dust. In addition, it is effective in preventing scratches on the gas barrier layer surface that enters during winding.
- the protective sheet is not particularly limited, and general “protective sheet” and “release sheet” having a configuration in which a weakly adhesive layer is provided on a resin substrate having a thickness of about 100 ⁇ m can be used.
- Ca method A method in which metal Ca is vapor-deposited on a gas barrier film and the phenomenon in which metal Ca is corroded by moisture that has permeated through the film. The water vapor transmission rate is calculated from the corrosion area and the time to reach the corrosion area.
- HTO method US General Atomics
- Method proposed by A-Star (Singapore) (International Publication No. 005/95924)
- the method for measuring water vapor transmission rate is not particularly limited, but in the present invention, the water vapor transmission rate measurement method was measured by the following Ca method.
- Vapor deposition device JEE-400, a vacuum vapor deposition device manufactured by JEOL Ltd.
- Constant temperature and humidity oven Yamato Humidic Chamber IG47M Metal that reacts with water and corrodes: Calcium (granular)
- Water vapor impermeable metal Aluminum ( ⁇ 3-5mm, granular)
- Preparation of cell for evaluating water vapor barrier property Using a vacuum vapor deposition apparatus (JEOL-made vacuum vapor deposition apparatus JEE-400) on the gas barrier layer surface of the barrier film sample, a portion (12 mm) of the barrier film sample to be vapor-deposited before attaching the transparent conductive film Other than 9 x 12 mm masks, metal calcium was vapor-deposited.
- the mask was removed in a vacuum state, and aluminum was deposited from another metal deposition source on the entire surface of one side of the sheet.
- the vacuum state is released, and immediately facing the aluminum sealing side through a UV-curable resin for sealing (made by Nagase ChemteX) on quartz glass with a thickness of 0.2 mm in a dry nitrogen gas atmosphere
- the cell for evaluation was produced by irradiating with ultraviolet rays.
- a water vapor barrier property evaluation cell was similarly prepared for the barrier film which was not subjected to the bending treatment.
- the obtained sample with both sides sealed was stored at 60 ° C. and 90% RH under high temperature and high humidity, and permeated into the cell from the corrosion amount of metallic calcium based on the method described in JP-A-2005-283561. The amount of water was calculated.
- the barrier film sample instead of the barrier film sample as a comparative sample, a sample in which metallic calcium was deposited using a quartz glass plate having a thickness of 0.2 mm, The same 60 ° C., 90% RH high temperature and high humidity storage was performed, and it was confirmed that no corrosion of metallic calcium occurred even after 1000 hours.
- the gas barrier film of the present invention can be used as various sealing materials and sealing films.
- it can be used as a sealing film for organic photoelectric conversion elements.
- the gas barrier film of the present invention is transparent. Therefore, the gas barrier film is used as a substrate, and sunlight is received from the arrangement side of the gas barrier film.
- a transparent conductive thin film such as ITO can be provided as a transparent electrode to constitute a resin substrate for organic photoelectric conversion elements.
- an ITO transparent conductive film provided on the substrate is used as an anode, a porous semiconductor layer is provided thereon, and a cathode made of a metal film is formed to form an organic photoelectric conversion element, on which another seal is formed.
- the organic photoelectric conversion element can be sealed by stacking a stopper material (although it may be the same) and adhering the gas barrier film substrate to the surroundings and encapsulating the element, thereby allowing moisture such as outside air or oxygen The influence on the organic photoelectric conversion element can be sealed.
- a resin substrate for an organic photoelectric conversion element can be obtained by forming a transparent conductive film on the gas barrier layer of the gas barrier film thus formed.
- the transparent conductive film can be formed by using a vacuum deposition method, a sputtering method, or the like, or by a coating method such as a sol-gel method using a metal alkoxide such as indium or tin.
- the (average) film thickness of the transparent conductive film is preferably a transparent conductive film in the range of 0.1 to 1000 nm.
- the gas barrier film of the present invention can be used as a substrate for a sealing film.
- a transparent conductive film is further formed on the gas barrier layer unit, and the layer constituting the organic photoelectric conversion element and the layer serving as the cathode are laminated on the transparent conductive film as an anode.
- another gas barrier film can be used as a sealing film to be sealed by overlapping.
- a resin-laminated (polymer film) metal foil cannot be used as a gas barrier film on the light extraction side, but is a low-cost and low moisture-permeable sealing material and does not intend to extract light (transparent) When the property is not required), it is preferable as a sealing film.
- the metal foil is a metal foil or film formed by rolling or the like, unlike a metal thin film formed by sputtering or vapor deposition, or a conductive film formed from a fluid electrode material such as a conductive paste. Point to.
- metal foil there is no limitation in particular in the kind of metal, for example, copper (Cu) foil, aluminum (Al) foil, gold (Au) foil, brass foil, nickel (Ni) foil, titanium (Ti) foil, copper alloy Examples thereof include foil, stainless steel foil, tin (Sn) foil, and high nickel alloy foil.
- a particularly preferred metal foil is an Al foil.
- the thickness of the metal foil is preferably 6 to 50 ⁇ m. If the thickness is less than 6 ⁇ m, depending on the material used for the metal foil, pinholes may be vacant during use, and required barrier properties (moisture permeability, oxygen permeability) may not be obtained. If it exceeds 50 ⁇ m, the cost may increase depending on the material used for the metal foil, the organic photoelectric conversion element may become thick, or the merit of the film may be reduced.
- resin film In a metal foil laminated with a resin film (polymer film), as the resin film, various materials described in the new development of functional packaging materials (Toray Research Center, Inc.) can be used.
- Resin polypropylene resin, polyethylene terephthalate resin, polyamide resin, ethylene-vinyl alcohol copolymer resin, ethylene-vinyl acetate copolymer resin, acrylonitrile-butadiene copolymer resin, cellophane resin, vinylon resin, chloride
- vinylidene resins examples thereof include vinylidene resins.
- Resins such as polypropylene resins and nylon resins may be stretched and further coated with a vinylidene chloride resin.
- a polyethylene resin having a low density or a high density can be used.
- a method for sealing the two films for example, a method of laminating a commonly used impulse sealer heat-fusible resin layer, fusing with an impulse sealer, and sealing is preferable.
- sealing between gas barrier films makes it difficult to heat seal with an impulse sealer or the like if the film (average) film thickness exceeds 300 ⁇ m, and the handling of the film during sealing work becomes difficult (average)
- the film thickness is desirably 300 ⁇ m or less.
- the inert gas a rare gas such as He or Ar is preferably used in addition to N2, but a rare gas in which He and Ar are mixed is also preferable, and the ratio of the inert gas in the gas is 90 to 99.9. It is preferable that it is volume%. Preservability is improved by sealing in an environment purged with an inert gas.
- a ceramic layer is formed on the metal foil instead of the laminated resin film surface.
- the layer surface is preferably bonded to the cathode of the organic photoelectric conversion element.
- a resin film that can be fused with a commonly used impulse sealer for example, ethylene vinyl acetate copolymer (EVA), polypropylene (PP) film, polyethylene (
- EVA ethylene vinyl acetate copolymer
- PP polypropylene
- PE heat-fusible film
- the dry laminating method is excellent in terms of workability.
- This method generally uses a curable adhesive layer of about 1.0 to 2.5 ⁇ m.
- the amount of adhesive applied is preferably 3-5 ⁇ m in dry (average) film thickness. It is preferable to adjust to.
- Hot melt lamination is a method in which a hot melt adhesive is melted and an adhesive layer is applied to a substrate, and the thickness of the adhesive layer can be generally set in a wide range of 1 to 50 ⁇ m.
- Commonly used base resins for hot melt adhesives include EVA, EEA, polyethylene, butyl rubber, etc., rosin, xylene resin, terpene resin, styrene resin, etc. as tackifiers, wax etc. It is added as an agent.
- the extrusion laminating method is a method in which a resin melted at a high temperature is coated on a substrate with a die, and the thickness of the resin layer can generally be set in a wide range of 10 to 50 ⁇ m.
- LDPE low density polyethylene
- EVA EVA
- PP polypropylene
- the gas barrier film of the present invention when sealing an organic photoelectric conversion element, it is formed from a compound such as an inorganic oxide, nitride, carbide, etc. from the viewpoint of further enhancing gas barrier properties.
- An additional ceramic layer can be provided on the gas barrier film.
- SiO x SiO x , Al 2 O 3 , In 2 O 3 , TiO x , ITO (tin / indium oxide), AlN, Si 3 N 4 , SiO x N, TiO x N, SiC, or the like. be able to.
- the ceramic layer may be laminated by a known method such as a sol-gel method, a vapor deposition method, CVD, PVD, or a sputtering method.
- it can be formed by the same method as the second barrier layer using polysilazane.
- it can be formed by applying a composition containing polysilazane to form a polysilazane film and then converting it to ceramic.
- the ceramic layer according to the present invention can be obtained by selecting conditions such as an organometallic compound, decomposition gas, decomposition temperature, input power, and the like as raw materials (also referred to as raw materials) in an atmospheric pressure plasma method. It is possible to make different compositions such as metal oxides mainly composed of silicon, and mixtures (metal oxynitrides, metal oxide halides, etc.) with metal carbides, metal nitrides, metal sulfides, metal halides, etc. .
- silicon oxide is generated.
- silazane or the like is used as a raw material compound, silicon oxynitride is generated. This is because highly active charged particles and active radicals exist in the plasma space at a high density, so that multistage chemical reactions are accelerated at high speed in the plasma space, and the elements present in the plasma space are thermodynamic. This is because it is converted into an extremely stable compound in a very short time.
- a raw material for forming such a ceramic layer as long as it is a silicon compound, it may be in a gas, liquid, or solid state at normal temperature and pressure.
- gas it can be introduced into the discharge space as it is, but in the case of liquid or solid, it is used after being vaporized by means such as heating, bubbling, decompression or ultrasonic irradiation.
- a solvent an organic solvent such as methanol, ethanol, n-hexane or a mixed solvent thereof can be used. Since these diluted solvents are decomposed into molecular and atomic forms during the plasma discharge treatment, the influence can be almost ignored.
- silicon compounds include silane, tetramethoxysilane, tetraethoxysilane, tetra n-propoxysilane, tetraisopropoxysilane, tetra n-butoxysilane, tetrat-butoxysilane, dimethyldimethoxysilane, dimethyldiethoxysilane, Diethyldimethoxysilane, diphenyldimethoxysilane, methyltriethoxysilane, ethyltrimethoxysilane, phenyltriethoxysilane, (3,3,3-trifluoropropyl) trimethoxysilane, hexamethyldisiloxane, bis (dimethylamino) dimethylsilane Bis (dimethylamino) methylvinylsilane, bis (ethylamino) dimethylsilane, N, O-bis (trimethylsilyl) acetamide
- the decomposition gas for decomposing the raw material gas containing silicon to obtain the ceramic layer includes hydrogen gas, methane gas, acetylene gas, carbon monoxide gas, carbon dioxide gas, nitrogen gas, ammonia gas, and nitrous oxide gas. Nitrogen oxide gas, nitrogen dioxide gas, oxygen gas, water vapor, fluorine gas, hydrogen fluoride, trifluoroalcohol, trifluorotoluene, hydrogen sulfide, sulfur dioxide, carbon disulfide, chlorine gas and the like.
- a ceramic layer containing silicon oxide, nitride, carbide or the like can be obtained by appropriately selecting a source gas containing silicon and a decomposition gas.
- these reactive gases are mixed mainly with a discharge gas that tends to be in a plasma state, and the gas is sent to a plasma discharge generator.
- a discharge gas nitrogen gas and / or 18th group atom of the periodic table, specifically, helium, neon, argon, krypton, xenon, radon, etc. are used. Among these, nitrogen, helium, and argon are preferably used.
- the film is formed by mixing the discharge gas and the reactive gas and supplying them as a thin film forming (mixed) gas to an atmospheric pressure plasma discharge generator (plasma generator).
- plasma generator atmospheric pressure plasma discharge generator
- the ratio of the discharge gas and the reactive gas varies depending on the properties of the film to be obtained, the reactive gas is supplied with the ratio of the discharge gas being 50% or more with respect to the entire mixed gas.
- the above-mentioned organosilicon compound is further combined with oxygen gas or nitrogen gas at a predetermined ratio, and at least one of O atoms and N atoms is combined.
- a ceramic layer mainly containing silicon oxide according to the present invention containing Si atoms can be obtained.
- the thickness of the ceramic layer according to the present invention is preferably in the range of 10 to 2000 nm in consideration of gas barrier properties and light transmittance, but is also well-balanced in consideration of flexibility. In order to exhibit excellent performance, the thickness is preferably 10 to 200 nm.
- each layer (component layer) of the organic photoelectric conversion element material constituting the organic photoelectric conversion element will be described.
- the electric power generation layer (The layer which mixed the p-type semiconductor and the n-type semiconductor, the bulk heterojunction layer, and i layer) sandwiched between the anode and the cathode at least 1 is provided. Any element that has more than one layer and generates current when irradiated with light may be used.
- anode / power generation layer / cathode ii) anode / hole transport layer / power generation layer / cathode
- anode / hole transport layer / power generation layer / electron transport layer / cathode iii) anode / hole transport layer / power generation layer / electron transport layer / cathode
- anode / hole transport layer / P-type semiconductor layer / power generation layer / n-type semiconductor layer / electron transport layer / cathode v) anode / hole transport layer / first light emitting layer / electron transport layer / intermediate electrode / hole transport layer / second light emitting layer
- the power generation layer needs to contain a p-type semiconductor material capable of transporting holes and an n-type semiconductor material capable of transporting electrons, which are substantially two layers and heterojunction. Or a bulk heterojunction that is mixed in one layer may be formed, but a bulk heterojunction configuration is preferable because of higher photoelectric conversion efficiency
- the efficiency of taking out holes and electrons to the anode / cathode can be increased by sandwiching the power generation layer between the hole transport layer and the electron transport layer. Therefore, the structure having them ((ii), ( iii)) is preferred. Further, in order to improve the rectification of holes and electrons (selection of carrier extraction), the power generation layer itself is sandwiched between layers of a p-type semiconductor material and a single n-type semiconductor material as shown in (iv). A configuration (also referred to as a pin configuration) may be used. Moreover, in order to improve the utilization efficiency of sunlight, the tandem configuration (configuration (v)) in which sunlight of different wavelengths is absorbed by each power generation layer may be employed.
- a hole transport layer 14 and an electron transport layer 16 are respectively formed on a pair of comb-like electrodes.
- the back contact type organic photoelectric conversion element can be configured such that the photoelectric conversion unit 15 is disposed thereon.
- FIG. 2 is a cross-sectional view showing an example of a solar cell made of a bulk heterojunction type organic photoelectric conversion element.
- the bulk heterojunction type organic photoelectric conversion element 10 has an anode 12, a hole transport layer 17, a power generation layer 14 of a bulk heterojunction layer, an electron transport layer 18, and a cathode 13 sequentially stacked on one surface of a substrate 11. Has been.
- the substrate 11 is a member that holds the anode 12, the power generation layer 14, and the cathode 13 that are sequentially stacked. In the present embodiment, since light that is photoelectrically converted enters from the substrate 11 side, the substrate 11 can transmit the light that is photoelectrically converted, that is, with respect to the wavelength of the light to be photoelectrically converted. It is a transparent member.
- the substrate 11 for example, a glass substrate or a resin substrate is used.
- the substrate 11 is not essential.
- the bulk heterojunction organic photoelectric conversion element 10 may be configured by forming the anode 12 and the cathode 13 on both surfaces of the power generation layer 14.
- the power generation layer 14 is a layer that converts light energy into electric energy, and includes a bulk heterojunction layer in which a p-type semiconductor material and an n-type semiconductor material are uniformly mixed.
- the p-type semiconductor material functions relatively as an electron donor (donor)
- the n-type semiconductor material functions relatively as an electron acceptor (acceptor).
- the light incident from the anode 12 through the substrate 11 is absorbed by the electron acceptor or electron donor in the bulk heterojunction layer of the power generation layer 14, and electrons move from the electron donor to the electron acceptor.
- a pair of holes and electrons (charge separation state) is formed.
- the generated electric charge is caused by an internal electric field, for example, when the work function of the anode 12 and the cathode 13 is different, the electrons pass between the electron acceptors and the holes are electron donors due to the potential difference between the anode 12 and the cathode 13.
- the photocurrent is detected by passing through different electrodes to different electrodes.
- the transport direction of electrons and holes can be controlled by applying a potential between the anode 12 and the cathode 13.
- a hole blocking layer such as a hole blocking layer, an electron blocking layer, an electron injection layer, a hole injection layer, or a smooth layer may be included.
- the power generation layer 14 has a so-called pin three-layer configuration (FIG. 3).
- a normal bulk heterojunction layer is a single i layer in which a p-type semiconductor material and an n-type semiconductor layer are mixed, but is sandwiched between a p-layer composed of a single p-type semiconductor material and an n-layer composed of a single n-type semiconductor material.
- the rectification of holes and electrons becomes higher, loss due to recombination of charge-separated holes and electrons is reduced, and higher photoelectric conversion efficiency can be obtained.
- FIG. 4 is a cross-sectional view showing a solar cell composed of an organic photoelectric conversion element having a tandem bulk heterojunction layer.
- the transparent electrode 12 and the first power generation layer 14 ′ are sequentially stacked on the substrate 11, the charge recombination layer 15 is stacked, the second power generation layer 16, and then the counter electrode 13 are stacked.
- the second power generation layer 16 may be a layer that absorbs the same spectrum as the absorption spectrum of the first power generation layer 14 ′ or may be a layer that absorbs a different spectrum, but is preferably a layer that absorbs a different spectrum.
- both the first power generation layer 14 'and the second power generation layer 16 may have the above-described three-layer structure of pin.
- organic photoelectric conversion element material P-type semiconductor material
- examples of the p-type semiconductor material used for the power generation layer include various condensed polycyclic aromatic low molecular compounds and conjugated polymers / oligomers.
- condensed polycyclic aromatic low-molecular compound examples include anthracene, tetracene, pentacene, hexacene, heptacene, chrysene, picene, fluorene, pyrene, peropyrene, perylene, terylene, quaterylene, coronene, ovalene, circumanthracene, bisanthene, zeslen, Compounds such as heptazethrene, pyranthrene, violanthene, isoviolanthene, cacobiphenyl, anthradithiophene, porphyrin, copper phthalocyanine, tetrathiafulvalene (TTF) -tetracyanoquinodimethane (TCNQ) complex, bis (ethylenedithio) tetrathiafur Examples include valene (BEDT-TTF) -perchloric acid complex, and derivatives and precursors thereof.
- Examples of the derivative having the above condensed polycycle include International Publication No. 03/16599, International Publication No. 03/28125, US Pat. No. 6,690,029, Japanese Patent Application Laid-Open No. 2004. -107216 and the like, a pentacene derivative having a substituent described in JP-A-107216, and the like, a pentacene precursor described in US Patent Application Publication No. 2003/136964, and the like; Amer. Chem. Soc. , Vol, vol127. No. 14.4986, J. MoI. Amer. Chem. Soc. , Vol. 123, p9482; Amer. Chem. Soc. , Vol. 130 (2008), no. 9, acene-based compounds substituted with a trialkylsilylethynyl group described in 2706 and the like.
- conjugated polymer examples include polythiophene such as poly-3-hexylthiophene (P3HT) and oligomers thereof, or a polymerizable group described in Technical Digest of the International PVSEC-17, Fukuoka, Japan, 2007, P1225. Polythiophene, Nature Material, (2006) vol. 5, a polythiophene-thienothiophene copolymer described in p328, a polythiophene-diketopyrrolopyrrole copolymer described in International Publication No. 2008/000664, a polythiophene-thiazolothiazole copolymer described in Adv Mater, 2007 p4160, Nature Mat. , Vol.
- polypyrrole and its oligomer polypyrrole and its oligomer, polyaniline, polyphenylene and its oligomer, polyphenylene vinylene and its oligomer, polythienylene vinylene and its oligomer, polyacetylene, polydiacetylene, Examples thereof include polymer materials such as ⁇ -conjugated polymers such as polysilane and polygermane.
- oligomeric materials not polymer materials, include thiophene hexamer ⁇ -seccithiophene ⁇ , ⁇ -dihexyl- ⁇ -sexualthiophene, ⁇ , ⁇ -dihexyl- ⁇ -kinkethiophene, ⁇ , ⁇ -bis (3 Oligomers such as -butoxypropyl) - ⁇ -sexithiophene can be preferably used.
- the electron transport layer is formed by coating on the power generation layer, there is a problem that the electron transport layer solution dissolves the power generation layer. Therefore, a material that can be insolubilized after coating by a solution process may be used. .
- Such materials include materials that can be insolubilized by polymerizing the coating film after coating, such as polythiophene having a polymerizable group described in Technical Digest of the International PVSEC-17, Fukuoka, Japan, 2007, P1225. Or by applying energy such as heat as described in US Patent Application Publication No. 2003/136964, Japanese Patent Application Laid-Open No. 2008-16834, etc., the soluble substituent reacts to insolubilize (pigmentation) ) Materials can be mentioned.
- the n-type semiconductor material used for the bulk heterojunction layer is not particularly limited.
- perfluorocarbons such as fullerene, octaazaporphyrin, etc., in which hydrogen atoms of a p-type semiconductor are substituted with fluorine atoms.
- naphthalenetetracarboxylic anhydride naphthalenetetracarboxylic acid diimide
- perylenetetracarboxylic acid anhydride perylenetetracarboxylic acid diimide
- other aromatic carboxylic acid anhydrides and imidized products thereof examples thereof include a polymer compound contained as a skeleton.
- fullerene derivatives that can perform charge separation with various p-type semiconductor materials at high speed (up to 50 fs) and efficiently are preferable.
- Fullerene derivatives include fullerene C60, fullerene C70, fullerene C76, fullerene C78, fullerene C84, fullerene C240, fullerene C540, mixed fullerene, fullerene nanotubes, multi-walled nanotubes, single-walled nanotubes, nanohorns (conical), etc.
- PCBM [6,6] -phenyl C61-butyric acid methyl ester
- PCBnB [6,6] -phenyl C61-butyric acid-n-butyl ester
- PCBiB [6,6] -phenyl C61-buty Rick acid-isobutyl ester
- PCBH [6,6] -phenyl C61-butyric acid-n-hexyl ester
- fullerene derivative having a substituent and having improved solubility such as fullerene having an ether group.
- the hole transport layer 17 can be taken out between the bulk heterojunction layer and the anode, and charges generated in the bulk heterojunction layer can be taken out more efficiently. It is preferable to have.
- the hole transport layer 17 PEDOT such as trade name Baytron P, polyaniline and its doped material, cyan compounds described in WO2006019270, etc. Can be used.
- the hole transport layer having a LUMO level shallower than the LUMO level of the n-type semiconductor material used for the bulk heterojunction layer has a rectifying effect that prevents electrons generated in the bulk heterojunction layer from flowing to the anode side. It has an electronic block function.
- Such a hole transport layer is also called an electron block layer, and it is preferable to use a hole transport layer having such a function.
- triarylamine compounds described in JP-A-5-271166 metal oxides such as molybdenum oxide, nickel oxide, and tungsten oxide can be used.
- a layer made of a single p-type semiconductor material used for the bulk heterojunction layer can also be used.
- the means for forming these layers may be either a vacuum deposition method or a solution coating method, but is preferably a solution coating method. Forming the coating film in the lower layer before forming the bulk heterojunction layer is preferable because it has the effect of leveling the coating surface and reduces the influence of leakage and the like.
- octaazaporphyrin a p-type semiconductor perfluoro product (perfluoropentacene, perfluorophthalocyanine, etc.) can be used.
- a p-type semiconductor material used for a bulk heterojunction layer is used.
- the electron transport layer having a HOMO level deeper than the HOMO level is given a hole blocking function having a rectifying effect so that holes generated in the bulk heterojunction layer do not flow to the cathode side.
- Such an electron transport layer is also called a hole blocking layer, and it is preferable to use an electron transport layer having such a function.
- Such materials include phenanthrene compounds such as bathocuproine, n-type semiconductor materials such as naphthalenetetracarboxylic acid anhydride, naphthalenetetracarboxylic acid diimide, perylenetetracarboxylic acid anhydride, perylenetetracarboxylic acid diimide, and titanium oxide.
- n-type semiconductor materials such as naphthalenetetracarboxylic acid anhydride, naphthalenetetracarboxylic acid diimide, perylenetetracarboxylic acid anhydride, perylenetetracarboxylic acid diimide, and titanium oxide.
- N-type inorganic oxides such as zinc oxide and gallium oxide, and alkali metal compounds such as lithium fluoride, sodium fluoride, and cesium fluoride can be used.
- a layer made of a single n-type semiconductor material used for the bulk heterojunction layer can also be used.
- various intermediate layers may be included in the device for the purpose of improving energy conversion efficiency and device life.
- the intermediate layer include a hole block layer, an electron block layer, a hole injection layer, an electron injection layer, an exciton block layer, a UV absorption layer, a light reflection layer, and a wavelength conversion layer.
- the transparent electrode may be either a cathode or an anode, and can be selected depending on the configuration of the organic photoelectric conversion element.
- the transparent electrode is used as the anode.
- the transparent electrode when used as an anode, it is preferably an electrode that transmits light of 380 to 800 nm.
- transparent conductive metal oxides such as indium tin oxide (ITO), SnO 2 and ZnO, metal thin films such as gold, silver and platinum, metal nanowires, and carbon nanotubes can be used.
- Conductive polymers can also be used. A plurality of these conductive compounds can be combined to form a transparent electrode.
- the counter electrode may be a single layer of a conductive material, but in addition to a conductive material, a resin that holds these may be used in combination.
- a material having a low work function (4 eV or less) metal, alloy, electrically conductive compound, or a mixture thereof as an electrode material is used as the conductive material for the counter electrode.
- Specific examples of such electrode materials include sodium, sodium-potassium alloy, magnesium, lithium, magnesium / copper mixture, magnesium / silver mixture, magnesium / aluminum mixture, magnesium / indium mixture, aluminum / aluminum oxide (Al 2 O 3 ) Mixtures, indium, lithium / aluminum mixtures, rare earth metals and the like.
- a mixture of these metals and a second metal which is a stable metal having a larger work function value than this for example, a magnesium / silver mixture, magnesium / Aluminum mixtures, magnesium / indium mixtures, aluminum / aluminum oxide (Al 2 O 3 ) mixtures, lithium / aluminum mixtures, aluminum and the like are preferred.
- the counter electrode can be produced by forming a thin film of these electrode materials by a method such as vapor deposition or sputtering.
- the (average) film thickness is usually selected in the range of 10 nm to 5 ⁇ m, preferably 50 to 200 nm.
- the light coming to the counter electrode side is reflected and reflected to the first electrode side, and this light can be reused and is absorbed again by the photoelectric conversion layer, and more photoelectric conversion efficiency Is preferable.
- the counter electrode 13 may be a metal (for example, gold, silver, copper, platinum, rhodium, ruthenium, aluminum, magnesium, indium, etc.), carbon nanoparticle, nanowire, or nanostructure. If it is a thing, a transparent and highly conductive counter electrode can be formed by the apply
- a conductive material suitable for the counter electrode such as aluminum and aluminum alloy, silver and silver compound, and the like is manufactured with a thin (average) film thickness of about 1 to 20 nm.
- a light-transmitting counter electrode can be obtained by providing a film of the conductive light-transmitting material mentioned in the description of the transparent electrode.
- the material of the intermediate electrode required in the case of the tandem configuration as described in the above (v) (or FIG. 4) is preferably a layer using a compound having both transparency and conductivity.
- Materials used for transparent electrodes transparent metal oxides such as ITO, AZO, FTO and titanium oxide, very thin metal layers such as Ag, Al and Au, or layers containing nanoparticles / nanowires, PEDOT: PSS,
- a conductive polymer material such as polyaniline
- conductive fibers can be used.
- conductive fibers include organic fibers and inorganic fibers coated with metal, conductive metal oxide fibers, metal nanowires, carbon fibers, and carbon nanotubes.
- Metal nanowires are preferred although they can be used.
- a metal nanowire means a linear structure having a metal element as a main component.
- the metal nanowire in the present invention means a linear structure having a diameter of nm size.
- the metal nanowire according to the present invention preferably has an average length of 3 ⁇ m or more in order to form a long conductive path with a single metal nanowire and to exhibit appropriate light scattering properties.
- the thickness is preferably 3 to 500 ⁇ m, particularly preferably 3 to 300 ⁇ m.
- the relative standard deviation of the length is preferably 40% or less.
- an average diameter is small from a transparency viewpoint, On the other hand, the larger one is preferable from an electroconductive viewpoint.
- the average diameter of the metal nanowire is preferably 10 to 300 nm, and more preferably 30 to 200 nm.
- the relative standard deviation of the diameter is preferably 20% or less.
- the metal composition of the metal nanowire is not particularly limited, and can be composed of one or more metals of a noble metal element and a base metal element, but noble metals (for example, gold, platinum, silver, palladium, rhodium, (Iridium, ruthenium, osmium, etc.) and at least one metal belonging to the group consisting of iron, cobalt, copper, and tin is preferable, and at least silver is more preferable from the viewpoint of conductivity. In order to achieve both conductivity and stability (sulfurization and oxidation resistance of metal nanowires and migration resistance), it is also preferable to include silver and at least one metal belonging to a noble metal other than silver. When the metal nanowire according to the present invention includes two or more kinds of metal elements, for example, the metal composition may be different between the inside and the surface of the metal nanowire, or the entire metal nanowire has the same metal composition. May be.
- the means for producing the metal nanowire there are no particular limitations on the means for producing the metal nanowire, and for example, known means such as a liquid phase method and a gas phase method can be used. Moreover, there is no restriction
- the metal nanowires come into contact with each other to form a three-dimensional conductive network, exhibiting high conductivity, and allowing light to pass through the window of the conductive network where no metal nanowire exists.
- the power generation from the organic power generation layer can be efficiently performed by the scattering effect of the metal nanowires. If a metal nanowire is installed in the 1st electrode at the side close
- the organic photoelectric conversion element of the present invention may have various optical functional layers for the purpose of more efficient reception of sunlight.
- the optical functional layer for example, a light condensing layer such as an antireflection film or a microlens array, a light diffusion layer that can scatter the light reflected by the cathode and enter the power generation layer again may be provided. .
- the antireflection layer can be provided as the antireflection layer.
- the refractive index of the easy adhesion layer adjacent to the film is 1.57. It is more preferable to set it to ⁇ 1.63 because the transmittance can be improved by reducing the interface reflection between the film substrate and the easy adhesion layer.
- the method for adjusting the refractive index can be carried out by appropriately adjusting the ratio of the oxide sol having a relatively high refractive index such as tin oxide sol or cerium oxide sol and the binder resin.
- the easy adhesion layer may be a single layer, but may be composed of two or more layers in order to improve adhesion.
- the condensing layer for example, it is processed so as to provide a structure on the microlens array on the sunlight receiving side of the support substrate, or the amount of light received from a specific direction is increased by combining with a so-called condensing sheet. Conversely, the incident angle dependency of sunlight can be reduced.
- quadrangular pyramids having a side of 30 ⁇ m and an apex angle of 90 degrees are arranged two-dimensionally on the light extraction side of the substrate.
- One side is preferably 10 to 100 ⁇ m. If it is smaller than this, the effect of diffraction is generated and colored, and if it is too large, the thickness becomes too thick.
- the light scattering layer examples include various antiglare layers, layers in which nanoparticles or nanowires such as metals or various inorganic oxides are dispersed in a colorless and transparent polymer, and the like.
- Examples of a method for forming a bulk heterojunction layer in which an electron acceptor and an electron donor are mixed, and a transport layer / electrode include a vapor deposition method and a coating method (including a cast method and a spin coat method).
- examples of the method for forming the bulk heterojunction layer include a vapor deposition method and a coating method (including a casting method and a spin coating method).
- the coating method is preferable in order to increase the area of the interface where charges and electrons are separated from each other as described above and to produce a device having high photoelectric conversion efficiency.
- the coating method is also excellent in production speed.
- the coating method used in this case is not limited, and examples thereof include spin coating, casting from a solution, dip coating, blade coating, wire bar coating, gravure coating, and spray coating. Furthermore, patterning can also be performed by a printing method such as an ink jet method, a screen printing method, a relief printing method, an intaglio printing method, an offset printing method, or a flexographic printing method.
- a printing method such as an ink jet method, a screen printing method, a relief printing method, an intaglio printing method, an offset printing method, or a flexographic printing method.
- annealing is performed at a predetermined temperature during the manufacturing process, a part of the particles is microscopically aggregated or crystallized, and the bulk heterojunction layer can have an appropriate phase separation structure. As a result, the carrier mobility of the bulk heterojunction layer is improved and high efficiency can be obtained.
- the power generation layer (bulk heterojunction layer) 14 may be composed of a single layer in which an electron acceptor and an electron donor are uniformly mixed, but a plurality of layers in which the mixing ratio of the electron acceptor and the electron donor is changed. You may comprise. In this case, it can be formed by using a material that can be insolubilized after coating as described above.
- the electrode can be patterned by a known method such as mask evaporation at the time of vacuum deposition or etching or lift-off.
- the pattern may be formed by transferring a pattern formed on another substrate.
- the configuration of the organic photoelectric conversion element and the solar cell has been described as an example of the use of the gas barrier film according to the present invention.
- the use of the gas barrier film according to the present invention is not limited thereto, and other organic EL elements and the like.
- the present invention can also be advantageously applied to other electronic devices.
- Example 1 Preparation of Sample 1 (Gas Barrier Film) >> [Formation of the first barrier layer 1]
- an atmospheric pressure plasma film forming apparatus described in FIG. 3 of Japanese Patent Application Laid-Open No. 2008-56967, an atmospheric pressure plasma CVD apparatus in a roll-to-roll form) by an atmospheric pressure plasma method (clear hard manufactured by Kimoto Co., Ltd.)
- a first barrier layer 1 (100 nm) of silicon oxide was formed on a polyethylene terephthalate (PET) film with a coat layer (CHC), a PET thickness of 125 ⁇ m, and a CHC thickness of 6 ⁇ m under the following thin film formation conditions.
- PET polyethylene terephthalate
- CHC coat layer
- Second Barrier Layer 1 On the first barrier layer 1 formed by the above method, a 10% by mass dibutyl ether solution of perhydropolysilazane (PHPS, Aquamica NN120-10, non-catalytic type, manufactured by AZ Electronic Materials Co., Ltd.) was used with a wireless bar. The coated sample was obtained so that the (average) film thickness after drying was 0.10 ⁇ m.
- PHPS perhydropolysilazane
- the dried sample was further dehumidified by being held for 10 minutes in an atmosphere at a temperature of 25 ° C. and a humidity of 10% RH (dew point temperature ⁇ 8 ° C.).
- the second barrier layer 1 was formed by subjecting the sample subjected to the dehumidification treatment to a modification treatment under the following conditions.
- the dew point temperature during the reforming process was -8 ° C.
- Second Barrier Layer 2 On the first barrier layer 2 formed by the above method, a 10% by mass dibutyl ether solution of perhydropolysilazane (PHPS, Aquamica NN120-10, non-catalytic type, manufactured by AZ Electronic Materials Co., Ltd.) was used with a wireless bar. The coated sample was obtained so that the (average) film thickness after drying was 0.10 ⁇ m.
- PHPS perhydropolysilazane
- Modification A The sample subjected to the dehumidification treatment was subjected to the modification treatment A under the same conditions used for the formation of the second barrier layer 1 of the sample 1 to form the second barrier layer 2.
- Second Barrier Layer 3 a 10% by mass dibutyl ether solution of perhydropolysilazane (PHPS, Aquamica NN120-10, non-catalytic type, manufactured by AZ Electronic Materials Co., Ltd.) was obtained on the obtained first barrier layer 3 using a wireless bar. The coated sample was obtained so that the (average) film thickness after drying was 0.10 ⁇ m.
- PHPS perhydropolysilazane
- the dried sample was further dehumidified by being held for 10 minutes in an atmosphere of a temperature of 25 ° C. and a humidity of 10% RH (dew point temperature—8 ° C.).
- the second barrier layer 3 was formed by subjecting the sample subjected to the dehumidification treatment to a modification treatment under the following conditions.
- the dew point temperature during the reforming process was -8 ° C.
- Preparation of Sample 4 [Formation of the first barrier layer 4] Transparent resin substrate (polyethylene terephthalate (PET) film with clear hard coat layer (CHC) manufactured by Kimoto Co., Ltd. (PET thickness 125 ⁇ m, CHC thickness 6 ⁇ m)) using a plasma CVD apparatus Model PD-270STP manufactured by Samco On top, the first barrier layer 4 was formed under the following thin film formation conditions.
- PET polyethylene terephthalate
- CHC clear hard coat layer
- the obtained first barrier layer 4 was composed of silicon oxide (SiO 2 ).
- Second Barrier Layer 4 Subsequently, a second barrier layer 4 subjected to the same treatment as the formation of the second barrier layer 1 was formed on the obtained first barrier layer 4, and a sample 4 of a gas barrier film was produced.
- a SiON film is formed of a transparent resin base material (polyethylene terephthalate (PET) film with a clear hard coat layer (CHC) manufactured by Kimoto Co., Ltd., PET thickness). 125 ⁇ m, CHC thickness 6 ⁇ m).
- PET polyethylene terephthalate
- CHC clear hard coat layer
- the high frequency power source used at this time was a 27.12 MHz high frequency power source, and the distance between the electrodes was 20 mm.
- the raw material gases were introduced into the vacuum chamber at a flow rate of 7.5 sccm with silane gas, 100 sccm with ammonia gas, and 50 sccm with nitrous oxide gas.
- the temperature of the transparent resin substrate was set to 100 ° C.
- the gas pressure during film formation was set to 100 Pa
- a silicon oxynitride thin film layer (SiON layer) mainly composed of silicon nitride was formed to a thickness of 50 nm, A first barrier layer 5 was formed.
- the obtained first barrier layer 5 was composed of silicon oxynitride (SiON).
- Second Barrier Layer 5 a 10% by mass dibutyl ether solution of perhydropolysilazane (PHPS, Aquamica NN120-10, non-catalytic type, manufactured by AZ Electronic Materials Co., Ltd.) is formed on the first barrier layer 5 formed above with a wireless bar.
- PHPS perhydropolysilazane
- the coated sample was obtained so that the (average) film thickness after drying was 0.10 ⁇ m.
- the dried sample was further dehumidified by being held for 10 minutes in an atmosphere of a temperature of 25 ° C. and a humidity of 10% RH (dew point temperature—8 ° C.).
- Modification B The sample subjected to the dehumidification treatment was subjected to the modification treatment B under the same conditions as those used for forming the second barrier layer 3 of the sample 3 to form the second barrier layer 5.
- ⁇ Preparation of Sample 6 [Formation of the first barrier layer 6] Using the vacuum plasma CVD apparatus shown in FIG. 5, as the first barrier layer 6, a SiN film is formed of a transparent resin substrate (polyethylene terephthalate (PET) film with clear hard coat layer (CHC) manufactured by Kimoto Co., Ltd., PET thickness). 125 ⁇ m, CHC thickness 6 ⁇ m).
- PET polyethylene terephthalate
- CHC clear hard coat layer
- the high frequency power source used at this time was a 27.12 MHz high frequency power source, and the distance between the electrodes was 20 mm.
- silane gas was introduced into the vacuum chamber at 7.5 sccm, ammonia gas at 50 sccm, and hydrogen gas at 200 sccm.
- the temperature of the transparent resin substrate is set to 100 ° C.
- the gas pressure during film formation is set to 30 Pa
- a silicon nitride thin film layer Si 3 N 2.5 layer mainly composed of silicon nitride is formed.
- the first gas barrier layer 6 was formed to a thickness of 50 nm.
- a second barrier layer 6 was formed in the same manner as the formation conditions of the second barrier layer 5 of the sample 5.
- ⁇ Preparation of Sample 7 [Formation of the first barrier layer 7] Using the vacuum plasma CVD apparatus shown in FIG. 5, as the first barrier layer 7, a SiN film is formed of a transparent resin base material (polyethylene terephthalate (PET) film with clear hard coat layer (CHC) manufactured by Kimoto Co., Ltd., PET thickness). 125 ⁇ m, CHC thickness 6 ⁇ m).
- PET polyethylene terephthalate
- CHC clear hard coat layer
- the high frequency power source used at this time was a 27.12 MHz high frequency power source, and the distance between the electrodes was 20 mm.
- silane gas was introduced into the vacuum chamber at 7.5 sccm, ammonia gas at 100 sccm, and hydrogen gas at 150 sccm.
- the temperature of the transparent resin substrate is set to 100 ° C.
- the gas pressure at the time of film formation is set to 30 Pa
- a silicon nitride thin film layer Si 3 N 4 layer mainly composed of silicon nitride is formed with a film thickness of 50 nm
- a first barrier layer 7 was obtained.
- a second barrier layer 7 was formed in the same manner as the formation conditions of the second barrier layer 5 of the sample 5.
- a second barrier layer 8 was formed in the same manner as the formation conditions of the second barrier layer 2 of Sample 2.
- a first barrier layer 9 (100 nm) of silicon oxynitride was formed by the same formation method as that of the first barrier layer 1 in the sample 1.
- Second Barrier Layer 9 In the production of the sample 1, the modification process A used in the modification process of the second barrier layer 1 was changed to the modification process C described below, and the first barrier layer 9 was subjected to the first modification. Two barrier layers 9 were formed, and a sample 9 of a gas barrier film was produced.
- Modification C The sample subjected to the dehumidification treatment was subjected to plasma treatment under the following conditions to form the second barrier layer 9.
- the substrate holding temperature during film formation was 120 ° C.
- the treatment was carried out using a roll electrode type discharge treatment apparatus.
- a plurality of rod-shaped electrodes facing the roll electrode are installed in parallel to the film transport direction, and gas and electric power are supplied to each electrode part, and processing is appropriately performed so that the coated surface is irradiated with plasma for 20 seconds as follows. went.
- covers each said electrode of a plasma discharge processing apparatus used what coat
- the electrode gap after coating was set to 0.5 mm.
- the metal base material coated with a dielectric has a stainless steel jacket specification having a cooling function by cooling water, and was performed while controlling the electrode temperature by cooling water during discharge.
- a high frequency power source 100 kHz
- a high frequency power source 13.56 MHz
- Discharge gas N 2 gas Reaction gas: 7% of oxygen gas to the total gas
- Low frequency side power supply power 100 kHz, 6 W / cm 2
- High frequency side power supply power 13.56 MHz at 10 W / cm 2
- Plasma treatment time 20 seconds
- Second Barrier Layer 10 In the formation of the second barrier layer 1 of the sample 1, the first barrier layer was formed in the same manner except that the film thickness of the second barrier layer was 0.06 ⁇ m and the modification process A was changed to the following modification process D. A second barrier layer 10 was formed on the barrier layer 10 to prepare a sample 10 of a gas barrier film.
- Modification D The sample subjected to the dehumidification treatment was subjected to a modification treatment under the following conditions to form the second barrier layer 10.
- the dew point temperature during the reforming process was -8 ° C.
- UV light intensity 2000 mW / cm 2 Distance between sample and light source: 30 mm Stage heating temperature: 40 ° C Oxygen concentration in the irradiation device: 5% UV irradiation time: 180 seconds
- UV irradiation time 180 seconds
- a first barrier layer 12 (silicon oxide) having a thickness of 100 nm is formed by plasma CVD, and the second barrier layer 12 is similarly formed on the first barrier layer 12.
- the barrier layer 12 was formed with a thickness of 100 nm to obtain a sample 12. As a result of observing the cross section of the sample 12 by TEM, the presence of the modified region was not confirmed.
- a first barrier layer 14 was formed in the same manner as the formation conditions of the first barrier layer 1 of the sample 1.
- Second Barrier Layer 14 In the modification process for forming the second barrier layer 1 of the sample 1, the second barrier layer is similarly modified except that the excimer irradiation time is changed to 30 seconds and the entire second barrier layer is used as the modified region. Layer 14 was formed.
- a first barrier layer 15 was formed in the same manner as the formation conditions of the first barrier layer 1 of the sample 1.
- Second Barrier Layer 15 In the formation of the second barrier layer 1 of the sample 1, the second barrier was similarly performed except that hydrogenated silsesquioxane (HSQ) was used as the silicon compound instead of perhydropolysilazane (PHPS). Layer 15 was formed.
- HSQ hydrogenated silsesquioxane
- PHPS perhydropolysilazane
- a first barrier layer 16 was formed in the same manner as the formation conditions of the first barrier layer 1 of the sample 1.
- Second Barrier Layer 16 In the formation of the second barrier layer 1 of the sample 1, TEOS (tetraethoxysilane) / water / IPA (isopropyl alcohol) is used as a silicon compound by a sol-gel method in accordance with the method described in Example 2 of Japanese Patent No. 4310784. / A tertiary amine / ⁇ -glycidoxypropyltrimethoxysilane hydrolyzate solution was applied under the condition that the film thickness after drying was 100 nm, and the film thickness of the modified region 4A was 30 nm at 130 ° C. A second barrier layer 16 composed of silicon oxide was formed in the same manner except that the heat treatment was performed under the following conditions.
- a transparent resin substrate (manufactured by Kimoto Co., Ltd.) is produced by an atmospheric pressure plasma CVD method using an atmospheric pressure plasma film forming apparatus (a roll-to-roll type atmospheric pressure plasma CVD apparatus described in FIG. 3 of JP-A-2008-56967).
- a first barrier layer 17 (100 nm) made of silicon oxide on a polyethylene terephthalate (PET) film with a clear hard coat layer (CHC), a PET thickness of 125 ⁇ m, and a CHC thickness of 6 ⁇ m under the following thin film formation conditions: ) was formed.
- PET polyethylene terephthalate
- CHC clear hard coat layer
- a second barrier layer 17 was formed in the same manner as the formation conditions of the second barrier layer 3 of the sample 3.
- -X-ray reflectivity measuring device Rigaku Electric's thin film structure evaluation device ATX-G ⁇ X-ray source target: Copper (1.2kW)
- Table 1 shows the formation conditions and film thicknesses of each barrier layer of each gas barrier film produced as described above.
- Table 2 summarizes the measurement results of the elastic modulus and film density of each barrier layer constituting each gas barrier film.
- Vapor deposition device JEE-400, a vacuum vapor deposition device manufactured by JEOL Ltd. Constant temperature and humidity oven: Yamato Humidic Chamber IG47M Metal that reacts with water and corrodes: Calcium (granular) Water vapor impermeable metal: Aluminum ( ⁇ 3-5mm, granular) (Preparation of water vapor barrier property evaluation cell)
- a vacuum deposition device JEOL-made vacuum deposition device JEE-400
- the mask was removed in a vacuum state, and aluminum was deposited from another metal deposition source on the entire surface of one side of the sheet.
- the vacuum state is released, and immediately facing the aluminum sealing side through a UV-curable resin for sealing (made by Nagase ChemteX) on quartz glass with a thickness of 0.2 mm in a dry nitrogen gas atmosphere
- the cell for evaluation was produced by irradiating with ultraviolet rays.
- a water vapor barrier evaluation cell was similarly prepared for the gas barrier film that was not subjected to the bending treatment.
- the obtained sample with both sides sealed was stored at 60 ° C. and 90% RH under high temperature and high humidity, and permeated into the cell from the corrosion amount of metallic calcium based on the method described in JP-A-2005-283561. The amount of water was calculated.
- each gas barrier film measured as described above was classified into the following five stages, and the water vapor barrier property was evaluated. A rank of 3 or higher was judged to be practically acceptable.
- Water content is less than 1 ⁇ 10 ⁇ 4 g / m 2 / day 4: Water content is 1 ⁇ 10 ⁇ 4 g / m 2 / day or more, and less than 1 ⁇ 10 ⁇ 3 g / m 2 / day 3: Water content Amount of 1 ⁇ 10 ⁇ 3 g / m 2 / day or more, less than 1 ⁇ 10 ⁇ 2 g / m 2 / day 2: Moisture content of 1 ⁇ 10 ⁇ 2 g / m 2 / day or more, 1 ⁇ 10 ⁇ 1 Less than g / m 2 / day 1: Water content is 1 ⁇ 10 ⁇ 1 g / m 2 / day or more [Evaluation of bending resistance] After each gas barrier film was bent 100 times at an angle of 180 degrees so that the radius of curvature was 10 mm, the water vapor transmission rate was measured in the same manner as above, and the water vapor transmission before and after the bending treatment was measured. From
- Deterioration resistance (water vapor permeability after bending test / water vapor permeability before bending test) ⁇ 100 (%) 5: Deterioration resistance is 90% or more 4: Deterioration resistance is 80% or more and less than 90% 3: Deterioration resistance is 60% or more and less than 80% 2: Deterioration resistance is 30% or more and less than 60% 1: Deterioration resistance is less than 30% [Evaluation of cutting processability] After cutting each gas barrier film into B5 size using a disk cutter DC-230 (CADL), each cut end was observed with a magnifying glass, and the total number of cracks on the four sides was confirmed. Cutting suitability was evaluated. A rank of 3 or higher was judged to be practically acceptable.
- the gas barrier films 1 to 10 and 15 to 17 of the present invention are superior to the gas barrier films 11 to 14 of the comparative examples in that they have excellent water vapor barrier properties and are resistant to bending and cutting. It can be seen that the processability is excellent.
- Example 2 Production of electronic devices >> The gas barrier films 1 to 17 produced in Example 1 were each deposited with a 150 nm thick indium tin oxide (ITO) transparent conductive film (sheet resistance 10 ⁇ / ⁇ ), using ordinary photolithography technology and wet etching. was used to form a first electrode by patterning to a width of 2 mm. The patterned first electrode was washed in the order of ultrasonic cleaning with a surfactant and ultrapure water, followed by ultrasonic cleaning with ultrapure water, dried by nitrogen blowing, and finally subjected to ultraviolet ozone cleaning.
- ITO indium tin oxide
- Baytron P4083 manufactured by Starck Vitec, which is a conductive polymer, was applied and dried so that the (average) film thickness was 30 nm, and then heat treated at 150 ° C. for 30 minutes to form a hole transport layer. A film was formed.
- the substrate was brought into a nitrogen chamber and operated in a nitrogen atmosphere.
- the substrate was heat-treated at 150 ° C. for 10 minutes in a nitrogen atmosphere.
- 3.0% by mass of P3HT (manufactured by Prectronics: regioregular poly-3-hexylthiophene) and PCBM (manufactured by Frontier Carbon Co., Ltd .: 6,6-phenyl-C 61 -butyric acid methyl ester) on chlorobenzene Then, a liquid mixed at 1: 0.8 was prepared so that the film thickness was 100 nm and the film was filtered (filtered), and allowed to dry at room temperature. Subsequently, a heat treatment was performed at 150 ° C. for 15 minutes to form a photoelectric conversion layer.
- the substrate on which the series of functional layers is formed is moved into a vacuum deposition apparatus chamber, the inside of the vacuum deposition apparatus is depressurized to 1 ⁇ 10 ⁇ 4 Pa or less, and then fluorinated at a deposition rate of 0.01 nm / second.
- a second electrode was formed.
- the obtained organic photoelectric conversion element was moved to a nitrogen chamber and sealed using a sealing cap and a UV curable resin, and the organic photoelectric conversion elements 1 to 17 were formed as electronic devices having a light receiving portion of 2 ⁇ 2 mm size. Produced.
- Conversion efficiency remaining rate conversion efficiency after acceleration test / initial conversion efficiency ⁇ 100 (%) 5: Conversion efficiency remaining rate is 90% or more 4: Conversion efficiency remaining rate is 70% or more and less than 90% 3: Conversion efficiency remaining rate is 40% or more and less than 70% 2: Conversion efficiency remaining rate is 20% or more, 40 Less than% 1: Table 4 shows the results obtained when the conversion efficiency remaining rate is less than 20%.
- the organic photoelectric conversion device of the present invention produced using the gas barrier film of the present invention suffers from performance degradation even in a harsh environment compared to the organic photoelectric conversion device of the comparative example. I find it difficult to do.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Health & Medical Sciences (AREA)
- Inorganic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Life Sciences & Earth Sciences (AREA)
- Materials Engineering (AREA)
- Wood Science & Technology (AREA)
- General Chemical & Material Sciences (AREA)
- General Physics & Mathematics (AREA)
- Nonlinear Science (AREA)
- Crystallography & Structural Chemistry (AREA)
- Optics & Photonics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Electromagnetism (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Laminated Bodies (AREA)
- Chemical Vapour Deposition (AREA)
- Application Of Or Painting With Fluid Materials (AREA)
- Coating Of Shaped Articles Made Of Macromolecular Substances (AREA)
Abstract
Description
前記膜密度D1と膜密度D3との膜密度差(D1-D3)が0.15以上、1.40以下であり、
かつ前記膜密度D2と膜密度D3との膜密度差(D2-D3)が0.10以上であることを特徴とする前記8に記載のガスバリア性フィルム。
本発明のガスバリア性フィルムでは、基材の少なくとも一方の面側に、ガスバリア層ユニットを有することを特徴とする。
本発明においては、第1のバリア層が化学蒸着法で形成されたことを特徴の1つとする。
次に、大気圧プラズマ処理について好ましい形態を説明する。大気圧プラズマ処理は、具体的には、国際公開第2007-026545号明細書に記載されるように、放電空間に異なる周波数の電界を2つ以上形成したもので、第1の高周波電界と第2の高周波電界とを重畳した電界を形成する方式を用いることが好ましい。
V1≧IV>V2 または V1>IV≧V2
を満たし、第2の高周波電界の出力密度が、1W/cm2以上であることが好ましい。
(珪素化合物含有塗布液による第2のバリア層の形成)
本発明に係る第2のバリア層は、化学蒸着法で形成した第1のバリア層上に珪素化合物を含有する塗布液を積層塗布することにより形成される。
本発明に係る珪素化合物としては、珪素化合物を含有する塗布液の調製が可能であれば特に限定はされないが、ポリシラザン化合物、ポリシロキサン等が好ましい。
本発明に係るポリシラザン含有の塗布液により形成された第2のバリア層は、改質処理前または改質処理中に水分が除去されていることが好ましい。そのために、第2のバリア層中の有機溶媒の除去を目的とする第一工程と、それに続く第2のバリア層中の水分の除去を目的とする第二工程とに分かれていることが好ましい。
本発明に係る第2のバリア層の含水率は、以下に示す分析方法に従って測定することができる。
装置:HP6890GC/HP5973MSD
オーブン:40℃(2min)、その後、10℃/minの速度で150℃まで昇温
カラム:DB-624(0.25mmid×30m)
注入口:230℃
検出器:SIM m/z=18
HS条件:190℃・30min
本発明における第2のバリア層中の含水率は、上記の分析方法により得られる含水量から、第2のバリア層の体積で除した値として定義され、第二工程により水分が取り除かれた状態においては、好ましくは0.1%以下であり、さらに好ましい含水率は、0.01%以下(検出限界以下)である。
本発明における改質処理とは、珪素化合物の酸化ケイ素または酸化窒化珪素への転化反応をいう。
本発明において、改質処理として用いることのできるプラズマ処理は、公知の方法を用いることができるが、好ましくは前述の大気圧プラズマ処理等をあげることが出来る。
珪素化合物を含有する塗膜を加熱処理することで、前記改質処理を行うことが出来る。
本発明において、改質処理の方法の1つとして、紫外線照射による処理も好ましい。紫外線(紫外光と同義)によって生成されるオゾンや活性酸素原子は高い酸化能力を有しており、低温で高い緻密性と絶縁性を有する酸化ケイ素膜または酸化窒化珪素膜を形成することが可能である。
本発明において、最も好ましい改質処理方法は、真空紫外線照射による処理(エキシマ照射処理)である。真空紫外線照射による処理は、ポリシラザン化合物内の原子間結合力より大きい100~200nmの光エネルギーを用い、好ましくは100~180nmの波長の光のエネルギーを用い、原子の結合を光量子プロセスと呼ばれる光子のみの作用により、直接切断しながら活性酸素やオゾンによる酸化反応を進行させることで、比較的低温で、酸化珪素膜の形成を行う方法である。
e+Xe→e+Xe*
Xe*+Xe+Xe→Xe2 *+Xe
となり、励起されたエキシマ分子であるXe2 *が基底状態に遷移するときに172nmのエキシマ光を発光する。
図1に示す如く本発明の好ましい態様においては、第2のバリア層は基材面側に低改質領域を、また表層側に高改質領域を有するが、改質処理によって形成される改質領域は、様々な方法で確認することができるが、改質処理後の第2のバリア層の断面を透過型電子顕微鏡(TEM)により観察することにより確認する方法が最も有効である。
ガスバリア性フィルムを、以下のFIB加工装置により薄片を作製した後、断面TEM観察を行う。このとき試料に電子線を照射し続けると、電子線ダメージを受ける部分とそうでない部分にコントラスト差が現れる。本発明に係る改質領域は、改質処理によって緻密化するために電子線ダメージを受けにくいが、非改質領域では電子線ダメージを受け変質が確認される。このようにして確認できた断面TEM観察により、改質領域と非改質領域の膜厚の算出が可能になる。
装置:SII製SMI2050
加工イオン:(Ga 30kV)
試料厚み:100nm~200nm
(TEM観察)
装置:日本電子製JEM2000FX(加速電圧:200kV)
電子線照射時間:5秒から60秒
(深さ方向の膜組成分析)
ガスバリア性フィルムを、深さ方向で、トリミングを行いながら、組成比率の順次測定を行い、組成比率の屈曲点を求め、それを改質領域と非改質領域との界面として求めても良い。本発明に係る膜組成分析には、XPS(X線光電子分光)表面分析装置を用いてその値を測定することができる。XPS表面分析装置は、本発明では、VGサイエンティフィックス社製ESCALAB-200Rを用いた。具体的には、X線アノードにはMgを用い、出力600W(加速電圧15kV、エミッション電流40mA)で測定した。エネルギー分解能は、清浄なAg3d5/2ピークの半値幅で規定したとき、1.5eV~1.7eVとなるように設定した。測定は、はじめに第2のバリア層表面の組成分析を行った後、順次第2のバリア層の膜厚の1%厚さに相当する層をエッチング除去しながら測定した。第2のバリア層の除去には、希ガスイオンが利用できるイオン銃を用いることが好ましく、イオン種としては、He、Ne、Ar、Xe、Krなどが利用できる。本測定では、Arイオンエッチングを用いて、順次第2のバリア層を除去した。測定としては、先ず、結合エネルギー0eV~1100eVの範囲を、データ取り込み間隔1.0eVで測定し、いかなる元素が検出されるかを求めた。次に、検出された、エッチングイオン種を除く全ての元素について、データの取り込み間隔を0.2eVとして、その最大強度を与える光電子ピークについてナロースキャンを行い、各元素のスペクトルを測定した。得られたスペクトルは、測定装置、あるいは、コンピュータの違いによる含有率算出結果の違いを生じせしめなくするために、VAMAS-SCA-JAPAN製のCOMMON DATA PROCESSING SYSTEM (Ver.2.3以降が好ましい)上に転送した後、同ソフトで処理を行い、各分析ターゲットの元素(炭素、酸素、ケイ素、チタン等)の含有率の値を原子数濃度(atomic concentration:at%)として求めた。定量処理を行う前に、各元素についてCount Scaleのキャリブレーションを行い、5ポイントのスムージング処理を行った。定量処理では、バックグラウンドを除去したピークエリア強度(cps×eV)を用いた。バックグラウンド処理には、Shirleyによる方法を用いた。また、Shirley法については、D.A.Shirley,Phys.Rev.,B5,4709(1972)を参考にすることができる。
本発明のガスバリア性フィルムの好ましい態様においては、化学蒸着法で形成された第1のバリア層3が、酸化珪素または酸窒化珪素から構成され、第1のバリア層3の弾性率をE1とし、第2のバリア層4における改質領域4Aの弾性率をE2とし、第2のバリア層4における非改質領域4Bの弾性率をE3としたときに、弾性率としてE1>E2>E3の関係を満たすことが好ましい。
本発明のガスバリア性フィルムにおいては、化学蒸着法で形成された第1のバリア層3が、酸化珪素、酸窒化珪素及び窒化珪素から選ばれる少なくとも1つで構成され、第1のバリア層3の膜密度をD1とし、第2のバリア層4における改質領域4Aの膜密度をD2とし、第2のバリア層4における非改質領域4Bの膜密度をD3としたとき、膜密度がD1>D2>D3の関係を満たすことが好ましい。
・X線反射率測定装置:理学電気製薄膜構造評価装置ATX-G
・X線源ターゲット:銅(1.2kW)
・測定:4結晶モノクロメータを用いてX線反射率曲線を測定し、密度分布プロファイルのモデルを作成、フィッティングを行い、膜厚方向の密度分布を算出。
本発明に係る第2のバリア層の改質処理側の表面の表面粗さ(Ra)は、2nm以下であることが好ましく、さらに好ましくは1nm以下である。表面粗さが上記で規定する範囲にあることで、有機光電変換素子用の樹脂基材として使用する際に、凹凸が少ない平滑な膜面により光透過効率の向上と、電極間リーク電流の低減によりエネルギー変換効率が向上するので好ましい。本発明に係るガスバリア層の表面粗さ(Ra)は以下の方法で測定することができる。
表面粗さは、AFM(原子間力顕微鏡)、例えば、Digital Instruments社製DI3100で、極小の先端半径の触針を持つ検出器で連続測定した凹凸の断面曲線から算出され、極小の先端半径の触針により測定方向が数十μmの区間内を多数回測定し、微細な凹凸の振幅に関する粗さである。
本発明のガスバリア性フィルムは、断裁加工適性に優れる。すなわち、断裁しても断裁面でのほつれ等がなく、有効な面積を稼げる。
断裁の方法として、特に限定するところではないが、紫外線レーザー(例えば、波長266nm)、赤外線レーザー、炭酸ガスレーザー等の高エネルギーレーザーによるアブレーション加工で行うことが好ましい。ガスバリア性フィルムは、割れやすい無機薄膜を有しているため、通常のカッターで断裁すると断細部で亀裂が発生することがある。さらには第1のバリア層表面に有機成分を含む保護層を設置することでも、断裁時のヒビ割れを抑制することが可能である。
(基材:基材)
本発明のガスバリア性フィルムの基材(以下、基材ともいう)としては、ガスバリア性を有するガスバリア層(第1のバリア層+第2のバリア層)を保持することができる有機材料で形成されたものであれば特に限定されるものではない。
さらに、本発明に係る基材表面には、表面が、JIS K 5400が規定する鉛筆硬度がH以上、かつ表面粗さがJIS B 0601で規定される最大断面高さRt(p)で10nm<Rt(p)<30nmとなる様な平滑層を設けることが好ましい。
好ましい態様のひとつは、感光性樹脂中に表面に光重合反応性を有する感光性基が導入された反応性シリカ粒子(以下、単に「反応性シリカ粒子」ともいう)を含むものである。ここで、光重合性を有する感光性基としては、(メタ)アクリロイルオキシ基に代表される重合性不飽和基等を挙げることができる。また感光性樹脂は、この反応性シリカ粒子の表面に導入された光重合反応性を有する感光性基と光重合反応可能な化合物、例えば、重合性不飽和基を有する不飽和有機化合物を含むものであってもよい。また感光性樹脂としては、このような反応性シリカ粒子や重合性不飽和基を有する不飽和有機化合物に適宜汎用の希釈溶剤を混合することによって固形分を調整したものを用いることができる。
本発明のガスバリア性フィルムにおいては、ブリードアウト防止層を設けることができる。ブリードアウト防止層は、平滑層を有するフィルムを加熱した際に、フィルム基材中から未反応のオリゴマー等が表面へ移行して、接触する面を汚染する現象を抑制する目的で、平滑層を有する基材の反対面に設けられる。ブリードアウト防止層は、この機能を有していれば、基本的に平滑層と同じ構成をとっても構わない。
本発明のガスバリア性フィルムは、連続生産しロール形態に巻き取ることができる(いわゆるロール・トゥ・ロール生産)。その際、ガスバリア層を形成した面に保護シートを貼合して巻き取ることが好ましい。特に、本発明のガスバリア性フィルムを有機薄膜デバイスの封止材として用いる場合、表面に付着したゴミ(パーティクル)が原因で欠陥となる場合が多く、クリーン度の高い場所で保護シートを貼合してゴミの付着を防止することは非常に有効である。併せて、巻取り時に入るガスバリア層表面への傷の防止に有効である。
本発明のガスバリア性フィルムの各特性値は、下記の方法に従って測定することができる。
前述のJIS K 7129B法に従って水蒸気透過率を測定には、種々の方法が提案されている。例えば、カップ法、乾湿センサー法(Lassy法)、赤外線センサー法(mocon法)が代表として挙げられるが、ガスバリア性が向上するに伴って、これらの方法では測定限界に達する場合があり、以下に示す方法も提案されている。
1.Ca法
ガスバリア性フィルムに金属Caを蒸着し、該フィルムを透過した水分で金属Caが腐食される現象を利用する方法。腐食面積とそこに到達する時間から水蒸気透過率を算出する。
大気圧下の試料空間と超高真空中の質量分析計の間で水蒸気の冷却トラップを介して受け渡す方法。
三重水素を用いて水蒸気透過率を算出する方法。
水蒸気または酸素により電気抵抗が変化する材料(例えば、Ca、Mg)をセンサーに用いて、電気抵抗変化とそれに内在する1/f揺らぎ成分から水蒸気透過率を算出する方法。
蒸着装置:日本電子(株)製真空蒸着装置JEE-400
恒温恒湿度オーブン:Yamato Humidic ChamberIG47M
水分と反応して腐食する金属:カルシウム(粒状)
水蒸気不透過性の金属:アルミニウム(φ3~5mm、粒状)
水蒸気バリア性評価用セルの作製
バリアフィルム試料のガスバリア層面に、真空蒸着装置(日本電子製真空蒸着装置JEE-400)を用い、透明導電膜を付ける前のバリアフィルム試料の蒸着させたい部分(12mm×12mmを9箇所)以外をマスクし、金属カルシウムを蒸着させた。その後、真空状態のままマスクを取り去り、シート片側全面にアルミニウムをもう一つの金属蒸着源から蒸着させた。アルミニウム封止後、真空状態を解除し、速やかに乾燥窒素ガス雰囲気下で、厚さ0.2mmの石英ガラスに封止用紫外線硬化樹脂(ナガセケムテックス製)を介してアルミニウム封止側と対面させ、紫外線を照射することで、評価用セルを作製した。また、屈曲前後のガスバリア性の変化を確認するために、上記屈曲の処理を行わなかったバリアフィルムについても同様に、水蒸気バリア性評価用セルを作製した。
本発明のガスバリア性フィルムは、種々の封止用材料、封止用フィルムとして用いることができ、例えば、有機光電変換素子の封止用フィルムに用いることができる。
本発明において、封止フィルムに本発明のガスバリア性フィルムを基板として用いることができる。
本発明では、本発明のガスバリア層ユニットを有する樹脂フィルム(ガスバリア性フィルム)上に透明導電膜を形成し、作製した有機光電変換素子用樹脂基材上に、有機光電変換素子各層を形成した後、上記封止フィルムを用いて、不活性ガスによりパージされた環境下で、上記封止フィルムで陰極面を覆うようにして、有機光電変換素子を封止することができる。
本発明のガスバリア性フィルムにおいては、上述のように、有機光電変換素子を封止するにあたって、ガスバリア性をより一層高める等の観点から、無機酸化物、窒化物、炭化物、等による化合物により形成されるセラミック層をガスバリア性フィルム上に追加して設けることができる。
本発明の有機光電変換素子の好ましい態様を説明するが、これに限定されるものではない。
(i)陽極/発電層/陰極
(ii)陽極/正孔輸送層/発電層/陰極
(iii)陽極/正孔輸送層/発電層/電子輸送層/陰極
(iv)陽極/正孔輸送層/p型半導体層/発電層/n型半導体層/電子輸送層/陰極
(v)陽極/正孔輸送層/第1発光層/電子輸送層/中間電極/正孔輸送層/第2発光層/電子輸送層/陰極
ここで、発電層は、正孔を輸送できるp型半導体材料と電子を輸送できるn型半導体材料を含有していることが必要であり、これらは実質2層でヘテロジャンクションを形成していてもよいし、1層の内部で混合された状態となっているバルクヘテロジャンクションを形成してもよいが、バルクヘテロジャンクション構成の方が、光電変換効率が高いため、好ましい。発電層に用いられるp型半導体材料、n型半導体材料については後述する。
(p型半導体材料)
本発明の有機光電変換素子において、発電層(バルクヘテロジャンクション層)に用いられるp型半導体材料としては、種々の縮合多環芳香族低分子化合物や共役系ポリマー・オリゴマーが挙げられる。
本発明の有機光電変換素子において、バルクヘテロジャンクション層に用いられるn型半導体材料としては、特に限定されないが、例えば、フラーレン、オクタアザポルフィリン等、p型半導体の水素原子をフッ素原子に置換したパーフルオロ体(パーフルオロペンタセンやパーフルオロフタロシアニン等)、ナフタレンテトラカルボン酸無水物、ナフタレンテトラカルボン酸ジイミド、ペリレンテトラカルボン酸無水物、ペリレンテトラカルボン酸ジイミド等の芳香族カルボン酸無水物やそのイミド化物を骨格として含む高分子化合物等を挙げることができる。
本発明の有機光電変換素子10は、バルクヘテロジャンクション層と陽極との中間には正孔輸送層17を、バルクヘテロジャンクション層で発生した電荷をより効率的に取り出すことが可能となるため、これらの層を有していることが好ましい。
本発明の有機光電変換素子10は、バルクヘテロジャンクション層と陰極との中間には電子輸送層18を形成することで、バルクヘテロジャンクション層で発生した電荷をより効率的に取り出すことが可能となるため、これらの層を有していることが好ましい。
本発明の有機光電変換素子においては、エネルギー変換効率の向上や、素子寿命の向上を目的に、各種中間層を素子内に有する構成としてもよい。中間層の例としては、正孔ブロック層、電子ブロック層、正孔注入層、電子注入層、励起子ブロック層、UV吸収層、光反射層、波長変換層等を挙げることができる。
本発明の有機光電変換素子において、透明電極は、陰極あるいは陽極のいずれあっても良く、有機光電変換素子構成により選択することができるが、好ましくは透明電極を陽極として用いることである。例えば、陽極として用いる場合、好ましくは380~800nmの光を透過する電極である。材料としては、例えば、インジウムチンオキシド(ITO)、SnO2、ZnO等の透明導電性金属酸化物、金、銀、白金等の金属薄膜、金属ナノワイヤ、カーボンナノチューブ用いることができる。
対電極は、導電材料の単独層であってもよいが、導電性を有する材料に加えて、これらを保持する樹脂を併用してもよい。対電極の導電材料としては、仕事関数の小さい(4eV以下)金属、合金、電気伝導性化合物及びこれらの混合物を電極物質とするものが用いられる。このような電極物質の具体例としては、ナトリウム、ナトリウム-カリウム合金、マグネシウム、リチウム、マグネシウム/銅混合物、マグネシウム/銀混合物、マグネシウム/アルミニウム混合物、マグネシウム/インジウム混合物、アルミニウム/酸化アルミニウム(Al2O3)混合物、インジウム、リチウム/アルミニウム混合物、希土類金属等が挙げられる。これらの中で、電子の取り出し性能及び酸化等に対する耐久性の点から、これら金属とこれより仕事関数の値が大きく安定な金属である第二金属との混合物、例えば、マグネシウム/銀混合物、マグネシウム/アルミニウム混合物、マグネシウム/インジウム混合物、アルミニウム/酸化アルミニウム(Al2O3)混合物、リチウム/アルミニウム混合物、アルミニウム等が好適である。対電極はこれらの電極物質を蒸着やスパッタリング等の方法により薄膜を形成させることにより、作製することができる。また、(平均)膜厚は通常10nm~5μm、好ましくは50~200nmの範囲で選ばれる。
また、前記(v)(または図4)に記載したようなタンデム構成の場合に必要となる中間電極の材料としては、透明性と導電性を併せ持つ化合物を用いた層であることが好ましく、前記透明電極で用いたような材料(ITO、AZO、FTO、酸化チタン等の透明金属酸化物、Ag、Al、Au等の非常に薄い金属層またはナノ粒子・ナノワイヤを含有する層、PEDOT:PSS、ポリアニリン等の導電性高分子材料等)を用いることができる。
本発明の有機光電変換素子では導電性繊維を用いることができ、導電性繊維としては、金属でコーティングした有機繊維や無機繊維、導電性金属酸化物繊維、金属ナノワイヤ、炭素繊維、カーボンナノチューブ等を用いることができるが、金属ナノワイヤが好ましい。
本発明の有機光電変換素子は、太陽光のより効率的な受光を目的として、各種の光学機能層を有していてよい。光学機能層としては、例えば、反射防止膜、マイクロレンズアレイ等の集光層、陰極で反射した光を散乱させて再度発電層に入射させることができるような光拡散層等を設けてもよい。
〈各種の層の形成方法〉
電子受容体と電子供与体とが混合されたバルクヘテロジャンクション層、及び輸送層・電極の形成方法としては、蒸着法、塗布法(キャスト法、スピンコート法を含む)等を例示することができる。このうち、バルクヘテロジャンクション層の形成方法としては、蒸着法、塗布法(キャスト法、スピンコート法を含む)等を例示することができる。このうち、前述の正孔と電子が電荷分離する界面の面積を増大させ、高い光電変換効率を有する素子を作製するためには、塗布法が好ましい。また塗布法は、製造速度にも優れている。
本発明の有機光電変換素子の製造において、電極、発電層、正孔輸送層、電子輸送層等をパターニングする方法やプロセスには特に制限はなく、公知の手法を適宜適用することができる。
《試料1(ガスバリア性フィルム)の作製》
〔第1のバリア層1の形成〕
大気圧プラズマ製膜装置(特開2008-56967号の図3に記載、ロールツーロール形態の大気圧プラズマCVD装置)を用いて、大気圧プラズマ法により、透明樹脂基材(きもと社製クリアハードコート層(CHC)付ポリエチレンテレフタレート(PET)フィルム、PETの厚さ125μm、CHCの厚さ6μm)上に、以下の薄膜形成条件で酸化珪素の第1のバリア層1(100nm)を形成した。
放電ガス:窒素ガス 94.9体積%
薄膜形成ガス:テトラエトキシシラン 0.1体積%
添加ガス:酸素ガス 5.0体積%
(成膜条件)
〈第1電極側〉
電源種類:ハイデン研究所 100kHz(連続モード) PHF-6k
周波数 :100kHz
出力密度:10W/cm2
電極温度:120℃
〈第2電極側〉
電源種類:パール工業 13.56MHz CF-5000-13M
周波数 :13.56MHz
出力密度:10W/cm2
電極温度:90℃
上記方法に従って形成した第1のバリア層1は、酸化珪素(SiO2)で構成されている。
上記方法で形成した第1のバリア層1上に、パーヒドロポリシラザン(PHPS、アクアミカ NN120-10、無触媒タイプ、AZエレクトロニックマテリアルズ(株)製)の10質量%ジブチルエーテル溶液をワイヤレスバーにて、乾燥後の(平均)膜厚が、0.10μmとなるように塗布し、塗布試料を得た。
得られた塗布試料を、温度85℃、湿度55%RHの雰囲気下で1分間処理し、乾燥試料を得た。
乾燥試料をさらに温度25℃、湿度10%RH(露点温度-8℃)の雰囲気下に10分間保持し、除湿処理を行った。
除湿処理を行った試料に対し、下記の条件で改質処理を施して、第2のバリア層1を形成した。改質処理時の露点温度は-8℃で実施した。
装置:株式会社 エム・ディ・コム製エキシマ照射装置MODEL:MECL-M-1-200
波長:172nm
ランプ封入ガス:Xe
〈改質処理条件〉
稼動ステージ上に固定した試料を、以下の条件で改質処理を行って、第2のバリア層1を形成した。
試料と光源の距離 :1mm
ステージ加熱温度 :70℃
照射装置内の酸素濃度:1.0%
エキシマ照射時間 :5秒
以上により、ガスバリア性フィルムである試料1を作製した。
上記作製した試料1を、後述の方法に従って断面のTEMによる観察を行った結果、第2のバリア層1において、改質領域が表面から深さ方向で30nmまで存在していることを確認した。
〔第1のバリア層2の形成〕
上記試料1における第1のバリア層1の形成において、製膜条件を下記のように変更した以外は同様にして、酸窒化珪素から構成される第1のバリア層2(100nm)を形成した。
放電ガス:窒素ガス 94.9体積%
薄膜形成ガス:テトラエトキシシラン 0.1体積%
添加ガス:水素ガス 1.0体積%
(成膜条件)
〈第1電極側〉
電源種類:ハイデン研究所 100kHz(連続モード) PHF-6k
周波数 :100kHz
出力密度:12W/cm2
電極温度:120℃
〈第2電極側〉
電源種類:パール工業 13.56MHz CF-5000-13M
周波数 :13.56MHz
出力密度:12W/cm2
電極温度:90℃
得られた第1のバリア層2は酸窒化珪素(SiON)で構成され、窒素含有率は元素比率で0.8%であった。
上記方法で形成した第1のバリア層2上に、パーヒドロポリシラザン(PHPS、アクアミカ NN120-10、無触媒タイプ、AZエレクトロニックマテリアルズ(株)製)の10質量%ジブチルエーテル溶液をワイヤレスバーにて、乾燥後の(平均)膜厚が、0.10μmとなるように塗布し、塗布試料を得た。
得られた塗布試料を、温度65℃、湿度55%RHの雰囲気下で1分間処理し、乾燥試料を得た。
乾燥試料をさらに温度25℃、10%RH(露点温度-8℃)の雰囲気下に10分間保持し、除湿処理を行った。
除湿処理を行った試料に対し、上記試料1の第2のバリア層1の形成に用いたのと同様の条件で改質処理Aを施し、第2のバリア層2を形成した。
上記作製した試料2を、後述の方法に従って断面のTEMによる観察を行った結果、第2のバリア層2において、改質領域が表面から深さ方向で30nmまで存在していることを確認した。
〔第1のバリア層3の形成〕
上記試料1におけるバリア層1の形成において、製膜条件を下記のように代えた以外は同様にして、酸窒化珪素の第1のバリア層3(100nm)を形成した。
放電ガス:窒素ガス 94.9体積%
薄膜形成ガス:テトラエトキシシラン 0.1体積%
添加ガス:水素ガス 1.0体積%
(成膜条件)
〈第1電極側〉
電源種類:ハイデン研究所 100kHz(連続モード) PHF-6k
周波数 :100kHz
出力密度:12W/cm2
電極温度:120℃
〈第2電極側〉
電源種類:パール工業 13.56MHz CF-5000-13M
周波数 :13.56MHz
出力密度:12W/cm2
電極温度:90℃
得られた第1のバリア層3は酸窒化珪素(SiON)で、窒素含有率は元素比率で0.8%であった。
引き続き、得られた第1のバリア層3上に、パーヒドロポリシラザン(PHPS、アクアミカ NN120-10、無触媒タイプ、AZエレクトロニックマテリアルズ(株)製)の10質量%ジブチルエーテル溶液をワイヤレスバーにて、乾燥後の(平均)膜厚が、0.10μmとなるように塗布し、塗布試料を得た。
得られた塗布試料を、温度85℃、湿度55%RHの雰囲気下で1分間処理し、乾燥試料を得た。
乾燥試料を、さらに温度25℃、湿度10%RH(露点温度-8℃)の雰囲気下に10分間保持し、除湿処理を行った。
除湿処理を行った試料に対し、下記の条件で改質処理を施して、第2のバリア層3を形成した。改質処理時の露点温度は-8℃で実施した。
装置:株式会社 エム・ディ・コム製エキシマ照射装置MODEL:MECL-M-1-200
波長:172nm
ランプ封入ガス:Xe
〈改質処理条件〉
稼動ステージ上に固定した試料を以下の条件で改質処理を行って、第2のバリア層3を形成した。
試料と光源の距離 :1mm
ステージ加熱温度 :90℃
照射装置内の酸素濃度:0.1%
エキシマ照射時間 :3秒
以上により、ガスバリア性フィルムの試料3を作製した。
〔第1のバリア層4の形成〕
サムコ社製プラズマCVD装置Model PD-270STPを用いて、透明樹脂基材(きもと社製クリアハードコート層(CHC)付ポリエチレンテレフタレート(PET)フィルム(PETの厚さ125μm、CHCの厚さ6μm))上に、以下の薄膜形成条件で第1のバリア層4を形成した。
酸素圧力:53.2Pa
反応ガス:テトラエトキシシラン(TEOS)5sccm(standard cubic centimeter per minute)濃度0.5%
電力:13.56MHzで100W
基材保持温度:120℃
得られた第1のバリア層4は、酸化珪素(SiO2)で構成されていた。
引き続き、得られた第1のバリア層4に、第2のバリア層1の形成と同様の処理を施した第2のバリア層4を形成し、ガスバリア性フィルムの試料4を作製した。
〔第1のバリア層5の形成〕
図5に示す真空プラズマCVD装置を用いて、第1のバリア層5として、SiON膜を透明樹脂基材(きもと社製クリアハードコート層(CHC)付ポリエチレンテレフタレート(PET)フィルム、PETの厚さ125μm、CHCの厚さ6μm)上に成膜を行った。
次いで、上記形成した第1のバリア層5上に、パーヒドロポリシラザン(PHPS、アクアミカ NN120-10、無触媒タイプ、AZエレクトロニックマテリアルズ(株)製)の10質量%ジブチルエーテル溶液をワイヤレスバーにて、乾燥後の(平均)膜厚が、0.10μmとなるように塗布し、塗布試料を得た。
得られた塗布試料を、温度95℃、湿度55%RHの雰囲気下で1分間処理し、乾燥試料を得た。
乾燥試料を、さらに温度25℃、湿度10%RH(露点温度-8℃)の雰囲気下に10分間保持し、除湿処理を行った。
除湿処理を行った試料に対し、上記試料3の第2のバリア層3の形成に用いたのと同様の条件で、改質処理Bを施し、第2のバリア層5を形成した。
〔第1のバリア層6の形成〕
図5に示す真空プラズマCVD装置を用いて、第1のバリア層6として、SiN膜を透明樹脂基材(きもと社製クリアハードコート層(CHC)付ポリエチレンテレフタレート(PET)フィルム、PETの厚さ125μm、CHCの厚さ6μm)上に成膜を行った。
前記試料5の第2のバリア層5の形成条件と同様にして、第2のバリア層6を形成した。
〔第1のバリア層7の形成〕
図5に示す真空プラズマCVD装置を用いて、第1のバリア層7として、SiN膜を透明樹脂基材(きもと社製クリアハードコート層(CHC)付ポリエチレンテレフタレート(PET)フィルム、PETの厚さ125μm、CHCの厚さ6μm)上に成膜を行った。
前記試料5の第2のバリア層5の形成条件と同様にして、第2のバリア層7を形成した。
〔第1のバリア層8の形成〕
前記試料7の第1のバリア層7の形成条件と同様にして、第1のバリア層8を形成した。
前記試料2の第2のバリア層2の形成条件と同様にして、第2のバリア層8を形成した。
〔第1のバリア層9の形成〕
試料1における第1のバリア層1と同様の形成方法より、酸窒化珪素の第1のバリア層9(100nm)を形成した。
試料1の作製において、第2のバリア層1の改質処理で用いた改質処理Aを、下記の改質処理Cに変更したした以外は同様にして、第1のバリア層9上に第2のバリア層9を形成し、ガスバリア性フィルムの試料9を作製した。
除湿処理を行った試料を下記の条件でプラズマ処理を行い、第2のバリア層9を形成した。また、製膜時の基材保持温度は、120℃とした。
反応ガス:酸素ガスを全ガスに対し7%
低周波側電源電力:100kHzを6W/cm2
高周波側電源電力:13.56MHzを10W/cm2
プラズマ処理時間;20秒
試料9の断面をTEMにより観察を行った結果、第2のバリア層9の表面より深さ方向で10nmの領域で改質領域が存在していることを確認した。
〔第1のバリア層10の形成〕
試料1における第1のバリア層1の形成と同様にして、酸窒化珪素の第1のバリア層10(100nm)を形成した。
試料1の第2のバリア層1の形成において、第2のバリア層の膜厚を0.06μmとし、改質処理Aを下記の改質処理Dに変更した以外は同様にして、第1のバリア層10上に第2のバリア層10を形成し、ガスバリア性フィルムの試料10を作製した。
除湿処理を行った試料を下記の条件で改質処理を行い、第2のバリア層10を形成した。改質処理時の露点温度は-8℃で実施した。
装置:株式会社 ウシオ製、紫外照射装置 型式UVH-0252C
〈改質処理条件〉
稼動ステージ上に固定した試料を以下の条件で改質処理を行った。
試料と光源の距離 :30mm
ステージ加熱温度 :40℃
照射装置内の酸素濃度:5%
UV照射時間 :180秒
試料5の断面をTEMにより観察した結果、第2のバリア層10における改質領域が、表面から深さ方向で55nmの厚みで存在していることが確認された。
特開2009-255040号公報に記載の実施例1の条件で、厚さ100nmの第2のバリア層を2層積層し、これを試料11とした。試料11には、断面をTEMにより観察した結果、改質領域は確認されなかった。
特許第3511325号公報の実施例1に記載の条件で、プラズマCVD法により厚さ100nmの第1のバリア層12(酸化珪素)を形成し、第1のバリア層12上に、同様に第2のバリア層12を100nmの厚さで形成し、試料12を得た。試料12の断面をTEMにより観察した結果、改質領域の存在は確認されなかった。
特開2008-235165号公報の実施例に記載のバリア膜に積層する平坦化膜を、前記試料1の第2のバリア層1の形成に用いた塗布条件を適用し、更に改質処理を90℃で10分間の加熱処理とした以外は同様にして、試料13とした。試料13の断面をTEMにより観察した結果、改質領域の存在は確認されなかった。
〔第1のバリア層14の形成〕
前記試料1の第1のバリア層1の形成条件と同様にして、第1のバリア層14を形成した。
前記試料1の第2のバリア層1の形成の改質処理において、エキシマ照射時間を30秒に変更し、第2のバリア層全域を改質領域とした以外は同様にして、第2のバリア層14を形成した。
〔第1のバリア層15の形成〕
前記試料1の第1のバリア層1の形成条件と同様にして、第1のバリア層15を形成した。
前記試料1の第2のバリア層1の形成において、珪素化合物として、パーヒドロポリシラザン(PHPS)に代えて、水素化シルセスキオキサン(HSQ)を用いた以外は同様にして、第2のバリア層15を形成した。
〔第1のバリア層16の形成〕
前記試料1の第1のバリア層1の形成条件と同様にして、第1のバリア層16を形成した。
前記試料1の第2のバリア層1の形成において、特許第4310784号公報の実施例2に記載の方法に従って、ゾルゲル法により、珪素化合物としてTEOS(テトラエトキシシラン)/水/IPA(イソプロピルアルコール)/3級アミン/γ-グリシドキシプロピルトリメトキシシラン加水分解物を含む溶液を、乾燥後の膜厚が100nmとなる条件で塗布し、130℃で、改質領域4Aの膜厚が30nmとなる条件で熱処理した以外は同様にして、酸化ケイ素から構成される第2のバリア層16を形成した。
〔第1のバリア層17の形成〕
大気圧プラズマ製膜装置(特開2008-56967号公報の図3に記載のロールツーロール形態の大気圧プラズマCVD装置)を用いて、大気圧プラズマCVD法により、透明樹脂基材(きもと社製クリアハードコート層(CHC)付ポリエチレンテレフタレート(PET)フィルム、PETの厚さ125μm、CHCの厚さ6μm)上に、以下の薄膜形成条件で酸化珪素から構成される第1のバリア層17(100nm)を形成した。
放電ガス:窒素ガス 94.9体積%
薄膜形成ガス:テトラエトキシシラン 0.1体積%
添加ガス:酸素ガス 5.0体積%
(成膜条件)
〈第1電極側〉
電源種類:ハイデン研究所 100kHz(連続モード) PHF-6k
周波数 :100kHz
出力密度:7W/cm2
電極温度:120℃
〈第2電極側〉
電源種類:パール工業 13.56MHz CF-5000-13M
周波数 :13.56MHz
出力密度:7W/cm2
電極温度:90℃
上記方法に従って形成した第1のバリア層17は、酸化珪素(SiO2)で構成され、膜密度は、膜厚方向で一様に2.12g/cm3(=D1)であった。
前記試料3の第2のバリア層3の形成条件と同様にして、第2のバリア層17を形成した。
上記作製した各ガスバリア性フィルムについて、以下の方法で特性値の測定を行った。
上記作製した各ガスバリア性フィルムについて、以下のFIB加工装置により超薄切片を作製した後、TEM観察を行った。このとき、試料に電子線を照射し続けると、電子線によりダメージを受ける部分とそうでない部分にコントラスト差が現れるため、その領域を測定することで、改質領域4A及び非改質領域4Bの厚さを算出した。
装置:SII製SMI2050
加工イオン:(Ga 30kV)
試料厚み:200nm
(TEM観察)
装置:日本電子製JEM2000FX(加速電圧:200kV)
電子線照射時間:30秒
〔第1のバリア層、第2のバリア層における改質領域4A及び非改質領域4Bの弾性率の測定〕
上記と同様にして、FIB加工により、各ガスバリア性フィルムの断面を露出させた後、MTSシステム社製のナノインデンター(Nano Indenter TMXP/DCM)を用いて、断面部の各領域に対し、超微小な三角錐の圧子を押し込んで、第1のバリア層、第2のバリア層における改質領域、非改質領域の弾性率を測定した。
・X線反射率測定装置:理学電気製薄膜構造評価装置ATX-G
・X線源ターゲット:銅(1.2kW)
・測定:4結晶モノクロメータを用いてX線反射率曲線を測定し、密度分布プロファイルのモデルを作成、フィッティングを行い、膜厚方向の密度分布を算出し、第1のバリア層、第2のバリア層における改質領域4A及び非改質領域4Bの膜密度の測定と、膜密度差(D1-D2)、(D1-D3)、(D2-D3)を求めた。
上記作製した各ガスバリア性フィルムについて、以下の方法で各性能評価を行った。
以下の測定方法に従って、各ガスバリア性フィルムの水蒸気バリア性を評価した。
蒸着装置:日本電子(株)製真空蒸着装置JEE-400
恒温恒湿度オーブン:Yamato Humidic ChamberIG47M
水分と反応して腐食する金属:カルシウム(粒状)
水蒸気不透過性の金属:アルミニウム(φ3~5mm、粒状)
(水蒸気バリア性評価用セルの作製)
試料のガスバリア層面に、真空蒸着装置(日本電子製真空蒸着装置 JEE-400)を用い、透明導電膜を付ける前のガスバリア性フィルム試料の蒸着させたい部分(12mm×12mmを9箇所)以外をマスクし、金属カルシウムを蒸着させた。その後、真空状態のままマスクを取り去り、シート片側全面にアルミニウムをもう一つの金属蒸着源から蒸着させた。アルミニウム封止後、真空状態を解除し、速やかに乾燥窒素ガス雰囲気下で、厚さ0.2mmの石英ガラスに封止用紫外線硬化樹脂(ナガセケムテックス製)を介してアルミニウム封止側と対面させ、紫外線を照射することで、評価用セルを作製した。また、屈曲前後のガスバリア性の変化を確認するために、上記屈曲の処理を行わなかったガスバリア性フィルムについても同様に、水蒸気バリア性評価用セルを作製した。
4:水分量が1×10-4g/m2/day以上、1×10-3g/m2/day未満
3:水分量が1×10-3g/m2/day以上、1×10-2g/m2/day未満
2:水分量が1×10-2g/m2/day以上、1×10-1g/m2/day未満
1:水分量が1×10-1g/m2/day以上
〔折り曲げ耐性の評価〕
各ガスバリア性フィルムを、半径が10mmの曲率になるように、180度の角度で100回の屈曲を繰り返した後、上記と同様の方法で水蒸気透過率を測定し、屈曲処理前後での水蒸気透過率の変化より、下式に従って耐劣化度を測定し、下記の基準に従って折り曲げ耐性を評価した。3以上のランクであれば実用上許容範囲にあると判断した。
5:耐劣化度が、90%以上である
4:耐劣化度が、80%以上、90%未満である
3:耐劣化度が、60%以上、80%未満である
2:耐劣化度が、30%以上、60%未満である
1:耐劣化度が、30%未満である
〔断裁加工適性の評価〕
各ガスバリア性フィルムを、ディスクカッターDC-230(CADL社)を用いてB5サイズに断裁した後、断裁した各端部をルーペ観察し、四辺のクラックの総発生数を確認し、下記の基準に従って断裁加工適性を評価した。3以上のランクであれば実用上許容範囲にあると判断した。
4:クラックの発生数が、1本以上、2本以下である
3:クラックの発生数が、3本以上、5本以下である
2:クラックの発生数が、6本以上、10本以下である
1:クラックの発生数が、1本以上である
以上により得られた各ガスバリア性フィルムの評価結果を表3に示す。
《電子デバイスの作製》
実施例1で作製したガスバリア性フィルム1~17に、それぞれ、インジウム・スズ酸化物(ITO)透明導電膜を150nm堆積したもの(シート抵抗10Ω/□)を、通常のフォトリソグラフィ技術と湿式エッチングとを用いて2mm幅にパターニングして第1電極を形成した。パターン形成した第1電極を、界面活性剤と超純水による超音波洗浄、超純水による超音波洗浄の順で洗浄後、窒素ブローで乾燥させ、最後に紫外線オゾン洗浄を行った。
窒素ガス(不活性ガス)によりパージされた環境下で、実施例1で作製したガスバリア性フィルム1~17の二枚を用い、ガスバリア層ユニットを設けた面に、シール材としてエポキシ系光硬化型接着剤を塗布した。上述した方法によって得られたガスバリア性フィルム1~17に対応する有機光電変換素子を、上記接着剤を塗布した二枚のガスバリア性フィルム1~17の接着剤塗布面の間に挟み込んで密着させた後、片側の基板側からUV光を照射して硬化させ、それぞれ有機光電変換素子1~17とした。
作製した有機光電変換素子について、以下の方法で耐久性の評価を行った。
〈エネルギー変換効率〉
ソーラーシミュレーター(AM1.5Gフィルタ)の100mW/cm2の強度の光を照射し、有効面積を4.0mm2にしたマスクを受光部に重ね、IV特性を評価することで、短絡電流密度Jsc(mA/cm2)、開放電圧Voc(V)及びフィルファクターFF(%)を、同素子上に形成した4箇所の受光部をそれぞれ測定し、下記式1に従って求めたエネルギー変換効率PCE(%)の4点平均値を見積もった。
PCE(%)=〔Jsc(mA/cm2)×Voc(V)×FF(%)〕/100mW/cm2
初期電池特性としての変換効率を測定し、性能の経時的低下の度合いを温度60℃、湿度90%RH環境で1000時間保存した加速試験後の変換効率残存率により評価した。
5:変換効率残存率が90%以上
4:変換効率残存率が70%以上、90%未満
3:変換効率残存率が40%以上、70%未満
2:変換効率残存率が20%以上、40%未満
1:変換効率残存率が20%未満
以上により得られた結果を、表4に示す。
2 基材
3 第1のバリア層
4 第2のバリア層
4A 改質領域
4B 非改質領域
5 ガスバリア層ユニット
L 改質処理手段
10 バルクヘテロジャンクション型の有機光電変換素子
11 基板
12 透明電極
13 対極
14 光電変換部(バルクヘテロジャンクション層)
14p p層
14i i層
14n n層
14′ 第1の光電変換部
15 電荷再結合層
16 第2の光電変換部
17 正孔輸送層
18 電子輸送層
101 本発明で使用できる真空プラズマCVD装置
102 真空槽
103 カソード電極
105 サセプタ
106 熱媒体循環系と、
107 真空排気系
108 ガス導入系
109 高周波電源
Claims (13)
- 基材の少なくとも一方の面側にガスバリア層ユニットを有し、該ガスバリア層ユニットが化学蒸着法で形成された第1のバリア層と、該第1のバリア層上に珪素化合物を塗布して形成された塗膜に改質処理が施された第2のバリア層を有し、該第2のバリア層は、前記基材面側に非改質領域を、表層側に改質領域を有することを特徴とするガスバリア性フィルム。
- 基材と第1のバリア層の間に、該第1のバリア層が形成される側の面の、JIS K 5400が規定する鉛筆硬度がH以上、かつJIS B 0601で規定される最大断面高さRt(p)が10nm<Rt(p)<30nmである平滑層が設けられたことを特徴とする請求項1に記載のガスバリア性フィルム。
- 前記平滑層は、平滑層全体の10質量%以上が無機成分である平滑層であることを特徴とする請求項2に記載のガスバリア性フィルム。
- 前記化学蒸着法で形成された第1のバリア層が、酸化珪素、酸窒化珪素または窒化珪素を有することを特徴とする請求項1から3のいずれか1項に記載のガスバリア性フィルム。
- 前記第2のバリア層が、ポリシラザン含有液を塗布して形成された塗膜に改質処理が施されたものであることを特徴とする請求項1から4のいずれか1項に記載のガスバリア性フィルム。
- 前記第2のバリア層の表層側に位置する改質領域の厚みが、該第2のバリア層の全膜厚に対し、厚み比率で0.2以上、0.9以下であることを特徴とする請求項1から5のいずれか1項に記載のガスバリア性フィルム。
- 前記化学蒸着法で形成された第1のバリア層が、酸化珪素または酸窒化珪素を有し、該第1のバリア層の弾性率をE1とし、前記第2のバリア層における改質領域の弾性率をE2とし、前記第2のバリア層における非改質領域の弾性率をE3としたときに、弾性率がE1>E2>E3の関係を満たすことを特徴とする請求項1から6のいずれか1項に記載のガスバリア性フィルム。
- 前記第1のバリア層の膜密度をD1とし、前記第2のバリア層における改質領域の膜密度をD2とし、前記第2のバリア層における非改質領域の膜密度をD3としたとき、膜密度がD1>D2>D3の関係を満たすことを特徴とする請求項1から7のいずれか1項に記載のガスバリア性フィルム。
- 前記膜密度D1と膜密度D2との膜密度差(D1-D2)が0.05以上、1.30以下であり、
前記膜密度D1と膜密度D3との膜密度差(D1-D3)が0.15以上、1.40以下であり、
かつ前記膜密度D2と膜密度D3との膜密度差(D2-D3)が0.10以上であることを特徴とする請求項8に記載のガスバリア性フィルム。 - 前記第1のバリア層の厚みが50nm~300nmの酸化珪素または酸窒化珪素層であり、前記第2のバリア層の厚みが60nm~600nmであることを特徴とする請求項1から9のいずれか1項に記載のガスバリア性フィルム。
- 前記第1のバリア層の厚みが50nm~200nm、前記第2のバリア層の厚みが60nm~300nmであることを特徴とする請求項10に記載のガスバリア性フィルム。
- 請求項1から11のいずれか1項に記載のガスバリア性フィルムを製造するガスバリア性フィルムの製造方法であって、第2のバリア層に施される改質処理が、180nm以下の波長成分を有する真空紫外線を照射する処理であることを特徴とするガスバリア性フィルムの製造方法。
- 請求項1から11のいずれか1項に記載のガスバリア性フィルムを用いたことを特徴とする電子デバイス。
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020137001823A KR101461346B1 (ko) | 2010-07-27 | 2011-07-07 | 가스 배리어성 필름, 가스 배리어성 필름의 제조 방법 및 전자 디바이스 |
JP2012526400A JP5862565B2 (ja) | 2010-07-27 | 2011-07-07 | ガスバリア性フィルム、ガスバリア性フィルムの製造方法及び電子デバイス |
EP11812245.6A EP2599621B1 (en) | 2010-07-27 | 2011-07-07 | Gas barrier film, process for production of gas barrier film, and electronic device |
CN201180036153.6A CN103025518B (zh) | 2010-07-27 | 2011-07-07 | 气体阻隔性膜、气体阻隔性膜的制造方法及电子器件 |
US13/810,544 US9359505B2 (en) | 2010-07-27 | 2011-07-07 | Gas barrier film, process for production of gas barrier film, and electronic device |
Applications Claiming Priority (8)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010167914 | 2010-07-27 | ||
JP2010-167914 | 2010-07-27 | ||
JP2010257660 | 2010-11-18 | ||
JP2010-257660 | 2010-11-18 | ||
JP2010-285519 | 2010-12-22 | ||
JP2010285519 | 2010-12-22 | ||
JP2011-004588 | 2011-01-13 | ||
JP2011004588 | 2011-01-13 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2012014653A1 true WO2012014653A1 (ja) | 2012-02-02 |
Family
ID=45529871
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2011/065568 WO2012014653A1 (ja) | 2010-07-27 | 2011-07-07 | ガスバリア性フィルム、ガスバリア性フィルムの製造方法及び電子デバイス |
Country Status (6)
Country | Link |
---|---|
US (1) | US9359505B2 (ja) |
EP (1) | EP2599621B1 (ja) |
JP (2) | JP5862565B2 (ja) |
KR (1) | KR101461346B1 (ja) |
CN (1) | CN103025518B (ja) |
WO (1) | WO2012014653A1 (ja) |
Cited By (31)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2012067186A1 (ja) * | 2010-11-19 | 2012-05-24 | コニカミノルタホールディングス株式会社 | ガスバリア性フィルムの製造方法、及びガスバリア性フィルム |
WO2012077553A1 (ja) * | 2010-12-06 | 2012-06-14 | コニカミノルタホールディングス株式会社 | ガスバリア性フィルム、ガスバリア性フィルムの製造方法及び電子デバイス |
WO2012090665A1 (ja) * | 2010-12-27 | 2012-07-05 | コニカミノルタホールディングス株式会社 | ガスバリアフィルムの製造方法、ガスバリアフィルムおよび電子デバイス |
WO2012090644A1 (ja) * | 2010-12-27 | 2012-07-05 | コニカミノルタホールディングス株式会社 | ガスバリア性フィルム及び電子デバイス |
JP2013203050A (ja) * | 2012-03-29 | 2013-10-07 | Fujifilm Corp | ガスバリアフィルムおよびガスバリアフィルムの製造方法 |
JP2013226757A (ja) * | 2012-04-26 | 2013-11-07 | Konica Minolta Inc | ガスバリア性フィルム |
JP2013233716A (ja) * | 2012-05-08 | 2013-11-21 | Mitsubishi Plastics Inc | ガスバリア性フィルム |
WO2013172359A1 (ja) * | 2012-05-14 | 2013-11-21 | コニカミノルタ株式会社 | ガスバリア性フィルム、ガスバリア性フィルムの製造方法及び電子デバイス |
WO2014007277A1 (ja) * | 2012-07-06 | 2014-01-09 | 三井化学株式会社 | 積層体 |
US20140234602A1 (en) * | 2011-09-26 | 2014-08-21 | Commissariat A L'energie Atomique Et Aux Ene Alt | Multilayer structure offering improved impermeability to gases |
JP2014201033A (ja) * | 2013-04-08 | 2014-10-27 | コニカミノルタ株式会社 | ガスバリア性フィルムおよびその製造方法 |
WO2014203729A1 (ja) * | 2013-06-18 | 2014-12-24 | コニカミノルタ株式会社 | 有機発光素子 |
WO2014208315A1 (ja) * | 2013-06-28 | 2014-12-31 | コニカミノルタ株式会社 | 有機エレクトロルミネッセンス素子 |
US20150047694A1 (en) * | 2012-03-23 | 2015-02-19 | Arkema France | Use of a multilayer structure based on a halogenated polymer as a protective sheet of a photovoltaic module |
JP2015088322A (ja) * | 2013-10-30 | 2015-05-07 | 富士フイルム株式会社 | 光取り出し部材、及び有機電界発光装置 |
JP2015088323A (ja) * | 2013-10-30 | 2015-05-07 | 富士フイルム株式会社 | 有機電界発光装置 |
WO2015119260A1 (ja) * | 2014-02-07 | 2015-08-13 | コニカミノルタ株式会社 | 変性ポリシラザン、当該変性ポリシラザンを含む塗布液および当該塗布液を用いて製造されるガスバリア性フィルム |
WO2015125382A1 (ja) * | 2014-02-21 | 2015-08-27 | 富士フイルム株式会社 | 有機機能層付き基板およびその製造方法 |
WO2015152302A1 (ja) * | 2014-03-31 | 2015-10-08 | コニカミノルタ株式会社 | ガスバリア性フィルムおよびその製造方法、並びにこれを用いた電子デバイスおよびその製造方法 |
JP2015186922A (ja) * | 2015-04-30 | 2015-10-29 | コニカミノルタ株式会社 | ガスバリア性フィルムおよび電子デバイス |
KR20150135520A (ko) * | 2013-03-29 | 2015-12-02 | 린텍 가부시키가이샤 | 적층체 및 그 제조 방법, 전자 디바이스용 부재, 그리고 전자 디바이스 |
WO2015186694A1 (ja) * | 2014-06-04 | 2015-12-10 | リンテック株式会社 | ガスバリア性積層体及びその製造方法、電子デバイス用部材、並びに電子デバイス |
JP2016058395A (ja) * | 2015-12-01 | 2016-04-21 | コニカミノルタ株式会社 | 透明電極及び有機電子素子 |
JPWO2014126037A1 (ja) * | 2013-02-12 | 2017-02-02 | コニカミノルタ株式会社 | 有機エレクトロルミネッセンス素子及び照明装置 |
JP2017077731A (ja) * | 2016-05-30 | 2017-04-27 | 尾池工業株式会社 | 電子デバイス用ガスバリア積層体 |
JP2017177639A (ja) * | 2016-03-31 | 2017-10-05 | 住友化学株式会社 | 積層フィルム及びその製造方法、並びに、積層フィルムの分析方法 |
JP2017177640A (ja) * | 2016-03-31 | 2017-10-05 | 住友化学株式会社 | 積層フィルム及びその製造方法 |
JP2019537738A (ja) * | 2016-10-27 | 2019-12-26 | シルバーレイ リミテッド | 直接変換型放射線検出器 |
WO2021095649A1 (ja) * | 2019-11-12 | 2021-05-20 | 株式会社小糸製作所 | 樹脂成形品、車窓用樹脂成形品、及び、樹脂成形品の製造方法 |
WO2022180978A1 (ja) * | 2021-02-26 | 2022-09-01 | ウシオ電機株式会社 | 光改質装置及び光改質方法 |
WO2022180960A1 (ja) * | 2021-02-26 | 2022-09-01 | ウシオ電機株式会社 | 光改質装置及び光改質方法 |
Families Citing this family (34)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2013069725A1 (ja) * | 2011-11-11 | 2013-05-16 | 三菱瓦斯化学株式会社 | 透明耐熱ガスバリア性フィルムの製造方法 |
US8871560B2 (en) * | 2012-08-09 | 2014-10-28 | International Business Machines Corporation | Plasma annealing of thin film solar cells |
JPWO2014142036A1 (ja) * | 2013-03-11 | 2017-02-16 | コニカミノルタ株式会社 | ガスバリアフィルム、ガスバリアフィルムの製造方法、及び、有機エレクトロルミネッセンス素子 |
EP2784499B1 (en) * | 2013-03-27 | 2017-12-13 | International Iberian Nanotechnology Laboratory | Transmission window for a vacuum ultraviolet gas discharge lamp |
US10676816B2 (en) * | 2013-06-27 | 2020-06-09 | Flex Films (Usa) Inc. | High-barrier polyethylene terephthalate film |
EP3045939B1 (en) * | 2013-09-12 | 2019-03-27 | Zeon Corporation | Optical element |
CN103487857A (zh) * | 2013-10-11 | 2014-01-01 | 张家港康得新光电材料有限公司 | 量子点薄膜及背光模组 |
US9339770B2 (en) * | 2013-11-19 | 2016-05-17 | Applied Membrane Technologies, Inc. | Organosiloxane films for gas separations |
WO2015090395A1 (de) * | 2013-12-19 | 2015-06-25 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Transparente nanodrahtelektrode mit funktionaler organischer schicht |
CN103928535A (zh) * | 2014-04-25 | 2014-07-16 | 中利腾晖光伏科技有限公司 | 抗pid晶体硅电池及其制备方法 |
JPWO2016009801A1 (ja) * | 2014-07-14 | 2017-04-27 | コニカミノルタ株式会社 | ガスバリア性フィルムおよび電子デバイス |
CN107428123A (zh) * | 2015-03-18 | 2017-12-01 | 柯尼卡美能达株式会社 | 气体阻隔性膜 |
CN105552248A (zh) * | 2016-01-26 | 2016-05-04 | 纳晶科技股份有限公司 | 一种电致发光器件的封装结构及其封装方法 |
KR20180101599A (ko) * | 2016-02-01 | 2018-09-12 | 쓰리엠 이노베이티브 프로퍼티즈 컴파니 | 배리어 복합재 |
KR102070632B1 (ko) * | 2016-03-31 | 2020-01-29 | 주식회사 엘지화학 | 배리어 필름의 제조 방법 |
JP2019520479A (ja) * | 2016-06-02 | 2019-07-18 | ザ リージェンツ オブ ザ ユニバーシティー オブ カリフォルニア | 有機フリーラジカルを用いた極薄金属ナノワイヤの合成 |
