Nothing Special   »   [go: up one dir, main page]

WO2012077278A1 - ズームレンズ、撮像装置及びズームレンズの製造方法 - Google Patents

ズームレンズ、撮像装置及びズームレンズの製造方法 Download PDF

Info

Publication number
WO2012077278A1
WO2012077278A1 PCT/JP2011/006279 JP2011006279W WO2012077278A1 WO 2012077278 A1 WO2012077278 A1 WO 2012077278A1 JP 2011006279 W JP2011006279 W JP 2011006279W WO 2012077278 A1 WO2012077278 A1 WO 2012077278A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens
lens group
object side
zoom
positive
Prior art date
Application number
PCT/JP2011/006279
Other languages
English (en)
French (fr)
Inventor
佐藤 治夫
一政 田中
Original Assignee
株式会社ニコン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2010272909A external-priority patent/JP5267956B2/ja
Priority claimed from JP2011043447A external-priority patent/JP5333955B2/ja
Application filed by 株式会社ニコン filed Critical 株式会社ニコン
Priority to US13/991,975 priority Critical patent/US9791678B2/en
Priority to CN201180059190.9A priority patent/CN103250084B/zh
Publication of WO2012077278A1 publication Critical patent/WO2012077278A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B15/00Optical objectives with means for varying the magnification
    • G02B15/14Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective
    • G02B15/144Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having four groups only
    • G02B15/1441Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having four groups only the first group being positive
    • G02B15/144113Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having four groups only the first group being positive arranged +-++
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/11Anti-reflection coatings
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/18Optical objectives specially designed for the purposes specified below with lenses having one or more non-spherical faces, e.g. for reducing geometrical aberration
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B15/00Optical objectives with means for varying the magnification
    • G02B15/14Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B9/00Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or -
    • G02B9/34Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or - having four components only
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49826Assembling or joining

Definitions

  • the present invention relates to a zoom lens, an imaging apparatus, and a method for manufacturing a zoom lens.
  • the present invention has been made in view of such problems, and an object of the present invention is to provide a zoom lens, an imaging apparatus, and a zoom lens manufacturing method that are small in size, have a small number of components, have high performance, and are free from various aberrations. And
  • the zoom lens according to the first aspect has a first lens group having a positive refractive power, a second lens group having a negative refractive power, and a positive refractive power, which are arranged in order from the object side along the optical axis.
  • Rb2 radius of curvature of the image-side surface of the second positive lens component with the convex surface facing the object side constituting the fourth lens group
  • Rb1 the radius of curvature of the object-side surface of the second positive lens component with the convex surface facing the object side constituting the fourth lens group.
  • the lens component indicates a single lens or a cemented lens in which a plurality of lenses are bonded.
  • the imaging device includes the zoom lens according to the first aspect.
  • a zoom lens manufacturing method includes a first lens group having a positive refractive power, a second lens group having a negative refractive power, arranged in order from the object side along the optical axis, and positive refraction.
  • a zoom lens manufacturing method including a third lens group having a power and a fourth lens group having a positive refractive power, wherein the fourth lens is configured to perform zooming by changing an air interval of each lens group.
  • the group includes a first positive lens component, a second positive lens component having a convex surface facing the object side, and a negative lens component, which are arranged in order from the object side along the optical axis. Satisfied.
  • Rb2 radius of curvature of the image-side surface of the second positive lens component with the convex surface facing the object side constituting the fourth lens group
  • Rb1 the radius of curvature of the object-side surface of the second positive lens component with the convex surface facing the object side constituting the fourth lens group.
  • a zoom lens, an image pickup apparatus, and a zoom lens manufacturing method that are small in size, have a small number of constituent elements, have high performance, and have various aberrations.
  • FIG. 3 is a diagram illustrating a configuration of a zoom lens according to Example 1 and a zoom trajectory from a wide-angle end state (W) to a telephoto end state (T).
  • FIG. 6A is a diagram illustrating various aberrations of the zoom lens according to Example 1, wherein FIG. 10A is a diagram illustrating various aberrations at an infinite shooting distance in the wide-angle end state, and FIG. FIG. 7C is a diagram illustrating various aberrations at an imaging distance of infinity in the telephoto end state.
  • FIG. 6A is a diagram illustrating various aberrations of the zoom lens according to Example 2, wherein FIG. 9A is a diagram illustrating various aberrations at an imaging distance infinite at the wide-angle end state, and FIG. FIG.
  • FIG. 7C is a diagram illustrating various aberrations at an imaging distance of infinity in the telephoto end state.
  • FIG. 10 is a diagram illustrating a configuration of a zoom lens according to Example 3 and a zoom trajectory from a wide-angle end state (W) to a telephoto end state (T).
  • FIG. 6A is a diagram illustrating various aberrations of the zoom lens according to Example 3, wherein FIG. 9A is a diagram illustrating various aberrations at an imaging distance infinite at the wide-angle end state, and FIG.
  • FIG. 7C is a diagram illustrating various aberrations at an imaging distance of infinity in the telephoto end state. It is a schematic sectional drawing which shows the structure of the camera which concerns on this embodiment.
  • FIG. 5 is a flowchart for explaining a method of manufacturing a zoom lens according to the present embodiment. It is explanatory drawing which shows an example of the layer structure of an antireflection film. It is a graph which shows the spectral characteristic of an antireflection film. It is a graph which shows the spectral characteristics of the antireflection film concerning a modification. It is a graph which shows the incident angle dependence of the spectral characteristic of the antireflection film concerning a modification. It is a graph which shows the spectral characteristics of the anti-reflective film produced with the prior art. It is a graph which shows the incident angle dependence of the spectral characteristic of the anti-reflective film produced with the prior art.
  • the zoom lens ZL includes a first lens group G1 having a positive refractive power and a second lens having a negative refractive power, which are arranged in order from the object side along the optical axis.
  • the four lens group G4 includes a first positive lens component La, a second positive lens component Lb having a convex surface facing the object side, and a negative lens component Lc, which are arranged in order from the object side along the optical axis. And the following conditional expression (1) is satisfied.
  • Rb2 radius of curvature of the image-side surface of the second positive lens component Lb with the convex surface facing the object side constituting the fourth lens group G4
  • Rb1 The radius of curvature of the object-side surface of the second positive lens component Lb with the convex surface facing the object side constituting the fourth lens group G4.
  • the present invention considers an effective measure for miniaturization of a multi-group zoom lens having at least four groups of positive, negative, positive and positive.
  • the focus of the present invention is the configuration of the fourth lens group G4.
  • the fourth lens group G4 has a simple positive / negative configuration, and has succeeded in shortening the back focus and reducing the overall length without significantly shortening the exit pupil. Further, by adopting this configuration, it is possible to achieve both high performance.
  • the present invention can be made more effective by optimizing the shape, focal length and the like optimal for aberration correction.
  • Conditional expression (1) is the reciprocal of the form factor (q factor) of the second positive lens component Lb with the convex surface facing the object side in the fourth lens group G4.
  • conditional expression (1) when the upper limit value of 1.00 is exceeded, the lens shape changes from a plano-convex shape having a convex surface toward the object side to a biconvex shape. That is, when the value exceeds 1.00, it can be seen that the shape of the lens changes greatly.
  • the lower limit value of conditional expression (1) is less than 0.00, that is, turns to minus, the lens shape has a convex surface facing the image side, resulting in a completely different shape.
  • conditional expression (1) is a condition for determining the shape of the second positive lens component Lb with the convex surface facing the object side in the fourth lens group G4.
  • the shape of the second positive lens component Lb with the convex surface facing the object side deviates from the optimum meniscus shape, and the plano-convex surface with the convex surface facing the object side The shape changes from a biconvex shape. For this reason, the refractive power of the second positive lens component Lb with the convex surface facing the object side increases, and as a result, the refractive power of the negative lens component Lc also increases, leading to the occurrence of higher-order aberrations, coma aberration, image Since surface curvature deteriorates, it is not preferable. Moreover, the sensitivity at the time of assembling increases and the manufacturing difficulty increases, which is not preferable.
  • conditional expression (1) By setting the upper limit value of conditional expression (1) to 0.70, better coma aberration and field curvature can be corrected. By setting the upper limit value of conditional expression (1) to 0.65, better coma aberration and field curvature can be corrected. By setting the upper limit value of conditional expression (1) to 0.60, better coma aberration and field curvature can be corrected, and the effects of the present embodiment can be maximized.
  • the shape of the second positive lens component Lb with the convex surface facing the object side deviates from the optimal meniscus shape, and the convex surface is directed toward the image side. It changes to a meniscus shape. This also hinders good aberration correction. In particular, spherical aberration, field curvature, and astigmatism are deteriorated, which is not preferable.
  • Various aberrations can be corrected satisfactorily by setting the lower limit value of conditional expression (1) to 0.05. By setting the lower limit of conditional expression (1) to 0.10, various aberrations can be corrected satisfactorily. By setting the lower limit of conditional expression (1) to 0.15, various aberrations can be corrected satisfactorily.
  • an antireflection film is provided on at least one of the optical surfaces in the first lens group G1 and the second lens group G2 (in FIG. 1, a positive meniscus lens in the first lens group G1).
  • the image surface side lens surface (surface number 3) in L12 and the object side lens surface (surface number 4) in the negative meniscus lens L21 of the second lens group G2 are equivalent), and this antireflection film uses a wet process.
  • At least one layer formed is included.
  • the antireflection film is a multilayer film, and the layer formed by using a wet process is the outermost layer among the layers constituting the multilayer film. If comprised in this way, since the refractive index difference with air can be made small, it becomes possible to reduce reflection of light more and can further reduce a ghost and flare.
  • the refractive index nd is 1.30 or less when the refractive index at the d-line (wavelength 587.6 nm) of the layer formed using the wet process is nd. If comprised in this way, since the refractive index difference with air can be made small, it becomes possible to reduce reflection of light more and can further reduce a ghost and flare.
  • the optical surface provided with the antireflection film is at least one of the optical surfaces in the first lens group G1 and the second lens group G2, and the optical surface is ( It is preferably a concave surface when viewed from the aperture stop S (which the third lens group G3 has). Since a ghost is likely to occur on a concave lens surface as viewed from the aperture stop S, ghosts and flares can be effectively reduced by forming an antireflection film on such a surface.
  • the concave lens surface as viewed from the aperture stop S provided with the antireflection film is a surface of at least one lens included in the first lens group G1 and the second lens group G2.
  • the lens surface on the image plane side is preferable. Since a ghost is likely to occur on a concave lens surface as viewed from the aperture stop S, ghosts and flares can be effectively reduced by forming an antireflection film on such a surface.
  • the concave lens surface as viewed from the aperture stop S provided with the antireflection film is a surface of at least one lens included in the first lens group G1 and the second lens group G2.
  • the lens surface on the object side is preferable. Since a ghost is likely to occur on a concave lens surface as viewed from the aperture stop S, ghosts and flares can be effectively reduced by forming an antireflection film on such a surface.
  • the optical surface provided with the antireflection film is at least one of the optical surfaces in the first lens group G1 and the second lens group G2, and the optical surface is an object. It is preferable that the surface has a concave shape when viewed from above. Since a ghost is likely to occur on a concave lens surface when viewed from an object, ghosts and flares can be effectively reduced by forming an antireflection film on such a surface.
  • the concave lens surface viewed from the object provided with the antireflection film is the image plane of the lens located second from the object side of the first lens group G1.
  • a side lens surface is preferred. Since a ghost is likely to be generated on a concave lens surface when viewed from an object, ghosts and flares can be effectively reduced by forming an antireflection film on such a surface.
  • the concave lens surface when viewed from the object provided with the antireflection film is the object side of the lens located second from the object side of the second lens group G2. It is preferable that it is a lens surface. Since a ghost is likely to be generated on a concave lens surface when viewed from an object, ghosts and flares can be effectively reduced by forming an antireflection film on such a surface.
  • the concave lens surface when viewed from the object provided with the antireflection film is an image surface of the lens located third from the object side of the second lens group G2.
  • a side lens surface is preferred. Since a ghost is likely to be generated on a concave lens surface when viewed from an object, ghosts and flares can be effectively reduced by forming an antireflection film on such a surface.
  • the concave lens surface as viewed from the object provided with the antireflection film has an object side of the lens positioned fourth from the object side of the second lens group G2. It is preferable that it is a lens surface. Since a ghost is likely to be generated on a concave lens surface when viewed from an object, ghosts and flares can be effectively reduced by forming an antireflection film on such a surface.
  • the antireflection film is not limited to a wet process, and may be formed by a dry process or the like. At this time, it is preferable that the antireflection film includes at least one layer having a refractive index of 1.30 or less. By making the antireflection film include at least one layer having a refractive index of 1.30 or less, even if the antireflection film is formed by a dry process or the like, the same effect as that obtained by using a wet process can be obtained. Obtainable. At this time, the layer having a refractive index of 1.30 or less is preferably the most surface layer among the layers constituting the multilayer film.
  • the focal length of the negative lens component Lc constituting the fourth lens group G4 is Fc and the focal length of the fourth lens group is F4, the following conditional expression (2) is satisfied. It is preferable to do.
  • Conditional expression (2) is a condition that defines the focal length (absolute value) of the negative lens component Lc in the fourth lens group G4, in other words, the refractive power of the negative lens component Lc.
  • the focal length (absolute value) of the negative lens component Lc is larger than the focal length of the fourth lens group G4. That is, it means that the negative refractive power of the negative lens component Lc is weakened. In this case, it is disadvantageous for downsizing and causes an increase in the rear lens diameter. If the size reduction is forcibly advanced, fluctuations in coma due to deterioration of field curvature and zooming increase, which is not preferable.
  • the focal length (absolute value) of the negative lens component Lc is smaller than the focal length of the fourth lens group G4, that is, the negative lens component Lc has negative. It means that the refractive power of becomes stronger. In this case, spherical aberration, field curvature, displacement due to the angle of view of the upper coma aberration, and fluctuation due to magnification increase are not preferable.
  • the combined focal length of the first positive lens component La constituting the fourth lens group G4 and the second positive lens component Lb with the convex surface facing the object side is Fab,
  • the focal length of the four lens group G4 is F4, it is preferable that the following conditional expression (3) is satisfied.
  • Conditional expression (3) is a condition that prescribes the combined focal length of the positive lens component La in the fourth lens group G4 and the second positive lens component Lb with the convex surface facing the object side, in other words, the combined refractive power. is there.
  • the combined focal length of the first positive lens component La and the second positive lens component Lb with the convex surface facing the object side is the focal length of the fourth lens group G4. Larger than That is, it means that the combined refractive power becomes weak. In this case, spherical aberration correction is deteriorated, and it is disadvantageous for downsizing, and as a result, the size is increased, it is not preferable.
  • the combined focal length of the first positive lens component La and the second positive lens component Lb with the convex surface facing the object side is equal to that of the fourth lens group G4. Smaller than the focal length. That is, it means that the combined refractive power becomes strong. As a result, the spherical aberration on the telephoto side, the displacement due to the angle of view of the upper coma aberration, the fluctuation due to zooming, and the change in field curvature are not preferable.
  • the focal length of the second lens group G2 is F2
  • the focal length in the wide-angle end state of the entire system when focusing on infinity is Fw
  • the following conditional expression (4) is satisfied. It is preferable to satisfy.
  • Conditional expression (4) is a condition that defines the focal length of the second lens group G2, in other words, the refractive power.
  • the focal length of the second lens group G2 becomes large. That is, it means that the refractive power of the second lens group G2 becomes weak. In this case, the total length becomes large, which is disadvantageous for downsizing.
  • Various aberrations can be corrected more satisfactorily by setting the upper limit of conditional expression (4) to 1.00. By setting the upper limit of conditional expression (4) to 0.80, various aberrations can be corrected more favorably. By setting the upper limit of conditional expression (4) to 0.70, various aberrations can be corrected more satisfactorily, and the effects of this embodiment can be maximized.
  • the focal length of the second lens group G2 becomes small. That is, it means that the refractive power of the second lens group G2 is increased. In this case, it is not preferable because the variation due to the spherical chromatic aberration and coma aberration on the telephoto side is deteriorated.
  • conditional expression (4) By setting the lower limit value of conditional expression (4) to 0.52, various aberrations can be corrected better. By setting the lower limit of conditional expression (4) to 0.58, various aberrations can be corrected more satisfactorily, and the effects of the present embodiment can be maximized.
  • the following conditional expression (5) may be satisfied. preferable.
  • Conditional expression (5) is a condition that defines the Abbe number of the negative lens component Lc in the fourth lens group G4.
  • Chromatic aberration can be satisfactorily corrected by setting the upper limit of conditional expression (5) to 75.
  • chromatic aberration can be corrected satisfactorily.
  • Chromatic aberration can be corrected more satisfactorily by setting the upper limit of conditional expression (5) to 70.
  • chromatic aberration can be corrected more satisfactorily, and the effects of this embodiment can be maximized.
  • conditional expression (5) if the lower limit value of conditional expression (5) is not reached, the Abbe number of Lc, which is a negative lens component, becomes highly dispersed, and the lateral dispersion of magnification chromatic aberration, particularly the lateral chromatic aberration, is not preferable.
  • Chromatic aberration can be corrected satisfactorily by setting the lower limit of conditional expression (5) to 50.
  • chromatic aberration can be corrected satisfactorily.
  • Chromatic aberration can be corrected more satisfactorily by setting the lower limit of conditional expression (5) to 54.
  • chromatic aberration can be corrected more satisfactorily, and the effects of this embodiment can be maximized.
  • Conditional expression (6) is a condition that defines the back focus in the wide-angle end state.
  • conditional expression (6) If the upper limit value of conditional expression (6) is exceeded, the back focus becomes remarkably long, which is unfavorable for downsizing.
  • each group is used with a loose refractive power, which is not preferable because the field curvature is likely to fluctuate.
  • the fourth lens group G4 has at least one aspheric surface. With this configuration, it is possible to achieve good coma and distortion correction.
  • the negative lens component Lc constituting the fourth lens group G4 has at least one aspheric surface. With this configuration, it is possible to achieve good coma and distortion correction.
  • the zoom lens ZL of the present embodiment it is preferable that focusing on a short-distance object is performed by moving the second lens group G2 having negative refractive power on the optical axis.
  • This configuration is preferable because variations in near-field aberrations, particularly field curvature and coma aberration, can be reduced.
  • FIG. 8 shows a schematic cross-sectional view of a so-called mirrorless camera 1 (hereinafter simply referred to as a camera) of an interchangeable lens type as an imaging apparatus provided with the zoom lens ZL described above.
  • a camera a so-called mirrorless camera 1
  • OLPF Optical low pass filter
  • an object (subject) image is formed on the imaging surface of the imaging unit 3.
  • the object (subject) image is photoelectrically converted by the photoelectric conversion element provided in the imaging unit 3, and an image of the object (subject) is generated.
  • This image is displayed on an EVF (Electronic view finder) 4 provided in the camera 1.
  • EVF Electronic view finder
  • an image photoelectrically converted by the imaging unit 3 is stored in a memory (not shown). In this way, the photographer can shoot the subject with the camera 1.
  • the camera 1 may be a lens that holds the photographing lens 2 (zoom lens ZL) in a detachable manner, or may be formed integrally with the photographing lens 2 (zoom lens ZL).
  • the camera body has a quick return mirror and a finder optical system.
  • a single-lens reflex camera that observes an object (subject) image via a system may be used.
  • the zoom lens ZL according to this embodiment mounted as the photographing lens 2 on the camera 1 has spherical aberration, field curvature, astigmatism, and astigmatism depending on its characteristic lens configuration, as can be seen from each example described later.
  • An ultra-wide-angle lens with little coma and a wide angle of view has been realized. Therefore, the camera 1 can realize an imaging device that has a small spherical aberration, curvature of field, astigmatism, and coma aberration, and can capture a wide angle with a large angle of view.
  • the first lens group G1 to the fourth lens group G4 are assembled in the lens barrel (step S10).
  • the first lens group G1 has a positive refractive power
  • the second lens group G2 has a negative refractive power
  • the third lens group G3 has a positive refractive power.
  • Each lens is arranged so that the fourth lens group G4 has a positive refractive power.
  • the fourth lens group G4 includes, in order from the object side along the optical axis, a first positive lens component La, a second positive lens component Lb having a convex surface facing the object side, and a negative lens component Lc. It arrange
  • a negative meniscus lens L11 and a positive meniscus lens L12 having a convex surface directed toward the object side in order from the object side along the optical axis.
  • a positive cemented lens formed by cementing is disposed, and a negative meniscus aspherical lens L21 having a convex surface on the object side and an aspheric surface on the image side in order from the object side along the optical axis as the second lens group G2;
  • a concave lens L22 and a cemented positive lens formed by cementing the biconvex lens L23 and the biconcave lens L24 are arranged, and as the third lens group G3, an aperture stop S and a convex surface on the object side in order from the object side along the optical axis.
  • a positive meniscus lens L31 facing and a cemented positive lens formed by cementing a biconvex lens L32 and a biconcave lens L33 are arranged along the optical axis as a fourth lens group G4.
  • a positive meniscus lens La (corresponding to the first positive lens component in the claims) La having a concave surface directed to the object side
  • the air gap between the lens groups changes (that is, the gap between the first lens group G1 and the second lens group G2 changes).
  • the second lens group G2 and the third lens group G3 are arranged so that the distance between them changes and the distance between the third lens group G3 and the fourth lens group G4 changes (step S30).
  • the lens is arranged so as to satisfy the following conditional expression (1) (step S40).
  • Tables 1 to 3 are shown below, but these are tables of specifications in the first to third examples.
  • the surface number indicates the order of the lens surfaces from the object side along the direction in which the light beam travels
  • R indicates the radius of curvature of each lens surface
  • D indicates the next optical surface from each optical surface.
  • the distance between the surfaces which is the distance on the optical axis to (or the image surface)
  • nd is the refractive index for the d-line (wavelength 587.6 nm)
  • ⁇ d is the Abbe number of the lens material for the d-line
  • (variable) is variable.
  • the surface distance (aperture S) indicates the aperture stop S. Note that “ ⁇ ” in the column of the radius of curvature R indicates a plane.
  • the description of the refractive index of air (d-line) of 1.000000 is omitted.
  • [Aspherical data] in the table shows the shape of the aspherical surface shown in [Surface data] by the following equation (a).
  • y is the height in the direction perpendicular to the optical axis
  • X (y) is the amount of displacement (sag amount) in the optical axis direction at height y
  • r is the radius of curvature of the reference sphere (paraxial radius of curvature).
  • is the conic constant
  • An is the nth-order aspheric coefficient.
  • “E-n” indicates “ ⁇ 10 ⁇ n ”, for example “1.234E-05” indicates “1.234 ⁇ 10 ⁇ 5 ”.
  • f is the focal length
  • FNo is the F number
  • is the half field angle (unit: degree)
  • Y is the image height
  • TL is the total lens length
  • ⁇ d is the zoom lens ZL.
  • BF represents the back focus, the distance on the optical axis from the lens surface closest to the object side to the lens surface closest to the image side.
  • Di (where i is an integer) in the wide-angle end state, the intermediate focal length state, and the telephoto end state at infinity, an intermediate focal point, and a short-distance object point are The variable interval between the i-th surface and the (i + 1) -th surface is shown.
  • G represents the group number
  • the first group surface represents the surface number of the most object side of each group
  • the group focal length represents the focal length of each group.
  • mm is generally used for the focal length f, curvature radius R, surface interval D, and other lengths, etc. unless otherwise specified, but the optical system is proportionally enlarged. Alternatively, the same optical performance can be obtained even with proportional reduction, and the present invention is not limited to this. Further, the unit is not limited to “mm”, and other appropriate units can be used.
  • FIG. 1 shows the configuration of the zoom lens ZL (ZL1) according to the first embodiment and the zoom trajectory from the wide-angle end state (W) to the telephoto end state (T).
  • the zoom lens ZL1 according to the first example includes a first lens group G1 having a positive refractive power arranged in order from the object side along the optical axis, and a first lens group G1 having a negative refractive power. It has a second lens group G2, a third lens group G3 having a positive refractive power, and a fourth lens group G4 having a positive refractive power, and zooming is performed by changing the air interval of each lens group.
  • the first lens group G1 is composed of a cemented positive lens formed by cementing a negative meniscus lens L11 and a positive meniscus lens L12, which are arranged in order from the object side along the optical axis and have a convex surface facing the object side.
  • the second lens group G2 is arranged in order from the object side along the optical axis, a negative meniscus aspheric lens L21 having a convex surface on the object side and an aspheric surface on the image side, a biconcave lens L22, and a biconvex lens L23. It consists of a cemented positive lens formed by cementing with a biconcave lens L24.
  • the third lens group G3 is composed of an aperture stop S, a positive meniscus lens L31 having a convex surface facing the object side, and a biconvex lens L32 and a biconcave lens L33, which are arranged in order from the object side along the optical axis. It consists of a positive lens.
  • the fourth lens group G4 includes a positive meniscus lens La (corresponding to the first positive lens component in the claims) arranged in order from the object side along the optical axis and having a concave surface on the object side, and a convex surface on the object side.
  • an antireflection film described later is formed on the image side lens surface of the positive meniscus lens L12 of the first lens group G1 and the object side lens surface of the negative meniscus lens L21 of the second lens group G2. Has been.
  • Table 1 below shows the values of each item in the first example.
  • Surface numbers 1 to 22 in Table 1 correspond to the lens surfaces having the curvature radii R1 to R22 shown in FIG.
  • the fifth surface and the twenty-first surface are formed in an aspherical shape.
  • FIG. 2A and 2B are graphs showing various aberrations of the zoom lens ZL1 according to Example 1.
  • FIG. 2A is a diagram showing various aberrations at the shooting distance infinite at the wide-angle end state
  • FIG. 4C is a diagram illustrating various aberrations at an infinite distance
  • FIG. 5C is a diagram illustrating various aberrations at an imaging distance in the telephoto end state.
  • FNO represents an F number
  • Y represents an image height
  • represents a half angle of view
  • d represents a d-line (wavelength 587.6 nm)
  • g represents a g-line (wavelength 435.8 nm).
  • the solid line indicates the sagittal image plane
  • the broken line indicates the meridional image plane.
  • the solid line indicates the meridional coma.
  • FIG. 3 shows a state in which a ghost is generated by the light beam BM incident from the object side in the zoom lens ZL of the first embodiment.
  • the lens surface (first ghost generation surface) on the object side that is, the radius of curvature R4) of the negative meniscus lens L21.
  • the surface number is reflected by 4
  • the reflected light is reflected again by the lens surface (second ghost generation surface, whose surface number is 3) on the image side (that is, radius of curvature R3) of the positive meniscus lens L12.
  • it reaches the image plane I and generates a ghost.
  • the first ghost generation surface (surface number 4) is a concave lens surface when viewed from the aperture stop S
  • the second ghost generation surface (surface number 3) is a concave shape when viewed from the aperture stop S. This is the lens surface.
  • a ghost can be effectively reduced by forming an antireflection film corresponding to a wide incident angle in a wider wavelength range on such a surface.
  • FIG. 4 shows the configuration of the zoom lens ZL (ZL2) according to the second embodiment and the zoom trajectory from the wide-angle end state (W) to the telephoto end state (T).
  • the zoom lens ZL2 according to the second example includes a first lens group G1 having a positive refractive power and arranged in order from the object side along the optical axis, and a first lens group G1 having a negative refractive power. It has a second lens group G2, a third lens group G3 having a positive refractive power, and a fourth lens group G4 having a positive refractive power, and zooming is performed by changing the air interval of each lens group.
  • the first lens group G1 is composed of a cemented positive lens formed by cementing a negative meniscus lens L11 and a positive meniscus lens L12, which are arranged in order from the object side along the optical axis and have a convex surface facing the object side.
  • the second lens group G2 is arranged in order from the object side along the optical axis, a negative meniscus aspheric lens L21 having a convex surface on the object side and an aspheric surface on the image side, a biconcave lens L22, and a biconvex lens L23. It consists of a cemented positive lens formed by cementing with a biconcave lens L24.
  • the third lens group G3 is composed of an aperture stop S, a positive meniscus lens L31 having a convex surface facing the object side, and a biconvex lens L32 and a biconcave lens L33, which are arranged in order from the object side along the optical axis. It consists of a positive lens.
  • the fourth lens group G4 includes a positive meniscus lens La (corresponding to the first positive lens component in the claims) arranged in order from the object side along the optical axis and having a concave surface on the object side, and a convex surface on the object side.
  • an antireflection film described later is formed on the image side lens surface of the negative meniscus lens L21 of the second lens group G2 and the object side lens surface of the biconcave lens L22 of the second lens group G2. ing.
  • Table 2 below shows the values of each item in the second example.
  • Surface numbers 1 to 22 in Table 2 correspond to the optical surfaces having the curvature radii R1 to R22 shown in FIG.
  • the fifth surface and the twenty-first surface are formed in an aspherical shape.
  • FIGS. 5A and 5B are graphs showing various aberrations of the zoom lens ZL2 according to Example 2.
  • FIG. 5A is a diagram showing various aberrations at the shooting distance infinite at the wide-angle end state
  • FIG. 5B is shooting at the intermediate focal length state.
  • FIG. 4C is a diagram illustrating various aberrations at an infinite distance
  • FIG. 5C is a diagram illustrating various aberrations at an imaging distance in the telephoto end state.
  • various aberrations including spherical aberration, curvature of field, astigmatism, coma and the like are observed in each focal length state from the wide-angle end state to the telephoto end state. It can be seen that the correction is good.
  • FIG. 6 shows the configuration of the zoom lens ZL (ZL3) according to the third embodiment and the zoom trajectory from the wide-angle end state (W) to the telephoto end state (T).
  • the zoom lens ZL3 according to the third example includes a first lens group G1 having a positive refractive power and arranged in order from the object side along the optical axis, and a first lens group G1 having a negative refractive power. It has a second lens group G2, a third lens group G3 having a positive refractive power, and a fourth lens group G4 having a positive refractive power, and zooming is performed by changing the air interval of each lens group.
  • the first lens group G1 is composed of a cemented positive lens formed by cementing a negative meniscus lens L11 and a positive lens L12, which are arranged in order from the object side along the optical axis and have a convex surface facing the object side.
  • the second lens group G2 is arranged in order from the object side along the optical axis, the negative meniscus aspheric lens L21 having a convex surface on the object side and an aspheric surface on the image side, a biconcave lens L22, and a biconvex lens L23. And a biconcave lens L24.
  • the third lens group G3 is composed of an aperture stop S, a positive meniscus lens L31 having a convex surface facing the object side, and a biconvex lens L32 and a biconcave lens L33, which are arranged in order from the object side along the optical axis. It consists of a positive lens.
  • the fourth lens group G4 is a cemented positive lens La formed by cementing a positive meniscus lens L41 and a negative meniscus lens L42, which are arranged in order from the object side along the optical axis and have a concave surface facing the object side. ), A positive meniscus lens having a convex surface facing the object side (corresponding to the second positive lens component in the claims) Lb, and a negative lens Lc having an aspheric surface on the object side (negative in the claims) Equivalent to a lens component).
  • An antireflection film described later is formed on the surface.
  • Table 3 below shows the values of each item in the third example.
  • Surface numbers 1 to 24 in Table 3 correspond to the optical surfaces having the curvature radii R1 to R24 shown in FIG.
  • the fifth surface and the 23rd surface are formed in an aspherical shape.
  • FIGS. 7A and 7B are graphs showing various aberrations of the zoom lens ZL3 according to Example 3.
  • FIG. 7A is a diagram showing various aberrations at the shooting distance infinite at the wide-angle end state
  • FIG. 7B is shooting at the intermediate focal length state.
  • FIG. 4C is a diagram illustrating various aberrations at an infinite distance
  • FIG. 5C is a diagram illustrating various aberrations at an imaging distance in the telephoto end state.
  • various aberrations including spherical aberration, field curvature, astigmatism, coma and the like are observed in each focal length state from the wide-angle end state to the telephoto end state. It can be seen that the correction is good.
  • FIG. 10 is a diagram illustrating an example of the film configuration of the antireflection film.
  • the antireflection film 101 is composed of seven layers and is formed on the optical surface of the optical member 102 such as a lens.
  • the first layer 101a is formed of aluminum oxide deposited by a vacuum deposition method.
  • a second layer 101b made of a mixture of titanium oxide and zirconium oxide deposited by a vacuum deposition method is further formed on the first layer 101a.
  • a third layer 101c made of aluminum oxide deposited by a vacuum deposition method is formed on the second layer 101b, and titanium oxide and zirconium oxide deposited by a vacuum deposition method are formed on the third layer 101c.
  • a fourth layer 101d made of the mixture is formed.
  • a fifth layer 101e made of aluminum oxide deposited by vacuum deposition is formed on the fourth layer 101d, and titanium oxide and zirconium oxide deposited by vacuum deposition on the fifth layer 101e.
  • a sixth layer 101f made of the mixture is formed.
  • a seventh layer 101g made of a mixture of magnesium fluoride and silica is formed by a wet process to form the antireflection film 101 of this embodiment.
  • a sol-gel method which is a kind of wet process is used.
  • the sol-gel method is a method in which a sol obtained by mixing raw materials is made into a non-flowable gel by hydrolysis / polycondensation reaction, etc., and the gel is heated and decomposed to obtain a product.
  • a film can be formed by applying an optical thin film material sol on the optical surface of an optical member and forming a gel film by drying and solidifying.
  • the wet process is not limited to the sol-gel method, and a method of obtaining a solid film without going through a gel state may be used.
  • the first layer 101a to the sixth layer 101f of the antireflection film 101 are formed by electron beam evaporation which is a dry process, and the seventh layer 101g which is the uppermost layer is prepared by a hydrofluoric acid / magnesium acetate method. It is formed by the following procedure by a wet process using the prepared sol solution.
  • An aluminum oxide layer to be the layer 101c, a titanium oxide-zirconium oxide mixed layer to be the fourth layer 101d, an aluminum oxide layer to be the fifth layer 101e, and a titanium oxide-zirconium oxide mixed layer to be the sixth layer 101f are formed in this order.
  • the sol solution used for this film formation is used for film formation after mixing raw materials and subjecting it to high temperature and pressure aging treatment at 140 ° C. for 24 hours in an autoclave.
  • the optical member 102 is completed by heat treatment at 160 ° C. for 1 hour in the air after the seventh layer 101g is formed.
  • the seventh layer 101g is formed by depositing particles having a size of several nm to several tens of nm leaving a void.
  • optical performance of the optical member having the antireflection film 101 formed in this way will be described using the spectral characteristics shown in FIG.
  • the optical member (lens) having the antireflection film according to this embodiment is formed under the conditions shown in Table 4 below.
  • Table 4 shows that the reference wavelength is ⁇ and the refractive index (optical member) of the substrate is 1.62, 1.74, and 1.85, the respective layers 101a (first layer) to 101g (seventh layer) of the antireflection film 101.
  • the optical film thickness of each layer is determined.
  • aluminum oxide is expressed as Al 2 O 3
  • a mixture of titanium oxide and zirconium oxide is expressed as ZrO 2 + TiO 2
  • a mixture of magnesium fluoride and silica is expressed as MgF 2 + SiO 2 .
  • FIG. 11 shows spectral characteristics when a light beam is vertically incident on an optical member in which the reference wavelength ⁇ in Table 4 is set to 550 nm and the optical film thickness of each layer of the antireflection film 101 is designed.
  • FIG. 11 shows that the optical member having the antireflection film 101 designed with the reference wavelength ⁇ of 550 nm can suppress the reflectance to 0.2% or less over the entire wavelength range of 420 nm to 720 nm. Further, even in the optical member having the antireflection film 101 whose optical film thickness is designed with the reference wavelength ⁇ as the d-line (wavelength 587.6 nm) in Table 4, the spectral characteristics are hardly affected, and the reference wavelength shown in FIG. It has been found that the spectral characteristics are almost the same as when ⁇ is 550 nm.
  • This antireflection film is composed of five layers, and similarly to Table 4, the optical film thickness of each layer with respect to the reference wavelength ⁇ is designed under the conditions shown in Table 5 below.
  • the above-described sol-gel method is used for forming the fifth layer.
  • FIG. 12 shows the spectral characteristics in Table 5 when light rays are perpendicularly incident on an optical member having an antireflection film having a refractive index of 1.52 and a reference wavelength ⁇ of 550 nm and designed for each optical film thickness.
  • the antireflection film of this modification can suppress the reflectance to 0.2% or less over the entire range of the wavelength of light rays from 420 nm to 720 nm.
  • Table 5 even the optical member having the antireflection film whose optical film thickness is designed with the reference wavelength ⁇ as the d-line (wavelength 587.6 nm) hardly affects the spectral characteristics, and the spectral characteristics shown in FIG. It has been found that it has approximately the same characteristics.
  • FIG. 13 shows the spectral characteristics when the incident angles of the light rays to the optical member having the spectral characteristics shown in FIG. 12 are 30, 45, and 60 degrees, respectively. 12 and 13 do not show the spectral characteristics of the optical member having the antireflection film whose refractive index of the substrate shown in Table 5 is 1.46, but the refractive index of the substrate is almost equal to 1.52. Needless to say, it has the following spectral characteristics.
  • FIG. 14 shows an example of an antireflection film formed only by a dry process such as a conventional vacuum deposition method.
  • FIG. 14 shows spectral characteristics when a light beam is perpendicularly incident on an optical member designed with an antireflection film configured under the conditions shown in Table 6 below with a refractive index of 1.52 of the same substrate as in Table 5.
  • FIG. 15 shows the spectral characteristics when the incident angles of the light rays to the optical member having the spectral characteristics shown in FIG. 14 are 30, 45, and 60 degrees, respectively.
  • the corner When comparing the spectral characteristics of the optical member having the antireflection film according to this embodiment shown in FIGS. 11 to 13 with the spectral characteristics of the conventional example shown in FIGS. It can be seen that the corner also has a lower reflectivity and has a lower reflectivity over a wider band.
  • an antireflection film see Table 4 corresponding to the refractive index of the substrate of 1.85 on the lens surface on the object side in L22, reflected light from each lens surface can be reduced, and ghost and flare can be reduced. Can do.
  • the zoom lens according to the present embodiment is not limited thereto.
  • a four-group configuration is shown as a zoom lens, but the present invention can also be applied to other group configurations such as a fifth group and a sixth group. Further, a configuration in which a lens or a lens group is added to the most object side, or a configuration in which a lens or a lens group is added to the most image side may be used.
  • the lens group indicates a portion having at least one lens separated by an air interval that changes at the time of zooming.
  • a single lens group, a plurality of lens groups, or a partial lens group may be moved in the optical axis direction to be a focusing lens group that performs focusing from an object at infinity to a near object.
  • This focusing lens group can be applied to autofocus, and is also suitable for driving a motor for autofocus (using an ultrasonic motor or the like).
  • the second lens group is preferably a focusing lens group.
  • the lens group or the partial lens group is vibrated in a direction perpendicular to the optical axis, or rotated (swinged) in an in-plane direction including the optical axis to correct image blur caused by camera shake.
  • a vibration lens group may be used.
  • the lens surface may be formed as a spherical surface, a flat surface, or an aspheric surface.
  • the lens surface is a spherical surface or a flat surface, lens processing and assembly adjustment are facilitated, and optical performance deterioration due to errors in processing and assembly adjustment can be prevented.
  • the lens surface is aspherical, the aspherical surface is an aspherical surface by grinding, a glass mold aspherical surface that is formed of glass with an aspherical shape, or a composite type nonspherical surface that is formed of a resin on the surface of glass. Any aspherical surface may be used.
  • the lens surface may be a diffractive surface, and the lens may be a gradient index lens (GRIN lens) or a plastic lens.
  • GRIN lens gradient index lens
  • the aperture stop is preferably disposed in the vicinity of the third lens group, but the role may be substituted by a lens frame without providing a member as the aperture stop.
  • each lens surface may be provided with an antireflection film having high transmittance in a wide wavelength region in order to reduce flare and ghost and achieve high optical performance with high contrast.
  • the filter system is small, the filter system is small, the number of components is small, the performance is high, the field curvature, the coma, the spherical aberration, and the astigmatism are small, and ghost and flare are further reduced. It is possible to provide a zoom lens, an imaging apparatus, and a method for manufacturing the zoom lens.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Lenses (AREA)
  • Nonlinear Science (AREA)

Abstract

 光軸に沿って物体側より順に並んだ、正の屈折力を有する第1レンズ群(G1)と、負の屈折力を有する第2レンズ群(G2)と、正の屈折力を有する第3レンズ群(G3)と、正の屈折力を有する第4レンズ群(G4)とを有し、各レンズ群の空気間隔を変化させて変倍を行い、第4レンズ群(G4)は、光軸に沿って物体側より順に並んだ、第1の正レンズ成分(La)と、物体側に凸面を向けた第2の正レンズ成分(Lb)と、負レンズ成分(Lc)とを有し、以下の条件式を満足する。 0.00<(Rb2-Rb1)/(Rb2+Rb1)<1.00 但し、 Rb2:第4レンズ群(G4)を構成する第2の正レンズ成分(Lb)の像側の面の曲率半径、 Rb1:第4レンズ群(G4)を構成する第2の正レンズ成分(Lb)の物体側の面の曲率半径。

Description

ズームレンズ、撮像装置及びズームレンズの製造方法
 本発明は、ズームレンズ、撮像装置及びズームレンズの製造方法に関する。
 従来、小型化されたズームレンズが提案されている(例えば、特許文献1を参照)。
特開平3-75712号公報
 しかしながら、従来のズームレンズは小型化の点で不十分であった。そこで、小型化と高性能化を目指すために各群の屈折力を上げると、収差補正のために逆にレンズ構成が複雑になって構成枚数が増え、目的に反して大型化する傾向があった。
 本発明は、このような問題に鑑みてなされたものであり、小型で、構成枚数が少なく、高性能で、諸収差の少ないズームレンズ、撮像装置及びズームレンズの製造方法を提供することを目的とする。
 第1観点のズームレンズは、光軸に沿って物体側より順に並んだ、正の屈折力を有する第1レンズ群と、負の屈折力を有する第2レンズ群と、正の屈折力を有する第3レンズ群と、正の屈折力を有する第4レンズ群とを有し、各レンズ群の空気間隔を変化させて変倍を行い、前記第4レンズ群は、光軸に沿って物体側より順に並んだ、第1の正レンズ成分と、物体側に凸面を向けた第2の正レンズ成分と、負レンズ成分とを有し、以下の条件式を満足する。
   0.00<(Rb2-Rb1)/(Rb2+Rb1)<1.00
 但し、
 Rb2:前記第4レンズ群を構成する前記物体側に凸面を向けた第2の正レンズ成分の像側の面の曲率半径、
 Rb1:前記第4レンズ群を構成する前記物体側に凸面を向けた第2の正レンズ成分の物体側の面の曲率半径。
 ここで、レンズ成分とは、単レンズ、または、複数枚のレンズが貼り合わされた接合レンズを示す。
 第2観点の撮像装置(例えば、実施形態におけるミラーレスカメラ1)は、第1観点のズームレンズを備える。
 第3観点のズームレンズの製造方法は、光軸に沿って物体側より順に並んだ、正の屈折力を有する第1レンズ群と、負の屈折力を有する第2レンズ群と、正の屈折力を有する第3レンズ群と、正の屈折力を有する第4レンズ群とを有するズームレンズの製造方法であって、各レンズ群の空気間隔を変化させて変倍を行い、前記第4レンズ群は、光軸に沿って物体側より順に並んだ、第1の正レンズ成分と、物体側に凸面を向けた第2の正レンズ成分と、負レンズ成分とを有し、以下の条件式を満足する。
   0.00<(Rb2-Rb1)/(Rb2+Rb1)<1.00
 但し、
 Rb2:前記第4レンズ群を構成する前記物体側に凸面を向けた第2の正レンズ成分の像側の面の曲率半径、
 Rb1:前記第4レンズ群を構成する前記物体側に凸面を向けた第2の正レンズ成分の物体側の面の曲率半径。
 本発明によれば、小型で、構成枚数が少なく、高性能で、諸収差の少ないズームレンズ、撮像装置及びズームレンズの製造方法を提供することができる。
第1実施例に係るズームレンズの構成及び広角端状態(W)から望遠端状態(T)までのズーム軌道を示す図である。 第1実施例に係るズームレンズの諸収差図であり、(a)は広角端状態における撮影距離無限遠での諸収差図であり、(b)は中間焦点距離状態における撮影距離無限遠での諸収差図であり、(c)は望遠端状態における撮影距離無限遠での諸収差図である。 第1実施例に係るズームレンズの構成を示す断面図であって、入射した光線が第1番目のゴースト発生面と第2番目のゴースト発生面で反射する様子の一例を説明する図である。 第2実施例に係るズームレンズの構成及び広角端状態(W)から望遠端状態(T)までのズーム軌道を示す図である。 第2実施例に係るズームレンズの諸収差図であり、(a)は広角端状態における撮影距離無限遠での諸収差図であり、(b)は中間焦点距離状態における撮影距離無限遠での諸収差図であり、(c)は望遠端状態における撮影距離無限遠での諸収差図である。 第3実施例に係るズームレンズの構成及び広角端状態(W)から望遠端状態(T)までのズーム軌道を示す図である。 第3実施例に係るズームレンズの諸収差図であり、(a)は広角端状態における撮影距離無限遠での諸収差図であり、(b)は中間焦点距離状態における撮影距離無限遠での諸収差図であり、(c)は望遠端状態における撮影距離無限遠での諸収差図である。 本実施形態に係るカメラの構成を示す略断面図である。 本実施形態に係るズームレンズの製造方法を説明するためのフローチャートである。 反射防止膜の層構造の一例を示す説明図である。 反射防止膜の分光特性を示すグラフである。 変形例に係る反射防止膜の分光特性を示すグラフである。 変形例に係る反射防止膜の分光特性の入射角度依存性を示すグラフである。 従来技術で作成した反射防止膜の、分光特性を示すグラフである。 従来技術で作成した反射防止膜の、分光特性の入射角度依存性を示すグラフである。
 以下、実施形態について、図面を参照しながら説明する。本実施形態に係るズームレンズZLは、図1に示すように、光軸に沿って物体側より順に並んだ、正の屈折力を有する第1レンズ群G1と、負の屈折力を有する第2レンズ群G2と、正の屈折力を有する第3レンズ群G3と、正の屈折力を有する第4レンズ群G4とを有し、各レンズ群の空気間隔を変化させて変倍を行い、第4レンズ群G4は、光軸に沿って物体側より順に並んだ、第1の正レンズ成分Laと、物体側に凸面を向けた第2の正レンズ成分Lbと、負レンズ成分Lcとを有し、以下の条件式(1)を満足する。
 0.00<(Rb2-Rb1)/(Rb2+Rb1)<1.00…(1)
 但し、
 Rb2:第4レンズ群G4を構成する物体側に凸面を向けた第2の正レンズ成分Lbの像側の面の曲率半径、
 Rb1:第4レンズ群G4を構成する物体側に凸面を向けた第2の正レンズ成分Lbの物体側の面の曲率半径。
 本発明は、正負正正の少なくとも4群を有する多群ズームレンズの小型化に対する有効策を考察したものである。特に、本発明で着目したのは、第4レンズ群G4の構成である。第4レンズ群G4は、正正負の単純な構成で、射出瞳を著しく短くすること無しに、バックフォーカスを短小化し、全長を小型化することに成功した。また、この構成をとることで、高性能化も両立させることが可能である。また、収差補正に最適な形状、焦点距離等を最適な値にすることにより、本発明をより効果的なものにすることが可能である。
 条件式(1)は、第4レンズ群G4中の物体側に凸面を向けた第2の正レンズ成分Lbの形状因子(qファクター)の逆数である。この条件式(1)は、上限値である1.00を境に1.00より大きくなると、レンズの形状が物体側に凸面を向けた平凸形状から両凸形状に変化する。すなわち、1.00を超えると、大きくレンズの形状が変わることが分かる。また、条件式(1)の下限値が0.00を下回ると、すなわちマイナスに転じると、像側に凸面を向けたレンズ形状となり、全く異なる形状になる。このように、条件式(1)は、第4レンズ群G4中の物体側に凸面を向けた第2の正レンズ成分Lbの形状を決定する条件である。
 条件式(1)の上限値を上回る場合、前記の通り、物体側に凸面を向けた第2の正レンズ成分Lbの形状が、最適なメニスカス形状から外れ、物体側に凸面を向けた平凸形状から両凸形状に変化する。このため、物体側に凸面を向けた第2の正レンズ成分Lbの屈折力が増し、結果的に負レンズ成分Lcの屈折力も増加させ、高次の収差の発生を誘導し、コマ収差、像面湾曲が悪化するので好ましくない。また、組み立て時の敏感度も増し、製造難易度も増すので好ましくない。
 条件式(1)の上限値を0.90とすることにより、良好なコマ収差、像面湾曲の補正が可能になる。条件式(1)の上限値を0.88とすることにより、良好なコマ収差、像面湾曲の補正が可能になる。条件式(1)の上限値を0.80とすることにより、良好なコマ収差、像面湾曲の補正が可能になる。
 条件式(1)の上限値を0.70とすることにより、より良好なコマ収差、像面湾曲の補正が可能になる。条件式(1)の上限値を0.65とすることにより、より良好なコマ収差、像面湾曲の補正が可能になる。条件式(1)の上限値を0.60とすることにより、より良好なコマ収差、像面湾曲の補正が可能になり、本実施形態の効果を最大限に発揮できる。
 一方、条件式(1)の下限値を下回る場合、前記の通り、物体側に凸面を向けた第2の正レンズ成分Lbの形状が、最適なメニスカス形状から外れ、像側に凸面を向けたメニスカス形状に変化する。この場合も良好な収差補正を阻害する。特に、球面収差、像面湾曲、非点収差が悪化することとなり好ましくない。
 条件式(1)の下限値を0.05とすることにより、諸収差が良好に補正できる。条件式(1)の下限値を0.10とすることにより、諸収差が良好に補正できる。条件式(1)の下限値を0.15とすることにより、諸収差が良好に補正できる。
 条件式(1)の下限値を0.19とすることにより、諸収差がより良好に補正できる。条件式(1)の下限値を0.20とすることにより、諸収差がより良好に補正できる。条件式(1)の下限値を0.25とすることにより、諸収差がより良好に補正でき、本実施形態の効果を最大限に発揮できる。
 本実施形態に係るズームレンズZLは、第1レンズ群G1および第2レンズ群G2における光学面のうち少なくとも1面に反射防止膜が設けられ(図1では、第1レンズ群G1の正メニスカスレンズL12における像面側のレンズ面(面番号3)と、第2レンズ群G2の負メニスカスレンズL21における物体側のレンズ面(面番号4)が相当)、この反射防止膜はウェットプロセスを用いて形成された層を少なくとも1層含んでいる。このように構成すれば、本実施形態に係るズームレンズZLは、物体からの光が光学面で反射されて生じるゴーストやフレアを低減することができ、高い結像性能を達成することができる。
 本実施形態に係るズームレンズZLにおいて、前記反射防止膜は多層膜であり、ウェットプロセスを用いて形成された層は、多層膜を構成する層のうち最も表面の層であることが好ましい。このように構成すれば、空気との屈折率差を小さくすることができるため、光の反射をより少なくすることが可能になり、ゴーストやフレアをさらに低減させることができる。
 本実施形態に係るズームレンズZLは、ウェットプロセスを用いて形成された層のd線(波長587.6nm)における屈折率をndとしたとき、屈折率ndが1.30以下であることが好ましい。このように構成すれば、空気との屈折率差を小さくすることができるため、光の反射をより少なくすることが可能になり、ゴーストやフレアをさらに低減させることができる。
 本実施形態に係るズームレンズZLにおいて、前記反射防止膜が設けられた光学面は、第1レンズ群G1および第2レンズ群G2における光学面のうち少なくとも1面であり、当該光学面は、(第3レンズ群G3が有する)開口絞りSから見て凹形状の面であることが好ましい。開口絞りSから見て凹形状のレンズ面ではゴーストが発生し易いため、このような面に反射防止膜を形成することでゴーストやフレアを効果的に低減させることができる。
 本実施形態に係るズームレンズZLにおいて、前記反射防止膜が設けられた開口絞りSから見て凹形状のレンズ面は、第1レンズ群G1および第2レンズ群G2に含まれる少なくとも1つのレンズの、像面側のレンズ面であることが好ましい。開口絞りSから見て凹形状のレンズ面にゴーストが発生し易いため、このような面に反射防止膜を形成することでゴーストやフレアを効果的に低減させることができる。
 本実施形態に係るズームレンズZLにおいて、前記反射防止膜が設けられた開口絞りSから見て凹形状のレンズ面は、第1レンズ群G1および第2レンズ群G2に含まれる少なくとも1つのレンズの、物体側のレンズ面であることが好ましい。開口絞りSから見て凹形状のレンズ面にゴーストが発生し易いため、このような面に反射防止膜を形成することでゴーストやフレアを効果的に低減させることができる。
 本実施形態に係るズームレンズZLにおいて、前記反射防止膜が設けられた光学面は、第1レンズ群G1および第2レンズ群G2における光学面のうち少なくとも1面であり、当該光学面は、物体から見て凹形状の面であることが好ましい。物体から見て凹形状のレンズ面ではゴーストが発生し易いため、このような面に反射防止膜を形成することでゴーストやフレアを効果的に低減させることができる。
 本実施形態に係るズームレンズZLにおいて、前記反射防止膜が設けられた物体から見て凹形状のレンズ面は、第1レンズ群G1の物体側から数えて2番目に位置するレンズの、像面側のレンズ面であることが好ましい。物体から見て凹形状のレンズ面にゴーストが発生し易いため、このような面に反射防止膜を形成することでゴーストやフレアを効果的に低減させることができる。
 本実施形態に係るズームレンズZLにおいて、前記反射防止膜が設けられた物体から見て凹形状のレンズ面は、第2レンズ群G2の物体側から数えて2番目に位置するレンズの、物体側のレンズ面であることが好ましい。物体から見て凹形状のレンズ面にゴーストが発生し易いため、このような面に反射防止膜を形成することでゴーストやフレアを効果的に低減させることができる。
 本実施形態に係るズームレンズZLにおいて、前記反射防止膜が設けられた物体から見て凹形状のレンズ面は、第2レンズ群G2の物体側から数えて3番目に位置するレンズの、像面側のレンズ面であることが好ましい。物体から見て凹形状のレンズ面にゴーストが発生し易いため、このような面に反射防止膜を形成することでゴーストやフレアを効果的に低減させることができる。
 本実施形態に係るズームレンズZLにおいて、前記反射防止膜が設けられた物体から見て凹形状のレンズ面は、第2レンズ群G2の物体側から数えて4番目に位置するレンズの、物体側のレンズ面であることが好ましい。物体から見て凹形状のレンズ面にゴーストが発生し易いため、このような面に反射防止膜を形成することでゴーストやフレアを効果的に低減させることができる。
 なお、本実施形態に係るズームレンズZLにおいて、前記反射防止膜は、ウェットプロセスに限らず、ドライプロセス等により形成しても良い。この際、反射防止膜は屈折率が1.30以下となる層を少なくとも1層含むようにすることが好ましい。反射防止膜が、屈折率が1.30以下となる層を少なくとも1層含むようにすることで、反射防止膜をドライプロセス等で形成しても、ウェットプロセスを用いた場合と同様の効果を得ることができる。なおこの時、屈折率が1.30以下になる層は、多層膜を構成する層のうち最も表面側の層であることが好ましい。
 本実施形態のズームレンズZLでは、第4レンズ群G4を構成する負レンズ成分Lcの焦点距離をFcとし、第4レンズ群の焦点距離をF4としたとき、以下の条件式(2)を満足することが好ましい。
   0.45<(-Fc)/F4<3.00 …(2)
 条件式(2)は第4レンズ群G4中の負レンズ成分Lcの焦点距離(絶対値)、言い換えれば負レンズ成分Lcの屈折力を規定する条件である。
 条件式(2)の上限値を上回る場合、負レンズ成分Lcの焦点距離(絶対値)が、第4レンズ群G4の焦点距離に比較して大きくなる。すなわち、負レンズ成分Lcが有する負の屈折力が弱くなることを意味する。この場合、小型化に不利であり、後玉径の増大を招く。無理に小型化進めれば、像面湾曲の悪化、変倍によるコマ収差の変動が増すので好ましくない。
 条件式(2)の上限値を2.50とすることにより、諸収差が良好に補正できる。条件式(2)の上限値を2.20とすることにより、諸収差が良好に補正できる。
 条件式(2)の上限値を2.00とすることにより、諸収差がより良好に補正できる。条件式(2)の上限値を1.90とすることにより、諸収差がより良好に補正でき、本実施形態の効果を最大限に発揮できる。
 一方、条件式(2)の下限値を下回る場合、負レンズ成分Lcの焦点距離(絶対値)が第4レンズ群G4の焦点距離に比較して小さくなる、すなわち、負レンズ成分Lcが有する負の屈折力が強くなることを意味する。この場合、球面収差、像面湾曲、上方コマ収差の画角による変位、変倍による変動が増すので好ましくない。
 条件式(2)の下限値を0.50とすることにより、諸収差が良好に補正できる。条件式(2)の下限値を0.74とすることにより、諸収差が良好に補正できる。
 条件式(2)の下限値を0.80とすることにより、諸収差がより良好に補正できる。条件式(2)の下限値を0.90とすることにより、諸収差がより良好に補正でき、本実施形態の効果を最大限に発揮できる。
 本実施形態のズームレンズZLでは、第4レンズ群G4を構成する第1の正レンズ成分Laと物体側に凸面を向けた第2の正レンズ成分Lbとの合成の焦点距離をFabとし、第4レンズ群G4の焦点距離をF4としたとき、以下の条件式(3)を満足することが好ましい。
   0.10<Fab/F4<2.00 …(3)
 条件式(3)は第4レンズ群G4中の正レンズ成分Laと物体側に凸面を向けた第2の正レンズ成分Lbとの合成の焦点距離、言い換えれば合成の屈折力を規定する条件である。
 条件式(3)の上限値を上回る場合、第1の正レンズ成分Laと物体側に凸面を向けた第2の正レンズ成分Lbとの合成の焦点距離が、第4レンズ群G4の焦点距離に比較して大きくなる。すなわち、合成の屈折力が弱くなることを意味する。この場合、球面収差補正が悪化し、また小型化にも不利となり、結果的に大型化するので好ましくない。
 条件式(3)の上限値を1.80とすることにより、球面収差等の諸収差が良好に補正できる。条件式(3)の上限値を1.50とすることにより、球面収差等の諸収差が良好に補正できる。
 条件式(3)の上限値を1.00とすることにより、球面収差等の諸収差がより良好に補正できる。条件式(3)の上限値を0.80とすることにより、球面収差等の諸収差がより良好に補正できる。条件式(3)の上限値を0.70とすることにより、球面収差等の諸収差がより良好に補正でき、本実施形態の効果を最大限に発揮できる。
 一方、条件式(3)の下限値を下回る場合、第1の正レンズ成分Laと物体側に凸面を向けた第2の正レンズ成分Lbとの合成の焦点距離が、第4レンズ群G4の焦点距離に比較して小さくなる。すなわち、合成の屈折力が強くなることを意味する。結果的に、望遠側の球面収差、上方コマ収差の画角による変位、変倍による変動、像面湾曲の変化が増すので好ましくない。
 条件式(3)の下限値を0.20とすることにより、コマ収差等の諸収差が良好に補正できる。条件式(3)の下限値を0.30とすることにより、コマ収差等の諸収差が良好に補正できる。
 条件式(3)の下限値を0.40とすることにより、コマ収差等の諸収差がより良好に補正できる。条件式(3)の下限値を0.45とすることにより、コマ収差等の諸収差がより良好に補正できる。条件式(3)の下限値を0.50とすることにより、コマ収差等の諸収差がより良好に補正でき、本実施形態の効果を最大限に発揮できる。
 本実施形態のズームレンズZLでは、第2レンズ群G2の焦点距離をF2とし、無限遠合焦時における全系の広角端状態における焦点距離をFwとしたとき、以下の条件式(4)を満足することが好ましい。
   0.30<(-F2)/Fw<2.00 …(4)
 条件式(4)は、第2レンズ群G2の焦点距離、言い換えれば屈折力を規定する条件である。
 条件式(4)の上限値を上回る場合、第2レンズ群G2の焦点距離が大きくなる。すなわち、第2レンズ群G2の屈折力が弱くなることを意味する。この場合、全長が大きくなり、小型化に不利となる。また、収差補正上、同様の変倍比を確保した場合、倍率色収差、像面湾曲の変倍による変動が増すので好ましくない。
 条件式(4)の上限値を1.80とすることにより、諸収差が良好に補正できる。条件式(4)の上限値を1.50とすることにより、諸収差が良好に補正できる。
 条件式(4)の上限値を1.00とすることにより、諸収差がより良好に補正できる。条件式(4)の上限値を0.80とすることにより、諸収差がより良好に補正できる。条件式(4)の上限値を0.70とすることにより、諸収差がより良好に補正でき、本実施形態の効果を最大限に発揮できる。
 一方、条件式(4)の下限値を下回る場合、第2レンズ群G2の焦点距離が小さくなる。すなわち、第2レンズ群G2の屈折力が強くなることを意味する。この場合、特に望遠側の球面色収差、コマ収差の変倍による変動が悪化するので好ましくない。
 条件式(4)の下限値を0.40とすることにより、諸収差が良好に補正できる。条件式(4)の下限値を0.50とすることにより、諸収差が良好に補正できる。
 条件式(4)の下限値を0.52とすることにより、諸収差がより良好に補正できる。条件式(4)の下限値を0.58とすることにより、諸収差がより良好に補正でき、本実施形態の効果を最大限に発揮できる。
 本実施形態のズームレンズZLでは、第4レンズ群G4を構成する負レンズ成分Lcのd線(波長587.6nm)におけるアッベ数をνdcとしたとき、以下の条件式(5)を満足することが好ましい。
   45<νdc<85 …(5)
 条件式(5)は、第4レンズ群G4中の負レンズ成分Lcのアッベ数を規定する条件である。
 条件式(5)の上限値を上回る場合、負レンズ成分Lcのアッベ数が低分散になり、倍率色収差の補正が悪化するので好ましくない。
 条件式(5)の上限値を75とすることにより、色収差が良好に補正できる。条件式(5)の上限値を73とすることにより、色収差が良好に補正できる。
 条件式(5)の上限値を70とすることにより、色収差がより良好に補正できる。条件式(5)の上限値を68とすることにより、色収差がより良好に補正でき、本実施形態の効果を最大限に発揮できる。
 一方、条件式(5)の下限値を下回る場合、負レンズ成分であるLcのアッベ数が高分散になり、やはり倍率色収差、特に倍率色収差の2次分散が悪化するので好ましくない。
 条件式(5)の下限値を50とすることにより、色収差が良好に補正できる。条件式(5)の下限値を52とすることにより、色収差が良好に補正できる。
 条件式(5)の下限値を54とすることにより、色収差がより良好に補正できる。条件式(5)の下限値を58とすることにより、色収差がより良好に補正でき、本実施形態の効果を最大限に発揮できる。
 本実施形態のズームレンズZLでは、無限遠合焦時における全系の広角端状態のバックフォーカスをBfwとし、無限遠合焦時における全系の広角端状態の焦点距離をFwとしたとき、以下の条件式(6)を満足することが好ましい。
   0.5<Bfw/Fw<2.0 …(6)
 条件式(6)は、広角端状態におけるバックフォーカスを規定する条件である。
 条件式(6)の上限値を上回る場合、バックフォーカスが著しく長くなり、小型化に反するので好ましくない。また、収差補正上、このような構造をとる場合、各群をゆるい屈折力で使用するため、像面湾曲の変動が発生しやすいので好ましくない。
 条件式(6)の上限値を1.8とすることにより、諸収差が良好に補正できる。条件式(6)の上限値を1.7とすることにより、諸収差が良好に補正できる。
 条件式(6)の上限値を1.6とすることにより、諸収差がより良好に補正できる。条件式(6)の上限値を1.5とすることにより、諸収差がより良好に補正でき、本実施形態の効果を最大限に発揮できる。
 一方、条件式(6)の下限値を下回る場合、バックフォーカスが著しく短くなり、射出瞳までの距離も短くなるので、デジタルカメラ等に用いる光学系としては好ましくない。また、収差補正上、このような構造をとる場合、各群を強い屈折力で使用するため、コマ収差、像面湾曲の変動が発生しやすいので好ましくない。
 条件式(6)の下限値を0.6とすることにより、諸収差が良好に補正できる。条件式(6)の下限値を0.8とすることにより、諸収差が良好に補正できる。
 条件式(6)の下限値を1.0とすることにより、諸収差がより良好に補正できる。条件式(6)の下限値を1.4とすることにより、諸収差がより良好に補正でき、本実施形態の効果を最大限に発揮できる。
 本実施形態のズームレンズZLにおいて、第4レンズ群G4は、少なくとも1面の非球面を有することが好ましい。この構成により、良好なコマ収差、歪曲収差の補正を実現することができる。
 より好ましくは、本実施形態のズームレンズZLにおいて、第4レンズ群G4を構成する負レンズ成分Lcが、少なくとも1面の非球面を有することが好ましい。この構成により、良好なコマ収差、歪曲収差の補正を実現することができる。
 本実施形態のズームレンズZLにおいて、近距離物体への合焦は、負の屈折力を有する第2レンズ群G2を光軸上で移動させることにより行われることが好ましい。この構成により、近距離収差変動、特に像面湾曲とコマ収差の変動を小さくできるので好ましい。
 図8に、上述のズームレンズZLを備えた撮像装置として、レンズ交換式の所謂ミラーレスカメラ1(以後、単にカメラと記す)の略断面図を示す。このカメラ1において、不図示の物体(被写体)からの光は、撮影レンズ2(本実施形態に係るズームレンズZL)で集光されて、不図示のOLPF(Optical low pass filter:光学ローパスフィルタ)を介して撮像部3の撮像面上に物体(被写体)像を形成する。そして、撮像部3に設けられた光電変換素子により物体(被写体)像が光電変換され、物体(被写体)の画像が生成される。この画像は、カメラ1に設けられたEVF(Electronic view finder:電子ビューファインダ)4に表示される。これにより、撮影者は、EVF4を介して物体(被写体)像を観察することができる。
 また、撮影者によって不図示のレリーズボタンが押されると、撮像部3により光電変換された画像が不図示のメモリに記憶される。このようにして、撮影者は本カメラ1による被写体の撮影を行うことができる。
 なお、カメラ1は、撮影レンズ2(ズームレンズZL)を着脱可能に保持するものでも良く、撮影レンズ2(ズームレンズZL)と一体に成形されるものでも良い。
 ここでは、撮影レンズ2(ズームレンズZL)を備えた撮像装置として、ミラーレスカメラの例を挙げたが、これに限定されるものではなく、例えば、カメラ本体にクイックリターンミラーを有しファインダー光学系を介して物体(被写体)像を観察する一眼レフタイプのカメラであってもよい。
 本カメラ1に撮影レンズ2として搭載した本実施形態に係るズームレンズZLは、後述の各実施例からも分かるように、その特徴的なレンズ構成によって、球面収差、像面湾曲、非点収差及びコマ収差が少なく、大画角を包括する超広角レンズを実現している。従って、本カメラ1は、球面収差、像面湾曲、非点収差及びコマ収差が少なく、大画角を包括して広角撮影可能な撮像装置を実現することができる。
 続いて、図9を参照しながら、上記構成のズームレンズZLの製造方法について概説する。まず、鏡筒内に第1レンズ群G1~第4レンズ群G4を組み込む(ステップS10)。この組み込みステップにおいて、第1レンズ群G1は正の屈折力を持つように、第2レンズ群G2は負の屈折力を持つように、第3レンズ群G3は正の屈折力を持つように、第4レンズ群G4は正の屈折力を持つように、各レンズを配置する。なお、第4レンズ群G4は、光軸に沿って物体側より順に、第1の正レンズ成分Laと、物体側に凸面を向けた第2の正レンズ成分Lbと、負レンズ成分Lcとが配置されるように構成する(ステップS20)。
 ここで、本実施形態におけるレンズ配置の一例を挙げると、第1レンズ群G1として、光軸に沿って物体側から順に、物体側に凸面を向けた負メニスカスレンズL11と正メニスカスレンズL12との接合によりなる接合正レンズを配置し、第2レンズ群G2として、光軸に沿って物体側から順に、物体側に凸面を向けて像側に非球面を有する負メニスカス非球面レンズL21と、両凹レンズL22と、両凸レンズL23と両凹レンズL24との接合によりなる接合正レンズとを配置し、第3レンズ群G3として、光軸に沿って物体側から順に、開口絞りSと、物体側に凸面を向けた正メニスカスレンズL31と、両凸レンズL32と両凹レンズL33との接合によりなる接合正レンズとを配置し、第4レンズ群G4として、光軸に沿って物体側から順に、物体側に凹面を向けた正メニスカスレンズ(請求項の第1の正レンズ成分に相当)Laと、物体側に凸面を向けた正メニスカスレンズ(請求項の第2の正レンズ成分に相当)Lbと、物体側に非球面を有する負レンズLc(請求項の負レンズ成分に相当)とを配置する(図1参照)。
 続いて、広角端状態から望遠端状態まで変倍する際に、各レンズ群の間の空気間隔が可変するように(すなわち、第1レンズ群G1と第2レンズ群G2との間隔が変化し、第2レンズ群G2と第3レンズ群G3との間隔が変化し、第3レンズ群G3と第4レンズ群G4との間隔が変化するように)配置する(ステップS30)。
 そして、第4レンズ群G4を構成する物体側に凸面を向けた第2の正レンズ成分Lbの像側の面の曲率半径をRb2とし、第4レンズ群G4を構成する物体側に凸面を向けた第2の正レンズ成分Lbの物体側の面の曲率半径をRb1としたとき、以下の条件式(1)を満足するように配置する(ステップS40)。
 0.00<(Rb2-Rb1)/(Rb2+Rb1)<1.00…(1)
 以上のような本実施形態に係る製造方法によれば、小型で、構成枚数が少なく、高性能で、諸収差の少ないズームレンズZLを得ることができる。
 以下、本実施形態に係る各実施例について、図面に基づいて説明する。以下に、表1~表3を示すが、これらは第1実施例~第3実施例における各諸元の表である。
 表中の[面データ]において、面番号は光線の進行する方向に沿った物体側からのレンズ面の順序を、Rは各レンズ面の曲率半径を、Dは各光学面から次の光学面(又は像面)までの光軸上の距離である面間隔を、ndはd線(波長587.6nm)に対する屈折率を、νdはレンズの材質のd線に対するアッベ数を、(可変)は可変面間隔を、(絞りS)は開口絞りSを示す。なお、曲率半径Rの欄の「∞」は平面を示す。また、空気の屈折率(d線)1.000000の記載は省略する。
 表中の[非球面データ]には、[面データ]に示した非球面について、その形状を次式(a)で示す。ここで、yは光軸に垂直な方向の高さを、X(y)は高さyにおける光軸方向の変位量(サグ量)を、rは基準球面の曲率半径(近軸曲率半径)を、κは円錐定数を、Anは第n次の非球面係数を示す。なお、「E-n」は「×10-n」を示し、例えば「1.234E-05」は「1.234×10-5」を示す。
  X(y)=(y2/r)/[1+{1-κ(y2/r2)}1/2
        +A4×y4+A6×y6+A8×y8+A10×y10 …(a)
 表中の[各種データ]において、fは焦点距離を、FNoはFナンバーを、ωは半画角(単位:度)を、Yは像高を、TLはレンズ全長を、ΣdはズームレンズZLの最も物体側のレンズ面から最も像側のレンズ面までの光軸上の距離を、BFはバックフォーカスを示す。
 表中の[各群間隔データ]において、無限遠、中間合焦点及び近距離物点での広角端状態、中間焦点距離状態及び望遠端状態の各状態における、Di(但し、iは整数)は第i面と第(i+1)面の可変間隔を示す。
 表中の[ズームレンズ群データ]において、Gは群番号、群初面は各群の最も物体側の面番号を、群焦点距離は各群の焦点距離を示す。
 表中の[条件式]において、上記の条件式(1)~(6)に対応する値を示す。
 以下、全ての諸元値において、掲載されている焦点距離f、曲率半径R、面間隔D、その他の長さ等は、特記のない場合一般に「mm」が使われるが、光学系は比例拡大又は比例縮小しても同等の光学性能が得られるので、これに限られるものではない。また、単位は「mm」に限定されることなく、他の適当な単位を用いることが可能である。
 ここまでの表の説明は全ての実施例において共通であり、以下での説明を省略する。
(第1実施例)
 第1実施例について、図1~図3及び表1を用いて説明する。図1は、第1実施例に係るズームレンズZL(ZL1)の構成及び広角端状態(W)から望遠端状態(T)までのズーム軌道を示す。第1実施例に係るズームレンズZL1は、図1に示すように、光軸に沿って物体側から順に並んだ、正の屈折力を有する第1レンズ群G1と、負の屈折力を有する第2レンズ群G2と、正の屈折力を有する第3レンズ群G3と、正の屈折力を有する第4レンズ群G4とを有し、各レンズ群の空気間隔を変化させて変倍を行う。
 第1レンズ群G1は、光軸に沿って物体側から順に並んだ、物体側に凸面を向けた負メニスカスレンズL11と正メニスカスレンズL12との接合によりなる接合正レンズから構成されている。
 第2レンズ群G2は、光軸に沿って物体側から順に並んだ、物体側に凸面を向けて像側に非球面を有する負メニスカス非球面レンズL21と、両凹レンズL22と、両凸レンズL23と両凹レンズL24との接合によりなる接合正レンズとから構成されている。
 第3レンズ群G3は、光軸に沿って物体側から順に並んだ、開口絞りSと、物体側に凸面を向けた正メニスカスレンズL31と、両凸レンズL32と両凹レンズL33との接合によりなる接合正レンズとから構成されている。
 第4レンズ群G4は、光軸に沿って物体側から順に並んだ、物体側に凹面を向けた正メニスカスレンズLa(請求項の第1の正レンズ成分に相当)と、物体側に凸面を向けた正メニスカスレンズLb(請求項の第2の正レンズ成分に相当)と、物体側に非球面を有する負レンズLc(請求項の負レンズ成分に相当)とから構成されている。
 本第1実施例では、第1レンズ群G1の正メニスカスレンズL12における像面側のレンズ面と、第2レンズ群G2の負メニスカスレンズL21における物体側のレンズ面に後述する反射防止膜が形成されている。
 以下の表1に、第1実施例における各諸元の値を示す。表1における面番号1~22は、図1に示す曲率半径R1~R22の各レンズ面に対応している。第1実施例では、第5面と、第21面とが非球面形状に形成されている。
(表1)
[面データ]
 面番号    R     D     nd    νd
 物面     ∞
  1   44.9802   2.0000   1.846660   23.78
  2   30.6800   4.0000   1.755000   52.29
  3   335.7161   D3(可変)
  4   46.5048   1.0000   1.816000   46.63
 *5    9.6609   3.5000
  6   -23.7772   1.0000   1.816000   46.63
  7   23.5386   0.3000
  8   17.5556   3.5000   1.850260   32.35
  9   -15.6449   1.0000   1.755000   52.29
  10   228.0043   D10(可変)
  11   (絞りS)   0.5280
  12    15.3232   2.0000   1.516800   64.12
  13   1154.3277   0.0660
  14    12.4462   3.0000   1.497820   82.56
  15   -21.9705   1.0000   1.850260   32.35
  16    39.0608   D16(可変)
  17   -18.6716   1.6000   1.518230   58.89
  18   -12.8073   0.1000
  19    12.4847   2.0000   1.516800   64.12
  20    34.3216   0.7000
 *21    60.0000   1.0000   1.516800   64.12
  22    17.7163    BF
 像面     ∞
 
[非球面データ]
第5面
 κ=0.5803,A4=6.81360E-05,A6=2.12992E-06,A8=-3.60026E-08,A10=8.02177E-10
第21面
 κ=-0.1939E+03,A4=-1.53238E-04,A6=-3.21406E-06,A8=8.44333E-09,A10=2.91566E-10
 
[各種データ]
 ズーム比 2.88649
       広角端  中間焦点距離   望遠端
 f  =  18.5   ~ 35.0 ~  53.4
 FNO =  4.11   ~ 5.31  ~  5.88
 ω  =  39.18  ~ 21.77 ~  14.48
 Y  =  14.25  ~ 14.25 ~  14.25
 TL =  70.49  ~ 83.12 ~  96.38
 Σd =  43.38  ~ 43.57 ~  48.55
 BF =  27.12  ~ 39.56 ~  47.83
 
[各群間隔データ]
 無限遠
     広角端   中間焦点距離   望遠端
 F   18.50000   35.00000   53.40000
 D0  0.0000    0.0000    0.0000
 D3  1.86981    9.44802   17.40524
 D10   9.61764    3.41218   0.90752
 D16   3.59458    2.41127   1.94774
 BF  27.11574   39.55664   47.82965
 
中間合焦点
      広角端   中間焦点距離   望遠端
 β   -0.02500   -0.02500   -0.02500
 D0  710.9542   1351.7958   2057.7118
 D3   1.50616    9.18238   17.14278
 D10   9.98129    3.67783    1.16997
 D16   3.59458    2.41127    1.94774
 BF  27.11574   39.55664   47.82965
 
近距離
      広角端   中間焦点距離   望遠端
 β   -0.06015   -0.11196   -0.16377
 D0  279.5082   266.8779   253.6159
 D3   1.00333   8.28255   15.75211
 D10  10.48412    4.57766    2.56065
 D16  3.59458    2.41127    1.94774
 BF  27.11574   39.55664   47.82965
 
[ズームレンズ群データ]
 群番号  群初面  群焦点距離
 G1    1    72.597
 G2    4   -11.880
 G3    12    24.107
 G4    17    41.578
 
[条件式]
 条件式(1): (Rb2-Rb1)/(Rb2+Rb1) = 0.467
 条件式(2): (-Fc)/F4 = 1.131
 条件式(3): Fab/F4 = 0.548
 条件式(4): (-F2)/Fw = 0.643
 条件式(5): νdc = 64.12
 条件式(6): Bfw/Fw = 1.466
 表1に示す諸元の表から、本実施例に係るズームレンズZL1では、上記条件式(1)~(6)を全て満たすことが分かる。
 図2は、第1実施例に係るズームレンズZL1の諸収差図であり、(a)は広角端状態における撮影距離無限遠での諸収差図であり、(b)は中間焦点距離状態における撮影距離無限遠での諸収差図であり、(c)は望遠端状態における撮影距離無限遠での諸収差図である。
 各収差図において、FNOはFナンバーを、Yは像高を、ωは半画角を、dはd線(波長587.6nm)を、gはg線(波長435.8nm)を示す。なお、非点収差図において、実線はサジタル像面を、破線はメリジオナル像面を示す。また、コマ収差図において、実線はメリジオナルコマを示す。以上の収差図の説明は、他の実施例においても同様とし、その説明を省略する。
 各収差図から明らかなように、第1実施例では、広角端状態から望遠端状態までの各焦点距離状態において、球面収差、像面湾曲、非点収差、コマ収差等を含め、諸収差が良好に補正されていることが分かる。
 図3は、第1実施例のズームレンズZLにおいて、物体側から入射した光線BMによりゴーストが発生する状態を示している。図3において、物体側からの光線BMが図示のようにズームレンズZLに入射すると、負メニスカスレンズL21における物体側(すなわち曲率半径R4)のレンズ面(第1番目のゴースト発生面であり、その面番号は4)で反射し、その反射光は正メニスカスレンズL12における像側(すなわち曲率半径R3)のレンズ面(第2番目のゴースト発生面であり、その面番号は3)で再度反射して像面Iに到達し、ゴーストを発生させてしまう。なお、第1番目のゴースト発生面(面番号4)は開口絞りSから見て凹形状のレンズ面であり、第2番目のゴースト発生面(面番号3)は開口絞りSから見て凹形状のレンズ面である。このような面に、より広い波長範囲で広入射角に対応した反射防止膜を形成することで、ゴーストを効果的に低減することができる。
(第2実施例)
 第2実施例について、図4、図5及び表2を用いて説明する。図4は、第2実施例に係るズームレンズZL(ZL2)の構成及び広角端状態(W)から望遠端状態(T)までのズーム軌道を示す。第2実施例に係るズームレンズZL2は、図4に示すように、光軸に沿って物体側から順に並んだ、正の屈折力を有する第1レンズ群G1と、負の屈折力を有する第2レンズ群G2と、正の屈折力を有する第3レンズ群G3と、正の屈折力を有する第4レンズ群G4とを有し、各レンズ群の空気間隔を変化させて変倍を行う。
 第1レンズ群G1は、光軸に沿って物体側から順に並んだ、物体側に凸面を向けた負メニスカスレンズL11と正メニスカスレンズL12との接合によりなる接合正レンズから構成されている。
 第2レンズ群G2は、光軸に沿って物体側から順に並んだ、物体側に凸面を向けて像側に非球面を有する負メニスカス非球面レンズL21と、両凹レンズL22と、両凸レンズL23と両凹レンズL24との接合によりなる接合正レンズとから構成されている。
 第3レンズ群G3は、光軸に沿って物体側から順に並んだ、開口絞りSと、物体側に凸面を向けた正メニスカスレンズL31と、両凸レンズL32と両凹レンズL33との接合によりなる接合正レンズとから構成されている。
 第4レンズ群G4は、光軸に沿って物体側から順に並んだ、物体側に凹面を向けた正メニスカスレンズLa(請求項の第1の正レンズ成分に相当)と、物体側に凸面を向けた正メニスカスレンズLb(請求項の第2の正レンズ成分に相当)と、物体側に非球面を有する負レンズLc(請求項の負レンズ成分に相当)とから構成されている。
 本第2実施例では、第2レンズ群G2の負メニスカスレンズL21における像面側のレンズ面と、第2レンズ群G2の両凹レンズL22における物体側のレンズ面に後述する反射防止膜が形成されている。
 以下の表2に、第2実施例における各諸元の値を示す。表2における面番号1~22は、図4に示す曲率半径R1~R22の各光学面に対応している。第2実施例では、第5面と、第21面とが非球面形状に形成されている。
(表2)
[面データ]
 面番号    R     D     nd    νd
 物面     ∞
  1    45.2359   1.5000   1.846660   23.78
  2   30.6944   4.3000   1.755000   52.29
  3   356.9766   D3(可変)
  4   72.4189   1.0000   1.816000   46.63
 *5   10.5122   3.3000
  6   -43.1510   1.0000   1.816000   46.63
  7   19.0384   0.5000
  8   15.5655   3.5000   1.850260   32.35
  9   -17.5410   1.0000   1.755000   52.29
  10    51.2872   D10(可変)
  11   (絞りS)   0.5280
  12    13.6167   2.0000   1.618000   63.38
  13    43.7716   0.0660
  14    12.6174   3.0000   1.497820   82.56
  15   -20.2019   1.0000   1.850260   32.35
  16    47.9127   D16(可変)
  17   -16.8042   1.6000   1.516800   64.12
  18   -12.4769   0.1000
  19    11.3233   2.0000   1.516800   64.12
  20    34.3216   0.6000
 *21    60.0000   1.0000   1.589130   61.18
  22    17.6665    BF
 像面     ∞
 
[非球面データ]
第5面
 κ=0.5490,A4=6.23785E-05,A6=8.93712E-07,A8=-3.43635E-09,A10=1.85114E-10
第21面
 κ=-0.1427E+03,A4=-1.88342E-04,A6=-3.20208E-06,A8=4.51585E-08,A10=-4.69074E-10
 
[各種データ]
 ズーム比 2.88649
       広角端  中間焦点距離   望遠端
 f  =  18.5   ~ 35.0 ~  53.4
 FNO =   4.14   ~  5.40  ~  5.91
 ω  =  39.11  ~ 21.78 ~  14.49
 Y  =  14.25  ~ 14.25 ~  14.25
 Σd =  43.70  ~ 44.02 ~  48.91
 BF =  27.18   ~ 39.59 ~  47.88
 
[各群間隔データ]
 無限遠
      広角端   中間焦点距離   望遠端
 F   18.50000   35.00000   53.40004
 D0  0.0000    0.0000    0.0000
 D3  1.86219    9.49618   17.40987
 D10  10.30074    4.10170   1.59094
 D16   3.54090    2.42404   1.91149
 BF  27.18454   39.58976   47.88886
 
 中間合焦点
      広角端   中間焦点距離   望遠端
 β   -0.02500   -0.02500   -0.02500
 D0  710.8471  1351.5236   2057.5486
 D3   1.49854   9.22985   17.14723
 D10  10.66439    4.36803    1.85358
 D16  3.54090    2.42404    1.91149
 BF  27.18454   39.58976   47.88886
 
 近距離
      広角端   中間焦点距離   望遠端
 β   -0.06021   -0.11204   -0.16390
 D0  279.1176   266.3943   253.2048
 D3   0.99492   8.32697   15.75439
 D10  11.16801    5.27090    3.24642
 D16  3.54090    2.42404    1.91149
 BF  27.18454   39.58976   47.88886
 
[ズームレンズ群データ]
 群番号  群初面  群焦点距離
 G1    1    72.597
 G2    4   -11.880
 G3    12    24.107
 G4    17    41.578
 
[条件式]
 条件式(1): (Rb2-Rb1)/(Rb2+Rb1) = 0.504
 条件式(2): (-Fc)/F4 = 1.031
 条件式(3): Fab/F4 = 0.538
 条件式(4): (-F2)/Fw = 0.642
 条件式(5): νdc = 61.18
 条件式(6): Bfw/Fw = 1.469
 表2に示す諸元の表から、本実施例に係るズームレンズZL2では、上記条件式(1)~(6)を全て満たすことが分かる。
 図5は、第2実施例に係るズームレンズZL2の諸収差図であり、(a)は広角端状態における撮影距離無限遠での諸収差図であり、(b)は中間焦点距離状態における撮影距離無限遠での諸収差図であり、(c)は望遠端状態における撮影距離無限遠での諸収差図である。各収差図から明らかなように、第2実施例では、広角端状態から望遠端状態までの各焦点距離状態において、球面収差、像面湾曲、非点収差、コマ収差等を含め、諸収差が良好に補正されていることが分かる。
(第3実施例)
 第3実施例について、図6、図7及び表3を用いて説明する。図6は、第3実施例に係るズームレンズZL(ZL3)の構成及び広角端状態(W)から望遠端状態(T)までのズーム軌道を示す。第3実施例に係るズームレンズZL3は、図6に示すように、光軸に沿って物体側から順に並んだ、正の屈折力を有する第1レンズ群G1と、負の屈折力を有する第2レンズ群G2と、正の屈折力を有する第3レンズ群G3と、正の屈折力を有する第4レンズ群G4とを有し、各レンズ群の空気間隔を変化させて変倍を行う。
 第1レンズ群G1は、光軸に沿って物体側から順に並んだ、物体側に凸面を向けた負メニスカスレンズL11と正レンズL12との接合によりなる接合正レンズから構成されている。
 第2レンズ群G2は、光軸に沿って物体側から順に並んだ、物体側に凸面を向けて像側に非球面を有する負メニスカス非球面レンズL21と、両凹レンズL22と、両凸レンズL23と、両凹レンズL24とから構成されている。
 第3レンズ群G3は、光軸に沿って物体側から順に並んだ、開口絞りSと、物体側に凸面を向けた正メニスカスレンズL31と、両凸レンズL32と両凹レンズL33との接合によりなる接合正レンズとから構成されている。
 第4レンズ群G4は、光軸に沿って物体側から順に並んだ、物体側に凹面を向けた正メニスカスレンズL41と負メニスカスレンズL42との接合によりなる接合正レンズLa(請求項の第1の正レンズ成分に相当)と、物体側に凸面を向けた正メニスカスレンズ(請求項の第2の正レンズ成分に相当)Lbと、物体側に非球面を有する負レンズLc(請求項の負レンズ成分に相当)とから構成されている。
 本第3実施例では、第1レンズ群G1の正レンズL12における像面側のレンズ面と、第2レンズ群G2の両凸レンズL23における像面側のレンズ面と両凹レンズL24における物体側のレンズ面とに後述する反射防止膜が形成されている。
 以下の表3に、第3実施例における各諸元の値を示す。表3における面番号1~24は、図6に示す曲率半径R1~R24の各光学面に対応している。第3実施例では、第5面と、第23面とが非球面形状に形成されている。
(表3)
[面データ]
 面番号    R     D     nd    νd
 物面     ∞
  1    53.1301   2.0000   1.846660   23.78
  2    34.4788   4.0000   1.755000   52.29
  3  -1592.1864   D3(可変)
  4   130.1252   1.0000   1.816000   46.63
 *5   11.5930   3.0000
  6   -40.3914   1.0000   1.816000   46.63
  7   17.5015   0.5000
  8   14.9985   3.0000   1.850260   32.35
  9   -19.3436   0.2000
  10   -21.6269   1.0000   1.755000   52.29
  11    42.8910   D11(可変)
  12   (絞りS)   0.5280
  13    13.7052   2.0000   1.516800   64.12
  14   132.6864   0.0660
  15    12.2707   3.0000   1.497820   82.56
  16   -22.2725   1.0000   1.850260   32.35
  17    35.8394   D17(可変)
  18   -84.5308   2.0000   1.755000   52.29
  19   -19.7674   1.0000   1.518230   58.89
  20   -45.5513   0.1000
  21    13.3653   2.0000   1.516800   64.12
  22    28.4375   1.0000
 *23    60.0000   1.0000   1.516800   64.12
  24    22.2132    BF
 像面     ∞
 
[非球面データ]
第5面
 κ=0.6824,A4=7.45410E-05,A6=7.51234E-07,A8=-1.55086E-08,A10=5.32599E-10
第23面
 κ=-0.1946E+03,A4=-1.37031E-04,A6=-4.64625E-06,A8=5.56028E-08,A10=-5.34034E-10
 
[各種データ]
 ズーム比 2.88649
      広角端  中間焦点距離   望遠端
 f  =  18.5   ~ 35.0 ~  53.4
 FNO =   4.10   ~ 5.25  ~  5.88
 ω  =  39.11  ~ 21.75 ~  14.37
 Y  =  14.25  ~ 14.25 ~  14.25
 TL =  72.00  ~ 84.50 ~  97.90
 Σd =  45.75  ~ 45.75 ~  50.93
 BF =  26.25   ~ 38.75 ~  46.97
 
[各群間隔データ]
 無限遠
      広角端   中間焦点距離   望遠端
 F   18.50000   35.00001   53.40000
 D0  0.0000    0.0000    0.0000
 D3  2.27464    9.77066   17.81007
 D11  10.81496    4.60011   2.10484
 D17   3.26792    1.98675   1.62109
 BF  26.25337   38.74673   46.96728
 
 中間合焦点
      広角端   中間焦点距離   望遠端
 β   -0.03333   -0.03333    -0.03333
 D0  525.5011  1001.6009   1523.4126
 D3   1.79090   9.41851    17.46100
 D11  11.29870    4.95226    2.45391
 D17  3.26792    1.98675    1.62109
 BF  26.25337   38.74673    46.96728
 
 近距離
      広角端   中間焦点距離   望遠端
 β   -0.07215   -0.13404   -0.19485
 D0 227.9951   215.5017   202.1027
 D3  1.23868    8.38733   15.85927
 D11  11.85092    5.98343   4.05564
 D17   3.26792    1.98675   1.62109
 BF  26.25337   38.74673   46.96728
 
[ズームレンズ群データ]
 群番号  群初面  群焦点距離
 G1    1    72.597
 G2    4   -11.880
 G3    13    24.107
 G4    18    41.578
 
[条件式]
 条件式(1): (Rb2-Rb1)/(Rb2+Rb1) = 0.361
 条件式(2): (-Fc)/F4 = 1.656
 条件式(3): Fab/F4 = 0.658
 条件式(4): (-F2)/Fw = 0.642
 条件式(5): νdc = 64.12
 条件式(6): Bfw/Fw = 1.419
 表3に示す諸元の表から、本実施例に係るズームレンズZL3では、上記条件式(1)~(6)を全て満たすことが分かる。
 図7は、第3実施例に係るズームレンズZL3の諸収差図であり、(a)は広角端状態における撮影距離無限遠での諸収差図であり、(b)は中間焦点距離状態における撮影距離無限遠での諸収差図であり、(c)は望遠端状態における撮影距離無限遠での諸収差図である。各収差図から明らかなように、第3実施例では、広角端状態から望遠端状態までの各焦点距離状態において、球面収差、像面湾曲、非点収差、コマ収差等を含め、諸収差が良好に補正されていることが分かる。
 次に、実施形態に係るズームレンズに用いられる反射防止膜(多層広帯域反射防止膜とも言う)について説明する。図10は、反射防止膜の膜構成の一例を示す図である。この反射防止膜101は7層からなり、レンズ等の光学部材102の光学面に形成される。第1層101aは真空蒸着法で蒸着された酸化アルミニウムで形成されている。また、この第1層101aの上に更に真空蒸着法で蒸着された酸化チタンと酸化ジルコニウムの混合物からなる第2層101bが形成される。さらに、この第2層101bの上に真空蒸着法で蒸着された酸化アルミニウムからなる第3層101cが形成され、この第3層101cの上に真空蒸着法で蒸着された酸化チタンと酸化ジルコニウムの混合物からなる第4層101dが形成される。またさらに、この第4層101dの上に真空蒸着法で蒸着された酸化アルミニウムからなる第5層101eが形成され、この第5層101eの上に真空蒸着法で蒸着された酸化チタンと酸化ジルコニウムの混合物からなる第6層101fが形成される。
 そして、このようにして形成された第6層101fの上に、ウェットプロセスによりフッ化マグネシウムとシリカの混合物からなる第7層101gが形成されて本実施形態の反射防止膜101が形成される。第7層101gの形成には、ウェットプロセスの一種であるゾル-ゲル法を用いている。ゾル-ゲル法とは、原料を混合することにより得られたゾルを、加水分解・重縮合反応などにより流動性のないゲルとし、このゲルを加熱・分解して生成物を得る方法であり、光学薄膜の作製においては、光学部材の光学面上に光学薄膜材料ゾルを塗布し、乾燥固化によりゲル膜とすることで膜を生成することができる。なお、ウェットプロセスとして、ゾル-ゲル法に限らず、ゲル状態を経ないで固体膜を得る方法を用いるようにしてもよい。
 このように、この反射防止膜101の第1層101a~第6層101fまではドライプロセスである電子ビーム蒸着により形成され、最上層である第7層101gは、フッ酸/酢酸マグネシウム法で調製したゾル液を用いるウェットプロセスにより以下の手順で形成されている。まず、予めレンズ成膜面(上述の光学部材102の光学面)に真空蒸着装置を用いて第1層101aとなる酸化アルミニウム層、第2層101bとなる酸化チタン-酸化ジルコニウム混合層、第3層101cとなる酸化アルミニウム層、第4層101dとなる酸化チタン-酸化ジルコニウム混合層、第5層101eとなる酸化アルミニウム層、第6層101fとなる酸化チタン-酸化ジルコニウム混合層を順に形成する。そして、蒸着装置より光学部材102を取り出した後、フッ酸/酢酸マグネシウム法により調製したゾル液にシリコンアルコキシドを加えたものをスピンコート法により塗布することにより、第7層101gとなるフッ化マグネシウムとシリカの混合物からなる層を形成する。フッ酸/酢酸マグネシウム法によって調製される際の反応式を以下の式(b)に示す。
  2HF+Mg(CH3COO)2 → MgF2+2CH3COOH…(b)
 この成膜に用いたゾル液は、原料混合後、オートクレーブで140℃、24時間高温加圧熟成処理を施した後、成膜に用いられる。この光学部材102は、第7層101gの成膜終了後、大気中で160℃、1時間加熱処理して完成される。このようなゾル-ゲル法を用いることにより、大きさが数nmから数十nmの粒子が空隙を残して堆積することにより第7層101gが形成される。
 このようにして形成された反射防止膜101を有する光学部材の光学的性能について図11に示す分光特性を用いて説明する。
 本実施形態に係る反射防止膜を有する光学部材(レンズ)は、以下の表4に示す条件で形成されている。ここで表4は、基準波長をλとし、基板の屈折率(光学部材)が1.62、1.74及び1.85について反射防止膜101の各層101a(第1層)~101g(第7層)の光学膜厚をそれぞれ求めたものである。なお、表4では、酸化アルミニウムをAl2O3、酸化チタンと酸化ジルコニウム混合物をZrO2+TiO2、フッ化マグネシウムとシリカの混合物をMgF2+SiO2とそれぞれ表している。
 図11は、表4において基準波長λを550nmとして反射防止膜101の各層の光学膜厚を設計した光学部材に光線が垂直入射する時の分光特性を表している。
 図11から、基準波長λを550nmで設計した反射防止膜101を有する光学部材は、光線の波長が420nm~720nmの全域で反射率を0.2%以下に抑えられることが分かる。また、表4において基準波長λをd線(波長587.6nm)として各光学膜厚を設計した反射防止膜101を有する光学部材でも、その分光特性にはほとんど影響せず、図11に示す基準波長λが550nmの場合とほぼ同等の分光特性を有することが分かっている。
(表4)
      物質   屈折率 光学膜厚 光学膜厚 光学膜厚
  媒質  空気    1.00
  第7層 MgF2+SiO2 1.26 0.268λ  0.271λ  0.269λ
  第6層 ZrO2+TiO2 2.12 0.057λ  0.054λ  0.059λ
  第5層 Al2O3   1.65 0.171λ  0.178λ  0.162λ
  第4層 ZrO2+TiO2 2.12 0.127λ  0.13λ   0.158λ
  第3層 Al2O3   1.65 0.122λ  0.107λ  0.08λ
  第2層 ZrO2+TiO2 2.12 0.059λ  0.075λ  0.105λ
  第1層 Al2O3   1.65 0.257λ  0.03λ  0.03λ
 基板の屈折率        1.62    1.74    1.85
 次に、本反射防止膜の変形例について説明する。この反射防止膜は5層からなり、表4と同様、以下の表5で示される条件で基準波長λに対する各層の光学膜厚が設計される。本変形例では、第5層の形成に前述のゾル-ゲル法を用いている。
 図12は、表5において、基板の屈折率が1.52及び基準波長λを550nmとして各光学膜厚を設計した反射防止膜を有する光学部材に光線が垂直入射する時の分光特性を示している。図12から本変形例の反射防止膜は、光線の波長が420nm~720nmの全域で反射率が0.2%以下に抑えられることが分かる。なお、表5において基準波長λをd線(波長587.6nm)として各光学膜厚を設計した反射防止膜を有する光学部材でも、その分光特性にはほとんど影響せず、図12に示す分光特性とほぼ同等の特性を有することが分かっている。
 図13は、図12に示す分光特性を有する光学部材への光線の入射角が30度、45度、60度の場合の分光特性をそれぞれ示す。なお、図12、図13には表5に示す基板の屈折率が1.46の反射防止膜を有する光学部材の分光特性が図示されていないが、基板の屈折率が1.52とほぼ同等の分光特性を有していることは言うまでもない。
(表5)
      物質   屈折率 光学膜厚 光学膜厚
  媒質  空気    1.00
  第5層 MgF2+SiO2 1.26  0.275λ  0.269λ
  第4層 ZrO2+TiO2 2.12  0.045λ  0.043λ
  第3層 Al2O3   1.65  0.212λ  0.217λ
  第2層 ZrO2+TiO2 2.12  0.077λ  0.066λ
  第1層 Al2O3   1.65  0.288λ  0.290λ
 基板の屈折率        1.46   1.52
 また比較のため、図14に、従来の真空蒸着法などのドライプロセスのみで成膜した反射防止膜の一例を示す。図14は、表5と同じ基板の屈折率1.52に以下の表6で示される条件で構成される反射防止膜を設計した光学部材に光線が垂直入射する時の分光特性を示す。また、図15は、図14に示す分光特性を有する光学部材への光線の入射角が30度、45度、60度の場合の分光特性をそれぞれ示す。
(表6)
      物質   屈折率 光学膜厚
  媒質  空気    1.00
  第7層 MgF2   1.39  0.243λ
  第6層 ZrO2+TiO2 2.12  0.119λ
  第5層 Al2O3   1.65  0.057λ
  第4層 ZrO2+TiO2 2.12  0.220λ
  第3層 Al2O3   1.65  0.064λ
  第2層 ZrO2+TiO2 2.12  0.057λ
  第1層 Al2O3   1.65  0.193λ
 基板の屈折率         1.52
 図11~図13で示される本実施形態に係る反射防止膜を有する光学部材の分光特性を、図14および図15で示される従来例の分光特性と比較すると、本反射防止膜はいずれの入射角においてもより低い反射率を有し、しかもより広い帯域で低い反射率を有することが良く分かる。
 次に、本願の第1実施例から第3実施例に、上記表4に示す反射防止膜を適用した例について説明する。
 第1実施例のズームレンズZLにおいて、第1レンズ群G1の正メニスカスレンズL12の屈折率は、表1に示すように、nd=1.755000であり、第2レンズ群G2の負メニスカスレンズL21の屈折率は、nd=1.816000であるため、正メニスカスレンズL12における像面側のレンズ面に基板の屈折率が1.74に対応する反射防止膜101(表4参照)を用い、負メニスカスレンズL21における物体側のレンズ面に、基板の屈折率が1.85に対応する反射防止膜(表4参照)を用いることで各レンズ面からの反射光を少なくでき、ゴーストやフレアを低減することができる。
 第2実施例のズームレンズZLにおいて、第2レンズ群G2の負メニスカスレンズL21の屈折率は、表2に示すように、nd=1.816000であり、第2レンズ群G2の両凹レンズL22の屈折率は、nd=1.816000であるため、負メニスカスレンズL21における像面側のレンズ面に基板の屈折率が1.85に対応する反射防止膜101(表4参照)を用い、両凹レンズL22における物体側のレンズ面に、基板の屈折率が1.85に対応する反射防止膜(表4参照)を用いることで各レンズ面からの反射光を少なくでき、ゴーストやフレアを低減することができる。
 第3実施例のズームレンズZLにおいて、第1レンズ群G1の正レンズL12の屈折率は、表3に示すように、nd=1.755000であり、第2レンズ群G2の両凸レンズL23の屈折率は、nd=1.850260であり、第2レンズ群G2の両凹レンズL24の屈折率はnd=1.755000であるため、正レンズL12における像面側のレンズ面に基板の屈折率が1.74に対応する反射防止膜101(表4参照)を用い、両凸レンズL23における像面側のレンズ面に、基板の屈折率が1.85に対応する反射防止膜(表4参照)を用い、両凹レンズL24における物体側のレンズ面に、基板の屈折率が1.74に対応する反射防止膜(表4参照)を用いることで各レンズ面からの反射光を少なくでき、ゴーストやフレアを低減することができる。
 以上の各実施例によれば、広角端の包括角2ω=78.2°を超え、F4~5.6程度の口径を有し、比較的小型で前玉径が小さく、高性能で球面収差、像面湾曲、非点収差、コマ収差等が良好に補正され、ゴーストやフレアをより低減させたズームレンズが実現できる。なお、上記の各実施例は、本実施形態に係るズームレンズの一具体例を示しているものであり、本実施形態に係るズームレンズはこれらに限定されるものではない。
 上述の実施形態において、以下に記載の内容は、光学性能を損なわない範囲で適宜採用可能である。
 各実施例では、ズームレンズとして4群構成を示したが、5群、6群等の他の群構成にも適用可能である。また、最も物体側にレンズまたはレンズ群を追加した構成や、最も像側にレンズまたはレンズ群を追加した構成でも構わない。ここで、レンズ群とは、変倍時に変化する空気間隔で分離された、少なくとも1枚のレンズを有する部分を示す。
 本実施形態においては、単独または複数のレンズ群、または部分レンズ群を光軸方向に移動させて、無限遠物体から近距離物体への合焦を行う合焦レンズ群としてもよい。この合焦レンズ群は、オートフォーカスにも適用でき、オートフォーカス用の(超音波モーター等を用いた)モーター駆動にも適している。特に、第2レンズ群を合焦レンズ群とするのが好ましい。
 本実施形態において、レンズ群または部分レンズ群を光軸に垂直な方向に振動させ、または光軸を含む面内方向に回転移動(揺動)させて、手ブレによって生じる像ブレを補正する防振レンズ群としてもよい。特に、第3レンズ群の少なくとも一部を防振レンズ群とするのが好ましい。
 本実施形態において、レンズ面は、球面または平面で形成されても、非球面で形成されても構わない。レンズ面が球面または平面の場合、レンズ加工及び組立調整が容易になり、加工及び組立調整の誤差による光学性能の劣化を防げるので好ましい。また、レンズ面が非球面の場合、非球面は、研削加工による非球面、ガラスを型で非球面形状に形成したガラスモールド非球面、ガラスの表面に樹脂を非球面形状に形成した複合型非球面のいずれの非球面でも構わない。また、レンズ面は回折面としてもよく、レンズを屈折率分布型レンズ(GRINレンズ)あるいはプラスチックレンズとしてもよい。
 本実施形態において、開口絞りは第3レンズ群近傍に配置されるのが好ましいが、開口絞りとしての部材を設けずにレンズ枠でその役割を代用してもよい。
 本実施形態において、各レンズ面には、フレアやゴーストを軽減して高コントラストの高い光学性能を達成するために、広い波長域で高い透過率を有する反射防止膜を施してもよい。
 以上説明したように、本発明によれば、小型でフィルター系が小さく、構成枚数が少なく、高性能で、像面湾曲、コマ収差、球面収差及び非点収差が少なく、ゴーストやフレアをより低減させたズームレンズ、撮像装置及びズームレンズの製造方法を提供することができる。
 なお、本発明を分かりやすくするために、実施形態の構成要件を付して説明したが、本発明がこれに限定されるものではないことは言うまでもない。
 ZL(ZL1~ZL3) ズームレンズ
 G1   第1レンズ群
 G2   第2レンズ群
 G3   第3レンズ群
 G4   第4レンズ群
 La   第1の正レンズ成分
 Lb   物体側に凸面を向けた第2の正レンズ成分
 Lc   負レンズ成分
 S    開口絞り
 1    ミラーレスカメラ(撮像装置)
 2    撮影レンズ(ズームレンズ)
 I    像面
 101  反射防止膜
 101a 第1層

Claims (22)

  1.  光軸に沿って物体側より順に並んだ、正の屈折力を有する第1レンズ群と、負の屈折力を有する第2レンズ群と、正の屈折力を有する第3レンズ群と、正の屈折力を有する第4レンズ群とを有し、各レンズ群の空気間隔を変化させて変倍を行い、
     前記第4レンズ群は、光軸に沿って物体側より順に並んだ、第1の正レンズ成分と、物体側に凸面を向けた第2の正レンズ成分と、負レンズ成分とを有し、以下の条件式を満足することを特徴とするズームレンズ。
      0.00<(Rb2-Rb1)/(Rb2+Rb1)<1.00
     但し、
     Rb2:前記第4レンズ群を構成する前記物体側に凸面を向けた第2の正レンズ成分の像側の面の曲率半径、
     Rb1:前記第4レンズ群を構成する前記物体側に凸面を向けた第2の正レンズ成分の物体側の面の曲率半径。
  2.  前記第1レンズ群および前記第2レンズ群における光学面のうち少なくとも1面に反射防止膜が設けられ、
     前記反射防止膜は、ウェットプロセスを用いて形成された層を少なくとも1層含むことを特徴とする請求項1に記載のズームレンズ。
  3.  前記第4レンズ群を構成する前記負レンズ成分の焦点距離をFcとし、前記第4レンズ群の焦点距離をF4としたとき、以下の条件式を満足することを特徴とする請求項1または2に記載のズームレンズ。
       0.45<(-Fc)/F4<3.00
  4.  前記第4レンズ群を構成する前記第1の正レンズ成分と前記物体側に凸面を向けた第2の正レンズ成分との合成の焦点距離をFabとし、前記第4レンズ群の焦点距離をF4としたとき、以下の条件式を満足することを特徴とする請求項1~3のいずれか一項に記載のズームレンズ。
       0.10<Fab/F4<2.00
  5.  前記第2レンズ群の焦点距離をF2とし、無限遠合焦時における全系の広角端状態における焦点距離をFwとしたとき、以下の条件式を満足することを特徴とする請求項1~4のいずれか一項に記載のズームレンズ。
       0.30<(-F2)/Fw<2.00
  6.  前記第4レンズ群を構成する前記負レンズ成分のアッベ数をνdcとしたとき、以下の条件式を満足することを特徴とする請求項1~5のいずれか一項に記載のズームレンズ。
       45<νdc<85
  7.  無限遠合焦時における全系の広角端状態のバックフォーカスをBfwとし、無限遠合焦時における全系の広角端状態の焦点距離をFwとしたとき、以下の条件式を満足することを特徴とする請求項1~6のいずれか一項に記載のズームレンズ。
       0.5<Bfw/Fw<2.0
  8.  前記第4レンズ群は、少なくとも1面の非球面を有することを特徴とする請求項1~7のいずれか一項に記載のズームレンズ。
  9.  前記第4レンズ群を構成する前記負レンズ成分は、少なくとも1面の非球面を有することを特徴とする請求項1~8のいずれか一項に記載のズームレンズ。
  10.  前記ズームレンズの近距離物体への合焦は、負の屈折力を有する前記第2レンズ群を光軸上で移動させることにより行うことを特徴とする請求項1~9のいずれか一項に記載のズームレンズ。
  11.  前記反射防止膜は多層膜であり、
     前記ウェットプロセスを用いて形成された層は、前記多層膜を構成する層のうち最も表面側の層であることを特徴とする請求項2~10のいずれか一項に記載のズームレンズ。
  12.  前記ウェットプロセスを用いて形成された層のd線における屈折率をndとしたとき、ndは1.30以下であることを特徴とする請求項2~11のいずれか一項に記載のズームレンズ。
  13.  前記第3レンズ群は、開口絞りを有し、
     前記反射防止膜が設けられた前記光学面は、前記開口絞りから見て凹形状の面であることを特徴とする請求項2~12のいずれか一項に記載のズームレンズ。
  14.  前記開口絞りから見て凹形状のレンズ面は、前記第1レンズ群および前記第2レンズ群に含まれる少なくとも1つのレンズの、像面側のレンズ面であることを特徴とする請求項13に記載のズームレンズ。
  15.  前記開口絞りから見て凹形状のレンズ面は、前記第1レンズ群および前記第2レンズ群に含まれる少なくとも1つのレンズの、物体側のレンズ面であることを特徴とする請求項13に記載のズームレンズ。
  16.  前記反射防止膜が設けられた前記光学面は、物体から見て凹形状の面であることを特徴とする請求項2~12のいずれか一項に記載のズームレンズ。
  17.  前記物体から見て凹形状のレンズ面は、前記第1レンズ群の物体側から数えて2番目に位置するレンズの、像面側のレンズ面であることを特徴とする請求項16に記載のズームレンズ。
  18.  前記物体から見て凹形状のレンズ面は、前記第2レンズ群の物体側から数えて2番目に位置するレンズの、物体側のレンズ面であることを特徴とする請求項16に記載のズームレンズ。
  19.  前記物体から見て凹形状のレンズ面は、前記第2レンズ群の物体側から数えて3番目に位置するレンズの、像面側のレンズ面であることを特徴とする請求項16に記載のズームレンズ。
  20.  前記物体から見て凹形状のレンズ面は、前記第2レンズ群の物体側から数えて4番目に位置するレンズの、物体側のレンズ面であることを特徴とする請求項16に記載のズームレンズ。
  21.  請求項1~20のいずれか一項に記載のズームレンズを備えたことを特徴とする撮像装置。
  22.  光軸に沿って物体側より順に並んだ、正の屈折力を有する第1レンズ群と、負の屈折力を有する第2レンズ群と、正の屈折力を有する第3レンズ群と、正の屈折力を有する第4レンズ群とを有するズームレンズの製造方法であって、
     各レンズ群の空気間隔を変化させて変倍を行い、
     前記第4レンズ群は、光軸に沿って物体側より順に並んだ、第1の正レンズ成分と、物体側に凸面を向けた第2の正レンズ成分と、負レンズ成分とを有し、
     以下の条件式を満足するように、レンズ鏡筒内に各レンズを組み込むことを特徴とするズームレンズの製造方法。
      0.00<(Rb2-Rb1)/(Rb2+Rb1)<1.00
     但し、
     Rb2:前記第4レンズ群を構成する前記物体側に凸面を向けた第2の正レンズ成分の像側の面の曲率半径、
     Rb1:前記第4レンズ群を構成する前記物体側に凸面を向けた第2の正レンズ成分の物体側の面の曲率半径。
PCT/JP2011/006279 2010-12-07 2011-11-10 ズームレンズ、撮像装置及びズームレンズの製造方法 WO2012077278A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US13/991,975 US9791678B2 (en) 2010-12-07 2011-11-10 Zoom lens, imaging device and method for manufacturing the zoom lens
CN201180059190.9A CN103250084B (zh) 2010-12-07 2011-11-10 变焦镜头、成像设备和制造变焦镜头的方法

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2010272909A JP5267956B2 (ja) 2010-12-07 2010-12-07 ズームレンズ、撮像装置及びズームレンズの製造方法
JP2010-272909 2010-12-07
JP2011043447A JP5333955B2 (ja) 2011-03-01 2011-03-01 ズームレンズ、撮像装置及びズームレンズの製造方法
JP2011-043447 2011-03-01

Publications (1)

Publication Number Publication Date
WO2012077278A1 true WO2012077278A1 (ja) 2012-06-14

Family

ID=46206794

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/006279 WO2012077278A1 (ja) 2010-12-07 2011-11-10 ズームレンズ、撮像装置及びズームレンズの製造方法

Country Status (3)

Country Link
US (1) US9791678B2 (ja)
CN (1) CN103250084B (ja)
WO (1) WO2012077278A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6991706B2 (ja) * 2016-11-30 2022-02-03 キヤノン株式会社 光学素子およびそれを有する光学系

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6060617A (ja) * 1983-09-14 1985-04-08 Asahi Optical Co Ltd 望遠ズ−ムレンズ系
JPH06300967A (ja) * 1993-04-14 1994-10-28 Olympus Optical Co Ltd ズームレンズ
JP2006106191A (ja) * 2004-10-01 2006-04-20 Nikon Corp 防振機能を有するズームレンズ
JP2008233585A (ja) * 2007-03-22 2008-10-02 Nikon Corp ズームレンズ、光学機器、および結像方法
JP2010271362A (ja) * 2009-05-19 2010-12-02 Nikon Corp 変倍光学系、この変倍光学系を有する光学機器、及び、変倍光学系の製造方法

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5735822A (en) * 1980-08-14 1982-02-26 Canon Inc Zoom lens
JPS59180518A (ja) * 1983-03-30 1984-10-13 Nippon Kogaku Kk <Nikon> 4群構成望遠ズ−ムレンズ
JP3104227B2 (ja) 1989-08-18 2000-10-30 株式会社ニコン ズームレンズ
JPH05215966A (ja) * 1992-02-05 1993-08-27 Nikon Corp 大口径比望遠ズームレンズ
JPH063592A (ja) * 1992-06-17 1994-01-14 Nikon Corp 大口径ズームレンズ
JPH07209582A (ja) * 1994-01-18 1995-08-11 Konica Corp プラスチックレンズを用いたズームレンズ
US6621643B2 (en) * 2001-04-25 2003-09-16 Nikon Corporation Zoom lens system
JP4626135B2 (ja) * 2002-10-04 2011-02-02 株式会社ニコン 大口径比内焦式望遠ズームレンズ
US7253965B2 (en) 2004-10-01 2007-08-07 Nikon Corporation Zoom lens system with vibration reduction
JP4874683B2 (ja) 2006-03-22 2012-02-15 富士フイルム株式会社 投写用ズームレンズおよび投写型表示装置
JP5111789B2 (ja) * 2006-06-08 2013-01-09 オリンパスイメージング株式会社 ズームレンズ及びそれを備えた電子撮像装置
JP4864600B2 (ja) 2006-08-11 2012-02-01 富士フイルム株式会社 投写型ズームレンズおよび投写型表示装置
EP1967883B1 (en) * 2007-03-09 2012-11-07 Nikon Corporation Zoom lens of the telephoto type and having four lens groups
JP5063165B2 (ja) 2007-04-06 2012-10-31 キヤノン株式会社 ズームレンズ及び画像投射装置
JP5142829B2 (ja) * 2008-05-30 2013-02-13 キヤノン株式会社 ズームレンズ及びそれを有する撮像装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6060617A (ja) * 1983-09-14 1985-04-08 Asahi Optical Co Ltd 望遠ズ−ムレンズ系
JPH06300967A (ja) * 1993-04-14 1994-10-28 Olympus Optical Co Ltd ズームレンズ
JP2006106191A (ja) * 2004-10-01 2006-04-20 Nikon Corp 防振機能を有するズームレンズ
JP2008233585A (ja) * 2007-03-22 2008-10-02 Nikon Corp ズームレンズ、光学機器、および結像方法
JP2010271362A (ja) * 2009-05-19 2010-12-02 Nikon Corp 変倍光学系、この変倍光学系を有する光学機器、及び、変倍光学系の製造方法

Also Published As

Publication number Publication date
CN103250084B (zh) 2016-08-17
CN103250084A (zh) 2013-08-14
US9791678B2 (en) 2017-10-17
US20130250424A1 (en) 2013-09-26

Similar Documents

Publication Publication Date Title
JP5636668B2 (ja) レンズ系及び光学装置
CN102193175B (zh) 变焦镜头系统和光学设备
US11221469B2 (en) Zooming optical system, optical apparatus, and manufacturing method for the zooming optical system
JP5440760B2 (ja) 変倍光学系、この変倍光学系を有する光学機器
JP5564959B2 (ja) 広角レンズ、撮像装置、広角レンズの製造方法
WO2016117651A1 (ja) 光学系、この光学系を有する撮像装置、及び、光学系の製造方法
CN102346293B (zh) 变焦镜头、光学设备和用于制造变焦镜头的方法
JP5853715B2 (ja) 光学系、この光学系を有する撮像装置、及び、光学系の製造方法
JP2012159746A (ja) 変倍光学系、光学装置、変倍光学系の製造方法
JP2009198855A (ja) 広角レンズ及びこれを有する撮像装置
JP6531402B2 (ja) 光学系、この光学系を有する撮像装置、及び、光学系の製造方法
JP2013109025A (ja) 撮影レンズ、この撮影レンズを有する光学機器、及び、撮影レンズの製造方法
JP6146021B2 (ja) 変倍光学系、光学装置、及び、変倍光学系の製造方法
JP5170616B2 (ja) 広角レンズ、撮像装置、および広角レンズの合焦方法
JP5440560B2 (ja) 変倍光学系、光学装置、変倍光学系の製造方法
JP5712749B2 (ja) ズームレンズ、撮像装置、ズームレンズの製造方法
JP5614310B2 (ja) 変倍光学系、光学装置、変倍光学系の製造方法
JP5333406B2 (ja) 撮影レンズ、光学機器、撮影レンズの製造方法
JP2015084037A (ja) 変倍光学系、光学装置、変倍光学系の製造方法
JP5440810B2 (ja) 光学系、光学装置
JP5464379B2 (ja) 光学系、光学装置
JP5464380B2 (ja) 光学系、光学装置
WO2012077278A1 (ja) ズームレンズ、撮像装置及びズームレンズの製造方法
JP2015084039A (ja) 変倍光学系、光学装置、変倍光学系の製造方法
JP2015084038A (ja) 変倍光学系、光学装置、変倍光学系の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11846846

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13991975

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11846846

Country of ref document: EP

Kind code of ref document: A1