WO2011099426A1 - 純銅板の製造方法及び純銅板 - Google Patents
純銅板の製造方法及び純銅板 Download PDFInfo
- Publication number
- WO2011099426A1 WO2011099426A1 PCT/JP2011/052317 JP2011052317W WO2011099426A1 WO 2011099426 A1 WO2011099426 A1 WO 2011099426A1 JP 2011052317 W JP2011052317 W JP 2011052317W WO 2011099426 A1 WO2011099426 A1 WO 2011099426A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- rolling
- pure copper
- copper plate
- grain boundary
- temperature
- Prior art date
Links
- 229910052802 copper Inorganic materials 0.000 title claims abstract description 80
- 239000010949 copper Substances 0.000 title claims abstract description 80
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 title claims abstract description 79
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 20
- 238000005096 rolling process Methods 0.000 claims abstract description 72
- 239000013078 crystal Substances 0.000 claims abstract description 60
- 238000005098 hot rolling Methods 0.000 claims abstract description 46
- 238000007747 plating Methods 0.000 claims abstract description 25
- 238000001816 cooling Methods 0.000 claims abstract description 21
- 238000005477 sputtering target Methods 0.000 claims description 20
- 238000000034 method Methods 0.000 claims description 13
- 238000001887 electron backscatter diffraction Methods 0.000 claims description 6
- 238000004544 sputter deposition Methods 0.000 abstract description 29
- 238000005097 cold rolling Methods 0.000 abstract description 13
- 238000005242 forging Methods 0.000 abstract description 9
- 238000010273 cold forging Methods 0.000 abstract description 8
- 230000015572 biosynthetic process Effects 0.000 abstract description 6
- 238000012545 processing Methods 0.000 abstract description 3
- 230000002159 abnormal effect Effects 0.000 description 13
- 239000000463 material Substances 0.000 description 12
- 238000005520 cutting process Methods 0.000 description 11
- 238000001953 recrystallisation Methods 0.000 description 11
- 230000017525 heat dissipation Effects 0.000 description 10
- 239000000758 substrate Substances 0.000 description 9
- 238000010438 heat treatment Methods 0.000 description 8
- 238000004090 dissolution Methods 0.000 description 5
- 230000000694 effects Effects 0.000 description 5
- 238000005259 measurement Methods 0.000 description 5
- 239000010405 anode material Substances 0.000 description 4
- 238000007796 conventional method Methods 0.000 description 4
- 239000007789 gas Substances 0.000 description 4
- 239000013077 target material Substances 0.000 description 4
- 229910000881 Cu alloy Inorganic materials 0.000 description 3
- 230000000052 comparative effect Effects 0.000 description 3
- 230000001965 increasing effect Effects 0.000 description 3
- 229910052751 metal Inorganic materials 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- 238000010791 quenching Methods 0.000 description 3
- 230000000171 quenching effect Effects 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- 241000237536 Mytilus edulis Species 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 2
- 229910052804 chromium Inorganic materials 0.000 description 2
- 230000008602 contraction Effects 0.000 description 2
- 238000002149 energy-dispersive X-ray emission spectroscopy Methods 0.000 description 2
- 238000011156 evaluation Methods 0.000 description 2
- 239000012535 impurity Substances 0.000 description 2
- 239000010410 layer Substances 0.000 description 2
- 238000002844 melting Methods 0.000 description 2
- 230000008018 melting Effects 0.000 description 2
- 238000003801 milling Methods 0.000 description 2
- 235000020638 mussel Nutrition 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 238000007670 refining Methods 0.000 description 2
- 239000004065 semiconductor Substances 0.000 description 2
- 238000003756 stirring Methods 0.000 description 2
- 239000002344 surface layer Substances 0.000 description 2
- VHUUQVKOLVNVRT-UHFFFAOYSA-N Ammonium hydroxide Chemical compound [NH4+].[OH-] VHUUQVKOLVNVRT-UHFFFAOYSA-N 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 208000025599 Heat Stress disease Diseases 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- 229910052776 Thorium Inorganic materials 0.000 description 1
- 229910052770 Uranium Inorganic materials 0.000 description 1
- 238000002441 X-ray diffraction Methods 0.000 description 1
- 230000005856 abnormality Effects 0.000 description 1
- 239000006061 abrasive grain Substances 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 238000005275 alloying Methods 0.000 description 1
- 235000011114 ammonium hydroxide Nutrition 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 238000000137 annealing Methods 0.000 description 1
- 229910052787 antimony Inorganic materials 0.000 description 1
- 229910052785 arsenic Inorganic materials 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 230000004888 barrier function Effects 0.000 description 1
- 239000010953 base metal Substances 0.000 description 1
- 229910052793 cadmium Inorganic materials 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000008119 colloidal silica Substances 0.000 description 1
- 150000001879 copper Chemical class 0.000 description 1
- 238000007405 data analysis Methods 0.000 description 1
- 238000013480 data collection Methods 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 229910003460 diamond Inorganic materials 0.000 description 1
- 239000010432 diamond Substances 0.000 description 1
- PEVJCYPAFCUXEZ-UHFFFAOYSA-J dicopper;phosphonato phosphate Chemical compound [Cu+2].[Cu+2].[O-]P([O-])(=O)OP([O-])([O-])=O PEVJCYPAFCUXEZ-UHFFFAOYSA-J 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 238000010894 electron beam technology Methods 0.000 description 1
- 238000002003 electron diffraction Methods 0.000 description 1
- 238000004049 embossing Methods 0.000 description 1
- 230000002708 enhancing effect Effects 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- 238000007730 finishing process Methods 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 229910052738 indium Inorganic materials 0.000 description 1
- 238000005342 ion exchange Methods 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052700 potassium Inorganic materials 0.000 description 1
- 230000002250 progressing effect Effects 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 238000000746 purification Methods 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 238000005482 strain hardening Methods 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- RYCLIXPGLDDLTM-UHFFFAOYSA-J tetrapotassium;phosphonato phosphate Chemical compound [K+].[K+].[K+].[K+].[O-]P([O-])(=O)OP([O-])([O-])=O RYCLIXPGLDDLTM-UHFFFAOYSA-J 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 229910052726 zirconium Inorganic materials 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22F—CHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
- C22F1/00—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
- C22F1/08—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of copper or alloys based thereon
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21B—ROLLING OF METAL
- B21B3/00—Rolling materials of special alloys so far as the composition of the alloy requires or permits special rolling methods or sequences ; Rolling of aluminium, copper, zinc or other non-ferrous metals
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21B—ROLLING OF METAL
- B21B3/00—Rolling materials of special alloys so far as the composition of the alloy requires or permits special rolling methods or sequences ; Rolling of aluminium, copper, zinc or other non-ferrous metals
- B21B3/003—Rolling non-ferrous metals immediately subsequent to continuous casting, i.e. in-line rolling
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C9/00—Alloys based on copper
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22F—CHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
- C22F1/00—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/22—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
- C23C14/34—Sputtering
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/22—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
- C23C14/34—Sputtering
- C23C14/3407—Cathode assembly for sputtering apparatus, e.g. Target
- C23C14/3414—Metallurgical or chemical aspects of target preparation, e.g. casting, powder metallurgy
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25D—PROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
- C25D17/00—Constructional parts, or assemblies thereof, of cells for electrolytic coating
- C25D17/10—Electrodes, e.g. composition, counter electrode
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21B—ROLLING OF METAL
- B21B3/00—Rolling materials of special alloys so far as the composition of the alloy requires or permits special rolling methods or sequences ; Rolling of aluminium, copper, zinc or other non-ferrous metals
- B21B2003/005—Copper or its alloys
Definitions
- the present invention relates to a method for producing a pure copper plate having good quality, and more particularly, a pure copper plate having a fine structure and a high special grain boundary ratio by forming a twin structure by partial recrystallization. And a pure copper plate suitable for a sputtering copper target material, an anode material for plating, and the like manufactured by the manufacturing method.
- This application claims priority based on Japanese Patent Application No. 2010-26455 for which it applied on February 9, 2010, and uses the content here.
- a pure copper plate is usually manufactured by hot rolling or hot forging a pure copper ingot, followed by cold rolling or cold forging, and then heat treatment for strain relief or recrystallization.
- Such a pure copper plate is used after being processed into a desired shape by saw cutting, cutting, embossing, cold forging, etc.
- the crystal grain size Is small and the residual stress in the crystal structure is required to be small.
- the pure copper plate manufactured by the above-described method has recently been used as a sputtering target for wiring material of semiconductor elements.
- Al specific resistance of about 3.1 ⁇ ⁇ cm
- copper wiring with lower resistance specific resistance of about 1.7 ⁇ ⁇ cm
- a diffusion barrier layer such as Ta / TaN is formed in a concave portion of a contact hole or wiring groove, and then copper is electroplated in many cases.
- pure copper is sputter-deposited.
- 5N (purity 99.999% or higher) to 6N (purity 99.9999%) is obtained by wet or dry high-purification process using 4N (purity 99.99% or higher: without gas components) as a crude metal. % Or more) is produced, and this is used as a pure copper plate by the above-described method, and is further used as a sputtering target after being processed into a desired shape.
- the impurity content in the sputtering target In order to produce a sputtered film with low electrical resistance, the impurity content in the sputtering target must be kept below a certain value, and the elements added for alloying must also be lowered below a certain level. In order to obtain this uniformity, it is necessary to suppress variations in the crystal grain size and crystal orientation of the sputtering target.
- Patent Document 1 As a conventional method for industrially producing such a pure copper target for sputtering, in Patent Document 1, a pure copper ingot having a purity of 99.995 wt% or more is hot-worked, and then annealed at a temperature of 900 ° C. or less. Next, after performing cold rolling at a rolling rate of 40% or more, recrystallization annealing is performed at a temperature of 500 ° C. or less, so that it has a substantially recrystallized structure and an average crystal grain size of 80 microns or less. A method for obtaining a sputtering copper target having a Vickers hardness of 100 or less is disclosed.
- Patent Document 2 a high purity copper ingot of 5N or more is subjected to hot working with a working rate of 50% or more such as hot forging or hot rolling, and then further cold rolling or cold forging or the like. By performing cold working at a working rate of 30% or more and performing heat treatment at 350 to 500 ° C.
- each of Na and K contents is 0.1 ppm or less, Fe, Ni, Cr, Al,
- the Ca and Mg contents are each 1 ppm or less, the carbon and oxygen contents are each 5 ppm or less, the U and Th contents are each 1 ppb or less, and the copper content excluding gas components is 99.999% or more
- the average particle size on the sputtering surface is 250 ⁇ m or less, the variation in average particle size is within ⁇ 20%, and the X-ray diffraction intensity ratio I (111) / I (200) is 2.4 or more on the sputtering surface, and the variation is ⁇ 20. How to obtain the sputtering copper target is within is disclosed.
- Patent Document 3 the surface layer of an ingot made of high purity copper having a purity of 6N or more and an additive element was removed, and the product was obtained through hot forging, hot rolling, cold rolling, and a heat treatment process.
- a target and a copper alloy sputtering target containing one or more selected from Sb, Zr, Ti, Cr, Ag, Au, Cd, In, and As in a total amount of 1.0 wtppm or less are disclosed.
- a pure copper ingot was subjected to hot forging or hot rolling in order to obtain a homogeneous and stable recrystallized structure. Thereafter, cold forging and cold rolling are performed, and further heat treatment is performed.
- the present invention has been made in view of such circumstances, and a method for producing a pure copper plate that does not require cold forging, cold rolling, and subsequent heat treatment after hot forging or hot rolling, and ,
- a copper plate having a fine structure obtained by the manufacturing method, and having a high special grain boundary ratio by forming a twin structure by partial recrystallization, in particular, a copper target material for sputtering, an anode for plating, etc. Provide suitable pure copper plate.
- a pure copper ingot having a purity of 99.96 wt% or more is heated to 550 ° C. to 800 ° C., the total rolling rate is 85% or more, and the temperature at the end of rolling is 500 to 700.
- the temperature at the final hot rolling which is the final step of hot rolling, is used.
- the rolling reduction per pass in the finish hot rolling is important (hereinafter referred to as the rolling end temperature).
- the rolling end temperature In finish hot rolling, when the rolling end temperature is less than 500 ° C. or the rolling reduction per pass is less than 5%, partial recrystallization does not occur sufficiently, and the rolling end temperature is 700 ° C. If it exceeds or the rolling reduction per pass is 25% or more, dynamic recrystallization becomes dominant during finish hot rolling, and high special grain boundaries accompanying the formation of twin structure by partial recrystallization. It becomes difficult to obtain a ratio.
- the hot rolling start temperature is preferably 550 to 800 ° C.
- the rolling reduction per pass may be 5 to 24% in the range of 500 to 700 ° C., and at least one pass rolling may be performed. Good.
- the formation of the twin structure is further promoted by carrying out the multiple pass repeated rolling.
- the pure copper plate manufactured in this way is effective for uses such as a sputtering target, an anode for plating, and a heat dissipation substrate.
- quenching may be performed at a cooling rate of 200 to 1000 ° C./min until a temperature of 200 ° C. or lower is reached. If the cooling rate is less than 200 ° C./min, the effect of suppressing the growth of crystal grains is poor, and even if it exceeds 1000 ° C./min, it does not contribute to the effect of suppressing further grain growth.
- a more preferable cooling rate is in the range of 300 to 600 ° C./min. If it is cooled to a temperature of 200 ° C. or less at a cooling rate in such a range, the growth of crystal grains can be stopped to obtain fine crystal grains. On the other hand, if the rapid cooling is stopped at a temperature exceeding 200 ° C., the crystal grains may gradually grow by being left in the high temperature state.
- the pure copper plate manufactured by the manufacturing method of the present invention has a ratio of the total special grain boundary length L ⁇ of the special grain boundary to the total grain boundary length L of the crystal grain boundary measured by the EBSD method (L ⁇ / L). Is 55% or more.
- the frequency of the special grain boundary is higher than 55%, the consistency of the crystal grain boundary is improved, and various characteristics such as sputtering characteristics of the sputtering target, solubility in the anode for plating, and deformation characteristics of the plate material are improved. Become.
- the pure copper plate of the present invention is suitable for use as a sputtering target.
- the pure copper plate of the present invention is suitable for use as a sputtering target.
- the occurrence of abnormal discharge can be suppressed even in sputtering under high output.
- a pure copper plate suitable for a sputtering copper target material having fine and uniform crystal grains and hardly causing abnormal discharge under high output, or an anode material for plating exhibiting uniform solubility is manufactured. can do.
- the pure copper plate of this embodiment is oxygen-free copper having a copper purity of 99.96 wt% or more, or oxygen-free copper for electron tubes having 99.99 wt% or more.
- the average grain size determined by the EBSD method is 10 to 200 ⁇ m, more preferably 80 ⁇ m, and the total special grain boundary length of the special grain boundary with respect to the total grain boundary length L of the grain boundary measured by the EBSD method.
- the ratio of L ⁇ (L ⁇ / L) is 55% or more.
- this mussel is denoted by C in the direction perpendicular to the cutting direction in the cutting mark W generated in the cutting direction (direction indicated by the arrow A) when the material is cut by a milling machine or the like. As shown by, the fine irregularities generated in a streak shape. When this mess is generated, the appearance of the product is impaired. Setting the average crystal grain size to less than 10 ⁇ m is not realistic and causes an increase in manufacturing cost.
- a crystal grain boundary is defined as a boundary between crystals when the orientation between two adjacent crystals is 15 ° or more as a result of two-dimensional cross-sectional observation.
- a special grain boundary is a crystal grain having a crystal value of 3 ⁇ ⁇ ⁇ 29 with a ⁇ value defined crystallographically based on CSL theory (Kronberg et.al .: Trans. Met. Soc. AIME, 185, 501 (1949)).
- Grain which is a boundary (corresponding grain boundary) and has an inherent corresponding site lattice orientation defect Dq at the grain boundary satisfying Dq ⁇ 15 ° / ⁇ 1/2 (DGBrandon: Acta. Metallurgica. Vol.14, p1479, 1966) Defined as a bound. If the length ratio of this special grain boundary is high among all crystal grain boundaries, the consistency of the crystal grain boundaries is improved, and sputtering targets, plating anodes, heat dissipation substrates, etc. that are widely known as pure copper plate applications The characteristics can be improved.
- the anode material for plating made of pure copper is used especially for through-hole plating of printed wiring boards, but when the anode is melted, uneven current density distribution occurs, causing local conduction failure, resulting in insoluble slime. May occur, leading to poor plating and reduced production efficiency.
- As a countermeasure it is effective to increase the in-plane melting homogeneity at the melting surface of the anode, and a countermeasure is taken by making the crystal grains finer.
- the grain boundaries are easier to dissolve than in the grains, and even if the in-plane dissolution homogeneity of the anode is improved by refinement, it is inevitable that the grain boundaries are selectively dissolved, and the refinement effect is limited. It has turned out that there is. Therefore, it is considered that suppressing the solubility of the grain boundary itself is effective for the generation of the slime, but no examination has been made from such a viewpoint.
- the heat dissipation substrate since the heat dissipation substrate repeatedly expands and contracts during use, it is important to have uniform deformation characteristics and excellent fatigue characteristics.
- direct and alternating inverter circuits are indispensable for hybrid vehicles and solar cells that have become popular due to the trend of energy saving and low CO.
- Pure copper or low alloy is used as a heat dissipation board to dissipate the heat generated during conversion.
- a copper plate is used.
- an increase in current due to an increase in the size of the system is progressing, and the heat burden on the heat dissipation substrate is increasing. Since heat expansion and contraction are always repeated during use, the heat dissipation substrate is required to have heat fatigue characteristics in the long term.
- the homogeneity of the structure is important, but it is difficult to improve the fatigue characteristics accompanying the increase in current only by improving the homogeneity of the conventional structure.
- the substrate material for heat dissipation shows uniform deformation characteristics, and metal fatigue hardly occurs even by repeated thermal expansion / contraction, and the fatigue characteristics are improved.
- various characteristics such as sputtering characteristics in the sputtering target, solubility in the anode material for plating, and other deformation characteristics as a copper plate are improved. This is effective for applications such as plating anodes and heat dissipation substrates.
- This manufacturing method is a simple process in which a pure copper ingot is hot-rolled, the hot rolling is finished in a finish rolling pass that satisfies a predetermined condition, and then rapidly cooled as necessary.
- a pure copper ingot is heated to 550 ° C. to 800 ° C., and while reciprocating between the rolling rolls a plurality of times, the gap between the rolling rolls is gradually reduced and rolled to a predetermined thickness.
- the total rolling rate by this multiple rolling is 85% or more
- the finishing temperature in finishing hot rolling, which is the finishing process of hot rolling is 500 to 700 ° C., and the reduction per pass in the finishing hot rolling.
- the rate is 5 to 24%, and one or more passes are continuously rolled.
- rapid cooling is performed at a cooling rate of 200 to 1000 ° C./min from the rolling end temperature to a temperature of 200 ° C. or lower.
- a method for producing a pure copper sheet generally includes a process of hot rolling ⁇ cooling ⁇ cold rolling ⁇ heat treatment, and the hot rolling in this case is processed at a high temperature of 850 to 900 ° C.
- hot rolling is performed in such a high temperature state, the crystal grains become coarse, so even if it is rapidly cooled, the average crystal grain size cannot be reduced to 80 ⁇ m or less.
- hot rolling was performed at a relatively low temperature state with a start temperature of 550 to 800 ° C. and an end temperature of 500 to 700 ° C.
- the end temperature of hot rolling exceeds 700 ° C.
- the crystal grains increase rapidly, and it is difficult to obtain fine crystal grains even if the crystal is rapidly cooled thereafter.
- the hot rolling end temperature is set to 500 to 700 ° C.
- the hot rolling start temperature was set to 550 to 800 ° C.
- the total rolling rate by this hot rolling is preferably 85% or more, and by setting the total rolling rate to 85% or more, the coarsening of the crystal grain size can be suppressed and the variation can be reduced. . If the total rolling ratio is less than 85%, the crystal grains tend to be large and the variation becomes large. In this case, with respect to the finish hot rolling which is the final stage rolling among a plurality of rollings, it is more preferable to perform rolling continuously for one pass or a plurality of passes with a reduction rate per pass of 5 to 24%. By setting the reduction rate per pass at 5 to 24% at the final stage of hot rolling, the ratio of twin structure increases, and the length ratio of the special grain boundary at the grain boundary becomes 55% or more. can do.
- the rolling reduction per pass is the reduction rate of the thickness of the base material after passing the rolling roll relative to the thickness of the base material before passing the rolling roll (or the rolling of the current pass relative to the gap between the rolling rolls in the previous pass)
- the grain size after hot rolling can be suppressed by quenching with water cooling at a cooling rate of 200 to 1000 ° C./min until a temperature of 200 ° C. or lower is reached. . If the cooling rate is less than 200 ° C./min, the effect of suppressing the growth of crystal grains is poor, and even if it exceeds 1000 ° C./min, it does not contribute to further miniaturization. If it is cooled to a temperature of 200 ° C. or less at a cooling rate in such a range, the growth of crystal grains can be stopped to obtain fine crystal grains. If the rapid cooling is stopped at a temperature exceeding 200 ° C., the crystal grains may gradually grow by being left in the high temperature state.
- the rolling material used was a cast ingot of oxygen-free copper (purity 99.99 wt% or more) for electron tubes.
- the raw material dimensions before rolling were 650 mm wide ⁇ 900 mm long ⁇ 290 mm thick, and a pure copper plate was prepared by combining a plurality of hot rolling and subsequent cooling conditions as shown in Table 1. The temperature was measured by measuring the surface temperature of the rolled plate using a radiation thermometer.
- Comparative Example 1 started rolling at a rolling start temperature of 510 ° C. (expected end temperature of 490 ° C.). However, since the temperature was too low, it was overloaded and the continuation of rolling was stopped. Therefore, with respect to pure copper plates other than Comparative Example 1, the average crystal grain size, the special grain boundary length ratio, the mushy state during cutting, the number of abnormal discharges when used as a sputtering target, and the occurrence of slime when used as a plating anode The amount was measured.
- each measurement point (pixel) within the measurement range on the sample surface is irradiated with an electron beam, and the orientation difference between adjacent measurement points is determined by orientation analysis by backscattered electron diffraction.
- the crystal grain boundary was defined between the measurement points at 15 ° or more.
- the average crystal grain size (twins are counted as crystal grains) is calculated from the obtained grain boundaries by calculating the number of crystal grains in the observation area and dividing the area by the number of crystal grains to calculate the crystal grain area.
- the average crystal grain size (diameter) was calculated and converted into a circle.
- the total grain boundary length L of the crystal grain boundary in the measurement range is measured, the position of the crystal grain boundary where the interface between adjacent crystal grains constitutes the special grain boundary is determined, and all the special grain boundaries of the special grain boundary are determined.
- the grain boundary length ratio L ⁇ / L between the length L ⁇ and the total grain boundary length L of the crystal grain boundary measured above was determined and used as the special grain boundary length ratio.
- ⁇ Musille state> Each sample was made into a flat plate of 100 ⁇ 2000 mm, and its surface was cut with a milling machine with a cutting edge of a cutting edge of 0.1 mm and a cutting speed of 5000 m / min, within the 500 ⁇ m square field of view of the cutting surface. It was examined how many mussels with a length of 100 ⁇ m or more were present.
- An integrated target including a backing plate portion is prepared so that the target portion has a diameter of 152 mm and a thickness of 6 mm from each sample, the target is attached to a sputtering apparatus, and the ultimate vacuum pressure in the chamber is 1 ⁇ 10 ⁇ Sputtering tests were performed under conditions of 5 Pa or less, Ar as the sputtering gas, sputtering gas pressure of 0.3 Pa, and sputtering output of 2 kW with a direct current (DC) power source. Sputtering was continued for 2 hours. During this time, the number of abnormal discharges caused by sputtering abnormality was counted using an arc counter attached to the power source.
- DC direct current
- a copper plate cut out in a disk shape having a diameter of 270 mm is fixed to an electrode holder (effective electrode area of about 530 cm 2 ) to be an anode electrode, and a silicon wafer having a diameter of 200 mm is used as a cathode to perform copper plating under the following conditions.
- the amount of insoluble slime generated when processing up to the first wafer was measured.
- the slime was weighed after being recovered and dried.
- Plating solution 70 g / l copper pyrophosphate and 300 g / l potassium pyrophosphate added to ion exchange water, adjusted to pH 8.5 with ammonia water, Plating conditions: air stirring at a liquid temperature of 50 ° C. and stirring by cathode swing, Cathode current density: 3 A / dm 2 Plating time: 1 hour / sheet.
- the pure copper plate produced by the production method of this example has an average crystal grain size of 10 to 200 ⁇ m, and particularly 10 to 80 ⁇ m for Examples 1 to 10 that were rapidly cooled after finish rolling.
- the special grain boundary length ratio was 55% or more.
- the pure copper plate of the comparative example had a special grain boundary length ratio of less than 55%.
- the rolling reduction is made constant when performing multiple passes in the finish rolling pass schedule of hot rolling, but is not limited to this, and rolling is performed if the rolling reduction is 5 to 24% per pass.
- the rolling reduction for each pass may be different.
- it is not necessary to cool immediately after the finish rolling pass, but since it is effective in enhancing the homogeneity of the structure inside and on the ingot, it is promptly cooled. It is better to do it.
- the present invention after hot rolling under a predetermined condition, is rapidly cooled to 200 ° C. or less, and thereafter is a product of a pure copper plate without being subjected to cold rolling. This does not prevent cold rolling (with a rolling rate of several percent or less).
- the pure copper plate of the present invention can be applied to a sputtering target, a plating anode, and a target backing plate.
- a mold, a discharge electrode, a heat sink, a heat sink, a mold, a water-cooled plate, an electrode, an electrical terminal It can also be applied to bus bars, gaskets, flanges, printing plates and the like.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Electrochemistry (AREA)
- Physical Vapour Deposition (AREA)
Abstract
Description
本願は、2010年2月9日に出願された特願2010-26455号に基づき優先権を主張し、その内容をここに援用する。
また、熱間圧延における仕上げ熱間圧延での1パス当たりの圧下率を5~24%で行うことによって、双晶組織の形成を促進し特殊粒界比率を高めた組織とし結晶粒界の整合性が向上し、結晶組織が微細でかつ均一となる。また、上記仕上げ熱間圧延では、500~700℃の範囲において、1パス当たりの圧下率を5~24%とし、少なくとも1パス圧延加工すればよいが、複数パス連続して圧延加工してもよい。特に、複数パス繰り返し圧延を行うことによって双晶組織の形成が一層促進される。このようにして製造される純銅板は、スパッタリングターゲット、めっき用アノード、放熱基板等の用途に有効となる。
このような範囲の冷却速度にて200℃以下の温度まで冷却すれば結晶粒の成長を停止して微細な結晶粒のものを得ることができる。一方、200℃を超える温度で急冷を止めてしまうと、その後、その高温状態での放置によって徐々に結晶粒が成長するおそれがある。
この特殊粒界の頻度が55%以上に高いことにより、結晶粒界の整合性が向上し、スパッタリングターゲットのスパッタ特性、めっき用アノードにおける溶解性、および板材の変形特性等の各種特性が良好になる。
特に部分再結晶化によって双晶組織を形成することにより高い特殊粒界比率を有することにより、高出力下でのスパッタにおいても異常放電の発生を抑制することができる。
この実施形態の純銅板は、銅の純度が99.96wt%以上の無酸素銅、又は99.99wt%以上の電子管用無酸素銅である。
また、EBSD法によって求める平均結晶粒径は10~200μm、より好ましくは80μmとされ、またEBSD法にて測定した結晶粒界の全粒界長さLに対する特殊粒界の全特殊粒界長さLσの比率(Lσ/L)が55%以上とされる。
平均結晶粒径を10μm未満とするのは現実的でなく、製造コスト増を招く。
結晶粒界は、二次元断面観察の結果、隣り合う2つの結晶間の配向が15°以上となっている場合の当該結晶間の境界として定義される。特殊粒界は、結晶学的にCSL理論(Kronberg et.al.: Trans. Met. Soc. AIME, 185, 501 (1949))に基づき定義されるΣ値で3≦Σ≦29を有する結晶粒界(対応粒界)であって、当該粒界における固有対応部位格子方位欠陥Dqが Dq≦15°/Σ1/2 (D.G.Brandon:Acta.Metallurgica. Vol.14,p1479,1966)を満たす結晶粒界として定義される。
すべての結晶粒界のうち、この特殊粒界の長さ比率が高いと、結晶粒界の整合性が向上して、純銅板の用途として広く知られるスパッタリングターゲットやめっき用アノード、あるいは放熱基板等の特性を向上させることができる。
このように特殊粒界の長さ比率を55%以上とすることにより、スパッタリングターゲットにおけるスパッタ特性、めっき用アノード素材における溶解性、その他銅板としての変形特性等の各種特性が向上し、スパッタリングターゲット、めっき用アノード、放熱基板等の用途に有効となる。
この製造方法は、純銅のインゴットを熱間圧延し、その熱間圧延を所定の条件を満たした仕上げ圧延パスで終了した後、必要に応じて急冷するという単純なプロセスである。
具体的には、純銅のインゴットを550℃~800℃に加熱し、これを複数回圧延ロールの間に往復走行させながら徐々に圧延ロール間のギャップを小さくして、所定の厚さまで圧延する。この複数回の圧延による総圧延率は85%以上とされ、熱間圧延の終了工程である仕上げ熱間圧延での圧延終了温度は500~700℃、前記仕上げ熱間圧延における1パス当たりの圧下率は5~24%で1パスまたは複数パス連続して圧延加工される。その後、必要に応じて圧延終了温度から200℃以下の温度になるまで200~1000℃/minの冷却速度で急冷する。
このような範囲の冷却速度にて200℃以下の温度まで冷却すれば結晶粒の成長を停止して微細な結晶粒のものを得ることができる。200℃を超える温度で急冷を止めてしまうと、その後、その高温状態での放置によって徐々に結晶粒が成長するおそれがある。
圧延素材は、電子管用無酸素銅(純度99.99wt%以上)の鋳造インゴットを用いた。圧延前の素材寸法は幅650mm×長さ900mm×厚さ290mmとし、熱間圧延及びその後の冷却の各条件を表1に示すように複数組み合わせて純銅板を作製した。また、温度測定は放射温度計を用い、圧延板の表面温度を測定することにより行った。
そこで、この比較例1以外の純銅板について、平均結晶粒径、特殊粒界長さ比率、切削時のムシレ状態、スパッタリングターゲットとして用いたときの異常放電回数、めっきアノードとして用いたときのスライム発生量を測定した。
各試料について、耐水研磨紙、ダイヤモンド砥粒を用いて機械研磨を行った後、コロイダルシリカ溶液を用いて仕上げ研磨を行った。
そして、EBSD測定装置(HITACHI社製 S4300-SE,EDAX/TSL社製 OIM Data Collection)と、解析ソフト(EDAX/TSL社製 OIM Data Analysis ver.5.2)によって、結晶粒界、特殊粒界を特定し、その長さを算出することにより、平均結晶粒径及び特殊粒界長さ比率の解析を行った。
平均結晶粒径(双晶も結晶粒としてカウントする)の測定は、得られた結晶粒界から、観察エリア内の結晶粒子数を算出し、エリア面積を結晶粒子数で割って結晶粒子面積を算出し、それを円換算することにより平均結晶粒径(直径)とした。
また、測定範囲における結晶粒界の全粒界長さLを測定し、隣接する結晶粒の界面が特殊粒界を構成する結晶粒界の位置を決定するとともに、特殊粒界の全特殊粒界長さLσと、上記測定した結晶粒界の全粒界長さLとの粒界長比率Lσ/Lを求め、特殊粒界長さ比率とした。
各試料を100×2000mmの平板とし、その表面をフライス盤で超硬刃先のバイトを用いて切込み深さ0.1mm、切削速度5000m/分で切削加工し、その切削表面の500μm四方の視野内において長さ100μm以上のムシレ疵が何個存在したかを調べた。
各試料からターゲット部分が直径152mm、厚さ6mmとなるように、バッキングプレート部分を含めた一体型のターゲットを作製し、そのターゲットをスパッタ装置に取り付け、チャンバー内の到達真空圧力を1×10-5Pa以下、スパッタガスとしてArを用い、スパッタガス圧を0.3Paとし、直流(DC)電源にてスパッタ出力2kWの条件でスパッタリングテストを実施した。スパッタは2時間連続させた。この間、電源に付属するアークカウンターを用いて、スパッタ異常により生じた異常放電の回数をカウントした。
直径270mmの円盤状に切り出した銅板を電極ホルダーに固定(実行電極面積約530cm2)しアノード電極とし、直径200mmのシリコンウエハをカソードとして、以下の条件にて銅めっきを行い、めっき開始から5枚目までのウエハを処理した際に発生する不溶性スライム発生量を測定した。尚、スライムは回収後、乾燥させた後に重量測定した。
めっき液:イオン交換水に、ピロリン酸銅 70g/l、ピロリン酸カリウム 300g/lを添加し、アンモニア水にてpH8.5に調整したもの、
めっき条件:液温50℃で空気攪拌およびカソード揺動による攪拌実施、
カソード電流密度:3A/dm2、
めっき時間:1時間/枚。
これらの結果を表2に示す。
例えば、熱間圧延の仕上げ圧延パススケジュールにおいて複数回のパスを行う際に圧下率を一定としたが、これに拘束されるものではなく、1パス当たり5~24%の圧下率であれば圧延パス毎の圧下率が異なってもよい。
また、高い特殊粒界比率を得る上では、仕上げ圧延パス終了後、速やかに冷却を行う必要はないが、インゴット内部と表面の組織均質性を高める上で効果があるため、速やかな冷却を実施した方が望ましい。
C ムシレ疵
Claims (8)
- 純度が99.96wt%以上である純銅のインゴットを、550℃~800℃に加熱して、総圧延率が85%以上で圧延終了時温度が500~700℃であり、かつ、1パス当たりの圧下率が5~24%の仕上げ圧延を1パス以上有する熱間圧延加工を施すことを特徴とする純銅板の製造方法。
- 純度が99.96wt%以上である純銅のインゴットを、550℃~800℃に加熱して、総圧延率が85%以上で圧延終了時温度が500~700℃であり、かつ、1パス当たりの圧下率が5~24%の仕上げ圧延を1パス以上有する熱間圧延加工を施した後に、前記圧延終了時温度から200℃以下の温度になるまで200~1000℃/minの冷却速度にて急冷することを特徴とする純銅板の製造方法。
- 請求項1記載の製造方法によって製造された純銅板であって、EBSD法にて測定した結晶粒界の全粒界長さLに対する特殊粒界の全特殊粒界長さLσの比率(Lσ/L)が55%以上であることを特徴とする純銅板。
- 請求項2記載の製造方法によって製造された純銅板であって、EBSD法にて測定した結晶粒界の全粒界長さLに対する特殊粒界の全特殊粒界長さLσの比率(Lσ/L)が55%以上であることを特徴とする純銅板。
- スパッタリング用ターゲットであることを特徴とする請求項3記載の純銅板。
- スパッタリング用ターゲットであることを特徴とする請求項4記載の純銅板。
- めっき用アノードであることを特徴とする請求項3記載の純銅板。
- めっき用アノードであることを特徴とする請求項4記載の純銅板。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020127017784A KR20120124405A (ko) | 2010-02-09 | 2011-02-04 | 순구리판의 제조 방법 및 순구리판 |
CN201180005827.6A CN102712986B (zh) | 2010-02-09 | 2011-02-04 | 纯铜板的制造方法及纯铜板 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010-026455 | 2010-02-09 | ||
JP2010026455A JP4792116B2 (ja) | 2010-02-09 | 2010-02-09 | 純銅板の製造方法及び純銅板 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2011099426A1 true WO2011099426A1 (ja) | 2011-08-18 |
Family
ID=44367700
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2011/052317 WO2011099426A1 (ja) | 2010-02-09 | 2011-02-04 | 純銅板の製造方法及び純銅板 |
Country Status (5)
Country | Link |
---|---|
JP (1) | JP4792116B2 (ja) |
KR (1) | KR20120124405A (ja) |
CN (1) | CN102712986B (ja) |
TW (1) | TWI480396B (ja) |
WO (1) | WO2011099426A1 (ja) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103341488A (zh) * | 2013-05-31 | 2013-10-09 | 富威科技(吴江)有限公司 | 一种八分之一硬态薄型纯铜带的加工方法 |
WO2014168132A1 (ja) * | 2013-04-08 | 2014-10-16 | 三菱マテリアル株式会社 | 熱延銅板 |
CN111936660A (zh) * | 2018-04-17 | 2020-11-13 | 三菱综合材料株式会社 | Cu-Ni合金溅射靶 |
CN114686789A (zh) * | 2022-04-12 | 2022-07-01 | 福建工程学院 | 通过增加共格孪晶界比例提高纯铜晶界腐蚀抗力的方法 |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5520746B2 (ja) * | 2010-08-24 | 2014-06-11 | 古河電気工業株式会社 | スパッタリングターゲット用銅材料及びその製造方法 |
JP6619942B2 (ja) * | 2015-03-06 | 2019-12-11 | Jx金属株式会社 | 半導体ウエハへの電気銅めっきに使用する銅アノード又は含燐銅アノード及び銅アノード又は含燐銅アノードの製造方法 |
CN105887028A (zh) * | 2016-05-13 | 2016-08-24 | 洛阳高新四丰电子材料有限公司 | 一种大尺寸高纯铜平面靶材的制备方法 |
CN110578126B (zh) * | 2019-10-18 | 2021-12-28 | 洛阳高新四丰电子材料有限公司 | 一种多规格高纯铜靶材的制备方法 |
KR102249087B1 (ko) * | 2019-11-13 | 2021-05-07 | (주)하나금속 | 판형 구리 스퍼터링 타겟 및 그 제조 방법 |
CN115569987A (zh) * | 2022-09-09 | 2023-01-06 | 舞阳钢铁有限责任公司 | 一种铜板的生产方法 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS62112763A (ja) * | 1985-11-12 | 1987-05-23 | Furukawa Electric Co Ltd:The | 低温軟化導電用銅材料の製造方法 |
JPH11158614A (ja) * | 1997-11-28 | 1999-06-15 | Hitachi Metals Ltd | スパッタリング用銅ターゲットおよびその製造方法 |
JP2001240949A (ja) * | 2000-02-29 | 2001-09-04 | Mitsubishi Materials Corp | 微細な結晶粒を有する高純度銅加工品素材の製造方法 |
JP2002220659A (ja) * | 2000-12-05 | 2002-08-09 | Praxair St Technol Inc | 銅スパッターターゲットの加工及び結合 |
JP2005533187A (ja) * | 2002-07-16 | 2005-11-04 | ハネウェル・インターナショナル・インコーポレーテッド | 銅スパッタリングターゲット及び銅スパッタリングターゲットの形成方法 |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6478902B2 (en) * | 1999-07-08 | 2002-11-12 | Praxair S.T. Technology, Inc. | Fabrication and bonding of copper sputter targets |
-
2010
- 2010-02-09 JP JP2010026455A patent/JP4792116B2/ja active Active
-
2011
- 2011-02-04 WO PCT/JP2011/052317 patent/WO2011099426A1/ja active Application Filing
- 2011-02-04 KR KR1020127017784A patent/KR20120124405A/ko not_active Application Discontinuation
- 2011-02-04 CN CN201180005827.6A patent/CN102712986B/zh active Active
- 2011-02-09 TW TW100104284A patent/TWI480396B/zh active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS62112763A (ja) * | 1985-11-12 | 1987-05-23 | Furukawa Electric Co Ltd:The | 低温軟化導電用銅材料の製造方法 |
JPH11158614A (ja) * | 1997-11-28 | 1999-06-15 | Hitachi Metals Ltd | スパッタリング用銅ターゲットおよびその製造方法 |
JP2001240949A (ja) * | 2000-02-29 | 2001-09-04 | Mitsubishi Materials Corp | 微細な結晶粒を有する高純度銅加工品素材の製造方法 |
JP2002220659A (ja) * | 2000-12-05 | 2002-08-09 | Praxair St Technol Inc | 銅スパッターターゲットの加工及び結合 |
JP2005533187A (ja) * | 2002-07-16 | 2005-11-04 | ハネウェル・インターナショナル・インコーポレーテッド | 銅スパッタリングターゲット及び銅スパッタリングターゲットの形成方法 |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2014168132A1 (ja) * | 2013-04-08 | 2014-10-16 | 三菱マテリアル株式会社 | 熱延銅板 |
JP2014201814A (ja) * | 2013-04-08 | 2014-10-27 | 三菱マテリアル株式会社 | 熱延銅板 |
US9938606B2 (en) | 2013-04-08 | 2018-04-10 | Mitsubishi Materials Corporation | Hot-rolled copper plate |
CN103341488A (zh) * | 2013-05-31 | 2013-10-09 | 富威科技(吴江)有限公司 | 一种八分之一硬态薄型纯铜带的加工方法 |
CN103341488B (zh) * | 2013-05-31 | 2016-08-10 | 富威科技(吴江)有限公司 | 一种八分之一硬态薄型纯铜带的加工方法 |
CN111936660A (zh) * | 2018-04-17 | 2020-11-13 | 三菱综合材料株式会社 | Cu-Ni合金溅射靶 |
CN114686789A (zh) * | 2022-04-12 | 2022-07-01 | 福建工程学院 | 通过增加共格孪晶界比例提高纯铜晶界腐蚀抗力的方法 |
CN114686789B (zh) * | 2022-04-12 | 2023-09-01 | 福建工程学院 | 通过增加共格孪晶界比例提高纯铜晶界腐蚀抗力的方法 |
Also Published As
Publication number | Publication date |
---|---|
TW201139706A (en) | 2011-11-16 |
CN102712986A (zh) | 2012-10-03 |
TWI480396B (zh) | 2015-04-11 |
KR20120124405A (ko) | 2012-11-13 |
JP2011161479A (ja) | 2011-08-25 |
CN102712986B (zh) | 2014-11-12 |
JP4792116B2 (ja) | 2011-10-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4869415B2 (ja) | 純銅板の製造方法及び純銅板 | |
JP4792116B2 (ja) | 純銅板の製造方法及び純銅板 | |
JP5752736B2 (ja) | スパッタリング用ターゲット | |
JP6154565B1 (ja) | Cu−Ni−Si系銅合金板材および製造法 | |
JP5325472B2 (ja) | 磁気ディスク用アルミニウム合金基板およびその製造方法 | |
TWI485272B (zh) | Pure copper plate manufacturing methods and pure copper plate | |
TW202202635A (zh) | 純銅板 | |
JP6869119B2 (ja) | Cu−Ni−Al系銅合金板材および製造方法並びに導電ばね部材 | |
JP6027823B2 (ja) | 熱延銅板、及び、熱延銅板の形状調整方法 | |
WO2012057057A1 (ja) | スパッタリング用チタンターゲット | |
JP4869398B2 (ja) | 純銅板の製造方法及び純銅板 | |
WO2019058721A1 (ja) | スパッタリング用チタンターゲット及びその製造方法、並びにチタン含有薄膜の製造方法 | |
JP4061211B2 (ja) | 電解銅箔製造用カソード電極に用いるチタン合金及びその製造方法 | |
JP4792115B2 (ja) | 純銅板の製造方法及び純銅板 | |
WO2022185859A1 (ja) | 熱延銅合金板およびスパッタリングターゲット |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 201180005827.6 Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 11742170 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 20127017784 Country of ref document: KR Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 11742170 Country of ref document: EP Kind code of ref document: A1 |