KR102604018B1 (ko) * | 2016-07-07 | 2023-11-22 | 삼성디스플레이 주식회사 | 표시 장치 |
KR102619098B1 (ko) * | 2016-07-14 | 2023-12-28 | 엘지디스플레이 주식회사 | 표시장치 |
KR102497953B1 (ko) * | 2016-12-09 | 2023-02-09 | 미쯔비시 가스 케미칼 컴파니, 인코포레이티드 | 가스배리어성 필름 |
CN109296870B (zh) * | 2017-07-24 | 2020-03-10 | 中国科学院化学研究所 | 一种真空绝热板用阻隔膜及其制备方法和用途 |
US11773734B2 (en) | 2017-09-07 | 2023-10-03 | General Electric Company | Liquid bond coatings for barrier coatings |
US11639315B2 (en) | 2017-09-07 | 2023-05-02 | General Electric Company | Bond coatings having a molten silicon-phase contained between refractory layers |
US11401217B2 (en) | 2017-09-07 | 2022-08-02 | General Electric Company | Bond coatings having a silicon-phase contained within a refractory phase |
CN107830266A (zh) * | 2017-12-07 | 2018-03-23 | 上海上塑控股(集团)有限公司 | 一种冷热水用pb阻氧管材 |
JPWO2019187981A1 (ja) * | 2018-03-28 | 2021-02-25 | 富士フイルム株式会社 | ガスバリアフィルム |
KR102238878B1 (ko) * | 2018-04-25 | 2021-04-12 | 주식회사 엘지화학 | 배리어 필름 |
KR102294026B1 (ko) * | 2018-10-26 | 2021-08-27 | 주식회사 엘지화학 | 배리어 필름 |
KR102294027B1 (ko) * | 2018-10-26 | 2021-08-27 | 주식회사 엘지화학 | 배리어 필름 |
KR102300537B1 (ko) | 2018-10-26 | 2021-09-10 | 주식회사 엘지화학 | 배리어 필름 |
KR102294031B1 (ko) * | 2018-10-26 | 2021-08-27 | 주식회사 엘지화학 | 배리어 필름 |
KR102602160B1 (ko) * | 2018-11-07 | 2023-11-14 | 삼성디스플레이 주식회사 | 백라이트 유닛, 백라이트 유닛을 포함하는 표시 장치 및 표시 장치를 제조하는 방법 |
CN115679272A (zh) * | 2021-07-26 | 2023-02-03 | 北京北方华创微电子装备有限公司 | 一种物理气相沉积制备金属薄膜的方法 |
CN113997762B (zh) * | 2021-11-10 | 2023-12-22 | 广州市拓丰电器有限公司 | 一种疏水膜、汽车玻璃及汽车前挡风玻璃除水系统 |
WO2023173334A1 (zh) * | 2022-03-16 | 2023-09-21 | 京东方科技集团股份有限公司 | 显示基板、显示面板及近眼显示装置、其显示方法 |
Citations (33)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH05238827A (ja) | 1992-02-26 | 1993-09-17 | Tonen Corp | コーティング用組成物及びコーティング方法 |
JPH05271166A (ja) | 1992-03-25 | 1993-10-19 | Toppan Printing Co Ltd | テトラアリールジアミン化合物 |
JPH0624208A (ja) | 1992-07-06 | 1994-02-01 | Yokohama Rubber Co Ltd:The | 空気入りラジアルタイヤ |
JPH06122582A (ja) | 1992-10-13 | 1994-05-06 | Health Kosan:Kk | 家庭用生ごみコンポスト化装置 |
JPH06299118A (ja) | 1993-04-20 | 1994-10-25 | Tonen Corp | コーティング用組成物及びコーティング方法 |
JPH06306329A (ja) | 1993-02-24 | 1994-11-01 | Tonen Corp | コーティング用組成物及びコーティング方法 |
JPH07196986A (ja) | 1993-12-28 | 1995-08-01 | Tonen Corp | コーティング用組成物 |
JPH08112879A (ja) | 1994-10-14 | 1996-05-07 | Tonen Corp | SiO2 被覆プラスチックフィルム及びその製造方法 |
JPH0970917A (ja) * | 1995-09-07 | 1997-03-18 | Oike Ind Co Ltd | 透明ガスバリア性積層体 |
JPH11151774A (ja) * | 1997-11-19 | 1999-06-08 | Dainippon Printing Co Ltd | 透明ガスバリア−性フィルム |
JP2002266007A (ja) | 2001-03-08 | 2002-09-18 | Japan Science & Technology Corp | 金属ナノワイヤー及びその製造方法 |
WO2003016599A1 (fr) | 2001-08-09 | 2003-02-27 | Asahi Kasei Kabushiki Kaisha | Element a semi-conducteur organique |
WO2003028125A2 (en) | 2001-09-27 | 2003-04-03 | 3M Innovative Properties Company | Substituted pentacene semiconductors |
JP2003118030A (ja) * | 2001-10-16 | 2003-04-23 | Asahi Glass Co Ltd | ガスバリヤ性有機基材およびそれを用いたエレクトロルミネッセンス素子 |
US20030136964A1 (en) | 2001-11-26 | 2003-07-24 | International Business Machines Corporation | Thin film transistors using solution processed pentacene precursor as organic semiconductor |
US6690029B1 (en) | 2001-08-24 | 2004-02-10 | University Of Kentucky Research Foundation | Substituted pentacenes and electronic devices made with substituted pentacenes |
JP3511325B2 (ja) | 1995-04-19 | 2004-03-29 | 三井化学株式会社 | ガスバリヤー性フィルム |
JP2004107216A (ja) | 2002-09-13 | 2004-04-08 | Seiko Epson Corp | 膜形成方法 |
JP2004149871A (ja) | 2002-10-31 | 2004-05-27 | Japan Science & Technology Agency | ナノサイズの金属コバルト微粒子の電解析出方法 |
JP2005283561A (ja) | 2004-03-04 | 2005-10-13 | Sumitomo Bakelite Co Ltd | 水蒸気透過度測定装置 |
WO2006019270A1 (en) | 2004-08-19 | 2006-02-23 | Lg Chem. Ltd. | Organic light-emitting device comprising buffer layer and method for fabricating the same |
JP2006199674A (ja) | 2004-05-17 | 2006-08-03 | Mitsubishi Chemicals Corp | アミノ化フラーレンの製造方法 |
JP2006233252A (ja) | 2005-02-23 | 2006-09-07 | Mitsubishi Materials Corp | ワイヤー状の金微粒子と、その製造方法および含有組成物ならびに用途 |
WO2007026545A1 (ja) | 2005-08-31 | 2007-03-08 | Konica Minolta Holdings, Inc. | プラズマ放電処理装置及びガスバリア性フィルムの製造方法 |
WO2008000664A1 (en) | 2006-06-30 | 2008-01-03 | Ciba Holding Inc. | Diketopyrrolopyrrole polymers as organic semiconductors |
JP2008016834A (ja) | 2006-06-09 | 2008-01-24 | Mitsubishi Chemicals Corp | 有機光電変換素子の製造方法及び有機光電変換素子 |
US7329709B2 (en) | 2004-06-02 | 2008-02-12 | Konarka Technologies, Inc. | Photoactive materials and related compounds, devices, and methods |
JP2008056967A (ja) | 2006-08-30 | 2008-03-13 | Konica Minolta Holdings Inc | ガスバリア性樹脂基材および有機エレクトロルミネッセンスデバイス |
JP2008130889A (ja) | 2006-11-22 | 2008-06-05 | Japan Science & Technology Agency | 光電変換素子およびその素子を用いた太陽電池 |
JP2008235165A (ja) | 2007-03-23 | 2008-10-02 | Konica Minolta Holdings Inc | 透明導電膜を有するロール状樹脂フィルムの製造方法 |
JP4310784B2 (ja) | 2004-05-24 | 2009-08-12 | 恵和株式会社 | 高バリア性シート |
JP2009255040A (ja) | 2008-03-25 | 2009-11-05 | Kyodo Printing Co Ltd | フレキシブルガスバリアフィルムおよびその製造方法 |
WO2011007543A1 (ja) * | 2009-07-17 | 2011-01-20 | 三井化学株式会社 | 積層体およびその製造方法 |
Family Cites Families (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3480117B2 (ja) | 1995-04-19 | 2003-12-15 | 富士ゼロックス株式会社 | 文書印刷装置および方法 |
TW200420979A (en) * | 2003-03-31 | 2004-10-16 | Zeon Corp | Protective film for polarizing plate and method for preparation thereof |
JP4389519B2 (ja) * | 2003-08-20 | 2009-12-24 | 凸版印刷株式会社 | ガスバリア性フィルムの製造方法 |
JP4716773B2 (ja) * | 2005-04-06 | 2011-07-06 | 富士フイルム株式会社 | ガスバリアフィルムとそれを用いた有機デバイス |
US7345303B2 (en) * | 2005-12-22 | 2008-03-18 | Xerox Corporation | Organic thin-film transistors |
WO2007123006A1 (ja) * | 2006-04-21 | 2007-11-01 | Konica Minolta Holdings, Inc. | ガスバリアフィルム、有機エレクトロルミネッセンス用樹脂基材、それを用いた有機エレクトロルミネッセンス素子及びガスバリアフィルムの製造方法 |
JP5213522B2 (ja) * | 2008-05-16 | 2013-06-19 | 三菱樹脂株式会社 | 有機デバイス用ガスバリア性積層フィルム |
JP5223466B2 (ja) * | 2008-05-30 | 2013-06-26 | 大日本印刷株式会社 | ガスバリア性フィルム及びその製造方法 |
JP2010000447A (ja) * | 2008-06-20 | 2010-01-07 | Dainippon Printing Co Ltd | ガスバリア性積層フィルム及びその製造方法 |
US8200379B2 (en) * | 2008-07-03 | 2012-06-12 | Manfredi Dario P | Smart recovery system |
WO2010024378A1 (ja) * | 2008-08-29 | 2010-03-04 | 独立行政法人産業技術総合研究所 | 酸化ケイ素薄膜または酸窒化ケイ素化合物薄膜の製造方法およびこの方法で得られる薄膜 |
KR20110139943A (ko) * | 2010-06-24 | 2011-12-30 | 삼성전기주식회사 | 전자종이 표시소자 및 그 제조방법 |
CN103237657A (zh) * | 2010-12-06 | 2013-08-07 | 柯尼卡美能达株式会社 | 气体阻隔性膜、气体阻隔性膜的制造方法及电子器件 |
-
2011
- 2011-07-07 EP EP11812245.6A patent/EP2599621B1/en not_active Not-in-force
- 2011-07-07 KR KR1020137001823A patent/KR101461346B1/ko active IP Right Grant
- 2011-07-07 JP JP2012526400A patent/JP5862565B2/ja active Active
- 2011-07-07 WO PCT/JP2011/065568 patent/WO2012014653A1/ja active Application Filing
- 2011-07-07 US US13/810,544 patent/US9359505B2/en not_active Expired - Fee Related
- 2011-07-07 CN CN201180036153.6A patent/CN103025518B/zh active Active
-
2015
- 2015-12-28 JP JP2015256888A patent/JP6041039B2/ja active Active
Patent Citations (33)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH05238827A (ja) | 1992-02-26 | 1993-09-17 | Tonen Corp | コーティング用組成物及びコーティング方法 |
JPH05271166A (ja) | 1992-03-25 | 1993-10-19 | Toppan Printing Co Ltd | テトラアリールジアミン化合物 |
JPH0624208A (ja) | 1992-07-06 | 1994-02-01 | Yokohama Rubber Co Ltd:The | 空気入りラジアルタイヤ |
JPH06122582A (ja) | 1992-10-13 | 1994-05-06 | Health Kosan:Kk | 家庭用生ごみコンポスト化装置 |
JPH06306329A (ja) | 1993-02-24 | 1994-11-01 | Tonen Corp | コーティング用組成物及びコーティング方法 |
JPH06299118A (ja) | 1993-04-20 | 1994-10-25 | Tonen Corp | コーティング用組成物及びコーティング方法 |
JPH07196986A (ja) | 1993-12-28 | 1995-08-01 | Tonen Corp | コーティング用組成物 |
JPH08112879A (ja) | 1994-10-14 | 1996-05-07 | Tonen Corp | SiO2 被覆プラスチックフィルム及びその製造方法 |
JP3511325B2 (ja) | 1995-04-19 | 2004-03-29 | 三井化学株式会社 | ガスバリヤー性フィルム |
JPH0970917A (ja) * | 1995-09-07 | 1997-03-18 | Oike Ind Co Ltd | 透明ガスバリア性積層体 |
JPH11151774A (ja) * | 1997-11-19 | 1999-06-08 | Dainippon Printing Co Ltd | 透明ガスバリア−性フィルム |
JP2002266007A (ja) | 2001-03-08 | 2002-09-18 | Japan Science & Technology Corp | 金属ナノワイヤー及びその製造方法 |
WO2003016599A1 (fr) | 2001-08-09 | 2003-02-27 | Asahi Kasei Kabushiki Kaisha | Element a semi-conducteur organique |
US6690029B1 (en) | 2001-08-24 | 2004-02-10 | University Of Kentucky Research Foundation | Substituted pentacenes and electronic devices made with substituted pentacenes |
WO2003028125A2 (en) | 2001-09-27 | 2003-04-03 | 3M Innovative Properties Company | Substituted pentacene semiconductors |
JP2003118030A (ja) * | 2001-10-16 | 2003-04-23 | Asahi Glass Co Ltd | ガスバリヤ性有機基材およびそれを用いたエレクトロルミネッセンス素子 |
US20030136964A1 (en) | 2001-11-26 | 2003-07-24 | International Business Machines Corporation | Thin film transistors using solution processed pentacene precursor as organic semiconductor |
JP2004107216A (ja) | 2002-09-13 | 2004-04-08 | Seiko Epson Corp | 膜形成方法 |
JP2004149871A (ja) | 2002-10-31 | 2004-05-27 | Japan Science & Technology Agency | ナノサイズの金属コバルト微粒子の電解析出方法 |
JP2005283561A (ja) | 2004-03-04 | 2005-10-13 | Sumitomo Bakelite Co Ltd | 水蒸気透過度測定装置 |
JP2006199674A (ja) | 2004-05-17 | 2006-08-03 | Mitsubishi Chemicals Corp | アミノ化フラーレンの製造方法 |
JP4310784B2 (ja) | 2004-05-24 | 2009-08-12 | 恵和株式会社 | 高バリア性シート |
US7329709B2 (en) | 2004-06-02 | 2008-02-12 | Konarka Technologies, Inc. | Photoactive materials and related compounds, devices, and methods |
WO2006019270A1 (en) | 2004-08-19 | 2006-02-23 | Lg Chem. Ltd. | Organic light-emitting device comprising buffer layer and method for fabricating the same |
JP2006233252A (ja) | 2005-02-23 | 2006-09-07 | Mitsubishi Materials Corp | ワイヤー状の金微粒子と、その製造方法および含有組成物ならびに用途 |
WO2007026545A1 (ja) | 2005-08-31 | 2007-03-08 | Konica Minolta Holdings, Inc. | プラズマ放電処理装置及びガスバリア性フィルムの製造方法 |
JP2008016834A (ja) | 2006-06-09 | 2008-01-24 | Mitsubishi Chemicals Corp | 有機光電変換素子の製造方法及び有機光電変換素子 |
WO2008000664A1 (en) | 2006-06-30 | 2008-01-03 | Ciba Holding Inc. | Diketopyrrolopyrrole polymers as organic semiconductors |
JP2008056967A (ja) | 2006-08-30 | 2008-03-13 | Konica Minolta Holdings Inc | ガスバリア性樹脂基材および有機エレクトロルミネッセンスデバイス |
JP2008130889A (ja) | 2006-11-22 | 2008-06-05 | Japan Science & Technology Agency | 光電変換素子およびその素子を用いた太陽電池 |
JP2008235165A (ja) | 2007-03-23 | 2008-10-02 | Konica Minolta Holdings Inc | 透明導電膜を有するロール状樹脂フィルムの製造方法 |
JP2009255040A (ja) | 2008-03-25 | 2009-11-05 | Kyodo Printing Co Ltd | フレキシブルガスバリアフィルムおよびその製造方法 |
WO2011007543A1 (ja) * | 2009-07-17 | 2011-01-20 | 三井化学株式会社 | 積層体およびその製造方法 |
Non-Patent Citations (13)
Title |
---|
ADV. MAT., P., vol. 4160, 2007 |
ADV. MATER., vol. 14, 2002, pages 833 - 837 |
ADV. MATER., vol. 20, 2008, pages 2116 |
CHEM. MATER., vol. 14, 2002, pages 4736 - 4745 |
D.A. SHIRLEY, PHYS. REV., vol. 5, 1972, pages 4709 |
J. AMER. CHEM. SOC, vol. 123, pages 9482 |
J. AMER. CHEM. SOC., vol. 127, no. 14, pages 4986 |
J. AMER. CHEM. SOC., vol. 130, no. 9, pages 2706 |
NATURE MATERIAL, vol. 5, 2006, pages 328 |
NATURE MATERIAL, vol. 6, 2007, pages 497 |
See also references of EP2599621A4 |
TECHNICAL DIGEST OF THE INTERNATIONAL PVSEC-17, 2007, pages 1225 |
TECHNICALDIGESTOF THE INTERNATIONAL PVSEC-17, 2007, pages 1225 |
Cited By (50)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2012067186A1 (ja) * | 2010-11-19 | 2012-05-24 | コニカミノルタホールディングス株式会社 | ガスバリア性フィルムの製造方法、及びガスバリア性フィルム |
WO2012077553A1 (ja) * | 2010-12-06 | 2012-06-14 | コニカミノルタホールディングス株式会社 | ガスバリア性フィルム、ガスバリア性フィルムの製造方法及び電子デバイス |
WO2012090665A1 (ja) * | 2010-12-27 | 2012-07-05 | コニカミノルタホールディングス株式会社 | ガスバリアフィルムの製造方法、ガスバリアフィルムおよび電子デバイス |
WO2012090644A1 (ja) * | 2010-12-27 | 2012-07-05 | コニカミノルタホールディングス株式会社 | ガスバリア性フィルム及び電子デバイス |
US9362524B2 (en) | 2010-12-27 | 2016-06-07 | Konica Minolta, Inc. | Method for producing gas barrier film, gas barrier film, and electronic device |
US9646940B2 (en) | 2010-12-27 | 2017-05-09 | Konica Minolta, Inc. | Gas barrier film and electronic device |
JP5716752B2 (ja) * | 2010-12-27 | 2015-05-13 | コニカミノルタ株式会社 | ガスバリアフィルムの製造方法、ガスバリアフィルムおよび電子デバイス |
US9771654B2 (en) * | 2011-09-26 | 2017-09-26 | Commissariat A L'energie Atomique Et Aux Energies Alternatives | Multilayer structure offering improved impermeability to gases |
US20140234602A1 (en) * | 2011-09-26 | 2014-08-21 | Commissariat A L'energie Atomique Et Aux Ene Alt | Multilayer structure offering improved impermeability to gases |
US20150047694A1 (en) * | 2012-03-23 | 2015-02-19 | Arkema France | Use of a multilayer structure based on a halogenated polymer as a protective sheet of a photovoltaic module |
JP2013203050A (ja) * | 2012-03-29 | 2013-10-07 | Fujifilm Corp | ガスバリアフィルムおよびガスバリアフィルムの製造方法 |
JP2013226757A (ja) * | 2012-04-26 | 2013-11-07 | Konica Minolta Inc | ガスバリア性フィルム |
JP2013233716A (ja) * | 2012-05-08 | 2013-11-21 | Mitsubishi Plastics Inc | ガスバリア性フィルム |
WO2013172359A1 (ja) * | 2012-05-14 | 2013-11-21 | コニカミノルタ株式会社 | ガスバリア性フィルム、ガスバリア性フィルムの製造方法及び電子デバイス |
JP5469784B1 (ja) * | 2012-07-06 | 2014-04-16 | 三井化学株式会社 | 積層体 |
WO2014007277A1 (ja) * | 2012-07-06 | 2014-01-09 | 三井化学株式会社 | 積層体 |
JPWO2014126037A1 (ja) * | 2013-02-12 | 2017-02-02 | コニカミノルタ株式会社 | 有機エレクトロルミネッセンス素子及び照明装置 |
JPWO2014157686A1 (ja) * | 2013-03-29 | 2017-02-16 | リンテック株式会社 | 積層体及びその製造方法、電子デバイス用部材、並びに電子デバイス |
US20190264061A1 (en) * | 2013-03-29 | 2019-08-29 | Lintec Corporation | Laminate, method for producing same, member for electronic device, and electronic device |
KR102267089B1 (ko) * | 2013-03-29 | 2021-06-18 | 린텍 가부시키가이샤 | 적층체 및 그 제조 방법, 전자 디바이스용 부재, 그리고 전자 디바이스 |
EP2982506B1 (en) * | 2013-03-29 | 2022-05-11 | LINTEC Corporation | Laminate, method for producing same, member for electronic device, and electronic device |
KR20150135520A (ko) * | 2013-03-29 | 2015-12-02 | 린텍 가부시키가이샤 | 적층체 및 그 제조 방법, 전자 디바이스용 부재, 그리고 전자 디바이스 |
JP2014201033A (ja) * | 2013-04-08 | 2014-10-27 | コニカミノルタ株式会社 | ガスバリア性フィルムおよびその製造方法 |
KR101692182B1 (ko) | 2013-06-18 | 2017-01-02 | 코니카 미놀타 가부시키가이샤 | 유기 발광 소자 |
KR20160008625A (ko) * | 2013-06-18 | 2016-01-22 | 코니카 미놀타 가부시키가이샤 | 유기 발광 소자 |
US9543546B2 (en) | 2013-06-18 | 2017-01-10 | Konica Minolta, Inc. | Organic light-emitting element |
JPWO2014203729A1 (ja) * | 2013-06-18 | 2017-02-23 | コニカミノルタ株式会社 | 有機発光素子 |
WO2014203729A1 (ja) * | 2013-06-18 | 2014-12-24 | コニカミノルタ株式会社 | 有機発光素子 |
WO2014208315A1 (ja) * | 2013-06-28 | 2014-12-31 | コニカミノルタ株式会社 | 有機エレクトロルミネッセンス素子 |
JPWO2014208315A1 (ja) * | 2013-06-28 | 2017-02-23 | コニカミノルタ株式会社 | 有機エレクトロルミネッセンス素子 |
JP2015088323A (ja) * | 2013-10-30 | 2015-05-07 | 富士フイルム株式会社 | 有機電界発光装置 |
JP2015088322A (ja) * | 2013-10-30 | 2015-05-07 | 富士フイルム株式会社 | 光取り出し部材、及び有機電界発光装置 |
WO2015119260A1 (ja) * | 2014-02-07 | 2015-08-13 | コニカミノルタ株式会社 | 変性ポリシラザン、当該変性ポリシラザンを含む塗布液および当該塗布液を用いて製造されるガスバリア性フィルム |
WO2015125382A1 (ja) * | 2014-02-21 | 2015-08-27 | 富士フイルム株式会社 | 有機機能層付き基板およびその製造方法 |
WO2015152302A1 (ja) * | 2014-03-31 | 2015-10-08 | コニカミノルタ株式会社 | ガスバリア性フィルムおよびその製造方法、並びにこれを用いた電子デバイスおよびその製造方法 |
JPWO2015152302A1 (ja) * | 2014-03-31 | 2017-04-13 | コニカミノルタ株式会社 | ガスバリア性フィルムおよびその製造方法、並びにこれを用いた電子デバイスおよびその製造方法 |
WO2015186694A1 (ja) * | 2014-06-04 | 2015-12-10 | リンテック株式会社 | ガスバリア性積層体及びその製造方法、電子デバイス用部材、並びに電子デバイス |
JPWO2015186694A1 (ja) * | 2014-06-04 | 2017-04-20 | リンテック株式会社 | ガスバリア性積層体及びその製造方法、電子デバイス用部材、並びに電子デバイス |
US11760854B2 (en) | 2014-06-04 | 2023-09-19 | Lintec Corporation | Gas barrier laminated body, method for producing same, member for electronic device, and electronic device |
KR20170012251A (ko) | 2014-06-04 | 2017-02-02 | 린텍 가부시키가이샤 | 가스 배리어성 적층체 및 그 제조 방법, 전자 디바이스용 부재, 그리고 전자 디바이스 |
JP2015186922A (ja) * | 2015-04-30 | 2015-10-29 | コニカミノルタ株式会社 | ガスバリア性フィルムおよび電子デバイス |
JP2016058395A (ja) * | 2015-12-01 | 2016-04-21 | コニカミノルタ株式会社 | 透明電極及び有機電子素子 |
JP2017177640A (ja) * | 2016-03-31 | 2017-10-05 | 住友化学株式会社 | 積層フィルム及びその製造方法 |
JP2017177639A (ja) * | 2016-03-31 | 2017-10-05 | 住友化学株式会社 | 積層フィルム及びその製造方法、並びに、積層フィルムの分析方法 |
JP2017077731A (ja) * | 2016-05-30 | 2017-04-27 | 尾池工業株式会社 | 電子デバイス用ガスバリア積層体 |
JP2019537738A (ja) * | 2016-10-27 | 2019-12-26 | シルバーレイ リミテッド | 直接変換型放射線検出器 |
JP7041970B2 (ja) | 2016-10-27 | 2022-03-25 | シルバーレイ リミテッド | 放射線検出装置および方法 |
WO2021095649A1 (ja) * | 2019-11-12 | 2021-05-20 | 株式会社小糸製作所 | 樹脂成形品、車窓用樹脂成形品、及び、樹脂成形品の製造方法 |
WO2022180978A1 (ja) * | 2021-02-26 | 2022-09-01 | ウシオ電機株式会社 | 光改質装置及び光改質方法 |
WO2022180960A1 (ja) * | 2021-02-26 | 2022-09-01 | ウシオ電機株式会社 | 光改質装置及び光改質方法 |
Also Published As
Publication number | Publication date |
---|---|
JP5862565B2 (ja) | 2016-02-16 |
KR20130032370A (ko) | 2013-04-01 |
JP6041039B2 (ja) | 2016-12-07 |
CN103025518A (zh) | 2013-04-03 |
EP2599621B1 (en) | 2016-03-02 |
JP2016137710A (ja) | 2016-08-04 |
KR101461346B1 (ko) | 2014-11-14 |
EP2599621A4 (en) | 2014-03-19 |
JPWO2012014653A1 (ja) | 2013-09-12 |
EP2599621A1 (en) | 2013-06-05 |
US20130115423A1 (en) | 2013-05-09 |
US9359505B2 (en) | 2016-06-07 |
CN103025518B (zh) | 2014-10-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6041039B2 (ja) | ガスバリア性フィルム、ガスバリア性フィルムの製造方法及び電子デバイス | |
JP5803937B2 (ja) | ガスバリア性フィルム、ガスバリア性フィルムの製造方法及び電子デバイス | |
JP6056854B2 (ja) | ガスバリア性フィルム、ガスバリア性フィルムの製造方法及び電子デバイス | |
JP5447022B2 (ja) | ガスバリア性フィルム、その製造方法及びそのガスバリア性フィルムを用いた有機光電変換素子 | |
JP5585267B2 (ja) | ガスバリア性フィルム、その製造方法、及びそれを用いた有機光電変換素子 | |
WO2012067230A1 (ja) | ガスバリア性フィルム、ガスバリア性フィルムの製造方法及び電子デバイス | |
JP5712509B2 (ja) | バリアフィルムの製造方法 | |
JP5609885B2 (ja) | ガスバリア性フィルム、ガスバリア性フィルムの製造方法、該ガスバリア性フィルムを有する有機光電変換素子及び該有機光電変換素子を有する太陽電池 | |
JP5516582B2 (ja) | バリアフィルム、有機光電変換素子及びバリアフィルムの製造方法 | |
JP5636646B2 (ja) | バリアフィルムの製造方法、バリアフィルム及び有機光電変換素子の製造方法 | |
JP2011143551A (ja) | ガスバリア性フィルム、ガスバリア性フィルムの製造方法及び有機光電変換素子 | |
JP5640976B2 (ja) | ガスバリアフィルムとその製造方法、これを用いた光電変換素子 | |
WO2011062100A1 (ja) | ガスバリア性フィルム、その製造方法、それを用いた有機光電変換素子及び有機エレクトロルミネッセンス素子 | |
JP5736644B2 (ja) | ガスバリア性フィルム、その製造方法及びそれを用いた有機光電変換素子 | |
JP5696667B2 (ja) | 有機光電変換素子 | |
JP5861376B2 (ja) | ガスバリア性フィルム、ガスバリア性フィルムの製造方法、及びガスバリア性フィルムを有する電子デバイス | |
JP5975142B2 (ja) | ガスバリア性フィルム、その製造方法及びそれを用いた有機光電変換素子 | |
JP5888314B2 (ja) | ガスバリア性フィルム及びそのガスバリア性フィルムを用いた電子デバイス | |
JP5578270B2 (ja) | ガスバリア性フィルム、その製造方法及びそのガスバリア性フィルムを用いた有機光電変換素子 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 201180036153.6 Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 11812245 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2012526400 Country of ref document: JP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 13810544 Country of ref document: US |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2011812245 Country of ref document: EP |
|
ENP | Entry into the national phase |
Ref document number: 20137001823 Country of ref document: KR Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |