Nothing Special   »   [go: up one dir, main page]

WO2011099067A1 - 冷凍サイクル装置 - Google Patents

冷凍サイクル装置 Download PDF

Info

Publication number
WO2011099067A1
WO2011099067A1 PCT/JP2010/000838 JP2010000838W WO2011099067A1 WO 2011099067 A1 WO2011099067 A1 WO 2011099067A1 JP 2010000838 W JP2010000838 W JP 2010000838W WO 2011099067 A1 WO2011099067 A1 WO 2011099067A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat
refrigerant
heat exchanger
heat medium
flow
Prior art date
Application number
PCT/JP2010/000838
Other languages
English (en)
French (fr)
Inventor
山下浩司
森本裕之
鳩村傑
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2010/000838 priority Critical patent/WO2011099067A1/ja
Priority to JP2011553624A priority patent/JPWO2011099067A1/ja
Priority to US13/522,072 priority patent/US8904812B2/en
Priority to CN201080063503.3A priority patent/CN102753910B/zh
Priority to EP10845673.2A priority patent/EP2535666B1/en
Publication of WO2011099067A1 publication Critical patent/WO2011099067A1/ja
Priority to US14/305,615 priority patent/US9285142B2/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/40Fluid line arrangements
    • F25B41/42Arrangements for diverging or converging flows, e.g. branch lines or junctions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/06Compression machines, plants or systems characterised by the refrigerant being carbon dioxide
    • F25B2309/061Compression machines, plants or systems characterised by the refrigerant being carbon dioxide with cycle highest pressure above the supercritical pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/006Compression machines, plants or systems with reversible cycle not otherwise provided for two pipes connecting the outdoor side to the indoor side with multiple indoor units
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/023Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/023Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units
    • F25B2313/0231Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units with simultaneous cooling and heating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/025Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple outdoor units
    • F25B2313/0253Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple outdoor units in parallel arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/027Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means
    • F25B2313/0272Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means using bridge circuits of one-way valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/027Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means
    • F25B2313/02732Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means using two three-way valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/027Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means
    • F25B2313/02741Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means using one four-way valve
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B25/00Machines, plants or systems, using a combination of modes of operation covered by two or more of the groups F25B1/00 - F25B23/00
    • F25B25/005Machines, plants or systems, using a combination of modes of operation covered by two or more of the groups F25B1/00 - F25B23/00 using primary and secondary systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/002Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant
    • F25B9/008Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant the refrigerant being carbon dioxide

Definitions

  • the present invention relates to a refrigeration cycle apparatus applied to, for example, a building multi-air conditioner, and more particularly to a refrigeration cycle apparatus in which the high-pressure side becomes a pressure exceeding the critical pressure of the refrigerant.
  • an air conditioner that is a type of refrigeration cycle apparatus such as a building multi-air conditioner
  • a refrigerant for example, by circulating a refrigerant between an outdoor unit that is a heat source unit disposed outdoors and an indoor unit that is disposed indoors.
  • a cooling operation or a heating operation is performed.
  • the air-conditioning target space is cooled or heated by air heated by heat released from the refrigerant or air cooled by heat absorbed by the refrigerant.
  • HFC (hydrofluorocarbon) refrigerants are often used as the refrigerant used in such an air conditioner, and these refrigerants are operated in the subcritical region where the pressure is lower than the critical pressure. It was.
  • an air conditioner represented by a chiller system
  • a heat exchanger such as water or antifreeze liquid is heated or cooled by a heat exchanger arranged in the outdoor unit
  • This is conveyed to a fan coil unit or a panel heater that is an indoor unit arranged in the air-conditioning target area, and cooling or heating is performed (for example, see Patent Document 1).
  • four water pipes are connected between the heat source unit and the indoor unit to supply cooled and heated water at the same time, and the indoor unit can freely select cooling or heating.
  • a heat exchanger see, for example, Patent Document 2.
  • an air conditioner configured such that a heat exchanger for a primary refrigerant and a secondary refrigerant is disposed in the vicinity of each indoor unit, and the secondary refrigerant is conveyed to the indoor unit (for example, Patent Document 3). reference).
  • an air conditioner configured to connect an outdoor unit and a branch unit having a heat exchanger with two pipes and transport a secondary refrigerant to the indoor unit (for example, (See Patent Document 4).
  • Japanese Patent Laying-Open No. 2005-140444 page 4, FIG. 1, etc.
  • JP-A-5-280818 (4th, 5th page, FIG. 1 etc.)
  • Japanese Patent Laid-Open No. 2001-289465 pages 5 to 8, FIG. 1, FIG. 2, etc.
  • JP 2003-343936 A (Page 5, FIG. 1)
  • Carbon dioxide has a low global warming potential, so it can reduce the impact on the global environment.
  • a refrigerant having a low critical temperature such as carbon dioxide
  • the refrigeration cycle operation is performed in a supercritical state where the refrigerant pressure in the high-pressure side gas cooler exceeds the critical pressure.
  • the refrigeration oil flowing together with the refrigerant may not be evenly separated at the flow path branching portion that should be evenly divided, which may impair the heat exchange performance of the refrigeration cycle.
  • the present invention has been made in response to the above-mentioned problems, and its main purpose is to solve the above-mentioned problems occurring at the refrigerant branch in a refrigeration cycle apparatus using carbon dioxide or the like that transitions to a supercritical state as the refrigerant.
  • the problem is to propose an air conditioner that can solve the problem and save energy.
  • the purpose is to deal with the problems listed above.
  • An air conditioner has a refrigerant circuit in which a compressor, a first heat exchanger, a throttling device, and a second heat exchanger are connected, and the refrigerant circuit is in a supercritical state. Construct a refrigeration cycle for circulating refrigerant that transitions to The refrigerant in the supercritical state is circulated in the first heat exchanger and the first heat exchanger is operated as a gas cooler, or the refrigerant in the subcritical state is circulated and operated as a condenser.
  • the refrigerant in a low-pressure two-phase state is circulated through the second heat exchanger to operate as an evaporator,
  • oil that exhibits incompatibility or incompatibility in the entire operating temperature range, or incompatibility or incompatibility above a certain temperature in the operating temperature range and below the same temperature Enclose refrigerating machine oil showing compatibility,
  • the flow dividing device is installed at a position that is in a liquid state when the refrigerant is operated in a subcritical state, and a direction in which the refrigerant flows into the flow dividing device is set to a substantially horizontal direction or a substantially vertical upward direction.
  • the air conditioner according to the present invention has a substantially horizontal direction or a substantially vertical upward direction with respect to a flow direction when the refrigerant is in a liquid state at a position where the refrigerant is in a liquid state when the refrigerant is operated in a subcritical state. Since the refrigerating machine oil that flows along with the refrigerant is evenly distributed even when operated in a subcritical state by installing the flow diverter, the COP can be kept high while maintaining the necessary heat exchange amount, thereby saving energy. Can be achieved.
  • FIG. 1 is a system configuration diagram of a refrigeration cycle apparatus according to Embodiment 1 of the present invention.
  • 1 is a system circuit diagram of a refrigeration cycle apparatus according to Embodiment 1 of the present invention.
  • 1 is a system circuit diagram during a cooling only operation of a refrigeration cycle apparatus according to Embodiment 1 of the present invention.
  • FIG. 2 is a Ph diagram (pressure-enthalpy diagram) of the refrigeration cycle apparatus according to Embodiment 1 of the present invention.
  • FIG. 6 is another Ph diagram (pressure-enthalpy diagram) of the refrigeration cycle apparatus according to Embodiment 1 of the present invention.
  • the solubility diagram of the refrigeration oil of the refrigerating-cycle apparatus which concerns on Embodiment 1 of this invention.
  • coolant of the refrigerating-cycle apparatus which concerns on Embodiment 1 of this invention, and refrigeration oil.
  • the solubility diagram of another refrigerating machine oil of the refrigerating-cycle apparatus which concerns on Embodiment 1 of this invention.
  • coolant and refrigeration oil of the refrigerating-cycle apparatus which concerns on Embodiment 1 of this invention.
  • the illustration figure of the direct expansion type refrigerating cycle device which can apply this invention.
  • FIG. Embodiment 1 of the present invention will be described with reference to the drawings.
  • 1 and 2 are schematic diagrams illustrating an installation example of an air-conditioning apparatus according to an embodiment of the present invention. Based on FIG.1 and FIG.2, the installation example of an air conditioning apparatus is demonstrated.
  • This air conditioner uses a refrigeration cycle (refrigerant circulation circuit A, heat medium circulation circuit B) that circulates refrigerant (heat source side refrigerant, heat medium) so that each indoor unit can be in the cooling mode or the heating mode as an operation mode. It can be freely selected.
  • refrigerant circulation circuit A heat medium circulation circuit B
  • refrigerant heat source side refrigerant, heat medium
  • the relationship of the size of each component may be different from the actual one.
  • the air conditioner according to the present embodiment includes one outdoor unit 1 that is a heat source unit, a plurality of indoor units 2, and heat that is interposed between the outdoor unit 1 and the indoor unit 2. And a medium converter 3.
  • the heat medium relay unit 3 performs heat exchange between the heat source side refrigerant and the heat medium.
  • the outdoor unit 1 and the heat medium relay unit 3 are connected by a refrigerant pipe 4 that conducts the heat source side refrigerant.
  • the heat medium relay unit 3 and the indoor unit 2 are connected by a heat medium pipe 5 that conducts the heat medium.
  • the cold or warm heat generated by the outdoor unit 1 is delivered to the indoor unit 2 via the heat medium converter 3.
  • the outdoor unit 1 is usually disposed in an outdoor space 6 that is a space (for example, a rooftop) outside a building 9 such as a building, and supplies cold or hot energy to the indoor unit 2 via the heat medium converter 3. It is.
  • the indoor unit 2 is arranged at a position where cooling air or heating air can be supplied to the indoor space 7 that is a space (for example, a living room) inside the building 9, and the cooling air is supplied to the indoor space 7 that is the air-conditioning target space. Alternatively, heating air is supplied.
  • the heat medium relay unit 3 is configured as a separate housing from the outdoor unit 1 and the indoor unit 2 and is configured to be installed at a position different from the outdoor space 6 and the indoor space 7. Is connected to the refrigerant pipe 4 and the heat medium pipe 5, respectively, and transmits cold heat or hot heat supplied from the outdoor unit 1 to the indoor unit 2.
  • the outdoor unit 1 and the heat medium converter 3 use two refrigerant pipes 4, and the heat medium converter 3 and each indoor unit 2. Are connected to each other using two heat medium pipes 5.
  • the construction can be performed by connecting each unit (the outdoor unit 1, the indoor unit 2, and the heat medium converter 3) using the two pipes 4 and 5. It has become easy.
  • the heat medium converter 3 is installed in a space such as the back of the ceiling (hereinafter simply referred to as a space 8) that is inside the building 9 but is different from the indoor space 7.
  • the state is shown as an example.
