Nothing Special   »   [go: up one dir, main page]

WO2011099426A1 - 純銅板の製造方法及び純銅板 - Google Patents

純銅板の製造方法及び純銅板 Download PDF

Info

Publication number
WO2011099426A1
WO2011099426A1 PCT/JP2011/052317 JP2011052317W WO2011099426A1 WO 2011099426 A1 WO2011099426 A1 WO 2011099426A1 JP 2011052317 W JP2011052317 W JP 2011052317W WO 2011099426 A1 WO2011099426 A1 WO 2011099426A1
Authority
WO
WIPO (PCT)
Prior art keywords
rolling
pure copper
copper plate
grain boundary
temperature
Prior art date
Application number
PCT/JP2011/052317
Other languages
English (en)
French (fr)
Inventor
俊寛 酒井
隆弘 竹田
晃一 喜多
一誠 牧
広行 森
Original Assignee
三菱伸銅株式会社
三菱マテリアル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱伸銅株式会社, 三菱マテリアル株式会社 filed Critical 三菱伸銅株式会社
Priority to KR1020127017784A priority Critical patent/KR20120124405A/ko
Priority to CN201180005827.6A priority patent/CN102712986B/zh
Publication of WO2011099426A1 publication Critical patent/WO2011099426A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/08Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of copper or alloys based thereon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B3/00Rolling materials of special alloys so far as the composition of the alloy requires or permits special rolling methods or sequences ; Rolling of aluminium, copper, zinc or other non-ferrous metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B3/00Rolling materials of special alloys so far as the composition of the alloy requires or permits special rolling methods or sequences ; Rolling of aluminium, copper, zinc or other non-ferrous metals
    • B21B3/003Rolling non-ferrous metals immediately subsequent to continuous casting, i.e. in-line rolling
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3407Cathode assembly for sputtering apparatus, e.g. Target
    • C23C14/3414Metallurgical or chemical aspects of target preparation, e.g. casting, powder metallurgy
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D17/00Constructional parts, or assemblies thereof, of cells for electrolytic coating
    • C25D17/10Electrodes, e.g. composition, counter electrode
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B3/00Rolling materials of special alloys so far as the composition of the alloy requires or permits special rolling methods or sequences ; Rolling of aluminium, copper, zinc or other non-ferrous metals
    • B21B2003/005Copper or its alloys

Definitions

  • the present invention relates to a method for producing a pure copper plate having good quality, and more particularly, a pure copper plate having a fine structure and a high special grain boundary ratio by forming a twin structure by partial recrystallization. And a pure copper plate suitable for a sputtering copper target material, an anode material for plating, and the like manufactured by the manufacturing method.
  • This application claims priority based on Japanese Patent Application No. 2010-26455 for which it applied on February 9, 2010, and uses the content here.
  • a pure copper plate is usually manufactured by hot rolling or hot forging a pure copper ingot, followed by cold rolling or cold forging, and then heat treatment for strain relief or recrystallization.
  • Such a pure copper plate is used after being processed into a desired shape by saw cutting, cutting, embossing, cold forging, etc.
  • the crystal grain size Is small and the residual stress in the crystal structure is required to be small.
  • the pure copper plate manufactured by the above-described method has recently been used as a sputtering target for wiring material of semiconductor elements.
  • Al specific resistance of about 3.1 ⁇ ⁇ cm
  • copper wiring with lower resistance specific resistance of about 1.7 ⁇ ⁇ cm
  • a diffusion barrier layer such as Ta / TaN is formed in a concave portion of a contact hole or wiring groove, and then copper is electroplated in many cases.
  • pure copper is sputter-deposited.
  • 5N (purity 99.999% or higher) to 6N (purity 99.9999%) is obtained by wet or dry high-purification process using 4N (purity 99.99% or higher: without gas components) as a crude metal. % Or more) is produced, and this is used as a pure copper plate by the above-described method, and is further used as a sputtering target after being processed into a desired shape.
  • the impurity content in the sputtering target In order to produce a sputtered film with low electrical resistance, the impurity content in the sputtering target must be kept below a certain value, and the elements added for alloying must also be lowered below a certain level. In order to obtain this uniformity, it is necessary to suppress variations in the crystal grain size and crystal orientation of the sputtering target.
  • Patent Document 1 As a conventional method for industrially producing such a pure copper target for sputtering, in Patent Document 1, a pure copper ingot having a purity of 99.995 wt% or more is hot-worked, and then annealed at a temperature of 900 ° C. or less. Next, after performing cold rolling at a rolling rate of 40% or more, recrystallization annealing is performed at a temperature of 500 ° C. or less, so that it has a substantially recrystallized structure and an average crystal grain size of 80 microns or less. A method for obtaining a sputtering copper target having a Vickers hardness of 100 or less is disclosed.
  • Patent Document 2 a high purity copper ingot of 5N or more is subjected to hot working with a working rate of 50% or more such as hot forging or hot rolling, and then further cold rolling or cold forging or the like. By performing cold working at a working rate of 30% or more and performing heat treatment at 350 to 500 ° C.
  • each of Na and K contents is 0.1 ppm or less, Fe, Ni, Cr, Al,
  • the Ca and Mg contents are each 1 ppm or less, the carbon and oxygen contents are each 5 ppm or less, the U and Th contents are each 1 ppb or less, and the copper content excluding gas components is 99.999% or more
  • the average particle size on the sputtering surface is 250 ⁇ m or less, the variation in average particle size is within ⁇ 20%, and the X-ray diffraction intensity ratio I (111) / I (200) is 2.4 or more on the sputtering surface, and the variation is ⁇ 20. How to obtain the sputtering copper target is within is disclosed.
  • Patent Document 3 the surface layer of an ingot made of high purity copper having a purity of 6N or more and an additive element was removed, and the product was obtained through hot forging, hot rolling, cold rolling, and a heat treatment process.
  • a target and a copper alloy sputtering target containing one or more selected from Sb, Zr, Ti, Cr, Ag, Au, Cd, In, and As in a total amount of 1.0 wtppm or less are disclosed.
  • a pure copper ingot was subjected to hot forging or hot rolling in order to obtain a homogeneous and stable recrystallized structure. Thereafter, cold forging and cold rolling are performed, and further heat treatment is performed.
  • the present invention has been made in view of such circumstances, and a method for producing a pure copper plate that does not require cold forging, cold rolling, and subsequent heat treatment after hot forging or hot rolling, and ,
  • a copper plate having a fine structure obtained by the manufacturing method, and having a high special grain boundary ratio by forming a twin structure by partial recrystallization, in particular, a copper target material for sputtering, an anode for plating, etc. Provide suitable pure copper plate.
  • a pure copper ingot having a purity of 99.96 wt% or more is heated to 550 ° C. to 800 ° C., the total rolling rate is 85% or more, and the temperature at the end of rolling is 500 to 700.
  • the temperature at the final hot rolling which is the final step of hot rolling, is used.
  • the rolling reduction per pass in the finish hot rolling is important (hereinafter referred to as the rolling end temperature).
  • the rolling end temperature In finish hot rolling, when the rolling end temperature is less than 500 ° C. or the rolling reduction per pass is less than 5%, partial recrystallization does not occur sufficiently, and the rolling end temperature is 700 ° C. If it exceeds or the rolling reduction per pass is 25% or more, dynamic recrystallization becomes dominant during finish hot rolling, and high special grain boundaries accompanying the formation of twin structure by partial recrystallization. It becomes difficult to obtain a ratio.
  • the hot rolling start temperature is preferably 550 to 800 ° C.
  • the rolling reduction per pass may be 5 to 24% in the range of 500 to 700 ° C., and at least one pass rolling may be performed. Good.
  • the formation of the twin structure is further promoted by carrying out the multiple pass repeated rolling.
  • the pure copper plate manufactured in this way is effective for uses such as a sputtering target, an anode for plating, and a heat dissipation substrate.
  • quenching may be performed at a cooling rate of 200 to 1000 ° C./min until a temperature of 200 ° C. or lower is reached. If the cooling rate is less than 200 ° C./min, the effect of suppressing the growth of crystal grains is poor, and even if it exceeds 1000 ° C./min, it does not contribute to the effect of suppressing further grain growth.
  • a more preferable cooling rate is in the range of 300 to 600 ° C./min. If it is cooled to a temperature of 200 ° C. or less at a cooling rate in such a range, the growth of crystal grains can be stopped to obtain fine crystal grains. On the other hand, if the rapid cooling is stopped at a temperature exceeding 200 ° C., the crystal grains may gradually grow by being left in the high temperature state.
  • the pure copper plate manufactured by the manufacturing method of the present invention has a ratio of the total special grain boundary length L ⁇ of the special grain boundary to the total grain boundary length L of the crystal grain boundary measured by the EBSD method (L ⁇ / L). Is 55% or more.
  • the frequency of the special grain boundary is higher than 55%, the consistency of the crystal grain boundary is improved, and various characteristics such as sputtering characteristics of the sputtering target, solubility in the anode for plating, and deformation characteristics of the plate material are improved. Become.
  • the pure copper plate of the present invention is suitable for use as a sputtering target.
  • the pure copper plate of the present invention is suitable for use as a sputtering target.
  • the occurrence of abnormal discharge can be suppressed even in sputtering under high output.
  • a pure copper plate suitable for a sputtering copper target material having fine and uniform crystal grains and hardly causing abnormal discharge under high output, or an anode material for plating exhibiting uniform solubility is manufactured. can do.
  • the pure copper plate of this embodiment is oxygen-free copper having a copper purity of 99.96 wt% or more, or oxygen-free copper for electron tubes having 99.99 wt% or more.
  • the average grain size determined by the EBSD method is 10 to 200 ⁇ m, more preferably 80 ⁇ m, and the total special grain boundary length of the special grain boundary with respect to the total grain boundary length L of the grain boundary measured by the EBSD method.
  • the ratio of L ⁇ (L ⁇ / L) is 55% or more.
  • this mussel is denoted by C in the direction perpendicular to the cutting direction in the cutting mark W generated in the cutting direction (direction indicated by the arrow A) when the material is cut by a milling machine or the like. As shown by, the fine irregularities generated in a streak shape. When this mess is generated, the appearance of the product is impaired. Setting the average crystal grain size to less than 10 ⁇ m is not realistic and causes an increase in manufacturing cost.
  • a crystal grain boundary is defined as a boundary between crystals when the orientation between two adjacent crystals is 15 ° or more as a result of two-dimensional cross-sectional observation.
  • a special grain boundary is a crystal grain having a crystal value of 3 ⁇ ⁇ ⁇ 29 with a ⁇ value defined crystallographically based on CSL theory (Kronberg et.al .: Trans. Met. Soc. AIME, 185, 501 (1949)).
  • Grain which is a boundary (corresponding grain boundary) and has an inherent corresponding site lattice orientation defect Dq at the grain boundary satisfying Dq ⁇ 15 ° / ⁇ 1/2 (DGBrandon: Acta. Metallurgica. Vol.14, p1479, 1966) Defined as a bound. If the length ratio of this special grain boundary is high among all crystal grain boundaries, the consistency of the crystal grain boundaries is improved, and sputtering targets, plating anodes, heat dissipation substrates, etc. that are widely known as pure copper plate applications The characteristics can be improved.
  • the anode material for plating made of pure copper is used especially for through-hole plating of printed wiring boards, but when the anode is melted, uneven current density distribution occurs, causing local conduction failure, resulting in insoluble slime. May occur, leading to poor plating and reduced production efficiency.
  • As a countermeasure it is effective to increase the in-plane melting homogeneity at the melting surface of the anode, and a countermeasure is taken by making the crystal grains finer.
  • the grain boundaries are easier to dissolve than in the grains, and even if the in-plane dissolution homogeneity of the anode is improved by refinement, it is inevitable that the grain boundaries are selectively dissolved, and the refinement effect is limited. It has turned out that there is. Therefore, it is considered that suppressing the solubility of the grain boundary itself is effective for the generation of the slime, but no examination has been made from such a viewpoint.
  • the heat dissipation substrate since the heat dissipation substrate repeatedly expands and contracts during use, it is important to have uniform deformation characteristics and excellent fatigue characteristics.
  • direct and alternating inverter circuits are indispensable for hybrid vehicles and solar cells that have become popular due to the trend of energy saving and low CO.
  • Pure copper or low alloy is used as a heat dissipation board to dissipate the heat generated during conversion.
  • a copper plate is used.
  • an increase in current due to an increase in the size of the system is progressing, and the heat burden on the heat dissipation substrate is increasing. Since heat expansion and contraction are always repeated during use, the heat dissipation substrate is required to have heat fatigue characteristics in the long term.
  • the homogeneity of the structure is important, but it is difficult to improve the fatigue characteristics accompanying the increase in current only by improving the homogeneity of the conventional structure.
  • the substrate material for heat dissipation shows uniform deformation characteristics, and metal fatigue hardly occurs even by repeated thermal expansion / contraction, and the fatigue characteristics are improved.
  • various characteristics such as sputtering characteristics in the sputtering target, solubility in the anode material for plating, and other deformation characteristics as a copper plate are improved. This is effective for applications such as plating anodes and heat dissipation substrates.
  • This manufacturing method is a simple process in which a pure copper ingot is hot-rolled, the hot rolling is finished in a finish rolling pass that satisfies a predetermined condition, and then rapidly cooled as necessary.
  • a pure copper ingot is heated to 550 ° C. to 800 ° C., and while reciprocating between the rolling rolls a plurality of times, the gap between the rolling rolls is gradually reduced and rolled to a predetermined thickness.
  • the total rolling rate by this multiple rolling is 85% or more
  • the finishing temperature in finishing hot rolling, which is the finishing process of hot rolling is 500 to 700 ° C., and the reduction per pass in the finishing hot rolling.
  • the rate is 5 to 24%, and one or more passes are continuously rolled.
  • rapid cooling is performed at a cooling rate of 200 to 1000 ° C./min from the rolling end temperature to a temperature of 200 ° C. or lower.
  • a method for producing a pure copper sheet generally includes a process of hot rolling ⁇ cooling ⁇ cold rolling ⁇ heat treatment, and the hot rolling in this case is processed at a high temperature of 850 to 900 ° C.
  • hot rolling is performed in such a high temperature state, the crystal grains become coarse, so even if it is rapidly cooled, the average crystal grain size cannot be reduced to 80 ⁇ m or less.
  • hot rolling was performed at a relatively low temperature state with a start temperature of 550 to 800 ° C. and an end temperature of 500 to 700 ° C.
  • the end temperature of hot rolling exceeds 700 ° C.
  • the crystal grains increase rapidly, and it is difficult to obtain fine crystal grains even if the crystal is rapidly cooled thereafter.
  • the hot rolling end temperature is set to 500 to 700 ° C.
  • the hot rolling start temperature was set to 550 to 800 ° C.
  • the total rolling rate by this hot rolling is preferably 85% or more, and by setting the total rolling rate to 85% or more, the coarsening of the crystal grain size can be suppressed and the variation can be reduced. . If the total rolling ratio is less than 85%, the crystal grains tend to be large and the variation becomes large. In this case, with respect to the finish hot rolling which is the final stage rolling among a plurality of rollings, it is more preferable to perform rolling continuously for one pass or a plurality of passes with a reduction rate per pass of 5 to 24%. By setting the reduction rate per pass at 5 to 24% at the final stage of hot rolling, the ratio of twin structure increases, and the length ratio of the special grain boundary at the grain boundary becomes 55% or more. can do.
  • the rolling reduction per pass is the reduction rate of the thickness of the base material after passing the rolling roll relative to the thickness of the base material before passing the rolling roll (or the rolling of the current pass relative to the gap between the rolling rolls in the previous pass)
  • the grain size after hot rolling can be suppressed by quenching with water cooling at a cooling rate of 200 to 1000 ° C./min until a temperature of 200 ° C. or lower is reached. . If the cooling rate is less than 200 ° C./min, the effect of suppressing the growth of crystal grains is poor, and even if it exceeds 1000 ° C./min, it does not contribute to further miniaturization. If it is cooled to a temperature of 200 ° C. or less at a cooling rate in such a range, the growth of crystal grains can be stopped to obtain fine crystal grains. If the rapid cooling is stopped at a temperature exceeding 200 ° C., the crystal grains may gradually grow by being left in the high temperature state.
  • the rolling material used was a cast ingot of oxygen-free copper (purity 99.99 wt% or more) for electron tubes.
  • the raw material dimensions before rolling were 650 mm wide ⁇ 900 mm long ⁇ 290 mm thick, and a pure copper plate was prepared by combining a plurality of hot rolling and subsequent cooling conditions as shown in Table 1. The temperature was measured by measuring the surface temperature of the rolled plate using a radiation thermometer.
  • Comparative Example 1 started rolling at a rolling start temperature of 510 ° C. (expected end temperature of 490 ° C.). However, since the temperature was too low, it was overloaded and the continuation of rolling was stopped. Therefore, with respect to pure copper plates other than Comparative Example 1, the average crystal grain size, the special grain boundary length ratio, the mushy state during cutting, the number of abnormal discharges when used as a sputtering target, and the occurrence of slime when used as a plating anode The amount was measured.
  • each measurement point (pixel) within the measurement range on the sample surface is irradiated with an electron beam, and the orientation difference between adjacent measurement points is determined by orientation analysis by backscattered electron diffraction.
  • the crystal grain boundary was defined between the measurement points at 15 ° or more.
  • the average crystal grain size (twins are counted as crystal grains) is calculated from the obtained grain boundaries by calculating the number of crystal grains in the observation area and dividing the area by the number of crystal grains to calculate the crystal grain area.
  • the average crystal grain size (diameter) was calculated and converted into a circle.
  • the total grain boundary length L of the crystal grain boundary in the measurement range is measured, the position of the crystal grain boundary where the interface between adjacent crystal grains constitutes the special grain boundary is determined, and all the special grain boundaries of the special grain boundary are determined.
  • the grain boundary length ratio L ⁇ / L between the length L ⁇ and the total grain boundary length L of the crystal grain boundary measured above was determined and used as the special grain boundary length ratio.
  • ⁇ Musille state> Each sample was made into a flat plate of 100 ⁇ 2000 mm, and its surface was cut with a milling machine with a cutting edge of a cutting edge of 0.1 mm and a cutting speed of 5000 m / min, within the 500 ⁇ m square field of view of the cutting surface. It was examined how many mussels with a length of 100 ⁇ m or more were present.
  • An integrated target including a backing plate portion is prepared so that the target portion has a diameter of 152 mm and a thickness of 6 mm from each sample, the target is attached to a sputtering apparatus, and the ultimate vacuum pressure in the chamber is 1 ⁇ 10 ⁇ Sputtering tests were performed under conditions of 5 Pa or less, Ar as the sputtering gas, sputtering gas pressure of 0.3 Pa, and sputtering output of 2 kW with a direct current (DC) power source. Sputtering was continued for 2 hours. During this time, the number of abnormal discharges caused by sputtering abnormality was counted using an arc counter attached to the power source.
  • DC direct current
  • a copper plate cut out in a disk shape having a diameter of 270 mm is fixed to an electrode holder (effective electrode area of about 530 cm 2 ) to be an anode electrode, and a silicon wafer having a diameter of 200 mm is used as a cathode to perform copper plating under the following conditions.
  • the amount of insoluble slime generated when processing up to the first wafer was measured.
  • the slime was weighed after being recovered and dried.
  • Plating solution 70 g / l copper pyrophosphate and 300 g / l potassium pyrophosphate added to ion exchange water, adjusted to pH 8.5 with ammonia water, Plating conditions: air stirring at a liquid temperature of 50 ° C. and stirring by cathode swing, Cathode current density: 3 A / dm 2 Plating time: 1 hour / sheet.
  • the pure copper plate produced by the production method of this example has an average crystal grain size of 10 to 200 ⁇ m, and particularly 10 to 80 ⁇ m for Examples 1 to 10 that were rapidly cooled after finish rolling.
  • the special grain boundary length ratio was 55% or more.
  • the pure copper plate of the comparative example had a special grain boundary length ratio of less than 55%.
  • the rolling reduction is made constant when performing multiple passes in the finish rolling pass schedule of hot rolling, but is not limited to this, and rolling is performed if the rolling reduction is 5 to 24% per pass.
  • the rolling reduction for each pass may be different.
  • it is not necessary to cool immediately after the finish rolling pass, but since it is effective in enhancing the homogeneity of the structure inside and on the ingot, it is promptly cooled. It is better to do it.
  • the present invention after hot rolling under a predetermined condition, is rapidly cooled to 200 ° C. or less, and thereafter is a product of a pure copper plate without being subjected to cold rolling. This does not prevent cold rolling (with a rolling rate of several percent or less).
  • the pure copper plate of the present invention can be applied to a sputtering target, a plating anode, and a target backing plate.
  • a mold, a discharge electrode, a heat sink, a heat sink, a mold, a water-cooled plate, an electrode, an electrical terminal It can also be applied to bus bars, gaskets, flanges, printing plates and the like.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Electrochemistry (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

 熱間鍛造や熱間圧延後の、冷間鍛造や冷間圧延、及び、その後の熱処理が不要な純銅板の製造方法、及び、その製造方法により得られた微細な組織を有すると共に部分再結晶化によって双晶組織を形成させる事により、高い特殊粒界比率を付与した、特に、スパッタリング用銅ターゲット素材やめっき用アノード等に適した純銅板を提供する。 純度が99.96wt%以上である純銅のインゴットを、550℃~800℃に加熱して、総圧延率が85%以上で圧延終了時温度が500~700℃であり、かつ、1パス当たりの圧下率が5~24%の仕上げ圧延を1パス以上有する熱間圧延加工を施した後に、必要に応じて圧延終了時温度から200℃以下の温度になるまで200~1000℃/minの冷却速度にて急冷する。

Description

純銅板の製造方法及び純銅板
 本発明は、良好な品質を有する純銅板の製造方法に関し、特に詳しくは、微細な組織を有すると共に、部分再結晶化によって双晶組織を形成させる事により高い特殊粒界比率を付与する純銅板を製造する方法、及び、その製造方法により製造されたスパッタリング用銅ターゲット素材やめっき用アノード素材等に好適な純銅板に関する。
 本願は、2010年2月9日に出願された特願2010-26455号に基づき優先権を主張し、その内容をここに援用する。
 純銅板は、通常、純銅のインゴットを熱間圧延或いは熱間鍛造した後、冷間圧延或いは冷間鍛造を施し、その後、歪み取り或いは再結晶化の為の熱処理を施すことにより製造される。この様な純銅板は、鋸切断、切削加工、エンボス加工、冷間鍛造などにて所望の形状に加工されて使用されるが、加工時のムシレや変形を少なくする為にも、結晶粒径が小さいこと、結晶組織中の残留応力が小さいことが要求される。
 また、上述の方法にて製造された純銅板は、最近では、半導体素子の配線材料用のスパッタリングターゲットとして使用されている。半導体素子の配線材料としてAl(比抵抗3.1μΩ・cm程度)が使われてきたが、最近の配線の微細化に伴い、更に抵抗の低い銅配線(比抵抗1.7μΩ・cm程度)が実用化されている。この銅配線の形成プロセスとしては、コンタクトホール又は配線溝の凹部にTa/TaNなどの拡散バリア層を形成した後、銅を電気メッキすることが多く、この電気メッキを行うために下地層(シード層)として、純銅をスパッタ成膜することが行われる。
 通常では、4N(純度99.99%以上:ガス成分抜き)程度の電気銅を粗金属として湿式や乾式の高純度化プロセスによって、5N(純度99.999%以上)~6N(純度99.9999%以上)の純度の高純度銅を製造し、これを上述の方法にて純銅板とし、更に、所望の形状に加工後にスパッタリングターゲットとして使用している。電気抵抗の低いスパッタ膜を作製するためには、スパッタリングターゲット中の不純物含有量を一定値以下に抑え、また、合金化するために添加する元素も一定レベル以下に下げる必要があり、スパッタ膜厚の均一性を得るためには、スパッタリングターゲットの結晶粒径及び結晶配向性のばらつきを抑えることが必要となっている。
 この様なスパッタリング用純銅ターゲットを工業的に製造する従来の方法として、特許文献1に、純度が99.995wt%以上である純銅のインゴットを熱間加工し、その後900℃以下の温度で焼鈍を行い、ついで冷間圧延を40%以上の圧延率で施した後、500℃以下の温度で再結晶焼鈍することにより、実質的に再結晶組織を有し、平均結晶粒径が80ミクロン以下であり、かつビッカース硬さが100以下であるスパッタリング用銅ターゲットを得る方法が開示されている。
 また、特許文献2には、5N以上の高純度銅インゴットを熱間鍛造や熱間圧延等の加工率50%以上の熱間加工を施した後、さらに、冷間圧延や冷間鍛造等の加工率30%以上の冷間加工を行って、350~500℃、1~2時間の熱処理を実施することにより、NaおよびK含有量がそれぞれ0.1ppm以下、Fe、Ni、Cr、Al、Ca、Mg含有量がそれぞれ1ppm以下、炭素および酸素含有量がそれぞれ5ppm以下、UおよびTh含有量がそれぞれ1ppb以下、ガス成分を除いた銅の含有量が99.999%以上であり、さらに、スパッタ面における平均粒径が250μm以下で、平均粒径のばらつきが±20%以内、X線回折強度比I(111)/I(200)がスパッタ面において2.4以上でそのばらつきが±20%以内であるスパッタリング用銅ターゲットを得る方法が開示されている。
 また、特許文献3には、純度6N以上の高純度銅と添加元素からできたインゴットの表面層を除去して、熱間鍛造、熱間圧延、冷間圧延、熱処理工程を経て得られた、Alを0.5~4.0wt%含有し、Siが0.5wtppm以下である銅合金スパッタリングターゲット、Snを0.5~4.0wt%含有し、Mnが0.5wtppm以下である銅合金スパッタリングターゲット、並びに、これらにSb、Zr、Ti、Cr、Ag、Au、Cd、In、Asから選択した1又は2以上を総量で1.0wtppm以下含有する銅合金スパッタリングターゲットが開示されている。特に、実施例中には、製造したインゴットの表面層を除去してφ160mm×厚さ60mmとした後、400℃で熱間鍛造してφ200mmとし、その後、400℃で熱間圧延してφ270mm×厚さ20mmまで圧延し、更に冷間圧延でφ360mm×厚さ10mmまで圧延し、500℃にて1時間熱処理後、ターゲット全体を急冷してターゲット素材とするとの記載がある。
 この様なスパッタリング用銅ターゲットの製造方法に代表されるように、従来の純銅板の製造方法では、均質で安定した再結晶組織を得る為に、純銅インゴットを熱間鍛造や熱間圧延をした後、冷間鍛造や冷間圧延を行い、更に熱処理が施されている。
特開平11-158614号公報 特開平10-330923号公報 特開2009-114539号公報
 大型形状の均質で安定した結晶組織を有する純銅板を工業的に製造する従来の方法では、純銅インゴットに熱間鍛造や熱間圧延を施した後、更なる、冷間鍛造や冷間圧延、熱処理を施すことが必要であるが、スパッタリングターゲットにおける高出力のスパッタでの異常放電の抑制、めっき用アノードにおける均質溶解性の向上、および放熱基板における耐熱疲労特性に対し、微細化のみでの対応が困難となってきた。
 本発明は、この様な事情に鑑みてなされたものであり、熱間鍛造や熱間圧延後の、冷間鍛造や冷間圧延、及び、その後の熱処理が不要な純銅板の製造方法、及び、その製造方法により得られた微細な組織を有し、部分再結晶化によって双晶組織を形成することにより高い特殊粒界比率を有する銅板、特に、スパッタリング用銅ターゲット素材やめっき用アノード等に適した純銅板を提供する。
 本発明者らは、鋭意検討の結果、純銅のインゴットを熱間鍛造や熱間圧延後の、冷間鍛造や冷間圧延、その後の熱処理にて、再結晶化を促進し微細で均質な結晶粒を得る従来の方法に頼らずに、純銅のインゴットを、結晶粒の成長を抑制するために一定の条件下で熱間圧延し、部分再結晶化によって双晶組織の形成を促進し、また必要に応じて粒成長を停止させるために一定の条件化で急冷することにより、より微細で特殊粒界比率の高い金属組織を有する純銅板が製造できることを見出した。
 本発明の純銅板の製造方法は、純度が99.96wt%以上である純銅のインゴットを、550℃~800℃に加熱して、総圧延率が85%以上で圧延終了時温度が500~700℃であり、かつ、1パス当たりの圧下率が5~24%の仕上げ熱間圧延を1パス以上有する熱間圧延加工を施すことを特徴とし、必要に応じて、前記圧延終了時温度から200℃以下の温度になるまで200~1000℃/minの冷却速度にて急冷することを特徴とする。
 結晶粒が微細で、部分的再結晶化による双晶組織の形成を促進することにより特殊粒界比率を高めた組織を得るには、熱間圧延の終了工程である仕上げ熱間圧延での温度(以下、圧延終了温度と呼ぶ)と、仕上げ熱間圧延における1パス当たりの圧下率が重要である。仕上げ熱間圧延において、圧延終了温度が500℃未満であったり、その1パス当たりの圧下率が5%未満である場合には部分再結晶化が十分生じず、また圧延終了温度が700℃を超えていたり、1パス当たりの圧下率が25%以上の場合には、仕上げ熱間圧延中において動的再結晶が支配的となり、部分再結晶化による双晶組織の形成に伴う高い特殊粒界比率を得ることが困難となる。そして、この圧延終了温度を500~700℃とするために、熱間圧延開始温度は550~800℃とするとよい。
 また、この熱間圧延による総圧延率として85%以上とするのが良く、総圧延率を85%以上とすることによって結晶粒の径の粗大化を抑制するとともに、そのバラツキを小さくすることができる。総圧延率が85%未満であると、結晶粒径が大きくなる傾向にあるとともに、そのバラツキが大きくなる。
 また、熱間圧延における仕上げ熱間圧延での1パス当たりの圧下率を5~24%で行うことによって、双晶組織の形成を促進し特殊粒界比率を高めた組織とし結晶粒界の整合性が向上し、結晶組織が微細でかつ均一となる。また、上記仕上げ熱間圧延では、500~700℃の範囲において、1パス当たりの圧下率を5~24%とし、少なくとも1パス圧延加工すればよいが、複数パス連続して圧延加工してもよい。特に、複数パス繰り返し圧延を行うことによって双晶組織の形成が一層促進される。このようにして製造される純銅板は、スパッタリングターゲット、めっき用アノード、放熱基板等の用途に有効となる。
 そして、このような熱間圧延終了後に、さらに200℃以下の温度になるまで200~1000℃/minの冷却速度で急冷するとよい。冷却速度が200℃/min未満では、結晶粒の成長を抑制する効果に乏しく、1000℃/minを超えても、それ以上の粒成長抑制効果には寄与しない。より好ましい冷却速度は300~600℃/minの範囲である。
 このような範囲の冷却速度にて200℃以下の温度まで冷却すれば結晶粒の成長を停止して微細な結晶粒のものを得ることができる。一方、200℃を超える温度で急冷を止めてしまうと、その後、その高温状態での放置によって徐々に結晶粒が成長するおそれがある。
 また、本発明の製造方法によって製造された純銅板は、EBSD法にて測定した結晶粒界の全粒界長さLに対する特殊粒界の全特殊粒界長さLσの比率(Lσ/L)が55%以上であることを特徴とする。
 この特殊粒界の頻度が55%以上に高いことにより、結晶粒界の整合性が向上し、スパッタリングターゲットのスパッタ特性、めっき用アノードにおける溶解性、および板材の変形特性等の各種特性が良好になる。
 本発明の純銅板は、スパッタリング用ターゲットに用いると好適である。
 特に部分再結晶化によって双晶組織を形成することにより高い特殊粒界比率を有することにより、高出力下でのスパッタにおいても異常放電の発生を抑制することができる。
 本発明によれば、微細で均一な結晶粒を有し、高出力下において異常放電を生じにくいスパッタリング用銅ターゲット素材や均一な溶解性を発揮するめっき用アノード素材等に適した純銅板を製造することができる。
純銅板の表面を切削したときに生じるムシレの顕微鏡写真である。
 以下に、本発明の実施形態について説明する。
 この実施形態の純銅板は、銅の純度が99.96wt%以上の無酸素銅、又は99.99wt%以上の電子管用無酸素銅である。
 また、EBSD法によって求める平均結晶粒径は10~200μm、より好ましくは80μmとされ、またEBSD法にて測定した結晶粒界の全粒界長さLに対する特殊粒界の全特殊粒界長さLσの比率(Lσ/L)が55%以上とされる。
 また粒径が200μmを超える大きな結晶粒が混入すると、切削加工において表面に微細なムシレが生じ易い。このムシレは、図3に示したように、素材をフライス等によって切削したときに、その切削方向(矢印Aで示す方向)に生じる切削痕Wの中に、切削方向と直交する方向に符号Cで示すように筋状に生じる微細な凹凸である。このムシレが生じると、商品外観を損なうことになる。
 平均結晶粒径を10μm未満とするのは現実的でなく、製造コスト増を招く。
 また、特殊粒界の長さ比率を55%以上とすることにより、結晶粒界の整合性が向上し、スパッタリングターゲット、めっき用アノード、放熱基板等の用途に有効となる。
 結晶粒界は、二次元断面観察の結果、隣り合う2つの結晶間の配向が15°以上となっている場合の当該結晶間の境界として定義される。特殊粒界は、結晶学的にCSL理論(Kronberg et.al.: Trans. Met. Soc. AIME, 185, 501 (1949))に基づき定義されるΣ値で3≦Σ≦29を有する結晶粒界(対応粒界)であって、当該粒界における固有対応部位格子方位欠陥Dqが Dq≦15°/Σ1/2 (D.G.Brandon:Acta.Metallurgica. Vol.14,p1479,1966)を満たす結晶粒界として定義される。
 すべての結晶粒界のうち、この特殊粒界の長さ比率が高いと、結晶粒界の整合性が向上して、純銅板の用途として広く知られるスパッタリングターゲットやめっき用アノード、あるいは放熱基板等の特性を向上させることができる。
 すなわち、スパッタリングターゲットにおいては、スパッタ時における異常放電特性と結晶組織との間に相関があるとされており、素材の高純度化つまり含有不純物量の低減(特開2002-129313)、粒径の均質性(WO03/046250)、組織の結晶配向性の制御(特開平10-330923)などにより、スパッタ特性のうち、異常放電を抑制する手段が示されている。しかしながら、近年では生産性向上のためスパッタレートの一層の向上が求められ、スパッタ電圧は高電圧化する方向にある。スパッタ電圧が向上するとスパッタ時の異常放電がより起きやすい環境となるため、従来の組織制御手法だけでは異常放電抑止効果が不十分であり、さらなる組織制御が求められていた。
 また、純銅製のめっき用アノード材は、特にプリント配線板のスルーホールめっきなどに用いられるが、アノード溶解時に電流密度分布のムラが生じて局所的な導通不良を起こし、結果的に不溶性のスライムが発生し、めっき不良や生産効率の低下に繋がることがある。対策として、アノードの溶解面での面内溶解均質性を高めることが有効であり、結晶粒の微細化により対策が取られている。しかしながら、一般に粒界は粒内に比べ溶解しやすく、微細化によりアノードの面内溶解均質性が向上しても、粒界が選択的に溶解することは避けられず、微細化効果には限界があることが判明してきた。よって、粒界自体の溶解性を抑制させることが前記スライムの発生に対し有効であると考えられるが、従来そのような観点からの検討はなされていなかった。
 さらに、放熱基板においては、使用時に膨張収縮を繰り返す事から、均一な変形特性を有し、かつ疲労特性に優れる事が重要である。近年、省エネルギー化、低CO化の流れにより普及が進んでいるハイブリッド車や太陽電池などでは直・交インバーター回路が不可欠であり、変換時に発生する熱を放熱するための放熱基板として純銅もしくは低合金銅板が用いられている。これらの用途では、システムの大型化による大電流化が進んでおり放熱基板に掛かる熱負担は増大する方向である。放熱基板は、使用中、常に熱膨張/収縮が繰り返すため長期的には耐熱疲労特性が求められる。耐熱疲労特性については、組織の均質性が重要であるが、従来の組織の均一性の向上だけでは前記大電流化に伴う疲労特性の向上は困難となっている。
 これらの課題は結晶粒界の特殊粒界の長さ比率を55%以上とすることにより解決することができる。すなわち、スパッタリングターゲットにおいては、スパッタ面全体で均質にスパッタされる事から、異常放電の原因となる結晶粒界の段差が生じにくく、結果として異常放電の回数が低減する。めっき用アノードについては、特殊粒界が一般的な粒界よりも粒内での溶解特性に近い性質を有することが判明し、特殊粒界比率を高めた銅板を用いることによって、アノード溶解時の面内溶解均質性が格段に向上し、溶解面が平滑に保たれることから、不溶性のスライムの発生が抑制され、形成されるめっき膜の品質が向上する。また、放熱用途基板材料においては、均一な変形特性を示し、熱膨張/収縮の繰り返しによっても金属疲労がおきにくく疲労特性が向上する。
 このように特殊粒界の長さ比率を55%以上とすることにより、スパッタリングターゲットにおけるスパッタ特性、めっき用アノード素材における溶解性、その他銅板としての変形特性等の各種特性が向上し、スパッタリングターゲット、めっき用アノード、放熱基板等の用途に有効となる。
 次に、このような純銅板を製造する方法について説明する。
 この製造方法は、純銅のインゴットを熱間圧延し、その熱間圧延を所定の条件を満たした仕上げ圧延パスで終了した後、必要に応じて急冷するという単純なプロセスである。
 具体的には、純銅のインゴットを550℃~800℃に加熱し、これを複数回圧延ロールの間に往復走行させながら徐々に圧延ロール間のギャップを小さくして、所定の厚さまで圧延する。この複数回の圧延による総圧延率は85%以上とされ、熱間圧延の終了工程である仕上げ熱間圧延での圧延終了温度は500~700℃、前記仕上げ熱間圧延における1パス当たりの圧下率は5~24%で1パスまたは複数パス連続して圧延加工される。その後、必要に応じて圧延終了温度から200℃以下の温度になるまで200~1000℃/minの冷却速度で急冷する。
 通常の純銅板の製造方法は、熱間圧延⇒冷却⇒冷間圧延⇒熱処理というプロセスが一般的であり、その場合の熱間圧延は850~900℃の高温で加工される。このような高温状態で熱間圧延すると結晶粒が粗大化するため、これを急冷したとしても平均結晶粒径を80μm以下に微細化することはできない。
 本実施形態の製造方法においては、熱間圧延を開始温度が550~800℃、終了温度が500~700℃の比較的低温状態とした。熱間圧延の終了温度が700℃を超えると、結晶粒が急激に大きくなり、その後に急冷しても微細な結晶粒を得ることが困難である。また、熱間圧延終了温度を500℃未満としても、結晶粒径の微細化の効果は飽和しており、それ以下に温度を下げても微細化には寄与しない。したがって、圧延終了温度を500~700℃とした。そして、この熱間圧延の終了温度を500~700℃とするために、熱間圧延の開始温度を550~800℃とした。
 また、この熱間圧延による総圧延率は85%以上とするのが良く、総圧延率を85%以上とすることによって結晶粒径の粗大化を抑制するとともに、そのバラツキを小さくすることができる。総圧延率が85%未満であると、結晶粒が大きくなる傾向にあるとともに、そのバラツキが大きくなる。この場合、複数回の圧延のうち最終段階の圧延である仕上げ熱間圧延については、1パス当たりの圧下率を5~24%として1パスまたは複数パス連続して圧延加工するのがより好ましい。熱間圧延の最後の段階で1パス当たりの圧下率を5~24%とすることにより、双晶組織の比率が増大して、結晶粒界の特殊粒界の長さ比率を55%以上とすることができる。この1パス当たりの圧下率は、圧延ロールを通す前の母材の板厚に対する圧延ロール通過後の母材の板厚の減少率(又は前回パス時の圧延ロール間のギャップに対する今回パスの圧延ロール間のギャップの減少率)であり、総圧延率は、圧延前の母材に対する圧延終了後の母材の板厚の減少率である。すなわち、圧延ロールを通す前の母材の板厚をt、圧延ロール通過後の母材の板厚をtとすると、1パス当たりの圧下率γ(%)は、γ=((t-t)/t)×100(%)と定義することができる。
 そして、このような熱間圧延終了後に、さらに200℃以下の温度になるまで200~1000℃/minの冷却速度で水冷によって急冷することにより、熱間圧延後の粒径の粗大化を抑制できる。冷却速度が200℃/min未満では、結晶粒の成長を抑制する効果に乏しく、1000℃/minを超えても、それ以上の微細化には寄与しない。
 このような範囲の冷却速度にて200℃以下の温度まで冷却すれば結晶粒の成長を停止して微細な結晶粒のものを得ることができる。200℃を超える温度で急冷を止めてしまうと、その後、その高温状態での放置によって徐々に結晶粒が成長するおそれがある。
 次に本発明の実施例を説明する。
 圧延素材は、電子管用無酸素銅(純度99.99wt%以上)の鋳造インゴットを用いた。圧延前の素材寸法は幅650mm×長さ900mm×厚さ290mmとし、熱間圧延及びその後の冷却の各条件を表1に示すように複数組み合わせて純銅板を作製した。また、温度測定は放射温度計を用い、圧延板の表面温度を測定することにより行った。
Figure JPOXMLDOC01-appb-T000001
 この表1において、比較例1は、圧延開始温度が510℃(終了予想温度490℃)で圧延開始したが、温度が低過ぎたことから、過負荷状態となり圧延の続行を中止した。
 そこで、この比較例1以外の純銅板について、平均結晶粒径、特殊粒界長さ比率、切削時のムシレ状態、スパッタリングターゲットとして用いたときの異常放電回数、めっきアノードとして用いたときのスライム発生量を測定した。
<平均結晶粒径、特殊粒界長さ比率>
 各試料について、耐水研磨紙、ダイヤモンド砥粒を用いて機械研磨を行った後、コロイダルシリカ溶液を用いて仕上げ研磨を行った。
 そして、EBSD測定装置(HITACHI社製 S4300-SE,EDAX/TSL社製 OIM Data Collection)と、解析ソフト(EDAX/TSL社製 OIM Data Analysis ver.5.2)によって、結晶粒界、特殊粒界を特定し、その長さを算出することにより、平均結晶粒径及び特殊粒界長さ比率の解析を行った。
 まず、走査型電子顕微鏡を用いて、試料表面の測定範囲内の個々の測定点(ピクセル)に電子線を照射し、後方散乱電子線回折による方位解析により、隣接する測定点間の方位差が15°以上となる測定点間を結晶粒界とした。
 平均結晶粒径(双晶も結晶粒としてカウントする)の測定は、得られた結晶粒界から、観察エリア内の結晶粒子数を算出し、エリア面積を結晶粒子数で割って結晶粒子面積を算出し、それを円換算することにより平均結晶粒径(直径)とした。
 また、測定範囲における結晶粒界の全粒界長さLを測定し、隣接する結晶粒の界面が特殊粒界を構成する結晶粒界の位置を決定するとともに、特殊粒界の全特殊粒界長さLσと、上記測定した結晶粒界の全粒界長さLとの粒界長比率Lσ/Lを求め、特殊粒界長さ比率とした。
<ムシレ状態>
 各試料を100×2000mmの平板とし、その表面をフライス盤で超硬刃先のバイトを用いて切込み深さ0.1mm、切削速度5000m/分で切削加工し、その切削表面の500μm四方の視野内において長さ100μm以上のムシレ疵が何個存在したかを調べた。
<スパッタ異常放電回数>
 各試料からターゲット部分が直径152mm、厚さ6mmとなるように、バッキングプレート部分を含めた一体型のターゲットを作製し、そのターゲットをスパッタ装置に取り付け、チャンバー内の到達真空圧力を1×10-5Pa以下、スパッタガスとしてArを用い、スパッタガス圧を0.3Paとし、直流(DC)電源にてスパッタ出力2kWの条件でスパッタリングテストを実施した。スパッタは2時間連続させた。この間、電源に付属するアークカウンターを用いて、スパッタ異常により生じた異常放電の回数をカウントした。
<アノードスライム発生量>
 直径270mmの円盤状に切り出した銅板を電極ホルダーに固定(実行電極面積約530cm)しアノード電極とし、直径200mmのシリコンウエハをカソードとして、以下の条件にて銅めっきを行い、めっき開始から5枚目までのウエハを処理した際に発生する不溶性スライム発生量を測定した。尚、スライムは回収後、乾燥させた後に重量測定した。
 めっき液:イオン交換水に、ピロリン酸銅 70g/l、ピロリン酸カリウム 300g/lを添加し、アンモニア水にてpH8.5に調整したもの、
 めっき条件:液温50℃で空気攪拌およびカソード揺動による攪拌実施、
 カソード電流密度:3A/dm
 めっき時間:1時間/枚。
 これらの結果を表2に示す。
Figure JPOXMLDOC01-appb-T000002
 この表2から明らかなように、本実施例の製造方法で製造した純銅板は、平均結晶粒径が10~200μmで、特に仕上げ圧延後に急冷を行った実施例1~10については10~80μmとなっており、またいずれの実施例においても特殊粒界長さ比率は55%以上であった。これに対して、比較例の純銅板は、特殊粒界長さ比率が55%未満であった。その結果、実施例において熱間圧延時の仕上げ圧延を5~24%の圧下率としたものは、スパッタリングターゲット特性評価では、スパッタ時の異常放電回数が少なく、メッキ用アノード溶解特性評価では、不溶性スライムの発生量が少ないことがわかる。
 以上、本発明の実施形態について説明したが、本発明はこの記載に限定されることはなく、その発明の技術的思想を逸脱しない範囲で適宜変更可能である。
 例えば、熱間圧延の仕上げ圧延パススケジュールにおいて複数回のパスを行う際に圧下率を一定としたが、これに拘束されるものではなく、1パス当たり5~24%の圧下率であれば圧延パス毎の圧下率が異なってもよい。
 また、高い特殊粒界比率を得る上では、仕上げ圧延パス終了後、速やかに冷却を行う必要はないが、インゴット内部と表面の組織均質性を高める上で効果があるため、速やかな冷却を実施した方が望ましい。
 また、本発明は、所定の条件での熱間圧延後、200℃以下まで急冷し、その後に冷間圧延を施さずに純銅板の製品とするが、急冷後に最終的な仕上げとしてわずかな(数%以下の圧延率の)圧延を冷間で行うことを妨げるものではない。
 本発明の純銅板は、スパッタリング用ターゲットやめっき用アノード、ターゲット用のバッキングプレートに適用可能であり、その他、金型、放電電極、放熱板、ヒートシンク、モールド、水冷板、電極、電気用端子、ブスバー、ガスケット、フランジ、印刷版等にも適用することができる。
W 切削痕
C ムシレ疵

Claims (8)

  1.  純度が99.96wt%以上である純銅のインゴットを、550℃~800℃に加熱して、総圧延率が85%以上で圧延終了時温度が500~700℃であり、かつ、1パス当たりの圧下率が5~24%の仕上げ圧延を1パス以上有する熱間圧延加工を施すことを特徴とする純銅板の製造方法。
  2.  純度が99.96wt%以上である純銅のインゴットを、550℃~800℃に加熱して、総圧延率が85%以上で圧延終了時温度が500~700℃であり、かつ、1パス当たりの圧下率が5~24%の仕上げ圧延を1パス以上有する熱間圧延加工を施した後に、前記圧延終了時温度から200℃以下の温度になるまで200~1000℃/minの冷却速度にて急冷することを特徴とする純銅板の製造方法。
  3.  請求項1記載の製造方法によって製造された純銅板であって、EBSD法にて測定した結晶粒界の全粒界長さLに対する特殊粒界の全特殊粒界長さLσの比率(Lσ/L)が55%以上であることを特徴とする純銅板。
  4.  請求項2記載の製造方法によって製造された純銅板であって、EBSD法にて測定した結晶粒界の全粒界長さLに対する特殊粒界の全特殊粒界長さLσの比率(Lσ/L)が55%以上であることを特徴とする純銅板。
  5.  スパッタリング用ターゲットであることを特徴とする請求項3記載の純銅板。
  6.  スパッタリング用ターゲットであることを特徴とする請求項4記載の純銅板。
  7.  めっき用アノードであることを特徴とする請求項3記載の純銅板。
  8.  めっき用アノードであることを特徴とする請求項4記載の純銅板。
PCT/JP2011/052317 2010-02-09 2011-02-04 純銅板の製造方法及び純銅板 WO2011099426A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020127017784A KR20120124405A (ko) 2010-02-09 2011-02-04 순구리판의 제조 방법 및 순구리판
CN201180005827.6A CN102712986B (zh) 2010-02-09 2011-02-04 纯铜板的制造方法及纯铜板

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-026455 2010-02-09
JP2010026455A JP4792116B2 (ja) 2010-02-09 2010-02-09 純銅板の製造方法及び純銅板

Publications (1)

Publication Number Publication Date
WO2011099426A1 true WO2011099426A1 (ja) 2011-08-18

Family

ID=44367700

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/052317 WO2011099426A1 (ja) 2010-02-09 2011-02-04 純銅板の製造方法及び純銅板

Country Status (5)

Country Link
JP (1) JP4792116B2 (ja)
KR (1) KR20120124405A (ja)
CN (1) CN102712986B (ja)
TW (1) TWI480396B (ja)
WO (1) WO2011099426A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103341488A (zh) * 2013-05-31 2013-10-09 富威科技(吴江)有限公司 一种八分之一硬态薄型纯铜带的加工方法
WO2014168132A1 (ja) * 2013-04-08 2014-10-16 三菱マテリアル株式会社 熱延銅板
CN111936660A (zh) * 2018-04-17 2020-11-13 三菱综合材料株式会社 Cu-Ni合金溅射靶
CN114686789A (zh) * 2022-04-12 2022-07-01 福建工程学院 通过增加共格孪晶界比例提高纯铜晶界腐蚀抗力的方法

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5520746B2 (ja) * 2010-08-24 2014-06-11 古河電気工業株式会社 スパッタリングターゲット用銅材料及びその製造方法
JP6619942B2 (ja) * 2015-03-06 2019-12-11 Jx金属株式会社 半導体ウエハへの電気銅めっきに使用する銅アノード又は含燐銅アノード及び銅アノード又は含燐銅アノードの製造方法
CN105887028A (zh) * 2016-05-13 2016-08-24 洛阳高新四丰电子材料有限公司 一种大尺寸高纯铜平面靶材的制备方法
CN110578126B (zh) * 2019-10-18 2021-12-28 洛阳高新四丰电子材料有限公司 一种多规格高纯铜靶材的制备方法
KR102249087B1 (ko) * 2019-11-13 2021-05-07 (주)하나금속 판형 구리 스퍼터링 타겟 및 그 제조 방법
CN115569987A (zh) * 2022-09-09 2023-01-06 舞阳钢铁有限责任公司 一种铜板的生产方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62112763A (ja) * 1985-11-12 1987-05-23 Furukawa Electric Co Ltd:The 低温軟化導電用銅材料の製造方法
JPH11158614A (ja) * 1997-11-28 1999-06-15 Hitachi Metals Ltd スパッタリング用銅ターゲットおよびその製造方法
JP2001240949A (ja) * 2000-02-29 2001-09-04 Mitsubishi Materials Corp 微細な結晶粒を有する高純度銅加工品素材の製造方法
JP2002220659A (ja) * 2000-12-05 2002-08-09 Praxair St Technol Inc 銅スパッターターゲットの加工及び結合
JP2005533187A (ja) * 2002-07-16 2005-11-04 ハネウェル・インターナショナル・インコーポレーテッド 銅スパッタリングターゲット及び銅スパッタリングターゲットの形成方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6478902B2 (en) * 1999-07-08 2002-11-12 Praxair S.T. Technology, Inc. Fabrication and bonding of copper sputter targets

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62112763A (ja) * 1985-11-12 1987-05-23 Furukawa Electric Co Ltd:The 低温軟化導電用銅材料の製造方法
JPH11158614A (ja) * 1997-11-28 1999-06-15 Hitachi Metals Ltd スパッタリング用銅ターゲットおよびその製造方法
JP2001240949A (ja) * 2000-02-29 2001-09-04 Mitsubishi Materials Corp 微細な結晶粒を有する高純度銅加工品素材の製造方法
JP2002220659A (ja) * 2000-12-05 2002-08-09 Praxair St Technol Inc 銅スパッターターゲットの加工及び結合
JP2005533187A (ja) * 2002-07-16 2005-11-04 ハネウェル・インターナショナル・インコーポレーテッド 銅スパッタリングターゲット及び銅スパッタリングターゲットの形成方法

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014168132A1 (ja) * 2013-04-08 2014-10-16 三菱マテリアル株式会社 熱延銅板
JP2014201814A (ja) * 2013-04-08 2014-10-27 三菱マテリアル株式会社 熱延銅板
US9938606B2 (en) 2013-04-08 2018-04-10 Mitsubishi Materials Corporation Hot-rolled copper plate
CN103341488A (zh) * 2013-05-31 2013-10-09 富威科技(吴江)有限公司 一种八分之一硬态薄型纯铜带的加工方法
CN103341488B (zh) * 2013-05-31 2016-08-10 富威科技(吴江)有限公司 一种八分之一硬态薄型纯铜带的加工方法
CN111936660A (zh) * 2018-04-17 2020-11-13 三菱综合材料株式会社 Cu-Ni合金溅射靶
CN114686789A (zh) * 2022-04-12 2022-07-01 福建工程学院 通过增加共格孪晶界比例提高纯铜晶界腐蚀抗力的方法
CN114686789B (zh) * 2022-04-12 2023-09-01 福建工程学院 通过增加共格孪晶界比例提高纯铜晶界腐蚀抗力的方法

Also Published As

Publication number Publication date
TW201139706A (en) 2011-11-16
CN102712986A (zh) 2012-10-03
TWI480396B (zh) 2015-04-11
KR20120124405A (ko) 2012-11-13
JP2011161479A (ja) 2011-08-25
CN102712986B (zh) 2014-11-12
JP4792116B2 (ja) 2011-10-12

Similar Documents

Publication Publication Date Title
JP4869415B2 (ja) 純銅板の製造方法及び純銅板
JP4792116B2 (ja) 純銅板の製造方法及び純銅板
JP5752736B2 (ja) スパッタリング用ターゲット
JP6154565B1 (ja) Cu−Ni−Si系銅合金板材および製造法
JP5325472B2 (ja) 磁気ディスク用アルミニウム合金基板およびその製造方法
TWI485272B (zh) Pure copper plate manufacturing methods and pure copper plate
TW202202635A (zh) 純銅板
JP6869119B2 (ja) Cu−Ni−Al系銅合金板材および製造方法並びに導電ばね部材
JP6027823B2 (ja) 熱延銅板、及び、熱延銅板の形状調整方法
WO2012057057A1 (ja) スパッタリング用チタンターゲット
JP4869398B2 (ja) 純銅板の製造方法及び純銅板
WO2019058721A1 (ja) スパッタリング用チタンターゲット及びその製造方法、並びにチタン含有薄膜の製造方法
JP4061211B2 (ja) 電解銅箔製造用カソード電極に用いるチタン合金及びその製造方法
JP4792115B2 (ja) 純銅板の製造方法及び純銅板
WO2022185859A1 (ja) 熱延銅合金板およびスパッタリングターゲット

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180005827.6

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11742170

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20127017784

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11742170

Country of ref document: EP

Kind code of ref document: A1