Nothing Special   »   [go: up one dir, main page]

WO2012056508A1 - 内燃機関の燃料噴射システム - Google Patents

内燃機関の燃料噴射システム Download PDF

Info

Publication number
WO2012056508A1
WO2012056508A1 PCT/JP2010/068862 JP2010068862W WO2012056508A1 WO 2012056508 A1 WO2012056508 A1 WO 2012056508A1 JP 2010068862 W JP2010068862 W JP 2010068862W WO 2012056508 A1 WO2012056508 A1 WO 2012056508A1
Authority
WO
WIPO (PCT)
Prior art keywords
fuel
internal combustion
combustion engine
exhaust purification
exhaust
Prior art date
Application number
PCT/JP2010/068862
Other languages
English (en)
French (fr)
Inventor
裕介 中山
徹 木所
裕 澤田
Original Assignee
トヨタ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by トヨタ自動車株式会社 filed Critical トヨタ自動車株式会社
Priority to PCT/JP2010/068862 priority Critical patent/WO2012056508A1/ja
Priority to JP2011528108A priority patent/JP5067510B2/ja
Priority to US13/140,293 priority patent/US8800269B2/en
Priority to BRPI1006136-3A priority patent/BRPI1006136B1/pt
Priority to CN201080003910.5A priority patent/CN103154473B/zh
Priority to EP10841798.1A priority patent/EP2634399B1/en
Publication of WO2012056508A1 publication Critical patent/WO2012056508A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D19/00Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D19/06Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures peculiar to engines working with pluralities of fuels, e.g. alternatively with light and heavy fuel oil, other than engines indifferent to the fuel consumed
    • F02D19/0602Control of components of the fuel supply system
    • F02D19/0613Switch-over from one fuel to another
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N9/00Electrical control of exhaust gas treating apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N13/00Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00
    • F01N13/009Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00 having two or more separate purifying devices arranged in series
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D19/00Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D19/06Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures peculiar to engines working with pluralities of fuels, e.g. alternatively with light and heavy fuel oil, other than engines indifferent to the fuel consumed
    • F02D19/0602Control of components of the fuel supply system
    • F02D19/0613Switch-over from one fuel to another
    • F02D19/0615Switch-over from one fuel to another being initiated by automatic means, e.g. based on engine or vehicle operating conditions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D19/00Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D19/06Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures peculiar to engines working with pluralities of fuels, e.g. alternatively with light and heavy fuel oil, other than engines indifferent to the fuel consumed
    • F02D19/0639Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures peculiar to engines working with pluralities of fuels, e.g. alternatively with light and heavy fuel oil, other than engines indifferent to the fuel consumed characterised by the type of fuels
    • F02D19/0642Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures peculiar to engines working with pluralities of fuels, e.g. alternatively with light and heavy fuel oil, other than engines indifferent to the fuel consumed characterised by the type of fuels at least one fuel being gaseous, the other fuels being gaseous or liquid at standard conditions
    • F02D19/0647Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures peculiar to engines working with pluralities of fuels, e.g. alternatively with light and heavy fuel oil, other than engines indifferent to the fuel consumed characterised by the type of fuels at least one fuel being gaseous, the other fuels being gaseous or liquid at standard conditions the gaseous fuel being liquefied petroleum gas [LPG], liquefied natural gas [LNG], compressed natural gas [CNG] or dimethyl ether [DME]
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D19/00Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D19/06Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures peculiar to engines working with pluralities of fuels, e.g. alternatively with light and heavy fuel oil, other than engines indifferent to the fuel consumed
    • F02D19/08Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures peculiar to engines working with pluralities of fuels, e.g. alternatively with light and heavy fuel oil, other than engines indifferent to the fuel consumed simultaneously using pluralities of fuels
    • F02D19/081Adjusting the fuel composition or mixing ratio; Transitioning from one fuel to the other
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D19/00Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D19/06Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures peculiar to engines working with pluralities of fuels, e.g. alternatively with light and heavy fuel oil, other than engines indifferent to the fuel consumed
    • F02D19/08Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures peculiar to engines working with pluralities of fuels, e.g. alternatively with light and heavy fuel oil, other than engines indifferent to the fuel consumed simultaneously using pluralities of fuels
    • F02D19/082Premixed fuels, i.e. emulsions or blends
    • F02D19/084Blends of gasoline and alcohols, e.g. E85
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0025Controlling engines characterised by use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2570/00Exhaust treating apparatus eliminating, absorbing or adsorbing specific elements or compounds
    • F01N2570/14Nitrogen oxides
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2900/00Details of electrical control or of the monitoring of the exhaust gas treating apparatus
    • F01N2900/06Parameters used for exhaust control or diagnosing
    • F01N2900/16Parameters used for exhaust control or diagnosing said parameters being related to the exhaust apparatus, e.g. particulate filter or catalyst
    • F01N2900/1602Temperature of exhaust gas apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/0807Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents
    • F01N3/0828Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents characterised by the absorbed or adsorbed substances
    • F01N3/0842Nitrogen oxides
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/101Three-way catalysts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D19/00Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D19/06Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures peculiar to engines working with pluralities of fuels, e.g. alternatively with light and heavy fuel oil, other than engines indifferent to the fuel consumed
    • F02D19/0663Details on the fuel supply system, e.g. tanks, valves, pipes, pumps, rails, injectors or mixers
    • F02D19/0686Injectors
    • F02D19/0692Arrangement of multiple injectors per combustion chamber
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/08Exhaust gas treatment apparatus parameters
    • F02D2200/0802Temperature of the exhaust gas treatment apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0025Controlling engines characterised by use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D41/0027Controlling engines characterised by use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures the fuel being gaseous
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/021Introducing corrections for particular conditions exterior to the engine
    • F02D41/0235Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus
    • F02D41/024Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus to increase temperature of the exhaust gas treating apparatus
    • F02D41/0255Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus to increase temperature of the exhaust gas treating apparatus to accelerate the warming-up of the exhaust gas treating apparatus at engine start
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/30Use of alternative fuels, e.g. biofuels

Definitions

  • the present invention relates to a control technique for an internal combustion engine that can use a plurality of types of fuel.
  • a catalyst that adsorbs a specific exhaust gas component for example, nitrogen oxide (NO x ), etc.
  • a specific exhaust gas component for example, nitrogen oxide (NO x ), etc.
  • the maximum value of the exhaust gas component amount that can be adsorbed by such an exhaust purification catalyst (hereinafter referred to as “maximum adsorption amount”) tends to decrease when the temperature of the exhaust purification catalyst is higher than when the temperature is low. .
  • the maximum adsorption amount may become too small before the fuel is switched. There is sex. In this case, the gaseous fuel is consumed in a state where the exhaust emission reduction effect due to the use of the gaseous fuel cannot be sufficiently obtained.
  • the present invention has been made in view of the above circumstances, and an object of the present invention is to provide an exhaust gas component by the first fuel and the exhaust purification catalyst having a characteristic that inhibits adsorption of the exhaust gas component by the exhaust purification catalyst.
  • the consumption of the second fuel is preferably reduced.
  • the present invention includes a first fuel that inhibits adsorption of nitrogen oxides by the exhaust purification catalyst, and a second fuel that does not inhibit adsorption of nitrogen oxides by the exhaust purification catalyst.
  • the fuel is switched by paying attention to the maximum adsorption amount that is the maximum value of the nitrogen oxide amount that can be adsorbed by the exhaust purification catalyst.
  • the present invention provides a fuel injection system for an internal combustion engine in which an exhaust gas purification catalyst that adsorbs nitrogen oxides in exhaust gas when it is in a low temperature state lower than an activation temperature is provided in Either the first fuel that inhibits the phenomenon in which nitrogen oxides are adsorbed on the exhaust purification catalyst or the second fuel that does not inhibit the phenomenon in which nitrogen oxides are adsorbed on the exhaust purification catalyst is supplied to the internal combustion engine.
  • the switching from the second fuel to the first fuel is performed before the exhaust purification catalyst is activated. Therefore, the second fuel is not consumed even after the maximum amount of adsorption of the exhaust purification catalyst is reduced. As a result, it is possible to reduce the consumption of the second fuel while obtaining the effect of reducing the exhaust emission by using the second fuel.
  • the control means switches from the second fuel to the first fuel when the maximum adsorption amount, which is the maximum value of the nitrogen oxide amount that can be adsorbed by the exhaust purification catalyst, is less than the lower limit value.
  • the “lower limit value” corresponds to the maximum adsorption amount when the amount of nitrogen oxide flowing out from the exhaust purification catalyst without being adsorbed by the exhaust purification catalyst becomes equal to the upper limit value of the allowable range.
  • the control means may determine that the maximum adsorption amount of the exhaust purification catalyst has decreased below a lower limit value when the temperature of the exhaust purification catalyst has reached an adsorption limit temperature lower than the activation temperature. Good. That is, the control means may control the supply device so that the switching from the second fuel to the first fuel is performed when the temperature of the exhaust purification catalyst exceeds the adsorption limit temperature lower than the activation temperature. .
  • the maximum amount of adsorption of the exhaust purification catalyst correlates with the temperature of the exhaust purification catalyst. That is, the maximum amount of adsorption of the exhaust purification catalyst is smaller when the temperature of the exhaust purification catalyst is higher than when the temperature is low. Therefore, by setting the temperature of the exhaust purification catalyst when the maximum adsorption amount of the exhaust purification catalyst becomes equal to the lower limit value to the “adsorption limit temperature”, the maximum adsorption amount of the exhaust purification catalyst becomes less than the lower limit value. When this happens, it becomes possible to switch from the second fuel to the first fuel.
  • the NO X sensor When the NO X sensor is disposed in the exhaust passage downstream of the exhaust purification catalyst, when the measured value of the NO X sensor exceeds the allowable limit value, the maximum adsorption amount of the exhaust purification catalyst is less than the lower limit value. It can also be determined that it has dropped.
  • the lower limit value may be set to a smaller value when the alcohol concentration of the first fuel is lower than when the alcohol concentration is low. That is, when the first fuel is a liquid fuel containing alcohol, the adsorption limit temperature may be set to a higher value when the alcohol concentration of the first fuel is higher than when the alcohol concentration is low.
  • the alcohol concentration of the first fuel is high, more substances (for example, non-methane hydrocarbons) are adsorbed to the exhaust gas purification catalyst in preference to nitrogen oxides. Therefore, when the alcohol concentration of the first fuel is high, if the lower limit value is set to a large value (the adsorption limit temperature is set to a low temperature), the second fuel is switched to the first fuel and then the exhaust purification catalyst. The amount of nitrogen oxides adsorbed can be excessively reduced. On the other hand, when the alcohol concentration of the first fuel is high, if the lower limit value is set to a small value (the adsorption limit temperature is set to a high value), the exhaust purification catalyst will not be adsorbed by the exhaust purification catalyst. The amount of nitrogen oxide flowing out can be reduced.
  • the control means switches from the first fuel to the second fuel when the maximum adsorption amount of the exhaust purification catalyst increases to a lower limit value or more after switching from the second fuel to the first fuel.
  • the switching may not be performed. According to such a method, hunting in which switching from the second fuel to the first fuel and switching from the first fuel to the second fuel are alternately repeated is suppressed. As a result, it is possible to more reliably avoid a situation in which the consumption amount of the second fuel increases or the exhaust emission increases.
  • a non-methane hydrocarbon fuel can be used as the first fuel, and a compressed natural gas (CNG) can be used as the second fuel.
  • the burned gas of non-methane hydrocarbon fuel contains a lot of non-methane hydrocarbons.
  • Non-methane hydrocarbons are more likely to be adsorbed by the exhaust purification catalyst than nitrogen oxides. Therefore, when a non-methane hydrocarbon fuel is used, the amount of nitrogen oxides adsorbed on the exhaust purification catalyst is reduced. That is, there is a possibility that the amount of nitrogen oxides actually adsorbed on the exhaust purification catalyst does not reach the maximum adsorption amount.
  • the burned gas of compressed natural gas (CNG) contains almost no non-methane hydrocarbons. Therefore, when natural gas is used, the amount of nitrogen oxides adsorbed on the exhaust purification catalyst is larger than when non-methane hydrocarbon fuel is used.
  • the control means when the remaining amount of the second fuel is large and the operation state of the internal combustion engine is in a light load operation state (for example, an idle operation state), the control means has a maximum adsorption amount of the exhaust purification catalyst.
  • the supply device may be controlled so that the use of the second fuel is continued even after the temperature of the exhaust gas is below the lower limit or after the temperature of the exhaust purification catalyst exceeds the adsorption limit temperature.
  • the internal combustion engine is in a light load operation state (particularly in an idle operation state)
  • fuel consumption is small. Therefore, even when a small amount of the second fuel is used when the remaining amount of the second fuel is large, a situation in which the cruising distance of the second fuel is significantly shortened can be avoided.
  • the first fuel having the characteristic of inhibiting the adsorption of the exhaust gas component by the exhaust purification catalyst and the second fuel having the characteristic of not inhibiting the adsorption of the exhaust gas component by the exhaust purification catalyst are selectively selected.
  • the consumption amount of the second fuel can be suitably reduced.
  • FIG. 1 is a diagram showing a schematic configuration of an internal combustion engine to which the present invention is applied in a first embodiment. It is a figure which shows the relationship between the bed temperature of a 1st exhaust purification apparatus, and the largest adsorption amount. In the case where the gas fuel is used during the cold start of the internal combustion engine, the amount of NO X and bed temperature Metropolitan over time of the first exhaust purification device to be discharged from the amount of NO X in the first exhaust purification device to be discharged from the internal combustion engine It is a figure which shows a change. It is a flowchart which shows the routine which ECU performs when fuel switching control is implemented in a 1st Example.
  • FIG. 1 is a diagram showing a schematic configuration of an internal combustion engine to which the present invention is applied.
  • the internal combustion engine 1 shown in FIG. 1 is a spark ignition type internal combustion engine that can use two types of fuel, liquid fuel and gaseous fuel.
  • liquid fuel non-methane hydrocarbon fuel such as petroleum liquid fuel such as gasoline or mixed liquid fuel in which ethanol or methanol is mixed with petroleum liquid fuel can be used.
  • gaseous fuel compressed natural gas (CNG) can be used.
  • the internal combustion engine 1 is not limited to a spark ignition type internal combustion engine, and may be a compression ignition type internal combustion engine.
  • the piston 3 is slidably loaded in the cylinder 2 of the internal combustion engine 1.
  • the piston 3 is connected to an engine output shaft (crankshaft) via a connecting rod (not shown).
  • the internal combustion engine 1 includes an intake port 4 for introducing fresh air (air) into the cylinder 2 and an exhaust port 5 for discharging burned gas from the cylinder 2.
  • the internal combustion engine 1 includes an intake valve 6 for opening and closing the opening end of the intake port 4 and an exhaust valve 7 for opening and closing the opening end of the exhaust port 5.
  • the intake valve 6 and the exhaust valve 7 are driven to open and close by an intake cam shaft and an exhaust cam shaft (not shown), respectively.
  • the internal combustion engine 1 includes a spark plug 8 for generating a spark as a fire type in the cylinder 2.
  • An intake passage 9 is connected to the intake port 4.
  • the intake passage 9 is a passage for guiding fresh air (air) taken from the atmosphere to the intake port 4.
  • an exhaust passage 10 is connected to the exhaust port 5.
  • the exhaust passage 10 is a passage for discharging burned gas (exhaust gas) flowing out from the exhaust port 5 to the atmosphere after passing through exhaust purification devices 15 and 16 described later.
  • the internal combustion engine 1 is provided with a supply device for selectively supplying liquid fuel and gaseous fuel to the internal combustion engine 1.
  • the supply device includes a first fuel injection valve 11, a first fuel passage 110, a first fuel tank 111, a fuel pump 112, a first cutoff valve 113, a second fuel injection valve 12, and a second fuel passage. 120, a second fuel tank 121, and a regulator 122.
  • the first fuel injection valve 11 and the second fuel injection valve 12 are provided for each cylinder.
  • the first fuel injection valve 11 is attached to the internal combustion engine 1 near the intake port 4 and injects liquid fuel into the intake port 4.
  • the first fuel injection valve 11 communicates with the first fuel tank 111 via the first fuel passage 110.
  • a fuel pump 112 and a first shut-off valve 113 are disposed in the middle of the first fuel passage 110.
  • the fuel pump 112 supplies the liquid fuel stored in the first fuel tank 111 to the first fuel injection valve 11.
  • the first cutoff valve 113 is a device that switches between cutoff and conduction of the first fuel passage 110.
  • the second fuel injection valve 12 is attached to the intake passage 9 in the vicinity of the intake port 4 and injects gaseous fuel into the intake passage 9.
  • the second fuel injection valve 12 communicates with the second fuel tank (CNG cylinder) 121 via the second fuel passage 120.
  • a regulator 122 and a second shut-off valve 123 are disposed in the middle of the second fuel passage 120.
  • the regulator 122 is a device that depressurizes compressed natural gas (CNG) to a predetermined pressure.
  • the second shutoff valve 123 is a device that switches between shutoff and conduction of the second fuel passage 120.
  • a throttle valve 13 is disposed in the intake passage 9 upstream of the second fuel injection valve 12.
  • the throttle valve 13 is a device that adjusts the amount of air introduced into the cylinder 2 by changing the passage cross-sectional area of the intake passage 9.
  • An air flow meter 14 is attached to the intake passage 9 upstream of the throttle valve 13.
  • the air flow meter 14 is a sensor that outputs an electrical signal correlated with the amount of air (mass) flowing through the intake passage 9.
  • a first exhaust purification device 15 is disposed in the exhaust passage 10.
  • the first exhaust purification device 15 contains a three-way catalyst that adsorbs nitrogen oxides (NO x ) in the exhaust when in a low temperature state.
  • the first exhaust purification device 15 corresponds to an exhaust purification catalyst according to the present invention.
  • a second exhaust purification device 16 is disposed in the exhaust passage 10 downstream of the first exhaust purification device 15. Similar to the first exhaust purification device 15, the second exhaust purification device 16 has a catalyst that adsorbs nitrogen oxides (NO X ) in the exhaust.
  • NO X nitrogen oxides
  • An air-fuel ratio sensor 17 is disposed in the exhaust passage 10 upstream from the first exhaust purification device 15.
  • the air-fuel ratio sensor 17 is a sensor that outputs an electrical signal correlated with the air-fuel ratio of the exhaust gas flowing through the exhaust passage 10.
  • An O2 sensor 18 and an exhaust temperature sensor 19 are disposed in the exhaust passage 10 downstream of the second exhaust purification device 16.
  • the O2 sensor 18 is a sensor that outputs an electrical signal correlated with the concentration of oxygen contained in the exhaust gas.
  • the exhaust temperature sensor 19 is a sensor that outputs an electrical signal correlated with the exhaust temperature.
  • the internal combustion engine 1 configured as described above is provided with an electronic control unit (ECU) 20.
  • the ECU 20 is electrically connected to various sensors such as the air flow meter 14, the air-fuel ratio sensor 17, the O2 sensor 18, and the exhaust temperature sensor 19, and is configured to be able to input output signals from the various sensors.
  • the ECU 20 is electrically connected to various devices such as the ignition plug 8, the first fuel injection valve 11, the second fuel injection valve 12, the throttle valve 13, the fuel pump 112, the first cutoff valve 113, and the second cutoff valve 123. It is connected and configured to be able to control various devices in accordance with the output signals of the various sensors described above.
  • the ECU 20 when the internal combustion engine 1 is cold-started, the ECU 20 first supplies gaseous fuel to the internal combustion engine 1 and then switches from gaseous fuel to liquid fuel when a predetermined condition is satisfied. Execute.
  • a method for executing the fuel switching control in this embodiment will be described.
  • the non-methane hydrocarbons are adsorbed to the first exhaust gas purification device 15 in preference to NO X. For this reason, if the amount of non-methane hydrocarbons contained in the exhaust gas increases when the first exhaust gas purification device 15 is in a low temperature state, the amount of NO x adsorbed by the first exhaust gas purification device 15 decreases, and the air enters the atmosphere. the amount of NO X discharged increases.
  • the burned gas of the liquid fuel contains a larger amount of non-methane hydrocarbon than the burned gas of the gaseous fuel (compressed natural gas (CNG)). Therefore, when the liquid fuel is used during the cold start of the internal combustion engine 1, since the amount of NO X adsorbed in the first exhaust gas purification device 15 is decreased, the amount of NO X discharged into the atmosphere more than the amount of regulatory There is a possibility. In contrast, when the gas fuel is used during inter-cold start of the internal combustion engine 1, since the amount of NO X adsorbed in the first exhaust gas purification device 15 can be increased, the amount of NO X discharged into the atmosphere Can be kept below the regulated amount.
  • CNG compressed natural gas
  • the maximum value (maximum adsorption amount) of the NO X amount that can be adsorbed by the first exhaust purification device 15 is higher than when the temperature (bed temperature) of the first exhaust purification device 15 is low, as shown in FIG. Sometimes it tends to be less. Therefore, if the gaseous fuel continues to be used until the temperature of the first exhaust gas purification device 15 becomes high, the consumption amount of the gaseous fuel increases in a state where the exhaust emission reduction effect due to the use of the gaseous fuel is not sufficiently obtained. Further, since the gaseous fuel has a lower energy density than the liquid fuel, the cruising distance when the gaseous fuel is used is likely to be shorter than when the liquid fuel is used.
  • the fuel switching control in the present embodiment is performed in the internal combustion engine fuel injection system that uses gaseous fuel during the cold start of the internal combustion engine 1 before the maximum adsorption amount of the first exhaust purification device 15 falls below the lower limit value. Changed from fuel to liquid fuel.
  • the term "lower limit value" is, NO X amount exhausted without being adsorbed to the first exhaust gas purification device 15 is the maximum amount of adsorption is considered to reach the amount regulation fitting process utilizing an experiment or the like in advance Is a value obtained by
  • the maximum adsorption amount of the first exhaust purification device 15 falls below the lower limit before the first exhaust purification device 15 is activated.
  • the amount of NO X discharged from the internal combustion engine 1 and the amount of NO X discharged from the first exhaust gas purification device 15 and the first exhaust gas purification device The time-dependent change with the bed temperature of 15 is measured.
  • the solid line in FIG. 3 indicates the NO X amount discharged from the internal combustion engine
  • the alternate long and short dash line indicates the NO X emission amount of the first exhaust purification device 15
  • the two-dot chain line indicates the bed temperature of the first exhaust purification device 15. .
  • NO X amount exhausted from the first exhaust gas purification device 15 becomes substantially zero. This is considered that substantially the entire amount of NO X discharged from the internal combustion engine 1 is adsorbed by the first exhaust purification device 15. Thereafter, when the temperature of the first exhaust purification device 15 exceeds the temperature indicated by Tmp0 in FIG. 3, the amount of NO X discharged from the first exhaust purification device 15 starts to increase. This is considered that the maximum adsorption amount began to decrease as the temperature of the first exhaust purification device 15 increased.
  • the temperature of the first exhaust gas purification device 15 reaches Tmp1 (adsorption limit temperature) higher than the TMP0, NO X amount exhausted from the first exhaust gas purification device 15 increases to permitted amount Vreg. That is, the maximum adsorption amount of the first exhaust purification device 15 (the difference between the NO X amount discharged from the internal combustion engine 1 and the NO X amount discharged from the first exhaust purification device 15) decreases to the lower limit value Vnxl. Further, when the bed temperature of the first exhaust gas purification device 15 approaches the activation temperature Tmp2 (> Tmp1), NO X amount exhausted from the first exhaust gas purification device 15 turns to decrease from increase. This is presumed that a part of NO X is reduced by partially activating the first exhaust purification device 15.
  • Tmp1 adsorption limit temperature
  • the maximum adsorption amount of the first exhaust purification device 15 may fall below the lower limit value before the first exhaust purification device 15 is activated. In other words, the amount of NO X discharged from the first exhaust purification device 15 may exceed the regulation value before the first exhaust purification device 15 is activated. Therefore, when the temperature of the first exhaust gas purification device 15 has reached the adsorption limit temperature Tmp1, if performed switching from the gas fuel to liquid fuel, the reducing (NO X emissions in the exhaust emission by the use of gaseous fuels reduction ) And the consumption of gaseous fuel can be reduced. Since the relationship between the adsorption limit temperature Tmp1 and the maximum adsorption amount may slightly vary depending on the environment or the like, the fuel may be switched based on the temperature obtained by subtracting a margin from the adsorption limit temperature Tmp1. Good.
  • the lower limit value or the adsorption limit temperature may be changed according to the alcohol concentration in the liquid fuel.
  • the alcohol concentration of the liquid fuel higher than that when low, the greater the non-methane hydrocarbons are adsorbed to the first exhaust gas purification device 15 in preference to NO X.
  • the alcohol concentration in the liquid fuel is high, it is desirable to set the lower limit value to a smaller value (the adsorption limit temperature is a higher value) than when the alcohol concentration is low.
  • the alcohol concentration contained in the liquid fuel may be detected by attaching an alcohol concentration sensor to the liquid fuel passage from the first fuel tank 111 to the first fuel injection valve 11 or used for air-fuel ratio feedback control. You may estimate from the correction coefficient to be obtained.
  • FIG. 4 is a flowchart showing a routine executed by the ECU 20 when the fuel switching control is performed.
  • This routine is a routine that is stored in advance in the ROM or the like of the ECU 20, and is a routine that is executed by the ECU 20 with a start request of the internal combustion engine 1 (for example, an ignition switch on signal, a switch on signal, etc.) as a trigger.
  • a start request of the internal combustion engine 1 for example, an ignition switch on signal, a switch on signal, etc.
  • the ECU 20 first executes the process of S101. That is, the ECU 20 determines whether or not the first exhaust purification device 15 is in a low temperature state. For example, the ECU 20 has the first exhaust purification device 15 in a low temperature condition on the condition that the cooling water temperature of the internal combustion engine 1 is lower than a predetermined temperature or the measured value of the exhaust temperature sensor 19 is lower than the adsorption limit temperature. Is determined. If a negative determination is made in S101, the ECU 20 ends the execution of this routine. On the other hand, if an affirmative determination is made in S101, the ECU 20 proceeds to S102.
  • the ECU 20 controls the supply device so that the gaseous fuel is supplied to the internal combustion engine 1. Specifically, the ECU 20 stops the fuel pump 112 and stops the supply of liquid fuel by keeping the first shut-off valve 113 and the first fuel injection valve 11 closed. Furthermore, the ECU 20 supplies the gaseous fuel by keeping the second shut-off valve 123 open and opening / closing the second fuel injection valve 12 at an appropriate timing. In this case, the internal combustion engine 1 operates by burning gaseous fuel.
  • the ECU 20 acquires the alcohol concentration in the liquid fuel, and determines the adsorption limit temperature using the acquired alcohol concentration as a parameter. At that time, the ECU 20 sets the adsorption limit temperature higher when the alcohol concentration in the liquid fuel is high than when it is low.
  • the ECU 20 acquires the temperature of the first exhaust purification device 15. At that time, the ECU 20 may use the measured value of the exhaust temperature sensor 19 as an alternative value of the temperature of the first exhaust purification device 15. When a temperature sensor capable of directly measuring the floor temperature of the first exhaust purification device 15 is attached to the first exhaust purification device 15, the ECU 20 uses the measured value of the temperature sensor as the temperature of the first exhaust purification device 15. It may be used.
  • the ECU 20 compares the temperature of the first exhaust purification device 15 acquired in S104 with the adsorption limit temperature set in S103. At this time, if the temperature of the first exhaust purification device 15 is equal to or lower than the adsorption limit temperature, the ECU 20 returns to S104. On the other hand, if the temperature of the first exhaust purification device 15 is higher than the adsorption limit temperature, the ECU 20 proceeds to S106.
  • the ECU 20 controls the supply device so that the fuel used in the internal combustion engine 1 is switched from gaseous fuel to liquid fuel. Specifically, the ECU 20 stops the supply of gaseous fuel by keeping the second fuel injection valve 12 and the second shutoff valve 123 closed. Further, the ECU 20 operates the fuel pump 112 and opens the first shutoff valve 113 to supply the liquid fuel in the first fuel tank 111 to the first fuel injection valve 11. Next, the ECU 20 opens and closes the first fuel injection valve 11 in accordance with the injection timing of each cylinder 2 to supply liquid fuel to each cylinder of the internal combustion engine 1.
  • control means according to the present invention is realized by the ECU 20 executing the routine of FIG. As a result, it is possible to avoid a situation where reduction of the NO X emissions from the use of gaseous fuel is gaseous fuel is consumed in a situation not be sufficiently obtained. Therefore, while obtaining a reduction of the NO X emissions from the use of gaseous fuels, it is possible to reduce the consumption of the gaseous fuel.
  • the fuel switching control is not limited to the cold start time of the internal combustion engine 1, and may be any time as long as the first exhaust purification device 15 is in a low temperature state. In that case, ECU20 should just perform the routine of FIG. 4 mentioned above periodically.
  • the fuel switching control may be hunted. Therefore, switching from the liquid fuel to the gaseous fuel may be prohibited for a certain period after the switching from the gaseous fuel to the liquid fuel is performed.
  • FIG. 5 is a diagram showing a schematic configuration of the internal combustion engine in the present embodiment.
  • the same components as those in FIG. 1 of the first embodiment are denoted by the same reference numerals.
  • a NO X sensor 21 is attached to the exhaust passage 10 of the internal combustion engine 1 instead of the exhaust temperature sensor 19.
  • ECU 20 performs fuel switching control based on the measured value of the NO X sensor 21 instead of the temperature of the first exhaust purification device 15 (NO X amount exhausted from the first exhaust gas purification device 15).
  • FIG. 6 is a flowchart showing a routine executed by the ECU 20 when the fuel switching control is performed.
  • This routine is a routine that is executed by the ECU 20 when a request for starting the internal combustion engine 1 is generated or periodically, as in the routine of FIG. 4 in the first embodiment described above.
  • FIG. 6 the same processes as those in the routine of FIG.
  • the difference between the routine of FIG. 4 and the routine of FIG. 6 is that the processing of S201 to S203 is executed instead of the processing of S103 to S105. That, ECU 20, at S201, sets the permitted amount is the upper limit of the amount of NO X discharged from the first exhaust gas purification device 15. At that time, the ECU 20 sets a larger amount of regulation when the alcohol concentration in the liquid fuel is high than when it is low.
  • the ECU 20 reads the measured value (NO X emission amount) of the NO X sensor 21. Subsequently, ECU 20 proceeds to S203, and compares the permitted amount set by the the NO X emissions were obtained in the S202 S201. At this time, NO X emissions is equal to or less than the permitted amount, ECU 20 returns to S202. On the other hand, if NO X emissions exceeds the amount regulating, ECU 20 proceeds to S106, and controls the supply device to the fuel used in the internal combustion engine 1 is switched from gaseous fuel to liquid fuel.
  • non-adsorption temperature the temperature of the first exhaust purification device 15 when the first exhaust purification device 15 stops adsorbing non-methane hydrocarbons
  • FIG. 7 is a flowchart showing a routine executed by the ECU 20 when the fuel switching control is performed.
  • This routine is a routine that is executed by the ECU 20 when a request for starting the internal combustion engine 1 is generated or periodically, as in the routine of FIG. 4 in the first embodiment described above.
  • the same reference numerals are given to the same processes as those in the routine of FIG.
  • the difference between the routine of FIG. 4 and the routine of FIG. 7 is that the processes of S301 and S302 are executed instead of the processes of S103 to S105. That is, the ECU 20 proceeds to S301 after executing the process of S102, and acquires the temperature of the first exhaust purification device 15 (measured value of the exhaust temperature sensor 19).
  • the ECU 20 proceeds to S302, and compares the temperature of the first exhaust purification device 15 acquired in S301 with the non-adsorption temperature. Note that the non-adsorption temperature is experimentally determined in advance. When the temperature of the first exhaust purification device 15 is equal to or lower than the non-adsorption temperature, the ECU 20 returns to S301. On the other hand, when the temperature of the first exhaust purification device 15 is higher than the non-adsorption temperature, the ECU 20 proceeds to S106 and controls the supply device to change the fuel used in the internal combustion engine 1 from gaseous fuel to liquid fuel.
  • FIG. 8 is a diagram showing a schematic configuration of the internal combustion engine in the present embodiment.
  • the same components as those in FIG. 1 of the first embodiment described above are denoted by the same reference numerals.
  • the second fuel tank 121 is provided with a remaining amount sensor 124 that outputs an electric signal correlated with the amount of gaseous fuel stored in the second fuel tank 121.
  • the ECU 20 is electrically connected to an accelerator position sensor 22 for measuring an operation amount (accelerator opening) of an accelerator pedal (not shown).
  • the difference between the fuel switching control in this embodiment and the fuel switching control in the first embodiment described above is that the remaining amount of gaseous fuel (the amount of gaseous fuel stored in the second fuel tank 121) is different.
  • the internal combustion engine 1 is in the idling operation state when the amount is equal to or greater than the predetermined amount, the use of the gaseous fuel is continued even after the condition for switching from the gaseous fuel to the liquid fuel is satisfied.
  • the consumption amount of gaseous fuel is reduced. Therefore, even if the use of a small amount of the gaseous fuel is continued when the remaining amount of the gaseous fuel is large, a situation in which the cruising distance of the gaseous fuel is significantly shortened can be avoided. Further, since there is a high possibility that the operation of the internal combustion engine 1 is stopped when the internal combustion engine 1 is in an idle operation state, the amount of non-methane hydrocarbons adsorbed by the first exhaust purification device 15 by using gaseous fuel When is reduced, it is possible to avoid a situation in which the amount of NO X that can be adsorbed by the first exhaust purification device 15 at the next start is excessively reduced.
  • FIG. 9 is a flowchart showing a routine executed by the ECU 20 when the fuel switching control is performed.
  • This routine is a routine that is executed by the ECU 20 when a request for starting the internal combustion engine 1 is generated or periodically, as in the routine of FIG. 4 in the first embodiment described above.
  • the same reference numerals are given to the same processes as those in the routine of FIG.
  • the difference between the routine of FIG. 4 and the routine of FIG. 9 is that the processing of S401 to S403 is executed when an affirmative determination is made in S105. That is, if an affirmative determination is made in S105, the ECU 20 proceeds to S401, and reads the measurement value (remaining amount of gaseous fuel) of the remaining amount sensor 124.
  • the ECU 20 proceeds to S402, and determines whether or not the remaining amount of the gaseous fuel acquired in S401 is a predetermined amount or more.
  • the “predetermined amount” referred to here is an amount that is considered to be sufficient for the gaseous fuel in the second fuel tank 121 even if the gaseous fuel continues to be used during the idling operation of the internal combustion engine 1. This is the amount determined by the conforming process. If a negative determination is made in S402, the ECU 20 proceeds to S106 and controls the supply device to switch the fuel used in the internal combustion engine 1 from gaseous fuel to liquid fuel. On the other hand, if a positive determination is made in S402, the ECU 20 proceeds to S403.
  • the ECU 20 determines whether or not the internal combustion engine 1 is in an idling operation state. For example, the ECU 20 determines whether or not the measured value (accelerator opening) of the accelerator position sensor 22 is zero. If a negative determination is made in S403, the ECU 20 proceeds to S106 and controls the supply device to switch the fuel used by the internal combustion engine 1 from gaseous fuel to liquid fuel. On the other hand, if a positive determination is made in S403, the ECU 20 returns to S401. In that case, the internal combustion engine 1 continues to be operated by the gaseous fuel.
  • the amount of non-methane hydrocarbons adsorbed by the first exhaust purification device 15 can be suppressed to a low level. As a result, it is possible to avoid a situation in which the amount of NOX that can be adsorbed by the first exhaust purification device 15 is reduced at the next start.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Toxicology (AREA)
  • Exhaust Gas After Treatment (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Abstract

 本発明は、排気浄化用触媒による排気ガス成分の吸着を阻害する特性を有する第1燃料と排気浄化用触媒による排気ガス成分の吸着を阻害しない特性を有する第2燃料とを選択的に使用可能な内燃機関の燃料噴射システムにおいて、第2燃料の消費量を好適に低減することを課題とする。この課題を解決するために、本発明に係わる内燃機関の燃料噴射システムは、排気浄化用触媒が低温状態にあるときに、先ず第2燃料が内燃機関に供給され、その後の排気浄化用触媒が活性温度へ昇温する前に第2燃料から第1燃料への切り替えが行われるようにした。

Description

内燃機関の燃料噴射システム
 本発明は、複数種の燃料を使用可能な内燃機関の制御技術に関する。
 近年、複数種の燃料により運転可能な内燃機関が開発されている。このような内燃機関において、始動時から排気浄化用触媒が活性するまでの期間は気体燃料(CNG)を使用し、排気浄化用触媒が活性した後は液体燃料(ガソリン)を使用する技術が提案されている(たとえば、特許文献1を参照)。
 また、内燃機関が冷間状態にあるときは気体燃料(CNG)を使用し、内燃機関の暖機完了後は液体燃料(ガソリン)を使用する技術も提案されている(たとえば、特許文献2を参照)。
特開2002-038980号公報 特開2000-213394号公報
 ところで、内燃機関の排気通路に配置される排気浄化用触媒として、低温状態にあるときに特定の排気ガス成分(たとえば、窒素酸化物(NO)など)を吸着する触媒が使用される場合がある。このような排気浄化用触媒が吸着可能な排気ガス成分量の最大値(以下、「最大吸着量」と称する)は、該排気浄化用触媒の温度が低いときより高いときに少なくなる傾向がある。そのため、排気浄化用触媒の活性状態や内燃機関の暖機状態をパラメータとして、気体燃料から液体燃料への切り替えが行われると、燃料の切り替えが行われる前に前記最大吸着量が過少となる可能性がある。その場合、気体燃料の使用による排気エミッションの低減効果を十分に得られない状態で気体燃料が消費されることになる。
 本発明は、上記したような実情に鑑みてなされたものであり、その目的は、排気浄化用触媒による排気ガス成分の吸着を阻害する特性を有する第1燃料と排気浄化用触媒による排気ガス成分の吸着を阻害しない特性を有する第2燃料とを選択的に使用可能な内燃機関の燃料噴射システムにおいて、第2燃料の消費量を好適に低減することにある。
 本発明は、上記した課題を解決するために、排気浄化用触媒による窒素酸化物の吸着を阻害する第1燃料と、排気浄化用触媒による窒素酸化物の吸着を阻害しない第2燃料と、を使用可能な内燃機関の燃料噴射システムにおいて、排気浄化用触媒が吸着可能な窒素酸化物量の最大値である最大吸着量に着目して燃料の切り替えを行うようにした。
 本願発明者が鋭意の実験および検証を行った結果、排気浄化用触媒の最大吸着量は、排気浄化用触媒が活性するより前に比較的少なくなることがわかった。そのため、排気浄化用触媒が活性するまで第2燃料が使用されると、第2燃料の使用による排気エミッション低減効果が十分に得られない状況下で第2燃料が消費される可能性がある。
 そこで、本発明は、活性温度より低い低温状態にあるときに排気中の窒素酸化物を吸着する排気浄化用触媒が排気系に設けられた内燃機関の燃料噴射システムにおいて、
 窒素酸化物が前記排気浄化用触媒に吸着される現象を阻害する第1燃料、または窒素酸化物が前記排気浄化用触媒に吸着される現象を阻害しない第2燃料の何れか一方を内燃機関へ供給する供給装置と、
 前記排気浄化用触媒が低温状態にあるときに、先ず第2燃料が内燃機関に供給され、その後の前記排気浄化用触媒が活性温度へ昇温する前に第2燃料から第1燃料への切り替えが行われるように前記供給装置を制御する制御手段と、
を備えるようにした。
 かかる発明によれば、排気浄化用触媒が活性する前に第2燃料から第1燃料への切り替えが行われる。そのため、排気浄化用触媒の最大吸着量が少なくなった後も第2燃料が消費されることがなくなる。その結果、第2燃料の使用による排気エミッションの低減効果を得つつ、第2燃料の消費量を少なく抑えることができる。
 本発明に係わる制御手段は、排気浄化用触媒が吸着可能な窒素酸化物量の最大値である最大吸着量が下限値未満となったときに、第2燃料から第1燃料への切り替えが行われるように前記供給装置を制御するようにしてもよい。ここでいう「下限値」は、排気浄化用触媒により吸着されずに該排気浄化用触媒から流出する窒素酸化物量が許容範囲の上限値と等しくなるときの最大吸着量に相当する。このような方法により第2燃料から第1燃料への切り替えが行われると、排気浄化用触媒の最大吸着量が下限値未満になったときに第2燃料が使用されなくなる。
 本発明に係わる制御手段は、排気浄化用触媒の温度が活性温度より低い吸着限界温度に達したときに、排気浄化用触媒の最大吸着量が下限値未満に低下したと判定するようにしてもよい。すなわち、制御手段は、排気浄化用触媒の温度が活性温度より低い吸着限界温度を超えたときに、第2燃料から第1燃料への切り替えが行われるように前記供給装置を制御してもよい。
 排気浄化用触媒の最大吸着量は、該排気浄化用触媒の温度と相関する。すなわち、排気浄化用触媒の最大吸着量は、該排気浄化用触媒の温度が低いときより高いときの方が少なくなる。よって、排気浄化用触媒の最大吸着量が前記下限値と等しくなるときの排気浄化用触媒の温度を「吸着限界温度」に設定することにより、排気浄化用触媒の最大吸着量が下限値未満になったときに第2燃料から第1燃料への切り替えを行うことが可能になる。
 なお、排気浄化用触媒より下流の排気通路にNOセンサが配置される場合は、NOセンサの測定値が許容限界値を超えたときに、排気浄化用触媒の最大吸着量が下限値未満に低下したと判定することもできる。
 ここで、第1燃料がアルコールを含む液体燃料である場合は、前記下限値は、第1燃料のアルコール濃度が低いときより高いときの方が小さい値に設定されてもよい。すなわち、第1燃料がアルコールを含む液体燃料である場合は、前記吸着限界温度は、第1燃料のアルコール濃度が低いときより高いときの方が高い値に設定されてもよい。
 第1燃料のアルコール濃度が高いときは低いときに比べ、窒素酸化物に優先して排気浄化用触媒に吸着される物質(たとえば、非メタン炭化水素など)が多くなる。そのため、第1燃料のアルコール濃度が高いときに下限値が大きい値に設定(吸着限界温度が低い温度に設定)されると、第2燃料から第1燃料へ切り替えられた後に排気浄化用触媒へ吸着される窒素酸化物の量が過剰に少なくなる可能性がある。これに対し、第1燃料のアルコール濃度が高いときに下限値が小さい値に設定(吸着限界温度が高い値に設定)されると、排気浄化用触媒に吸着されずに該排気浄化用触媒から流出する窒素酸化物の量を少なく抑えることができる。
 本発明に係わる制御手段は、第2燃料から第1燃料への切り替えが行われた後に、排気浄化用触媒の最大吸着量が下限値以上に増加したときは、第1燃料から第2燃料への切り替えを行わないようにしてもよい。このような方法によれば、第2燃料から第1燃料への切り替えと第1燃料から第2燃料への切り替えとが交互に繰り返されるハンチングが抑制される。その結果、第2燃料の消費量が増加したり、或いは排気エミッションが増加したりする事態をより確実に回避することができる。
 本発明において、第1燃料としては非メタン系の炭化水素燃料を用いることができるとともに、第2燃料としては圧縮天然ガス(CNG)を用いることができる。非メタン系の炭化水素燃料の既燃ガス中には、非メタン炭化水素が多く含まれる。非メタン炭化水素は、窒素酸化物に比して排気浄化用触媒に吸着され易い。そのため、非メタン系の炭化水素燃料が使用された場合は、排気浄化用触媒に吸着される窒素酸化物の量が少なくなる。つまり、排気浄化用触媒に実際に吸着される窒素酸化物の量が最大吸着量に達しない可能性がある。一方、圧縮天然ガス(CNG)の既燃ガス中には、非メタン炭化水素が殆ど含まれない。そのため、天然ガスが使用された場合は非メタン系の炭化水素燃料が使用された場合に比べ、排気浄化用触媒に吸着される窒素酸化物の量が多くなる。
 よって、本発明における第1燃料として非メタン系の炭化水素燃料が使用され、第2燃料として圧縮天然ガス(CNG)が使用されると、窒素酸化物の排出量の増加を抑制しつつ、圧縮天然ガス(CNG)の消費量を少なく抑えることができる。
 なお、本発明において、制御手段は、第2燃料の残量が多く、且つ内燃機関の運転状態が軽負荷運転状態(たとえば、アイドル運転状態)にあるときは、排気浄化用触媒の最大吸着量が下限値を下回った後、もしくは排気浄化用触媒の温度が吸着限界温度を上回った後も第2燃料の使用を継続するように供給装置を制御してもよい。内燃機関が軽負荷運転状態にあるとき(特にアイドル運転状態にあるとき)は、燃料消費量が少ない。よって、第2燃料の残量が多いときに第2燃料の少量の使用が継続されても、第2燃料の航続距離が大幅に短縮される事態を回避することができる。また、内燃機関の運転を停止させる方法としては、該内燃機関がアイドル運転状態にあるときにイグニションスイッチをオフにする方法が一般的である。そのため、内燃機関がアイドル運転状態にあるときに第2燃料が使用されると、該内燃機関の運転停止時において排気浄化用触媒に吸着されている非メタン炭化水素を可及的に少なくすることができる。その結果、次回の始動時に排気浄化用触媒が吸着可能な窒素酸化物量を多くすることができる。
 本発明によれば、排気浄化用触媒による排気ガス成分の吸着を阻害する特性を有する第1燃料と排気浄化用触媒による排気ガス成分の吸着を阻害しない特性を有する第2燃料とを選択的に使用可能な内燃機関の燃料噴射システムにおいて、第2燃料の消費量を好適に低減することができる。
第1の実施例において本発明を適用する内燃機関の概略構成を示す図である。 第1排気浄化装置の床温と最大吸着量との関係を示す図である。 内燃機関の冷間始動時に気体燃料が使用された場合において、内燃機関から排出されるNO量と第1排気浄化装置から排出されるNO量と第1排気浄化装置の床温との経時変化を示す図である。 第1の実施例において燃料切り替え制御が実施される際にECUが実行するルーチンを示すフローチャートである。 第2の実施例において本発明を適用する内燃機関の概略構成を示す図である。 第2の実施例において燃料切り替え制御が実施される際にECUが実行するルーチンを示すフローチャートである。 第3の実施例において燃料切り替え制御が実施される際にECUが実行するルーチンを示すフローチャートである。 第4の実施例において本発明を適用する内燃機関の概略構成を示す図である。 第4の実施例において燃料切り替え制御が実施される際にECUが実行するルーチンを示すフローチャートである。
 以下、本発明の具体的な実施形態について図面に基づいて説明する。本実施形態に記載される構成部品の寸法、材質、形状、相対配置等は、特に記載がない限り発明の技術的範囲をそれらのみに限定する趣旨のものではない。
 <実施例1>
 先ず、本発明の第1の実施例について図1乃至図4に基づいて説明する。図1は、本発明が適用される内燃機関の概略構成を示す図である。
 図1に示す内燃機関1は、液体燃料と気体燃料の2種類の燃料を使用可能な火花点火式内燃機関である。ここでいう液体燃料としては、ガソリン等の石油系液体燃料、またはエタノールやメタノール等が石油系液体燃料に混合された混合液体燃料などの非メタン炭化水素燃料を用いることができる。また、気体燃料としては、圧縮天然ガス(CNG)を用いることができる。なお、内燃機関1は、火花点火式の内燃機関に限られず、圧縮着火式の内燃機関であってもよい。
 内燃機関1の気筒2には、ピストン3が摺動自在に装填されている。ピストン3は、図示しないコネクティングロッドを介して機関出力軸(クランクシャフト)に連結されている。内燃機関1は、気筒2内へ新気(空気)を導入するための吸気ポート4と、気筒2内から既燃ガスを排出するための排気ポート5と、を備えている。内燃機関1は、吸気ポート4の開口端を開閉するための吸気バルブ6と、排気ポート5の開口端を開閉するための排気バルブ7と、を備えている。吸気バルブ6と排気バルブ7は、図示しないインテークカムシャフトとエキゾーストカムシャフトによりそれぞれ開閉駆動される。また、内燃機関1は、気筒2内に火種としての火花を発生させるための点火プラグ8を備えている。
 前記吸気ポート4には、吸気通路9が接続されている。吸気通路9は、大気中から取り込んだ新気(空気)を吸気ポート4へ導くための通路である。一方、前記排気ポート5には、排気通路10が接続されている。排気通路10は、排気ポート5から流出する既燃ガス(排気)を後述する排気浄化装置15,16などを経由させた後に大気中へ排出させるための通路である。
 ここで、内燃機関1には、液体燃料と気体燃料を選択的に内燃機関1へ供給するための供給装置が設けられている。供給装置は、第1燃料噴射弁11と、第1燃料通路110と、第1燃料タンク111と、燃料ポンプ112と、第1遮断弁113と、第2燃料噴射弁12と、第2燃料通路120と、第2燃料タンク121と、レギュレータ122と、を備えている。なお、第1燃料噴射弁11と第2燃料噴射弁12は、それぞれ気筒毎に設けられるものとする。
 第1燃料噴射弁11は、吸気ポート4近傍の内燃機関1に取り付けられ、吸気ポート4内へ液体燃料を噴射する。第1燃料噴射弁11は、第1燃料通路110を介して第1燃料タンク111に連通している。第1燃料通路110の途中には、燃料ポンプ112と第1遮断弁113が配置されている。燃料ポンプ112は、第1燃料タンク111に貯留されている液体燃料を第1燃料噴射弁11へ供給する。第1遮断弁113は、第1燃料通路110の遮断と導通を切り替える機器である。
 第2燃料噴射弁12は、前記吸気通路9における前記吸気ポート4の近傍に取り付けられ、吸気通路9内へ気体燃料を噴射する。第2燃料噴射弁12は、第2燃料通路120を介して第2燃料タンク(CNGボンベ)121に連通している。第2燃料通路120の途中には、レギュレータ122と第2遮断弁123が配置されている。レギュレータ122は、圧縮天然ガス(CNG)を所定の圧力まで減圧する機器である。第2遮断弁123は、第2燃料通路120の遮断と導通を切り替える機器である。
 次に、前記第2燃料噴射弁12より上流の吸気通路9には、スロットル弁13が配置されている。スロットル弁13は、吸気通路9の通路断面積を変更することにより、気筒2内へ導入される空気量を調整する機器である。スロットル弁13より上流の吸気通路9には、エアフローメータ14が取り付けられている。エアフローメータ14は、吸気通路9内を流れる空気量(質量)に相関した電気信号を出力するセンサである。
 また、前記排気通路10には、第1排気浄化装置15が配置されている。第1排気浄化装置15は、低温状態にあるときに排気中の窒素酸化物(NO)を吸着する三元触媒を含有している。第1排気浄化装置15は、本発明にかかる排気浄化用触媒に相当する。
 前記第1排気浄化装置15より下流の排気通路10には、第2排気浄化装置16が配置されている。第2排気浄化装置16は、第1排気浄化装置15と同様に排気中の窒素酸化物(NO)を吸着する触媒を有している。
 前記第1排気浄化装置15より上流の排気通路10には、空燃比センサ17が配置されている。空燃比センサ17は、排気通路10を流れる排気の空燃比と相関する電気信号を出力するセンサである。第2排気浄化装置16より下流の排気通路10には、O2センサ18と排気温度センサ19が配置されている。O2センサ18は、排気に含まれる酸素の濃度と相関する電気信号を出力するセンサである。排気温度センサ19は、排気の温度と相関する電気信号を出力するセンサである。
 このように構成された内燃機関1には、電子制御ユニット(ECU)20が併設されている。ECU20は、上記したエアフローメータ14、空燃比センサ17、O2センサ18、および排気温度センサ19などの各種センサと電気的に接続され、各種センサの出力信号を入力可能に構成されている。ECU20は、上記した点火プラグ8、第1燃料噴射弁11、第2燃料噴射弁12、スロットル弁13、燃料ポンプ112、第1遮断弁113、第2遮断弁123などの各種機器と電気的に接続され、上記した各種センサの出力信号に応じて各種機器を制御可能に構成されている。
 たとえば、ECU20は、内燃機関1が冷間始動されるときに、先ず気体燃料を内燃機関1へ供給し、その後の所定条件が成立したときに気体燃料から液体燃料への切り替えを行う燃料切り替え制御を実行する。以下、本実施例における燃料切り替え制御の実行方法について述べる。
 第1排気浄化装置15に含有される三元触媒は、活性温度より低い低温状態にあるときに、排気中のNOを吸着する。そのため、内燃機関1が冷間始動された場合のように、第1排気浄化装置15が未活性状態にある場合であっても、排気中のNOが第1排気浄化装置15に吸着されれば、大気中に排出されるNO量を少なく抑えることができる。
 ただし、排気中に非メタン炭化水素が含まれている場合は、非メタン炭化水素がNOに優先して第1排気浄化装置15に吸着される。そのため、第1排気浄化装置15が低温状態にあるときに排気中に含まれる非メタン炭化水素の量が多くなると、第1排気浄化装置15に吸着されるNO量が少なくなり、大気中に排出されるNO量が多くなる。
 ここで、液体燃料(非メタン炭化水素燃料)の既燃ガスは、気体燃料(圧縮天然ガス(CNG))の既燃ガスに比べ、多量の非メタン炭化水素を含有する。よって、内燃機関1の冷間始動時に液体燃料が使用されると、第1排気浄化装置15に吸着されるNO量が減少するため、大気中へ排出されるNO量が規制量より多くなる可能性がある。これに対し、内燃機関1の冷間始動時に気体燃料が使用されると、第1排気浄化装置15に吸着されるNO量を増加させることができるため、大気中へ排出されるNO量を規制量より少なく抑えることが可能となる。
 ところで、第1排気浄化装置15が吸着可能なNO量の最大値(最大吸着量)は、図2に示すように、第1排気浄化装置15の温度(床温)が低いときに比べ高いときの方が少なくなる傾向がある。そのため、第1排気浄化装置15の温度が高くなるまで気体燃料が使用され続けると、気体燃料の使用による排気エミッション低減効果が十分得られない状態で気体燃料の消費量が増加することになる。また、気体燃料は液体燃料よりエネルギ密度が低いため、気体燃料を使用した場合の航続距離は液体燃料を使用した場合より短くなり易い。よって、気体燃料の消費量が不要に増加すると、内燃機関1の冷間始動時に気体燃料を使用することができない事態が生じたり、気体燃料の補充(給油または充填)を頻繁に行う必要が生じたりする可能性がある。
 そこで、本実施例における燃料切り替え制御は、内燃機関1の冷間始動時に気体燃料を使用する内燃機関の燃料噴射システムにおいて、第1排気浄化装置15の最大吸着量が下限値を下回る前に気体燃料から液体燃料への切り替えを行うようにした。なお、ここでいう「下限値」は、第1排気浄化装置15に吸着されずに排出されるNO量が規制量に達すると考えられる最大吸着量であり、予め実験などを利用した適合処理により求められた値である。
 本願発明者が鋭意の実験および検証を行った結果、第1排気浄化装置15の最大吸着量は、該第1排気浄化装置15が活性する前に下限値を下回ることがわかった。図3は、内燃機関1の冷間始動時に気体燃料を使用した場合に、内燃機関1から排出されるNO量と第1排気浄化装置15から排出されるNO量と第1排気浄化装置15の床温との経時変化を計測したものである。図3中の実線は内燃機関から排出されるNO量を示し、一点鎖線は第1排気浄化装置15のNO排出量を示し、2点鎖線は第1排気浄化装置15の床温を示す。
 図3において、内燃機関1が冷間始動された直後は、第1排気浄化装置15から排出されるNO量が略零になる。これは、内燃機関1から排出されたNOの略全量が第1排気浄化装置15に吸着されていると考えられる。その後、第1排気浄化装置15の温度が図3中のTmp0で示す温度を超えると、第1排気浄化装置15から排出されるNO量が増加し始める。これは、第1排気浄化装置15の温度上昇に伴って最大吸着量が減少し始めたと考えられる。次いで、第1排気浄化装置15の温度が前記Tmp0より高いTmp1(吸着限界温度)に達すると、第1排気浄化装置15から排出されるNO量が規制量Vregまで増加する。すなわち、第1排気浄化装置15の最大吸着量(内燃機関1から排出されるNO量と第1排気浄化装置15から排出されるNO量との差)が下限値Vnxlまで低下する。さらに、第1排気浄化装置15の床温が活性温度Tmp2(>Tmp1)に近づくと、第1排気浄化装置15から排出されるNO量が増加傾向から減少傾向へ転じる。これは、第1排気浄化装置15が部分的に活性することにより、NOの一部が還元されると推察される。
 上記した図3の説明で述べたように、第1排気浄化装置15の最大吸着量は、該第1排気浄化装置15が活性する前に下限値を下回る場合がある。言い換えると、第1排気浄化装置15から排出されるNO量は、該第1排気浄化装置15が活性する前に規制値を上回る場合がある。よって、第1排気浄化装置15の温度が吸着限界温度Tmp1に達したときに、気体燃料から液体燃料への切り替えが行われれば、気体燃料の使用による排気エミッションの低減(NO排出量の低減)を図りつつ、気体燃料の消費量を少なく抑えることができる。なお、吸着限界温度Tmp1と最大吸着量との関係は環境などによって多少変動する可能性があるため、吸着限界温度Tmp1からマージンを差し引いた温度を基準にして燃料の切り替えが行われるようにしてもよい。
 なお、気体燃料から液体燃料への切り替えが行われると、排気中に含まれる非メタン炭化水素により第1排気浄化装置15によるNOの吸着が阻害される事態が懸念されるが、第1排気浄化装置15が吸着可能な非メタン炭化水素の量は該第1排気浄化装置15の温度上昇に応じて減少するため、第1排気浄化装置15に吸着されるNO量が大幅に減少することは抑制される。
 また、気体燃料から液体燃料への切り替えが行われると、内燃機関1から排出されるNO量が増加するため、それに伴って第1排気浄化装置15から排出されるNO量が増加する事態も懸念される。しかしながら、燃料の切り替えによるNO量の増加分は、気体燃料の使用時に第1排気浄化装置15に吸着されたNO量の総量に比して十分に少ない。また、第1排気浄化装置15の温度が吸着限界温度に到達する時点で第2排気浄化装置16の温度が吸着限界温度に達していないため、第1排気浄化装置15から排出されたNOは第2排気浄化装置16に吸着される。その結果、気体燃料から液体燃料への切り替えにより大気中へ排出されるNO量が増加する事態を回避することができる。よって、気体燃料の使用によるNO排出量の低減効果を得つつ、気体燃料の消費量を低減させることができる。なお、液体燃料の既燃ガスに含まれる二酸化炭素(CO)の量は、気体燃料の既燃ガスに含まれるCOの量より少ない。そのため、気体燃料から液体燃料への切り替えにより、COの排出量を低減させることも可能である。さらに、COの排出量とNOの排出量とのバランスを考慮しつつ上記した下限値や吸着限界温度を変更することも可能である。
 ところで、液体燃料にアルコールが含有されている場合は、液体燃料中のアルコール濃度に応じて下限値または吸着限界温度が変更されてもよい。液体燃料のアルコール濃度が高いときは低いときに比べ、NOに優先して第1排気浄化装置15に吸着される非メタン炭化水素が多くなる。これは、ガソリン由来の非メタン炭化水素に比して、アルコール由来の非メタン炭化水素の方が第1排気浄化装置15に吸着され易いからである。よって、液体燃料中のアルコール濃度が高いときは低いときに比べ、下限値を小さい値(吸着限界温度を高い値)に設定することが望ましい。このように下限値や吸着限界温度が定められると、NO排出量の低減効果をより確実に得ることが可能となる。なお、液体燃料中に含まれるアルコール濃度は、第1燃料タンク111から第1燃料噴射弁11に至る液体燃料通路にアルコール濃度センサを取り付けることにより検出してもよく、或いは空燃比フィードバック制御に用いられる補正係数から推定してもよい。
 以下、本実施例における燃料切り替え制御の実行手順について図4に沿って説明する。図4は、燃料切り替え制御が実施される際にECU20が実行するルーチンを示すフローチャートである。このルーチンは、予めECU20のROMなどに記憶されているルーチンであり、内燃機関1の始動要求(たとえば、イグニションスイッチのオン信号やスイッチのオン信号など)をトリガとしてECU20が実行するルーチンである。
 図4のルーチンにおいて、ECU20は、先ずS101の処理を実行する。すなわち、ECU20は、第1排気浄化装置15が低温状態にあるか否かを判別する。たとえば、ECU20は、内燃機関1の冷却水温度が所定温度未満である、或いは排気温度センサ19の測定値が吸着限界温度未満であることを条件に、第1排気浄化装置15が低温状態にあると判別する。前記S101において否定判定された場合は、ECU20は本ルーチンの実行を終了する。一方、前記S101において肯定判定された場合は、ECU20は、S102へ進む。
 S102では、ECU20は、気体燃料が内燃機関1へ供給されるように供給装置を制御する。具体的には、ECU20は、燃料ポンプ112を停止させるとともに、第1遮断弁113および第1燃料噴射弁11を閉弁状態に保つことにより、液体燃料の供給を停止させる。さらに、ECU20は、第2遮断弁123を開弁状態に保つとともに、第2燃料噴射弁12を適当なタイミングで開閉動作させることにより、気体燃料の供給を行う。この場合、内燃機関1は、気体燃料を燃焼させることによって作動することになる。
 S103では、ECU20は、液体燃料中のアルコール濃度を取得し、取得されたアルコール濃度をパラメータとして吸着限界温度を決定する。その際、ECU20は、液体燃料中のアルコール濃度が高いときは低いときに比べ、吸着限界温度を高く設定する。
 S104では、ECU20は、第1排気浄化装置15の温度を取得する。その際、ECU20は、排気温度センサ19の測定値を第1排気浄化装置15の温度の代替値として用いてもよい。なお、第1排気浄化装置15の床温を直接測定可能な温度センサが第1排気浄化装置15に取り付けられる場合は、ECU20は、前記温度センサの測定値を第1排気浄化装置15の温度として用いてもよい。
 S105では、ECU20は、前記S104で取得された第1排気浄化装置15の温度と前記S103で設定された吸着限界温度とを比較する。その際、第1排気浄化装置15の温度が吸着限界温度以下であれば、ECU20は、S104へ戻る。一方、第1排気浄化装置15の温度が吸着限界温度より高ければ、ECU20は、S106へ進む。
 S106では、ECU20は、内燃機関1の使用燃料が気体燃料から液体燃料へ切り替わるように供給装置を制御する。具体的には、ECU20は、第2燃料噴射弁12および第2遮断弁123を閉弁状態に保つことにより、気体燃料の供給を停止させる。さらに、ECU20は、燃料ポンプ112を作動させるとともに第1遮断弁113を開弁させることにより、第1燃料タンク111内の液体燃料を第1燃料噴射弁11へ供給させる。次いで、ECU20は、第1燃料噴射弁11を各気筒2の噴射タイミングに従って開閉動作させることにより、液体燃料を内燃機関1の各気筒へ供給させる。
 以上述べたように、ECU20が図4のルーチンを実行することにより、本発明にかかる制御手段が実現される。その結果、気体燃料の使用によるNO排出量の低減効果が十分に得られない状況下で気体燃料が消費される事態を回避することができる。よって、気体燃料の使用によるNO排出量の低減効果を得つつ、気体燃料の消費量を少なく抑えることができる。
 なお、燃料切り替え制御の実施時期は、内燃機関1の冷間始動時に限られず、第1排気浄化装置15が低温状態にあるときであれば何時でもよい。その場合、ECU20は、前述した図4のルーチンを周期的に実行すればよい。ところで、気体燃料から液体燃料への切り替えが行われた後に、第1排気浄化装置15の温度が再び吸着限界温度未満へ低下する場合が考えられる。そのような場合に、液体燃料から気体燃料へ再び切り替えられると、燃料切り替え制御がハンチングする可能性がある。よって、気体燃料から液体燃料への切り替えが実施されてから一定期間は、液体燃料から気体燃料への切り替えが禁止されるようにしてもよい。
 <実施例2>
 次に、本発明の第2の実施例について図5乃至図6基づいて説明する。ここでは、前述した第1の実施例と異なる構成について説明し、同様の構成については説明を省略する。
 図5は、本実施例における内燃機関の概略構成を示す図である。図5において、前述した第1の実施例の図1と同様の構成要素には、同一の符号が付されている。
 図5において、内燃機関1の排気通路10には、排気温度センサ19の代わりにNOセンサ21が取り付けられている。その場合、ECU20は、第1排気浄化装置15の温度の代わりにNOセンサ21の測定値(第1排気浄化装置15から排出されるNO量)に基づいて燃料切り替え制御を行う。
 以下、本実施例における燃料切り替え制御の実行手順について図6に沿って説明する。図6は、燃料切り替え制御が実施される際にECU20が実行するルーチンを示すフローチャートである。このルーチンは、前述した第1の実施例における図4のルーチンと同様に、内燃機関1の始動要求が発生したとき、或いは周期的にECU20が実行するルーチンである。なお、図6において、図4のルーチンと同様の処理には同一の符号が付されている。
 図4のルーチンと図6のルーチンとの相違点は、S103乃至S105の処理の代わりにS201乃至S203の処理が実行される点にある。すなわち、ECU20は、S201において、第1排気浄化装置15から排出されるNO量の上限値である規制量を設定する。その際、ECU20は、液体燃料中のアルコール濃度が高いときは低いときに比べ、規制量を多く設定する。
 S202では、ECU20は、NOセンサ21の測定値(NO排出量)を読み込む。続いて、ECU20は、S203へ進み、前記S202で取得されたNO排出量と前記S201で設定された規制量とを比較する。その際、NO排出量が規制量以下であれば、ECU20は、S202へ戻る。一方、NO排出量が規制量を超えていれば、ECU20は、S106へ進み、内燃機関1の使用燃料を気体燃料から液体燃料へ切り替えるべく供給装置を制御する。
 このようにECU20が図6のルーチンを実行することにより、前述した第1の実施例と同様の作用および効果を得ることができる。
 <実施例3>
 次に、本発明の第3の実施例について図7に基づいて説明する。ここでは、前述した第1の実施例と異なる構成について説明し、同様の構成については説明を省略する。
 前述した第1の実施例と本実施例との相違点は、第1排気浄化装置15が非メタン炭化水素を吸着しなくなるときの該第1排気浄化装置15の温度(以下、「非吸着温度」と称する)に基づいて使用燃料の切り替えを行う点にある。
 図7は、燃料切り替え制御が実施される際にECU20が実行するルーチンを示すフローチャートである。このルーチンは、前述した第1の実施例における図4のルーチンと同様に、内燃機関1の始動要求が発生したとき、或いは周期的にECU20が実行するルーチンである。なお、図7において、図4のルーチンと同様の処理には同一の符号が付されている。
 図4のルーチンと図7のルーチンとの相違点は、S103乃至S105の処理の代わりに、S301およびS302の処理が実行される点にある。すなわち、ECU20は、S102の処理を実行した後にS301へ進み、第1排気浄化装置15の温度(排気温度センサ19の測定値)を取得する。
 続いて、ECU20は、S302へ進み、前記S301で取得された第1排気浄化装置15の温度と非吸着温度とを比較する。なお、非吸着温度は、予め実験的に求められているものとする。第1排気浄化装置15の温度が非吸着温度以下であるときは、ECU20は、S301へ戻る。一方、第1排気浄化装置15の温度が非吸着温度より高いときは、ECU20は、S106へ進み、内燃機関1の使用燃料を気体燃料から液体燃料へ変更すべく供給装置を制御する。
 このようにECU20が図7のルーチンを実行することにより、前述した第1の実施例と同様の作用および効果を得ることができる。
 <実施例4>
 次に、本発明の第4の実施例について図8乃至図9に基づいて説明する。ここでは、前述した第1の実施例と異なる構成について説明し、同様の構成については説明を省略する。
 図8は、本実施例における内燃機関の概略構成を示す図である。図8において、前述した第1の実施例の図1と同様の構成要素には、同一の符号が付されている。
 図8において、第2燃料タンク121には、該第2燃料タンク121に貯蔵されている気体燃料の量に相関した電気信号を出力する残量センサ124が取り付けられている。また、ECU20には、図示しないアクセルペダルの操作量(アクセル開度)を測定するためのアクセルポジションセンサ22が電気的に接続されている。
 ここで、本実施例における燃料切り替え制御と前述した第1の実施例における燃料切り替え制御との相違点は、気体燃料の残量(第2燃料タンク121に貯蔵されている気体燃料の量)が所定量以上であり、且つ内燃機関1の運転状態がアイドル運転状態にあるときは、気体燃料から液体燃料への切換条件が成立した後も気体燃料の使用を継続する点にある。
 内燃機関1がアイドル運転状態にあるときは、気体燃料の消費量が少なくなる。よって、気体燃料の残量が多いときに気体燃料の少量の使用が継続されても、気体燃料の航続距離が大幅に短縮される事態を回避することができる。また、内燃機関1がアイドル運転状態にあるときに該内燃機関1の運転が停止される可能性が高いため、気体燃料の使用により第1排気浄化装置15に吸着される非メタン炭化水素の量が低減されると、次回始動時に第1排気浄化装置15が吸着可能なNO量が過剰に少なくなる事態を回避することができる。
 図9は、燃料切り替え制御が実施される際にECU20が実行するルーチンを示すフローチャートである。このルーチンは、前述した第1の実施例における図4のルーチンと同様に、内燃機関1の始動要求が発生したとき、或いは周期的にECU20が実行するルーチンである。なお、図9において、図4のルーチンと同様の処理には同一の符号が付されている。
 図4のルーチンと図9のルーチンとの相違点は、S105において肯定判定された場合に、S401乃至S403の処理が実行される点にある。すなわち、ECU20は、S105において肯定判定された場合にS401へ進み、残量センサ124の測定値(気体燃料の残量)を読み込む。
 続いて、ECU20は、S402へ進み、前記S401で取得された気体燃料の残量が所定量以上であるか否かを判別する。ここでいう「所定量」は、内燃機関1のアイドル運転中に気体燃料が使用され続けても第2燃料タンク121内の気体燃料が十分に残ると考えられる量であり、予め実験などを用いた適合処理により定められた量である。前記S402において否定判定された場合は、ECU20は、S106へ進み、内燃機関1の使用燃料を気体燃料から液体燃料へ切り替えるべく供給装置を制御する。一方、前記S402において肯定判定された場合は、ECU20は、S403へ進む。
 S403では、ECU20は、内燃機関1がアイドル運転状態にあるか否かを判別する。たとえば、ECU20は、アクセルポジションセンサ22の測定値(アクセル開度)が零であるか否かを判別する。前記S403において否定判定された場合は、ECU20は、S106へ進み、内燃機関1の使用燃料を気体燃料から液体燃料へ切り替えるべく供給装置を制御する。一方、前記S403において肯定判定された場合は、ECU20は、S401へ戻る。その場合、内燃機関1が気体燃料により運転され続けることになる。その結果、内燃機関1がアイドル運転状態から停止された場合に、第1排気浄化装置15に吸着されている非メタン炭化水素の量を少なく抑えることができる。その結果、次回始動時に第1排気浄化装置15が吸着可能なNOX量が少なくなる事態を回避することができる。
 なお、本実施例における燃料切り替え制御は、前述した第2の実施例または第3の実施例で述べた燃料切り替え制御と組み合わされてもよい。
1 内燃機関
2 気筒
4 吸気ポート
5 排気ポート
6 吸気バルブ
7 排気バルブ
8 点火プラグ
9 吸気通路
10 排気通路
11 第1燃料噴射弁
12 第2燃料噴射弁
15 第1排気浄化装置
16 第2排気浄化装置
17 空燃比センサ
18 Oセンサ
19 排気温度センサ
21 NOセンサ
110 第1燃料通路
111 第1燃料タンク
112 燃料ポンプ
113 第1遮断弁
120 第2燃料通路
121 第2燃料タンク
122 レギュレータ
123 第2遮断弁
124 残量センサ

Claims (6)

  1.  活性温度より低い低温状態にあるときに排気中の窒素酸化物を吸着する排気浄化用触媒が排気系に設けられた内燃機関の燃料噴射システムにおいて、
     窒素酸化物が前記排気浄化用触媒に吸着される現象を阻害する第1燃料、または窒素酸化物が前記排気浄化用触媒に吸着される現象を阻害しない第2燃料の何れか一方を内燃機関へ供給する供給装置と、
     前記排気浄化用触媒が低温状態にあるときに、先ず第2燃料が内燃機関に供給され、その後の前記排気浄化用触媒が活性温度へ昇温する前に第2燃料から第1燃料への切り替えが行われるように前記供給装置を制御する制御手段と、
    を備える内燃機関の燃料噴射システム。
  2.  請求項1において、前記制御手段は、第2燃料が内燃機関へ供給されているときに、前記排気浄化用触媒が吸着可能な窒素酸化物量の最大値である最大吸着量が下限値未満へ低下すると、第2燃料から第1燃料への切り替えが行われるように前記供給装置を制御する内燃機関の燃料噴射システム。
  3.  請求項2において、前記制御手段は、排気浄化用触媒の温度が活性温度より低い吸着限界温度を超えることを条件として、前記排気浄化用触媒の最大吸着量が下限値未満になったと判定する内燃機関の燃料噴射システム。
  4.  請求項2または3において、第1燃料がアルコールを含む液体燃料であり、
     前記下限値は、第1燃料のアルコール濃度が低いときより高いときの方が小さい値に設定される内燃機関の燃料噴射システム。
  5.  請求項2乃至4の何れか1項において、前記制御手段は、第2燃料から第1燃料への切り替えが行われた後に、前記排気浄化用触媒の最大吸着量が下限値以上に増加したときは、第1燃料から第2燃料への切り替えが行われないように前記供給装置を制御する内燃機関の燃料噴射システム。
  6.  請求項1乃至5の何れか1項において、前記第1燃料は、非メタン系の炭化水素燃料であり、
     第2燃料は、天然ガス燃料である内燃機関の燃料噴射システム。
PCT/JP2010/068862 2010-10-25 2010-10-25 内燃機関の燃料噴射システム WO2012056508A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
PCT/JP2010/068862 WO2012056508A1 (ja) 2010-10-25 2010-10-25 内燃機関の燃料噴射システム
JP2011528108A JP5067510B2 (ja) 2010-10-25 2010-10-25 内燃機関の燃料噴射システム
US13/140,293 US8800269B2 (en) 2010-10-25 2010-10-25 Fuel injection system of an internal combustion engine
BRPI1006136-3A BRPI1006136B1 (pt) 2010-10-25 2010-10-25 sistema de injeção de combustível de um motor de combustão interna
CN201080003910.5A CN103154473B (zh) 2010-10-25 2010-10-25 内燃机的燃料喷射系统
EP10841798.1A EP2634399B1 (en) 2010-10-25 2010-10-25 Fuel injection system of an internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2010/068862 WO2012056508A1 (ja) 2010-10-25 2010-10-25 内燃機関の燃料噴射システム

Publications (1)

Publication Number Publication Date
WO2012056508A1 true WO2012056508A1 (ja) 2012-05-03

Family

ID=45993264

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/068862 WO2012056508A1 (ja) 2010-10-25 2010-10-25 内燃機関の燃料噴射システム

Country Status (6)

Country Link
US (1) US8800269B2 (ja)
EP (1) EP2634399B1 (ja)
JP (1) JP5067510B2 (ja)
CN (1) CN103154473B (ja)
BR (1) BRPI1006136B1 (ja)
WO (1) WO2012056508A1 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9422882B2 (en) * 2010-09-08 2016-08-23 Toyota Jidosha Kabushiki Kaisha Control apparatus and method for an internal combustion engine
JP2014134128A (ja) * 2013-01-09 2014-07-24 Denso Corp 内燃機関の燃料噴射制御装置
US10634078B2 (en) * 2017-12-11 2020-04-28 Ford Global Technologies, Llc Methods and systems for an exhaust aftertreatment device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000213394A (ja) 1999-01-26 2000-08-02 Fuji Heavy Ind Ltd エンジンの始動制御装置
JP2002038980A (ja) 2000-07-27 2002-02-06 Fuji Heavy Ind Ltd エンジンの燃料切換制御装置
JP2005233135A (ja) * 2004-02-20 2005-09-02 Toyota Motor Corp 多種燃料機関
JP2008169704A (ja) * 2007-01-09 2008-07-24 Toyota Motor Corp 内燃機関の制御装置及び方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5549083A (en) * 1993-11-09 1996-08-27 Feuling; James J. Method and apparatus for clean cold starting of internal combustion engines
US5566653A (en) * 1994-07-13 1996-10-22 Feuling; James J. Method and apparatus for clean cold starting of internal combustion engines
JP2001193511A (ja) * 2000-01-12 2001-07-17 Fuji Heavy Ind Ltd エンジンの燃料供給制御装置
US6591817B2 (en) * 2001-03-21 2003-07-15 Motorola, Inc. Dual fuel method and system
FR2891014B1 (fr) * 2005-09-20 2016-07-22 Renault Sas Injecteur mixte pour carburants gazeux et liquides et procede d'injection
JP4155320B2 (ja) * 2006-09-06 2008-09-24 トヨタ自動車株式会社 内燃機関の排気浄化装置
JP2008088864A (ja) * 2006-09-29 2008-04-17 Mazda Motor Corp デュアルフューエルエンジンの制御装置
JP4508178B2 (ja) * 2006-10-18 2010-07-21 マツダ株式会社 デュアルフューエルエンジンを備えたハイブリッド車両の制御装置
JP2008169701A (ja) * 2007-01-09 2008-07-24 Toru Fukushima ローターリングエンジン
US7546834B1 (en) * 2008-04-29 2009-06-16 Ford Global Technologies, Llc Selectably fueling with natural gas or direct injection ethanol
US8413643B2 (en) * 2009-06-12 2013-04-09 Ford Global Tehnologies, LLC Multi-fuel engine control system and method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000213394A (ja) 1999-01-26 2000-08-02 Fuji Heavy Ind Ltd エンジンの始動制御装置
JP2002038980A (ja) 2000-07-27 2002-02-06 Fuji Heavy Ind Ltd エンジンの燃料切換制御装置
JP2005233135A (ja) * 2004-02-20 2005-09-02 Toyota Motor Corp 多種燃料機関
JP2008169704A (ja) * 2007-01-09 2008-07-24 Toyota Motor Corp 内燃機関の制御装置及び方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2634399A4

Also Published As

Publication number Publication date
EP2634399A4 (en) 2015-09-16
CN103154473B (zh) 2015-09-30
CN103154473A (zh) 2013-06-12
JP5067510B2 (ja) 2012-11-07
BRPI1006136A2 (pt) 2016-02-23
EP2634399A1 (en) 2013-09-04
US20130199163A1 (en) 2013-08-08
US8800269B2 (en) 2014-08-12
JPWO2012056508A1 (ja) 2014-02-24
BRPI1006136B1 (pt) 2020-12-29
EP2634399B1 (en) 2018-05-30

Similar Documents

Publication Publication Date Title
US7406947B2 (en) System and method for tip-in knock compensation
US7159568B1 (en) System and method for engine starting
JP5472459B2 (ja) 内燃機関の制御装置
JP5110205B2 (ja) 内燃機関の制御装置
JP5418675B2 (ja) 内燃機関の燃料制御装置
RU2525368C1 (ru) Устройство управления транспортным средством
WO2011111224A1 (ja) 内燃機関の制御装置
JP5067510B2 (ja) 内燃機関の燃料噴射システム
WO2012029141A1 (ja) 触媒劣化検出装置及び方法
JP5392412B2 (ja) 内燃機関の制御装置及び方法
JP2003106197A (ja) 内燃機関の空燃比制御装置
JP5582249B2 (ja) 内燃機関の燃料噴射制御システム
WO2012147183A1 (ja) 内燃機関の制御システム
JP2000303939A (ja) 気体燃料車の点火時期制御装置
WO2012147184A1 (ja) 内燃機関の制御システム
WO2012153423A1 (ja) 多種燃料内燃機関の制御システム
JP2016125478A (ja) 内燃機関の空燃比制御装置
WO2012153424A1 (ja) 多種燃料内燃機関の制御システム
JP2017020438A (ja) 内燃機関の制御装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080003910.5

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 4576/DELNP/2011

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 13140293

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2011528108

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2010841798

Country of ref document: EP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10841798

Country of ref document: EP

Kind code of ref document: A1

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: PI1006136

Country of ref document: BR

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: PI1006136

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20110712