Nothing Special   »   [go: up one dir, main page]

WO2012090665A1 - ガスバリアフィルムの製造方法、ガスバリアフィルムおよび電子デバイス - Google Patents

ガスバリアフィルムの製造方法、ガスバリアフィルムおよび電子デバイス Download PDF

Info

Publication number
WO2012090665A1
WO2012090665A1 PCT/JP2011/078327 JP2011078327W WO2012090665A1 WO 2012090665 A1 WO2012090665 A1 WO 2012090665A1 JP 2011078327 W JP2011078327 W JP 2011078327W WO 2012090665 A1 WO2012090665 A1 WO 2012090665A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas barrier
layer
film
coating
gas
Prior art date
Application number
PCT/JP2011/078327
Other languages
English (en)
French (fr)
Inventor
森 孝博
Original Assignee
コニカミノルタホールディングス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタホールディングス株式会社 filed Critical コニカミノルタホールディングス株式会社
Priority to JP2012550801A priority Critical patent/JP5716752B2/ja
Priority to US13/976,238 priority patent/US9362524B2/en
Priority to EP20110854188 priority patent/EP2660042B1/en
Publication of WO2012090665A1 publication Critical patent/WO2012090665A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/84Passivation; Containers; Encapsulations
    • H10K50/844Encapsulations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D1/00Processes for applying liquids or other fluent materials
    • B05D1/60Deposition of organic layers from vapour phase
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/02Pretreatment of the material to be coated
    • C23C16/0272Deposition of sub-layers, e.g. to promote the adhesion of the main coating
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/40Oxides
    • C23C16/401Oxides containing silicon
    • C23C16/402Silicon dioxide
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/50Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/54Apparatus specially adapted for continuous coating
    • C23C16/545Apparatus specially adapted for continuous coating for coating elongated substrates
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/84Passivation; Containers; Encapsulations
    • H10K50/841Self-supporting sealing arrangements

Definitions

  • the present invention relates to a gas barrier film and a manufacturing method thereof. More specifically, the present invention relates to a gas barrier film mainly used for a package such as an electronic device, or an organic electroluminescence (EL) element, a solar cell element, a liquid crystal display element, and the like and a manufacturing method thereof.
  • a gas barrier film mainly used for a package such as an electronic device, or an organic electroluminescence (EL) element, a solar cell element, a liquid crystal display element, and the like and a manufacturing method thereof.
  • EL organic electroluminescence
  • a gas barrier film in which a plurality of layers including a thin film of a metal oxide such as aluminum oxide, magnesium oxide, and silicon oxide are laminated on the surface of a plastic substrate or film needs to block various gases such as water vapor and oxygen. It is widely used in packaging applications to prevent the deterioration of goods packaging, food and industrial supplies, pharmaceuticals and the like.
  • a chemical deposition method in which an organic silicon compound typified by tetraethoxysilane (TEOS) is oxidized with oxygen plasma under reduced pressure while forming a gas barrier layer on the substrate.
  • TEOS tetraethoxysilane
  • Chemical vapor deposition Chemical Vapor Deposition
  • physical vapor deposition methods vacuum deposition method and sputtering method
  • these methods can form a thin film with an accurate composition on a substrate, they have been preferably used for the formation of metal oxide thin films including SiO 2 . It takes time to depressurize and release to the atmosphere, and increasing the film forming speed results in a low quality film quality that includes many defects. Therefore, in order to obtain a dense film quality with good gas barrier properties, the film forming speed must be slowed down. Productivity was significantly worse in that it was necessary to do so.
  • a technique of forming an alkoxide compound as a raw material by a method called a sol-gel method is known.
  • This sol-gel method generally requires heating to a high temperature, and further, a large volume shrinkage occurs in the course of the dehydration condensation reaction, resulting in a large number of defects in the film.
  • the reaction in this case is not a dehydration condensation polymerization but a direct substitution reaction from nitrogen to oxygen, the mass yield before and after the reaction is large from 80% to 100% or more, and there are few defects in the film due to volume shrinkage. It is known that films can be obtained.
  • the formation of the silicon oxide film by the substitution reaction of the silazane compound requires a high temperature of 450 ° C. or more, and it was impossible to adapt to a flexible substrate such as plastic.
  • VUV vacuum ultraviolet light
  • a composite type gas barrier layer in which a gas barrier layer formed by coating is laminated on a gas barrier layer formed by a vapor phase method such as CVD or sputtering has been studied. It is being studied for the purpose of repairing defects in the gas barrier layer formed by the vapor phase method with the gas barrier layer formed by coating, and it is favorable while increasing the productivity of the gas barrier layer formed by the vapor phase method. There is a possibility of obtaining gas barrier properties.
  • Patent Document 3 discloses a method of further improving the barrier performance by applying polysilazane on a gas barrier layer formed by a vacuum plasma CVD method on a resin substrate and repairing the gas barrier layer by heat treatment. Yes.
  • the gas barrier layer obtained by this method is insufficient as a gas barrier layer for organic photoelectric conversion elements and the like, and the heat treatment of polysilazane requires 1 hour at 160 ° C., so that the productivity is remarkably inferior.
  • JP-A-11-166157 JP-T 2009-503157 International Publication No. 2007/012392 pamphlet
  • Japanese Patent No. 3511325 Japanese Patent No.
  • the present invention has been made in view of the above problems and situations, and the solution is to provide a gas barrier film having a roll-to-roll system production suitability and capable of producing a gas barrier film having excellent gas barrier performance.
  • a manufacturing method, a gas barrier film obtained thereby, and an electronic device using the same are provided.
  • a gas barrier film manufacturing method for manufacturing a gas barrier film having a first gas barrier layer formed by a chemical vapor deposition method on a base material and having a second gas barrier layer on the first gas barrier layer comprising: A coating step of coating a coating liquid containing a polysilazane compound on the first gas barrier layer formed on the base material to form a coating film, and the length of the base material facing the base material
  • VUV vacuum ultraviolet rays
  • illuminance of the vacuum ultraviolet rays in the coated surface of the coating film is subjected to movement is at 160 mW / cm 2 or less
  • 160 mW / cm 2 has at a period T less subject within said period between T
  • the energy of the vacuum ultraviolet rays in the coated surface (E1) is at 180 mJ / cm 2 or more 1800 mJ / cm 2 or less
  • the method of manufacturing a gas barrier film is at 180 mJ / cm 2 or more 1800 mJ / cm 2 or less
  • the ratio (E2 / E1) between the amount of vacuum ultraviolet energy (E2) on the coating surface and the E1 received during a period other than the period T is 0 or more and 0.25 or less.
  • a gas barrier film production method capable of producing a gas barrier film having a roll-to-roll system production suitability, excellent productivity and excellent gas barrier performance, and a gas barrier film obtained thereby Can be provided.
  • FIG. 1 It is a schematic cross section of the example of the vacuum ultraviolet irradiation device used for the manufacturing method of the present invention. It is the figure which showed the example (pattern A) of the time change of the illumination intensity which a coating-film surface receives in an ultraviolet irradiation process. It is the figure which showed the example (pattern B) of the time change of the illumination intensity which a coating-film surface receives in an ultraviolet irradiation process. It is the figure which showed the example (pattern C) of the time change of the illumination intensity which a coating-film surface receives in an ultraviolet irradiation process. It is the figure which showed the example (pattern D) of the time change of the illumination intensity which a coating-film surface receives in an ultraviolet irradiation process.
  • the present invention is a method for producing a gas barrier film having a first gas barrier layer formed by a chemical vapor deposition method on a substrate and producing a gas barrier film having a second gas barrier layer on the first gas barrier layer.
  • the substrate on which the coating film is formed is moved relative to the light source by a plurality of light sources of vacuum ultraviolet rays (VUV) having uniform illuminance in the width direction of the substrate, and It has an ultraviolet irradiation process for irradiating the coating film to form a second gas barrier layer, and in the ultraviolet irradiation process, it moves relative to the light source from the start to the end of the vacuum ultraviolet irradiation.
  • VUV vacuum ultraviolet rays
  • the truth on the coating surface that the coating film receives Illuminance of ultraviolet is at 160 mW / cm 2 or less, illuminance of the vacuum ultraviolet rays in the coating film surface 50 mW / cm 2 or more, has a duration T is 160 mW / cm 2 or less, undergoes in the said period between T,
  • the amount of energy (E1) of vacuum ultraviolet rays on the coating surface is 180 mJ / cm 2 or more and 1800 mJ / cm 2 or less.
  • a gas barrier film having excellent gas barrier performance can be produced with high productivity by the method of irradiating the vacuum ultraviolet ray having the specific irradiation intensity with the specific amount.
  • the gas barrier film according to the present invention has a first gas barrier layer formed by chemical vapor deposition on a substrate, and has a second gas barrier layer on the first gas barrier layer.
  • “having the second gas barrier layer on the first gas barrier layer” means (1) that the second gas barrier layer is in direct contact with the first gas barrier layer. Or (2) a form in which the first gas barrier layer is provided with a second gas barrier layer thereon through another layer.
  • the gas barrier film according to the present invention may further have a gas barrier layer similar to the first gas barrier layer on the second gas barrier layer, and further a gas barrier layer similar to the second gas barrier layer formed thereon. You may have.
  • a similar gas barrier layer may be provided.
  • the base material used in the method for producing a gas barrier film of the present invention is a long support and has a gas barrier property (also simply referred to as “barrier property”) described later (also simply referred to as “barrier layer”). Can be held.
  • a gas barrier property also simply referred to as “barrier property”
  • carrier layer also simply referred to as “barrier layer”.
  • a basic skeleton for example, product name Sila-DEC, manufactured by Chisso Corporation, and product name Sylplus
  • PET polyethylene terephthalate
  • PEN polyethylene naphthalate
  • PC polycarbonate
  • a heat-resistant transparent film having a basic skeleton of silsesquioxane having an organic-inorganic hybrid structure is preferably used.
  • the process temperature may exceed 200 ° C. in the array manufacturing process.
  • the base material temperature becomes the glass transition temperature. If it exceeds 1, the elastic modulus of the base material rapidly decreases, and the base material is stretched due to tension, which may cause damage to the gas barrier layer.
  • a heat-resistant material having a glass transition point of 150 ° C. or higher as the base material. That is, it is preferable to use a heat-resistant transparent film having polyimide, polyetherimide, or silsesquioxane having an organic / inorganic hybrid structure as a basic skeleton.
  • the heat resistant resin represented by these is non-crystalline, the water absorption rate is larger than that of crystalline PET and PEN, and the dimensional change of the substrate due to humidity becomes larger and damages the gas barrier layer. There is concern to give.
  • a gas barrier layer or a gas barrier unit (a layer composed of a plurality of gas barrier layers) is formed on both sides, so that the substrate can be used under severe conditions of high temperature and high humidity.
  • the dimensional change due to moisture absorption and desorption of the material film itself can be suppressed, and damage to the gas barrier layer can be suppressed. Therefore, it is one of the more preferable embodiments to use a heat resistant material as a base material and to form a gas barrier layer or a gas barrier unit on both surfaces.
  • the thickness of the substrate is preferably about 5 ⁇ m to 500 ⁇ m, more preferably 25 to 250 ⁇ m.
  • the base material is preferably transparent.
  • the transparent substrate means that the light transmittance of visible light (400 to 700 nm) is 80% or more.
  • the base material is transparent and the layer formed on the base material is also transparent, it becomes possible to make a transparent gas barrier film, so that it becomes possible to make a transparent substrate such as an organic EL element. is there.
  • the base material using the above-described resins or the like may be an unstretched film or a stretched film.
  • the base material used in the present invention can be produced by a conventionally known general method.
  • an unstretched substrate that is substantially amorphous and not oriented can be produced by melting a resin as a material with an extruder, extruding it with an annular die or a T-die, and quenching.
  • the unstretched base material is subjected to a known method such as uniaxial stretching, tenter-type sequential biaxial stretching, tenter-type simultaneous biaxial stretching, tubular simultaneous biaxial stretching, etc.
  • a stretched substrate can be produced by stretching in the direction perpendicular to the flow direction of the substrate (horizontal axis).
  • the stretching ratio in this case can be appropriately selected according to the resin as the raw material of the substrate, but is preferably 2 to 10 times in the vertical axis direction and the horizontal axis direction, respectively.
  • the corona treatment may be performed before the coating film is formed.
  • an anchor coating agent layer may be formed on the surface of the substrate according to the present invention on the side where the coating film is formed for the purpose of improving the adhesion to the coating film.
  • anchor coating agent layer examples include polyester resin, isocyanate resin, urethane resin, acrylic resin, ethylene vinyl alcohol resin, vinyl modified resin, epoxy resin, modified styrene resin, modified silicon resin, and alkyl titanate. One or two or more can be used in combination.
  • the above-mentioned anchor coating agent is coated on the support by a known method such as roll coating, gravure coating, knife coating, dip coating, spray coating, etc., and anchor coating is performed by drying and removing the solvent, diluent, etc. be able to.
  • the application amount of the anchor coating agent is preferably about 0.1 g / m 2 to 5 g / m 2 (dry state).
  • the gas barrier film of the present invention may have a smooth layer between the substrate and the gas barrier layer.
  • the smooth layer used in the present invention flattens the rough surface of the transparent resin film support with protrusions or the like, or fills the irregularities and pinholes generated in the transparent inorganic compound layer with the protrusions present on the transparent resin film support.
  • Such a smooth layer is basically produced by curing a photosensitive material or a thermosetting material.
  • Examples of the photosensitive material used for the smooth layer include a resin composition containing an acrylate compound having a radical reactive unsaturated group, a resin composition containing an acrylate compound and a mercapto compound having a thiol group, epoxy acrylate, and urethane.
  • Examples thereof include a resin composition in which a polyfunctional acrylate monomer such as acrylate, polyester acrylate, polyether acrylate, polyethylene glycol acrylate, or glycerol methacrylate is dissolved. It is also possible to use the resin composition as described above by arbitrarily mixing it, and it is a photosensitive resin containing a reactive monomer having at least one photopolymerizable unsaturated bond in the molecule. If there is no particular limitation.
  • thermosetting materials include Tutprom Series (Organic Polysilazane) manufactured by Clariant, SP COAT heat-resistant clear paint manufactured by Ceramic Coat, Nano Hybrid Silicon manufactured by Adeka, and Unidic V manufactured by DIC. -8000 series, EPICLON EXA-4710 (ultra-high heat-resistant epoxy resin), various silicone resins manufactured by Shin-Etsu Chemical Co., Ltd., inorganic / organic nanocomposite material SSG coat manufactured by Nittobo Co., Ltd., heat composed of acrylic polyol and isocyanate prepolymer Examples thereof include curable urethane resins, phenol resins, urea melamine resins, epoxy resins, unsaturated polyester resins, and silicon resins. Among these, an epoxy resin-based material having heat resistance is particularly preferable.
  • the method for forming the smooth layer is not particularly limited, but it is preferably formed by a wet coating method such as a spray method, a blade coating method or a dip method, or a dry coating method such as a vapor deposition method.
  • additives such as an antioxidant, an ultraviolet absorber, and a plasticizer can be added to the above-described photosensitive resin as necessary.
  • an appropriate resin or additive may be used for improving the film formability and preventing the generation of pinholes in the film.
  • the smoothness of the smooth layer can be evaluated by the surface roughness specified by JIS B 0601, and the maximum cross-sectional height Rt (p) is preferably 10 nm or more and 30 nm or less.
  • Rt (p) is preferably 10 nm or more and 30 nm or less.
  • the gas barrier film according to the present invention may have a bleed-out preventing layer on the side opposite to the smooth layer of the substrate.
  • the bleed-out prevention layer is a smooth layer for the purpose of suppressing the phenomenon that, when a film having a smooth layer is heated, unreacted oligomers migrate from the film support to the surface and contaminate the contact surface.
  • the bleed-out prevention layer may basically have the same configuration as the smooth layer as long as it has this function.
  • the unsaturated organic compound having a polymerizable unsaturated group that can be included in the bleed-out prevention layer is a polyunsaturated organic compound having two or more polymerizable unsaturated groups in the molecule or 1 in the molecule. And monounsaturated organic compounds having a single polymerizable unsaturated group.
  • Matting agents may be added as other additives.
  • inorganic particles having an average particle diameter of about 0.1 to 5 ⁇ m are preferable.
  • silica, alumina, talc, clay, calcium carbonate, magnesium carbonate, barium sulfate, aluminum hydroxide, titanium dioxide, zirconium oxide and the like can be used in combination.
  • the matting agent composed of inorganic particles is 2 parts by mass or more, preferably 4 parts by mass or more, more preferably 6 parts by mass or more, based on 100 parts by mass of the solid content of the unsaturated organic compound (hard coat agent). It is desirable that they are mixed at a ratio of 20 parts by mass or less, preferably 18 parts by mass or less, more preferably 16 parts by mass or less.
  • the bleed-out prevention layer contains a thermoplastic resin, a thermosetting resin, an ionizing radiation curable resin, a photopolymerization initiator, and the like as components other than the unsaturated organic compound (hard coat agent) and the matting agent. May be.
  • the bleed-out prevention layer as described above is formulated as a coating solution with a hard coating agent, a matting agent, and other components as necessary, and appropriately prepared as a dilution solvent to support the coating solution. It can form by apply
  • ultraviolet rays in a wavelength region of 100 to 400 nm, preferably 200 to 400 nm, emitted from an ultrahigh pressure mercury lamp, a high pressure mercury lamp, a low pressure mercury lamp, a carbon arc, a metal halide lamp, etc. are irradiated or scanned.
  • the irradiation can be performed by irradiating an electron beam having a wavelength region of 100 nm or less emitted from a type or curtain type electron beam accelerator.
  • the thickness of the bleed-out prevention layer improves the heat resistance of the film, facilitates the balance adjustment of the optical properties of the film, and prevents curling when the bleed-out prevention layer is provided only on one side of the gas barrier film.
  • the range is preferably 1 to 10 ⁇ m, more preferably 2 ⁇ m to 7 ⁇ m.
  • the first barrier layer is a barrier layer formed by chemical vapor deposition.
  • methods for forming a functional thin film on a substrate mainly include physical vapor deposition and chemical vapor deposition (chemical vapor deposition).
  • the physical vapor deposition method is a method in which a thin film of a target substance (for example, a carbon film) is deposited on the surface of the substance in a gas phase by a physical method. Heating method, electron beam evaporation method, molecular beam epitaxy method), ion plating method, sputtering method and the like.
  • the chemical vapor deposition method chemical vapor deposition method
  • a raw material gas containing a target thin film component is supplied onto a base material, and a film is deposited by a chemical reaction on the substrate surface or in the gas phase.
  • the plasma CVD method is preferable from the viewpoint of film forming speed and processing area.
  • 16 indicates an example of a general plasma CVD apparatus.
  • the plasma CVD apparatus 101 includes a vacuum chamber 102, and a susceptor 105 is disposed on the bottom surface inside the vacuum chamber 102.
  • a cathode electrode 103 is disposed at a position facing the susceptor 105 on the ceiling side inside the vacuum chamber 102.
  • a heat medium circulation system 106, a vacuum exhaust system 107, a gas introduction system 108, and a high-frequency power source 109 are disposed outside the vacuum chamber 102.
  • a heat medium is arranged in the heat medium circulation system 106.
  • the heat medium circulation system 106 stores a pump for moving the heat medium, a heating device for heating the heat medium, a cooling device for cooling, a temperature sensor for measuring the temperature of the heat medium, and a set temperature of the heat medium.
  • a heating / cooling device 160 having a storage device is provided.
  • the heating / cooling device 160 is configured to measure the temperature of the heat medium, heat or cool the heat medium to a stored set temperature, and supply the heat medium to the susceptor 105.
  • the supplied heat medium flows inside the susceptor 105, heats or cools the susceptor 105, and returns to the heating / cooling device 160.
  • the temperature of the heat medium is higher or lower than the set temperature, and the heating and cooling device 160 heats or cools the heat medium to the set temperature and supplies the heat medium to the susceptor 105.
  • the cooling medium circulates between the susceptor and the heating / cooling device 160, and the susceptor 105 is heated or cooled by the supplied heating medium having the set temperature.
  • the vacuum chamber 102 is connected to an evacuation system 107, and before the film formation process is started by the plasma CVD apparatus 101, the inside of the vacuum chamber 102 is evacuated in advance and the heating medium is heated to set from room temperature. The temperature is raised to a temperature, and a heat medium having a set temperature is supplied to the susceptor 105. The susceptor 105 is at room temperature at the start of use, and when a heat medium having a set temperature is supplied, the susceptor 105 is heated.
  • the substrate 110 to be deposited is carried into the vacuum chamber 102 while maintaining the vacuum atmosphere in the vacuum chamber 102 and placed on the susceptor 105.
  • a large number of nozzles (holes) are formed on the surface of the cathode electrode 103 facing the susceptor 105.
  • the cathode electrode 103 is connected to a gas introduction system 108.
  • a CVD gas is introduced from the gas introduction system 108 into the cathode electrode 103, the CVD gas is ejected from the nozzle of the cathode electrode 103 into the vacuum chamber 102 in a vacuum atmosphere.
  • the cathode electrode 103 is connected to a high frequency power source 109, and the susceptor 105 and the vacuum chamber 102 are connected to a ground potential.
  • a high-frequency power source 109 is activated while a heating medium having a constant temperature is supplied from the heating / cooling device 160 to the susceptor 105, and a high-frequency voltage is applied to the cathode electrode 103, Plasma of the introduced CVD gas is formed.
  • a heating medium having a constant temperature is supplied from the heating / cooling device 160 to the susceptor 105, and the susceptor 105 is heated or cooled by the heating medium, and a thin film is formed while being maintained at a constant temperature.
  • the lower limit temperature of the growth temperature when forming a thin film is determined by the film quality of the thin film
  • the upper limit temperature is determined by the allowable range of damage to the thin film already formed on the substrate 110.
  • the lower limit temperature and upper limit temperature vary depending on the material of the thin film to be formed, the material of the thin film already formed, etc., but when forming a SiN film or SiON film used for a high barrier film, etc., the lower limit temperature is required to ensure the film quality.
  • the temperature is 50 ° C. or higher, and the upper limit temperature is lower than the heat resistant temperature of the substrate.
  • the correlation between the film quality of the thin film formed by the plasma CVD method and the film formation temperature and the correlation between the damage to the film formation target (substrate 110) and the film formation temperature are obtained in advance, and the lower limit temperature and the upper limit temperature are determined.
  • the lower limit temperature of the substrate 110 during the plasma CVD process is 50 ° C.
  • the upper limit temperature is 250 ° C.
  • the relationship between the temperature of the heat medium supplied to the susceptor 105 and the temperature of the substrate 110 when a plasma is formed by applying a high frequency voltage of 13.56 MHz or more to the cathode electrode 103 is measured in advance, during the plasma CVD process.
  • the temperature of the heat medium supplied to the susceptor 105 is required in order to maintain the substrate 110 temperature at or above the lower limit temperature and below the upper limit temperature.
  • the lower limit temperature (here, 50 ° C.) is stored, and the heat medium whose temperature is controlled to be equal to or higher than the lower limit temperature is set to be supplied to the susceptor 105.
  • the heat medium refluxed from the susceptor 105 is heated or cooled, and a heat medium having a set temperature of 50 ° C. is supplied to the susceptor 105.
  • a mixed gas of silane gas, ammonia gas, and nitrogen gas is supplied as the CVD gas, and the SiN film is formed in a state where the substrate 110 is maintained at a temperature that is higher than the lower limit temperature and lower than the upper limit temperature.
  • the susceptor 105 is at room temperature, and the temperature of the heat medium returned from the susceptor 105 to the heating / cooling apparatus 160 is lower than the set temperature. Therefore, immediately after the start-up, the heating / cooling device 160 heats the refluxed heat medium to raise the temperature to the set temperature and supplies it to the susceptor 105. In this case, the susceptor 105 and the substrate 110 are heated and heated by the heat medium, and the substrate 110 is maintained in a range between the lower limit temperature and the upper limit temperature.
  • the susceptor 105 When a thin film is continuously formed on a plurality of substrates 110, the susceptor 105 is heated by heat flowing from the plasma. In this case, since the heat medium recirculated from the susceptor 105 to the heating / cooling device 160 is higher than the lower limit temperature (50 ° C.), the heating / cooling device 160 cools the heat medium and converts the heat medium at the set temperature into the susceptor. It supplies to 105. Thereby, it is possible to form a thin film while maintaining the substrate 110 in a range between the lower limit temperature and the upper limit temperature.
  • the heating / cooling device 160 heats the heating medium when the temperature of the refluxed heating medium is lower than the set temperature, and cools the heating medium when the temperature is higher than the set temperature.
  • a heat medium having a set temperature is supplied to the susceptor, and as a result, the substrate 110 is maintained in a temperature range between the lower limit temperature and the upper limit temperature.
  • the substrate 110 is unloaded from the vacuum chamber 102, the undeposited substrate 110 is loaded into the vacuum chamber 102, and a heating medium having a set temperature is supplied as described above. A thin film is formed.
  • FIG. 17 is an example of a plasma CVD apparatus capable of forming a film by a roll-to-roll method while continuously transporting a film roll substrate in a vacuum chamber, and can be preferably used in the present invention.
  • 11 is a vacuum chamber
  • 12 and 13 are film forming rolls
  • 14 is an unwinding roll
  • 15 is a facing space
  • 17 is a winding roll
  • 18 is a film forming gas supply pipe
  • 19 is a vacuum exhaust port
  • 20 is a vacuum. It is a pump.
  • the atmospheric pressure plasma CVD method which performs plasma CVD processing near atmospheric pressure, does not need to be reduced in pressure and is more productive than the plasma CVD method under vacuum.
  • the film speed is fast. Furthermore, compared with the conditions of normal CVD, under a high pressure condition under atmospheric pressure, the mean free path of gas is very short, so that a very homogeneous film can be obtained.
  • nitrogen gas or 18th group atom of the periodic table specifically helium, neon, argon, krypton, xenon, radon, etc. are used as the discharge gas.
  • nitrogen, helium, and argon are preferably used, and nitrogen is particularly preferable because of low cost.
  • the atmospheric pressure plasma treatment is one in which two or more electric fields having different frequencies are formed in the discharge space, as described in the specification of International Publication No. 2007-026545. It is preferable to use a method in which an electric field is formed by superimposing two high-frequency electric fields.
  • the frequency ⁇ 2 of the second high-frequency electric field is higher than the frequency ⁇ 1 of the first high-frequency electric field, the intensity V1 of the first high-frequency electric field, the intensity V2 of the second high-frequency electric field, and the discharge start electric field
  • the filled, the output density of the second high-frequency electric field is preferably not 1W / cm 2 or more.
  • the discharge can be started and a high density and stable plasma state can be maintained, and a high performance thin film can be formed. It can be carried out.
  • a discharge gas having a high discharge starting electric field strength such as nitrogen gas
  • the discharge start electric field strength IV (1/2 Vp-p) is about 3.7 kV / mm. Therefore, in the above relationship, the first applied electric field strength is , By applying V1 ⁇ 3.7 kV / mm, the nitrogen gas can be excited into a plasma state.
  • the frequency of the first power source is preferably 200 kHz or less.
  • the electric field waveform may be a continuous wave or a pulse wave.
  • the lower limit is preferably about 1 kHz.
  • the frequency of the second power source is preferably 800 kHz or more.
  • the upper limit is preferably about 200 MHz.
  • the first high-frequency electric field is necessary for starting discharge of a discharge gas having a high discharge starting electric field strength, and the plasma density can be increased by the high frequency and high power density of the second high-frequency electric field.
  • the atmospheric pressure or the pressure in the vicinity thereof is about 20 kPa to 110 kPa, and 93 kPa to 104 kPa is preferable in order to obtain the good effects described in the present invention.
  • the excited gas as used in the present invention means that at least a part of the molecules in the gas move from the existing energy state to a higher energy state by obtaining energy, and the excited gas molecules are radicalized.
  • the first barrier layer forming method according to the present invention is a discharge in which a gas containing a source gas containing silicon is excited in a discharge space in which a high-frequency electric field is generated under atmospheric pressure or a pressure in the vicinity thereof.
  • a method of forming an inorganic film by mixing with a gas to form a secondary excitation gas and exposing the substrate to the secondary excitation gas is preferably applicable.
  • the pressure between the counter electrodes (discharge space) is set to atmospheric pressure or a pressure near it, a discharge gas is introduced between the counter electrodes, a high frequency voltage is applied between the counter electrodes, and the discharge gas is converted into plasma. Then, the discharge gas and the raw material gas that are in a plasma state are mixed outside the discharge space, and the base material is exposed to the mixed gas (secondary excitation gas), so that the first barrier is formed on the base material. Form a layer.
  • the material of the first barrier layer formed by the chemical vapor deposition method in the present invention can be selected from metal oxides, metal nitrides, metal carbides, or composite compounds thereof from the viewpoint of permeability. Also.
  • the first barrier layer is desirably formed substantially or completely as an inorganic layer. Among these, the first barrier layer preferably includes silicon oxide, silicon oxynitride, or silicon nitride.
  • the second barrier layer according to the present invention is formed by applying a coating liquid containing a polysilazane compound on the first barrier layer formed by chemical vapor deposition and irradiating with vacuum ultraviolet rays.
  • any appropriate method can be adopted as a coating method.
  • a spin coating method a roll coating method, a flow coating method, an ink jet method, a spray coating method, a printing method, a dip coating method, a casting film forming method, a bar coating method, and a gravure printing method.
  • the coating thickness can be appropriately set according to the purpose.
  • the coating thickness can be set so that the thickness after drying is preferably about 1 nm to 100 ⁇ m, more preferably about 10 nm to 10 ⁇ m, and most preferably about 10 nm to 1 ⁇ m.
  • the coating film which concerns on this invention is formed by apply
  • Any appropriate method can be adopted as a coating method.
  • Specific examples include a roll coating method, a flow coating method, an ink jet method, a spray coating method, a printing method, a dip coating method, a casting film forming method, a bar coating method, and a gravure printing method.
  • the thickness of the coating film is not particularly limited because it is appropriately set according to the purpose of use of the gas barrier film.
  • the thickness of the coating film is preferably about 1 nm to 10 ⁇ m after drying,
  • the thickness can be set to preferably about 10 nm to 10 ⁇ m, and most preferably about 30 nm to 1 ⁇ m.
  • the “polysilazane compound” used in the present invention is a polymer having a silicon-nitrogen bond, and is composed of Si—N, Si—H, N—H, etc., SiO 2 , Si 3 N 4 and both intermediate solid solutions SiO x N y is a ceramic precursor inorganic polymer such as y .
  • a polysilazane compound which is converted to silica by being ceramicized at a relatively low temperature as described in JP-A-8-112879 is preferable.
  • polysilazane compound those having the following structure are preferably used.
  • R 1 , R 2 and R 3 each represent a hydrogen atom, an alkyl group, an alkenyl group, a cycloalkyl group, an aryl group, an alkylsilyl group, an alkylamino group or an alkoxy group.
  • perhydropolysilazane in which all of R 1 , R 2 and R 3 are hydrogen atoms is particularly preferred from the viewpoint of the denseness of the resulting gas barrier layer as a film.
  • the organopolysilazane in which the hydrogen part bonded to Si is partially substituted with an alkyl group or the like has an alkyl group such as a methyl group, so that the adhesion to the base substrate is improved and the polysilazane is hard and brittle.
  • the ceramic film can be toughened, and there is an advantage that generation of cracks can be suppressed even when the film thickness is increased.
  • these perhydropolysilazane and organopolysilazane may be selected as appropriate and may be used in combination.
  • Perhydropolysilazane is presumed to have a structure in which a linear structure and a ring structure centered on a 6- and / or 8-membered ring are mixed.
  • the molecular weight of polysilazane is about 600 to 2000 (polystyrene conversion) in terms of number average molecular weight (Mn), and is a liquid or solid substance, and varies depending on the molecular weight.
  • polysilazanes are commercially available in a solution state dissolved in an organic solvent, and a commercially available product can be used as it is as a polysilazane-containing coating solution.
  • a silicon alkoxide-added polysilazane obtained by reacting the polysilazane with a silicon alkoxide (Japanese Patent Laid-Open No.
  • a glycidol-added polysilazane obtained by reacting glycidol JP-A-6-122852
  • an alcohol-added polysilazane obtained by reacting an alcohol
  • a metal carboxylate-added polysilazane obtained by reacting a metal carboxylate
  • JP-A-6-206 299118
  • acetylacetonate complex-added polysilazane obtained by reacting a metal-containing acetylacetonate complex
  • Japanese Patent Laid-Open No. 6-306329 Japanese Patent Laid-Open No. 6-306329
  • metal fine particle-added polysilazane obtained by adding metal fine particles (Japanese Patent Laid-Open No. -1 JP) or the like 6986 and the like.
  • an organic solvent for preparing a coating liquid containing a polysilazane compound it is not preferable to use an alcohol or water-containing one that easily reacts with polysilazane.
  • organic solvent for example, hydrocarbon solvents such as aliphatic hydrocarbons, alicyclic hydrocarbons, aromatic hydrocarbons, ethers such as halogenated hydrocarbon solvents, aliphatic ethers, and alicyclic ethers can be used.
  • hydrocarbon solvents such as aliphatic hydrocarbons, alicyclic hydrocarbons, aromatic hydrocarbons, ethers such as halogenated hydrocarbon solvents, aliphatic ethers, and alicyclic ethers can be used.
  • hydrocarbons such as pentane, hexane, cyclohexane, toluene, xylene, solvesso and turben, halogen hydrocarbons such as methylene chloride and trichloroethane, ethers such as dibutyl ether, dioxane and tetrahydrofuran.
  • solvents may be selected according to the purpose such as the solubility of polysilazane and the evaporation rate of the solvent, and a plurality of solvents may be mixed.
  • the concentration of the polysilazane compound in the coating solution is about 0.2 to 35% by mass, although it varies depending on the film thickness of the target gas barrier layer and the pot life of the coating solution.
  • an amine or metal catalyst can be added to promote modification to the silicon oxide compound.
  • Specific examples include Aquamica NAX120-20, NN110, NN310, NN320, NL110A, NL120A, NL150A, NP110, NP140, and SP140 manufactured by AZ Electronic Materials Co., Ltd.
  • the amount of these catalysts added is preferably adjusted to 2% by mass or less based on the polysilazane compound in order to avoid excessive silanol formation by the catalyst, decrease in film density, increase in film defects, and the like.
  • the coating liquid containing the polysilazane compound can contain an inorganic precursor compound.
  • the inorganic precursor compound other than the polysilazane compound is not particularly limited as long as the coating liquid can be prepared.
  • polysiloxane polysilsesquioxane, tetramethylsilane, trimethylmethoxysilane, dimethyldimethoxysilane, methyltrimethoxysilane, trimethylethoxysilane, dimethyldiethoxysilane, Methyltriethoxysilane, tetramethoxysilane, tetramethoxysilane, hexamethyldisiloxane, hexamethyldisilazane, 1,1-dimethyl-1-silacyclobutane, trimethylvinylsilane, methoxydimethylvinylsilane, trimethoxyvinylsilane, ethyltrimethoxysilane, Dimethyldivinylsilane, dimethylethoxyethynylsilane, diacetoxydimethylsilane, dimethoxymethyl-3,3,3-tri
  • methyl hydrogen polysiloxane examples include TSF484 manufactured by Momentive.
  • the polysilsesquioxane a cage, ladder, or random structure can be preferably used.
  • the cage-like polysilsesquioxane for example, Mayaterials Co.
  • polysilsesquioxanes that are thought to be a mixture of cage-like, ladder-like, and random structures are polyphenylsilsesquioxanes manufactured by Konishi Chemical Co., Ltd., SR-20, SR-21, SR- 23, SR-13 which is polymethylsilsesquioxane, SR-33 which is polymethyl phenylsilsesquioxane.
  • the Fox series manufactured by Toray Dow Corning which is a polyhydrogensilsesquioxane solution commercially available as a spin-on-glass material, can also be preferably used.
  • inorganic silicon compounds that are solid at room temperature are preferred, and hydrogenated silsesquioxane is more preferred.
  • the second barrier layer In the second barrier layer according to the present invention, at least a part of the polysilazane is converted into silicon oxide in the ultraviolet irradiation step of irradiating the coating film containing polysilazane with vacuum ultraviolet rays, and a gas barrier layer having a Si—O bond is formed. Is done.
  • the substrate on which a coating film is formed by a plurality of light sources of vacuum ultraviolet rays (VUV) facing the substrate and having uniform illuminance in the width direction of the substrate is applied to the light source.
  • the coating film is irradiated with vacuum ultraviolet rays while moving relatively in the longitudinal direction to form a gas barrier layer.
  • the illuminance of the vacuum ultraviolet rays on the coating film surface received by the coating film moving relative to the light source during the period from the start to the end of the irradiation with the vacuum ultraviolet rays is 160 mW / cm 2 or less
  • illuminance of the vacuum ultraviolet rays in the coating film surface 50 mW / cm 2 or more has a duration T is 160 mW / cm 2 or less, undergoes in the said period between T, the energy of the vacuum ultraviolet rays in the coated surface (E1) However, it is 180 mJ / cm 2 or more and 1800 mJ / cm 2 or less.
  • each of the plurality of light sources has a uniform illuminance across the width direction of the substrate.
  • Having uniform illuminance in the width direction of the substrate means having uniform illuminance on a straight line along the direction from one point on one side along the longitudinal direction of the belt to one point on the other side.
  • the angle between the straight line and a straight line parallel to the longitudinal direction is preferably 80 ° to 90 °, and particularly preferably 90 °.
  • Uniform illuminance means that the illuminance distribution from one side to the other is within ⁇ 10%.
  • the illuminance on the coating surface is measured in advance by measuring the distance from the light source to the surface on which the coating liquid is applied, and measuring the illuminance at the distance of vacuum ultraviolet light from the light source in the environment of the ultraviolet irradiation process. Can be measured.
  • the distribution of illuminance is within ⁇ 10% means that the illuminance is measured at 10 points that equally divide one side to the other side into 9 parts, and the difference between the average value of 10 points and the value of each point is 10 Is within%.
  • the distance between the light source lamp tube surface and the measurement surface of the sensor head can be set to a predetermined value, and the atmosphere between the lamp tube surface and the measurement surface of the sensor head is the same as the ultraviolet irradiation process.
  • a dedicated jig that can be filled with nitrogen so as to have an oxygen concentration is prepared, and measurement is performed using this jig.
  • vacuum ultraviolet rays of 100 to 200 nm are preferably used for the vacuum ultraviolet rays according to the present invention. Irradiation with vacuum ultraviolet rays is effective at any time after the formation of the coating film.
  • the base material on which the coating film is formed is moved in the longitudinal direction relative to the light source, but the belt-like base material is moved (conveyed) in the longitudinal direction with respect to the fixed light source.
  • the base material on which the coating film is formed is moved in the longitudinal direction relative to the light source, but the belt-like base material is moved (conveyed) in the longitudinal direction with respect to the fixed light source.
  • the moving speed depends on the light source, but is generally preferably in the range of 0.2 m / min to 100 m / min, particularly in the range of 0.5 m / min to 50 m / min. preferable.
  • the illuminance of the vacuum ultraviolet rays on the coating film surface received by the coating film moving relative to the light source from the start to the end of the irradiation with the vacuum ultraviolet rays is 160 mW / cm 2 or less.
  • illuminance of the vacuum ultraviolet rays in the plane 50 mW / cm 2 or more has a duration T is 160 mW / cm 2 or less, undergoes within the period T, the amount of energy of the vacuum ultraviolet in the coated surface (E1) is, 180 mJ / It is cm 2 or more and 1800 mJ / cm 2 or less.
  • the reaction involving cleavage of silicon in the silazane compound is broken and oxidized, it is more uniformly performed in the coating film within the illuminance range of the present invention, and the heat generated by the reaction is appropriate.
  • the volume change of the coating film due to reaction and heat is performed extremely uniformly, and deformation of the base material due to heat is also prevented, so that it is presumed that this is because cracks and the like are prevented.
  • the ratio (E2 / E1) of the amount of vacuum ultraviolet energy (E2) on the coating film surface received during the period other than the period T and E1 is 0 or more in terms of gas barrier properties and productivity, It is preferable that it is 0.25 or less.
  • the period T is a period of irradiation at 50 mW / cm 2 or more, but the ratio of the time of the period T to the time of the entire period Z of the ultraviolet irradiation process is 30% or more from the viewpoint of gas barrier properties and productivity. Is preferable, and it is particularly preferably 70% or more.
  • the time of the whole period Z of the ultraviolet irradiation process is the time when the illuminance of the vacuum ultraviolet light on the coating film surface received by the coating film at the start of the ultraviolet irradiation process becomes 0.1 mW / cm 2 or more. And the time when the illuminance of the vacuum ultraviolet ray at the coating film surface received by the coating film at the end of the ultraviolet irradiation step is less than 0.1 mW / cm 2 is measured as the end point.
  • the aspect in which the ratio of the period T is increased with respect to the entire period of the ultraviolet irradiation process can be obtained by shortening the distance between the plurality of line light sources on the line in the width direction.
  • a commercially available lamp for example, manufactured by MD Excimer or Ushio Electric
  • MD Excimer or Ushio Electric can be used as a vacuum ultraviolet irradiation apparatus used for irradiation of vacuum ultraviolet light.
  • FIG. 1 is a schematic cross-sectional view of an example of a vacuum ultraviolet irradiation apparatus used in the production method of the present invention.
  • the base material 1 having a coating film is guided by a temperature-controllable back roll 5, transported in the direction of the arrow, and irradiated with vacuum ultraviolet rays from an excimer lamp 2 facing the transported base material 1.
  • the excimer lamp 2 is held by an excimer lamp holding member 3 that also serves as an external electrode in the irradiation chamber 4.
  • the irradiation conditions of the present invention can be achieved by appropriately adjusting the lamp type, the number of lamps, the lamp installation interval, the distance between the lamp and the irradiated surface, the oxygen concentration of the irradiation atmosphere, and the like.
  • the vacuum ultraviolet light is larger than the interatomic bonding force of most substances, it can be preferably used because the bonding of atoms can be cut directly by the action of only photons called photon processes.
  • a rare gas excimer lamp is preferably used.
  • noble gas atoms such as Xe, Kr, Ar, Ne and the like are chemically bonded to form a molecule, it is called an inert gas.
  • a rare gas atom (excited atom) that has gained energy by discharge or the like can combine with other atoms to form a molecule.
  • the rare gas is xenon, e + Xe ⁇ Xe * Xe * + 2Xe ⁇ Xe 2 * + Xe Xe 2 * ⁇ Xe + Xe + h ⁇ (172 nm)
  • excimer light of 172 nm is emitted.
  • ⁇ Excimer lamps are characterized by high efficiency because radiation concentrates on one wavelength and almost no other light is emitted. Further, since no extra light is emitted, the temperature of the object can be kept low. Furthermore, since no time is required for starting and restarting, instantaneous lighting and blinking are possible.
  • Dielectric barrier discharge refers to lightning generated in a gas space by arranging a gas space between both electrodes via a dielectric (transparent quartz in the case of an excimer lamp) and applying a high frequency high voltage of several tens of kHz to the electrode.
  • a dielectric transparent quartz in the case of an excimer lamp
  • micro discharge micro discharge
  • the micro discharge streamer reaches the tube wall (dielectric)
  • the electric charge accumulates on the dielectric surface, so the micro discharge disappears.
  • Electrodeless electric field discharge by capacitive coupling also called RF discharge.
  • the lamp and electrodes and their arrangement may be basically the same as for dielectric barrier discharge, but the high frequency applied between the two electrodes is lit at several MHz. Since the electrodeless field discharge can provide a spatially and temporally uniform discharge in this way, a long-life lamp without flickering can be obtained.
  • an electrode in which a thin metal wire is meshed is used. Since this electrode uses as thin a line as possible so as not to block light, it is easily damaged by ozone generated by vacuum ultraviolet light in an oxygen atmosphere.
  • Synthetic quartz windows are not only expensive consumables, but also cause light loss.
  • the outer diameter of the double-cylindrical lamp is about 25 mm, the difference in distance to the irradiation surface cannot be ignored directly below the lamp axis and on the side of the lamp, resulting in a large difference in illuminance. Therefore, even if the lamps are arranged in close contact, a uniform illuminance distribution cannot be obtained. If the irradiation device is provided with a synthetic quartz window, the distance in the oxygen atmosphere can be made uniform, and a uniform illuminance distribution can be obtained.
  • the biggest feature of the capillary excimer lamp is its simple structure.
  • the quartz tube is closed at both ends, and only gas for excimer light emission is sealed inside.
  • the outer diameter of the tube of the thin tube lamp is about 6 nm to 12 mm. If it is too thick, a high voltage is required for starting.
  • the discharge mode can be either dielectric barrier discharge or electrodeless field discharge.
  • the electrode may have a flat surface in contact with the lamp, but if the shape is matched to the curved surface of the lamp, the lamp can be firmly fixed and the discharge is more stable when the electrode is in close contact with the lamp. Also, if the curved surface is made into a mirror surface with aluminum, it also becomes a light reflector.
  • the Xe excimer lamp emits ultraviolet light having a short wavelength of 172 nm at a single wavelength and thus has excellent luminous efficiency. Since this light has a large oxygen absorption coefficient, it can generate radical oxygen atom species and ozone at a high concentration with a very small amount of oxygen.
  • the high energy of this active oxygen, ozone and ultraviolet radiation can improve the polysilazane layer in a short time.
  • Excimer lamps can be lit with low power input because of their high light generation efficiency.
  • light with a long wavelength that causes a temperature increase due to light is not emitted, and energy of a single wavelength is irradiated in the ultraviolet region, so that an increase in the surface temperature of the object to be fired is suppressed.
  • it is suitable for flexible film materials such as PET that are easily affected by heat.
  • Oxygen concentration during irradiation with vacuum ultraviolet rays (VUV) Oxygen is required for the reaction at the time of ultraviolet irradiation, but vacuum ultraviolet rays are absorbed by oxygen, so the efficiency in the ultraviolet irradiation process is likely to decrease. Preferably.
  • the oxygen concentration upon irradiation with vacuum ultraviolet rays (VUV) is preferably 10 to 10,000 ppm (1%), more preferably 50 to 5000 ppm.
  • the gas satisfying the irradiation atmosphere used at the time of irradiation with vacuum ultraviolet rays is preferably a dry inert gas, and particularly preferably dry nitrogen gas from the viewpoint of cost.
  • the oxygen concentration can be adjusted by measuring the flow rate of oxygen gas and inert gas introduced into the irradiation chamber and changing the flow rate ratio.
  • an overcoat layer may be provided on the gas barrier layer.
  • organic resins such as organic monomers, oligomers, and polymers can be preferably used. These organic resins preferably have a polymerizable group or a crosslinkable group, contain these organic resins, and are formed by coating from an organic resin composition coating solution containing a polymerization initiator, a crosslinking agent, or the like as necessary.
  • the layer is preferably cured by applying light irradiation treatment or heat treatment.
  • the “crosslinkable group” is a group that can crosslink the binder polymer by a chemical reaction that occurs during light irradiation treatment or heat treatment.
  • the chemical structure is not particularly limited as long as it is a group having such a function.
  • Examples of the functional group capable of addition polymerization include cyclic ether groups such as an ethylenically unsaturated group and an epoxy group / oxetanyl group.
  • the functional group which can become a radical by light irradiation may be sufficient, and as such a crosslinkable group, a thiol group, a halogen atom, an onium salt structure etc. are mentioned, for example.
  • ethylenically unsaturated groups are preferable, and include functional groups described in paragraphs 0130 to 0139 of JP-A No. 2007-17948.
  • the elastic modulus of the overcoat layer can be adjusted to a desired value by appropriately adjusting the structure of the organic resin, the density of the polymerizable group, the density of the crosslinkable group, the ratio of the crosslinking agent, and the curing conditions.
  • the organic resin composition examples include a resin composition containing an acrylate compound having a radical reactive unsaturated group, a resin composition containing an acrylate compound and a mercapto compound having a thiol group, epoxy acrylate, and urethane acrylate. And a resin composition in which a polyfunctional acrylate monomer such as polyester acrylate, polyether acrylate, polyethylene glycol acrylate, or glycerol methacrylate is dissolved. It is also possible to use the resin composition as described above by arbitrarily mixing it, and it is a photosensitive resin containing a reactive monomer having at least one photopolymerizable unsaturated bond in the molecule. If there is no particular limitation.
  • Examples of reactive monomers having at least one photopolymerizable unsaturated bond in the molecule include methyl acrylate, ethyl acrylate, n-propyl acrylate, isopropyl acrylate, n-butyl acrylate, isobutyl acrylate, tert-butyl acrylate, n- Pentyl acrylate, n-hexyl acrylate, 2-ethylhexyl acrylate, n-octyl acrylate, n-decyl acrylate, hydroxyethyl acrylate, hydroxypropyl acrylate, allyl acrylate, benzyl acrylate, butoxyethyl acrylate, butoxyethylene glycol acrylate, cyclohexyl acrylate, di Cyclopentanyl acrylate, 2-ethylhexyl acrylate, glycerol acrylate, Lysidyl acrylate, 2-
  • the photosensitive resin composition contains a photopolymerization initiator.
  • Photopolymerization initiators include benzophenone, methyl o-benzoylbenzoate, 4,4-bis (dimethylamine) benzophenone, 4,4-bis (diethylamine) benzophenone, ⁇ -amino acetophenone, 4,4-dichlorobenzophenone, 4-benzoyl-4-methyldiphenyl ketone, dibenzyl ketone, fluorenone, 2,2-diethoxyacetophenone, 2,2-dimethoxy-2-phenylacetophenone, 2-hydroxy-2-methylpropiophenone, p-tert- Butyldichloroacetophenone, thioxanthone, 2-methylthioxanthone, 2-chlorothioxanthone, 2-isopropylthioxanthone, diethylthioxanthone, benzyldimethyl ketal, benzylmethoxyeth
  • the overcoat layer can contain an inorganic material. Inclusion of an inorganic material generally leads to an increase in the elastic modulus of the overcoat layer.
  • the elastic modulus of the overcoat layer can also be adjusted to a desired value by appropriately adjusting the content ratio of the inorganic material.
  • inorganic fine particles having a number average particle diameter of 1 to 200 nm are preferable, and inorganic fine particles having a number average particle diameter of 3 to 100 nm are more preferable.
  • inorganic fine particles metal oxides are preferable from the viewpoint of transparency.
  • metal oxide is not specifically limited, SiO 2, Al 2 O 3 , TiO 2, ZrO 2, ZnO, SnO 2, In 2 O 3, BaO, SrO, CaO, MgO, VO 2, V 2 O 5, CrO 2, MoO 2, MoO 3, MnO 2, Mn 2 O 3, WO 3, LiMn 2 O 4, Cd 2 SnO 4, CdIn 2 O 4, Zn 2 SnO 4, ZnSnO 3, Zn 2 In 2 O 5 , Cd 2 SnO 4 , CdIn 2 O 4 , Zn 2 SnO 4 , ZnSnO 3 , Zn 2 In 2 O 5 and the like. These may be used alone or in combination of two or more.
  • inorganic fine particle dispersions In order to obtain a dispersion of inorganic fine particles, it may be adjusted according to recent academic papers, but commercially available inorganic fine particle dispersions can also be preferably used.
  • dispersions of various metal oxides such as Snowtex series and organosilica sol manufactured by Nissan Chemical Co., NANOBYK series manufactured by Big Chemie Japan, NanoDur manufactured by Nanophase Technologies, and the like can be mentioned.
  • These inorganic fine particles may be surface-treated.
  • mica groups such as natural mica and synthetic mica, and tabular fine particles such as talc, teniolite, montmorillonite, saponite, hectorite and zirconium phosphate represented by MgO.4SiO.H 2 O can also be used. .
  • examples of the natural mica include muscovite, soda mica, phlogopite, biotite and sericite.
  • non-swellable mica such as fluorine phlogopite mica 3 (AlSi 3 O 10 ) F 2 , potassium tetrasilicon mica KMg 2.5 (Si 4 O 10 ) F 2 , and Na tetrasilic mica NaMg 2.5 (Si 4 O 10 ) F 2 , Na or Li
  • swellable mica such as Mg 2/5 Li 1/8 (Si 4 O 10 ) F 2 . Synthetic smectite is also useful.
  • the ratio of the inorganic material in the overcoat layer is preferably in the range of 10 to 95% by mass and more preferably in the range of 20 to 90% by mass with respect to the entire overcoat layer.
  • a so-called coupling agent can be used alone or mixed with other materials.
  • the coupling agent is not particularly limited, such as a silane coupling agent, a titanate coupling agent, and an aluminate coupling agent, but a silane coupling agent is preferable from the viewpoint of the stability of the coating solution.
  • silane coupling agent examples include halogen-containing silane coupling agents (2-chloroethyltrimethoxysilane, 2-chloroethyltriethoxysilane, 3-chloropropyltrimethoxysilane, 3-chloropropyltriethoxysilane).
  • Epoxy group-containing silane coupling agent [2- (3,4-epoxycyclohexyl) ethyltrimethoxysilane, 2- (3,4-epoxycyclohexyl) ethyltriethoxysilane, 3- (3,4-epoxycyclohexyl) ) Propyltrimethoxysilane, 2-glycidyloxyethyltrimethoxysilane, 2-glycidyloxyethyltriethoxysilane, 3-glycidyloxypropyltrimethoxysilane, 3-glycidyloxypropyltriethoxysilane], amino Containing silane coupling agent (2-aminoethyltrimethoxysilane, 3-aminopropyltrimethoxysilane, 3-aminopropyltriethoxysilane, 2- [N- (2-aminoethyl) amino] ethyltrimethoxysilane
  • (Meth) acryloyl group-containing silane coupling agents (2-methacryloyloxyethyltrimethoxysilane, 2-methacryloyloxyethyltriethoxysilane, 2-acryloyloxyethyltrimethoxysilane, 3-methacryloyloxypropyltrimethoxysilane, 3- Methacryloyloxypropyltriethoxysilane, 3-acryloyloxypropyltrimethoxysilane, etc.).
  • silane coupling agents can be used alone or in combination of two or more.
  • the overcoat layer is blended with the organic resin or inorganic material, and other components as necessary, and prepared as a coating solution by using a diluting solvent as needed, and the coating solution is conventionally applied to the surface of the gas barrier layer. It is preferable to form by applying ionizing radiation after being applied by a known application method and then curing.
  • ionizing radiation ultraviolet rays in a wavelength region of 100 to 400 nm, preferably 200 to 400 nm, emitted from an ultrahigh pressure mercury lamp, a high pressure mercury lamp, a low pressure mercury lamp, a carbon arc, a metal halide lamp, or the like are irradiated.
  • the irradiation can be performed by irradiating an electron beam having a wavelength region of 100 nm or less emitted from a scanning or curtain type electron beam accelerator.
  • the gas barrier film according to the present invention is mainly applied to packages such as electronic devices, or display materials such as organic EL elements, solar cells, plastic substrates such as liquid crystals, resin substrates for various devices, and various electronic device elements. Can do.
  • the gas barrier film of the present invention can be preferably applied as various sealing materials and films.
  • An element for an electronic device including the gas barrier film of the present invention will be described using an organic photoelectric conversion element as an example.
  • the gas barrier film is preferably transparent, and the gas barrier film can be used as a substrate (also referred to as a support) to receive sunlight from this side.
  • a transparent conductive thin film such as ITO can be provided as a transparent electrode to constitute a resin support for an organic photoelectric conversion element.
  • An ITO transparent conductive film provided on the support is used as an anode, a porous semiconductor layer is provided thereon, and a cathode made of a metal film is formed to form an organic photoelectric conversion element.
  • the organic photoelectric conversion element can be sealed by stacking a stopper material (which may be the same gas barrier film as used for the support) and bonding the gas barrier film support to the surroundings, whereby the moisture of the outside air The influence of the gas such as oxygen and the element on the element can be sealed.
  • the resin support for organic photoelectric conversion elements can be obtained by forming a transparent conductive film on the gas barrier layer or overcoat layer of the gas barrier film thus formed.
  • the transparent conductive film can be formed by using a vacuum deposition method, a sputtering method, or the like, or by a coating method such as a sol-gel method using a metal alkoxide such as indium or tin.
  • the transparent conductive film preferably has a thickness of 0.1 to 1000 nm.
  • each layer (component layer) of the organic photoelectric conversion element material constituting the organic photoelectric conversion element will be described.
  • At least 1 layer or more of the electric power generation layer (The layer in which the p-type semiconductor and the n-type semiconductor were mixed, a bulk heterojunction layer, i layer) was sandwiched between the anode and the cathode. Yes, any element that generates a current when irradiated with light may be used.
  • Anode / power generation layer / cathode (ii) Anode / hole transport layer / power generation layer / cathode (iii) Anode / hole transport layer / power generation layer / electron transport layer / cathode (iv) Anode / hole transport layer / P-type semiconductor layer / power generation layer / n-type semiconductor layer / electron transport layer / cathode (v) anode / hole transport layer / first power generation layer / electron transport layer / intermediate electrode / hole transport layer / second power generation layer / Electron transport layer / cathode.
  • the power generation layer needs to contain a p-type semiconductor material capable of transporting holes and an n-type semiconductor material capable of transporting electrons.
  • a bulk heterojunction that is in a mixed state in one layer may be manufactured, but a bulk heterojunction configuration is preferable because of higher photoelectric conversion efficiency.
  • a p-type semiconductor material and an n-type semiconductor material used for the power generation layer will be described later.
  • the efficiency of taking out holes and electrons to the anode / cathode can be increased by sandwiching the power generation layer between the hole transport layer and the electron transport layer, so that the structure having them ((ii), ( iii)) is preferred.
  • the power generation layer itself is composed of a p-type semiconductor material single layer and an n-type semiconductor material single layer as shown in (iv). It may be a structure sandwiched (also referred to as “pin structure”).
  • the tandem configuration (configuration (v)) in which sunlight of different wavelengths is absorbed by each power generation layer may be employed.
  • Organic photoelectric conversion element material The material used for forming the power generation layer (also referred to as “photoelectric conversion layer”) of the organic photoelectric conversion element will be described.
  • Examples of the p-type semiconductor material preferably used as the power generation layer (bulk heterojunction layer) of the organic photoelectric conversion element include various condensed polycyclic aromatic low molecular compounds and conjugated polymers / oligomers.
  • condensed polycyclic aromatic low-molecular compound examples include anthracene, tetracene, pentacene, hexacene, heptacene, chrysene, picene, fluorene, pyrene, peropyrene, perylene, terylene, quaterylene, coronene, ovalene, circumanthracene, bisanthene, zeslen, Compounds such as heptazeslen, pyranthrene, violanthene, isoviolanthene, cacobiphenyl, anthradithiophene, porphyrin, copper phthalocyanine, tetrathiafulvalene (TTF) -tetracyanoquinodimethane (TCNQ) complex, bisethylenetetrathiafulvalene (BEDTTTTF ) -Perchloric acid complexes, and derivatives and precursors thereof.
  • TTF tetra
  • Examples of the derivative having the above condensed polycycle include International Publication No. 03/16599, International Publication No. 03/28125, US Pat. No. 6,690,029, Japanese Patent Application Laid-Open No. 2004-107216.
  • conjugated polymer for example, a polythiophene such as poly-3-hexylthiophene (P3HT) and an oligomer thereof, or a technical group described in Technical Digest of the International PVSEC-17, Fukuoka, Japan, 2007, P1225.
  • Polythiophene Nature Material, (2006) vol. 5, p328, a polythiophene-thienothiophene copolymer, a polythiophene-diketopyrrolopyrrole copolymer described in WO08 / 000664, and a polythiophene-thiazolothiazole copolymer described in Adv Mater, 2007p4160.
  • P3HT poly-3-hexylthiophene
  • polypyrrole and its oligomer polyaniline, polyphenylene and its oligomer, polyphenylene vinylene and its oligomer, polythienylene vinylene and its oligomer, polyacetylene, polydiacetylene, Examples thereof include polymer materials such as ⁇ -conjugated polymers such as polysilane and polygermane.
  • oligomeric materials not polymer materials, include thiophene hexamer ⁇ -seccithiophene ⁇ , ⁇ -dihexyl- ⁇ -sexualthiophene, ⁇ , ⁇ -dihexyl- ⁇ -kinkethiophene, ⁇ , ⁇ -bis (3 Oligomers such as -butoxypropyl) - ⁇ -sexithiophene can be preferably used.
  • the electron transport layer is formed on the power generation layer by coating, there is a problem that the electron transport layer solution dissolves the power generation layer. Therefore, a material that can be insolubilized after coating by a solution process may be used. .
  • Such materials include materials that can be insolubilized by polymerizing the coating film after coating, such as polythiophene having a polymerizable group described in Technical Digest of the International PVSEC-17, Fukuoka, Japan, 2007, P1225. Or by applying energy such as heat as described in US Patent Application Publication No. 2003/136964, Japanese Patent Application Laid-Open No. 2008-16834, etc., the soluble substituent reacts to insolubilize ( And materials).
  • N-type semiconductor material Although it does not specifically limit as n-type semiconductor material used for a bulk heterojunction layer, For example, perfluoro body (Perfluoropentacene, perfluorophthalocyanine, etc.) which substituted the hydrogen atom of the p-type semiconductor with the fluorine atom, such as fullerene and octaazaporphyrin ), Aromatic carboxylic acid anhydrides such as naphthalenetetracarboxylic acid anhydride, naphthalenetetracarboxylic acid diimide, perylenetetracarboxylic acid anhydride, perylenetetracarboxylic acid diimide, and polymer compounds containing the imidized product as a skeleton. be able to.
  • perfluoro body Perfluoropentacene, perfluorophthalocyanine, etc.
  • Aromatic carboxylic acid anhydrides such as naphthalenetetracarboxylic acid anhydride
  • fullerene derivatives that can perform charge separation efficiently with various p-type semiconductor materials at high speed ( ⁇ 50 fs) are preferable.
  • Fullerene derivatives include fullerene C60, fullerene C70, fullerene C76, fullerene C78, fullerene C84, fullerene C240, fullerene C540, mixed fullerene, fullerene nanotubes, multi-walled nanotubes, single-walled nanotubes, nanohorns (conical), etc.
  • PCBM [6,6] -phenyl C 61 -butyric acid methyl ester
  • PCBnB [6,6] -phenyl C 61 -butyric acid-n butyl ester
  • PCBiB [6,6] -phenyl C 61 -butyric acid-isobutyl ester
  • PCBH [6,6] -phenyl C 61 -butyric acid-n hexyl ester
  • a fullerene derivative having a substituent and having improved solubility such as fullerene having a cyclic ether group such as a calligraphy.
  • the organic photoelectric conversion element preferably has a hole transport layer between the bulk hetero junction layer and the anode. By having such a layer, it is possible to extract charges generated in the bulk heterojunction layer more efficiently.
  • PEDOT such as Product name BaytronP manufactured by Stark Vitec
  • polyaniline and its doped material cyan described in International Publication No. 06/19270 pamphlet, etc.
  • Compounds, etc. can be used.
  • the hole transport layer having a LUMO level shallower than the LUMO level of the n-type semiconductor material used for the bulk heterojunction layer has a rectifying effect that prevents electrons generated in the bulk heterojunction layer from flowing to the anode side.
  • the electronic block function is provided.
  • Such a hole transport layer is also called an electron block layer, and it is preferable to use a hole transport layer having such a function.
  • a hole transport layer having such a function triarylamine compounds described in JP-A-5-271166, metal oxides such as molybdenum oxide, nickel oxide, and tungsten oxide can be used.
  • a single layer of p-type semiconductor material used for the bulk heterojunction layer can be used.
  • a vacuum vapor deposition method or a solution coating method may be used, but a solution coating method is preferable. It is preferable to produce a coating film in the lower layer before producing the bulk heterojunction layer because it has the effect of leveling the application surface and reduces the influence of leakage and the like.
  • the organic photoelectric conversion element preferably has an electron transport layer between the bulk hetero junction layer and the cathode. By having such a layer, it is possible to extract charges generated in the bulk heterojunction layer more efficiently.
  • octaazaporphyrin and p-type semiconductor perfluoro can be used as the electron transport layer.
  • HOMO of p-type semiconductor material used for the bulk heterojunction layer is given a hole blocking function having a rectifying effect so that holes generated in the bulk heterojunction layer do not flow to the cathode side.
  • Such an electron transport layer is also called a hole blocking layer, and it is preferable to use an electron transport layer having such a function.
  • Such materials include phenanthrene compounds such as bathocuproine, n-type semiconductor materials such as naphthalenetetracarboxylic acid anhydride, naphthalenetetracarboxylic acid diimide, perylenetetracarboxylic acid anhydride, perylenetetracarboxylic acid diimide, and titanium oxide.
  • n-type semiconductor materials such as naphthalenetetracarboxylic acid anhydride, naphthalenetetracarboxylic acid diimide, perylenetetracarboxylic acid anhydride, perylenetetracarboxylic acid diimide, and titanium oxide.
  • N-type inorganic oxides such as zinc oxide and gallium oxide, and alkali metal compounds such as lithium fluoride, sodium fluoride, and cesium fluoride can be used.
  • n-type semiconductor material used for the bulk heterojunction layer can be used.
  • a vacuum vapor deposition method or a solution coating method may be used, but a solution coating method is preferable.
  • a structure having various intermediate layers in the element may be employed.
  • the intermediate layer include a hole block layer, an electron block layer, a hole injection layer, an electron injection layer, an exciton block layer, a UV absorption layer, a light reflection layer, and a wavelength conversion layer.
  • the transparent electrode is not particularly limited to a cathode and an anode, and can be selected depending on the element configuration.
  • the transparent electrode is used as an anode.
  • an electrode that transmits light 380 to 800 nm.
  • transparent conductive metal oxides such as indium tin oxide (ITO), SnO 2 and ZnO, metal thin films such as gold, silver and platinum, metal nanowires and carbon nanotubes can be used.
  • ITO indium tin oxide
  • SnO 2 and ZnO metal thin films such as gold, silver and platinum
  • metal nanowires and carbon nanotubes can be used.
  • Conductive polymers can also be used. A plurality of these conductive compounds can be combined to form a transparent electrode.
  • the counter electrode may be a single layer of a conductive material, but in addition to a conductive material, a resin that holds these may be used in combination.
  • a conductive material for the counter electrode a material having a small work function (4 eV or less) metal, an alloy, an electrically conductive compound, and a mixture thereof as an electrode material is used.
  • Electrode materials include sodium, sodium-potassium alloy, magnesium, lithium, magnesium / copper mixture, magnesium / silver mixture, magnesium / aluminum mixture, magnesium / indium mixture, aluminum / aluminum oxide (Al 2 O 3 ) Mixtures, indium, lithium / aluminum mixtures, rare earth metals and the like.
  • a mixture of these metals and a second metal which is a stable metal having a larger work function value than this for example, a magnesium / silver mixture, magnesium / Aluminum mixtures, magnesium / indium mixtures, aluminum / aluminum oxide (Al 2 O 3 ) mixtures, lithium / aluminum mixtures, aluminum and the like are preferred.
  • the counter electrode can be produced by producing a thin film of these electrode materials by a method such as vapor deposition or sputtering.
  • the film thickness is usually selected in the range of 10 nm to 5 ⁇ m, preferably 50 to 200 nm.
  • the light coming to the counter electrode side is reflected to the first electrode side, and this light can be reused and absorbed again by the photoelectric conversion layer, further improving the photoelectric conversion efficiency. It is preferable.
  • the counter electrode may be a metal (for example, gold, silver, copper, platinum, rhodium, ruthenium, aluminum, magnesium, indium, etc.), carbon nanoparticle, nanowire, or nanostructure. If the dispersion is, a transparent and highly conductive counter electrode can be produced by a coating method.
  • a conductive material suitable for the counter electrode such as aluminum and aluminum alloy
  • silver and silver compound is made thin with a film thickness of about 1 to 20 nm, and then the above-mentioned
  • a film of the conductive light transmissive material mentioned in the description of the transparent electrode a light transmissive counter electrode can be obtained.
  • (Intermediate electrode) As a material of the intermediate electrode required in the case of the tandem configuration as in (v) of the layer configuration of the organic photoelectric conversion element, a layer using a compound having both transparency and conductivity is preferable.
  • Materials used in the transparent electrode transparent metal oxides such as ITO, AZO, FTO and titanium oxide, very thin metal layers such as Ag, Al and Au, or layers containing nanoparticles / nanowires, PEDOT: PSS, conductive polymer materials such as polyaniline, etc. can be used.
  • Metal nanowires As the conductive fibers, organic fibers and inorganic fibers coated with metal, conductive metal oxide fibers, metal nanowires, carbon fibers, carbon nanotubes, and the like can be used, but metal nanowires are preferable.
  • a metal nanowire means a linear structure having a metal element as a main component.
  • the metal nanowire in the present invention means a linear structure having a diameter of nm size.
  • an average length of 3 ⁇ m or more is preferable in order to produce a long conductive path with one metal nanowire and to exhibit appropriate light scattering properties.
  • 500 ⁇ m is preferable, and 3 ⁇ m to 300 ⁇ m is particularly preferable.
  • the relative standard deviation of the length is preferably 40% or less.
  • the average diameter is preferably small from the viewpoint of transparency, while it is preferably large from the viewpoint of conductivity.
  • the average diameter of the metal nanowire is preferably 10 nm to 300 nm, and more preferably 30 nm to 200 nm.
  • the relative standard deviation of the diameter is preferably 20% or less.
  • metal composition of metal nanowire can be comprised from 1 type or several metals of a noble metal element and a base metal element (metal elements other than a noble metal element), noble metals (for example, gold, platinum, silver) , Palladium, rhodium, iridium, ruthenium, osmium, etc.) and at least one metal belonging to the group consisting of iron, cobalt, copper and tin, and more preferably at least silver from the viewpoint of conductivity.
  • a noble metal element and a base metal element metal elements other than a noble metal element
  • noble metals for example, gold, platinum, silver
  • the metal nanowire according to the present invention includes two or more kinds of metal elements, for example, the metal composition may be different between the inside and the surface of the metal nanowire, or the entire metal nanowire has the same metal composition. You may have.
  • the means for producing the metal nanowire there are no particular limitations on the means for producing the metal nanowire, and for example, known means such as a liquid phase method or a gas phase method can be used. Moreover, there is no restriction
  • the method for producing Ag nanowires reported in 1 can easily produce Ag nanowires in an aqueous system, and the conductivity of silver is the largest among metals, so that the production of metal nanowires according to the present invention is possible. It can be preferably applied as a method.
  • Metal nanowires come into contact with each other to create a three-dimensional conductive network, exhibiting high conductivity, and allowing light to pass through the conductive network window where no metal nanowire exists, Due to the scattering effect of the metal nanowires, it is possible to efficiently generate power from the organic power generation layer. If a metal nanowire is installed in the 1st electrode at the side close
  • the organic photoelectric conversion element may have various optical functional layers for the purpose of more efficient light reception of sunlight.
  • a light condensing layer such as an antireflection layer or a microlens array, or a light diffusion layer that can scatter light reflected by the cathode and enter the power generation layer again may be provided. .
  • the antireflection layer can be provided as the antireflection layer.
  • the refractive index of the easy adhesion layer adjacent to the film is 1.57. It is more preferable to set it to ⁇ 1.63 because the transmittance can be improved by reducing the interface reflection between the film substrate and the easy adhesion layer.
  • the method for adjusting the refractive index can be carried out by appropriately adjusting the ratio of the oxide sol having a relatively high refractive index such as tin oxide sol or cerium oxide sol and the binder resin.
  • the easy-adhesion layer may be a single layer, but may be composed of two or more layers in order to improve adhesion.
  • the condensing layer for example, it is processed to provide a structure on the microlens array on the sunlight receiving side of the support substrate, or the amount of light received from a specific direction is increased by combining with a so-called condensing sheet. Conversely, the incident angle dependency of sunlight can be reduced.
  • quadrangular pyramids having a side of 30 ⁇ m and an apex angle of 90 degrees are arranged two-dimensionally on the light extraction side of the substrate.
  • One side is preferably 10 to 100 ⁇ m. If it is smaller than this, the effect of diffraction is generated and colored, and if it is too large, the thickness becomes too thick.
  • the light diffusion layer examples include various antiglare layers, layers in which nanoparticles or nanowires such as metals or various inorganic oxides are dispersed in a colorless and transparent polymer, and the like.
  • Examples of methods for producing a bulk heterojunction layer in which an electron acceptor and an electron donor are mixed, and a transport layer / electrode include a vapor deposition method and a coating method (including a cast method and a spin coating method).
  • examples of the method for producing the bulk heterojunction layer include a vapor deposition method and a coating method (including a casting method and a spin coating method).
  • the coating method is preferable in order to increase the area of the interface where charge and electron separation of the above-described holes is performed and to produce a device having high photoelectric conversion efficiency. Also, the coating method is excellent in production speed.
  • the coating method used in this case is not limited, and examples thereof include spin coating, casting from a solution, dip coating, blade coating, wire bar coating, gravure coating, and spray coating. Furthermore, patterning can also be performed by a printing method such as an ink jet method, a screen printing method, a relief printing method, an intaglio printing method, an offset printing method, or a flexographic printing method.
  • a printing method such as an ink jet method, a screen printing method, a relief printing method, an intaglio printing method, an offset printing method, or a flexographic printing method.
  • the bulk heterojunction layer can have an appropriate phase separation structure. As a result, the carrier mobility of the bulk heterojunction layer is improved and high efficiency can be obtained.
  • the power generation layer may be composed of a single layer in which an electron acceptor and an electron donor are uniformly mixed.
  • the power generation layer is a plurality of layers in which the mixing ratio of the electron acceptor and the electron donor is changed. It may be configured. In this case, it can be manufactured by using a material that can be insolubilized after coating as described above.
  • mask evaporation can be performed during vacuum deposition of the electrode, or patterning can be performed by a known method such as etching or lift-off.
  • the pattern may be produced by transferring a pattern produced on another substrate.
  • Example 1 Production of gas barrier film >> As described below, first, the base materials (a) to (c) are manufactured, and then the step of forming the first gas barrier layer on the manufactured base material and the second gas barrier layer are manufactured. Through the process, a gas barrier film was produced.
  • the obtained smooth layer had a surface roughness Rz defined by JIS B 0601 of about 25 nm.
  • the surface roughness was measured using an AFM (Atomic Force Microscope) SPI3800N DFM manufactured by SII.
  • the measurement range of one time was 80 ⁇ m ⁇ 80 ⁇ m, the measurement location was changed, three measurements were performed, and the average of the Rz values obtained in each measurement was taken as the measurement value.
  • Substrate (I) As a heat-resistant substrate, a 200 ⁇ m-thick transparent polyimide film (manufactured by Mitsubishi Gas Chemical Co., Ltd., Neoprim L) with easy adhesion processing on both sides is used, and a smooth layer is formed on both sides as shown below. Used as a substrate (I).
  • Formation of smooth layer 1 After performing corona discharge treatment on one side of the base material by a conventional method, the prepared smooth layer coating solution was applied so that the film thickness after drying was 4 ⁇ m, and then dried at 80 ° C. for 3 minutes. Furthermore, the heat processing were performed at 120 degreeC for 10 minute (s), and the smooth layer 1 was formed.
  • the smooth layer 2 was formed in the same manner as the smooth layer 1 on the surface of the substrate opposite to the surface on which the smooth layer 1 was formed.
  • the surface roughness of the obtained smooth layer 1 and smooth layer 2 was about 20 nm in Rz defined by JIS B 0601. The surface roughness was measured in the same manner as the base material (a).
  • substrate (c) Similar to the base material (a) except that the heat-resistant base material is a film having a basic skeleton of silsesquioxane having an organic-inorganic hybrid structure and having a thickness of 100 ⁇ m manufactured by Nippon Steel Chemical Co., Ltd. Thus, a base material (U) was obtained. Rz measured in the same manner as for the substrate (A) was about 20 nm.
  • first gas barrier layer b (Formation of the first gas barrier layer b) In the formation of the first gas barrier layer a, a first gas barrier layer b (50 nm) of silicon oxynitride was formed in the same manner except that the film forming conditions were changed as follows.
  • the first gas barrier layer c of silicon oxynitride was formed in the same manner except that the film thickness was changed to 150 nm.
  • the obtained first gas barrier layer c was silicon oxynitride (SiOxNy), and the nitrogen content was 0.8% in terms of element ratio.
  • Second Gas Barrier Layer ⁇ Production of Second Gas Barrier Layer >> (Coating process and UV irradiation process) As described later, a second gas barrier layer having a dry film thickness shown in Table 1 was laminated on the first gas barrier layer. For some of the comparative samples, a second gas barrier layer was formed on the substrate (described as having no first barrier layer). In addition, a sample in which the second gas barrier layer was not formed was also prepared (described as having no second barrier layer). Samples with the second gas barrier layer formed on both sides are listed as double-sided in Table 1. In this way, the sample Nos. 1 to 29 gas barrier films were produced.
  • the ultraviolet irradiation process by vacuum ultraviolet irradiation is performed by the vacuum ultraviolet irradiation apparatus shown in the schematic diagram of an example in FIG. 1, and the coating liquid containing a polysilazane compound to be described later is formed on the first barrier layer produced as described above.
  • the second gas barrier layer was applied using a vacuum extrusion type coater (not shown) so that the dry film thickness was 150 nm.
  • the drying time was 90 seconds at a conveyance speed of 5 m / min
  • the drying temperature was adjusted to 100 ° C.
  • the dew point of the drying atmosphere was adjusted to 5 ° C.
  • FIG. 1 1 is a substrate
  • 2 is an Xe excimer lamp that irradiates 172 nm vacuum ultraviolet light
  • 3 is an excimer lamp holder that also serves as an external electrode.
  • the conditions shown in Tables 1 and 2 were used for the details of irradiation conditions such as the number of lamps used for vacuum ultraviolet irradiation, illuminance distribution pattern, maximum illuminance, and conveyance speed.
  • the values of E1 and E2 / E1 are also shown in Table 2. Details of the illuminance distribution patterns A to N are shown in FIGS. 2 to 15, the vertical axis represents the illuminance on the film surface, and the horizontal axis represents the position of the substrate in the transport direction (longitudinal direction).
  • 4 is a chamber for maintaining a nitrogen atmosphere, and the oxygen concentration in the chamber can be reduced by supplying nitrogen from a dry nitrogen supply port (not shown). In this example, the oxygen concentration in the chamber was adjusted to 100 ppm or less.
  • 5 is a metal back roll capable of adjusting the temperature. In this example, the back roll temperature was adjusted to 80 ° C.
  • the substrate on which the gas barrier layer was formed after ultraviolet irradiation was wound around a winding core (not shown).
  • the coating liquid containing a polysilazane compound is a perhydropolysilazane containing 20% by mass of a non-catalyzed perhydropolysilazane 20% by mass dibutyl ether solution (Aquamica NN120-20 manufactured by AZ Electronic Materials Co., Ltd.) and 5% by mass of an amine catalyst.
  • a mixture of 20% by weight dibutyl ether solution (Aquamica NAX120-20 manufactured by AZ Electronic Materials Co., Ltd.) was used to adjust the amine catalyst to 1% by weight of solid content, and further diluted with dibutyl ether to give 5% by weight.
  • Vapor deposition device JEE-400, a vacuum vapor deposition device manufactured by JEOL Ltd. Constant temperature and humidity oven: Yamato Humidic Chamber IG47M (raw materials) Metal that reacts with water and corrodes: Calcium (granular) Water vapor impermeable metal: Aluminum ( ⁇ 3-5mm, granular) (Preparation of water vapor barrier property evaluation sample)
  • a vacuum deposition apparatus vacuum deposition apparatus JEE-400 manufactured by JEOL Ltd.
  • metallic calcium was deposited in a size of 12 mm ⁇ 12 mm through a mask on the surface of the gas barrier films 1 to 17 produced.
  • the gas barrier layer surface on the side where the second gas barrier layer was finally formed was used.
  • the mask was removed in a vacuum state, and aluminum was vapor-deposited on the entire surface of one side of the sheet and temporarily sealed.
  • the vacuum state is released, quickly transferred to a dry nitrogen gas atmosphere, and a quartz glass with a thickness of 0.2 mm is bonded to the aluminum deposition surface via an ultraviolet curing resin for sealing (manufactured by Nagase ChemteX).
  • a water vapor barrier property evaluation sample was produced by irradiating ultraviolet rays to cure and adhere the resin to perform main sealing.
  • the obtained sample was stored under high temperature and high humidity of 85 ° C. and 90% RH, and the calcium metal corroded on the metal calcium deposition area of 12 mm ⁇ 12 mm in each of storage for 20 hours, 40 hours, and 60 hours.
  • the area was calculated in% and evaluated based on the following indices. The results are shown in Tables 1 and 2.
  • The area where metal calcium corrodes is 1% or more and less than 5%.
  • X The area where metal calcium corroded is 5% or more.
  • Example 2 ⁇ Evaluation as gas barrier film for organic thin film electronic devices> Using the gas barrier film shown in Table 4 as a sealing film, an organic EL element which is an organic thin film electronic device was produced. These were subjected to accelerated degradation treatment for 400 hours in a 60 ° C. and 90% RH environment, and the gas barrier performance and its stability were evaluated by comparing with the performance before accelerated degradation.
  • each element was ranked according to the following criteria.
  • the practical range is more than ⁇ .
  • Deterioration rate area of black spots generated in the element before accelerated deterioration processing / area of black spots generated in the element after accelerated deterioration processing ⁇ 100 (%) ⁇ : 90% or more ⁇ : 60% or more, less than 90% ⁇ : 20% or more, less than 60% ⁇ : less than 20% ⁇ Method for producing organic EL element>
  • ITO indium tin oxide
  • the pattern was such that the light emission area was 50 mm square.
  • the cleaning surface modification treatment of the gas barrier film was performed using a low pressure mercury lamp with a wavelength of 184.9 nm at an irradiation intensity of 15 mW / cm 2 and a distance of 10 mm.
  • the charge removal treatment was performed using a static eliminator with weak X-rays.
  • PEDOT / PSS polyethylene dioxythiophene / polystyrene sulfonate
  • Baytron P AI 4083 manufactured by Bayer
  • the following white light emitting layer forming coating solution was applied by an extrusion coater and then dried to form a light emitting layer.
  • the white light emitting layer forming coating solution was applied so that the thickness after drying was 40 nm.
  • the host material HA is 1.0 g
  • the dopant material DA is 100 mg
  • the dopant material DB is 0.2 mg
  • the dopant material DC is 0.2 mg
  • 100 g of toluene was prepared as a white light emitting layer forming coating solution.
  • the coating process was performed in an atmosphere having a nitrogen gas concentration of 99% or more, a coating temperature of 25 ° C., and a coating speed of 1 m / min.
  • the following coating liquid for forming an electron transport layer was applied by an extrusion coater and then dried to form an electron transport layer.
  • the coating solution for forming an electron transport layer was applied so that the thickness after drying was 30 nm.
  • the coating process was performed in an atmosphere having a nitrogen gas concentration of 99% or more, the coating temperature of the electron transport layer forming coating solution was 25 ° C., and the coating speed was 1 m / min.
  • the electron transport layer was prepared by dissolving EA in 2,2,3,3-tetrafluoro-1-propanol to obtain a 0.5 mass% solution as a coating solution for forming an electron transport layer.
  • an electron injection layer was formed on the formed electron transport layer.
  • the substrate was put into a vacuum chamber and the pressure was reduced to 5 ⁇ 10 ⁇ 4 Pa.
  • cesium fluoride prepared in a tantalum vapor deposition boat was heated in a vacuum chamber to form an electron injection layer having a thickness of 3 nm.
  • the second electrode forming material is formed on the formed electron injection layer under a vacuum of 5 ⁇ 10 ⁇ 4 Pa except for the portion that becomes the take-out electrode on the first electrode on the formed electron injection layer.
  • a mask pattern was formed by vapor deposition so that a light emitting area was 50 mm square by using aluminum as an extraction electrode, and a second electrode having a thickness of 100 nm was laminated.
  • the gas barrier film 1 formed up to the second electrode was moved again to a nitrogen atmosphere and cut into a prescribed size to produce an organic EL device.
  • the cutting method is not particularly limited, but is preferably performed by ablation processing using a high energy laser such as an ultraviolet laser (for example, wavelength 266 nm), an infrared laser, a carbon dioxide gas laser or the like. Since the gas barrier film has an inorganic thin film that is easily cracked, cracks may occur in detail when cut with a normal cutter. The same applies to not only cutting of the element but also cutting of the gas barrier film alone. Furthermore, the cracking at the time of cutting can also be suppressed by installing a protective layer containing an organic component on the surface of the inorganic layer.
  • a high energy laser such as an ultraviolet laser (for example, wavelength 266 nm), an infrared laser, a carbon dioxide gas laser or the like. Since the gas barrier film has an inorganic thin film that is easily cracked, cracks may occur in detail when cut with a normal cutter. The same applies to not only cutting of the element but also cutting of the gas barrier film alone. Furthermore, the cracking at the time of cutting can also be suppressed by installing
  • Crimping conditions Crimping was performed at a temperature of 170 ° C. (ACF temperature 140 ° C. measured using a separate thermocouple), a pressure of 2 MPa, and 10 seconds.
  • a sealing member was bonded to the organic EL element to which the electrode lead (flexible printed circuit board) was connected using a commercially available roll laminating apparatus, and the organic EL element 101 was manufactured.
  • sealing member a 30 ⁇ m thick aluminum foil (manufactured by Toyo Aluminum Co., Ltd.), a polyethylene terephthalate (PET) film (12 ⁇ m thick) with an adhesive for dry lamination (two-component reaction type urethane adhesive).
  • PET polyethylene terephthalate
  • the laminate used adheresive layer thickness 1.5 ⁇ m was used.
  • thermosetting adhesive was uniformly applied to the aluminum surface with a thickness of 20 ⁇ m along the adhesive surface (glossy surface) of the aluminum foil using a dispenser.
  • thermosetting adhesive The following epoxy adhesive was used as the thermosetting adhesive.
  • the sealing substrate is closely attached and arranged so as to cover the joint portion of the take-out electrode and the electrode lead, and pressure bonding conditions using the pressure roll, pressure roll temperature 120 ° C., pressure 0. Close sealing was performed at 5 MPa and an apparatus speed of 0.3 m / min.
  • the barrier film produced by the method for producing a gas barrier film of the present invention provides a gas barrier film having a high barrier property and a high productivity.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Plasma & Fusion (AREA)
  • Optics & Photonics (AREA)
  • Laminated Bodies (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

本発明は、ロール・トゥー・ロール方式の生産適性を有し、ガスバリア性能に優れるガスバリアフィルムを製造することができるガスバリアフィルムの製造方法を提供することを目的とする。本発明は、基材上に形成された第1のバリア層上に、ポリシラザン化合物を含有する塗布液を塗布して塗膜を形成する塗布工程、及び、光源により、真空紫外線を照射して、第2のバリア層を形成する紫外線照射工程を有し、真空紫外線の照射の開始から終了までの間、塗膜が受ける塗膜面での真空紫外線の照度は160mW/cm以下であり、塗膜面での該真空紫外線の照度が50mW/cm以上、160mW/cm以下である期間Tを有し、T内に受ける、塗膜面におけるエネルギー量が、180mJ/cm以上1800mJ/cm以下である、ガスバリアフィルムの製造方法に関する。

Description

ガスバリアフィルムの製造方法、ガスバリアフィルムおよび電子デバイス
 本発明は、ガスバリアフィルムとその製造方法に関する。より詳しくは、主に電子デバイス等のパッケージ、又は有機エレクトロルミネッセンス(EL)素子や太陽電池素子、液晶表示素子等に用いられるガスバリアフィルムとその製造方法に関する。
 従来、プラスチック基板やフィルムの表面に酸化アルミニウム、酸化マグネシウム、酸化ケイ素等の金属酸化物の薄膜を含む複数の層を積層形成したガスバリアフィルムは、水蒸気や酸素等の各種ガスの遮断を必要とする物品の包装、食品や工業用品および医薬品等の変質を防止するための包装用途に広く用いられている。
 また、包装用途以外にも太陽電池素子、有機エレクトロルミネッセンス(EL)素子、液晶表示素子等で使用されている。
 このようなガスバリアフィルムを形成する方法として、テトラエトキシシラン(TEOS)に代表される有機珪素化合物を減圧下で酸素プラズマにより酸化しながら基板上にガスバリア層を成膜する化学堆積法(プラズマCVD法:Chemical Vapor Deposition)や、半導体レーザーを用いて金属Siを蒸発させ酸素の存在下で基板上にガスバリア層を堆積する物理堆積法(真空蒸着法やスパッタ法)といった気相法が知られている。
 これらの方法は正確な組成の薄膜を基板上に形成できるためSiOをはじめとする金属酸化物薄膜の形成に好ましく使われてきたが、減圧下での成膜となるため、製膜装置内の減圧および大気開放に時間を要する点、製膜速度を速くすると多くの欠陥を含む低品質の膜質となるため、良好なガスバリア性が得られる緻密な膜質を得るためには製膜速度を遅くする必要があるといった点で、著しく生産性が悪かった。
 かかる問題を解決するため、生産性の向上を目的に、珪素含有化合物を塗布し、その塗膜を改質することで酸化シリコン薄膜を形成する試みが行われており、ガスバリアフィルムにおいても検討されている。
 一般的に溶液プロセスで作製可能な酸化ケイ素膜としては、アルコキシド化合物を原料として、ゾル-ゲル法と呼ばれる方法で形成する技術が知られている。このゾル-ゲル法は一般的に高温に加熱する必要があり、さらに脱水縮合反応の過程で大きな体積収縮が起こり、膜中に多数の欠陥が生じる。
 これを防ぐために原料溶液に酸化物の形成に直接関与しない有機物などを混合する手法なども知られているが、これらの有機物が膜中に残存することによって膜全体として見た場合、バリア性が低下しバリア性が充分でない。
 これらのことから、ゾル-ゲル法で作製する酸化膜をそのままフレキシブル電子デバイスの保護膜として用いるのは困難であった。
 その他の方法としては、原料にシラザン構造(Si-N)を基本構造とするシラザン化合物を用いて酸化ケイ素膜を形成することが提案されている。
 この場合の反応は脱水縮合重合ではなく窒素から酸素への直接的な置換反応であるため、反応前後の質量収率が80%から100%以上と大きく、体積収縮による膜中欠陥が少ない緻密な膜が得られることが知られている。
 しかし、シラザン化合物の置換反応による酸化ケイ素膜の形成には450℃以上の高温が必要であり、プラスチック等のフレキシブル基板に適応することは不可能であった。
 このような問題解決の手段として、シラザン化合物とアミン類を放出する化合物とを含む溶液から塗布形成された塗膜に真空紫外光照射を施すことにより、酸化ケイ素膜を形成する方法が提案されている(特許文献1参照)。
 シラザン化合物内の原子間結合力より大きい真空紫外光(以下、「VUV」、「VUV光」とも記載する)と呼ばれる100~200nmの光エネルギーを用いて、原子の結合を光量子プロセスと呼ばれる光子のみによる作用により、直接切断しながら活性酸素やオゾンによる酸化反応を進行させることで、比較的低温で、酸化ケイ素膜の形成をおこなうことができる。
 また、ガスバリアフィルムの製造という観点では、工業的には所謂ロール・トゥー・ロールで連続的に生産ができることが必要とされる。
 そして、ロール・トゥー・ロールで製造する方法としては、1m/分あるいは10m/分程度の速度でフィルムを搬送してシラザン化合物塗膜にエキシマランプを照射してガスバリアフィルムを製造する方法が知られている(特許文献2および非特許文献1参照)。
 しかしながら、これらの方法においても生産性が不充分であり、また、製造されたガスバリアフィルムのバリア性能が有機光電変換素子等のガスバリア層としては全く不十分であるなどの問題があった。
 一方で、CVDやスパッタといった気相法で形成したガスバリア層上に、塗布で形成されたガスバリア層を積層した複合タイプのガスバリア層の検討もなされている。気相法で形成されたガスバリア層の欠陥を、塗布で形成されたガスバリア層によって補修する目的で検討されているものであり、気相法で形成されたガスバリア層の生産性を上げつつ良好なガスバリア性が得られる可能性を有している。
 例えば、特許文献3には、樹脂基材上に真空プラズマCVD法で形成されたガスバリア層にポリシラザンを積層塗布し、熱処理によりガスバリア層を補修することにより、更にバリア性能を高める方法が開示されている。しかしながら、この方法で得られるガスバリア層は有機光電変換素子等のガスバリア層としては不十分であり、また、ポリシラザンの熱処理に160℃で1時間も要するため生産性が著しく劣るものであった。
 このように、有機光電変換素子等に要求される非常に高いバリア性と生産性とを両立できるガスバリアフィルムの製造方法が求められていた。
特開平11-166157号公報 特表2009-503157号公報(国際公開第2007/012392号パンフレット) 特許第3511325号公報
Leibniz Institute of Surface Modification Biannual Report 2008/2009:P18-P21
 本発明は、上記問題・状況にかんがみてなされたものであり、その解決課題は、ロール・トゥー・ロール方式の生産適性を有し、ガスバリア性能に優れるガスバリアフィルムを製造することができるガスバリアフィルムの製造方法、それによって得られたガスバリアフィルムおよびそれを用いた電子デバイスを提供することにある。
 本発明に係る上記課題は以下の手段により解決される。
 1.基材上に化学蒸着法で形成された第1のガスバリア層を有し、該第1のガスバリア層上に第2のガスバリア層を有するガスバリアフィルムを製造するガスバリアフィルムの製造方法であって、帯状の該基材上に形成された該第1のガスバリア層上に、ポリシラザン化合物を含有する塗布液を塗布して塗膜を形成する塗布工程および、該基材に対向し、該基材の長手方向に沿う一方の辺の一点から他方の辺の一点への直線上で照度の分布が±10%以内となる真空紫外線(VUV)の複数の光源により、該塗膜が形成された該基材を該光源に対して相対的に移動させ、真空紫外線を該塗膜に照射して、第2のガスバリア層を形成する紫外線照射工程を有し、該紫外線照射工程において、該真空紫外線の照射の開始から終了までの間、光源に対して相対的に移動する塗膜が受ける塗膜面での該真空紫外線の照度は160mW/cm以下であり、該塗膜面での該真空紫外線の照度が50mW/cm以上、160mW/cm以下である期間Tを有し、該期間T内に受ける、塗膜面における真空紫外線のエネルギー量(E1)が、180mJ/cm以上1800mJ/cm以下である、ガスバリアフィルムの製造方法。
 2.前記紫外線照射工程において、前記期間T以外の期間に受ける、前記塗膜面における真空紫外線のエネルギー量(E2)と、前記E1との比(E2/E1)が、0以上、0.25以下である、前記1に記載のガスバリアフィルムの製造方法。
 3.前記期間Tの時間の、前記紫外線照射工程の全期間Zの時間に対する割合が、30%以上である、前記1または2に記載のガスバリアフィルムの製造方法。
 4.前記期間Tの時間の、前記紫外線照射工程の全期間Zの時間に対する割合が、70%以上である、前記3に記載のガスバリアフィルムの製造方法。
 5.前記紫外線照射工程において、前記期間Tは1つである、前記4に記載のガスバリアフィルムの製造方法。
 6.前記1から5のいずれか1項に記載のガスバリアフィルムの製造方法により製造されてなる、ガスバリアフィルム。
 7.前記6に記載のガスバリアフィルムを具備する、電子デバイス。
 本発明の上記手段により、ロール・トゥー・ロール方式の生産適性を有し、生産性に優れ、ガスバリア性能に優れるガスバリアフィルムを製造することができるガスバリアフィルムの製造方法およびそれによって得られたガスバリアフィルムが提供できる。
本発明の製造方法に用いられる真空紫外線照射装置の例の模式断面図である。 紫外線照射工程において塗膜面が受ける照度の時間的変化の例(パターンA)を示した図である。 紫外線照射工程において塗膜面が受ける照度の時間的変化の例(パターンB)を示した図である。 紫外線照射工程において塗膜面が受ける照度の時間的変化の例(パターンC)を示した図である。 紫外線照射工程において塗膜面が受ける照度の時間的変化の例(パターンD)を示した図である。 紫外線照射工程において塗膜面が受ける照度の時間的変化の例(パターンE)を示した図である。 紫外線照射工程において塗膜面が受ける照度の時間的変化の例(パターンF)を示した図である。 紫外線照射工程において塗膜面が受ける照度の時間的変化の例(パターンG)を示した図である。 紫外線照射工程において塗膜面が受ける照度の時間的変化の例(パターンH)を示した図である。 紫外線照射工程において塗膜面が受ける照度の時間的変化の例(パターンI)を示した図である。 紫外線照射工程において塗膜面が受ける照度の時間的変化の例(パターンJ)を示した図である。 紫外線照射工程において塗膜面が受ける照度の時間的変化の例(パターンK)を示した図である。 紫外線照射工程において塗膜面が受ける照度の時間的変化の例(パターンL)を示した図である。 紫外線照射工程において塗膜面が受ける照度の時間的変化の例(パターンM)を示した図である。 紫外線照射工程において塗膜面が受ける照度の時間的変化の例(パターンN)を示した図である。 第1のガスバリア層を形成するために用いられる装置の例を示す概略断面図である。 第1のガスバリア層を形成するために用いられる装置の例を示す概略断面図である。
 本発明は、基材上に化学蒸着法で形成された第1のガスバリア層を有し、該第1のガスバリア層上に第2のガスバリア層を有するガスバリアフィルムを製造するガスバリアフィルムの製造方法であって、帯状の該基材上に形成された該第1のガスバリア層上に、ポリシラザン化合物を含有する塗布液を塗布して塗膜を形成する塗布工程および、該基材に対向し、該基材の幅手方向に渡り均一な照度を有する、真空紫外線(VUV)の複数の光源により、該塗膜が形成された該基材を該光源に対して相対的に移動させ、真空紫外線を該塗膜に照射して、第2のガスバリア層を形成する紫外線照射工程を有し、該紫外線照射工程において、該真空紫外線の照射の開始から終了までの間、光源に対して相対的に移動する塗膜が受ける塗膜面での該真空紫外線の照度は160mW/cm以下であり、該塗膜面での該真空紫外線の照度が50mW/cm以上、160mW/cm以下である期間Tを有し、該期間T内に受ける、塗膜面における真空紫外線のエネルギー量(E1)が、180mJ/cm以上1800mJ/cm以下であることを特徴とする。
 本発明では特に、上記特定の照射強度を有する真空紫外線を上記特定量、照射する方法により、ガスバリア性能に優れるガスバリアフィルムを高い生産性で製造することができる。
 以下、本発明の製造方法により製造されるガスバリアフィルムの構成要素の詳細について説明する。
 《ガスバリアフィルム》
 本発明に係るガスバリアフィルムは、基材上に化学蒸着法で形成された第1のガスバリア層を有し、該第1のガスバリア層上に第2のガスバリア層を有する。なお、本明細書において、特に断りのない限り、「第1のガスバリア層上に第2のガスバリア層を有する」とは、(1)第1のガスバリア層に第2のガスバリア層が直接接触して設けられている形態;または(2)第1のガスバリア層に他の層を介してその上に第2のガスバリア層が設けられる形態;のいずれの形態をも含む概念である。
 本発明に係るガスバリアフィルムは、さらに当該第2のガスバリア層上に、第1のガスバリア層と同様なガスバリア層を有してもよく、さらにその上に第2のガスバリア層と同様なガスバリア層を有してもよい。
 また、基材の当該第1および第2のガスバリア層を有する面とは反対側に、第1のガスバリア層と同様なガスバリア層を有してもよく、さらにその上に第2のガスバリア層と同様なガスバリア層を有してもよい。
 (基材)
 本発明のガスバリアフィルムの製造方法に用いられる基材は、長尺な支持体であって、後述のガスバリア性(単に「バリア性」ともいう)を有するガスバリア層(単に「バリア層」ともいう)を保持することができるものである。当該基材は、具体的には下記のような材料で形成されるが、特にこれらに限定されるものではない。
 例えば、アクリル酸エステル、メタクリル酸エステル、ポリエチレンテレフタレート(PET)、ポリブチレンテレフタレート、ポリエチレンナフタレート(PEN)、ポリカーボネート(PC)、ポリアリレート、ポリ塩化ビニル(PVC)、ポリエチレン(PE)、ポリプロピレン(PP)、ポリスチレン(PS)、ナイロン(Ny)、芳香族ポリアミド、ポリエーテルエーテルケトン、ポリスルホン、ポリエーテルスルホン、ポリイミド、ポリエーテルイミド等の各樹脂のフィルム、有機無機ハイブリッド構造を有するシルセスキオキサンを基本骨格とした耐熱透明フィルム(例えば、製品名Sila-DEC、チッソ株式会社製、および、製品名シルプラス、新日鐵化学社製)、さらには前記樹脂を二層以上積層して成る樹脂フィルム等を挙げることができる。
 コストや入手の容易性の点では、ポリエチレンテレフタレート(PET)、ポリブチレンテレフタレート、ポリエチレンナフタレート(PEN)、ポリカーボネート(PC)等が好ましく用いられ、また光学的透明性、耐熱性、無機層とガスバリア層との密着性の点においては、有機無機ハイブリッド構造を有するシルセスキオキサンを基本骨格とした耐熱透明フィルムが好ましく用いられる。
 一方で、例えば、フレキシブルディスプレイ等の電子デバイス用途でガスバリアフィルムを用いる場合、アレイ作製工程でプロセス温度が200℃を超える場合がある。ロール・トゥー・ロールによる製造の場合、基材には常にある程度の張力が印加されているため、基材が高温下に置かれて基材温度が上昇した際、基材温度がガラス転移点温度を超えると基材の弾性率は急激に低下して張力により基材が伸び、ガスバリア層にダメージを与える懸念がある。
 したがって、このような用途においては、ガラス転移点が150℃以上の耐熱性材料を基材として用いることが好ましい。すなわち、ポリイミドやポリエーテルイミド、有機無機ハイブリッド構造を有するシルセスキオキサンを基本骨格とした耐熱透明フィルムを用いることが好ましい。ただし、これらに代表される耐熱性樹脂は非結晶性のため、結晶性のPETやPENと比較して吸水率は大きな値となり、湿度による基材の寸法変化がより大きくなってガスバリア層にダメージを与える懸念がある。
 しかし、これらの耐熱性材料を基材として用いたときでも、両面にガスバリア層またはガスバリア性ユニット(複数のガスバリア層からなる層)を形成することにより、高温高湿の過酷な条件下での基材フィルム自身の吸脱湿による寸法変化を抑制することができ、ガスバリア層へのダメージを抑制することができる。したがって、耐熱性材料を基材として用い、かつ、両面にガスバリア性層またはガスバリア性ユニットを形成することがより好ましい態様のひとつである。
 基材の厚さは5μm~500μm程度が好ましく、さらに好ましくは25~250μmである。
 また、基材は透明であることが好ましい。
 ここで、基材が透明とは、可視光(400~700nm)の光透過率が80%以上であることを示す。
 基材が透明であり、基材上に形成する層も透明であることにより、透明なガスバリアフィルムとすることが可能となるため、有機EL素子等の透明基板とすることも可能となるからである。
 また、上記に挙げた樹脂等を用いた基材は未延伸フィルムでもよく、延伸フィルムでもよい。
 本発明に用いられる基材は、従来公知の一般的な方法により製造することが可能である。例えば、材料となる樹脂を押し出し機により溶融し、環状ダイやTダイにより押し出して急冷することにより、実質的に無定形で配向していない未延伸の基材を製造することができる。
 また、未延伸の基材を一軸延伸、テンター式逐次二軸延伸、テンター式同時二軸延伸、チューブラー式同時二軸延伸等の公知の方法により、基材の流れ(縦軸)方向、又は基材の流れ方向と直角(横軸)方向に延伸することにより延伸基材を製造することができる。
 この場合の延伸倍率は、基材の原料となる樹脂に合わせて適宜選択することできるが、縦軸方向および横軸方向にそれぞれ2倍~10倍が好ましい。
 さらには、延伸フィルムにおいて基板の寸法安定性を向上させるために、延伸後に緩和処理をすることが好ましい。
 また、本発明に係る基材においては、塗膜を形成する前にコロナ処理してもよい。さらに、本発明に係る基材の塗膜を形成する側の表面には、塗膜との密着性の向上を目的としてアンカーコート剤層を形成してもよい。
 《アンカーコート剤層》
 アンカーコート剤層に用いられるアンカーコート剤としては、ポリエステル樹脂、イソシアネート樹脂、ウレタン樹脂、アクリル樹脂、エチレンビニルアルコール樹脂、ビニル変性樹脂、エポキシ樹脂、変性スチレン樹脂、変性シリコン樹脂、およびアルキルチタネート等を一又は二種以上併せて使用することができる。
 これらのアンカーコート剤には、従来公知の添加剤を加えることもできる。そして、上記のアンカーコート剤は、ロールコート、グラビアコート、ナイフコート、ディップコート、スプレーコート等の公知の方法により支持体上にコーティングし、溶剤、希釈剤等を乾燥除去することによりアンカーコーティングすることができる。上記のアンカーコート剤の塗布量としては、0.1g/m~5g/m(乾燥状態)程度が好ましい。
 《平滑層》
 本発明のガスバリアフィルムは基材とガスバリア層との間に、平滑層を有してもよい。本発明に用いられる平滑層は突起等が存在する透明樹脂フィルム支持体の粗面を平坦化し、あるいは、透明樹脂フィルム支持体に存在する突起により透明無機化合物層に生じた凹凸やピンホールを埋めて平坦化するために設けられる。このような平滑層は、基本的には感光性材料、または、熱硬化性材料を硬化させて作製される。
 平滑層に用いられる感光性材料としては、例えば、ラジカル反応性不飽和基を有するアクリレート化合物を含有する樹脂組成物、アクリレート化合物とチオール基を有するメルカプト化合物を含有する樹脂組成物、エポキシアクリレート、ウレタンアクリレート、ポリエステルアクリレート、ポリエーテルアクリレート、ポリエチレングリコールアクリレート、グリセロールメタクリレート等の多官能アクリレートモノマーを溶解させた樹脂組成物等が挙げられる。また、上記のような樹脂組成物を任意に混合して使用することも可能であり、光重合性不飽和結合を分子内に1個以上有する反応性のモノマーを含有している感光性樹脂であれば特に制限はない。
 熱硬化性材料として具体的には、クラリアント社製のトゥットプロムシリーズ(有機ポリシラザン)、セラミックコート株式会社製のSP COAT耐熱クリアー塗料、アデカ社製のナノハイブリッドシリコーン、DIC株式会社製のユニディックV-8000シリーズ、EPICLON EXA-4710(超高耐熱性エポキシ樹脂)、信越化学社製の各種シリコーン樹脂、日東紡社製の無機・有機ナノコンポジット材料SSGコート、アクリルポリオールとイソシアネートプレポリマーとからなる熱硬化性ウレタン樹脂、フェノール樹脂、尿素メラミン樹脂、エポキシ樹脂、不飽和ポリエステル樹脂、シリコン樹脂等が挙げられる。この中でも特に耐熱性を有するエポキシ樹脂ベースの材料であることが好ましい。
 平滑層の形成方法は特に制限はないが、スプレー法、ブレードコーティング法、ディップ法等のウエットコーティング法、あるいは、蒸着法等のドライコーティング法により形成することが好ましい。
 平滑層の形成では、上述の感光性樹脂に、必要に応じて酸化防止剤、紫外線吸収剤、可塑剤等の添加剤を加えることができる。また、平滑層の積層位置に関係なく、いずれの平滑層においても、成膜性向上および膜のピンホール発生防止等のために適切な樹脂や添加剤を使用してもよい。
 平滑層の平滑性は、JIS B 0601で規定される表面粗さにより評価することができ、最大断面高さRt(p)が、10nm以上、30nm以下であることが好ましい。当該値が10nm以上であると、後述のケイ素化合物を塗布する段階で、ワイヤーバー、ワイヤレスバー等の塗布方式で、平滑層表面に塗工手段が接触する場合に塗布性が損なわれる心配がない。また、当該値が30nm以下であると、ケイ素化合物を塗布した後の凹凸を容易に平滑化することができる。
 《ブリードアウト防止層》
 本発明に係るガスバリアフィルムは、基材の平滑層とは反対側にブリードアウト防止層を有してもよい。
 ブリードアウト防止層は、平滑層を有するフィルムを加熱した際に、フィルム支持体中から未反応のオリゴマー等が表面へ移行して、接触する面を汚染してしまう現象を抑制する目的で平滑層を有する基材の反対面に設けられる。ブリードアウト防止層は、この機能を有していれば基本的に平滑層と同じ構成をとっても構わない。
 ブリードアウト防止層に含ませることが可能な重合性不飽和基を有する不飽和有機化合物としては、分子中に2個以上の重合性不飽和基を有する多価不飽和有機化合物又は分子中に1個の重合性不飽和基を有するモノ不飽和有機化合物等を挙げることができる。
 その他の添加剤として、マット剤を含有してもよい。マット剤としては平均粒子径が0.1~5μm程度の無機粒子が好ましい。このような無機粒子としては、シリカ、アルミナ、タルク、クレイ、炭酸カルシウム、炭酸マグネシウム、硫酸バリウム、水酸化アルミニウム、二酸化チタン、酸化ジルコニウム等の一種又は二種以上を併せて使用することができる。
 ここで無機粒子からなるマット剤は、上述の不飽和有機化合物(ハードコート剤)の固形分100質量部に対して2質量部以上、好ましくは4質量部以上、より好ましくは6質量部以上、20質量部以下、好ましくは18質量部以下、より好ましくは16質量部以下の割合で混合されていることが望ましい。
 また、ブリードアウト防止層は、不飽和有機化合物(ハードコート剤)およびマット剤以外の他の成分として、熱可塑性樹脂、熱硬化性樹脂、電離放射線硬化性樹脂、光重合開始剤等を含有させてもよい。
 以上のようなブリードアウト防止層は、ハードコート剤、マット剤、および必要に応じて他の成分を配合して、適宜必要に応じて用いる希釈溶剤によって塗布液として調製し、当該塗布液を支持体フィルム表面に従来公知の塗布方法によって塗布した後、電離放射線を照射して硬化させることにより形成することができる。
 なお、電離放射線を照射する方法としては、超高圧水銀灯、高圧水銀灯、低圧水銀灯、カーボンアーク、メタルハライドランプ等から発せられる100~400nm、好ましくは200~400nmの波長領域の紫外線を照射する、又は走査型やカーテン型の電子線加速器から発せられる100nm以下の波長領域の電子線を照射することにより行うことができる。
 ブリードアウト防止層の厚さは、フィルムの耐熱性向上させ、フィルムの光学特性のバランス調整を容易にし、かつ、ガスバリアフィルムの片面のみにブリードアウト防止層を設けた場合のカールを防止する観点から、1~10μmの範囲とすることが好ましく、2μm~7μmの範囲とすることがより好ましい。
 〔第1のバリア層〕
 本発明において第1のバリア層は、化学蒸着法で形成されたバリア層である。
 一般に、基材上に機能性薄膜を形成する方法としては、主に、物理気相成長法及び化学気相成長法(化学蒸着法)が挙げられる。物理的気相成長法は、気相中で物質の表面に物理的手法により目的とする物質(例えば、炭素膜等)の薄膜を堆積させる方法であり、これらの方法としては、蒸着法(抵抗加熱法、電子ビーム蒸着法、分子線エピタキシー法)、また、イオンプレーティング法、スパッタ法等がある。一方、化学気相成長法(化学蒸着法、Chemical Vapor Deposition)は、基材上に、目的とする薄膜の成分を含む原料ガスを供給し、基板表面或いは気相での化学反応により膜を堆積させる方法である。また、化学反応を活性化させる目的で、プラズマなどを発生させる方法などがあり、熱CVD法、触媒化学気相成長法、光CVD法、プラズマCVD法、大気圧プラズマCVD法など公知のCVD方式等が挙げられるが、本発明においては、いずれも有利に用いることができる。特に限定されるものではないが、製膜速度や処理面積の観点からプラズマCVD法が好ましい。
 以下、プラズマCVD法について具体的に説明する。
 図16の符号101は、一般的なプラズマCVD装置の一例を示している。
 このプラズマCVD装置101は、真空槽102を有しており、真空槽102の内部の底面側には、サセプタ105が配置されている。
 真空槽102の内部の天井側には、サセプタ105と対向する位置にカソード電極103が配置されている。
 真空槽102の外部には、熱媒体循環系106と、真空排気系107と、ガス導入系108と、高周波電源109が配置されている。
 熱媒体循環系106内には熱媒体が配置されている。
 熱媒体循環系106には、熱媒体を移動させるポンプと、熱媒体を加熱する加熱装置と、冷却する冷却装置と、熱媒体の温度を測定する温度センサと、熱媒体の設定温度を記憶する記憶装置とを有する加熱冷却装置160が設けられている。
 加熱冷却装置160は、熱媒体の温度を測定し、熱媒体を記憶された設定温度まで加熱又は冷却し、サセプタ105に供給するように構成されている。供給された熱媒体はサセプタ105の内部を流れ、サセプタ105を加熱又は冷却して加熱冷却装置160に戻る。このとき、熱媒体の温度は、設定温度よりも高温又は低温になっており、加熱冷却装置160は熱媒体を設定温度まで加熱又は冷却し、サセプタ105に供給する。かくて冷却媒体はサセプタと加熱冷却装置160の間を循環し、サセプタ105は、供給された設定温度の熱媒体によって加熱又は冷却される。
 真空槽102は真空排気系107に接続されており、このプラズマCVD装置101によって成膜処理を開始する前に、予め真空槽102の内部を真空排気すると共に、熱媒体を加熱して室温から設定温度まで昇温させておき、設定温度の熱媒体をサセプタ105に供給する。サセプタ105は使用開始時には室温であり、設定温度の熱媒体が供給されると、サセプタ105は昇温される。
 一定時間、設定温度の熱媒体を循環させた後、真空槽102内の真空雰囲気を維持しながら真空槽102内に成膜対象の基板110を搬入し、サセプタ105上に配置する。
 カソード電極103のサセプタ105に対向する面には多数のノズル(孔)が形成されている。
 カソード電極103はガス導入系108に接続されており、ガス導入系108からカソード電極103にCVDガスを導入すると、カソード電極103のノズルから真空雰囲気の真空槽102内にCVDガスが噴出される。
 カソード電極103は高周波電源109に接続されており、サセプタ105および真空槽102は接地電位に接続されている。
 ガス導入系108から真空槽102内にCVDガスを供給し、加熱冷却装置160から一定温度の熱媒体をサセプタ105に供給しながら高周波電源109を起動し、カソード電極103に高周波電圧を印加すると、導入されたCVDガスのプラズマが形成される。
 プラズマ中で活性化されたCVDガスがサセプタ105上の基板110の表面に到達すると、基板110の表面に薄膜が成長する。
 薄膜成長中は、加熱冷却装置160から一定温度の熱媒体がサセプタ105に供給されており、サセプタ105は、熱媒体によって加熱又は冷却され、一定温度に維持された状態で薄膜が形成される。一般に、薄膜を形成する際の成長温度の下限温度は、薄膜の膜質により決まっており、上限温度は基板110上に既に形成されている薄膜のダメージの許容範囲により決まっている。
 下限温度や上限温度は形成する薄膜の材質や、既に形成されている薄膜の材質等によって異なるが、ハイバリアフィルム等に用いられるSiN膜やSiON膜を形成する場合は、膜質を確保するために下限温度は50℃以上であり、上限温度は基材の耐熱温度以下である。
 プラズマCVD法で形成される薄膜の膜質と成膜温度の相関関係と、成膜対象物(基板110)が受けるダメージと成膜温度の相関関係とを予め求め、下限温度・上限温度が決定される。例えば、プラズマCVDプロセス中の基板110の下限温度は50℃であり、上限温度は250℃である。
 更に、カソード電極103に13.56MHz以上の高周波電圧を印加してプラズマを形成した場合の、サセプタ105に供給する熱媒体の温度と基板110温度の関係が予め測定されており、プラズマCVDプロセス中に基板110温度を、下限温度以上、上限温度以下に維持するために、サセプタ105に供給する熱媒体の温度が求められている。
 例えば、下限温度が(ここでは50℃)が記憶され、下限温度以上の温度に温度制御された熱媒体がサセプタ105に供給されるように設定されている。サセプタ105から還流された熱媒体は、加熱又は冷却され、50℃の設定温度の熱媒体がサセプタ105に供給される。例えば、CVDガスとして、シランガスとアンモニアガスと窒素ガスの混合ガスが供給され、基板110が、下限温度以上、上限温度以下の温度に維持された状態でSiN膜が形成される。
 プラズマCVD装置101の起動直後は、サセプタ105は室温であり、サセプタ105から加熱冷却装置160に還流された熱媒体の温度は設定温度よりも低い。従って、起動直後は、加熱冷却装置160は還流された熱媒体を加熱して設定温度に昇温させ、サセプタ105に供給することになる。この場合、サセプタ105及び基板110は熱媒体によって加熱、昇温され、基板110は下限温度以上、上限温度以下の範囲に維持される。
 複数枚の基板110に連続して薄膜を形成すると、プラズマから流入する熱によってサセプタ105が昇温する。この場合、サセプタ105から加熱冷却装置160に還流される熱媒体は下限温度(50℃)よりも高温になっているため、加熱冷却装置160は熱媒体を冷却し、設定温度の熱媒体をサセプタ105に供給する。これにより、基板110を下限温度以上、上限温度以下の範囲に維持しながら薄膜を形成することができる。
 このように、加熱冷却装置160は、還流された熱媒体の温度が設定温度よりも低温の場合には熱媒体を加熱し、設定温度よりも高温の場合は熱媒体を冷却し、いずれの場合も設定温度の熱媒体をサセプタに供給しており、その結果、基板110は下限温度以上、上限温度以下の温度範囲が維持される。
 薄膜が所定膜厚に形成されたら、基板110を真空槽102の外部に搬出し、未成膜の基板110を真空槽102内に搬入し、上記と同様に、設定温度の熱媒体を供給しながら薄膜を形成する。
 図17は真空チャンバー内でフィルムロール基材を連続的に搬送しながら,ロール・トゥー・ロール方式で製膜することが可能なプラズマCVD装置の一例であり、本発明においても好ましく使用できる。図中、11は真空チャンバー、12、13は成膜ロール、14は巻き出しロール、15は対向空間、17は巻き取りロール、18は成膜ガス供給管、19は真空排気口、20は真空ポンプである。
 以上、真空プラズマCVD法による第1のバリア層の形成方法について一例を挙げたが、第1のバリア層の形成方法としては、真空を必要としないプラズマCVD法が好ましく、大気圧プラズマCVD法がさらに好ましい。
 大気圧近傍でのプラズマCVD処理を行う大気圧プラズマCVD法は、真空下のプラズマCVD法に比べ、減圧にする必要がなく生産性が高いだけでなく、プラズマ密度が高密度であるために成膜速度が速い。更には通常のCVD法の条件と比較して、大気圧下という高圧力条件では、ガスの平均自由工程が非常に短いため、極めて均質の膜が得られる。
 大気圧プラズマ処理の場合は、放電ガスとしては窒素ガスまたは周期表の第18属原子、具体的には、ヘリウム、ネオン、アルゴン、クリプトン、キセノン、ラドン等が用いられる。これらの中でも窒素、ヘリウム、アルゴンが好ましく用いられ、特に窒素がコストも安く好ましい。
 〈異なる周波数の電界を二つ以上形成した大気圧プラズマ処理〉
 次に、大気圧プラズマ処理について好ましい形態を説明する。大気圧プラズマ処理は、具体的には、国際公開第2007-026545号明細書に記載されるように、放電空間に異なる周波数の電界を2つ以上形成したもので、第1の高周波電界と第2の高周波電界とを重畳した電界を形成する方式を用いることが好ましい。
 具体的には、第1の高周波電界の周波数ω1より第2の高周波電界の周波数ω2が高く、かつ、第1の高周波電界の強度V1と、第2の高周波電界の強度V2と、放電開始電界の強度IVとの関係が、
     V1≧IV>V2 または V1>IV≧V2
を満たし、第2の高周波電界の出力密度が、1W/cm以上であることが好ましい。
 このような放電条件を採用することにより、例えば、窒素ガスのように放電開始電界強度が高い放電ガスでも、放電を開始し、高密度で安定なプラズマ状態を維持でき、高性能な薄膜形成を行うことができる。
 上記の測定により放電ガスを窒素ガスとした場合、その放電開始電界強度IV(1/2Vp-p)は3.7kV/mm程度であり、従って、上記の関係において、第1の印加電界強度を、V1≧3.7kV/mmとして印加することによって窒素ガスを励起し、プラズマ状態にすることができる。
 ここで、第1電源の周波数としては、200kHz以下が好ましく用いることができる。またこの電界波形としては、連続波でもパルス波でもよい。下限は1kHz程度が望ましい。
 一方、第2電源の周波数としては、800kHz以上が好ましく用いられる。この第2電源の周波数が高い程、プラズマ密度が高くなり、緻密で良質な薄膜が得られる。上限は200MHz程度が望ましい。
 第1の高周波電界は高い放電開始電界強度を有する放電ガスの放電を開始するのに必要であり、また第2の高周波電界の高い周波数及び高い出力密度によりプラズマ密度を高くすることができる。このような2つの電源から高周波電界を形成することにより緻密で良質な薄膜を形成することができる。
 本発明でいう大気圧もしくはその近傍の圧力とは、20kPa~110kPa程度であり、本発明に記載の良好な効果を得るためには、93kPa~104kPaが好ましい。
 また、本発明でいう励起したガスとは、エネルギーを得ることによって、ガス中の分子の少なくとも一部が、今あるエネルギー状態からより高いエネルギー状態へ移ることをいい、励起ガス分子、ラジカル化したガス分子、イオン化したガス分子を含むガスがこれに該当する。
 本発明に係る第1のバリア層の形成方法としては、大気圧もしくはその近傍の圧力下で、高周波電界を発生させた放電空間に、珪素を含有する原料ガスを含有するガスを、励起した放電ガスと混合して二次励起ガスを形成し、基材をこの二次励起ガスに晒すことにより無機膜を形成する方法が好ましく適用できる。
 すなわち、第1ステップとして、対向電極間(放電空間)を、大気圧もしくはその近傍の圧力とし、放電ガスを対向電極間に導入し、高周波電圧を対向電極間に印加して、放電ガスをプラズマ状態とし、続いてプラズマ状態になった放電ガスと原料ガスとを、放電空間外で混合させて、この混合ガス(二次励起ガス)に基材を晒して、基材上に第1のバリア層を形成する。
 本発明における化学蒸着法により形成される第1のバリア層の材料は、透過性の観点から金属酸化物、金属窒化物、金属炭化物、またはその複合化合物から選ぶことができる。また。第1のバリア層は実質的にもしくは完全に無機層として形成されているのが望ましい。中でも、第1のバリア層としては、酸化珪素または酸窒化珪素または窒化珪素を有することが好ましい。
 〔第2のバリア層〕
 本発明に係る第2のバリア層は、化学蒸着法で形成した第1のバリア層上にポリシラザン化合物を含有する塗布液を塗布し、真空紫外線を照射することにより形成される。
 塗布方法としては、任意の適切な方法が採用され得る。具体例としては、スピンコート法、ロールコート法、フローコート法、インクジェット法、スプレーコート法、プリント法、ディップコート法、流延成膜法、バーコート法、グラビア印刷法等が挙げられる。
 塗布厚さは、目的に応じて適切に設定され得る。例えば、塗布厚さは、乾燥後の厚さが好ましくは1nm~100μm程度、さらに好ましくは10nm~10μm程度、最も好ましくは10nm~1μm程度となるように設定され得る。
 (ポリシラザン化合物を含有する塗布液)
 本発明に係る塗膜は、帯状の基材上に形成された第1のバリア層上にポリシラザン化合物を含有する塗布液を塗布することにより形成される。
 塗布方法としては、任意の適切な方法が採用され得る。
 具体例としては、ロールコート法、フローコート法、インクジェット法、スプレーコート法、プリント法、ディップコート法、流延成膜法、バーコート法、グラビア印刷法等が挙げられる。
 塗膜の厚さは、ガスバリアフィルムの使用目的に応じて適切に設定されるため特に制限はないが、例えば、塗膜の厚さは、乾燥後の厚さが好ましくは1nm~10μm程度、さらに好ましくは10nm~10μm程度、最も好ましくは30nm~1μm程度となるように設定され得る。
 本発明で用いられる「ポリシラザン化合物」とは、珪素-窒素結合を持つポリマーで、Si-N、Si-H、N-H等からなるSiO、Siおよび両方の中間固溶体SiO等のセラミック前駆体無機ポリマーである。
 フィルム基材を損なわないように塗布するためには、特開平8-112879号公報に記載されているように比較的低温でセラミック化してシリカに変性するポリシラザン化合物が好ましい。
 このようなポリシラザン化合物としては、下記の構造を有するものが好ましく用いられる。
  -Si(R)(R)-N(R)-
 式中、R、R、Rは、各々水素原子,アルキル基,アルケニル基,シクロアルキル基,アリール基,アルキルシリル基,アルキルアミノ基,アルコキシ基を表す。
 本発明では、得られるガスバリア層の、膜としての緻密性の観点からは、R、RおよびRのすべてが水素原子であるパーヒドロポリシラザンが特に好ましい。
 一方、そのSiと結合する水素部分が一部アルキル基等で置換されたオルガノポリシラザンは、メチル基等のアルキル基を有することにより下地基材との接着性が改善され、かつ硬くてもろいポリシラザンによるセラミック膜に靭性を持たせることができ、より膜厚を厚くした場合でもクラックの発生が抑えられる利点がある。
 用途に応じて適宜、これらパーヒドロポリシラザンとオルガノポリシラザンを選択してよく、混合して使用することもできる。
 パーヒドロポリシラザンは直鎖構造と6および/または8員環を中心とする環構造とが混在した構造を有していると推定されている。
 ポリシラザンの分子量は数平均分子量(Mn)で約600~2000程度(ポリスチレン換算)であり、液体又は固体の物質であり、分子量により異なる。
 これらのポリシラザンは有機溶媒に溶解した溶液状態で市販されており、市販品をそのままポリシラザン含有塗布液として使用することができる。
 低温でセラミック化するポリシラザン化合物の別の例としては、上記ポリシラザンにケイ素アルコキシドを反応させて得られるケイ素アルコキシド付加ポリシラザン(特開平5-238827号公報)、グリシドールを反応させて得られるグリシドール付加ポリシラザン(特開平6-122852号公報)、アルコールを反応させて得られるアルコール付加ポリシラザン(特開平6-240208号公報)、金属カルボン酸塩を反応させて得られる金属カルボン酸塩付加ポリシラザン(特開平6-299118号公報)、金属を含むアセチルアセトナート錯体を反応させて得られるアセチルアセトナート錯体付加ポリシラザン(特開平6-306329号公報)、金属微粒子を添加して得られる金属微粒子添加ポリシラザン(特開平7-196986号公報)等が挙げられる。
 ポリシラザン化合物を含有する塗布液を調製する有機溶媒としては、ポリシラザンと容易に反応してしまうようなアルコール系や水分を含有するものを用いることは好ましくない。
 有機溶媒としては、例えば、脂肪族炭化水素、脂環式炭化水素、芳香族炭化水素等の炭化水素溶媒、ハロゲン化炭化水素溶媒、脂肪族エーテル、脂環式エーテル等のエーテル類が使用できる。
 具体的には、ペンタン、ヘキサン、シクロヘキサン、トルエン、キシレン、ソルベッソ、ターベン等の炭化水素、塩化メチレン、トリクロロエタン等のハロゲン炭化水素、ジブチルエーテル、ジオキサン、テトラヒドロフラン等のエーテル類等が挙げられる。
 これらの溶剤は、ポリシラザンの溶解度や溶剤の蒸発速度等、目的にあわせて選択し、複数の溶剤を混合しても良い。
 当該塗布液中のポリシラザン化合物の濃度は目的とするガスバリア性層の膜厚や塗布液のポットライフによっても異なるが、0.2~35質量%程度である。
 当該塗布液中には、酸化珪素化合物への変性を促進するために、アミンや金属の触媒を添加することもできる。具体的には、AZエレクトロニックマテリアルズ(株)製 アクアミカ NAX120-20、NN110、NN310、NN320、NL110A、NL120A、NL150A、NP110、NP140、SP140などが挙げられる。
 これらの触媒の添加量は、触媒による過剰なシラノール形成、および膜密度の低下、膜欠陥の増大のなどを避けるため、ポリシラザン化合物に対して2質量%以下に調整することが好ましい。
 ポリシラザン化合物を含有する塗布液には、ポリシラザン化合物以外にも無機前駆体化合物を含有させることができる。ポリシラザン化合物以外の無機前駆体化合物としては、塗布液の調製が可能であれば特に限定はされない。
 具体的には、例えば、珪素を含有する化合物としては、ポリシロキサン、ポリシルセスキオキサン、テトラメチルシラン、トリメチルメトキシシラン、ジメチルジメトキシシラン、メチルトリメトキシシラン、トリメチルエトキシシラン、ジメチルジエトキシシラン、メチルトリエトキシシラン、テトラメトキシシラン、テトラメトキシシラン、ヘキサメチルジシロキサン、ヘキサメチルジシラザン、1,1-ジメチル-1-シラシクロブタン、トリメチルビニルシラン、メトキシジメチルビニルシラン、トリメトキシビニルシラン、エチルトリメトキシシラン、ジメチルジビニルシラン、ジメチルエトキシエチニルシラン、ジアセトキシジメチルシラン、ジメトキシメチル-3,3,3-トリフルオロプロピルシラン、3,3,3-トリフルオロプロピルトリメトキシシラン、アリールトリメトキシシラン、エトキシジメチルビニルシラン、アリールアミノトリメトキシシラン、N-メチル-N-トリメチルシリルアセトアミド、3-アミノプロピルトリメトキシシラン、メチルトリビニルシラン、ジアセトキシメチルビニルシラン、メチルトリアセトキシシラン、アリールオキシジメチルビニルシラン、ジエチルビニルシラン、ブチルトリメトキシシラン、3-アミノプロピルジメチルエトキシシラン、テトラビニルシラン、トリアセトキシビニルシラン、テトラアセトキシシラン、3-トリフルオロアセトキシプロピルトリメトキシシラン、ジアリールジメトキシシラン、ブチルジメトキシビニルシラン、トリメチル-3-ビニルチオプロピルシラン、フェニルトリメチルシラン、ジメトキシメチルフェニルシラン、フェニルトリメトキシシラン、3-アクリロキシプロピルジメトキシメチルシラン、3-アクリロキシプロピルトリメトキシシラン、ジメチルイソペンチロキシビニルシラン、2-アリールオキシエチルチオメトキシトリメチルシラン、3-グリシドキシプロピルトリメトキシシラン、3-アリールアミノプロピルトリメトキシシラン、ヘキシルトリメトキシシラン、ヘプタデカフルオロデシルトリメトキシシラン、ジメチルエチキシフェニルシラン、ベンゾイロキシトリメチルシラン、3-メタクリロキシプロピルジメトキシメチルシラン、3-メタクリロキシプロピルトリメトキシシラン、3-イソシアネートプロピルトリエトキシシラン、ジメチルエトキシ-3-グリシドキシプロピルシラン、ジブトキシジメチルシラン、3-ブチルアミノプロピルトリメチルシラン、3-ジメチルアミノプロピルジエトキシメチルシラン、2-(2-アミノエチルチオエチル)トリエトキシシラン、ビス(ブチルアミノ)ジメチルシラン、ジビニルメチルフェニルシラン、ジアセトキシメチルフェニルシラン、ジメチル-p-トリルビニルシラン、p-スチリルトリメトキシシラン、ジエチルメチルフェニルシラン、ベンジルジメチルエトキシシラン、ジエトキシメチルフェニルシラン、デシルメチルジメトキシシラン、ジエトキシ-3-グリシドキシプロピルメチルシラン、オクチロキシトリメチルシラン、フェニルトリビニルシラン、テトラアリールオキシシラン、ドデシルトリメチルシラン、ジアリールメチルフェニルシラン、ジフェニルメチルビニルシラン、ジフェニルエトキシメチルシラン、ジアセトキシジフェニルシラン、ジベンジルジメチルシラン、ジアリールジフェニルシラン、オクタデシルトリメチルシラン、メチルオクタデシルジメチルシラン、ドコシルメチルジメチルシラン、1,3-ジビニル-1,1,3,3-テトラメチルジシロキサン、1,3-ジビニル-1,1,3,3-テトラメチルジシラザン、1,4-ビス(ジメチルビニルシリル)ベンゼン、1,3-ビス(3-アセトキシプロピル)テトラメチルジシロキサン、1,3,5-トリメチル-1,3,5-トリビニルシクロトリシロキサン、1,3,5-トリス(3,3,3-トリフルオロプロピル)-1,3,5-トリメチルシクロトリシロキサン、オクタメチルシクロテトラシロキサン、1,3,5,7-テトラエトキシ-1,3,5,7-テトラメチルシクロテトラシロキサン、デカメチルシクロペンタシロキサン等を挙げることができる。
 ポリシロキサンとしては、反応性の高いSi-Hを有するものが好ましく、メチル・ハイドロジェンポリシロキサンが好ましい。メチル・ハイドロジェンポリシロキサンとしては、モメンティブ社製のTSF484を挙げることができる。
 ポリシルセスキオキサンとしては、かご状、ラダー状、ランダム状のいずれの構造のものも好ましく用いることができる。かご状のポリシルセスキオキサンとしては、例えば、Mayaterials社製Q8シリーズのOctakis(tetramethylammonium)pentacyclo-octasiloxane-octakis(yloxide)hydrate;Octa(tetramethylammonium)silsesquioxane、Octakis(dimethylsiloxy)octasilsesquioxane、Octa[[3-[(3-ethyl-3-oxetanyl)methoxy]propyl]dimethylsiloxy]octasilsesquioxane;Octaallyloxetane silsesquioxane、Octa[(3-Propylglycidylether)dimethylsiloxy]silsesquioxane;Octakis[[3-(2,3-epoxypropoxy)propyl]dimethylsiloxy]octasilsesquioxane、Octakis[[2-(3,4-epoxycyclohexyl)ethyl]dimethylsiloxy]octasilsesquioxane、Octakis[2-(vinyl)dimethylsiloxy]silsesquioxane;Octakis(dimethylvinylsiloxy)octasilsesquioxane、Octakis[(3-hydroxypropyl)dimethylsiloxy]octasilsesquioxane、Octa[(methacryloylpropyl)dimethylsilyloxy]silsesquioxane、Octakis[(3-methacryloxypropyl)dimethylsiloxy]octasilsesquioxaneを挙げることができる。かご状・ラダー状・ランダム状の構造が混合して存在すると考えられるポリシルセスキオキサンとしては、小西化学社製のポリフェニルシルセスキオキサンである、SR-20、SR-21、SR-23、ポリメチルシルセスキオキサンである、SR-13、ポリメチル・フェニルシルセスキオキサンである、SR-33を挙げることができる。また、スピンオングラス材料として市販されているポリハイドロジェンシルセスキオキサン溶液である東レ・ダウコーニング社製のFoxシリーズも好ましく用いることができる。
 特に中でも常温で固体である、無機ケイ素化合物が好ましく、水素化シルセスキオキサンがより好ましく用いられる。
 (紫外線照射工程)
 本発明に係る第2のバリア層は、ポリシラザンを含む塗膜に真空紫外線を照射する紫外線照射工程で、ポリシラザンの少なくとも一部が酸化珪素へと転化し、Si-O結合を有するガスバリア層が形成される。
 紫外線照射工程は、基材に対向し、基材の幅手方向に渡り均一な照度を有する、真空紫外線(VUV)の複数の光源により、塗膜が形成された該基材を該光源に対して相対的に長手方向に移動させながら、真空紫外線を該塗膜に照射して、ガスバリア層を形成する。
 そして、紫外線照射工程において、該真空紫外線の照射の開始から終了までの間、光源と相対的に移動する塗膜が受ける塗膜面での該真空紫外線の照度は160mW/cm以下であり、該塗膜面での該真空紫外線の照度が50mW/cm以上、160mW/cm以下である期間Tを有し、該期間T内に受ける、塗膜面における真空紫外線のエネルギー量(E1)が、180mJ/cm以上1800mJ/cm以下である。
 本発明においては、基材に対向する紫外線の光源を複数有し、複数の光源は各々基材の幅手方向に渡り均一な照度を有する。
 基材の幅手方向に渡り均一な照度を有するとは、帯状の長手方向に沿う一方の辺の一点から他方の辺の一点への方向に沿う直線上で均一な照度を有することである。
 当該直線と、長手方向に平行な直線とのなす角度は、80°から90°が好ましく特に90°であることが好ましい。
 均一な照度とは、一方の辺から他方の辺までの照度の分布が、±10%以内であることをいう。
 塗膜面における照度は、予め、光源から塗布液が塗布された面までの距離を測定しておき、光源からの真空紫外線の当該距離における照度を、紫外線照射工程の環境下で、測定することで測定できる。
 照度の分布が±10%以内とは、一方の辺から他方の辺までを9等分する10点について、照度を測定し10点の平均値と各点の値との差が平均値の10%以内にある、ことである。
 照度の測定は、浜松ホトニクス社製の紫外線積算光量計:C8026/H8025 UV POWER METERを用い、172nmのセンサヘッドを用いて測定する。測定にあたっては、光源ランプ管面とセンサヘッドの測定面との距離が、所定の値となるように設置でき、かつ、ランプ管面とセンサヘッドの測定面間の雰囲気が紫外線照射工程と同一の酸素濃度となるように窒素充填が可能な専用の治具を作製し、これを用いて測定を行う。
 本発明に係る真空紫外線には、具体的には、100~200nmの真空紫外線が好ましく用いられる。真空紫外線照射は、塗膜形成後であればいずれの時点で実施しても有効である。
 紫外線照射工程では、塗膜が形成された基材を光源に対して相対的に長手方向に移動させるが、固定された光源に対して、帯状の基材を長手方向に移動(搬送)する方法が好ましく用いられる。
 移動する速度(搬送速度)としては、光源にもよるが、概ね0.2m/分~100m/分の範囲であることが好ましく、0.5m/分~50m/分の範囲であることが特に好ましい。
 紫外線照射工程では、真空紫外線の照射の開始から終了までの間、光源と相対的に移動する塗膜が受ける塗膜面での該真空紫外線の照度は160mW/cm以下であり、該塗膜面での該真空紫外線の照度が50mW/cm以上、160mW/cm以下である期間Tを有し、期間T内に受ける、塗膜面における真空紫外線のエネルギー量(E1)が、180mJ/cm以上1800mJ/cm以下である。
 本発明においては、上記のように50mW/cm以上、160mW/cm以下の照度で、180mJ/cm以上、1800mJ/cm以下のエネルギーを塗膜に与えることで、ガスバリア性に優れるガスバリア層が得られる。
 照度が160mW/cmを超える場合あるいはエネルギー量(E1)が1800mJ/cmを超える場合には、相対的に紫外線照射が酸化珪素を形成するための反応に寄与する度合いが少なくなり、膜を破壊する紫外線の度合いが多くなるためと思われるが、ガスバリア性の機能が低下する。
 本発明の照度で照射することにより、ガスバリア性が極めて大きく向上する理由は、明確ではないが、以下のように推測される。
 シラザン化合物中の珪素が関与する結合が切断されて酸化される反応が、本発明の照度の範囲においては塗膜内でより均一に行われることと、反応による発生する熱が適当であるため、反応および熱による塗膜の体積変化が極めて均一に行われ、また基材の熱による変形も防止しており、そのために、クラックの発生などを防止しているためではないかと推測される。
 これは、本発明の照度より低い範囲で、エネルギーとしては同じになるように照射しても、ガスバリア性が非常に優れるガスバリア性層が得られないことからも、上記のように推測される。
 即ち、前記期間T以外の期間に受ける照射のエネルギーの、良好なガスバリア層形成に対する寄与は、非常に少ない。
 そして、前記期間T以外の期間に受ける、前記塗膜面における真空紫外線のエネルギー量(E2)と、前記E1との比(E2/E1)は、ガスバリア性および生産性の面から、0以上、0.25以下であることが好ましい。
 期間Tは、50mW/cm以上で照射する期間であるが、期間Tの時間の、紫外線照射工程の全期間Zの時間に対する割合が、ガスバリア性および生産性の面から30%以上であることが好ましく、特に70%以上であることが好ましい。
 ここで、紫外線照射工程の全期間Zの時間とは、紫外線照射工程の開始部で塗膜が受ける塗膜面での該真空紫外線の照度が0.1mW/cm以上となった時間を起点とし、紫外線照射工程の終了部で塗膜が受ける塗膜面での該真空紫外線の照度が0.1mW/cm未満となった時間を終点として計測したものである。
 このように、紫外線照射工程の全期間に対して、期間Tの割合を多くする態様は、幅手方向の線上に渡る複数の線光源間の距離を短くすることにより得られる。
 真空紫外線の照射に用いられる真空紫外線照射装置は、市販のランプ(例えば、MDエキシマ社製、ウシオ電機社製)を使用することが可能である。
 図1は、本発明の製造方法に用いられる真空紫外線照射装置の例の模式断面図である。
 塗膜を有する基材1は、温度調節可能なバックロール5にガイドされ、矢印方向に搬送されて、搬送される基材1に対向するエキシマランプ2からの真空紫外線の照射を受ける。
 エキシマランプ2は、照射室4内の外部電極を兼ねるエキシマランプ保持部材3に保持されている。
 本発明の照射条件は、ランプ種、ランプ本数、ランプの設置間隔、ランプと被照射面との距離、照射雰囲気の酸素濃度等を適宜調整することで達成することができる。
 当該真空紫外光は、ほとんどの物質の原子間結合力より大きいため、原子の結合を光量子プロセスと呼ばれる光子のみによる作用により、直接切断することが可能であるため好ましく用いることができる。
 この作用を用いることにより、加水分解を必要とせず低温でかつ効率的にSi-O結合を有するガスバリア層の形成が可能となっている。
 真空紫外光源としては、希ガスエキシマランプが好ましく用いられる。
 Xe,Kr,Ar,Neなどの希ガスの原子は化学的に結合して分子を作らないため、不活性ガスと呼ばれる。
 しかし、放電などによりエネルギーを得た希ガスの原子(励起原子)は他の原子と結合して分子を作ることができる。希ガスがキセノンの場合には、
  e+Xe→Xe
  Xe+2Xe→Xe +Xe
  Xe →Xe+Xe+hν(172nm)
 となり、励起されたエキシマ分子であるXe が基底状態に遷移するときに172nmのエキシマ光を発光する。
 エキシマランプの特徴としては、放射が一つの波長に集中し、必要な光以外がほとんど放射されないので効率が高いことが挙げられる。また、余分な光が放射されないので、対象物の温度を低く保つことができる。さらには始動・再始動に時間を要さないので、瞬時の点灯点滅が可能である。
 エキシマ発光を得るには誘電体バリア放電を用いる方法が知られている。誘電体バリア放電とは両電極間に誘電体(エキシマランプの場合は透明石英)を介してガス空間を配し、電極に数10kHzの高周波高電圧を印加することによりガス空間に生じる、雷に似た非常に細いmicro discharge(微小放電)と呼ばれる放電で、micro dischargeのストリーマが管壁(誘電体)に達すると誘電体表面に電荷が溜まるため、micro dischargeは消滅する。
 このmicro dischargeが管壁全体に広がり、生成・消滅を繰り返すことによりエキシマ発光が起こる。このため肉眼でも分る光のチラツキを生じる。また、非常に温度の高いストリーマが局所的に直接管壁に達するため、管壁の劣化を早める可能性もある。
 効率よくエキシマ発光を得る方法としては、誘電体バリア放電以外に無電極電界放電を用いる方法も知られている。容量性結合による無電極電界放電で、別名RF放電とも呼ばれる。ランプと電極およびその配置は基本的には誘電体バリア放電と同じで良いが、両極間に印加される高周波は数MHzで点灯される。無電極電界放電はこのように空間的にまた時間的に一様な放電が得られるため、チラツキが無い長寿命のランプが得られる。
 誘電体バリア放電の場合はmicro dischargeが電極間のみで生じるため、放電空間全体で放電を行わせるには外側の電極は外表面全体を覆い、かつ外部に光を取り出すために光を透過するものでなければならない。
 このため細い金属線を網状にした電極が用いられる。この電極は光を遮らないようにできるだけ細い線が用いられるため、酸素雰囲気中では真空紫外光により発生するオゾンなどにより損傷しやすい。
 これを防ぐためにはランプの周囲、すなわち照射装置内を窒素などの不活性ガスの雰囲気にし、合成石英の窓を設けて照射光を取り出す必要が生じる。合成石英の窓は高価な消耗品であるばかりでなく、光の損失も生じる。
 二重円筒型ランプは外径が25mm程度であるため、ランプ軸の直下とランプ側面では照射面までの距離の差が無視できず、照度に大きな差を生じる。したがって仮にランプを密着して並べても、一様な照度分布が得られない。合成石英の窓を設けた照射装置にすれば酸素雰囲気中の距離を一様にでき、一様な照度分布が得られる。
 無電極電界放電を用いた場合には外部電極を網状にする必要は無い。ランプ外面の一部に外部電極を設けるだけでグロー放電は放電空間全体に広がる。外部電極には通常アルミのブロックで作られた光の反射板を兼ねた電極がランプ背面に使用される。しかし、ランプの外径は誘電体バリア放電の場合と同様に大きいため一様な照度分布にするためには合成石英が必要となる。
 細管エキシマランプの最大の特徴は構造がシンプルなことである。石英管の両端を閉じ、内部にエキシマ発光を行うためのガスを封入しているだけである。
 細管ランプの管の外径は6nm~12mm程度で、あまり太いと始動に高い電圧が必要になる。
 放電の形態は誘電体バリア放電でも無電極電界放電のいずれでも使用できる。電極の形状はランプに接する面が平面であっても良いが、ランプの曲面に合わせた形状にすればランプをしっかり固定できるとともに、電極がランプに密着することにより放電がより安定する。また、アルミで曲面を鏡面にすれば光の反射板にもなる。
 Xeエキシマランプは波長の短い172nmの紫外線を単一波長で放射することから発光効率に優れている。この光は、酸素の吸収係数が大きいため、微量な酸素でラジカルな酸素原子種やオゾンを高濃度で発生することができる。
 また、有機物の結合を解離させる波長の短い172nmの光のエネルギーは能力が高いことが知られている。
 この活性酸素やオゾンと紫外線放射が持つ高いエネルギーによって、短時間でポリシラザン層の改質を実現できる。
 したがって、波長185nm、254nmの発する低圧水銀ランプやプラズマ洗浄と比べて高スループットに伴うプロセス時間の短縮や設備面積の縮小、熱によるダメージを受けやすい有機材料やプラスチック基板などへの照射を可能としている。
 エキシマランプは光の発生効率が高いため低い電力の投入で点灯させることが可能である。また、光による温度上昇の要因となる波長の長い光は発せず、紫外線領域で単一波長のエネルギーを照射するため、解射対象物の表面温度の上昇が抑えられる特徴を持っている。このため、熱の影響を受けやすいとされるPETなどのフレシキブルフィルム材料に適している。
 (真空紫外線(VUV)照射時の酸素濃度)
 紫外線照射時の反応には、酸素が必要であるが、真空紫外線は、酸素による吸収があるため紫外線照射工程での効率を低下しやすいため、真空紫外線の照射は、できるだけ酸素濃度の低い状態で、行うことが好ましい。
 真空紫外線(VUV)照射時の酸素濃度は10~10000ppm(1%)とすることが好ましく、さらに好ましくは、50~5000ppmである。
 真空紫外線照射時に用いられる、照射雰囲気を満たすガスとしては乾燥不活性ガスとすることが好ましく、特にコストの観点から乾燥窒素ガスにすることが好ましい。酸素濃度の調整は照射庫内へ導入する酸素ガス、不活性ガスの流量を計測し、流量比を変えることで調整可能である。
 (オーバーコート層)
 本発明に係る第2のバリア層上に、または第2のバリア層の上にさらにガスバリア性層が設けられている場合には、このガスバリア性層上にオーバーコート層を設けてもよい。
 (オーバーコート層に用いられる素材)
 オーバーコート層に用いられる有機物としては、有機モノマー、オリゴマー、ポリマー等の有機樹脂を好ましく用いることができる。これらの有機樹脂は重合性基や架橋性基を有することが好ましく、これらの有機樹脂を含有し、必要に応じて重合開始剤や架橋剤等を含有する有機樹脂組成物塗布液から塗布形成した層に、光照射処理や熱処理を加えて硬化させることが好ましい。ここで「架橋性基」とは、光照射処理や熱処理で起こる化学反応によりバインダーポリマーを架橋することができる基のことである。このような機能を有する基であれば特にその化学構造は限定されないが、例えば、付加重合し得る官能基としてエチレン性不飽和基、エポキシ基/オキセタニル基等の環状エーテル基が挙げられる。また光照射によりラジカルになり得る官能基であってもよく、そのような架橋性基としては、例えば、チオール基、ハロゲン原子、オニウム塩構造等が挙げられる。中でも、エチレン性不飽和基が好ましく、特開2007-17948号公報の段落0130~0139に記載された官能基が含まれる。
 有機樹脂の構造や重合性基の密度、架橋性基の密度、架橋剤の比率、および硬化条件等を適宜調整することで、オーバーコート層の弾性率を所望の値に調整することができる。
 具体的な有機樹脂組成物としては、例えば、ラジカル反応性不飽和基を有するアクリレート化合物を含有する樹脂組成物、アクリレート化合物とチオール基を有するメルカプト化合物を含有する樹脂組成物、エポキシアクリレート、ウレタンアクリレート、ポリエステルアクリレート、ポリエーテルアクリレート、ポリエチレングリコールアクリレート、グリセロールメタクリレート等の多官能アクリレートモノマーを溶解させた樹脂組成物等が挙げられる。また、上記のような樹脂組成物を任意に混合して使用することも可能であり、光重合性不飽和結合を分子内に1個以上有する反応性のモノマーを含有している感光性樹脂であれば特に制限はない。
 当該光重合性不飽和結合を分子内に1個以上有する反応性モノマーとしては、メチルアクリレート、エチルアクリレート、n-プロピルアクリレート、イソプロピルアクリレート、n-ブチルアクリレート、イソブチルアクリレート、tert-ブチルアクリレート、n-ペンチルアクリレート、n-ヘキシルアクリレート、2-エチルヘキシルアクリレート、n-オクチルアクリレート、n-デシルアクリレート、ヒドロキシエチルアクリレート、ヒドロキシプロピルアクリレート、アリルアクリレート、ベンジルアクリレート、ブトキシエチルアクリレート、ブトキシエチレングリコールアクリレート、シクロヘキシルアクリレート、ジシクロペンタニルアクリレート、2-エチルヘキシルアクリレート、グリセロールアクリレート、グリシジルアクリレート、2-ヒドロキシエチルアクリレート、2-ヒドロキシプロピルアクリレート、イソボニルアクリレート、イソデキシルアクリレート、イソオクチルアクリレート、ラウリルアクリレート、2-メトリキエチルアクリレート、メトキシエチレングリコールアクリレート、フェノキシエチルアクリレート、ステアリルアクリレート、エチレングリコールジアクリレート、ジエチレングリコールジアクリレート、1,4-ブタンジオールジアクリレート、1,5-ペンタンジオールジアクリレート、1,6-ヘキサジオールジアクリレート、1,3-プロパンジオールアクリレート、1,4-シクロヘキサンジオールジアクリレート、2,2-ジメチロールプロパンジアクリレート、グリセロールジアクリレート、トリプロピレングリコールジアクリレート、グリセロールトリアクリレート、トリメチロールプロパントリアクリレート、ポリオキシエチルトリメチロールプロパントリアクリレート、ペンタエリスリトールトリアクリレート、ペンタエリスリトールテトラアクリレート、エチレンオキサイド変性ペンタエリスリトールトリアクリレート、エチレンオキサイド変性ペンタエリスリトールテトラアクリレート、プロピオンオキサイド変性ペンタエリスリトールトリアクリレート、プロピオンオキサイド変性ペンタエリスリトールテトラアクリレート、トリエチレングリコールジアクリレート、ポリオキシプロピルトリメチロールプロパントリアクリレート、ブチレングリコールジアクリレート、1,2,4-ブタンジオールトリアクリレート、2,2,4-トリメチル-1,3-ペンタジオールジアクリレート、ジアリルフマレート、1,10-デカンジオールジメチルアクリレート、ペンタエリスリトールヘキサアクリレート、および、上記のアクリレートをメタクリレートに換えたもの、γ-メタクリロキシプロピルトリメトキシシラン、1-ビニル-2-ピロリドン等が挙げられる。上記の反応性モノマーは、1種又は2種以上の混合物として、あるいは、その他の化合物との混合物として使用することができる。
 前記感光性樹脂の組成物は光重合開始剤を含有する。光重合開始剤としては、ベンゾフェノン、o-ベンゾイル安息香酸メチル、4,4-ビス(ジメチルアミン)ベンゾフェノン、4,4-ビス(ジエチルアミン)ベンゾフェノン、α-アミノ・アセトフェノン、4,4-ジクロロベンゾフェノン、4-ベンゾイル-4-メチルジフェニルケトン、ジベンジルケトン、フルオレノン、2,2-ジエトキシアセトフェノン、2,2-ジメトキシ-2-フェニルアセトフェノン、2-ヒドロキシ-2-メチルプロピオフェノン、p-tert-ブチルジクロロアセトフェノン、チオキサントン、2-メチルチオキサントン、2-クロロチオキサントン、2-イソプロピルチオキサントン、ジエチルチオキサントン、ベンジルジメチルケタール、ベンジルメトキシエチルアセタール、ベンゾインメチルエーテル、ベンゾインブチルエーテル、アントラキノン、2-tert-ブチルアントラキノン、2-アミルアントラキノン、β-クロルアントラキノン、アントロン、ベンズアントロン、ジベンズスベロン、メチレンアントロン、4-アジドベンジルアセトフェノン、2,6-ビス(p-アジドベンジリデン)シクロヘキサン、2,6-ビス(p-アジドベンジリデン)-4-メチルシクロヘキサノン、2-フェニル-1,2-ブタジオン-2-(o-メトキシカルボニル)オキシム、1-フェニル-プロパンジオン-2-(o-エトキシカルボニル)オキシム、1,3-ジフェニル-プロパントリオン-2-(o-エトキシカルボニル)オキシム、1-フェニル-3-エトキシ-プロパントリオン-2-(o-ベンゾイル)オキシム、ミヒラーケトン、2-メチル[4-(メチルチオ)フェニル]-2-モノフォリノ-1-プロパン、2-ベンジル-2-ジメチルアミノ-1-(4-モノフォリノフェニル)-ブタノン-1,ナフタレンスルホニルクロライド、キノリンスルホニルクロライド、n-フェニルチオアクリドン、4,4-アゾビスイソブチロニトリル、ジフェニルジスルフィド、ベンズチアゾールジスルフィド、トリフェニルホスフィン、カンファーキノン、四臭素化炭素、トリブロモフェニルスルホン、過酸化ベンゾイン、エオシン、メチレンブルー等の光還元性の色素とアスコルビン酸、トリエタノールアミン等の還元剤の組み合わせ等が挙げられ、これらの光重合開始剤を1種又は2種以上の組み合わせで使用することができる。
 オーバーコート層には無機素材を含有させることができる。無機素材を含有させることは一般的にオーバーコート層の弾性率増加につながる。無機素材の含有比率を適宜調整することでもオーバーコート層の弾性率を所望の値に調整することができる。
 無機素材としては、数平均粒径が1~200nmの無機微粒子が好ましく、数平均粒径が3~100nmの無機微粒子がより好ましい。無機微粒子としては、透明性の観点より金属酸化物が好ましい。
 金属酸化物としては、特に制約はないが、SiO、Al、TiO、ZrO、ZnO、SnO、In、BaO、SrO、CaO、MgO、VO、V、CrO、MoO、MoO、MnO、Mn、WO、LiMn、CdSnO、CdIn、ZnSnO、ZnSnO、ZnIn、CdSnO、CdIn、ZnSnO、ZnSnO、ZnInなどが挙げられる。これらは、単独で使用してもよいし、二種類以上を併用してもよい。
 無機微粒子の分散物を得るには、近年の学術論文に倣って調整しても良いが、市販の無機微粒子分散物も好ましく用いることができる。
 具体的には、日産化学社製のスノーテックスシリーズやオルガノシリカゾル、ビックケミー・ジャパン社製のNANOBYKシリーズ、Nanophase Technologies社製のNanoDurなどの各種金属酸化物の分散物を挙げることができる。
 これら無機微粒子は表面処理されたものを用いることもできる。
 無機素材としては、天然雲母、合成雲母等の雲母群、MgO・4SiO・HOで表されるタルク、テニオライト、モンモリロナイト、サポナイト、ヘクトライト、リン酸ジルコニウムなどの平板状微粒子を用いることもできる。
 具体的には、上記天然雲母としては白雲母、ソーダ雲母、金雲母、黒雲母および鱗雲母が挙げられる。また、合成雲母としては、フッ素金雲母KMg(AlSi10)F、カリ四ケイ素雲母KMg2.5(Si10)F等の非膨潤性雲母、およびNaテトラシリリックマイカNaMg2.5(Si10)F、Na又はLiテニオライト(Na,Li)MgLi(Si10)F、モンモリロナイト系のNa又はLiヘクトライト(Na,Li)1/8Mg2/5Li1/8(Si10)F等の膨潤性雲母等が挙げられる。また合成スメクタイトも有用である。
 オーバーコート層中の無機素材の比率としては、オーバーコート層全体に対して、10~95質量%の範囲であることが好ましく、20~90質量%の範囲であることがより好ましい。
 オーバーコート層には、いわゆるカップリング剤を単独でもしくは他素材と混合して用いることができる。カップリング剤としては、シランカップリング剤、チタネート系カップリング剤、アルミネート系カップリング剤等、特に制限はないが、塗布液の安定性の観点からシランカップリング剤が好ましい。
 具体的なシランカップリング剤としては、例えば、ハロゲン含有シランカップリング剤(2-クロロエチルトリメトキシシラン,2-クロロエチルトリエトキシシラン,3-クロロプロピルトリメトキシシラン,3-クロロプロピルトリエトキシシランなど)、エポキシ基含有シランカップリング剤[2-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン、2-(3,4-エポキシシクロヘキシル)エチルトリエトキシシラン、3-(3,4-エポキシシクロヘキシル)プロピルトリメトキシシラン、2-グリシジルオキシエチルトリメトキシシラン、2-グリシジルオキシエチルトリエトキシシラン、3-グリシジルオキシプロピルトリメトキシシラン、3-グリシジルオキシプロピルトリエトキシシランなど]、アミノ基含有シランカップリング剤(2-アミノエチルトリメトキシシラン、3-アミノプロピルトリメトキシシラン、3-アミノプロピルトリエトキシシラン、2-[N-(2-アミノエチル)アミノ]エチルトリメトキシシラン、3-[N-(2-アミノエチル)アミノ]プロピルトリメトキシシラン、3-(2-アミノエチル)アミノ]プロピルトリエトキシシラン、3-[N-(2-アミノエチル)アミノ]プロピル メチル ジメトキシシランなど)、メルカプト基含有シランカップリング剤(2-メルカプトエチルトリメトキシシラン、3-メルカプトプロピルトリメトキシシラン、3-メルカプトプロピルトリエトキシシランなど)、ビニル基含有シランカップリング剤(ビニルトリメトキシシラン、ビニルトリエトキシシランなど)、(メタ)アクリロイル基含有シランカップリング剤(2-メタクリロイルオキシエチルトリメトキシシラン、2-メタクリロイルオキシエチルトリエトキシシラン、2-アクリロイルオキシエチルトリメトキシシラン、3-メタクリロイルオキシプロピルトリメトキシシラン、3-メタクリロイルオキシプロピルトリエトキシシラン、3-アクリロイルオキシプロピルトリメトキシシランなど)などが挙げられる。これらのシランカップリング剤は単独で又は二種以上組み合わせて使用できる。
 オーバーコート層は、前記有機樹脂や無機素材、および必要に応じて他の成分を配合して、適宜必要に応じて用いる希釈溶剤によって塗布液として調製し、当該塗布液をガスバリア層の表面に従来公知の塗布方法によって塗布した後、電離放射線を照射して硬化させることにより形成することが好ましい。なお、電離放射線を照射する方法としては、超高圧水銀灯、高圧水銀灯、低圧水銀灯、カーボンアーク、メタルハライドランプなどから発せられる100~400nm、好ましくは200~400nmの波長領域の紫外線を照射する。又は走査型やカーテン型の電子線加速器から発せられる100nm以下の波長領域の電子線を照射することにより行うことができる。
 (ガスバリアフィルムの用途)
 本発明に係るガスバリアフィルムは、主に電子デバイス等のパッケージ、又は有機EL素子や太陽電池、液晶等のプラスチック基板といったディスプレイ材料、および各種デバイス用樹脂基材、および各種電子デバイス素子に適用することができる。
 本発明のガスバリアフィルムは、種々の封止用材料、フィルムとしても好ましく適用することができる。
 本発明のガスバリアフィルムを具備する、電子デバイス用の素子について、有機光電変換素子を例に説明する。
 (有機光電変換素子)
 有機光電変換素子に用いる際には、ガスバリアフィルムは透明であることが好ましく、このガスバリアフィルムを基材(支持体ともいう)として用いてこの側から太陽光の受光を行うように構成できる。
 すなわち、このガスバリアフィルム上に、例えば、ITO等の透明導電性薄膜を透明電極として設け、有機光電変換素子用樹脂支持体を構成することができる。
 そして、支持体上に設けられたITO透明導電膜を陽極としてこの上に多孔質半導体層を設け、さらに金属膜からなる陰極を形成して有機光電変換素子を形成し、この上に別の封止材料(支持体に用いられたのと同じガスバリアフィルムでもよい)を重ねて、前記ガスバリアフィルム支持体と周囲を接着することで有機光電変換素子を封止することができ、これにより外気の湿気や酸素等のガスによる素子への影響を封じることができる。
 有機光電変換素子用樹脂支持体は、このようにして形成されたガスバリアフィルムのガスバリア層またはオーバーコート層上に、透明導電性膜を形成することによって得られる。
 透明導電膜の形成は、真空蒸着法やスパッタリング法等を用いることにより、またインジウム、スズ等の金属アルコキシド等を用いたゾルゲル法等塗布法によっても製造できる。
 また、透明導電膜の膜厚としては、0.1~1000nmの範囲の透明導電膜が好ましい。
 次いで、有機光電変換素子を構成する有機光電変換素子材料各層(構成層)について説明する。
 (有機光電変換素子および太陽電池の構成)
 有機光電変換素子および太陽電池の好ましい態様を説明する。なお、以下、本発明に係る有機光電変換素子の好ましい態様について詳細に説明するが、当該太陽電池は当該有機光電変換素子をその構成として有するものであり、太陽電池の好ましい構成も有機光電変換素子と同様に記載することができる。
 有機光電変換素子としては特に制限がなく、陽極と陰極と、両者に挟まれた発電層(p型半導体とn型半導体が混合された層、バルクヘテロジャンクション層、i層ともいう)が少なくとも一層以上あり、光を照射すると電流を発生する素子であればよい。
 有機光電変換素子の層構成(太陽電池の好ましい層構成も同様である)の好ましい具体例を以下に示す。
 (i)陽極/発電層/陰極
 (ii)陽極/正孔輸送層/発電層/陰極
 (iii)陽極/正孔輸送層/発電層/電子輸送層/陰極
 (iv)陽極/正孔輸送層/p型半導体層/発電層/n型半導体層/電子輸送層/陰極
 (v)陽極/正孔輸送層/第1発電層/電子輸送層/中間電極/正孔輸送層/第2発電層/電子輸送層/陰極。
 ここで、発電層は、正孔を輸送できるp型半導体材料と電子を輸送できるn型半導体材料を含有していることが必要であり、これらは実質二層でヘテロジャンクションを作製していてもよいし、一層の内部で混合された状態となっているバルクヘテロジャンクションを作製してもよいが、バルクヘテロジャンクション構成の方が光電変換効率が高いため、好ましい。発電層に用いられるp型半導体材料、n型半導体材料については後述する。
 有機EL素子同様、発電層を正孔輸送層、電子輸送層で挟み込むことで、正孔および電子の陽極・陰極への取り出し効率を高めることができるため、それらを有する構成((ii)、(iii))の方が好ましい。また、発電層自体も正孔と電子の整流性(キャリア取り出しの選択性)を高めるため、(iv)のようにp型半導体材料単独の層とn型半導体材料単独の層とで発電層を挟み込むような構成(「p-i-n構成」ともいう)であってもよい。また、太陽光の利用効率を高めるため、異なる波長の太陽光をそれぞれの発電層で吸収するような、タンデム構成((v)の構成)であってもよい。
 以下に、これらの層を構成する材料について述べる。
 (有機光電変換素子材料)
 有機光電変換素子の発電層(「光電変換層」ともいう)の形成に用いられる材料について説明する。
 (p型半導体材料)
 有機光電変換素子の発電層(バルクヘテロジャンクション層)として好ましく用いられるp型半導体材料としては、種々の縮合多環芳香族低分子化合物や共役系ポリマー・オリゴマーが挙げられる。
 縮合多環芳香族低分子化合物としては、例えば、アントラセン、テトラセン、ペンタセン、ヘキサセン、ヘプタセン、クリセン、ピセン、フルミネン、ピレン、ペロピレン、ペリレン、テリレン、クオテリレン、コロネン、オバレン、サーカムアントラセン、ビスアンテン、ゼスレン、ヘプタゼスレン、ピランスレン、ビオランテン、イソビオランテン、サーコビフェニル、アントラジチオフェン等の化合物、ポルフィリンや銅フタロシアニン、テトラチアフルバレン(TTF)-テトラシアノキノジメタン(TCNQ)錯体、ビスエチレンテトラチアフルバレン(BEDTTTF)-過塩素酸錯体、およびこれらの誘導体や前駆体が挙げられる。
 また、上記の縮合多環を有する誘導体の例としては、国際公開第03/16599号パンフレット、国際公開第03/28125号パンフレット、米国特許第6,690,029号明細書、特開2004-107216号公報等に記載の置換基をもったペンタセン誘導体、米国特許出願公開第2003/136964号明細書等に記載のペンタセンプレカーサ、J.Amer.Chem.Soc.,vol127.No14.4986、J.Amer.Chem.Soc.,vol.123、p9482、J.Amer.Chem.Soc.,vol.130(2008)、No.9、2706等に記載のトリアルキルシリルエチニル基で置換されたアセン系化合物等が挙げられる。
 共役系ポリマーとしては、例えば、ポリ3-ヘキシルチオフェン(P3HT)等のポリチオフェンおよびそのオリゴマー、又はTechnical Digest of the International PVSEC-17,Fukuoka,Japan,2007,P1225に記載の重合性基を有するようなポリチオフェン、Nature Material,(2006)vol.5,p328に記載のポリチオフェン-チエノチオフェン共重合体、国際公開第08/000664号パンフレットに記載のポリチオフェン-ジケトピロロピロール共重合体、Adv Mater,2007p4160に記載のポリチオフェン-チアゾロチアゾール共重合体,Nature Mat.vol.6(2007),p497に記載のPCPDTBT等のようなポリチオフェン共重合体、ポリピロールおよびそのオリゴマー、ポリアニリン、ポリフェニレンおよびそのオリゴマー、ポリフェニレンビニレンおよびそのオリゴマー、ポリチエニレンビニレンおよびそのオリゴマー、ポリアセチレン、ポリジアセチレン、ポリシラン、ポリゲルマン等のσ共役系ポリマー、等のポリマー材料が挙げられる。
 また、ポリマー材料ではなくオリゴマー材料としては、チオフェン6量体であるα-セクシチオフェンα,ω-ジヘキシル-α-セクシチオフェン、α,ω-ジヘキシル-α-キンケチオフェン、α,ω-ビス(3-ブトキシプロピル)-α-セクシチオフェン、等のオリゴマーが好適に用いることができる。
 これらの化合物の中でも、溶液プロセスが可能な程度に有機溶剤への溶解性が高く、かつ乾燥後は、結晶性薄膜を作製し、高い移動度を達成することが可能な化合物が好ましい。
 また、発電層上に電子輸送層を塗布で成膜する場合、電子輸送層溶液が発電層を溶かしてしまうという課題があるため、溶液プロセスで塗布した後に不溶化できるような材料を用いてもよい。
 このような材料としては、Technical Digest of the International PVSEC-17,Fukuoka,Japan,2007,P1225に記載の重合性基を有するようなポリチオフェンのような、塗布後に塗布膜を重合架橋して不溶化できる材料、又は米国特許出願公開第2003/136964号明細書、および特開2008-16834号公報等に記載されているような、熱等のエネルギーを加えることによって、可溶性置換基が反応して不溶化する(顔料化する)材料等を挙げることができる。
 (n型半導体材料)
 バルクヘテロジャンクション層に用いられるn型半導体材料としては特に限定されないが、例えば、フラーレン、オクタアザポルフィリン等、p型半導体の水素原子をフッ素原子に置換したパーフルオロ体(パーフルオロペンタセンやパーフルオロフタロシアニン等)、ナフタレンテトラカルボン酸無水物、ナフタレンテトラカルボン酸ジイミド、ペリレンテトラカルボン酸無水物、ペリレンテトラカルボン酸ジイミド等の芳香族カルボン酸無水物や、そのイミド化物を骨格として含む高分子化合物等を挙げることができる。
 しかし、各種のp型半導体材料と高速(~50fs)、かつ効率的に電荷分離を行うことができる、フラーレン誘導体が好ましい。フラーレン誘導体としては、フラーレンC60、フラーレンC70、フラーレンC76、フラーレンC78、フラーレンC84、フラーレンC240、フラーレンC540、ミックスドフラーレン、フラーレンナノチューブ、多層ナノチューブ、単層ナノチューブ、ナノホーン(円錐型)等、およびこれらの一部が水素原子、ハロゲン原子、置換又は無置換のアルキル基、アルケニル基、アルキニル基、アリール基、ヘテロアリール基、シクロアルキル基、シリル基、エーテル基、チオエーテル基、アミノ基、シリル基等によって置換されたフラーレン誘導体を挙げることができる。
 中でも、[6,6]-フェニルC61-ブチリックアシッドメチルエステル(略称PCBM)、[6,6]-フェニルC61-ブチリックアシッド-nブチルエステル(PCBnB)、[6,6]-フェニルC61-ブチリックアシッド-イソブチルエステル(PCBiB)、[6,6]-フェニルC61-ブチリックアシッド-nヘキシルエステル(PCBH)、Adv.Mater.,vol.20(2008),p2116等に記載のbis-PCBM、特開2006-199674号公報等のアミノ化フラーレン、特開2008-130889号公報等のメタロセン化フラーレン、米国特許第7,329,709号明細書等の環状エーテル基を有するフラーレン等のような、置換基を有してより溶解性が向上したフラーレン誘導体を用いることが好ましい。
 (正孔輸送層・電子ブロック層)
 有機光電変換素子は、バルクヘテロジャンクション層と陽極との間に正孔輸送層を有することが好ましい。このような層を有することによりバルクヘテロジャンクション層で発生した電荷をより効率的に取り出すことが可能となる。
 これらの層を構成する材料としては、例えば、正孔輸送層としては、スタルクヴイテック製、商品名BaytronP等のPEDOT、ポリアニリンおよびそのドープ材料、国際公開第06/19270号パンフレット等に記載のシアン化合物、等を用いることができる。
 なお、バルクヘテロジャンクション層に用いられるn型半導体材料のLUMO準位よりも浅いLUMO準位を有する正孔輸送層には、バルクヘテロジャンクション層で生成した電子を陽極側には流さないような整流効果を有する電子ブロック機能が付与される。
 このような正孔輸送層は電子ブロック層とも呼ばれ、このような機能を有する正孔輸送層を使用するほうが好ましい。このような材料としては、特開平5-271166号公報等に記載のトリアリールアミン系化合物、また酸化モリブデン、酸化ニッケル、酸化タングステン等の金属酸化物等を用いることができる。
 また、バルクヘテロジャンクション層に用いたp型半導体材料単独の層を用いることもできる。これらの層を作製する手段としては、真空蒸着法、溶液塗布法のいずれであってもよいが、好ましくは溶液塗布法である。バルクヘテロジャンクション層を作製する前に、下層に塗布膜を作製すると塗布面をレベリングする効果があり、リーク等の影響が低減するため好ましい。
 (電子輸送層・正孔ブロック層)
 有機光電変換素子は、バルクヘテロジャンクション層と陰極との間に電子輸送層を有することが好ましい。このような層を有することによりバルクヘテロジャンクション層で発生した電荷をより効率的に取り出すことが可能となる。
 また、電子輸送層としては、オクタアザポルフィリン、p型半導体のパーフルオロ体(パーフルオロペンタセンやパーフルオロフタロシアニン等)を用いることができるが、同様にバルクヘテロジャンクション層に用いられるp型半導体材料のHOMO準位よりも深いHOMO準位を有する電子輸送層には、バルクヘテロジャンクション層で生成した正孔を陰極側には流さないような整流効果を有する正孔ブロック機能が付与される。
 このような電子輸送層は正孔ブロック層とも呼ばれ、このような機能を有する電子輸送層を使用するほうが好ましい。
 このような材料としては、バソキュプロイン等のフェナントレン系化合物、ナフタレンテトラカルボン酸無水物、ナフタレンテトラカルボン酸ジイミド、ペリレンテトラカルボン酸無水物、ペリレンテトラカルボン酸ジイミド等のn型半導体材料、および酸化チタン、酸化亜鉛、酸化ガリウム等のn型無機酸化物およびフッ化リチウム、フッ化ナトリウム、フッ化セシウム等のアルカリ金属化合物等を用いることができる。
 また、バルクヘテロジャンクション層に用いたn型半導体材料単独の層を用いることもできる。これらの層を作製する手段としては、真空蒸着法、溶液塗布法のいずれであってもよいが、好ましくは溶液塗布法である。
 (その他の層)
 エネルギー変換効率の向上や、素子寿命の向上を目的に、各種中間層を素子内に有する構成としてもよい。中間層の例としては、正孔ブロック層、電子ブロック層、正孔注入層、電子注入層、励起子ブロック層、UV吸収層、光反射層、波長変換層等を挙げることができる。
 (透明電極(第1電極))
 透明電極は、陰極、陽極は特に限定せず、素子構成により選択することができるが、好ましくは透明電極を陽極として用いることである。例えば、陽極として用いる場合、380~800nmの光を透過する電極を使用することが好ましい。
 材料としては、例えば、インジウムチンオキシド(ITO)、SnO、ZnO等の透明導電性金属酸化物、金、銀、白金等の金属薄膜、金属ナノワイヤー、カーボンナノチューブ用いることができる。
 また、ポリピロール、ポリアニリン、ポリチオフェン、ポリチエニレンビニレン、ポリアズレン、ポリイソチアナフテン、ポリカルバゾール、ポリアセチレン、ポリフェニレン、ポリフェニレンビニレン、ポリアセン、ポリフェニルアセチレン、ポリジアセチレンおよびポリナフタレンの各誘導体からなる群より選ばれる導電性高分子等も用いることができる。また、これらの導電性化合物を複数組み合わせて透明電極とすることもできる。
 (対電極(第2電極))
 対電極は導電材単独層であってもよいが、導電性を有する材料に加えて、これらを保持する樹脂を併用してもよい。対電極の導電材としては、仕事関数の小さい(4eV以下)金属、合金、電気伝導性化合物およびこれらの混合物を電極物質とするものが用いられる。
 このような電極物質の具体例としては、ナトリウム、ナトリウム-カリウム合金、マグネシウム、リチウム、マグネシウム/銅混合物、マグネシウム/銀混合物、マグネシウム/アルミニウム混合物、マグネシウム/インジウム混合物、アルミニウム/酸化アルミニウム(Al)混合物、インジウム、リチウム/アルミニウム混合物、希土類金属等が挙げられる。
 これらの中で、電子の取り出し性能および酸化等に対する耐久性の点から、これら金属とこれより仕事関数の値が大きく安定な金属である第二金属との混合物、例えば、マグネシウム/銀混合物、マグネシウム/アルミニウム混合物、マグネシウム/インジウム混合物、アルミニウム/酸化アルミニウム(Al)混合物、リチウム/アルミニウム混合物、アルミニウム等が好適である。
 対電極は、これらの電極物質を蒸着やスパッタリング等の方法により薄膜を作製させることにより、作製することができる。また、膜厚は通常10nm~5μm、好ましくは50~200nmの範囲で選ばれる。
 対電極の導電材として金属材料を用いれば、対電極側に来た光は第1電極側に反射され、この光が再利用可能となり、光電変換層で再度吸収され、より光電変換効率が向上し好ましい。
 また、対電極は、金属(例えば、金、銀、銅、白金、ロジウム、ルテニウム、アルミニウム、マグネシウム、インジウム等)、炭素からなるナノ粒子、ナノワイヤー、ナノ構造体であってもよく、ナノワイヤーの分散物であれば、透明で導電性の高い対電極を塗布法により作製でき好ましい。
 また、対電極側を光透過性とする場合は、例えば、アルミニウムおよびアルミニウム合金、銀および銀化合物等の対電極に適した導電性材料を薄く1~20nm程度の膜厚で作製した後、上記透明電極の説明で挙げた導電性光透過性材料の膜を設けることで、光透過性対電極とすることができる。
 (中間電極)
 また、前記有機光電変換素子の層構成の(v)のようなタンデム構成の場合に必要となる中間電極の材料としては、透明性と導電性を併せ持つ化合物を用いた層であることが好ましく、前記透明電極で用いたような材料(ITO、AZO、FTO、酸化チタン等の透明金属酸化物、Ag、Al、Au等の非常に薄い金属層又はナノ粒子・ナノワイヤーを含有する層、PEDOT:PSS、ポリアニリン等の導電性高分子材料等)を用いることができる。
 なお、前述した正孔輸送層と電子輸送層の中には、適切に組み合わせて積層することで中間電極(電荷再結合層)として働く組み合わせもあり、このような構成とすると一層作製する工程を省くことができ好ましい。
 (金属ナノワイヤー)
 導電性繊維としては、金属でコーティングした有機繊維や無機繊維、導電性金属酸化物繊維、金属ナノワイヤー、炭素繊維、カーボンナノチューブ等を用いることができるが、金属ナノワイヤーが好ましい。
 一般に、金属ナノワイヤーとは、金属元素を主要な構成要素とする線状構造体のことをいう。特に、本発明における金属ナノワイヤーとはnmサイズの直径を有する線状構造体を意味する。
 金属ナノワイヤーとしては、1つの金属ナノワイヤーで長い導電パスを作製するために、また、適度な光散乱性を発現するために、平均長さが3μm以上であることが好ましく、さらには3μm~500μmが好ましく、特に3μm~300μmであることが好ましい。併せて、長さの相対標準偏差は40%以下であることが好ましい。
 また、平均直径は、透明性の観点からは小さいことが好ましく、一方で、導電性の観点からは大きい方が好ましい。本発明においては、金属ナノワイヤーの平均直径として10nm~300nmが好ましく、30nm~200nmであることがより好ましい。併せて、直径の相対標準偏差は20%以下であることが好ましい。
 金属ナノワイヤーの金属組成としては特に制限はなく、貴金属元素や卑金属元素(貴金属元素以外の金属元素)の1種又は複数の金属から構成することができるが、貴金属(例えば、金、白金、銀、パラジウム、ロジウム、イリジウム、ルテニウム、オスミウム等)および鉄、コバルト、銅、錫からなる群に属する少なくとも1種の金属を含むことが好ましく、導電性の観点から少なくとも銀を含むことがより好ましい。
 また、導電性と安定性(金属ナノワイヤーの硫化や酸化耐性、およびマイグレーション耐性)を両立するために、銀と、銀を除く貴金属に属する少なくとも1種の金属を含むことも好ましい。本発明に係る金属ナノワイヤーが2種類以上の金属元素を含む場合には、例えば、金属ナノワイヤーの表面と内部で金属組成が異なっていてもよいし、金属ナノワイヤー全体が同一の金属組成を有していてもよい。
 金属ナノワイヤーの製造手段には特に制限はなく、例えば、液相法や気相法等の公知の手段を用いることができる。また、具体的な製造方法にも特に制限はなく、公知の製造方法を用いることができる。
 例えば、Agナノワイヤーの製造方法としては、Adv.Mater.,2002,14,833~837;Chem.Mater.,2002,14,4736~4745等、Auナノワイヤーの製造方法としては特開2006-233252号公報等、Cuナノワイヤーの製造方法としては特開2002-266007号公報等、Coナノワイヤーの製造方法としては特開2004-149871号公報等を参考にすることができる。特に、上述した、Adv.Mater.およびChem.Mater.で報告されたAgナノワイヤーの製造方法は、水系で簡便にAgナノワイヤーを製造することができ、また銀の導電率は金属中で最大であることから、本発明に係る金属ナノワイヤーの製造方法として好ましく適用することができる。
 金属ナノワイヤーが互いに接触し合うことにより3次元的な導電ネットワークを作製し、高い導電性を発現するとともに、金属ナノワイヤーが存在しない導電ネットワークの窓部を光が透過することが可能となり、さらに金属ナノワイヤーの散乱効果によって、有機発電層部からの発電を効率的に行うことが可能となる。第1電極において金属ナノワイヤーを有機発電層部に近い側に設置すれば、この散乱効果がより有効に利用できるのでより好ましい実施形態である。
 (光学機能層)
 有機光電変換素子は、太陽光のより効率的な受光を目的として、各種の光学機能層を有していてもよい。光学機能層としては、例えば、反射防止層、マイクロレンズアレイ等の集光層、陰極で反射した光を散乱させて再度発電層に入射させることができるような光拡散層等を設けてもよい。
 反射防止層としては、各種公知の反射防止層を設けることができるが、例えば、透明樹脂フィルムが二軸延伸ポリエチレンテレフタレートフィルムである場合は、フィルムに隣接する易接着層の屈折率を1.57~1.63とすることで、フィルム基板と易接着層との界面反射を低減して透過率を向上させることができるのでより好ましい。屈折率を調整する方法としては、酸化スズゾルや酸化セリウムゾル等の比較的屈折率の高い酸化物ゾルとバインダー樹脂との比率を適宜調整して塗設することで実施できる。易接着層は単層でもよいが、接着性を向上させるためには二層以上の構成にしてもよい。
 集光層としては、例えば、支持基板の太陽光受光側にマイクロレンズアレイ上の構造を設けるように加工したり、あるいは所謂集光シートと組み合わせたりすることにより特定方向からの受光量を高めたり、逆に太陽光の入射角度依存性を低減することができる。
 マイクロレンズアレイの例としては、基板の光取り出し側に一辺が30μmでその頂角が90度となるような四角錐を2次元に配列する。一辺は10~100μmが好ましい。これより小さくなると回折の効果が発生して色付き、大きすぎると厚さが厚くなり好ましくない。
 また、光拡散層としては、各種のアンチグレア層、金属又は各種無機酸化物等のナノ粒子・ナノワイヤー等を無色透明なポリマーに分散した層等を挙げることができる。
 (成膜方法・表面処理方法)
 電子受容体と電子供与体とが混合されたバルクヘテロジャンクション層、および輸送層・電極の作製方法としては、蒸着法、塗布法(キャスト法、スピンコート法を含む)等を例示することができる。このうち、バルクヘテロジャンクション層の作製方法としては、蒸着法、塗布法(キャスト法、スピンコート法を含む)等を例示することができる。
 このうち、前述の正孔と電子が電荷分離する界面の面積を増大させ、高い光電変換効率を有する素子を作製するためには、塗布法が好ましい。また、塗布法は製造速度にも優れている。
 この際に使用する塗布方法に制限はないが、例えば、スピンコート法、溶液からのキャスト法、ディップコート法、ブレードコート法、ワイヤバーコート法、グラビアコート法、スプレーコート法等が挙げられる。さらには、インクジェット法、スクリーン印刷法、凸版印刷法、凹版印刷法、オフセット印刷法、フレキソ印刷法等の印刷法でパターニングすることもできる。
 塗布後は残留溶媒および水分、ガスの除去、および半導体材料の結晶化による移動度向上・吸収長波化のために、加熱を行うことが好ましい。製造工程中において所定の温度でアニール処理されると、微視的に一部が凝集又は結晶化が促進され、バルクヘテロジャンクション層を適切な相分離構造とすることができる。その結果、バルクヘテロジャンクション層のキャリア移動度が向上し、高い効率を得ることができるようになる。
 発電層(バルクヘテロジャンクション層)は、電子受容体と電子供与体とが均一に混在された単一層で構成してもよいが、電子受容体と電子供与体との混合比を変えた複数層で構成してもよい。この場合、前述したような塗布後に不溶化できるような材料を用いることで作製することが可能となる。
 (パターニング)
 電極、発電層、正孔輸送層、電子輸送層等をパターニングする方法やプロセスには特に制限はなく、公知の手法を適宜適用することができる。
 バルクヘテロジャンクション層、輸送層等の可溶性の材料であれば、ダイコート、ディップコート等の全面塗布後に不要部だけ拭き取ってもよいし、インクジェット法やスクリーン印刷等の方法を使用して塗布時に直接パターニングしてもよい。
 電極材料等の不溶性の材料の場合は、電極を真空堆積時にマスク蒸着を行ったり、エッチング又はリフトオフ等の公知の方法によってパターニングを行ったりすることができる。また、別の基板上に作製したパターンを転写することによってパターンを作製してもよい。
 以下、実施例を挙げて本発明を具体的に説明するが、本発明はこれらに限定されない。
 実施例1
 《ガスバリアフィルムの作製》
 以下に記載のように、まず、基材(ア)~(ウ)を作製し、次いで、作製した基材上に第1のガスバリア層を作製する工程、および、第2のガスバリア層を作製する工程を経て、ガスバリアフィルムを作製した。
 《基材(ア)の作製》
 熱可塑性樹脂基材(支持体)である、両面に易接着加工された厚さ125μmのポリエステルフィルム(帝人デュポンフィルム株式会社製、極低熱収PET Q83)を用い、下記に示すように、片面にブリードアウト防止層、反対面に平滑層を形成したものを基材(ア)として用いた。
 (ブリードアウト防止層の形成)
 上記基材の片面に、JSR株式会社製 UV硬化型有機/無機ハイブリッドハードコート材OPSTAR Z7535を乾燥後の膜厚が4μmになるように塗布した後、硬化条件;1.0J/cm、空気雰囲気下、高圧水銀ランプ使用、乾燥条件;80℃、3分で硬化を行い、ブリードアウト防止層を形成した。
 (平滑層の形成)
 続けて上記基材の反対面に、JSR株式会社製 UV硬化型有機/無機ハイブリッドハードコート材OPSTAR Z7501を乾燥後の膜厚が4μmになるように塗布した後、乾燥条件;80℃、3分で乾燥後、空気雰囲気下、高圧水銀ランプ使用、硬化条件;1.0J/cm硬化を行い、平滑層を形成した。
 得られた平滑層の、JIS B 0601で規定される表面粗さRzで約25nmであった。
 表面粗さは、SII社製のAFM(原子間力顕微鏡)SPI3800N DFMを用いて測定した。一回の測定範囲は80μm×80μmとし、測定箇所を変えて三回の測定を行って、それぞれの測定で得られたRzの値を平均したものを測定値とした。
 《基材(イ)の作製》
 耐熱性基材として、両面に易接着加工された200μm厚みの透明ポリイミド系フィルム(三菱瓦斯化学株式会社製、ネオプリムL)を用い、下記に示すように、その両面に平滑層を形成したものを基材(イ)として用いた。
 (平滑層の形成)
 (平滑層塗布液の作製)
 トリメチロールプロパントリグリシジルエーテル(エポライト100MF 共栄社化学社製)を8.0g、エチレングリコールジグリシジルエーテル(エポライト40E 共栄社化学社製)を5.0g、オキセタニル基を有するシルセスキオキサン:OX-SQ-H(東亞合成社製)を12.0g、3-グリシドキシプロピルトリメトキシシランを32.5g、Al(III)アセチルアセトネートを2.2g、メタノールシリカゾル(日産化学社製、固形分濃度30質量%)134.0g、BYK333(BYKケミー社製)を0.1g、ブチルセロソルブを125.0g、0.1N塩酸水15.0gを混合し、充分に攪拌した。これを室温でさらに静置脱気して、平滑層塗布液を得た。
 (平滑層1の形成)
 上記基材の片面に、定法によりコロナ放電処理を行った後、作製した平滑層塗布液を、乾燥後の膜厚が4μmになるように塗布した後、80℃で3分間乾燥した。さらに120℃で10分間加熱処理を行って、平滑層1を形成した。
 (平滑層2の形成)
 上記基材の平滑層1を形成した面とは反対の面に、平滑層1と同様にして平滑層2を形成した。
 得られた平滑層1および平滑層2の表面粗さは、JIS B 0601で規定されるRzで約20nmであった。表面粗さの測定は、基材(ア)と同様にして行った。
 《基材(ウ)の作製》
 耐熱性基材として、有機無機ハイブリッド構造を有するシルセスキオキサンを基本骨格としたフィルムである、100μm厚の新日鐵化学社製のシルプラスH100を用いた以外は、基材(イ)と同様にして、基材(ウ)を得た。基材(ア)と同様にして測定したRzは約20nmであった。
 《第1のガスバリア層の作製》
 表1に示すような基材と塗布面との組み合わせで、3種類の第1のバリア層a,b,cを作製した。
 (第1のガスバリア層aの作製)
 大気圧プラズマ製膜装置(特開2008-56967号の図3に記載、ロールツーロール形態の大気圧プラズマCVD装置)を用いて、大気圧プラズマ法により、作製した基材(ア)の平滑層面上,および、(イ)、(ウ)の片面上に、以下の薄膜形成条件で酸化珪素の第1のガスバリア層a(100nm)を形成した。基材(イ)、(ウ)については、両面に第1のガスバリア層aを形成した試料も作製した。両面にガスバリア層を形成した試料については、表1に両面と記載した。
 (混合ガス組成物)
  放電ガス:窒素ガス 94.9体積%
  薄膜形成ガス:テトラエトキシシラン 0.1体積%
  添加ガス:酸素ガス 5.0体積%
 (成膜条件)
 〈第1電極側〉
  電源種類:ハイデン研究所 100kHz(連続モード) PHF-6k
  周波数 :100kHz
  出力密度:10W/cm
  電極温度:120℃
 〈第2電極側〉
  電源種類:パール工業 13.56MHz CF-5000-13M
  周波数 :13.56MHz
  出力密度:10W/cm
  電極温度:90℃
 上記方法に従って形成した第1のバリア層aは、酸化珪素(SiOx)で構成されるものであった。
 (第1のガスバリア層bの形成)
 第1のガスバリア層aの形成において、製膜条件を下記のように代えた以外は同様にして、酸窒化珪素の第1のガスバリア層b(50nm)を形成した。
 (混合ガス組成物)
  放電ガス:窒素ガス 94.9体積%
  薄膜形成ガス:テトラエトキシシラン 0.1体積%
  添加ガス:水素ガス 1.0体積%
 (成膜条件)
 〈第1電極側〉
  電源種類:ハイデン研究所 100kHz(連続モード) PHF-6k
  周波数 :100kHz
  出力密度:12W/cm
  電極温度:120℃
 〈第2電極側〉
  電源種類:パール工業 13.56MHz CF-5000-13M
  周波数 :13.56MHz
  出力密度:12W/cm
  電極温度:90℃
 得られた第1のガスバリア層bは酸窒化珪素(SiOxNy)で、窒素含有率は元素比率で0.8%であった。
 (第1のガスバリア層cの形成)
 第1のガスバリア層bの形成において、膜厚を150nmとした以外は同様にして、酸窒化珪素の第1のガスバリア層cを形成した。
 得られた第1のガスバリア層cは酸窒化珪素(SiOxNy)で、窒素含有率は元素比率で0.8%であった。
 《第2のガスバリア層の作製》
 (塗布工程および紫外線照射工程)
 後述のようにして、第1のガスバリア層上に表1に示す乾燥膜厚で第2のガスバリア層を積層した。比較試料の一部については基材上に第2のガスバリア層を形成した(第1のバリア層はなしと記載)。また、第2のガスバリア層を形成しなかった試料も作製した(第2のバリア層はなしと記載)。両面に第2のガスバリア層を形成した試料は、表1に両面と記載した。このようにして表1、2に示す試料No.1~29のガスバリアフィルムを作製した。
 真空紫外線照射による紫外線照射工程は図1に一例を模式図で示した真空紫外線照射装置により行い、連続搬送される上記で作製した第1のバリア層上に、後述するポリシラザン化合物を含有する塗布液を減圧押し出し方式のコーター(図示せず)を用いて、乾燥膜厚が150nmとなるように第2のガスバリア層を塗布した。
 塗布後、乾燥装置(図示せず)により乾燥した。乾燥条件としては、乾燥時間は搬送速度5m/minにおいて90秒であり、乾燥温度は100℃、乾燥雰囲気の露点は5℃に調整した。
 乾燥後、一例を図示した真空紫外線照射による紫外線照射処理を行った。図1において、1は基板、2は172nmの真空紫外線を照射するXeエキシマランプ、3は外部電極を兼ねるエキシマランプのホルダーである。真空紫外線照射に用いたランプの本数、照度分布パターン、最大照度、搬送速度等の照射条件詳細は表1、2に示した条件を用いた。前記E1およびE2/E1の数値も表2に示した。また、照度分布パターンA~Nの詳細は図2~15に示した。図2~15において縦軸は膜面の照度であり、横軸は基材の搬送方向(長手方向)における位置を示す。
 4は窒素雰囲気を保持するためのチャンバーであり、乾燥窒素供給口(図示せず)より窒素を供給することによりチャンバー内の酸素濃度を低減することができる。本実施例においては、チャンバー内の酸素濃度を100ppm以下になるよう調整した。5は温度調整可能な金属製バックロールである。本実施例においては、バックロール温度を80℃になるよう調整した。
 紫外線照射後ガスバリア層を形成した基板を巻き取りコア(図示せず)に巻き取った。
 (ポリシラザン化合物を含有する塗布液の調製)
 ポリシラザン化合物を含有する塗布液は、無触媒のパーヒドロポリシラザン20質量%ジブチルエーテル溶液(AZエレクトロニックマテリアルズ(株)製アクアミカ NN120-20)とアミン触媒を固形分の5質量%含有するパーヒドロポリシラザン20質量%ジブチルエーテル溶液(AZエレクトロニックマテリアルズ(株)製アクアミカ NAX120-20)を混合して用いアミン触媒を固形分の1質量%に調整した後、さらにジブチルエーテルで希釈することにより5質量%ジブチルエーテル溶液として調製した。
 (水蒸気バリア性評価試料の作製装置)
 蒸着装置:日本電子(株)製真空蒸着装置JEE-400
 恒温恒湿度オーブン:Yamato Humidic ChamberIG47M
 (原材料)
 水分と反応して腐食する金属:カルシウム(粒状)
 水蒸気不透過性の金属:アルミニウム(φ3~5mm、粒状)
 (水蒸気バリア性評価試料の作製)
 真空蒸着装置(日本電子製真空蒸着装置 JEE-400)を用い、作製したガスバリアフィルム1~17のガスバリア層表面に、マスクを通して12mm×12mmのサイズで金属カルシウムを蒸着させた。両面にガスバリア層を作製した試料については、最後に第2のガスバリア層を形成した側のガスバリア層表面を用いた。
 その後、真空状態のままマスクを取り去り、シート片側全面にアルミニウムを蒸着させて仮封止をした。次いで、真空状態を解除し、速やかに乾燥窒素ガス雰囲気下に移して、アルミニウム蒸着面に封止用紫外線硬化樹脂(ナガセケムテックス社製)を介して厚さ0.2mmの石英ガラスを張り合わせ、紫外線を照射して樹脂を硬化接着させて本封止することで、水蒸気バリア性評価試料を作製した。
 得られた試料を85℃、90%RHの高温高湿下で保存し、20時間保存、40時間保存、60時間保存時のそれぞれにおいて、12mm×12mmの金属カルシウム蒸着面積に対する金属カルシウムが腐食した面積を%表示で算出し、下記の指標に基づいて評価した。結果を表1、2に示した。
 (評価指標)
 ○:金属カルシウムが腐食した面積が1%未満である。
 △:金属カルシウムが腐食した面積が1%以上5%未満である。
 ×:金属カルシウムが腐食した面積が5%以上である。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 表1、2に示したように、本発明のガスバリアフィルムの製造方法により、高いバリア性を有するガスバリアフィルムが得られること、また高い生産性を有することが分かる。
 (ガスバリアフィルムの耐熱性の評価)
 表3に示すガスバリアフィルムについて、220℃で10分間の大気雰囲気下で加熱処理を行った。この際、ガスバリアフィルムのガスバリア層表面(後述の水蒸気バリア性評価試料として用いる部位)には部材が接触しないように保持した。加熱処理後、室温の大気中に取り出し、そのまま室温まで冷却した。次いで、上記と同様にして水蒸気バリア性評価試料を作製し、水蒸気バリア性評価を行った。結果を表3に示した。
Figure JPOXMLDOC01-appb-T000003
 表3に示したように、本発明のガスバリアフィルムの製造方法により、耐熱性に優れ、かつ、高いバリア性と高い生産性を有するガスバリアフィルムが得られることが分かる。
 実施例2
 〈有機薄膜電子デバイス用ガスバリアフィルムとしての評価〉
 表4に示したガスバリアフィルムを封止フィルムとして用いて、有機薄膜電子デバイスである有機EL素子を作製した。これらを60℃90%RH環境で400時間加速劣化処理を行い、加速劣化前の性能と比較することでガスバリア性能とその安定性について評価した。
 (有機EL素子の評価)
 評価は以下の基準で各素子をランク付けした。実用可能範囲は○以上である。
 (黒点の評価)
 試料に1mA/cmの電流を印加し、24時間連続発光させた後、100倍のマイクロスコープ(株式会社モリテックス製MS-804、レンズMP-ZE25-200)でパネルの一部分を拡大し、撮影を行った。撮影画像を2mm四方に切り抜き、目視で観察を行い、黒点の状況を調べ、素子の劣化率を算出して以下のランク付けを行った。結果を表4に示した。
 劣化率=加速劣化処理前の素子で発生した黒点の面積/加速劣化処理後の素子で発生した黒点の面積×100(%)
 ◎:90%以上
 ○:60%以上、90%未満
 △:20%以上、60%未満
 ×:20%未満
 〈有機EL素子の作製方法〉
 ガスバリアフィルムの無機層の上に厚さ150nmのITO(インジウムチンオキシド)をスパッタ法により成膜し、フォトリソグラフィー法によりパターニングを行い、第1電極層を形成した。なお、パターンは発光面積が50mm平方になるようなパターンとした。
 〈正孔輸送層の形成〉
 第1電極層が形成されたガスバリアフィルムの第1電極層の上に、以下に示す正孔輸送層形成用塗布液を押出し塗布機で塗布した後、乾燥し正孔輸送層を形成した。正孔輸送層形成用塗布液は乾燥後の厚みが50nmになるように塗布した。
 正孔輸送層形成用塗布液を塗布する前に、ガスバリアフィルムの洗浄表面改質処理を、波長184.9nmの低圧水銀ランプを使用し、照射強度15mW/cm、距離10mmで実施した。帯電除去処理は、微弱X線による除電器を使用し行った。
 (塗布条件)
 塗布工程は大気中、25℃相対湿度50%の環境で行った。
 (正孔輸送層形成用塗布液の準備)
 ポリエチレンジオキシチオフェン・ポリスチレンスルホネート(PEDOT/PSS、Bayer社製 Bytron P AI 4083)を純水で65%、メタノール5%で希釈した溶液を正孔輸送層形成用塗布液として準備した。
 (乾燥および加熱処理条件)
 正孔輸送層形成用塗布液を塗布した後、製膜面に向け高さ100mm、吐出風速1m/s、幅手の風速分布5%、温度100℃で溶媒を除去した後、引き続き、加熱処理装置を用い温度150℃で裏面伝熱方式の熱処理を行い、正孔輸送層を形成した。
 〈発光層の形成〉
 引き続き、正孔輸送層迄を形成したガスバリアフィルム1の正孔輸送層の上に、以下に示す白色発光層形成用塗布液を押出し塗布機で塗布した後、乾燥し発光層を形成した。白色発光層形成用塗布液は乾燥後の厚みが40nmになるように塗布した。
 (白色発光層形成用塗布液)
 ホスト材のH-Aを1.0gと、ドーパント材のD-Aを100mgと、ドーパント材のD-Bを0.2mgを、ドーパント材のD-Cを0.2mgと、を100gのトルエンに溶解し白色発光層形成用塗布液として準備した。
Figure JPOXMLDOC01-appb-C000004
 (塗布条件)
 塗布工程を窒素ガス濃度99%以上の雰囲気で、塗布温度を25℃とし、塗布速度1m/minで行った。
 (乾燥および加熱処理条件)
 白色発光層形成用塗布液を塗布した後、製膜面に向け高さ100mm、吐出風速1m/s、幅手の風速分布5%、温度60℃で溶媒を除去した後、引き続き、温度130℃で加熱処理を行い、発光層を形成した。
 〈電子輸送層の形成〉
 引き続き、発光層迄を形成したのち、以下に示す電子輸送層形成用塗布液を押出し塗布機で塗布した後、乾燥し電子輸送層を形成した。電子輸送層形成用塗布液は乾燥後の厚みが30nmになるように塗布した。
 (塗布条件)
 塗布工程は窒素ガス濃度99%以上の雰囲気で、電子輸送層形成用塗布液の塗布温度を25℃とし、塗布速度1m/minで行った。
 (電子輸送層形成用塗布液)
 電子輸送層はE-Aを2,2,3,3-テトラフルオロ-1-プロパノール中に溶解し0.5質量%溶液とし電子輸送層形成用塗布液とした。
Figure JPOXMLDOC01-appb-C000005
 (乾燥および加熱処理条件)
 電子輸送層形成用塗布液を塗布した後、製膜面に向け高さ100mm、吐出風速1m/s、幅手の風速分布5%、温度60℃で溶媒を除去した後、引き続き、加熱処理部で温度200℃で加熱処理を行い、電子輸送層を形成した。
 (電子注入層の形成)
 引き続き、形成された電子輸送層の上に電子注入層を形成した。まず、基板を減圧チャンバーに投入し、5×10-4Paまで減圧した。あらかじめ、真空チャンバーにタンタル製蒸着ボートに用意しておいたフッ化セシウムを加熱し、厚さ3nmの電子注入層を形成した。
 (第2電極の形成)
 引き続き、形成された電子注入層の上に第1電極の上に取り出し電極になる部分を除き、形成された電子注入層の上に5×10-4Paの真空下にて第2電極形成材料としてアルミニウムを使用し、取り出し電極を有するように蒸着法にて、発光面積が50mm平方になるようにマスクパターン成膜し、厚さ100nmの第2電極を積層した。
 (裁断)
 第2電極まで形成したガスバリアフィルム1を、再び窒素雰囲気に移動し、規定の大きさに裁断し、有機EL素子を作製した。
 (断裁の方法)
 断裁の方法として、特に限定するところではないが、紫外線レーザー(例えば、波長266nm)、赤外線レーザー、炭酸ガスレーザー等の高エネルギーレーザーによるアブレーション加工で行うことが好ましい。ガスバリアフィルムは割れやすい無機の薄膜を有しているため、通常のカッターで断裁すると断細部で亀裂が発生することがある。素子の断裁だけでなく、ガスバリアフィルム単独での断裁も同様である。更には無機層表面に有機成分を含む保護層を設置することでも断裁時のヒビ割れを抑制することが可能である。
 (電極リード接続)
 作製した有機EL素子に、ソニーケミカル&インフォメーションデバイス株式会社製異方性導電フィルムDP3232S9を用いて、フレキシブルプリント基板(ベースフィルム:ポリイミド12.5μm、圧延銅箔18μm、カバーレイ:ポリイミド12.5μm、表面処理NiAuメッキ)を接続した。
 圧着条件:温度170℃(別途熱伝対を用いて測定したACF温度140℃)、圧力2MPa、10秒で圧着を行った。
 (封止)
 電極リード(フレキシブルプリント基板)を接続した有機EL素子を、市販のロールラミネート装置を用いて封止部材を接着し、有機EL素子101を製作した。
 なお、封止部材として、30μm厚のアルミニウム箔(東洋アルミニウム株式会社製)に、ポリエチレンテレフタレート(PET)フィルム(12μm厚)をドライラミネーション用の接着剤(2液反応型のウレタン系接着剤)を用いラミネートした(接着剤層の厚み1.5μm)ものを用いた。
 アルミニウム面に熱硬化性接着剤を、ディスペンサを使用してアルミ箔の接着面(つや面)に沿って厚み20μmで均一に塗布した。
 熱硬化接着剤としては以下のエポキシ系接着剤を用いた。
 ビスフェノールAジグリシジルエーテル(DGEBA)
 ジシアンジアミド(DICY)
 エポキシアダクト系硬化促進剤
 しかる後、封止基板を、取り出し電極および電極リードの接合部を覆うようにして密着・配置して、圧着ロールを用いて圧着条件、圧着ロール温度120℃、圧力0.5MPa、装置速度0.3m/minで密着封止した。
Figure JPOXMLDOC01-appb-T000006
 表4に示したように、本発明のガスバリアフィルムの製造方法により製造されたバリアフィルムは、高いバリア性を有するガスバリアフィルムが得られること、また高い生産性を有することが分かる。
 1 基材
 2 エキシマランプ
 3 エキシマランプ保持部材(外部電極)
 4 照射室
 5 バックロール
 11 真空チャンバー
 12、13 成膜ロール
 14 巻き出しロール
 15 対向空間は巻き取りロール
 17 巻き取りロール
 18 成膜ガス供給管
 19 真空排気口
 20 真空ポンプ
 101 プラズマCVD装置
 102 真空槽
 103 カソード電極
 105 サセプタ
 106 熱媒体循環系
 107 真空排気系
 108 ガス導入系
 109 高周波電源
 160 加熱冷却装置

Claims (7)

  1.  基材上に化学蒸着法で形成された第1のガスバリア層を有し、該第1のガスバリア層上に第2のガスバリア層を有するガスバリアフィルムを製造するガスバリアフィルムの製造方法であって、
     帯状の該基材上に形成された該第1のガスバリア層上に、ポリシラザン化合物を含有する塗布液を塗布して塗膜を形成する塗布工程および、
     該基材に対向し、該基材の長手方向に沿う一方の辺の一点から他方の辺の一点への直線上で照度の分布が±10%以内となる真空紫外線(VUV)の複数の光源により、該塗膜が形成された該基材を該光源に対して相対的に長手方向に移動させながら、真空紫外線を該塗膜に照射して、第2のガスバリア層を形成する紫外線照射工程を有し、
     該紫外線照射工程において、該真空紫外線の照射の開始から終了までの間、光源に対して相対的に移動する塗膜が受ける塗膜面での該真空紫外線の照度は160mW/cm以下であり、
     該塗膜面での該真空紫外線の照度が50mW/cm以上、160mW/cm以下である期間Tを有し、
     該期間T内に受ける、塗膜面における真空紫外線のエネルギー量(E1)が、180mJ/cm以上1800mJ/cm以下である、ガスバリアフィルムの製造方法。
  2.  前記紫外線照射工程において、前記期間T以外の期間に受ける、前記塗膜面における真空紫外線のエネルギー量(E2)と、前記E1との比(E2/E1)が、0以上、0.25以下である、請求項1に記載のガスバリアフィルムの製造方法。
  3.  前記期間Tの時間の、前記紫外線照射工程の全期間Zの時間に対する割合が、30%以上である、請求項1または2に記載のガスバリアフィルムの製造方法。
  4.  前記期間Tの時間の、前記紫外線照射工程の全期間Zの時間に対する割合が、70%以上である、請求項3に記載のガスバリアフィルムの製造方法。
  5.  前記紫外線照射工程において、前記期間Tは1つである、請求項4に記載のガスバリアフィルムの製造方法。
  6.  請求項1から5のいずれか1項に記載のガスバリアフィルムの製造方法により製造されてなる、ガスバリアフィルム。
  7.  請求項6に記載のガスバリアフィルムを具備する、電子デバイス。
PCT/JP2011/078327 2010-12-27 2011-12-07 ガスバリアフィルムの製造方法、ガスバリアフィルムおよび電子デバイス WO2012090665A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2012550801A JP5716752B2 (ja) 2010-12-27 2011-12-07 ガスバリアフィルムの製造方法、ガスバリアフィルムおよび電子デバイス
US13/976,238 US9362524B2 (en) 2010-12-27 2011-12-07 Method for producing gas barrier film, gas barrier film, and electronic device
EP20110854188 EP2660042B1 (en) 2010-12-27 2011-12-07 Method for manufacturing gas-barrier film, gas-barrier film, and electronic device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-289189 2010-12-27
JP2010289189 2010-12-27

Publications (1)

Publication Number Publication Date
WO2012090665A1 true WO2012090665A1 (ja) 2012-07-05

Family

ID=46382784

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/078327 WO2012090665A1 (ja) 2010-12-27 2011-12-07 ガスバリアフィルムの製造方法、ガスバリアフィルムおよび電子デバイス

Country Status (4)

Country Link
US (1) US9362524B2 (ja)
EP (1) EP2660042B1 (ja)
JP (1) JP5716752B2 (ja)
WO (1) WO2012090665A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014168934A (ja) * 2013-03-05 2014-09-18 Konica Minolta Inc ガスバリア性フィルムおよびガスバリア性フィルムの製造方法
JP2014237317A (ja) * 2012-10-19 2014-12-18 コニカミノルタ株式会社 ガスバリアーフィルム、素子デバイス及びガスバリアーフィルムの製造方法
WO2015060394A1 (ja) * 2013-10-24 2015-04-30 コニカミノルタ株式会社 ガスバリア性フィルム
JP2017077684A (ja) * 2015-10-21 2017-04-27 コニカミノルタ株式会社 ガスバリアフィルム、透明導電部材、及び、有機エレクトロルミネッセンス素子
JP2018059070A (ja) * 2016-09-30 2018-04-12 住友化学株式会社 光学フィルム及びその製造方法
KR20210014748A (ko) * 2018-08-14 2021-02-09 어플라이드 머티어리얼스, 인코포레이티드 가요성 커버 렌즈용 다층 습식-건식 하드코트들

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10434804B2 (en) 2008-06-13 2019-10-08 Kateeva, Inc. Low particle gas enclosure systems and methods
US9048344B2 (en) 2008-06-13 2015-06-02 Kateeva, Inc. Gas enclosure assembly and system
US12064979B2 (en) 2008-06-13 2024-08-20 Kateeva, Inc. Low-particle gas enclosure systems and methods
US11975546B2 (en) 2008-06-13 2024-05-07 Kateeva, Inc. Gas enclosure assembly and system
US9604245B2 (en) 2008-06-13 2017-03-28 Kateeva, Inc. Gas enclosure systems and methods utilizing an auxiliary enclosure
US10442226B2 (en) 2008-06-13 2019-10-15 Kateeva, Inc. Gas enclosure assembly and system
US12018857B2 (en) 2008-06-13 2024-06-25 Kateeva, Inc. Gas enclosure assembly and system
US9512334B2 (en) * 2011-09-08 2016-12-06 Lintec Corporation Modified polysilazane film and method for producing gas barrier film
FR2980394B1 (fr) * 2011-09-26 2013-10-18 Commissariat Energie Atomique Structure multicouche offrant une etancheite aux gaz amelioree
US8871560B2 (en) * 2012-08-09 2014-10-28 International Business Machines Corporation Plasma annealing of thin film solar cells
JP6392874B2 (ja) 2013-12-26 2018-09-19 カティーバ, インコーポレイテッド 電子デバイスの熱処理のための装置および技法
CN107256840B (zh) 2014-01-21 2019-05-31 科迪华公司 用于电子装置封装的设备和技术
US9343678B2 (en) * 2014-01-21 2016-05-17 Kateeva, Inc. Apparatus and techniques for electronic device encapsulation
JP6461195B2 (ja) 2014-04-30 2019-01-30 カティーバ, インコーポレイテッド 基板コーティングのためのガスクッション装置および技法
TWI574836B (zh) * 2014-10-29 2017-03-21 財團法人工業技術研究院 阻氣複合膜
US20160336149A1 (en) * 2015-05-15 2016-11-17 Applied Materials, Inc. Chamber component with wear indicator
DE102016106847A1 (de) * 2016-04-13 2017-10-19 Osram Oled Gmbh Verfahren zur Herstellung eines organischen lichtemittierenden Bauelements und organisches lichtemittierendes Bauelement
TWI720181B (zh) * 2016-05-30 2021-03-01 日商新力股份有限公司 薄膜製造方法、薄膜製造裝置、光電轉換元件之製造方法、邏輯電路之製造方法、發光元件之製造方法及調光元件之製造方法
EP3470231B1 (en) * 2017-10-10 2021-06-02 HP Scitex Ltd Printing fluid drying assembly, method and system

Citations (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05238827A (ja) 1992-02-26 1993-09-17 Tonen Corp コーティング用組成物及びコーティング方法
JPH05271166A (ja) 1992-03-25 1993-10-19 Toppan Printing Co Ltd テトラアリールジアミン化合物
JPH06122852A (ja) 1992-10-09 1994-05-06 Tonen Corp コーティング用組成物及びコーティング方法
JPH06240208A (ja) 1993-02-19 1994-08-30 Tonen Corp コーティング用組成物及びコーティング方法
JPH06299118A (ja) 1993-04-20 1994-10-25 Tonen Corp コーティング用組成物及びコーティング方法
JPH06306329A (ja) 1993-02-24 1994-11-01 Tonen Corp コーティング用組成物及びコーティング方法
JPH07196986A (ja) 1993-12-28 1995-08-01 Tonen Corp コーティング用組成物
JPH08112879A (ja) 1994-10-14 1996-05-07 Tonen Corp SiO2 被覆プラスチックフィルム及びその製造方法
JPH08281861A (ja) * 1995-04-19 1996-10-29 Mitsui Toatsu Chem Inc ガスバリヤー性フィルム
JPH11166157A (ja) 1997-12-04 1999-06-22 Tonen Corp コーティング組成物及びシリカ系セラミックス膜の製造方法
JP2002266007A (ja) 2001-03-08 2002-09-18 Japan Science & Technology Corp 金属ナノワイヤー及びその製造方法
WO2003016599A1 (fr) 2001-08-09 2003-02-27 Asahi Kasei Kabushiki Kaisha Element a semi-conducteur organique
WO2003028125A2 (en) 2001-09-27 2003-04-03 3M Innovative Properties Company Substituted pentacene semiconductors
US20030136964A1 (en) 2001-11-26 2003-07-24 International Business Machines Corporation Thin film transistors using solution processed pentacene precursor as organic semiconductor
US6690029B1 (en) 2001-08-24 2004-02-10 University Of Kentucky Research Foundation Substituted pentacenes and electronic devices made with substituted pentacenes
JP2004107216A (ja) 2002-09-13 2004-04-08 Seiko Epson Corp 膜形成方法
JP2004149871A (ja) 2002-10-31 2004-05-27 Japan Science & Technology Agency ナノサイズの金属コバルト微粒子の電解析出方法
WO2006019270A1 (en) 2004-08-19 2006-02-23 Lg Chem. Ltd. Organic light-emitting device comprising buffer layer and method for fabricating the same
JP2006199674A (ja) 2004-05-17 2006-08-03 Mitsubishi Chemicals Corp アミノ化フラーレンの製造方法
JP2006233252A (ja) 2005-02-23 2006-09-07 Mitsubishi Materials Corp ワイヤー状の金微粒子と、その製造方法および含有組成物ならびに用途
JP2007017948A (ja) 2005-05-11 2007-01-25 Fujifilm Corp 感光性平版印刷版
WO2007012392A2 (de) 2005-07-26 2007-02-01 Clariant International Ltd Verfahren zur herstellung einer dünnen glasartigen beschichtung auf substraten zur verringerung der gaspermeation
WO2007026545A1 (ja) 2005-08-31 2007-03-08 Konica Minolta Holdings, Inc. プラズマ放電処理装置及びガスバリア性フィルムの製造方法
WO2008000664A1 (en) 2006-06-30 2008-01-03 Ciba Holding Inc. Diketopyrrolopyrrole polymers as organic semiconductors
JP2008016834A (ja) 2006-06-09 2008-01-24 Mitsubishi Chemicals Corp 有機光電変換素子の製造方法及び有機光電変換素子
US7329709B2 (en) 2004-06-02 2008-02-12 Konarka Technologies, Inc. Photoactive materials and related compounds, devices, and methods
JP2008056967A (ja) 2006-08-30 2008-03-13 Konica Minolta Holdings Inc ガスバリア性樹脂基材および有機エレクトロルミネッセンスデバイス
JP2008130889A (ja) 2006-11-22 2008-06-05 Japan Science & Technology Agency 光電変換素子およびその素子を用いた太陽電池
JP2008235165A (ja) * 2007-03-23 2008-10-02 Konica Minolta Holdings Inc 透明導電膜を有するロール状樹脂フィルムの製造方法
JP2009255040A (ja) * 2008-03-25 2009-11-05 Kyodo Printing Co Ltd フレキシブルガスバリアフィルムおよびその製造方法
WO2011007543A1 (ja) * 2009-07-17 2011-01-20 三井化学株式会社 積層体およびその製造方法
WO2012008277A1 (ja) * 2010-07-14 2012-01-19 コニカミノルタホールディングス株式会社 ガスバリアフィルムの製造方法、ガスバリアフィルムおよび有機光電変換素子
WO2012014653A1 (ja) * 2010-07-27 2012-02-02 コニカミノルタホールディングス株式会社 ガスバリア性フィルム、ガスバリア性フィルムの製造方法及び電子デバイス

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3696939B2 (ja) 1995-08-11 2005-09-21 東京応化工業株式会社 シリカ系被膜の形成方法
US5986032A (en) * 1997-03-14 1999-11-16 The United States Of America As Represented By The Secretary Of The Navy Linear metallocene polymers containing acetylenic and inorganic units and thermosets and ceramics therefrom
WO2007123006A1 (ja) * 2006-04-21 2007-11-01 Konica Minolta Holdings, Inc. ガスバリアフィルム、有機エレクトロルミネッセンス用樹脂基材、それを用いた有機エレクトロルミネッセンス素子及びガスバリアフィルムの製造方法
JP2009133000A (ja) 2007-10-30 2009-06-18 Fujifilm Corp シリコン窒化物膜及びそれを用いたガスバリア膜、薄膜素子

Patent Citations (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05238827A (ja) 1992-02-26 1993-09-17 Tonen Corp コーティング用組成物及びコーティング方法
JPH05271166A (ja) 1992-03-25 1993-10-19 Toppan Printing Co Ltd テトラアリールジアミン化合物
JPH06122852A (ja) 1992-10-09 1994-05-06 Tonen Corp コーティング用組成物及びコーティング方法
JPH06240208A (ja) 1993-02-19 1994-08-30 Tonen Corp コーティング用組成物及びコーティング方法
JPH06306329A (ja) 1993-02-24 1994-11-01 Tonen Corp コーティング用組成物及びコーティング方法
JPH06299118A (ja) 1993-04-20 1994-10-25 Tonen Corp コーティング用組成物及びコーティング方法
JPH07196986A (ja) 1993-12-28 1995-08-01 Tonen Corp コーティング用組成物
JPH08112879A (ja) 1994-10-14 1996-05-07 Tonen Corp SiO2 被覆プラスチックフィルム及びその製造方法
JPH08281861A (ja) * 1995-04-19 1996-10-29 Mitsui Toatsu Chem Inc ガスバリヤー性フィルム
JP3511325B2 (ja) 1995-04-19 2004-03-29 三井化学株式会社 ガスバリヤー性フィルム
JPH11166157A (ja) 1997-12-04 1999-06-22 Tonen Corp コーティング組成物及びシリカ系セラミックス膜の製造方法
JP2002266007A (ja) 2001-03-08 2002-09-18 Japan Science & Technology Corp 金属ナノワイヤー及びその製造方法
WO2003016599A1 (fr) 2001-08-09 2003-02-27 Asahi Kasei Kabushiki Kaisha Element a semi-conducteur organique
US6690029B1 (en) 2001-08-24 2004-02-10 University Of Kentucky Research Foundation Substituted pentacenes and electronic devices made with substituted pentacenes
WO2003028125A2 (en) 2001-09-27 2003-04-03 3M Innovative Properties Company Substituted pentacene semiconductors
US20030136964A1 (en) 2001-11-26 2003-07-24 International Business Machines Corporation Thin film transistors using solution processed pentacene precursor as organic semiconductor
JP2004107216A (ja) 2002-09-13 2004-04-08 Seiko Epson Corp 膜形成方法
JP2004149871A (ja) 2002-10-31 2004-05-27 Japan Science & Technology Agency ナノサイズの金属コバルト微粒子の電解析出方法
JP2006199674A (ja) 2004-05-17 2006-08-03 Mitsubishi Chemicals Corp アミノ化フラーレンの製造方法
US7329709B2 (en) 2004-06-02 2008-02-12 Konarka Technologies, Inc. Photoactive materials and related compounds, devices, and methods
WO2006019270A1 (en) 2004-08-19 2006-02-23 Lg Chem. Ltd. Organic light-emitting device comprising buffer layer and method for fabricating the same
JP2006233252A (ja) 2005-02-23 2006-09-07 Mitsubishi Materials Corp ワイヤー状の金微粒子と、その製造方法および含有組成物ならびに用途
JP2007017948A (ja) 2005-05-11 2007-01-25 Fujifilm Corp 感光性平版印刷版
WO2007012392A2 (de) 2005-07-26 2007-02-01 Clariant International Ltd Verfahren zur herstellung einer dünnen glasartigen beschichtung auf substraten zur verringerung der gaspermeation
JP2009503157A (ja) 2005-07-26 2009-01-29 クラリアント・インターナシヨナル・リミテッド ガスの透過を減少させるために基材上に薄いガラス様の被膜を形成する方法
WO2007026545A1 (ja) 2005-08-31 2007-03-08 Konica Minolta Holdings, Inc. プラズマ放電処理装置及びガスバリア性フィルムの製造方法
JP2008016834A (ja) 2006-06-09 2008-01-24 Mitsubishi Chemicals Corp 有機光電変換素子の製造方法及び有機光電変換素子
WO2008000664A1 (en) 2006-06-30 2008-01-03 Ciba Holding Inc. Diketopyrrolopyrrole polymers as organic semiconductors
JP2008056967A (ja) 2006-08-30 2008-03-13 Konica Minolta Holdings Inc ガスバリア性樹脂基材および有機エレクトロルミネッセンスデバイス
JP2008130889A (ja) 2006-11-22 2008-06-05 Japan Science & Technology Agency 光電変換素子およびその素子を用いた太陽電池
JP2008235165A (ja) * 2007-03-23 2008-10-02 Konica Minolta Holdings Inc 透明導電膜を有するロール状樹脂フィルムの製造方法
JP2009255040A (ja) * 2008-03-25 2009-11-05 Kyodo Printing Co Ltd フレキシブルガスバリアフィルムおよびその製造方法
WO2011007543A1 (ja) * 2009-07-17 2011-01-20 三井化学株式会社 積層体およびその製造方法
WO2012008277A1 (ja) * 2010-07-14 2012-01-19 コニカミノルタホールディングス株式会社 ガスバリアフィルムの製造方法、ガスバリアフィルムおよび有機光電変換素子
WO2012014653A1 (ja) * 2010-07-27 2012-02-02 コニカミノルタホールディングス株式会社 ガスバリア性フィルム、ガスバリア性フィルムの製造方法及び電子デバイス

Non-Patent Citations (11)

* Cited by examiner, † Cited by third party
Title
ADV MATER, 2007, pages 4160
ADV. MATER., vol. 14, 2002, pages 833 - 837
ADV. MATER., vol. 20, 2008, pages 2116
CHEM. MATER., vol. 14, 2002, pages 4736 - 4745
J. AMER. CHEM. SOC., vol. 123, pages 9482
J. AMER. CHEM. SOC., vol. 127, no. 14, pages 4986
J. AMER. CHEM. SOC., vol. 130, no. 9, 2008, pages 2706
NATURE MAT., vol. 6, 2007, pages 497
NATURE MATERIAL, vol. 5, 2006, pages 328
See also references of EP2660042A4
TECHNICAL DIGEST OF THE INTERNATIONAL PVSEC-17, 2007, pages 1225

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014237317A (ja) * 2012-10-19 2014-12-18 コニカミノルタ株式会社 ガスバリアーフィルム、素子デバイス及びガスバリアーフィルムの製造方法
JP2014168934A (ja) * 2013-03-05 2014-09-18 Konica Minolta Inc ガスバリア性フィルムおよびガスバリア性フィルムの製造方法
WO2015060394A1 (ja) * 2013-10-24 2015-04-30 コニカミノルタ株式会社 ガスバリア性フィルム
JPWO2015060394A1 (ja) * 2013-10-24 2017-03-09 コニカミノルタ株式会社 ガスバリア性フィルム
JP2017077684A (ja) * 2015-10-21 2017-04-27 コニカミノルタ株式会社 ガスバリアフィルム、透明導電部材、及び、有機エレクトロルミネッセンス素子
JP2018059070A (ja) * 2016-09-30 2018-04-12 住友化学株式会社 光学フィルム及びその製造方法
JP7021887B2 (ja) 2016-09-30 2022-02-17 住友化学株式会社 光学フィルムの製造方法
KR20210014748A (ko) * 2018-08-14 2021-02-09 어플라이드 머티어리얼스, 인코포레이티드 가요성 커버 렌즈용 다층 습식-건식 하드코트들
JP2021536030A (ja) * 2018-08-14 2021-12-23 アプライド マテリアルズ インコーポレイテッドApplied Materials, Incorporated フレキシブルカバーレンズのための多層乾湿ハードコート
US11988810B2 (en) 2018-08-14 2024-05-21 Applied Materials, Inc. Multi-layer wet-dry hardcoats for flexible cover lens
KR102680576B1 (ko) * 2018-08-14 2024-07-01 어플라이드 머티어리얼스, 인코포레이티드 가요성 커버 렌즈용 다층 습식-건식 하드코트들
JP7574177B2 (ja) 2018-08-14 2024-10-28 アプライド マテリアルズ インコーポレイテッド フレキシブルカバーレンズのための多層乾湿ハードコート

Also Published As

Publication number Publication date
US9362524B2 (en) 2016-06-07
JP5716752B2 (ja) 2015-05-13
EP2660042B1 (en) 2015-04-29
EP2660042A1 (en) 2013-11-06
EP2660042A4 (en) 2014-07-02
JPWO2012090665A1 (ja) 2014-06-05
US20130316182A1 (en) 2013-11-28

Similar Documents

Publication Publication Date Title
JP5716752B2 (ja) ガスバリアフィルムの製造方法、ガスバリアフィルムおよび電子デバイス
JP5888329B2 (ja) ガスバリア性フィルム、ガスバリア性フィルムの製造方法、および電子デバイス
JP5761203B2 (ja) ガスバリア性フィルム及び電子デバイス
JP5835344B2 (ja) ガスバリアーフィルム及び電子機器
JP6056854B2 (ja) ガスバリア性フィルム、ガスバリア性フィルムの製造方法及び電子デバイス
KR101526083B1 (ko) 가스 배리어성 필름, 가스 배리어성 필름의 제조 방법 및 전자 디바이스
WO2011074363A1 (ja) バリアフィルム、その製造方法および有機光電変換素子
JP5712509B2 (ja) バリアフィルムの製造方法
JP5741489B2 (ja) ガスバリア性フィルムおよび電子デバイス
JP5692230B2 (ja) ガスバリアフィルムの製造方法
JP5516582B2 (ja) バリアフィルム、有機光電変換素子及びバリアフィルムの製造方法
WO2011004698A1 (ja) ガスバリアフィルムとその製造方法、これを用いた光電変換素子
JP5928634B2 (ja) ガスバリア性フィルムおよび電子デバイス
JP5594099B2 (ja) ガスバリア性フィルムの製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11854188

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2012550801

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2011854188

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13976238

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE