Nothing Special   »   [go: up one dir, main page]

WO2011111224A1 - 内燃機関の制御装置 - Google Patents

内燃機関の制御装置 Download PDF

Info

Publication number
WO2011111224A1
WO2011111224A1 PCT/JP2010/054233 JP2010054233W WO2011111224A1 WO 2011111224 A1 WO2011111224 A1 WO 2011111224A1 JP 2010054233 W JP2010054233 W JP 2010054233W WO 2011111224 A1 WO2011111224 A1 WO 2011111224A1
Authority
WO
WIPO (PCT)
Prior art keywords
fuel
ecu
catalyst
temperature
control
Prior art date
Application number
PCT/JP2010/054233
Other languages
English (en)
French (fr)
Inventor
星 幸一
剛 渡辺
祥尚 篠田
Original Assignee
トヨタ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by トヨタ自動車株式会社 filed Critical トヨタ自動車株式会社
Priority to US13/498,494 priority Critical patent/US9057331B2/en
Priority to EP10847454.5A priority patent/EP2546490A4/en
Priority to PCT/JP2010/054233 priority patent/WO2011111224A1/ja
Priority to JP2012504249A priority patent/JP5348313B2/ja
Priority to CN201080037371.7A priority patent/CN102482974B/zh
Publication of WO2011111224A1 publication Critical patent/WO2011111224A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D19/00Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D19/06Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures peculiar to engines working with pluralities of fuels, e.g. alternatively with light and heavy fuel oil, other than engines indifferent to the fuel consumed
    • F02D19/0602Control of components of the fuel supply system
    • F02D19/0607Control of components of the fuel supply system to adjust the fuel mass or volume flow
    • F02D19/061Control of components of the fuel supply system to adjust the fuel mass or volume flow by controlling fuel injectors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D19/00Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D19/06Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures peculiar to engines working with pluralities of fuels, e.g. alternatively with light and heavy fuel oil, other than engines indifferent to the fuel consumed
    • F02D19/0602Control of components of the fuel supply system
    • F02D19/0613Switch-over from one fuel to another
    • F02D19/0615Switch-over from one fuel to another being initiated by automatic means, e.g. based on engine or vehicle operating conditions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D19/00Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D19/06Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures peculiar to engines working with pluralities of fuels, e.g. alternatively with light and heavy fuel oil, other than engines indifferent to the fuel consumed
    • F02D19/0639Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures peculiar to engines working with pluralities of fuels, e.g. alternatively with light and heavy fuel oil, other than engines indifferent to the fuel consumed characterised by the type of fuels
    • F02D19/0642Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures peculiar to engines working with pluralities of fuels, e.g. alternatively with light and heavy fuel oil, other than engines indifferent to the fuel consumed characterised by the type of fuels at least one fuel being gaseous, the other fuels being gaseous or liquid at standard conditions
    • F02D19/0647Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures peculiar to engines working with pluralities of fuels, e.g. alternatively with light and heavy fuel oil, other than engines indifferent to the fuel consumed characterised by the type of fuels at least one fuel being gaseous, the other fuels being gaseous or liquid at standard conditions the gaseous fuel being liquefied petroleum gas [LPG], liquefied natural gas [LNG], compressed natural gas [CNG] or dimethyl ether [DME]
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D19/00Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D19/06Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures peculiar to engines working with pluralities of fuels, e.g. alternatively with light and heavy fuel oil, other than engines indifferent to the fuel consumed
    • F02D19/0663Details on the fuel supply system, e.g. tanks, valves, pipes, pumps, rails, injectors or mixers
    • F02D19/0686Injectors
    • F02D19/0692Arrangement of multiple injectors per combustion chamber
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0025Controlling engines characterised by use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0025Controlling engines characterised by use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D41/0027Controlling engines characterised by use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures the fuel being gaseous
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/021Introducing corrections for particular conditions exterior to the engine
    • F02D41/0235Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1444Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases
    • F02D41/1446Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being exhaust temperatures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D19/00Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D19/06Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures peculiar to engines working with pluralities of fuels, e.g. alternatively with light and heavy fuel oil, other than engines indifferent to the fuel consumed
    • F02D19/08Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures peculiar to engines working with pluralities of fuels, e.g. alternatively with light and heavy fuel oil, other than engines indifferent to the fuel consumed simultaneously using pluralities of fuels
    • F02D19/081Adjusting the fuel composition or mixing ratio; Transitioning from one fuel to the other
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/021Introducing corrections for particular conditions exterior to the engine
    • F02D41/0235Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus
    • F02D2041/0265Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus to decrease temperature of the exhaust gas treating apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/08Exhaust gas treatment apparatus parameters
    • F02D2200/0802Temperature of the exhaust gas treatment apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M43/00Fuel-injection apparatus operating simultaneously on two or more fuels, or on a liquid fuel and another liquid, e.g. the other liquid being an anti-knock additive
    • F02M43/04Injectors peculiar thereto
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/30Use of alternative fuels, e.g. biofuels

Definitions

  • the present invention relates to control of a vehicle including an internal combustion engine (engine).
  • Patent Document 1 discloses a technique for increasing the alcohol fuel ratio when the catalyst temperature rises above an upper limit temperature in a fuel containing alcohol. In this case, due to the difference in heat of evaporation and combustion temperature, the catalyst temperature decreases and catalyst deterioration is suppressed.
  • Patent Document 2 discloses a technique for changing the setting of the temperature at which the fuel is cut based on the proportion of the oxygen-containing fuel in the fuel in order to prevent an excessive increase in the exhaust system temperature.
  • the present invention has been made to solve the above-described problems, and an object of the present invention is to provide a control device for an internal combustion engine that can suppress deterioration of the catalyst while reducing the catalyst temperature.
  • a control device for an internal combustion engine includes an engine that can be operated using gaseous fuel and liquid fuel as fuel, a catalyst that purifies exhaust gas of the engine, and when the liquid fuel is used, Control means for making the air-fuel ratio rich and increasing the ratio of the gaseous fuel when the temperature exceeds a predetermined upper limit.
  • the control device for an internal combustion engine is mounted on a vehicle and includes an engine, a catalyst, and a control means.
  • the engine is a bi-fuel engine that operates using gaseous fuel and liquid fuel as fuel.
  • the control means is, for example, an ECU (Electronic Control Unit), and when the temperature of the catalyst exceeds a predetermined upper limit during use of the liquid fuel, the air-fuel ratio is made rich and the ratio of the gaseous fuel is increased.
  • the “ratio of gaseous fuel” refers to the ratio of using gaseous fuel as fuel.
  • “to make the air-fuel ratio rich” refers to shifting the air-fuel ratio to the rich side.
  • the control device for the internal combustion engine makes the air-fuel ratio rich and increases the ratio of gaseous fuel.
  • the control device of the internal combustion engine can prevent unburned fuel from excessively adhering to the intake port or the cylinder, and can suppress catalyst deterioration and catalyst temperature rise at the time of fuel cut.
  • the control device for the internal combustion engine decreases the intake air amount and the charging efficiency into the fuel chamber and decreases the catalyst temperature by increasing the use ratio of the gaseous fuel whose volume with the same mass is larger than the liquid fuel. Can do.
  • the control device for the internal combustion engine can realize low emission by increasing the ratio of the gaseous fuel when the amount of fuel is increased.
  • the control means sets the air-fuel ratio to a rich level and increases the ratio of the gaseous fuel, and then returns the fuel to the state before the ratio is increased.
  • the control device for the internal combustion engine can scavenge the combustion chamber at the time of fuel cut by setting the timing for returning the ratio of the gaseous fuel when returning from the fuel cut. Therefore, the control device for the internal combustion engine can avoid the influence of increasing the ratio of the gaseous fuel when starting the original fuel injection control again.
  • control means performs control for making the air-fuel ratio rich and increasing the ratio of the gaseous fuel at the time of acceleration and / or transmission shifting.
  • the control device for the internal combustion engine prevents excessive unburned fuel from adhering to the intake port or the cylinder during acceleration or transmission shift, and suppresses catalyst deterioration and catalyst temperature rise during fuel cut. Can do.
  • the control device for the internal combustion engine can reduce the amount of intake air into the fuel chamber and the charging efficiency, and can reduce the catalyst temperature.
  • the control device for the internal combustion engine can realize low emission by increasing the ratio of the gaseous fuel when the amount of fuel is increased.
  • FIG. 1 shows a fuel injection system 100 to which a control device for an internal combustion engine according to the present invention is applied.
  • a solid line arrow in the figure shows an example of a gas flow.
  • the fuel injection system 100 mainly includes an engine 1, a first fuel injection valve 2, a second fuel injection valve 3, a surge tank 4, a throttle valve 5, an intake passage 6, an air cleaner 7, and an exhaust passage. 8 and the catalyst 10.
  • the engine 1 includes four cylinders 11, and each cylinder 11 is connected to a common surge tank 4 through an intake manifold.
  • Each cylinder 11 is provided with a first fuel injection valve 2 for injecting gaseous fuel and a second fuel injection valve 3 for injecting liquid fuel.
  • the gaseous fuel include CNG (Compressed Natural Gas), LPG (Liquid Petroleum Gas), and LNG (Liquid Natural Gas).
  • the liquid fuel is, for example, gasoline, light oil, alcohol such as methanol or ethanol, or a mixed fuel thereof.
  • the surge tank 4 is connected to an air cleaner 7 through an intake passage 6, and a throttle valve 5 is disposed in the intake passage 6.
  • the throttle valve 5 is controlled in its opening degree (hereinafter referred to as “throttle opening degree Thr”) based on a control signal from the ECU 50.
  • each cylinder 11 is connected to the exhaust passage 8 via a common exhaust manifold.
  • a catalyst 10 that is a three-way catalyst is installed on the exhaust passage 8.
  • the ECU 50 includes a CPU (Central Processing Unit), a ROM (Read Only Memory), a RAM (Random Access Memory), and the like (not shown) and performs various controls on each component of the fuel injection system 100. For example, the ECU 50 controls the first fuel injection valve 2 and the second fuel injection valve 3 based on detection signals from various sensors. Further, the ECU 50 performs control to reduce the temperature of the catalyst 10 (hereinafter referred to as “catalyst temperature Tb”) when it is determined that the catalyst 10 is at a high temperature in a predetermined operation state.
  • catalyst temperature Tb the temperature of the catalyst 10
  • the ECU 50 executes the first control to the third control described below to suppress the deterioration of the catalyst 10 while reducing the catalyst temperature Tb.
  • gaseous fuel operation refers to an operation in which fuel injection is performed by the first fuel injection valve 2, that is, an operation using gaseous fuel
  • liquid fuel operation refers to a second operation. It refers to an operation in which fuel injection by the fuel injection valve 3 is executed, that is, an operation using liquid fuel.
  • fuel cut refers to stopping fuel injection of some or all of the cylinders 11.
  • return from fuel cut refers to restarting fuel injection from the fuel cut state.
  • the ECU 50 increases the fuel injection amount (hereinafter also referred to as “fuel increase”) when the catalyst temperature Tb exceeds a predetermined upper limit temperature in the operation region where the liquid fuel operation is executed. ) And switch to gas fuel operation. Thereby, the ECU 50 reduces the catalyst temperature Tb while suppressing deterioration of the catalyst 10.
  • the ECU 50 determines whether or not the catalyst temperature Tb is higher than a predetermined upper limit temperature (hereinafter referred to as “upper limit temperature Tbth”).
  • the upper limit temperature Tbth is set based on an experiment or the like, for example, as the upper limit value of the catalyst temperature Tb at which there is no possibility of deterioration of the catalyst 10.
  • the ECU 50 estimates the catalyst temperature Tb based on the load of the engine 1 and the rotational speed of the engine 1, for example. Then, the ECU 50 estimates that the catalyst temperature Tb is higher than the upper limit temperature Tbth when the engine 1 is in a predetermined operating range of high rotation and high load. In another example, the ECU 50 measures the temperature of the exhaust gas based on a temperature sensor (not shown) installed on the exhaust passage 8. Then, the ECU 50 estimates the catalyst temperature Tb from the exhaust gas temperature and compares it with the upper limit temperature Tbth. In yet another example, the ECU 50 detects the catalyst temperature Tb based on a temperature sensor (not shown) installed in the catalyst 10 and compares it with the upper limit temperature Tbth.
  • the ECU 50 When the catalyst temperature Tb is higher than the upper limit temperature Tbth, the ECU 50 increases the fuel to make the air-fuel ratio rich, and switches from the liquid fuel operation to the gas fuel operation. As a result, the ECU 50 has the first effect of the first control that is the increase in the catalyst temperature Tb and the deterioration of the catalyst 10 at the time of fuel cut due to fuel adhering to the intake port or the cylinder 11. Can be prevented. Furthermore, the ECU 50 can efficiently reduce the catalyst temperature Tb as a second effect in the first control by switching from the liquid fuel operation to the gas fuel operation when the fuel is increased.
  • the ECU 50 can reduce the charging efficiency and the intake air amount and the temperature of the exhaust gas by switching to a gaseous fuel having the same mass and a larger volume than the liquid fuel when the fuel is increased.
  • gas fuel is lower in emission than liquid fuel when it is richer than the stoichiometric air-fuel ratio. Therefore, the ECU 50 can realize low emission as a third effect in the first control by performing the gas fuel operation when the fuel is increased.
  • FIG. 2 is an example of a time chart for explaining the behavior of the catalyst temperature Tb during the liquid fuel operation and the gas fuel operation.
  • FIG. 2 shows, in order from the top, “fuel increase” indicating the amount of fuel increase due to the increase in the throttle opening degree Thr and the catalyst temperature Tb, whether or not there is a fuel cut, “engine speed Ne” indicating the engine speed, “Unburned fuel” indicating the amount of fuel remaining unburned in the port or cylinder, and catalyst temperature Tb are shown.
  • graphs “B1” to “B4” indicate temporal changes of respective elements common during the liquid fuel operation and the gas fuel operation.
  • the graph “B5” shows the time change of the unburned fuel during the liquid fuel operation
  • the graph “B6” shows the time change of the unburned fuel during the gas fuel operation
  • the graph “B7” shows the time change of the catalyst temperature Tb during the liquid fuel operation
  • the graph “B8” shows the time change of the catalyst temperature Tb during the gas fuel operation.
  • the ECU 50 increases the fuel increase amount as the catalyst temperature Tb increases (see graph B2). As a result, the ECU 50 increases the latent heat of vaporization caused by the fuel and decreases the temperature of the exhaust gas.
  • unburned fuel increases as the fuel increases (see graphs B5 and B6).
  • the amount of unburned fuel is greater during the liquid fuel operation than during the gaseous fuel operation. That is, the gaseous fuel does not adhere to the intake port or the fuel chamber, so that the amount of unburned fuel is less than that of the liquid fuel.
  • the throttle opening degree Thr decreases (see graph B1). Accordingly, the ECU 50 performs a deceleration operation and starts fuel cut (see graph B3).
  • the catalyst 10 is in a high temperature and oxidizing atmosphere condition (see graph B7). As a result, the catalyst 10 may sinter precious metal, which may degrade performance.
  • the ECU 50 when the ECU 50 performs the liquid fuel operation when the amount of fuel at the catalyst high temperature is increased, a large amount of unburned fuel remains in the engine 1. As a result, there is a possibility that the increase of the catalyst temperature Tb and the deterioration of the catalyst 10 are promoted.
  • the ECU 50 increases the fuel injection amount to make the air-fuel ratio rich, and switches from the liquid fuel operation to the gas fuel operation. Thereby, the ECU 50 can suppress the fuel from adhering to the intake port or the cylinder 11 and reduce the catalyst temperature Tb while suppressing the deterioration of the catalyst 10.
  • the ECU 50 increases the fuel based on the first control and switches to the gas fuel operation. Thereafter, the ECU 50 continues the gaseous fuel operation until the return from the fuel cut. Then, the ECU 50 starts the fuel cut when decelerating, and switches from the gas fuel operation to the liquid fuel operation when returning. As a result, when the fuel is switched, the ECU 50 can scavenge the combustion chamber once with air, and eliminate the influence caused by remaining previously used fuel.
  • the ECU 50 injects liquid fuel from the cylinder 11 that performs the combustion stroke after the cylinder 11 that was burned last with the gaseous fuel.
  • the ECU 50 can evenly scavenge each cylinder 11 with air, and can reliably eliminate the influence of the remaining remaining fuel.
  • the ECU 50 In the third control, in place of or in addition to the first control and the second control, the ECU 50 is the catalyst temperature during the liquid fuel operation and during the acceleration at which the ignition timing is retarded or during the transmission shift.
  • Tb is higher than the upper limit temperature Tbth, the fuel is increased and the operation is switched to the gaseous fuel operation. Thereby, the ECU 50 lowers the catalyst temperature Tb while realizing low emission.
  • FIG. 3 is an example of a time chart showing a processing outline of the third control during acceleration traveling.
  • FIG. 3 shows, in order from the top, catalyst temperature Tb, ignition timing, fuel increase at high catalyst temperature, presence / absence of gas fuel operation, and presence / absence of liquid fuel operation. Note that at the start of the time chart, the ECU 50 is performing a liquid fuel operation.
  • the ECU 50 retards the ignition timing for a certain period of time in accordance with transmission shift or the like (see graph C2). However, in this case, the ECU 50 determines that there is no need to reduce the catalyst temperature Tb because the catalyst temperature Tb is equal to or lower than the upper limit temperature Tbth, and does not increase the fuel (see graph C3).
  • the catalyst temperature Tb exceeds the upper limit temperature Tbth as the exhaust gas temperature of the engine 1 increases (see graph C1). Then, at time “t13” after time t12, the ECU 50 sets the ignition timing to the retarded angle again due to the transmission shift or the like (see graph C2). At this time, since the catalyst temperature Tb has already exceeded the upper limit temperature Tbth at time t12, the ECU 50 increases the fuel with the ignition timing retardation (see graph C3), and further switches from the liquid fuel operation to the gas fuel operation. (See graphs C4 and C5). As described above, the ECU 50 can efficiently reduce the exhaust gas temperature by switching to the gaseous fuel operation when the fuel is increased, thereby reducing the charging efficiency and the intake air amount.
  • the ECU 50 stops the fuel increase at the time “t14” when the ignition timing is returned to normal, and switches from the gas fuel operation to the liquid fuel operation (see graphs C3 to C5). As described above, the ECU 50 can achieve low emission by performing the gas fuel operation in the operation region where the fuel increase is performed and the fuel amount is rich.
  • FIG. 4 is an example of a flowchart showing a processing procedure when the first control and the second control are executed simultaneously.
  • the flowchart shown in FIG. 4 is repeatedly executed by the ECU 50 according to a predetermined cycle.
  • the ECU 50 detects the operating state of the engine 1 (step S101). Specifically, the ECU 50 is currently using liquid fuel or gaseous fuel, whether or not a fuel cut is being executed, and whether or not a fuel increase is being performed as the catalyst temperature Tb is increased. Whether or not is detected.
  • the ECU 50 determines whether or not it is the operation region of the liquid fuel operation (step S102). For example, the ECU 50 refers to a predetermined map based on the current operation state and the like, and determines whether or not it is the operation region of the liquid fuel operation. And ECU50 advances a process to step S103, when it is judged that it is the driving
  • the ECU 50 detects the catalyst temperature Tb (step S103). Specifically, the ECU 50 may estimate the catalyst temperature Tb based on the load and the rotational speed of the engine 1 or may detect the catalyst temperature Tb based on a detection value of a temperature sensor or the like installed in the catalyst 10. .
  • the ECU 50 determines whether or not the catalyst temperature Tb is higher than the upper limit temperature Tbth (step S104).
  • the upper limit temperature Tbth is set in advance based on experiments or the like, for example, as the upper limit of the catalyst temperature Tb at which there is no possibility of deterioration of the catalyst 10.
  • the ECU 50 determines that the catalyst temperature Tb is higher than the upper limit temperature Tbth (step S104; Yes)
  • the ECU 50 advances the process to step S105.
  • the ECU 50 determines that the catalyst temperature Tb is equal to or lower than the upper limit temperature Tbth (step S104; No)
  • the ECU 50 determines whether or not the fuel increase condition is satisfied (step S105). Specifically, the ECU 50 determines whether or not these conditions are satisfied when there are conditions other than the catalyst temperature Tb and there are various conditions for performing fuel increase.
  • step S106 fuel increase by a gaseous fuel driving
  • step S107 determines that the fuel increase condition is not satisfied
  • step S107 determines whether or not a fuel cut is being executed.
  • step S107 determines whether or not a fuel cut is being executed.
  • step S108 executes the liquid fuel operation (step S108).
  • the ECU 50 executes the flowchart again after switching from the liquid fuel operation to the gas fuel operation in Step S106, and when the operation region of the liquid fuel operation (Step S102; Yes) and the catalyst temperature Tb is equal to or lower than the upper limit temperature Tbth.
  • Step S104; Yes the liquid fuel operation is performed after the fuel cut is executed.
  • the ECU 50 can scavenge the combustion chamber in each cylinder 11, and can eliminate the influence caused by the previously used fuel remaining in the cylinder.
  • step S107 determines that the fuel cut is not being executed (step S107; No)
  • the process of the flowchart is terminated.
  • FIG. 5 is an example of a flowchart showing a processing procedure of the third control.
  • the ECU 50 repeatedly executes the process shown in FIG. 5 according to a predetermined cycle, for example.
  • the ECU 50 detects the operating state of the engine 1 (step S201). Next, the ECU 50 determines whether or not it is an operation region for liquid fuel operation (step S202). Then, if the ECU 50 is in the operation region of the liquid fuel operation (step S202; Yes), the process proceeds to step S203. On the other hand, when the ECU 50 determines that it is not in the liquid fuel operation region (step S202; No), that is, when it determines that it is in the gas fuel operation region, the ECU 50 executes the gas fuel operation (step S206). At this time, the ECU 50 increases the fuel when the conditions for executing the fuel increase are satisfied.
  • the ECU 50 detects the catalyst temperature Tb (step S203). Then, the ECU 50 determines whether or not the catalyst temperature Tb is higher than the upper limit temperature Tbth (step S204). If the catalyst temperature Tb is higher than the upper limit temperature Tbth (step S204; Yes), the ECU 50 advances the process to step S205. On the other hand, when the ECU 50 determines that the catalyst temperature Tb is equal to or lower than the upper limit temperature Tbth (step S204; No), the ECU 50 executes the liquid fuel operation (step S207). In this case, the ECU 50 does not execute the fuel increase accompanying the increase in the catalyst temperature Tb.
  • the ECU 50 determines whether or not the condition for fuel increase is satisfied during ignition retard control (step S205). Specifically, the ECU 50 determines whether the ignition timing is retarded due to acceleration or transmission shifting, and whether the fuel increase condition is satisfied. Then, the ECU 50 executes the fuel increase by the gas fuel operation (step S206) when the ignition delay control is being performed and the fuel increase condition is satisfied (step S205; Yes). That is, the ECU 50 increases the fuel amount during the ignition retard control and switches from the liquid fuel operation to the gas fuel operation. By doing in this way, ECU50 can implement
  • the ECU 50 executes the liquid fuel operation (step S207) when the ignition delay control is not being performed or when the condition for increasing the fuel is not satisfied (step S205; No).
  • the ECU 50 switches from the liquid fuel operation to the gas fuel operation when the catalyst temperature Tb exceeds the upper limit temperature Tbth and a predetermined condition is satisfied.
  • the method to which the present invention is applicable is not limited to this.
  • the ECU 50 increases the use ratio of gaseous fuel among the fuel used for combustion of the engine 1 when the catalyst temperature Tb exceeds the upper limit temperature Tbth and a predetermined condition is satisfied. Also good. That is, in this case, the ECU 50 may increase the usage rate of the gaseous fuel while continuously using the liquid fuel. This also allows the ECU 50 to lower the catalyst temperature Tb by reducing the charging efficiency and the intake air amount while suppressing the increase in unburned fuel when the fuel is increased, as in the above-described embodiment.
  • step S105 when the condition for fuel increase is satisfied in FIG. 4 (step S105; Yes), the ECU 50 executes the fuel increase and increases the ratio of the gaseous fuel in the fuel used for the combustion of the engine 1.
  • step S106 the ECU 50 executes the processing of the flowchart again, and when it is determined that the fuel cut is being executed (step S107; Yes), the usage rate of the gaseous fuel is restored.
  • step S205 the ECU 50 executes the fuel increase when the ignition delay control is being performed and the fuel increase condition is satisfied (step S205; Yes), and the gaseous fuel out of the fuel used for the combustion of the engine 1 Increase the percentage of

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)
  • Exhaust Gas After Treatment (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Abstract

 内燃機関の制御装置は、車両に搭載され、エンジンと、触媒と、制御手段とを備える。エンジンは、気体燃料及び液体燃料を燃料として運転するバイフューエルエンジンである。制御手段は、液体燃料の使用時に、触媒の温度が所定の上限値を超えた場合、空燃比をリッチにすると共に気体燃料の割合を増大させる。

Description

内燃機関の制御装置
 本発明は、内燃機関(エンジン)を備える車両の制御に関する。
 従来から、触媒が高温になった場合、燃料噴射量を増量することで、排気ガス温度を低下させる技術が知られている。例えば、特許文献1には、アルコールを含む燃料において、触媒温度が上限温度以上に昇温するときには、アルコール燃料割合を増加させる技術が開示されている。この場合、蒸発熱や燃焼温度の違いにより、触媒温度が減少し触媒劣化が抑制される。また、特許文献2には、排気系温度の過昇温を防止するために、燃料の含酸素燃料の割合に基づいて燃料カットする温度の設定を変更する技術が開示されている。
特開2008-133726号公報 特開2009-257248号公報
 液体燃料の燃料噴射量の増量時には、吸気ポートや燃焼室内の燃料付着量が大きくなる。従って、その後、減速に伴い燃料カットを行う場合には、上述の未燃燃料が排気系に流入し、未燃燃料と大量の酸素で触媒内の酸化反応が促進され、触媒温度が昇温すると共に触媒劣化が進行する可能性がある。
 本発明は、上記のような課題を解決するためになされたものであり、触媒温度を低減しつつ触媒の劣化を抑制することが可能な内燃機関の制御装置を提供することを目的とする。
 本発明の1つの観点では、内燃機関の制御装置は、気体燃料及び液体燃料を燃料として運転可能なエンジンと、前記エンジンの排気ガスを浄化する触媒と、前記液体燃料の使用時に、前記触媒の温度が所定の上限値を超えた場合、空燃比をリッチにすると共に前記気体燃料の割合を増大させる制御手段と、を備える。
 上記の内燃機関の制御装置は、車両に搭載され、エンジンと、触媒と、制御手段とを備える。エンジンは、気体燃料及び液体燃料を燃料として運転するバイフューエルエンジンである。制御手段は、例えばECU(Electronic Control Unit)であり、液体燃料の使用時に、触媒の温度が所定の上限値を超えた場合、空燃比をリッチにすると共に気体燃料の割合を増大させる。ここで、「気体燃料の割合」とは、気体燃料を燃料として使用する割合を指す。また、「空燃比をリッチにする」とは、空燃比をリッチ側へ遷移させることを指す。このように、内燃機関の制御装置は、触媒温度が高温となり劣化防止のため触媒温度を低下させる場合に、空燃比をリッチにすると共に気体燃料の割合を増加させる。これにより、内燃機関の制御装置は、吸気ポートや筒内に未燃燃料が過度に付着するのを防ぎ、燃料カット時の触媒劣化及び触媒昇温を抑制することができる。また、内燃機関の制御装置は、同一質量での体積が液体燃料より大きい気体燃料の使用割合を増加させることで、燃料室への吸入空気量及び充填効率を低下させ、触媒温度を低下させることができる。また、内燃機関の制御装置は、燃料増量時に気体燃料の割合を増加させることで、低エミッション化を実現することができる。
 上記の内燃機関の制御装置の一態様では、前記制御手段は、前記空燃比をリッチにすると共に前記気体燃料の割合を増大させた後、当該割合を増大させる前の状態に戻すタイミングを、燃料カットからの復帰時とする。このように、内燃機関の制御装置は、燃料カットからの復帰時に気体燃料の割合を元に戻すタイミングを設定することで、燃料カット時に燃焼室内を掃気することができる。従って、内燃機関の制御装置は、再び元の燃料噴射制御を開始する場合に、気体燃料の割合を増加させたことによる影響を回避することができる。
 上記の内燃機関の制御装置の他の一態様では、前記制御手段は、前記空燃比をリッチにすると共に前記気体燃料の割合を増大させる制御を、加速時又は/及びトランスミッションの変速時に実施する。これにより、内燃機関の制御装置は、加速時やトランスミッションの変速時に、吸気ポートや筒内に未燃燃料が過度に付着するのを防ぎ、燃料カット時の触媒劣化及び触媒昇温を抑制することができる。また、内燃機関の制御装置は、燃料室への吸入空気量及び充填効率を低下させ、触媒温度を低下させることができる。また、内燃機関の制御装置は、燃料増量時に気体燃料の割合を増加させることで、低エミッション化を実現することができる。
本発明に係る内燃機関の制御装置が適用された燃料噴射システムの一例を示す図である。 液体燃料運転時及び気体燃料運転時での触媒温度の挙動を説明するためのタイムチャートの一例である。 加速走行時における第3制御の処理概要を示すタイムチャートの一例である。 第1制御及び第2制御を同時に実行した場合の処理手順を示すフローチャートの一例である。 第3制御の処理手順を示すフローチャートの一例である。
 以下、図面を参照して本発明の好適な実施の形態について説明する。
 [内燃機関の概略構成]
 図1は、本発明に係る内燃機関の制御装置が適用された燃料噴射システム100を示す。図中の実線矢印はガスの流れの一例を示している。
 燃料噴射システム100は、主に、エンジン1と、第1燃料噴射弁2と、第2燃料噴射弁3と、サージタンク4と、スロットルバルブ5と、吸気通路6と、エアクリーナ7と、排気通路8と、触媒10と、を備える。
 エンジン1は、4つの気筒11を備え、各気筒11はインテークマニホールドを介して共通のサージタンク4に接続されている。そして、各気筒11には、気体燃料を噴射するための第1燃料噴射弁2と、液体燃料を噴射するための第2燃料噴射弁3とがそれぞれ設けられている。ここで、気体燃料は、例えば、CNG(Compressed Natural Gas)、LPG(Liquefied Petroleum Gas)、LNG(Liquefied Natural Gas)などが該当する。また、液体燃料は、例えば、ガソリン、軽油、メタノールやエタノールなどのアルコール、又はこれらの混合燃料である。
 サージタンク4は、吸気通路6を介してエアクリーナ7に接続され、吸気通路6内にはスロットルバルブ5が配置されている。このスロットルバルブ5は、ECU50の制御信号に基づいてその開度(以後、「スロットル開度Thr」と呼ぶ。)が制御される。一方、各気筒11は共通のエキゾーストマニホールドを介して排気通路8に連結される。そして、排気通路8上には三元触媒である触媒10が設置される。
 ECU50は、図示しないCPU(Central Processing Unit)、ROM(Read Only Memory)及びRAM(Random Access Memory)などを備え、燃料噴射システム100の各構成要素に対して種々の制御を行う。例えば、ECU50は、各種センサからの検出信号に基づき、第1燃料噴射弁2及び第2燃料噴射弁3の制御を行う。また、ECU50は、所定の運転状態で触媒10が高温であると判断した場合に、触媒10の温度(以後、「触媒温度Tb」と呼ぶ。)を低下させる制御を行う。このように、ECU50は、本発明における制御手段の一例である。
 [制御方法]
 次に、ECU50が実行する制御について具体的に説明する。ECU50は、以下に説明する第1制御乃至第3制御を実行することで、触媒温度Tbを低減しつつ、触媒10の劣化を抑制する。
 なお、以後では、「気体燃料運転」とは、第1燃料噴射弁2による燃料噴射を実行している運転、即ち、気体燃料を使用した運転を指し、「液体燃料運転」とは、第2燃料噴射弁3による燃料噴射を実行している運転、即ち、液体燃料を使用した運転を指す。また、「燃料カット」とは、一部又は全ての気筒11の燃料噴射を停止することを指す。さらに、「燃料カットからの復帰」とは、燃料カット状態から燃料噴射を再開することを指す。また、
 (第1制御)
 第1制御では、概略的には、ECU50は、液体燃料運転を実行する運転領域で、触媒温度Tbが所定の上限温度を超えた場合、燃料噴射量の増量(以後「燃料増量」とも呼ぶ。)を行うと共に気体燃料運転に切り替える。これにより、ECU50は、触媒10の劣化を抑制しつつ、触媒温度Tbを低減させる。
 これについて具体的に説明する。まず、ECU50は、液体燃料運転を実行中の場合、触媒温度Tbが所定の上限温度(以後、「上限温度Tbth」と呼ぶ。)より大きいか否か判定する。上限温度Tbthは、例えば触媒10の劣化が生じる虞が無い触媒温度Tbの上限値に、実験等に基づき設定される。
 具体的には、ECU50は、例えばエンジン1の負荷とエンジン1の回転数とに基づき触媒温度Tbを推定する。そして、ECU50は、エンジン1が高回転高負荷の所定の運転域の場合、触媒温度Tbが上限温度Tbthより大きいと推定する。他の例では、ECU50は、排気ガスの温度を排気通路8上に設置された図示しない温度センサに基づき排気ガス温度を測定する。そして、ECU50は、当該排気ガス温度から触媒温度Tbを推定し、上限温度Tbthと比較する。さらに別の例では、ECU50は、触媒10に設置された図示しない温度センサに基づき触媒温度Tbを検出し、上限温度Tbthと比較する。
 そして、ECU50は、触媒温度Tbが上限温度Tbthより大きい場合、燃料増量して空燃比をリッチにすると共に、液体燃料運転から気体燃料運転に切り替える。これにより、ECU50は、第1制御での第1の効果として、吸気ポートや気筒11の筒内に燃料が付着することに起因した燃料カット時での触媒温度Tbの上昇及び触媒10の劣化を防ぐことができる。さらに、ECU50は、燃料増量時に液体燃料運転から気体燃料運転に切り替えることで、第1制御での第2の効果として、効率よく触媒温度Tbを低下させることができる。即ち、ECU50は、燃料増量時に液体燃料よりも同一質量での体積が大きい気体燃料に切り替えることで、充填効率及び吸入空気量を低下させ、排気ガスの温度を低減させることができる。また、一般に、理論空燃比よりリッチの場合、液体燃料よりガス燃料の方が低エミッションである。従って、ECU50は、燃料増量時に気体燃料運転を行うことで、第1制御での第3の効果として、低エミッション化を実現することができる。
 上述の効果について、図2を参照してさらに補足説明する。図2は、液体燃料運転時及び気体燃料運転時での触媒温度Tbの挙動を説明するためのタイムチャートの一例である。図2は、上から順に、スロットル開度Thr、触媒温度Tbの上昇に起因した燃料増量を示す「燃料増量」、燃料カットの有無、エンジン1の回転数を示す「エンジン回転数Ne」、吸気ポートや筒内に未燃焼のまま残存した燃料の量を示す「未燃燃料」、及び触媒温度Tbを示す。また、図2において、グラフ「B1」乃至「B4」は、液体燃料運転時と気体燃料運転時に共通した各要素の時間変化を示す。また、グラフ「B5」は、液体燃料運転時の未燃燃料の時間変化を示し、グラフ「B6」は、気体燃料運転時の未燃燃料の時間変化を示す。さらに、グラフ「B7」は、液体燃料運転時の触媒温度Tbの時間変化を示し、グラフ「B8」は、気体燃料運転時の触媒温度Tbの時間変化を示す。
 まず、時刻「t1」で、運転者のアクセル操作等に起因してスロットル開度Thrが上昇する(グラフB1参照)。これにより、エンジン1は高負荷状態となり、液体燃料運転時及び気体燃料運転時のいずれの場合も、排気ガスの温度上昇に伴い触媒温度Tbが上昇する(グラフB7、B8参照)。
 そして、時刻t1以後の時刻「t2」で、ECU50は、触媒温度Tbの上昇に伴い、燃料増量を上昇させる(グラフB2参照)。これにより、ECU50は、燃料による気化潜熱を大きくし、排気ガスの温度を低下させる。一方で、時刻t2以後、燃料増加に伴い未燃燃料が増加する(グラフB5、B6参照)。そして、時刻t2以後では、図2に示すように、未燃燃料は、気体燃料運転時よりも液体燃料運転時の方が多くなる。即ち、気体燃料は、吸気ポートや燃料室内に燃料が付着することがないため、液体燃料より未燃燃料が少なくなる。
 次に、時刻t2以後の時刻「t3」で、スロットル開度Thrが下降する(グラフB1参照)。これに伴い、ECU50は、減速運転を行い、燃料カットを開始する(グラフB3参照)。そして、液体燃料運転の場合、燃料カット時に未燃燃料が大量に排出され、触媒10で酸化反応が促進される。即ち、この場合、触媒10は、高温かつ酸化雰囲気の条件下になる(グラフB7参照)。その結果、触媒10は、貴金属のシンタリングが起き、性能が劣化するおそれがある。
 一方、気体燃料運転の場合、時刻t3の燃料カット時での未燃燃料が液体燃料運転時よりも少ない(グラフB5、B6参照)。よって、気体燃料運転の場合、燃料カット中であっても、未燃燃料の排出に起因した触媒温度Tbの上昇及び触媒10の劣化が抑制され、液体燃料運転時と比較して触媒温度Tbが早期に低下する(グラフB7、B8参照)。
 以上のように、ECU50は、触媒高温時燃料増量時に液体燃料運転を実行した場合、未燃燃料が大量にエンジン1内に残る。その結果、触媒温度Tbの上昇及び触媒10の劣化が促進される虞がある。以上を勘案し、ECU50は、触媒温度Tbが上限温度Tbthより大きい場合、燃料噴射量を増量して空燃比をリッチにすると共に、液体燃料運転から気体燃料運転に切り替える。これにより、ECU50は、吸気ポートや気筒11の筒内に燃料が付着するのを抑制し、触媒温度Tbを低減しつつ触媒10の劣化を抑制することができる。
 (第2制御)
 第2制御では、第1制御に加え、ECU50は、第1制御に基づき液体燃料運転から気体燃料運転に切り替えた場合、再び液体燃料運転に切り替えるタイミングを、燃料カットの復帰時にする。
 これについて具体的に説明する。まず、ECU50は、液体燃料運転中に触媒温度Tbが上限温度Tbthより大きい場合、第1制御に基づき燃料増量を行うと共に気体燃料運転に切り替える。その後、ECU50は、燃料カットからの復帰時まで、気体燃料運転を継続する。そして、ECU50は、減速時に燃料カットを開始し、その復帰時に気体燃料運転から液体燃料運転へ切り替える。これにより、ECU50は、燃料を切り替える際に、燃焼室内を空気により一度掃気させて、前に使用した燃料が残存することによる影響を排除することができる。
 また、好適には、燃料カットからの復帰時に、ECU50は、気体燃料により最後に燃焼した気筒11の次に燃焼行程を行う気筒11から液体燃料の噴射を行う。これにより、ECU50は、各気筒11を均等に空気により掃気させ、前の使用燃料の残存の影響を確実に排除することができる。
 (第3制御)
 第3制御では、第1制御及び第2制御に代えて、またはこれに加え、ECU50は、液体燃料運転時であって、点火時期の遅角が実行される加速時やトランスミッションの変速時に触媒温度Tbが上限温度Tbthより大きい場合、燃料増量を行うと共に気体燃料運転に切り替える。これにより、ECU50は、低エミッション化を実現しつつ、触媒温度Tbを低下させる。
 これについて図3のタイムチャートを参照して説明する。図3は、加速走行時における第3制御の処理概要を示すタイムチャートの一例である。図3は、上から順に、触媒温度Tb、点火時期、触媒高温時での燃料増量、気体燃料運転の有無、液体燃料運転の有無を示す。なお、タイムチャート開始時では、ECU50は、液体燃料運転を行っているものとする。
 まず、時刻「t11」で、ECU50は、トランスミッションの変速等に対応して、点火時期を一定時間遅角させる(グラフC2参照)。しかし、この場合、ECU50は、触媒温度Tbが上限温度Tbth以下であることから、触媒温度Tbを低減する必要はないと判断し、燃料増量を行わない(グラフC3参照)。
 次に、時刻「t12」で、エンジン1の排気ガス温度の上昇に伴い触媒温度Tbが上限温度Tbthを超える(グラフC1参照)。そして、時刻t12以後の時刻「t13」で、ECU50は、トランスミッションの変速等に起因して再び点火時期を遅角に設定する(グラフC2参照)。このとき、ECU50は、時刻t12で既に触媒温度Tbが上限温度Tbthを超えていることから、点火時期の遅角と共に燃料増量を行い(グラフC3参照)、さらに液体燃料運転から気体燃料運転に切り替える(グラフC4、C5参照)。このように、ECU50は、燃料増量時に気体燃料運転へ切り替えることにより、充填効率及び吸入空気量を低下させて、排気ガス温度を効率的に低下させることができる。
 そして、ECU50は、点火時期を通常に戻す時刻「t14」で、燃料増量を停止すると共に、気体燃料運転から液体燃料運転へ切り替える(グラフC3乃至C5参照)。このように、ECU50は、燃料増量を行いリッチになる運転領域では、気体燃料運転を行うことで、低エミッション化を実現することができる。
 [処理フロー]
 次に、本実施形態における処理手順について説明する。以下では、まず、第1制御及び第2制御を同時に実行した場合の処理フローについて図4を用いて説明した後、第3制御を実行した場合の処理フローについて図5を用いて説明する。
 (第1制御及び第2制御)
 図4は、第1制御及び第2制御を同時に実行した場合の処理手順を示すフローチャートの一例である。図4に示すフローチャートは、ECU50により所定の周期に従い繰り返し実行される。
 まず、ECU50は、エンジン1の運転状態を検出する(ステップS101)。具体的には、ECU50は、現在、液体燃料又は気体燃料のいずれを使用しているか、燃料カットを実行中であるか否か、触媒温度Tbの高温化に伴う燃料増量を実行中であるか否か等を検出する。
 次に、ECU50は、液体燃料運転の運転領域であるか否かについて判定する(ステップS102)。例えば、ECU50は、現在の運転状態等に基づき、所定のマップを参照して液体燃料運転の運転領域であるか否か判定する。そして、ECU50は、液体燃料運転の運転領域であると判断した場合(ステップS102;Yes)、ステップS103へ処理を進める。一方、ECU50は、液体燃料運転の運転領域ではないと判断した場合(ステップS102;No)、即ち、気体燃料運転を実行すべき運転領域であると判断した場合、気体燃料運転を実行する(ステップS106)。また、このとき、ECU50は、燃料増量を実行すべき条件が満たされている場合には、燃料増量を実行してもよい。
 次に、ECU50は、触媒温度Tbを検出する(ステップS103)。具体的には、ECU50は、エンジン1の負荷及び回転数に基づき触媒温度Tbを推定してもよく、触媒10に設置された温度センサ等の検出値に基づき触媒温度Tbを検出してもよい。
 そして、ECU50は、触媒温度Tbが上限温度Tbthより大きいか否か判定する(ステップS104)。ここで、上限温度Tbthは、例えば触媒10の劣化が生じる虞のない触媒温度Tbの上限に、予め実験等に基づき設定される。そして、ECU50は、触媒温度Tbが上限温度Tbthより大きいと判断した場合(ステップS104;Yes)、ステップS105へ処理を進める。一方、ECU50は、触媒温度Tbが上限温度Tbth以下であると判断した場合(ステップS104;No)、触媒温度Tbの低減のための燃料増量及び気体燃料運転への切り替えを実行する必要はないと判断し、ステップS107へ処理を進める。
 次に、ECU50は、燃料増量の条件が成立するか否か判定する(ステップS105)。具体的には、ECU50は、触媒温度Tb以外の条件であって、燃料増量を行うための各種条件が存在する場合には、これらの条件が満たされているか否か判断する。
 そして、ECU50は、燃料増量の条件が成立すると判断した場合(ステップS105;Yes)、気体燃料運転による燃料増量を実行する(ステップS106)。即ち、ECU50は、燃料増量を行うと共に、液体燃料運転から気体燃料運転に切り替える。これにより、ECU50は、燃料増量に起因して吸気ポートや筒内に未燃燃料が残存するのを抑制して燃料カット時の触媒10の劣化及び触媒温度Tbの昇温を抑制すると共に、充填効率の低下及び吸入空気量の低下により排気ガス温度及び触媒温度Tbを低減させることができる。一方、ECU50は、燃料増量の条件が成立しないと判断した場合(ステップS105;No)、ステップS107へ処理を進める。
 次に、ステップS107以後の処理について説明する。ECU50は、触媒温度Tbが上限温度Tbth以下(ステップS104;No)又は燃料増量の条件が成立しない場合(ステップS105;No)、燃料カットを実行中であるか否か判定する(ステップS107)。そして、ECU50は、燃料カット実行中であると判断した場合(ステップS107;Yes)、液体燃料運転を実行する(ステップS108)。例えば、ECU50は、ステップS106で液体燃料運転から気体燃料運転に切り替え後、再びフローチャートを実行し、液体燃料運転の運転領域(ステップS102;Yes)、かつ、触媒温度Tbが上限温度Tbth以下の場合(ステップS104;Yes)に、燃料カット実行後に液体燃料運転を行う。これにより、ECU50は、各気筒11内の燃焼室を掃気することができ、前に使用した燃料が筒内等に残存することに起因した影響を排除することができる。
 一方、ECU50は、燃料カット実行中でないと判断した場合(ステップS107;No)、フローチャートの処理を終了する。
 (第3制御)
 図5は、第3制御の処理手順を示すフローチャートの一例である。ECU50は、図5に示す処理を、例えば所定の周期に従い繰り返し実行する。
 まず、ECU50は、エンジン1の運転状態を検出する(ステップS201)。次に、ECU50は、液体燃料運転の運転領域であるか否か判定する(ステップS202)。そして、ECU50は、液体燃料運転の運転領域である場合(ステップS202;Yes)、ステップS203へ処理を進める。一方、ECU50は、液体燃料運転の運転領域でないと判断した場合(ステップS202;No)、即ち、気体燃料運転の運転領域であると判断した場合、気体燃料運転を実行する(ステップS206)。また、このとき、ECU50は、燃料増量を実行すべき条件が満たされた場合には、燃料増量を行う。
 次に、ECU50は、触媒温度Tbを検出する(ステップS203)。そして、ECU50は、触媒温度Tbが上限温度Tbthより大きいか否か判定する(ステップS204)。そして、ECU50は、触媒温度Tbが上限温度Tbthより大きい場合(ステップS204;Yes)、ステップS205へ処理を進める。一方、ECU50は、触媒温度Tbが上限温度Tbth以下であると判断した場合(ステップS204;No)、液体燃料運転を実行する(ステップS207)。この場合、ECU50は、触媒温度Tbの高温化に伴う燃料増量を実行しない。
 次に、ECU50は、点火遅角制御中かつ、燃料増量の条件が成立するか否か判定する(ステップS205)。具体的には、ECU50は、加速時又はトランスミッションの変速時であることに起因して点火時期を遅角にしているか、及び、燃料増量の条件が成立するか判断する。そして、ECU50は、点火遅角制御中、かつ、燃料増量の条件が成立する場合(ステップS205;Yes)、気体燃料運転による燃料増量を実行する(ステップS206)。即ち、ECU50は、点火遅角制御中に、燃料増量を行うと共に、液体燃料運転から気体燃料運転に切り替える。このようにすることで、ECU50は、燃料増量中の低エミッション化を実現すると共に、吸入空気量及び充填効率を低下させて、排気ガス温度を低下させることができる。
 一方、ECU50は、点火遅角制御中でなく、又は、燃料増量の条件が成立しない場合(ステップS205;No)、液体燃料運転を実行する(ステップS207)。
 [変形例]
 第1制御乃至第3制御の説明では、ECU50は、触媒温度Tbが上限温度Tbthを超え、かつ、所定の条件が満たされた場合に、液体燃料運転から気体燃料運転に切り替えた。しかし、本発明が適用可能な方法は、これに限定されない。
 これに代えて、ECU50は、触媒温度Tbが上限温度Tbthを超え、かつ、所定の条件が満たされた場合に、エンジン1の燃焼に使用する燃料のうち、気体燃料の使用割合を増加させてもよい。即ち、この場合、ECU50は、液体燃料を継続して使用しつつ、気体燃料の使用割合を増大させてもよい。これによっても、ECU50は、上述の実施形態と同様、燃料増量時の未燃燃料の増加を抑制しつつ、充填効率及び吸入空気量を低下させて触媒温度Tbを低下させることができる。
 これについて、図4、図5のフローチャートを参照してさらに具体的に説明する。例えば、ECU50は、図4において、燃料増量の条件が成立した場合(ステップS105;Yes)、燃料増量を実行すると共に、エンジン1の燃焼に使用する燃料のうち気体燃料の割合を増加させる。また、ECU50は、ステップS106の実行後、再びフローチャートの処理を実行し、燃料カットが実行中であると判断した場合(ステップS107;Yes)、気体燃料の使用割合を元に戻す。同様に、図5において、ECU50は、点火遅角制御中かつ燃料増量の条件が成立した場合(ステップS205;Yes)、燃料増量を実行すると共に、エンジン1の燃焼に使用する燃料のうち気体燃料の割合を増加させる。
 1 エンジン
 2 第1燃料噴射弁
 3 第2燃料噴射弁
 4 サージタンク
 5 スロットルバルブ
 6 吸気通路
 7 エアクリーナ
 8 排気通路
 10 触媒
 50 ECU
 100 燃料噴射システム

Claims (3)

  1.  気体燃料及び液体燃料を燃料として運転可能なエンジンと、
     前記エンジンの排気ガスを浄化する触媒と、
     前記液体燃料の使用時に、前記触媒の温度が所定の上限値を超えた場合、空燃比をリッチにすると共に前記気体燃料の割合を増大させる制御手段と、
    を備えることを特徴とする内燃機関の制御装置。
  2.  前記制御手段は、前記空燃比をリッチにすると共に前記気体燃料の割合を増大させた後、当該割合を元に戻すタイミングを、燃料カットからの復帰時とする請求項1に記載の内燃機関の制御装置。
  3.  前記制御手段は、前記空燃比をリッチにすると共に前記気体燃料の割合を増大させる制御を、加速時又は/及びトランスミッションの変速時に実施する請求項1又は2に記載の内燃機関の制御装置。
PCT/JP2010/054233 2010-03-12 2010-03-12 内燃機関の制御装置 WO2011111224A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US13/498,494 US9057331B2 (en) 2010-03-12 2010-03-12 Control device for internal combustion engine
EP10847454.5A EP2546490A4 (en) 2010-03-12 2010-03-12 Control device for internal combustion engine
PCT/JP2010/054233 WO2011111224A1 (ja) 2010-03-12 2010-03-12 内燃機関の制御装置
JP2012504249A JP5348313B2 (ja) 2010-03-12 2010-03-12 内燃機関の制御装置
CN201080037371.7A CN102482974B (zh) 2010-03-12 2010-03-12 内燃机的控制装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2010/054233 WO2011111224A1 (ja) 2010-03-12 2010-03-12 内燃機関の制御装置

Publications (1)

Publication Number Publication Date
WO2011111224A1 true WO2011111224A1 (ja) 2011-09-15

Family

ID=44563066

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/054233 WO2011111224A1 (ja) 2010-03-12 2010-03-12 内燃機関の制御装置

Country Status (5)

Country Link
US (1) US9057331B2 (ja)
EP (1) EP2546490A4 (ja)
JP (1) JP5348313B2 (ja)
CN (1) CN102482974B (ja)
WO (1) WO2011111224A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014108969A1 (ja) * 2013-01-09 2014-07-17 株式会社デンソー 内燃機関の燃料噴射制御装置

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102906396B (zh) * 2010-06-16 2015-06-24 丰田自动车株式会社 内燃机的燃料控制装置
US20160222895A1 (en) * 2011-12-16 2016-08-04 General Electric Company Multi-fuel system and method
DE102012201541B4 (de) * 2012-02-02 2014-05-15 Ford Global Technologies, Llc Verfahren zur Beeinflussung des Wärmehaushalts einer Brennkraftmaschine und Brennkraftmaschine zur Durchführung eines solchen Verfahrens
US9932877B2 (en) * 2013-05-10 2018-04-03 Ford Global Technologies, Llc Integrated fuel catalyst monitor
DE102015204544A1 (de) * 2015-03-13 2016-09-15 Robert Bosch Gmbh Verfahren zum Betreiben einer zumindest zeitweise mit Gas betriebenen Brennkraftmaschine
US11767811B2 (en) 2021-09-01 2023-09-26 American CNG, LLC Supplemental fuel system for compression-ignition engine

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06221193A (ja) * 1993-01-29 1994-08-09 Mazda Motor Corp 気体燃料供給エンジン
JP2006112291A (ja) * 2004-10-14 2006-04-27 Toyota Motor Corp 内燃機関の制御装置
JP2008002431A (ja) * 2006-06-26 2008-01-10 Yamaha Motor Co Ltd 内燃機関
JP2008133726A (ja) 2006-11-27 2008-06-12 Toyota Motor Corp アルコール燃料内燃機関
JP2008169704A (ja) * 2007-01-09 2008-07-24 Toyota Motor Corp 内燃機関の制御装置及び方法
JP2009257248A (ja) 2008-04-18 2009-11-05 Toyota Motor Corp 内燃機関の制御装置

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB8425577D0 (en) * 1984-10-10 1984-11-14 Flintheath Ltd Fuel control system
CN1093595C (zh) * 2000-12-28 2002-10-30 上海交通大学 双燃料汽车双达标低排放控制系统
JP4439760B2 (ja) * 2001-05-10 2010-03-24 本田技研工業株式会社 内燃機関の燃料供給制御装置
JP2003065027A (ja) * 2001-08-29 2003-03-05 Suzuki Motor Corp 内燃機関の排気温度センサ制御装置
US6742335B2 (en) * 2002-07-11 2004-06-01 Clean Air Power, Inc. EGR control system and method for an internal combustion engine
CA2422188A1 (en) * 2002-10-02 2004-04-02 Westport Research Inc. Bypass controlled regeneration of nox adsorbers
US6865881B2 (en) * 2002-11-18 2005-03-15 Diesel & Combustion Technologies, Llc System and method for reducing nitrogen oxides in combustion exhaust streams
DE102005004880B4 (de) * 2005-02-03 2015-05-28 Robert Bosch Gmbh Verfahren und Vorrichtung zur Abgastemperaturregelung
US7877996B2 (en) * 2005-11-28 2011-02-01 Ford Global Technologies, Llc Turbo-lag compensation system having an ejector
US8161732B2 (en) * 2008-03-05 2012-04-24 Ford Global Technologies, Llc System and method to improve engine emissions for a dual fuel engine
US8341949B2 (en) * 2008-05-30 2013-01-01 Caterpillar Inc. After-treatment system

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06221193A (ja) * 1993-01-29 1994-08-09 Mazda Motor Corp 気体燃料供給エンジン
JP2006112291A (ja) * 2004-10-14 2006-04-27 Toyota Motor Corp 内燃機関の制御装置
JP2008002431A (ja) * 2006-06-26 2008-01-10 Yamaha Motor Co Ltd 内燃機関
JP2008133726A (ja) 2006-11-27 2008-06-12 Toyota Motor Corp アルコール燃料内燃機関
JP2008169704A (ja) * 2007-01-09 2008-07-24 Toyota Motor Corp 内燃機関の制御装置及び方法
JP2009257248A (ja) 2008-04-18 2009-11-05 Toyota Motor Corp 内燃機関の制御装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2546490A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014108969A1 (ja) * 2013-01-09 2014-07-17 株式会社デンソー 内燃機関の燃料噴射制御装置

Also Published As

Publication number Publication date
CN102482974B (zh) 2014-05-07
EP2546490A4 (en) 2017-06-07
JPWO2011111224A1 (ja) 2013-06-27
EP2546490A1 (en) 2013-01-16
JP5348313B2 (ja) 2013-11-20
US20120324870A1 (en) 2012-12-27
CN102482974A (zh) 2012-05-30
US9057331B2 (en) 2015-06-16

Similar Documents

Publication Publication Date Title
JP5348313B2 (ja) 内燃機関の制御装置
US9429057B2 (en) Method and an apparatus for warming a catalyst in an internal combustion engine
JP5995613B2 (ja) 内燃機関の制御装置
JP2010053716A (ja) 内燃機関の制御装置
JP5586733B1 (ja) 内燃機関の燃料噴射量制御装置および内燃機関の燃料噴射量制御方法
JP4867513B2 (ja) 内燃機関の制御装置
US20140331652A1 (en) Exhaust gas purification device of internal combustion engine
JP2016156304A (ja) 内燃機関の燃料切替装置
JP2006300253A (ja) 内燃機関の制御装置
JP5392412B2 (ja) 内燃機関の制御装置及び方法
JP3832288B2 (ja) 排ガス浄化装置
JP4748185B2 (ja) エコラン制御装置
JP2009047068A (ja) 内燃機関の制御装置
JP2010265815A (ja) 内燃機関の燃料噴射システム
JP5392021B2 (ja) 内燃機関の燃料噴射制御装置
JP4269279B2 (ja) 内燃機関の制御装置
JP2014141958A (ja) 内燃機関の制御装置
JP2012255422A (ja) 内燃機関の制御装置
JP2004232477A (ja) 内燃機関の制御装置
JP2010106770A (ja) 圧縮着火式内燃機関
JP2014163241A (ja) 内燃機関の制御装置
JP2013096336A (ja) 内燃機関の制御装置
JP2012172612A (ja) 内燃機関の排気浄化システム
JP2012197761A (ja) エンジン制御装置
JP2010071116A (ja) エンジンの制御装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080037371.7

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10847454

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012504249

Country of ref document: JP

REEP Request for entry into the european phase

Ref document number: 2010847454

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2010847454

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13498494

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE