WO2011004870A1 - 電力制御装置および電力制御装置における電力算出方法 - Google Patents
電力制御装置および電力制御装置における電力算出方法 Download PDFInfo
- Publication number
- WO2011004870A1 WO2011004870A1 PCT/JP2010/061636 JP2010061636W WO2011004870A1 WO 2011004870 A1 WO2011004870 A1 WO 2011004870A1 JP 2010061636 W JP2010061636 W JP 2010061636W WO 2011004870 A1 WO2011004870 A1 WO 2011004870A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- power
- switching element
- reactor
- switching
- vdc
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M7/00—Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
- H02M7/42—Conversion of dc power input into ac power output without possibility of reversal
- H02M7/44—Conversion of dc power input into ac power output without possibility of reversal by static converters
- H02M7/48—Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M1/00—Details of apparatus for conversion
- H02M1/0067—Converter structures employing plural converter units, other than for parallel operation of the units on a single load
- H02M1/007—Plural converter units in cascade
Definitions
- the present invention relates to a method for calculating input / output power at the time of driving and regeneration in a powertronics product in general having a chopper circuit and performing motor control, for example.
- Non-Patent Document 1 and Patent Documents 1 and 2 have been proposed as devices that use a chopper circuit to supply DC power to a load and regenerate the load power to the DC power. ing.
- FIG. 3 shows an example of a conventional motor driving device including a DC power source, a chopper circuit, and an inverter.
- 10 is a battery
- C1 is a capacitor connected in parallel to the battery 10.
- Reference numeral 11 denotes a switching element connected in parallel to the battery 10 via the reactor L1
- 12 denotes a switching element connected in series to the switching element 11.
- a free-wheeling diode 13 is connected in reverse parallel to the switching element 11, and a free-wheeling diode 14 is connected in reverse parallel to the switching element 12.
- a capacitor C2 is connected in parallel to the series body of the switching elements 11 and 12.
- a series body in which the switching element 15 and the switching element 16 are connected in series is connected in parallel to the capacitor C2.
- a freewheeling diode 17 is connected in reverse parallel to the switching element 15, and a freewheeling diode 18 is connected in reverse parallel to the switching element 16.
- One end of the reactor L2 is connected to the common connection point of the switching elements 15 and 16, and an inverter 19 having a three-phase bridge configuration is connected between the other end of the reactor L2 and the negative electrode end of the battery 10.
- the three-phase output is supplied to the PM motor 20.
- the common connection point of the inverter 19 and the reactor L2 is connected to the point P which is the common connection point of the switching element 12 and the capacitor C2 via the anode and cathode of the diode D1.
- the inverter 19 is a 120-degree current-type current source inverter, and includes a switching element connected in a three-phase bridge and a free-wheeling diode connected in reverse parallel thereto.
- the reactor L1, the switching element 11, the diode 14, and the capacitor C2 constitute a first boost chopper circuit. Then, the switching element 11 is turned on / off so that the voltage Vdc of the capacitor C2 becomes constant, but loss can be reduced by making the target value of voltage control (AVR) of the capacitor C2 variable.
- AVR voltage control
- the switching element 15 is turned on to pass a current through the reactor L2, and energy is stored in the reactor L2. In this case, driving is not possible unless the voltage Vdc on the capacitor C2 side is higher than the voltage on the reactor L2 side.
- a constant current is supplied to the reactor L2 via any two switching elements in which the switching element 16 and the inverter 19 are conducted by the energy stored in the reactor L2. Flowing.
- This current is detected by a current detector (not shown), or the rotational speed of the PM motor 20 is detected or the rotational speed is estimated from a waveform based on the gate signal, and the switching element 15 is set so that this current or rotational speed becomes a target value.
- 16 are turned on / off, and current control (ACR) or speed control (ASR) is performed. Further, the on / off control of the switching elements 15 and 16 enables the motor 20 to rotate at a voltage lower than the battery voltage.
- the PM motor 20 generates an induced voltage proportional to the rotational speed.
- the inverter 19 when the motor induced voltage becomes higher than the voltage on the reactor L2 side, the current flows to the reactor L2 side through any of the free-wheeling diodes (not shown).
- the switching element 16 When the switching element 16 is turned on, a current flows through the reactor L2, and energy is stored in the reactor L2.
- the switching element 16 when the switching element 16 is turned off, the current flows first through the diode 17 by the energy of the reactor L2, and then the switching element 15 is turned on after the dead time has elapsed, By flowing a current, the capacitor C2 is charged and boosted.
- the capacitor C2 can be charged even if the induced voltage of the PM motor 20 is low. Accordingly, the switching elements 15 and 16, the reactor L2, and the capacitor C2 constitute a second boost chopper circuit. In the second step-up chopper unit, current control (ACR), speed control (ASR) of the PM motor 20 or power control (APR) is performed so that the power is constant. At this time, the regenerative power from the second boost chopper circuit regenerates power to the battery 10 by the amount that the voltage of the capacitor C2 has increased.
- ACR current control
- ASR speed control
- APR power control
- the switching element 12 When power is regenerated to the battery 10, the switching element 12 is turned on to pass a current through the reactor L 1, the energy is stored in the reactor L 1, and the switching element 12 is turned off. Current flows through reactor L1.
- the voltage Vdc and current Idc are already known because the voltage control of the voltage Vdc at the point P and the current control of the current Idc flowing through the reactor L2 are performed as described above.
- the present invention solves the above problems, and an object of the present invention is to provide a power control apparatus and a power control apparatus capable of obtaining input / output power without using a current detector of an input unit and a voltage detector of an output unit It is in providing the electric power calculation method in.
- the present invention uses the known Vdc, Idc, d 1 , d 2 and DT to determine the power W as follows.
- the current detector that detects the current flowing through the DC power source (the part where the voltage Vdc is generated) and the voltage detection that detects the voltage generated at the other end of the reactor (the voltage at the part where the current Idc is generated).
- the power value can be calculated without installing a device.
- the power value can be obtained without installing a current detector for detecting the current flowing through the DC power supply and a voltage detector for detecting the voltage generated at the other end of the reactor. Can be calculated. (2) Further, by using the calculated power value, powering / regenerative power control can be accurately performed without providing the current detector and voltage detector.
- FIG. 10 is a main circuit diagram showing Examples 7 to 9 of the present invention.
- the circuit diagram which shows an example of the motor drive device to which this invention is applied.
- FIG. 1 shows the configuration of a power control apparatus to which the present invention is applied. 1 is a circuit on the battery 10 side from the point P where the voltage Vdc in FIG. 3 occurs (battery 10, capacitors C1, C2, reactor L1, switching element) 11 and 12 and freewheeling diodes 13 and 14).
- the DC power source 1 is not limited to the circuit shown in FIG. 3, and may be a DC power source such as a thyristor rectifier bridge circuit or a battery having a voltage value of Vdc.
- FIG. 2 is a chopper circuit including the switching elements 15 and 16, the freewheeling diodes 17 and 18 and the reactor L2 in FIG. 3, for example.
- a switching duty d 1 of the switching duty d 2 of the second switching element of 0 ⁇ d 2 ⁇ 1 becomes satisfies the chopper circuit 2 (switching element 16 in FIG. 3), the 0 ⁇ DT ⁇ 1 following condition
- a control unit having a function of calculating the formula (1) to the formula (4) to obtain the power W based on the dead time DT between the first and second switching elements to be satisfied.
- control unit 3 calculates the internal loss by the chopper circuit 2 and calculates the formula (5) from the power ratio n of the input and output of the chopper circuit based on the internal loss and the power W, and considers the equipment efficiency.
- a function for obtaining the power W ′ is provided.
- control unit 3 has a function of controlling the chopper circuit 2 to supply the DC power of the DC power supply 1 to the DC load 4 and performing a control to regenerate the DC power of the DC load 4 to the DC power supply 1.
- the DC load 4 includes, for example, an inverter 19 in FIG. 3 that converts DC power into AC, and a PM motor 20 connected to the AC side of the inverter 19.
- the means are not shown in FIG.
- the switching elements 16 and 12 that are on / off controlled during the regenerative operation are unnecessary, they may be replaced by only the diodes 18 and 14, respectively.
- the value of the current flowing through the point P (part where the voltage Vdc is generated) in FIG. 3 is d 1 ⁇ Idc, and the control unit 3 in FIG. 1 calculates the power value W by calculating the following equation (1).
- the second embodiment is applied when only the regeneration of the electric power of the PM motor 20 is performed in the circuit of FIG. 3 and the switching duty d 2 of the switching element 16 is known.
- the switching elements 15 and 11 that are on / off controlled during the driving operation are unnecessary, they may be replaced by only the diodes 17 and 13, respectively.
- a regenerative current flows through the switching element 15 or the diode 17 when the switching element 16 is turned off at the point P (the site where the voltage Vdc is generated), and the current value is the off time of the switching element 16. This is the product of (1-d 2 ) and Idc.
- control unit 3 in FIG. 1 calculates the power value W by calculating the following equation (2).
- the third embodiment is applied when the PM motor 20 is driven in the circuit of FIG. 3 and the switching duty d 2 of the switching element 16 is known.
- the fourth embodiment is applied when the power of the PM motor 20 is regenerated in the circuit of FIG. 3 and the switching duty d 1 of the switching element 15 is known.
- a regenerative current flows through the switching element 15 that is turned on when the switching element 16 is turned off at the point P.
- the off time of the switching element 16 depends on the switching duty d 1 of the switching element 15 and the dead time. It is represented by the sum of DT (d 1 + DT). Therefore, the value of the regenerative current flowing at the point P is the product of (d 1 + DT), which is the off time of the switching element 16, and Idc.
- control unit 3 in FIG. 1 calculates the power value W by calculating the following equation (4).
- Embodiment 5 performs regenerative drive and power of the PM motor 20 in the circuit of FIG. 3, and those switching duty d 2 of the switching duty d 1 and the switching element 16 of the switching element 15 is applied in the case of known It is.
- the power required in the first to fifth embodiments is the power value at point P in FIG. 3 (the part where the voltage Vdc is generated)
- the power value of the input / output section of the chopper circuit in an actual device deviates from the internal loss. Arise. Therefore, this internal loss is calculated, and if the ratio of the input / output unit power to the point P in FIG. 3 is known as n, the following equation (5) is calculated for the power W obtained in the first to fifth embodiments.
- an accurate power W ′ of the input / output unit is obtained.
- the switching elements 15 and 16 of FIG. 3 that have been subjected to current control (ACR) in advance are shown in FIG. 2 based on the power value W (W ′) calculated in the first to sixth embodiments.
- Power control (APR) with a control loop is performed. Thereby, power running / regenerative power control can be performed without adding a current / voltage detection device.
- FIG. 2 quotes the main part of FIG. 3, and the same parts as those in FIG.
- reference numeral 30 denotes a power control unit that performs power control (APR) based on the power command value W cmd and the power value W (W ′) calculated in the first to sixth embodiments.
- APR power control
- Reference numeral 40 denotes a current control unit that performs current control (ACR) based on the current command value Idc cmd and the current detection value Idc.
- the dead time DT in equation (3) is ignored.
- the dead time although error in the control occurs, to correct the W'cmd as in Equation (7) below the power command value W cmd.
- the dead time is corrected and the output power control can be performed with high accuracy.
- the dead time DT in equation (4) is ignored.
- the dead time although error in the control occurs, to correct the W'cmd as in Equation (9) below the power command value W cmd.
- the dead time is corrected and the output power control can be performed with high accuracy.
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Dc-Dc Converters (AREA)
Abstract
Description
(1)負荷の駆動のみを行い、且つ前記d1が既知の場合、
W=Vdc・d1・Idc…(1)
を演算して電力Wを求める。
(2)負荷からの電力回生のみを行い、且つ前記d2が既知の場合、
W=Vdc・(1-d2)・Idc…(2)
を演算して電力Wを求める。
(3)負荷の駆動を行い、且つ前記d2が既知の場合、
W=Vdc・(1-d2-DT)・Idc…(3)
を演算して電力Wを求める。
(4)負荷からの電力を回生し、且つ前記d1が既知の場合、
W=Vdc・(d1+DT)・Idc…(4)
を演算して電力Wを求める。
(5)負荷の駆動と回生を行い、且つ前記d1,d2が既知の場合、
前記式(1)~式(4)のいずれかを演算して電力Wを求める。
(6)さらに、前記チョッパ回路による内部損失を算出し、該内部損失に基づくチョッパ回路の入力と出力の電力比率nと、前記式(1)~式(4)のいずれかにより求めた電力Wから、
W´=n・W…(5)
を演算して、機器効率を考慮した電力W´を求める。
(2)また、前記算出した電力値を用いることによって、前記電流検出器、電圧検出器を設けることなく力行/回生電力制御を精度良く行うことができる。
尚この比率nとしては、機器の効率ηを用いることができる。
W=Vdc・(1-d2)・Idc…(6)
とし、式(3)のデッドタイムDTを無視する。このときデッドタイム分、制御に誤差が生じるが、電力指令値Wcmdを以下の式(7)のようにW´cmdに補正する。これによりデッドタイム分の補正がかかり精度良く出力電力制御を行うことができる。
W=Vdc・d1・Idc…(8)
とし、式(4)のデッドタイムDTを無視する。このときデッドタイム分、制御に誤差が生じるが、電力指令値Wcmdを以下の式(9)のようにW´cmdに補正する。これによりデッドタイム分の補正がかかり精度良く出力電力制御を行うことができる。
2…チョッパ回路
3…制御部
4…直流負荷
10…バッテリ
11,12,15,16…スイッチング素子
13,14,17,18…還流ダイオード
19…インバータ
20…PMモータ
30…電流制御部
40…電力制御部
C1、C2…コンデンサ
L1,L2…リアクトル
D1…ダイオード
Claims (8)
- 直流電源と、前記直流電源の正負極端間に直列に接続され、前記直流電源の正極端側に一端が接続された第1のスイッチング素子および負極端側に他端が接続された第2のスイッチング素子と、前記第1のスイッチング素子の他端と第2のスイッチング素子の一端との間に位置する共通接続点に一端が接続されたリアクトルとを有したチョッパ回路と、前記リアクトルの他端と前記直流電源の負極端の間に接続された負荷とを有し、
前記チョッパ回路を制御して、直流電源の直流電力を負荷に供給する電力制御装置において、
前記直流電源の出力電圧Vdcと、前記リアクトルに流れる電流Idcと、0≦d1≦1なる条件を満たす前記チョッパ回路の第1のスイッチング素子のスイッチングデューティーd1とを検出する手段と、
前記検出されたVdc、Idcおよびd1から、Vdc・d1・Idcを演算して電力Wを求める制御手段と、を備えたことを特徴とする電力制御装置。 - 直流電源と、前記直流電源の正負極端間に直列に接続され、前記直流電源の正極端側に一端が接続された第1のスイッチング素子および負極端側に他端が接続された第2のスイッチング素子と、前記第1のスイッチング素子の他端と第2のスイッチング素子の一端との間に位置する共通接続点に一端が接続されたリアクトルとを有したチョッパ回路と、前記リアクトルの他端と前記直流電源の負極端の間に接続された負荷とを有し、
前記チョッパ回路を制御して、直流電源の直流電力を負荷に供給する電力制御装置において、
前記直流電源の出力電圧Vdcと、前記リアクトルに流れる電流Idcと、0≦d1≦1なる条件を満たす前記チョッパ回路の第1のスイッチング素子のスイッチングデューティーd1とを検出する手段を備え、
制御手段が、前記検出されたVdc、Idcおよびd1から、Vdc・d1・Idcを演算して電力Wを求めることを特徴とする電力制御装置における電力算出方法。 - 直流電源と、前記直流電源の正負極端間に直列に接続され、前記直流電源の正極端側に一端が接続された第1のスイッチング素子および負極端側に他端が接続された第2のスイッチング素子と、前記第1のスイッチング素子の他端と第2のスイッチング素子の一端との間に位置する共通接続点に一端が接続されたリアクトルとを有したチョッパ回路と、前記リアクトルの他端と前記直流電源の負極端の間に接続された負荷とを有し、
前記チョッパ回路を制御して、負荷の直流電力を直流電源へ回生する電力制御装置において、
前記直流電源の出力電圧Vdcと、前記リアクトルに流れる電流Idcと、0≦d2≦1なる条件を満たす前記チョッパ回路の第2のスイッチング素子のスイッチングデューティーd2とを検出する手段を備え、
制御手段が、前記検出されたVdc、Idcおよびd2から、Vdc・(1-d2)・Idcを演算して電力Wを求めることを特徴とする電力制御装置における電力算出方法。 - 直流電源と、前記直流電源の正負極端間に直列に接続され、前記直流電源の正極端側に一端が接続された第1のスイッチング素子および負極端側に他端が接続された第2のスイッチング素子と、前記第1のスイッチング素子の他端と第2のスイッチング素子の一端との間に位置する共通接続点に一端が接続されたリアクトルとを有したチョッパ回路と、前記リアクトルの他端と前記直流電源の負極端の間に接続された負荷とを有し、
前記チョッパ回路を制御して、直流電源の直流電力を負荷に供給する電力制御装置において、
前記直流電源の出力電圧Vdcと、前記リアクトルに流れる電流Idcと、0≦d2≦1なる条件を満たす前記チョッパ回路の第2のスイッチング素子のスイッチングデューティーd2と、0≦DT≦1なる条件を満たす前記第1および第2のスイッチング素子間のデッドタイムDTを検出する手段を備え、
制御手段が、前記検出されたVdc、Idc、d2およびDTから、Vdc・(1-d2-DT)・Idcを演算して電力Wを求めることを特徴とする電力制御装置における電力算出方法。 - 直流電源と、前記直流電源の正負極端間に直列に接続され、前記直流電源の正極端側に一端が接続された第1のスイッチング素子および負極端側に他端が接続された第2のスイッチング素子と、前記第1のスイッチング素子の他端と第2のスイッチング素子の一端との間に位置する共通接続点に一端が接続されたリアクトルとを有したチョッパ回路と、前記リアクトルの他端と前記直流電源の負極端の間に接続された負荷とを有し、
前記チョッパ回路を制御して、負荷の直流電力を直流電源へ回生する電力制御装置において、
前記直流電源の出力電圧Vdcと、前記リアクトルに流れる電流Idcと、0≦d1≦1なる条件を満たす前記チョッパ回路の第1のスイッチング素子のスイッチングデューティーd1と、0≦DT≦1なる条件を満たす前記第1および第2のスイッチング素子間のデッドタイムDTを検出する手段と、
前記検出されたVdc、Idc、d1およびDTから、Vdc・(d1+DT)・Idcを演算して電力Wを求める制御手段と、を備えたことを特徴とする電力制御装置。 - 直流電源と、前記直流電源の正負極端間に直列に接続され、前記直流電源の正極端側に一端が接続された第1のスイッチング素子および負極端側に他端が接続された第2のスイッチング素子と、前記第1のスイッチング素子の他端と第2のスイッチング素子の一端との間に位置する共通接続点に一端が接続されたリアクトルとを有したチョッパ回路と、前記リアクトルの他端と前記直流電源の負極端の間に接続された負荷とを有し、
前記チョッパ回路を制御して、負荷の直流電力を直流電源へ回生する電力制御装置において、
前記直流電源の出力電圧Vdcと、前記リアクトルに流れる電流Idcと、0≦d1≦1なる条件を満たす前記チョッパ回路の第1のスイッチング素子のスイッチングデューティーd1と、0≦DT≦1なる条件を満たす前記第1および第2のスイッチング素子間のデッドタイムDTを検出する手段を備え、
制御手段が、前記検出されたVdc、Idc、d1およびDTから、Vdc・(d1+DT)・Idcを演算して電力Wを求めることを特徴とする電力制御装置における電力算出方法。 - 直流電源と、前記直流電源の正負極端間に直列に接続され、前記直流電源の正極端側に一端が接続された第1のスイッチング素子および負極端側に他端が接続された第2のスイッチング素子と、前記第1のスイッチング素子の他端と第2のスイッチング素子の一端との間に位置する共通接続点に一端が接続されたリアクトルとを有したチョッパ回路と、前記リアクトルの他端と前記直流電源の負極端の間に接続された負荷とを有し、
前記チョッパ回路を制御して、直流電源の直流電力を負荷に供給し、負荷の直流電力を直流電源へ回生する電力制御装置において、
前記直流電源の出力電圧Vdcと、前記リアクトルに流れる電流Idcと、0≦d1≦1なる条件を満たす前記チョッパ回路の第1のスイッチング素子のスイッチングデューティーd1と、0≦d2≦1なる条件を満たす前記チョッパ回路の第2のスイッチング素子のスイッチングデューティーd2と、0≦DT≦1なる条件を満たす前記第1および第2のスイッチング素子間のデッドタイムDTとを検出する手段を備え、
制御手段が、前記検出されたVdc、Idc、d1、d2およびDTから、Vdc・d1・Idc又はVdc・(1-d2)・Idc又はVdc・(1-d2-DT)・Idc又はVdc・(d1+DT)・Idcのいずれかを演算して電力Wを求めることを特徴とする電力制御装置における電力算出方法。 - 前記制御手段は、前記チョッパ回路による内部損失を算出し、該内部損失に基づくチョッパ回路の入力と出力の電力比率nと前記電力Wから、n・Wを演算して機器効率を考慮した電力W´を求めることを特徴とする請求項2又は3又は4又は6又は7に記載の電力制御装置における電力算出方法。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US13/382,687 US8855953B2 (en) | 2009-07-08 | 2010-07-08 | Electrical power control device and electrical power calculation method in electrical power control device |
CN201080030403.0A CN102474178B (zh) | 2009-07-08 | 2010-07-08 | 电功率控制装置和电功率控制装置中的电功率计算方法 |
DE112010002329T DE112010002329T5 (de) | 2009-07-08 | 2010-07-08 | Elektrische Leistungssteuerungsvorrichtigung und Verfahren zum Berechnen elektrischer Leistung bei einer elektrischen Leistungssteuerungsvorrichtung |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009162020A JP5439989B2 (ja) | 2009-07-08 | 2009-07-08 | 電力制御装置および電力制御装置における電力算出方法 |
JP2009-162020 | 2009-07-08 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2011004870A1 true WO2011004870A1 (ja) | 2011-01-13 |
Family
ID=43429295
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2010/061636 WO2011004870A1 (ja) | 2009-07-08 | 2010-07-08 | 電力制御装置および電力制御装置における電力算出方法 |
Country Status (5)
Country | Link |
---|---|
US (1) | US8855953B2 (ja) |
JP (1) | JP5439989B2 (ja) |
CN (1) | CN102474178B (ja) |
DE (1) | DE112010002329T5 (ja) |
WO (1) | WO2011004870A1 (ja) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5673267B2 (ja) * | 2011-03-22 | 2015-02-18 | 株式会社明電舎 | 電力用チョッパの制御装置 |
WO2013145140A1 (ja) * | 2012-03-27 | 2013-10-03 | 三菱電機株式会社 | 蓄電デバイスの寿命診断方法 |
CN109586387B (zh) * | 2017-09-28 | 2022-08-19 | 株洲中车时代电气股份有限公司 | 一种斩波电路及供电系统 |
JP6722417B1 (ja) * | 2019-02-07 | 2020-07-15 | 双葉電子工業株式会社 | モーター駆動装置 |
CN112098857B (zh) * | 2020-08-14 | 2022-11-08 | 深圳天邦达科技有限公司 | 利用单片机扫描电池电压的采集电路及其控制方法 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001268900A (ja) * | 2000-03-22 | 2001-09-28 | Masayuki Hattori | 双方向型昇降圧チョッパ回路 |
JP2003348828A (ja) * | 2002-05-23 | 2003-12-05 | Meiji Natl Ind Co Ltd | 電源装置 |
JP2007288979A (ja) * | 2006-04-19 | 2007-11-01 | Toyota Industries Corp | 直流電源装置 |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH03278188A (ja) | 1990-03-28 | 1991-12-09 | Terumo Corp | 検査装置 |
JP3278188B2 (ja) | 1992-03-16 | 2002-04-30 | 勲 高橋 | 電動機駆動用インバータ装置 |
US7161333B2 (en) | 2004-12-08 | 2007-01-09 | Linear Technology Corporation | System and method for determining load current in switching regulators operable in pulse skipping mode |
US7791324B2 (en) | 2007-03-30 | 2010-09-07 | Intersil Americas Inc. | Switching regulator without a dedicated input current sense element |
JP2008295280A (ja) | 2007-04-27 | 2008-12-04 | Meidensha Corp | モータ駆動装置 |
CN100561839C (zh) * | 2007-10-11 | 2009-11-18 | 天津大学 | 直驱型永磁同步电机风力发电功率变换装置 |
-
2009
- 2009-07-08 JP JP2009162020A patent/JP5439989B2/ja not_active Expired - Fee Related
-
2010
- 2010-07-08 DE DE112010002329T patent/DE112010002329T5/de not_active Ceased
- 2010-07-08 CN CN201080030403.0A patent/CN102474178B/zh not_active Expired - Fee Related
- 2010-07-08 US US13/382,687 patent/US8855953B2/en not_active Expired - Fee Related
- 2010-07-08 WO PCT/JP2010/061636 patent/WO2011004870A1/ja active Application Filing
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001268900A (ja) * | 2000-03-22 | 2001-09-28 | Masayuki Hattori | 双方向型昇降圧チョッパ回路 |
JP2003348828A (ja) * | 2002-05-23 | 2003-12-05 | Meiji Natl Ind Co Ltd | 電源装置 |
JP2007288979A (ja) * | 2006-04-19 | 2007-11-01 | Toyota Industries Corp | 直流電源装置 |
Also Published As
Publication number | Publication date |
---|---|
JP2011019332A (ja) | 2011-01-27 |
CN102474178B (zh) | 2015-02-25 |
US8855953B2 (en) | 2014-10-07 |
US20120109549A1 (en) | 2012-05-03 |
CN102474178A (zh) | 2012-05-23 |
JP5439989B2 (ja) | 2014-03-12 |
DE112010002329T5 (de) | 2012-06-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN105406737B (zh) | 具有静电电容计算部的pwm整流器 | |
US8299739B2 (en) | Motor drive | |
JP6414328B2 (ja) | 電力調整システム及びその制御方法 | |
JP2011024369A (ja) | 電力変換装置 | |
US7379313B2 (en) | Voltage conversion device | |
JP6414329B2 (ja) | 電力調整システム及びその制御方法 | |
JP2003189599A (ja) | 電圧変換装置および電圧変換方法 | |
US10464438B2 (en) | Power conditioning system and control method therefor | |
CN107112922B (zh) | 变流器和用于运行变流器的方法 | |
CN102474209B (zh) | 电动机驱动装置的功率消耗计算方法和利用功率消耗计算方法的电动机驱动装置的控制方法 | |
WO2011004870A1 (ja) | 電力制御装置および電力制御装置における電力算出方法 | |
JP5321282B2 (ja) | 電力制御装置 | |
JP2011167011A (ja) | Dcdcコンバータシステム | |
JP5225761B2 (ja) | 昇降圧コンバータの駆動制御装置 | |
JP7059634B2 (ja) | 電源システム | |
KR20180043595A (ko) | 전력 변환 장치 및 이를 포함하는 공기 조화기 | |
US20210159820A1 (en) | Load driving device, refrigeration cycle applicable apparatus, and air conditioner | |
JP2012115018A (ja) | 電力制御装置 | |
JP2018093649A (ja) | 電圧コンバータ | |
JP2012100385A (ja) | 回転電機制御装置 | |
JP5601761B2 (ja) | ハイブリッド型作業機械 | |
US11364811B1 (en) | Powering electric vehicle accessory devices from back EMF generated by an electric motor | |
JP2019075958A (ja) | 電源システム | |
JP2015198499A (ja) | 電動機駆動装置 | |
JP6153138B2 (ja) | スイッチング電源装置および電力変換装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 201080030403.0 Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 10797181 Country of ref document: EP Kind code of ref document: A1 |
|
DPE1 | Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101) | ||
WWE | Wipo information: entry into national phase |
Ref document number: 112010002329 Country of ref document: DE Ref document number: 1120100023298 Country of ref document: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 13382687 Country of ref document: US |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 10797181 Country of ref document: EP Kind code of ref document: A1 |