  • the heat medium relay 3 can also be installed in a common space where there is an elevator or the like.
  • 1 and 2 show an example in which the indoor unit 2 is a ceiling cassette type, but the present invention is not limited to this, and the indoor space 7 such as a ceiling embedded type or a ceiling suspended type is shown. Any type of air can be used as long as the air for heating or the air for cooling can be blown out directly or by a duct or the like.
  • FIG. 1 shows an example in which the outdoor unit 1 is installed in the outdoor space 6, but the present invention is not limited to this.
  • the outdoor unit 1 may be installed in an enclosed space such as a machine room with a ventilation opening. If the exhaust heat can be exhausted outside the building 9 by an exhaust duct, the outdoor unit 1 may be installed inside the building 9. It may be installed, or may be installed inside the building 9 when the water-cooled outdoor unit 1 is used. Even if the outdoor unit 1 is installed in such a place, no particular problem occurs.
  • the heat medium converter 3 can also be installed in the vicinity of the outdoor unit 1. However, it should be noted that if the distance from the heat medium relay unit 3 to the indoor unit 2 is too long, the power for transporting the heat medium becomes considerably large, and the energy saving effect is diminished. Further, the number of connected outdoor units 1, indoor units 2, and heat medium converters 3 is not limited to the number illustrated in FIGS. 1 and 2, and the air conditioner according to the present embodiment is installed. The number may be determined according to the building 9.
  • FIG. 2 is a schematic circuit configuration diagram showing an example of a circuit configuration of an air-conditioning apparatus (hereinafter referred to as an air-conditioning apparatus 100) according to the embodiment. Based on FIG. 2, the detailed structure of the air conditioning apparatus 100 is demonstrated. As shown in FIG. 2, the outdoor unit 1 and the heat medium relay unit 3 are connected to each other by a refrigerant pipe 4 via a heat medium heat exchanger 15 (15a, 15b) provided in the heat medium relay unit 3. ing. Further, the heat medium relay unit 3 and the indoor unit 2 are connected to each other through the heat medium pipe 5 via the heat medium heat exchanger 15 (15a, 15b).
  • Outdoor unit 1 In the outdoor unit 1, a compressor 10, a first refrigerant flow switching device 11 such as a four-way valve, a heat source side heat exchanger 12, and an accumulator 19 are connected in series through a refrigerant pipe 4. ing. Moreover, the outdoor unit 1 is provided with a first connection pipe 4a, a second connection pipe 4b, and check valves 13 (13a, 13b, 13c, 13d). By providing the first connection pipe 4a, the second connection pipe 4b, and the check valves 13a to 13d, the flow of the heat source side refrigerant flowing into the heat medium relay unit 3 in a certain direction regardless of the operation required by the indoor unit 2. Can be.
  • the compressor 10 sucks the heat source side refrigerant and compresses the heat source side refrigerant to be in a high temperature / high pressure state, and may be configured by, for example, an inverter compressor capable of capacity control.
  • the first refrigerant flow switching device 11 has a flow of the heat source side refrigerant during heating operation (during heating only operation mode and heating main operation mode) and cooling operation (during cooling only operation mode and cooling main operation mode). The flow of the heat source side refrigerant in is switched.
  • the heat source side heat exchanger 12 functions as an evaporator during heating operation, functions as a gas cooler during cooling operation, and performs heat exchange between air supplied from a blower such as a fan (not shown) and the heat source side refrigerant.
  • the heat source side refrigerant is evaporated or cooled.
  • the accumulator 19 is provided on the suction side of the compressor 10 and stores excess refrigerant.
  • the check valve 13d is provided in the refrigerant pipe 4 between the heat medium converter 3 and the first refrigerant flow switching device 11, and only in a predetermined direction (direction from the heat medium converter 3 to the outdoor unit 1). In addition, the flow of the heat source side refrigerant is allowed.
  • the check valve 13 a is provided in the refrigerant pipe 4 between the heat source side heat exchanger 12 and the heat medium converter 3, and only on a heat source side in a predetermined direction (direction from the outdoor unit 1 to the heat medium converter 3).
  • the refrigerant flow is allowed.
  • the check valve 13b is provided in the first connection pipe 4a, and causes the heat source side refrigerant discharged from the compressor 10 to flow to the heat medium converter 3 during the heating operation.
  • the check valve 13 c is provided in the second connection pipe 4 b and causes the heat source side refrigerant returned from the heat medium relay unit 3 to flow to the suction side of the compressor 10 during the heating operation.
  • the first connection pipe 4 a is connected between the refrigerant pipe 4 between the first refrigerant flow switching device 11 and the check valve 13 d, and between the check valve 13 a and the heat medium relay unit 3.
  • the refrigerant pipe 4 is connected.
  • the second connection pipe 4b includes a refrigerant pipe 4 between the check valve 13d and the heat medium relay unit 3, and a refrigerant pipe 4 between the heat source side heat exchanger 12 and the check valve 13a.
  • 2 shows an example in which the first connection pipe 4a, the second connection pipe 4b, and the check valves 13a to 13d are provided, but another configuration in which the circulation direction is the same may be adopted. It is good and it is good also as composition which does not use these.
  • Each indoor unit 2 is equipped with a use side heat exchanger 26.
  • the use side heat exchanger 26 is connected to the heat medium flow control device 25 and the second heat medium flow switching device 23 of the heat medium converter 3 by the heat medium pipe 5.
  • the use-side heat exchanger 26 performs heat exchange between air supplied from a blower such as a fan (not shown) and a heat medium, and generates heating air or cooling air to be supplied to the indoor space 7. To do.
  • FIG. 2 shows an example in which four indoor units 2 are connected to the heat medium relay unit 3, and are illustrated as an indoor unit 2a, an indoor unit 2b, an indoor unit 2c, and an indoor unit 2d from the bottom of the page. Show.
  • the use side heat exchanger 26 also uses the use side heat exchanger 26a, the use side heat exchanger 26b, the use side heat exchanger 26c, and the use side heat exchange from the lower side of the drawing. It is shown as a container 26d.
  • the number of connected indoor units 2 is not limited to four as shown in FIG.
  • the heat medium relay 3 includes two heat exchangers 15 (15a, 15b), two expansion devices 16 (16a, 16b), two switch devices 17 (17a, 17b), Second refrigerant flow switching device 18 (18a, 18b), two pumps 21 (21a, 21b) which are fluid delivery devices, and four first heat medium flow switching devices 22 (22a, 22b, 22c) 22d), four second heat medium flow switching devices 23 (23a, 23b, 23c, 23d), and four heat medium flow control devices 25 (25a, 25b, 25c, 25d). ing.
  • the two heat exchangers 15 function as gas coolers or evaporators, exchange heat between the heat source side refrigerant and the heat medium, and are generated by the outdoor unit 1 and stored in the heat source side refrigerant. It transmits the cold or warm heat to the heat medium.
  • the heat exchanger related to heat medium 15a is provided between the expansion device 16a and the second refrigerant flow switching device 18a in the refrigerant circuit A, and serves to heat the heat medium in the cooling / heating mixed operation mode. It is.
  • the heat exchanger related to heat medium 15b is provided between the expansion device 16b and the second refrigerant flow switching device 18b in the refrigerant circulation circuit A, and cools the heat medium in the cooling / heating mixed operation mode. It is something to offer.
  • the two expansion devices 16 (16, 16b) have functions as pressure reducing valves and expansion valves, and expand the heat source side refrigerant by reducing the pressure.
  • the expansion device 16a is provided on the upstream side of the heat exchanger related to heat medium 15a in the flow of the heat source side refrigerant during the cooling operation.
  • the expansion device 16b is provided on the upstream side of the heat exchanger related to heat medium 15b in the flow of the heat source side refrigerant during the cooling operation.
  • the two expansion devices 16 may be configured by a device whose opening degree can be variably controlled, for example, an electronic expansion valve.
  • the two opening / closing devices 17 (17a, 17b) are configured by two-way valves or the like, and open / close the refrigerant pipe 4.
  • the opening / closing device 17a is provided in the refrigerant pipe 4 on the inlet side of the heat source side refrigerant.
  • the opening / closing device 17b is provided in a pipe connecting the refrigerant pipe 4 on the inlet side and the outlet side of the heat source side refrigerant.
  • the two second refrigerant flow switching devices 18 (18a, 18b) are configured by a four-way valve or the like, and switch the flow of the heat source side refrigerant according to the operation mode.
  • the second refrigerant flow switching device 18a is provided on the downstream side of the heat exchanger related to heat medium 15a in the flow of the heat source side refrigerant during the cooling operation, and the second refrigerant flow switching device 18b It is provided on the downstream side of the heat exchanger related to heat medium 15b in the flow of the heat source side refrigerant during operation.
  • the two pumps 21 (21a, 21b) circulate the heat medium that is conducted through the heat medium pipe 5.
  • the pump 21 a is provided in the heat medium pipe 5 between the heat exchanger related to heat medium 15 a and the second heat medium flow switching device 23.
  • the pump 21 b is provided in the heat medium pipe 5 between the heat exchanger related to heat medium 15 b and the second heat medium flow switching device 23.
  • These pumps 21 may be constituted by, for example, pumps capable of capacity control.
  • the four first heat medium flow switching devices 22 are configured by a three-way valve or the like, and switch the flow path of the heat medium.
  • the number of first heat medium flow switching devices 22 is set according to the number of indoor units 2 installed (here, four).
  • the first heat medium flow switching device 22 includes one of the three sides as the heat exchanger 15a, one of the three as the heat exchanger 15b, and one of the three as the heat medium.
  • Each is connected to the flow rate adjusting device 25 and provided on the outlet side of the heat medium flow path of the use side heat exchanger 26.
  • they are illustrated as 22a, 22b, 22c, and 22d from the lower side of the drawing.
  • the four second heat medium flow switching devices 23 are configured by a three-way valve or the like, and switch the flow path of the heat medium.
  • the number of second heat medium flow switching devices 23 is set according to the number of indoor units 2 installed (four in this case).
  • the heat exchanger 26 is connected to the heat exchanger 26 and provided on the inlet side of the heat medium flow path of the use side heat exchanger 26.
  • they are illustrated as 23a, 23b, 23c, and 23d from the lower side of the drawing.
  • the four heat medium flow control devices 25 are constituted by two-way valves or the like that can control the opening area, and control the flow rate flowing through the heat medium pipe 5.
  • the number of the heat medium flow control devices 25 is set according to the number of indoor units 2 installed (four in this case).
  • One of the heat medium flow control devices 25 is connected to the use side heat exchanger 26, and the other is connected to the first heat medium flow switching device 22, and the outlet side of the heat medium flow path of the use side heat exchanger 26. Is provided.
  • the indoor unit 2 it is illustrated as 25a, 25b, 25c, and 25d from the lower side of the drawing.
  • the heat medium flow control device 25 may be provided on the inlet side of the heat medium flow path of the use side heat exchanger 26.
  • the heat medium relay 3 includes various detection devices (two first temperature sensors 31 (31a, 31b), four second temperature sensors 34 (34a to 34d), and four third temperature sensors 35 (35a to 35a). 35d) and a pressure sensor 36) are provided. Information (temperature information, pressure information) detected by these detection devices is sent to a control device (not shown) that performs overall control of the operation of the air conditioner 100, and the drive frequency of the compressor 10 and the fan of the illustration not shown. It is used for control of the rotational speed, switching of the first refrigerant flow switching device 11, driving frequency of the pump 21, switching of the second refrigerant flow switching device 18, switching of the flow path of the heat medium, and the like. .
  • the two first temperature sensors 31 detect the temperature of the heat medium flowing out from the heat exchanger related to heat medium 15, that is, the temperature of the heat medium at the outlet of the heat exchanger related to heat medium 15. It may be composed of a thermistor or the like.
  • the first temperature sensor 31a is provided in the heat medium pipe 5 on the inlet side of the pump 21a.
  • the first temperature sensor 31b is provided in the heat medium pipe 5 on the inlet side of the pump 21b.
  • the four second temperature sensors 34 are provided between the first heat medium flow switching device 22 and the heat medium flow control device 25, and are used for the heat medium flowing out from the use side heat exchanger 26.
  • the temperature is detected, and may be composed of a thermistor or the like.
  • the number of the second temperature sensors 34 (four here) according to the number of indoor units 2 installed is provided.
  • it is illustrated as 34a, 34b, 34c, 34d from the lower side of the drawing.
  • the four third temperature sensors 35 are provided on the inlet side or the outlet side of the heat source side refrigerant of the heat exchanger related to heat medium 15, and the temperature of the heat source side refrigerant flowing into the heat exchanger related to heat medium 15. Alternatively, the temperature of the heat source side refrigerant flowing out of the heat exchanger related to heat medium 15 is detected, and it may be constituted by a thermistor or the like.
  • the third temperature sensor 35a is provided between the heat exchanger related to heat medium 15a and the second refrigerant flow switching device 18a.
  • the third temperature sensor 35b is provided between the heat exchanger related to heat medium 15a and the expansion device 16a.
  • the third temperature sensor 35c is provided between the heat exchanger related to heat medium 15b and the second refrigerant flow switching device 18b.
  • the third temperature sensor 35d is provided between the heat exchanger related to heat medium 15b and the expansion device 16b.
  • the pressure sensor 36 is provided between the heat exchanger related to heat medium 15b and the expansion device 16b, and between the heat exchanger related to heat medium 15b and the expansion device 16b. The pressure of the flowing heat source side refrigerant is detected.
  • the control device (not shown) is configured by a microcomputer or the like, and based on detection information from various detection devices and instructions from a remote controller, the driving frequency of the compressor 10 and the rotational speed of the blower (including ON / OFF). , Switching of the first refrigerant flow switching device 11, driving of the pump 21, opening of the expansion device 16, opening / closing of the opening / closing device 17, switching of the second refrigerant flow switching device 18, first heat medium flow channel Switching of the switching device 22, switching of the second heat medium flow switching device 23, opening degree of the heat medium flow control device 25, and the like are controlled, and each operation mode described later is executed. Note that the control device may be provided for each unit, or may be provided in the outdoor unit 1 or the heat medium relay unit 3.
  • the heat medium pipe 5 that conducts the heat medium is composed of one that is connected to the heat exchanger related to heat medium 15a and one that is connected to the heat exchanger related to heat medium 15b.
  • the heat medium pipe 5 is branched (here, four branches each) according to the number of indoor units 2 connected to the heat medium converter 3.
  • the heat medium pipe 5 is connected by a first heat medium flow switching device 22 and a second heat medium flow switching device 23. By controlling the first heat medium flow switching device 22 and the second heat medium flow switching device 23, the heat medium from the heat exchanger related to heat medium 15a flows into the use-side heat exchanger 26, or It is determined whether the heat medium from the heat exchanger related to heat medium 15b flows into the use-side heat exchanger 26.
  • the compressor 10 the first refrigerant flow switching device 11, the heat source side heat exchanger 12, the switching device 17, the second refrigerant flow switching device 18, and the heat exchanger related to heat medium 15.
  • the refrigerant flow circuit, the expansion device 16, and the accumulator 19 are connected by the refrigerant pipe 4 to constitute the refrigerant circulation circuit A.
  • the flow path switching device 23 is connected by the heat medium pipe 5 to constitute the heat medium circulation circuit B. That is, a plurality of usage-side heat exchangers 26 are connected in parallel to each of the heat exchangers between heat media 15, and the heat medium circulation circuit B has a plurality of systems.
  • the outdoor unit 1 and the heat medium converter 3 are connected via the heat exchangers 15a and 15b provided between the heat medium converters 3 and the heat medium converter 3 is connected.
  • the indoor unit 2 are also connected via the heat exchangers 15a and 15b. That is, in the air conditioner 100, the heat source side refrigerant circulating in the refrigerant circuit A and the heat medium circulating in the heat medium circuit B exchange heat in the intermediate heat exchanger 15a and the intermediate heat exchanger 15b. It is like that.
  • the air conditioner 100 can perform a cooling operation or a heating operation in the indoor unit 2 based on an instruction from each indoor unit 2. That is, the air conditioning apparatus 100 can perform the same operation for all the indoor units 2 and can perform different operations for each of the indoor units 2.
  • the operation mode executed by the air conditioner 100 includes a cooling only operation mode in which all the driven indoor units 2 execute a cooling operation, and a heating only operation in which all the driven indoor units 2 execute a heating operation.
  • each operation mode is demonstrated with the flow of a heat-source side refrigerant
  • FIG. 3 is a refrigerant circuit diagram illustrating a refrigerant flow when the air-conditioning apparatus 100 is in the cooling only operation mode.
  • the cooling only operation mode will be described by taking as an example a case where a cooling load is generated only in the use side heat exchanger 26a and the use side heat exchanger 26b.
  • the pipes represented by bold lines indicate the pipes through which the heat source side refrigerant and the heat medium flow, the flow directions of the heat source side refrigerant are indicated by solid arrows, and the flow directions of the heat medium are indicated by broken line arrows.
  • FIG. 7 is a Ph diagram illustrating the operation of the refrigeration cycle in which the high pressure side transitions to the supercritical state
  • FIG. 8 is a Ph diagram illustrating the operation of the refrigeration cycle in which the high pressure side operates in the subcritical state. It is. Under normal environmental conditions, the refrigeration cycle in which the high pressure side shown in FIG. Thus, the subcritical refrigeration cycle shown in FIG. 8 is obtained.
  • the first refrigerant flow switching device 11 is switched so that the heat source side refrigerant discharged from the compressor 10 flows into the heat source side heat exchanger 12. .
  • the pump 21a and the pump 21b are driven, the heat medium flow control device 25a and the heat medium flow control device 25b are opened, and the heat medium flow control device 25c and the heat medium flow control device 25d are fully closed.
  • the heat medium circulates between the heat exchanger related to heat medium 15a and the heat exchanger related to heat medium 15b and the use side heat exchanger 26a and the use side heat exchanger 26b.
  • a low-temperature / low-pressure refrigerant (point A in FIG. 7 or FIG. 8) is compressed by the compressor 10 and discharged as a high-temperature / high-pressure supercritical or subcritical refrigerant (point in FIG. 7 or FIG. 8).
  • the heat source side heat exchanger 12 operates as a gas cooler or a condenser and is cooled while dissipating heat to the outdoor air, so that the refrigerant is in a supercritical state or subcritical state at medium temperature and high pressure (point C in FIG. 7 or FIG. 8) It becomes. If the refrigerant at this point is in a supercritical state above the critical point, the refrigerant remains a supercritical refrigerant that is neither a gas nor a liquid, and the temperature changes. It becomes liquid refrigerant through the state.
  • a low-temperature, low-pressure two-phase refrigerant (point D in FIG. 7 or FIG. 8) is obtained.
  • This two-phase refrigerant flows into each of the heat exchanger related to heat medium 15a and the heat exchanger related to heat medium 15b acting as an evaporator, and absorbs heat from the heat medium circulating in the heat medium circulation circuit B.
  • the refrigerant becomes a low-temperature and low-pressure gas refrigerant (point A in FIG. 7 or FIG. 8).
  • the gas refrigerant that has flowed out of the heat exchangers between heat mediums 15a and 15b flows out of the heat medium converter 3 through the second refrigerant flow switching devices 18a and 18b, and again passes through the refrigerant pipe 4 to the outdoor unit 1. Inflow.
  • the refrigerant flowing into the outdoor unit 1 passes through the check valve 13d and is sucked into the compressor 10 again via the first refrigerant flow switching device 11 and the accumulator 19.
  • the opening of the expansion device 16a is such that the superheat (superheat degree) obtained as the difference between the temperature detected by the third temperature sensor 35a and the temperature detected by the third temperature sensor 35b is constant. Be controlled.
  • the opening degree of the expansion device 16b is controlled so that the superheat obtained as the difference between the temperature detected by the third temperature sensor 35c and the temperature detected by the third temperature sensor 35d is constant.
  • the opening / closing device 17a is open and the opening / closing device 17b is closed.
  • the flow of the heat medium in the heat medium circuit B will be described.
  • the cold heat of the heat source side refrigerant is transmitted to the heat medium in both the heat exchanger 15a and the heat exchanger 15b, and the cooled heat medium is heated by the pump 21a and the pump 21b.
  • the inside of the pipe 5 is allowed to flow.
  • the heat medium pressurized and discharged by the pump 21a and the pump 21b passes through the second heat medium flow switching device 23a and the second heat medium flow switching device 23b to the use side heat exchanger 26a and the use side. It flows into the heat exchanger 26b.
  • the heat medium absorbs heat from the indoor air in the use side heat exchanger 26a and the use side heat exchanger 26b, thereby cooling the indoor space 7.
  • the heat medium flows out of the use-side heat exchanger 26a and the use-side heat exchanger 26b and flows into the heat medium flow control device 25a and the heat medium flow control device 25b.
  • the heat medium flow control device 25a and the heat medium flow control device 25b control the flow rate of the heat medium to a flow rate necessary to cover the air conditioning load required in the room, so that the use-side heat exchanger 26a. And it flows into the use side heat exchanger 26b.
  • the heat medium flowing out of the heat medium flow control device 25a and the heat medium flow control device 25b passes through the first heat medium flow switching device 22a and the first heat medium flow switching device 22b, and performs heat exchange between heat media. Flows into the heat exchanger 15a and the heat exchanger related to heat medium 15b, and is sucked into the pump 21a and the pump 21b again.
  • the air conditioning load required in the indoor space 7 includes the temperature detected by the first temperature sensor 31a, the temperature detected by the first temperature sensor 31b, and the temperature detected by the second temperature sensor 34. It is possible to cover by controlling so that the difference between the two is kept at the target value.
  • the outlet temperature of the heat exchanger related to heat medium 15 either the temperature of the first temperature sensor 31a or the first temperature sensor 31b may be used, or the average temperature thereof may be used.
  • the first heat medium flow switching device 22 and the second heat medium flow switching device 23 have flow paths that flow to both the heat exchanger related to heat medium 15a and the heat exchanger related to heat medium 15b. As shown in FIG.
  • FIG. 4 is a refrigerant circuit diagram illustrating a refrigerant flow when the air-conditioning apparatus 100 is in the heating only operation mode.
  • the heating only operation mode will be described by taking as an example a case where a thermal load is generated only in the use side heat exchanger 26a and the use side heat exchanger 26b.
  • the pipes represented by bold lines indicate the pipes through which the heat source side refrigerant and the heat medium flow, the flow directions of the heat source side refrigerant are indicated by solid arrows, and the flow directions of the heat medium are indicated by broken line arrows.
  • the first refrigerant flow switching device 11 heats the heat source side refrigerant discharged from the compressor 10 without passing through the heat source side heat exchanger 12. It switches so that it may flow into the media converter 3.
  • the pump 21a and the pump 21b are driven, the heat medium flow control device 25a and the heat medium flow control device 25b are opened, and the heat medium flow control device 25c and the heat medium flow control device 25d are fully closed.
  • the heat medium circulates between the heat exchanger related to heat medium 15a and the heat exchanger related to heat medium 15b and the use side heat exchanger 26a and the use side heat exchanger 26b.
  • Low-temperature / low-pressure refrigerant (point A in FIG. 7 or FIG. 8) is compressed by the compressor 10 and discharged as a high-temperature / high-pressure supercritical or subcritical refrigerant (point B in FIG. 7 or FIG. 8). Is done.
  • the high-temperature / high-pressure supercritical or subcritical refrigerant discharged from the compressor 10 passes through the first refrigerant flow switching device 11, conducts the first connection pipe 4 a, and passes through the check valve 13 b. , Flows out of the outdoor unit 1.
  • the high-temperature / high-pressure supercritical or subcritical refrigerant flowing out of the outdoor unit 1 flows into the heat medium relay unit 3 through the refrigerant pipe 4.
  • the high-temperature / high-pressure supercritical or subcritical refrigerant that has flowed into the heat medium relay unit 3 passes through the heat exchanger related to heat exchanger bypass pipe 4d and is then branched to form the second refrigerant flow switching device 18a and
  • the refrigerant flows into the heat exchanger related to heat medium 15a and the heat exchanger related to heat medium 15b through the second refrigerant flow switching device 18b.
  • the high-temperature / high-pressure supercritical or subcritical refrigerant flowing into the heat exchanger related to heat medium 15a and the heat exchanger related to heat medium 15b is converted into gas by the heat exchanger related to heat medium 15a and the heat exchanger related to heat medium 15b. It operates as a cooler or a condenser, is cooled while dissipating heat to the heat medium circulating in the heat medium circuit B, and is a medium-temperature / high-pressure supercritical or subcritical refrigerant (point C in FIG. 7 or FIG. 8). Become.
  • the refrigerant in the gas cooler When the refrigerant in the gas cooler is in a supercritical state above the critical point, the refrigerant remains in a supercritical state that is neither gas nor liquid, the temperature changes, and the refrigerant in the condenser is in a subcritical state. In the case of a refrigerant, it becomes a liquid refrigerant through a two-phase state.
  • the medium-temperature / high-pressure supercritical or subcritical refrigerant that has flowed out of the heat exchanger related to heat medium 15a and the heat exchanger related to heat medium 15b is expanded by the expansion device 16a and the expansion device 16b, so that the low-temperature / low-pressure refrigerant. It becomes a two-phase refrigerant (point D in FIG.
  • the two-phase refrigerant flows out of the heat medium relay unit 3 through the opening / closing device 17b, and flows into the outdoor unit 1 through the refrigerant pipe 4 again.
  • the refrigerant flowing into the outdoor unit 1 is conducted through the second connection pipe 4b, passes through the check valve 13c, and flows into the heat source side heat exchanger 12 that functions as an evaporator.
  • the refrigerant flowing into the heat source side heat exchanger 12 absorbs heat from the outdoor air by the heat source side heat exchanger 12, and becomes a low-temperature and low-pressure gas refrigerant (point A in FIG. 7 or FIG. 8).
  • the low-temperature and low-pressure gas refrigerant flowing out from the heat source side heat exchanger 12 is again sucked into the compressor 10 via the first refrigerant flow switching device 11 and the accumulator 19.
  • the expansion device 16a uses a value (Tcc in FIG. 7) obtained by converting the pressure detected by the pressure sensor 36 into a pseudo saturation temperature and the third temperature sensor 35b.
  • the opening degree is controlled so that the subcool (supercooling degree) obtained as a difference from the detected temperature (Tco in FIG. 7) becomes constant.
  • the refrigerant since the refrigerant is in a supercritical state, the refrigerant does not enter a two-phase state, so there is no saturation temperature, and instead, a pseudo saturation temperature is used.
  • the expansion device 16b has an opening degree so that a subcool obtained as a difference between a value obtained by converting the pressure detected by the pressure sensor 36 into a pseudo saturation temperature and a temperature detected by the third temperature sensor 35d is constant. Is controlled.
  • the pressure detected by the pressure sensor 36 is converted into a saturation temperature (condensation temperature) (Tc in FIG. 8) and detected by the third temperature sensor 35b.
  • the opening degree is controlled so that the subcool (supercooling degree) obtained as a difference from the temperature (Tco in FIG. 8) becomes constant.
  • a subcool obtained as a difference between a value obtained by converting the pressure detected by the pressure sensor 36 into a saturation temperature (condensation temperature) and a temperature detected by the third temperature sensor 35d is constant.
  • the opening degree is controlled.
  • the opening / closing device 17a is closed and the opening / closing device 17b is open.
  • the temperature at the intermediate position may be used instead of the pressure sensor 36, and the system can be configured at low cost.
  • the heat of the heat source side refrigerant is transmitted to the heat medium in both the heat exchanger 15a and the heat exchanger 15b, and the heated heat medium is heated by the pump 21a and the pump 21b.
  • the inside of the pipe 5 is allowed to flow.
  • the heat medium pressurized and discharged by the pump 21a and the pump 21b passes through the second heat medium flow switching device 23a and the second heat medium flow switching device 23b to the use side heat exchanger 26a and the use side. It flows into the heat exchanger 26b.
  • the heat medium radiates heat to the indoor air in the use side heat exchanger 26a and the use side heat exchanger 26b, thereby heating the indoor space 7.
  • the heat medium flows out of the use-side heat exchanger 26a and the use-side heat exchanger 26b and flows into the heat medium flow control device 25a and the heat medium flow control device 25b.
  • the heat medium flow control device 25a and the heat medium flow control device 25b control the flow rate of the heat medium to a flow rate necessary to cover the air conditioning load required in the room, so that the use-side heat exchanger 26a. And it flows into the use side heat exchanger 26b.
  • the heat medium flowing out of the heat medium flow control device 25a and the heat medium flow control device 25b passes through the first heat medium flow switching device 22a and the first heat medium flow switching device 22b, and performs heat exchange between heat media. Flows into the heat exchanger 15a and the heat exchanger related to heat medium 15b, and is sucked into the pump 21a and the pump 21b again.
  • the air conditioning load required in the indoor space 7 includes the temperature detected by the first temperature sensor 31a, the temperature detected by the first temperature sensor 31b, and the temperature detected by the second temperature sensor 34. It is possible to cover by controlling so that the difference between the two is kept at the target value.
  • the outlet temperature of the heat exchanger related to heat medium 15 either the temperature of the first temperature sensor 31a or the first temperature sensor 31b may be used, or the average temperature thereof may be used.
  • the first heat medium flow switching device 22 and the second heat medium flow switching device 23 have flow paths that flow to both the heat exchanger related to heat medium 15a and the heat exchanger related to heat medium 15b.
  • the usage-side heat exchanger 26a should be controlled by the temperature difference between the inlet and the outlet, but the temperature of the heat medium on the inlet side of the usage-side heat exchanger 26 is detected by the first temperature sensor 31b.
  • the first temperature sensor 31b By using the first temperature sensor 31b, the number of temperature sensors can be reduced and the system can be configured at low cost.
  • FIG. 5 is a refrigerant circuit diagram illustrating a refrigerant flow when the air-conditioning apparatus 100 is in the cooling main operation mode.
  • the cooling main operation mode will be described by taking as an example a case where a cooling load is generated in the use side heat exchanger 26a and a heating load is generated in the use side heat exchanger 26b.
  • a pipe represented by a thick line shows a pipe through which the refrigerant (heat source side refrigerant and heat medium) circulates.
  • the flow direction of the heat source side refrigerant is indicated by solid line arrows
  • the flow direction of the heat medium is indicated by broken line arrows.
  • the first refrigerant flow switching device 11 is switched so that the heat source side refrigerant discharged from the compressor 10 flows into the heat source side heat exchanger 12. .
  • the pump 21a and the pump 21b are driven, the heat medium flow control device 25a and the heat medium flow control device 25b are opened, and the heat medium flow control device 25c and the heat medium flow control device 25d are fully closed.
  • the heat medium is circulated between the heat exchanger related to heat medium 15a and the use side heat exchanger 26a, and between the heat exchanger related to heat medium 15b and the use side heat exchanger 26b.
  • Low-temperature / low-pressure refrigerant (point A in FIG. 7 or FIG. 8) is compressed by the compressor 10 and discharged as a high-temperature / high-pressure supercritical or subcritical refrigerant (point B in FIG. 7 or FIG. 8). Is done.
  • the high-temperature / high-pressure supercritical or subcritical refrigerant discharged from the compressor 10 flows into the heat source side heat exchanger 12 via the first refrigerant flow switching device 11.
  • the heat source side heat exchanger 12 operates as a gas cooler or a condenser, is cooled while dissipating heat to the outdoor air, flows out of the heat source side heat exchanger 12, and passes through the check valve 13a from the outdoor unit 1. It flows out and flows into the heat medium relay unit 3 through the refrigerant pipe 4.
  • the high-temperature and high-pressure supercritical or subcritical refrigerant flowing into the heat medium relay unit 3 passes through the heat medium heat exchanger bypass pipe 4d, passes through the second refrigerant flow switching device 18b, or the gas cooler or It flows into the heat exchanger related to heat medium 15b that operates as a condenser.
  • the high-temperature / high-pressure supercritical or subcritical refrigerant flowing into the intermediate heat exchanger 15b is cooled while dissipating heat to the heat medium circulating in the heat medium circuit B, so that the medium-temperature / high-pressure supercritical state or The refrigerant is in the subcritical state (point C in FIG. 7 or FIG. 8).
  • the medium temperature / high pressure supercritical or subcritical refrigerant flowing out of the heat exchanger related to heat medium 15b is expanded by the expansion device 16b to become a low pressure two-phase refrigerant (point D in FIG. 7 or FIG. 8). This low-pressure two-phase refrigerant flows into the heat exchanger related to heat medium 15a acting as an evaporator via the expansion device 16a.
  • the low-pressure two-phase refrigerant that has flowed into the heat exchanger related to heat medium 15a absorbs heat from the heat medium circulating in the heat medium circuit B, thereby cooling the heat medium and reducing the low-pressure gas refrigerant (see FIG. 7 or FIG. 8).
  • Point A) The gas refrigerant flows out of the heat exchanger related to heat medium 15a, flows out of the heat medium converter 3 through the second refrigerant flow switching device 18a, and flows into the outdoor unit 1 again through the refrigerant pipe 4. .
  • the refrigerant flowing into the outdoor unit 1 passes through the check valve 13d and is sucked into the compressor 10 again via the first refrigerant flow switching device 11 and the accumulator 19.
  • the opening degree of the expansion device 16b is controlled so that the superheat obtained as the difference between the temperature detected by the third temperature sensor 35a and the temperature detected by the third temperature sensor 35b becomes constant.
  • the expansion device 16a is fully open, the opening / closing device 17a is closed, and the opening / closing device 17b is closed.
  • the expansion device 16b detects the pressure detected by the pressure sensor 36 as a pseudo saturation temperature (Tcc in FIG. 7) and the third temperature sensor 35d.
  • the degree of opening may be controlled so that the subcooling obtained as a difference from the measured temperature (Tco in FIG. 7) becomes constant.
  • the high pressure side is operating in the subcritical state, it is detected by the pressure sensor 36.
  • the subcooling obtained as a difference between the value (Tc in FIG. 8) converted to the saturation temperature (condensation temperature) and the temperature detected by the third temperature sensor 35d (Tco in FIG. 8) is constant.
  • the degree may be controlled.
  • the expansion device 16b may be fully opened, and the superheat or subcool may be controlled by the expansion device 16a.
  • the heat of the heat source side refrigerant is transmitted to the heat medium in the heat exchanger related to heat medium 15b, and the heated heat medium is caused to flow in the heat medium pipe 5 by the pump 21b.
  • the cold heat of the heat source side refrigerant is transmitted to the heat medium in the heat exchanger related to heat medium 15a, and the cooled heat medium is caused to flow in the heat medium pipe 5 by the pump 21a.
  • the heat medium pressurized and discharged by the pump 21a and the pump 21b passes through the second heat medium flow switching device 23a and the second heat medium flow switching device 23b to the use side heat exchanger 26a and the use side. It flows into the heat exchanger 26b.
  • the heat medium radiates heat to the indoor air, thereby heating the indoor space 7.
  • the indoor space 7 is cooled by the heat medium absorbing heat from the indoor air.
  • the heat medium flow control device 25a and the heat medium flow control device 25b control the flow rate of the heat medium to a flow rate necessary to cover the air conditioning load required in the room, so that the use-side heat exchanger 26a. And it flows into the use side heat exchanger 26b.
  • the heat medium whose temperature has slightly decreased after passing through the use side heat exchanger 26b flows into the heat exchanger related to heat medium 15b through the heat medium flow control device 25b and the first heat medium flow switching device 22b, It is sucked into the pump 21b again.
  • the heat medium whose temperature has slightly increased after passing through the use side heat exchanger 26a flows into the heat exchanger related to heat medium 15a through the heat medium flow control device 25a and the first heat medium flow switching device 22a, It is sucked into the pump 21a again.
  • the warm heat medium and the cold heat medium have a heat load and a heat load, respectively, without being mixed by the action of the first heat medium flow switching device 22 and the second heat medium flow switching device 23. It is introduced into the use side heat exchanger 26.
  • the first heat medium flow is supplied from the second heat medium flow switching device 23 via the heat medium flow control device 25 on both the heating side and the cooling side. A heat medium flows in the direction to the path switching device 22.
  • the air conditioning load required in the indoor space 7 is the difference between the temperature detected by the first temperature sensor 31b on the heating side and the temperature detected by the second temperature sensor 34 on the heating side, This can be covered by controlling the difference between the temperature detected by the two temperature sensor 34 and the temperature detected by the first temperature sensor 31a so as to keep the target value.
  • FIG. 6 is a refrigerant circuit diagram showing a refrigerant flow when the air-conditioning apparatus 100 is in the heating main operation mode.
  • the heating main operation mode will be described by taking as an example a case where a thermal load is generated in the use side heat exchanger 26a and a cold load is generated in the use side heat exchanger 26b.
  • a pipe indicated by a thick line indicates a pipe through which the heat source side refrigerant and the heat medium circulate, and the flow direction of the heat source side refrigerant is indicated by a solid line arrow and the flow direction of the heat medium is indicated by a broken line arrow.
  • the first refrigerant flow switching device 11 is used to heat the heat source side refrigerant discharged from the compressor 10 without passing through the heat source side heat exchanger 12. It switches so that it may flow into the media converter 3.
  • the pump 21a and the pump 21b are driven, the heat medium flow control device 25a and the heat medium flow control device 25b are opened, and the heat medium flow control device 25c and the heat medium flow control device 25d are fully closed.
  • the heat medium circulates between the heat exchanger related to heat medium 15a and the heat exchanger related to heat medium 15b and the use side heat exchanger 26a and the use side heat exchanger 26b.
  • Low-temperature / low-pressure refrigerant (point A in FIG. 7 or FIG. 8) is compressed by the compressor 10 and discharged as a high-temperature / high-pressure supercritical or subcritical refrigerant (point B in FIG. 7 or FIG. 8). Is done.
  • the high-temperature / high-pressure supercritical or subcritical refrigerant discharged from the compressor 10 passes through the first refrigerant flow switching device 11, conducts the first connection pipe 4 a, and passes through the check valve 13 b. , Flows out of the outdoor unit 1.
  • the high-temperature and high-pressure supercritical or subcritical refrigerant flowing into the heat medium relay unit 3 passes through the heat medium heat exchanger bypass pipe 4d, passes through the second refrigerant flow switching device 18b, or the gas cooler or It flows into the heat exchanger related to heat medium 15b that operates as a condenser.
  • the high-temperature / high-pressure supercritical or subcritical refrigerant flowing into the intermediate heat exchanger 15b is cooled while dissipating heat to the heat medium circulating in the heat medium circuit B, so that the medium-temperature / high-pressure supercritical state is obtained.
  • the refrigerant becomes a subcritical refrigerant (point C in FIG. 7 or FIG. 8).
  • the medium temperature / high pressure supercritical or subcritical refrigerant flowing out of the heat exchanger related to heat medium 15b is expanded by the expansion device 16b to become a low pressure two-phase refrigerant (point D in FIG. 7 or FIG. 8).
  • This low-pressure two-phase refrigerant flows into the heat exchanger related to heat medium 15a acting as an evaporator via the expansion device 16a.
  • the low-pressure two-phase refrigerant that has flowed into the heat exchanger related to heat medium 15a evaporates by absorbing heat from the heat medium circulating in the heat medium circuit B, thereby cooling the heat medium.
  • This low-pressure two-phase refrigerant flows out of the heat exchanger related to heat medium 15a, flows out of the heat medium converter 3 via the second refrigerant flow switching device 18a, and again passes through the refrigerant pipe 4 to the outdoor unit 1. Inflow.
  • the refrigerant that has flowed into the outdoor unit 1 passes through the check valve 13c and flows into the heat source side heat exchanger 12 that functions as an evaporator. And the refrigerant
  • the expansion device 16b uses a value (Tcc in FIG. 7) obtained by converting the pressure detected by the pressure sensor 36 into a pseudo saturation temperature and the third temperature sensor 35b.
  • the opening degree is controlled so that the subcool obtained as a difference from the detected temperature (Tco in FIG. 7) becomes constant.
  • the refrigerant since the refrigerant is in a supercritical state, the refrigerant does not enter a two-phase state, so there is no saturation temperature, and instead, a pseudo saturation temperature is used.
  • the pressure detected by the pressure sensor 36 is converted into a saturation temperature (condensation temperature) (Tc in FIG.
  • the opening degree is controlled so that the subcool (supercooling degree) obtained as a difference from the temperature (Tco in FIG. 8) becomes constant.
  • the expansion device 16a is fully open, the opening / closing device 17a is closed, and the opening / closing device 17b is closed. Note that the expansion device 16b may be fully opened, and the subcooling may be controlled by the expansion device 16a.
  • the heat of the heat source side refrigerant is transmitted to the heat medium in the heat exchanger related to heat medium 15b, and the heated heat medium is caused to flow in the heat medium pipe 5 by the pump 21b.
  • the cold heat of the heat source side refrigerant is transmitted to the heat medium in the heat exchanger related to heat medium 15a, and the cooled heat medium is caused to flow in the heat medium pipe 5 by the pump 21a.
  • the heat medium pressurized and discharged by the pump 21a and the pump 21b passes through the second heat medium flow switching device 23a and the second heat medium flow switching device 23b to the use side heat exchanger 26a and the use side. It flows into the heat exchanger 26b.
  • the heat medium absorbs heat from the indoor air, thereby cooling the indoor space 7. Moreover, in the use side heat exchanger 26a, the heat medium radiates heat to the indoor air, thereby heating the indoor space 7. At this time, the heat medium flow control device 25a and the heat medium flow control device 25b control the flow rate of the heat medium to a flow rate necessary to cover the air conditioning load required in the room, so that the use-side heat exchanger 26a. And it flows into the use side heat exchanger 26b.
  • the heat medium whose temperature has slightly increased after passing through the use side heat exchanger 26b flows into the heat exchanger related to heat medium 15a through the heat medium flow control device 25b and the first heat medium flow switching device 22b, It is sucked into the pump 21a again.
  • the heat medium that has passed through the use-side heat exchanger 26a and has been slightly lowered in temperature passes through the heat medium flow control device 25a and the first heat medium flow switching device 22a and flows into the heat exchanger related to heat medium 15b. It is sucked into the pump 21b again.
  • the warm heat medium and the cold heat medium have a heat load and a heat load, respectively, without being mixed by the action of the first heat medium flow switching device 22 and the second heat medium flow switching device 23. It is introduced into the use side heat exchanger 26.
  • the first heat medium flow is supplied from the second heat medium flow switching device 23 via the heat medium flow control device 25 on both the heating side and the cooling side. A heat medium flows in the direction to the path switching device 22.
  • the air conditioning load required in the indoor space 7 is the difference between the temperature detected by the first temperature sensor 31b on the heating side and the temperature detected by the second temperature sensor 34 on the heating side, This can be covered by controlling the difference between the temperature detected by the two temperature sensor 34 and the temperature detected by the first temperature sensor 31a so as to keep the target value.
  • Refrigerating machine oil is enclosed in the refrigerant circuit of the refrigeration cycle for lubrication of the compressor 10 and the like.
  • the refrigeration oil is discharged from the compressor 10 together with the refrigerant, and most of the oil is separated from the gas refrigerant by an oil separator (not shown) provided on the discharge side of the compressor 10.
  • the oil is returned to the suction side of the compressor 10 by an oil return pipe (not shown) connecting the suction side of the compressor 10.
  • the refrigeration oil that has not been separated by the oil separator circulates in the refrigeration cycle together with the refrigerant, and is returned to the compressor 10 through the heat exchangers 12 and 15 and the expansion device 16.
  • FIG. 9 shows a solubility diagram of PAG and carbon dioxide. PAG is hardly compatible (incompatible) with carbon dioxide and hardly melts in the entire temperature range of use.
  • FIG. 10 shows the relationship between the density of PAG and carbon dioxide.
  • Tg is, for example, about ⁇ 15 ° C. to ⁇ 20 ° C.
  • FIG. 11 shows a solubility diagram of POE and carbon dioxide.
  • POE is incompatible with carbon dioxide at a temperature higher than the temperature Tb ′ within the temperature range of use, and the amount of miscible is small. In the region where the temperature is lower than Tb ′, compatibility is exhibited, and POE and carbon dioxide are dissolved in each other.
  • FIG. 12 shows the relationship between the density of POE and carbon dioxide.
  • the refrigerating machine oil POE has a higher density (heavy weight) and is lower than the temperature Tg ′.
  • the refrigerating machine oil POE has a lower density (lighter weight) than the refrigerant.
  • Tg ′ is a temperature lower than Tb ′, and in the region where POE exhibits poor compatibility, the density of POE is larger (heavy) than the density of refrigerant, and the density of POE is smaller than the density of refrigerant. It becomes (lightens) after entering the compatible area.
  • Tb ′ is, for example, about 0 ° C. to 10 ° C.
  • Tg ′ is, for example, about ⁇ 15 ° C. to ⁇ 20 ° C.
  • the case where the temperature Tb ′ at the boundary between the compatibility and the poor compatibility of POE is 0 ° C. to 10 ° C.
  • the liquid refrigerant of PAG and carbon dioxide is separated when the refrigerant is at a higher temperature than the high pressure side subcritical liquid state and the low pressure side Tg.
  • the temperature is lower than the Tg on the low pressure side, the PAG and the liquid refrigerant are separated from each other, and the PAG floats on the liquid refrigerant.
  • POE is used as the chiller oil, when the refrigerant is in a subcritical liquid state on the high pressure side or when the temperature is higher than Tb ′ on the low pressure side, for example, when the temperature is 0 ° C.
  • the refrigerating machine oil is PAG
  • only a small amount of refrigerant is dissolved in the PAG, and in the case of POE, a little more refrigerant is dissolved in the POE than in the case of PAG, but the oil-rich layer and the liquid refrigerant rich
  • the refrigerating machine oil circulates in the refrigeration cycle together with the refrigerant while sinking under the liquid refrigerant.
  • the refrigerant flows into the heat medium converter 3 as a liquid refrigerant in the subcritical state.
  • the liquid refrigerant passes through the opening / closing device 17a and then flows to the heat exchanger related to heat medium 15a via the expansion device 16a and to the heat exchanger related to heat medium 15b via the expansion device 16b. It is diverted to the refrigerant.
  • the liquid refrigerant is divided into the expansion devices 16 a and 16 b by the flow dividing device 14. This branching portion is, for example, as shown in FIG.
  • FIG. 13 is a view of the refrigerant branch viewed from the top surface direction.
  • a T-type distributor or the like is used as the flow dividing device 14, and the liquid refrigerant flows into the flow dividing device 14 from the horizontal direction and splits it into two liquid refrigerants in the horizontal direction.
  • Both the liquid refrigerant and the refrigeration oil flow into the flow dividing device 14, but if a large amount of the refrigeration oil is mixed in the heat exchanger between the heat media, the heat exchange performance deteriorates. It is necessary to distribute evenly to the heat exchanger between media.
  • the refrigerant and the refrigeration oil can exchange heat between the expansion device and the heat medium by arranging the branch part so that the flow is divided in a substantially horizontal direction. Can be evenly distributed to the heat exchanger, and the heat exchange performance of the heat exchanger between heat mediums can be maintained, thereby saving energy.
  • a T-type flow dividing device shown in FIG. 13 is used.
  • the flow direction of the refrigerant into the flow dividing device 14 is substantially horizontal, and the direction in which the refrigerant flows out from the flow dividing device is substantially horizontal and is substantially perpendicular to the flow direction into the flow dividing device. It has become.
  • the diversion device 14 is not limited to this.
  • the direction in which the refrigerant flows into the flow dividing device is substantially horizontal
  • the direction in which the refrigerant flows out from the flow dividing device is substantially horizontal and substantially parallel to the flow direction into the flow dividing device.
  • a flow diverter that is directional may be used.
  • the liquid refrigerant may be arranged in the flow dividing device 14 so as to flow vertically upward from below, and the liquid refrigerant and the refrigerating machine oil are supplied to both the expansion devices and the heat between the heat mediums. Can be distributed evenly to the exchanger.
  • the direction in which the refrigerant flows into the flow dividing device is substantially vertically upward, and the direction in which the refrigerant flows out from the branch flow device is substantially horizontal with respect to the flow direction into the flow dividing device.
  • the direction in which the refrigerant flows into the branching device is substantially vertically upward, and the direction in which the refrigerant flows out from the branching device is substantially vertically upward.
  • the direction is substantially parallel to the inflow direction to the flow dividing device.
  • the refrigerant is divided into two by the refrigerant diverter 14
  • the number of diversions is not limited to this and may be divided into three or more.
  • the case where the flow dividing device 14 is installed in the flow path between the opening / closing device 17a and the expansion device 16 has been described as an example, but the installation position of the flow dividing device 14 is limited here. is not.
  • the expansion device 16a and / or the expansion device 16b are configured to arrange two expansion devices having a small opening area side by side in parallel in terms of price or the like, in the heating operation shown in FIG. It flows into the devices 16a and 16b. Therefore, the refrigerant distribution device 14 is installed in the flow path between the heat exchanger related to heat medium 15a and the expansion device 16a and / or the flow path between the heat exchanger related to heat medium 15b and the expansion device 16b. Need to be diverted in the same direction.
  • the air conditioner 100 has several operation modes. In these operation modes, the heat source side refrigerant flows through the refrigerant pipe 4 that connects the outdoor unit 1 and the heat medium relay unit 3.
  • Heat medium piping 5 In some operation modes executed by the air-conditioning apparatus 100 according to the present embodiment, a heat medium such as water or antifreeze flows through the heat medium pipe 5 connecting the heat medium converter 3 and the indoor unit 2.
  • the corresponding first heat medium flow switching device 22 and second heat medium flow switching device. 23 is set to an intermediate opening so that the heat medium flows through both the heat exchanger related to heat medium 15a and the heat exchanger related to heat medium 15b. Accordingly, both the heat exchanger related to heat medium 15a and the heat exchanger related to heat medium 15b can be used for the heating operation or the cooling operation, so that the heat transfer area is increased, and an efficient heating operation or cooling operation is performed. Can be done.
  • the first heat medium flow path switching corresponding to the use side heat exchanger 26 performing the heating operation is performed.
  • the apparatus 22 and the second heat medium flow switching device 23 are switched to a flow path connected to the heat exchanger related to heat medium 15b for heating, and the first corresponding to the use side heat exchanger 26 performing the cooling operation.
  • heating operation is performed by switching the heat medium flow switching device 22 and the second heat medium flow switching device 23 to the flow channels connected to the heat exchanger related to heat medium 15 a for cooling.
  • the cooling operation can be performed freely.
  • the first heat medium flow switching device 22 and the second heat medium flow switching device 23 described in the embodiment are those that can switch a three-way flow such as a three-way valve, or a two-way flow such as an on-off valve. What is necessary is just to switch a flow path, such as combining two things which open and close a path.
  • the first heat can be obtained by combining two things that can change the flow rate of the three-way flow path such as a stepping motor drive type mixing valve and two things that can change the flow rate of the two-way flow path such as an electronic expansion valve.
  • the medium flow switching device 22 and the second heat medium flow switching device 23 may be used. In this case, it is possible to prevent water hammer due to sudden opening and closing of the flow path.
  • the case where the heat medium flow control device 25 is a two-way valve has been described as an example. You may make it do.
  • the usage-side heat medium flow control device 25 may be a stepping motor drive type that can control the flow rate flowing through the flow path, and may be a two-way valve or one that closes one end of the three-way valve.
  • a device that opens and closes a two-way flow path such as an open / close valve may be used, and the average flow rate may be controlled by repeating ON / OFF.
  • the second refrigerant flow switching device 18 is shown as a four-way valve.
  • the present invention is not limited to this, and a plurality of two-way flow switching valves and three-way flow switching valves are used so that the refrigerant flows in the same manner. You may comprise.
  • the air conditioner 100 has been described as being capable of mixed cooling and heating operation, the present invention is not limited to this.
  • a refrigerant that transitions to a supercritical state such as carbon dioxide or a mixed refrigerant of carbon dioxide and diethyl ether can be used, but the same effect can be obtained by using other refrigerants that transition to a supercritical state. Play.
  • the heat medium for example, brine (antifreeze), water, a mixture of brine and water, a mixture of water and an additive having a high anticorrosive effect, or the like can be used. Therefore, in the air conditioning apparatus 100, even if the heat medium leaks into the indoor space 7 through the indoor unit 2, it contributes to the improvement of safety because a highly safe heat medium is used. Become.
  • the heat source side heat exchanger 12 and the use side heat exchangers 26a to 26d are equipped with a blower, and in many cases, condensation or evaporation is promoted by blowing, but this is not restrictive.
  • a blower for example, as the use side heat exchangers 26a to 26d, a panel heater using radiation can be used, and as the heat source side heat exchanger 12, a water-cooled type in which heat is transferred by water or antifreeze. Any material can be used as long as it can dissipate or absorb heat.
  • the number of pumps 21 is not limited to one for each heat exchanger between heat media, and a plurality of small capacity pumps may be arranged in parallel.
  • the heat source side heat exchanger 12 and the use side heat exchanger 26 are connected by piping, and the refrigerant is circulated between the heat source side heat exchanger 12 and the use side heat exchanger 26 as shown in FIG.
  • the present invention can also be applied to a case where a diversion device is adopted for the completely straight expansion type air conditioner 101, and has the same effect.
  • a refrigeration apparatus that is connected to a showcase or a unit cooler and cools food or the like, not limited to an air conditioner, and has the same effect.
  • Heat source unit (outdoor unit), 2 indoor unit, 2a indoor unit, 2b indoor unit, 2c indoor unit, 2d indoor unit, 3 heat medium converter, 4 (4a, 4b) refrigerant pipe, 4d heat medium heat exchanger Bypass piping, 5 heat medium piping, 6 outdoor space, 7 indoor space, 8 outdoor space such as the back of the ceiling and other space, indoor building, 10 compressor, 11 four-way valve (first refrigerant) Flow path switching device), 12 heat source side heat exchanger, 13 (13a, 13b, 13c, 13d) check valve, 14 diversion device, 15 (15a, 15b) heat exchanger between heat medium, 16 (16a, 16b) Throttle device, 17 (17a, 17b) open / close device, 18 (18a, 18b) second refrigerant flow switching device, 19 accumulator, 21 (21a, 21b) pump, 22 (22a, 22b, 22c) 22d) First heat medium flow switching valve, 23 (23a, 23b, 23c, 23d) Second heat medium flow switching

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Air Conditioning Control Device (AREA)
  • Other Air-Conditioning Systems (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)

Abstract

 超臨界状態に遷移する冷媒を流通させる冷凍サイクル用の冷媒回路を有し、亜臨界状態の高圧液冷媒を2つ以上の流路に分流する分流装置14を備え、分流装置14は、冷媒の液状態の時の流れ方向に対して、ほぼ水平方向またはほぼ鉛直上向き方向に設置されているように構成することにより、冷凍機油が均等に分流され、熱交換性能を損なうことなく、熱媒体の搬送動力も小さく抑えた省エネ性の高い冷凍サイクル装置。

Description

冷凍サイクル装置
 本発明は、たとえばビル用マルチエアコン等に適用される冷凍サイクル装置に係り、特に、高圧側が冷媒の臨界圧力を超える圧力となる冷凍サイクル装置に関するものである。
 従来から、ビル用マルチエアコンなどの冷凍サイクル装置の一種である空気調和装置においては、たとえば室外に配置した熱源機である室外機と室内に配置した室内機との間に冷媒を循環させることによって冷房運転又は暖房運転を実行するようになっている。具体的には、冷媒が放熱して加熱された空気あるいは冷媒が吸熱して冷却された空気により空調対象空間の冷房または暖房を行なっていた。このような空気調和装置に使用される冷媒としては、従来はHFC(ハイドロフルオロカーボン)系冷媒が多く使われており、これらの冷媒は圧力が臨界圧力よりも低い、亜臨界領域にて運転されていた。
 しかし、近年は、二酸化炭素(CO2)等の自然冷媒を使うものも提案されており、二酸化炭素等においては、臨界温度が低いため、高圧側のガスクーラー内の冷媒圧力が臨界圧力を超える超臨界状態で冷凍サイクル運転が行われる。この場合には、冷媒と共に流れる冷凍機油が均等に分かれるべき流路分岐部で均等に分離されないおそれがあり、その場合に冷凍サイクルの熱交換性能を損なうおそれがあった。
 また、チラーシステムに代表される空気調和装置では、室外に配置した熱源機において、冷熱または温熱を生成し、室外機内に配置した熱交換器で水や不凍液等の熱媒体を加熱または冷却し、これを空調対象域に配置した室内機であるファンコイルユニットやパネルヒーター等に搬送し、冷房あるいは暖房を実行するようになっている(たとえば、特許文献1参照)。
 また、熱源機と室内機の間に4本の水配管を接続し、冷却、加熱した水等を同時に供給し、室内機において冷房または暖房を自由に選択できる排熱回収型チラーと呼ばれる熱源側熱交換器も存在している(たとえば、特許文献2参照)。
 1次冷媒及び2次冷媒の熱交換器を各室内機の近傍に配置し、室内機に2次冷媒を搬送するように構成されている空気調和装置も存在している(たとえば、特許文献3参照)。
 また、室外機と熱交換器を持つ分岐ユニットとの間を2本の配管で接続し、室内機に2次冷媒を搬送するように構成されている空気調和装置も存在している(たとえば、特許文献4参照)。
特開2005-140444号公報(第4頁、図1等) 特開平5-280818号公報(第4、5頁、図1等) 特開2001-289465号公報(第5~8頁、図1、図2等) 特開2003-343936号公報(第5頁、図1)
 二酸化炭素は地球温暖化係数が小さいため地球環境への影響も少なくできる。しかし、二酸化炭素等のように臨界温度が低い冷媒の場合には、高圧側のガスクーラー内の冷媒圧力が臨界圧力を超える超臨界状態で冷凍サイクル運転が行われる。この場合には、冷媒と共に流れる冷凍機油が、均等に分かれるべき流路分岐部で均等に分離されない事態が生じ、冷凍サイクルの熱交換性能を損なうおそれがあった。
 また、従来のビル用マルチエアコンなどの空気調和装置では、室内機まで冷媒を循環させているため、冷媒が室内等に漏れる可能性があった。そこで、冷媒としては、不燃性の冷媒のみが使用されており、安全面より、地球温暖化係数の小さい可燃性の冷媒を使用することができなかった。一方、特許文献1および特許文献2に記載されているような空気調和装置では、冷媒は屋外に設置された熱源機内のみで循環されており、冷媒が室内機を通過することはなく、冷媒として可燃性の冷媒を用いたとしても、冷媒が室内に漏れることはない。しかしながら、特許文献1および特許文献2に記載されているような空気調和装置では、建物外の熱源機において熱媒体を加熱または冷却し、室内機側に搬送する必要があるため、熱媒体の循環経路が長くなる。ここで、熱媒体により、所定の加熱あるいは冷却の仕事をする熱を搬送しようとすると、循環経路が長くなると、搬送動力によるエネルギーの消費量が、冷媒を室内機搬送する空気調和装置よりも、非常に大きくなる。このことから、空気調和装置において、熱媒体の循環をうまく制御することができれば省エネルギー化を図れることがわかる。
 特許文献2に記載されているような空気調和装置においては、室内機毎に冷房または暖房を選択できるようにするためには室外側から室内まで4本の配管を接続しなければならず、工事性が悪いものとなっていた。特許文献3に記載されている空気調和装置においては、ポンプ等の2次媒体循環手段を室内機個別に持つ必要があるため、高価なシステムとなるだけでなく、騒音も大きいものとなり、実用的なものではなかった。加えて、熱交換器が室内機の近傍にあるため、冷媒が室内に近い場所で漏れるという危険性を排除することができず、可燃性の冷媒を使用することができなかった。
 特許文献4に記載されているような空気調和装置においては、熱交換後の1次冷媒が熱交換前の1次冷媒と同じ流路に流入しているため、複数の室内機を接続した場合に、各室内機にて最大能力を発揮することができず、エネルギー的に無駄な構成となっていた。また、分岐ユニットと延長配管との接続が冷房2本、暖房2本の合計4本の配管でなされているため、結果的に室外機と分岐ユニットとが4本の配管で接続されているシステムと類似の構成となっており、工事性が悪いシステムとなっていた。
 本発明は、上記課題に対応してなされたものであり、その主目的は、冷媒として超臨界状態に遷移する二酸化炭素等を用いた冷凍サイクル装置において、冷媒の分岐部で生じる上記の問題を解決して、省エネルギー化を図ることができる空気調和装置を提案することである。
 これに加えて、上記に列挙された課題に対処することを補助的な目的としている。
 本発明に係る空気調和装置は、圧縮機と、第一の熱交換器と、絞り装置と、第二の熱交換器とが接続された冷媒回路を有し、前記冷媒回路内に超臨界状態に遷移する冷媒を流通させる冷凍サイクルを構成し、
 前記第一の熱交換器に超臨界状態の前記冷媒を流通させて前記第一の熱交換器をガスクーラーとして、または、亜臨界状態の前記冷媒を流通させて凝縮器として動作させ、
 前記第二の熱交換器に低圧二相状態の前記冷媒を流通させて蒸発器として動作させ、
 前記冷媒回路内に、使用温度範囲内の全領域で非相溶性あるいは難相溶性を示す油、または、使用温度範囲内のある温度以上で非相溶性あるいは難相溶性を示しかつ同温度未満では相溶性を示す冷凍機油を封入し、
 前記第一の熱交換器の出口側から前記絞り装置の入口側に至る流路のいずれかの位置に前記冷媒を2つ以上の流路に分流する分流装置を備え、
 前記分流装置は、前記冷媒が亜臨界状態で運転されている時に液状態となっている位置に設置され、前記冷媒が前記分流装置に流入する方向がほぼ水平方向またはほぼ鉛直上向き方向とされている。
 この発明の空気調和装置は、冷媒が亜臨界状態で運転されている時に液状態となっている位置において、冷媒の液状態の時の流れ方向に対して、ほぼ水平方向またはほぼ鉛直上向き方向に、分流装置を設置したことにより、亜臨界状態で運転されても、冷媒と共に流れる冷凍機油が均等に分配されるため、必要な熱交換量を維持しながらCOPを高く維持することができ、省エネルギー化を図ることができる。
この発明の実施の形態1に係る冷凍サイクル装置のシステム構成図。 この発明の実施の形態1に係る冷凍サイクル装置のシステム回路図。 この発明の実施の形態1に係る冷凍サイクル装置の全冷房運転時のシステム回路図。 この発明の実施の形態1に係る冷凍サイクル装置の全暖房運転時のシステム回路図。 この発明の実施の形態1に係る冷凍サイクル装置の冷房主体運転時のシステム回路図。 この発明の実施の形態1に係る冷凍サイクル装置の暖房主体運転時のシステム回路図。 この発明の実施の形態1に係る冷凍サイクル装置のP-h線図(圧力-エンタルピ線図)。 この発明の実施の形態1に係る冷凍サイクル装置の別のP-h線図(圧力-エンタルピ線図)。 この発明の実施の形態1に係る冷凍サイクル装置の冷凍機油の溶解度線図。 この発明の実施の形態1に係る冷凍サイクル装置の冷媒と冷凍機油の温度と密度の関係図。 この発明の実施の形態1に係る冷凍サイクル装置の別の冷凍機油の溶解度線図。 この発明の実施の形態1に係る冷凍サイクル装置の別の冷媒と冷凍機油の温度と密度の関係図。 この発明の実施の形態1で使用する冷媒分配装置を上面側から見た拡大図。 この発明の実施の形態1で使用する別の冷媒分配装置を上面側から見た拡大図。 この発明の実施の形態1で使用する別の冷媒分配装置を側面側から見た拡大図。 この発明の実施の形態1で使用する別の冷媒分配装置を側面側から見た拡大図。 この発明が適用可能な直膨式冷凍サイクル装置の例示図。
実施の形態1.
 この発明の実施の形態1について、図面に基づいて説明する。図1及び図2は、本発明の実施の形態に係る空気調和装置の設置例を示す概略図である。図1及び図2に基づいて、空気調和装置の設置例について説明する。この空気調和装置は、冷媒(熱源側冷媒、熱媒体)を循環させる冷凍サイクル(冷媒循環回路A、熱媒体循環回路B)を利用することで各室内機が運転モードとして冷房モードあるいは暖房モードを自由に選択できるものである。なお、図1を含め、以下の図面では各構成部材の大きさの関係が実際のものとは異なる場合がある。
 図1においては、本実施の形態に係る空気調和装置は、熱源機である1台の室外機1と、複数台の室内機2と、室外機1と室内機2との間に介在する熱媒体変換機3と、を有している。熱媒体変換機3は、熱源側冷媒と熱媒体とで熱交換を行なうものである。室外機1と熱媒体変換機3とは、熱源側冷媒を導通する冷媒配管4で接続されている。熱媒体変換機3と室内機2とは、熱媒体を導通する熱媒体配管5で接続されている。そして、室外機1で生成された冷熱あるいは温熱は、熱媒体変換機3を介して室内機2に配送されるようになっている。
 室外機1は、通常、ビル等の建物9の外の空間(たとえば、屋上等)である室外空間6に配置され、熱媒体変換機3を介して室内機2に冷熱又は温熱を供給するものである。室内機2は、建物9の内部の空間(たとえば、居室等)である室内空間7に冷房用空気あるいは暖房用空気を供給できる位置に配置され、空調対象空間となる室内空間7に冷房用空気あるいは暖房用空気を供給するものである。熱媒体変換機3は、室外機1及び室内機2とは別筐体として、室外空間6及び室内空間7とは別の位置に設置できるように構成されており、室外機1及び室内機2とは冷媒配管4及び熱媒体配管5でそれぞれ接続され、室外機1から供給される冷熱あるいは温熱を室内機2に伝達するものである。
 図1に示すように、本実施の形態に係る空気調和装置においては、室外機1と熱媒体変換機3とが2本の冷媒配管4を用いて、熱媒体変換機3と各室内機2とが2本の熱媒体配管5を用いて、それぞれ接続されている。このように、本実施の形態に係る空気調和装置では、2本の配管4,5を用いて各ユニット(室外機1、室内機2及び熱媒体変換機3)を接続することにより、施工が容易となっている。
 なお、図1においては、熱媒体変換機3が、建物9の内部ではあるが室内空間7とは別の空間である天井裏等の空間(以下、単に空間8と称する)に設置されている状態を例に示している。熱媒体変換機3は、その他、エレベーター等がある共用空間等に設置することも可能である。また、図1及び図2においては、室内機2が天井カセット型である場合を例に示してあるが、これに限定するものではなく、天井埋込型や天井吊下式等、室内空間7に直接またはダクト等により、暖房用空気あるいは冷房用空気を吹き出せるようになっていればどんな種類のものでもよい。
 図1においては、室外機1が室外空間6に設置されている場合を例に示しているが、これに限定するものではない。たとえば、室外機1は、換気口付の機械室等の囲まれた空間に設置してもよく、排気ダクトで廃熱を建物9の外に排気することができるのであれば建物9の内部に設置してもよく、あるいは、水冷式の室外機1を用いる場合にも建物9の内部に設置するようにしてもよい。このような場所に室外機1を設置するとしても、特段の問題が発生することはない。
 また、熱媒体変換機3は、室外機1の近傍に設置することもできる。ただし、熱媒体変換機3から室内機2までの距離が長すぎると、熱媒体の搬送動力がかなり大きくなるため、省エネの効果は薄れることに留意が必要である。さらに、室外機1、室内機2及び熱媒体変換機3の接続台数を図1及び図2に図示してある台数に限定するものではなく、本実施の形態に係る空気調和装置が設置される建物9に応じて台数を決定すればよい。
 図2は、実施の形態に係る空気調和装置(以下、空気調和装置100と称する)の回路構成の一例を示す概略回路構成図である。図2に基づいて、空気調和装置100の詳しい構成について説明する。図2に示すように、室外機1と熱媒体変換機3とが、熱媒体変換機3に備えられている熱媒体間熱交換器15(15a,15b)を介して冷媒配管4で接続されている。また、熱媒体変換機3と室内機2とが、熱媒体間熱交換器15(15a,15b)を介して熱媒体配管5で接続されている。
[室外機1]
 室外機1には、圧縮機10と、四方弁等の第一の冷媒流路切替装置11と、熱源側熱交換器12と、アキュムレーター19とが冷媒配管4で直列に接続されて搭載されている。また、室外機1には、第1接続配管4a、第2接続配管4b、逆止弁13(13a,13b,13c,13d)が設けられている。第1接続配管4a、第2接続配管4b、逆止弁13a~13dを設けることで、室内機2の要求する運転に関わらず、熱媒体変換機3に流入させる熱源側冷媒の流れを一定方向にすることができる。
 圧縮機10は、熱源側冷媒を吸入し、その熱源側冷媒を圧縮して高温・高圧の状態にするものであり、たとえば容量制御可能なインバータ圧縮機等で構成するとよい。第一の冷媒流路切替装置11は、暖房運転時(全暖房運転モード時及び暖房主体運転モード時)における熱源側冷媒の流れと冷房運転時(全冷房運転モード時及び冷房主体運転モード時)における熱源側冷媒の流れとを切り替えるものである。熱源側熱交換器12は、暖房運転時には蒸発器として機能し、冷房運転時にはガスクーラーとして機能し、図示省略のファン等の送風機から供給される空気と熱源側冷媒との間で熱交換を行ない、その熱源側冷媒を蒸発ガス化又は冷却するものである。アキュムレーター19は、圧縮機10の吸入側に設けられており、過剰な冷媒を貯留するものである。
 逆止弁13dは、熱媒体変換機3と第一の冷媒流路切替装置11との間における冷媒配管4に設けられ、所定の方向(熱媒体変換機3から室外機1への方向)のみに熱源側冷媒の流れを許容するものである。逆止弁13aは、熱源側熱交換器12と熱媒体変換機3との間における冷媒配管4に設けられ、所定の方向(室外機1から熱媒体変換機3への方向)のみに熱源側冷媒の流れを許容するものである。逆止弁13bは、第1接続配管4aに設けられ、暖房運転時において圧縮機10から吐出された熱源側冷媒を熱媒体変換機3に流通させるものである。逆止弁13cは、第2接続配管4bに設けられ、暖房運転時において熱媒体変換機3から戻ってきた熱源側冷媒を圧縮機10の吸入側に流通させるものである。
 第1接続配管4aは、室外機1内において、第一の冷媒流路切替装置11と逆止弁13dとの間における冷媒配管4と、逆止弁13aと熱媒体変換機3との間における冷媒配管4と、を接続するものである。第2接続配管4bは、室外機1内において、逆止弁13dと熱媒体変換機3との間における冷媒配管4と、熱源側熱交換器12と逆止弁13aとの間における冷媒配管4と、を接続するものである。なお、図2では、第1接続配管4a、第2接続配管4b、逆止弁13a~13dを設けた場合を例に示しているが、循環方向が同じになる別の構成を採用しても良く、またこれらを用いない構成としても良い。
[室内機2]
 室内機2には、それぞれ利用側熱交換器26が搭載されている。この利用側熱交換器26は、熱媒体配管5によって熱媒体変換機3の熱媒体流量調整装置25と第二の熱媒体流路切替装置23に接続するようになっている。この利用側熱交換器26は、図示省略のファン等の送風機から供給される空気と熱媒体との間で熱交換を行ない、室内空間7に供給するための暖房用空気あるいは冷房用空気を生成するものである。
 この図2では、4台の室内機2が熱媒体変換機3に接続されている場合を例に示しており、紙面下から室内機2a、室内機2b、室内機2c、室内機2dとして図示している。また、室内機2a~室内機2dに応じて、利用側熱交換器26も、紙面下側から利用側熱交換器26a、利用側熱交換器26b、利用側熱交換器26c、利用側熱交換器26dとして図示している。なお、図1と同様に、室内機2の接続台数を図2に示す4台に限定するものではない。
[熱媒体変換機3]
 熱媒体変換機3には、2つの熱媒体間熱交換器15(15a,15b)と、2つの絞り装置16(16a,16b)と、2つの開閉装置17(17a,17b)と、2つの第二の冷媒流路切替装置18(18a,18b)と、流体送出装置である2つのポンプ21(21a,21b)と、4つの第一の熱媒体流路切替装置22(22a,22b,22c,22d)と、4つの第二の熱媒体流路切替装置23(23a,23b,23c,23d)と、4つの熱媒体流量調整装置25(25a,25b,25c,25d)と、が搭載されている。
 2つの熱媒体間熱交換器15(15a,15b)は、ガスクーラー又は蒸発器として機能し、熱源側冷媒と熱媒体とで熱交換を行ない、室外機1で生成され熱源側冷媒に貯えられた冷熱又は温熱を熱媒体に伝達するものである。熱媒体間熱交換器15aは、冷媒循環回路Aにおける絞り装置16aと第二の冷媒流路切替装置18aとの間に設けられており、冷房暖房混在運転モード時において熱媒体の加熱に供するものである。また、熱媒体間熱交換器15bは、冷媒循環回路Aにおける絞り装置16bと第二の冷媒流路切替装置18bとの間に設けられており、冷房暖房混在運転モード時において熱媒体の冷却に供するものである。
 2つの絞り装置16(16,16b)は、減圧弁や膨張弁としての機能を有し、熱源側冷媒を減圧して膨張させるものである。絞り装置16aは、冷房運転時の熱源側冷媒の流れにおいて熱媒体間熱交換器15aの上流側に設けられている。絞り装置16bは、冷房運転時の熱源側冷媒の流れにおいて熱媒体間熱交換器15bの上流側に設けられている。2つの絞り装置16は、開度が可変に制御可能なもの、たとえば電子式膨張弁等で構成するとよい。
 2つの開閉装置17(17a,17b)は、二方弁等で構成されており、冷媒配管4を開閉するものである。開閉装置17aは、熱源側冷媒の入口側における冷媒配管4に設けられている。開閉装置17bは、熱源側冷媒の入口側と出口側の冷媒配管4を接続した配管に設けられている。2つの第二の冷媒流路切替装置18(18a、18b)は、四方弁等で構成され、運転モードに応じて熱源側冷媒の流れを切り替えるものである。第二の冷媒流路切替装置18aは、冷房運転時の熱源側冷媒の流れにおいて熱媒体間熱交換器15aの下流側に設けられており、第二の冷媒流路切替装置18bは、全冷房運転時の熱源側冷媒の流れにおいて熱媒体間熱交換器15bの下流側に設けられている。
 2つのポンプ21(21a,21b)は、熱媒体配管5を導通する熱媒体を循環させるものである。ポンプ21aは、熱媒体間熱交換器15aと第二の熱媒体流路切替装置23との間における熱媒体配管5に設けられている。ポンプ21bは、熱媒体間熱交換器15bと第二の熱媒体流路切替装置23との間における熱媒体配管5に設けられている。これらのポンプ21は、たとえば容量制御可能なポンプ等で構成するとよい。
 4つの第一の熱媒体流路切替装置22(22a~22d)は、三方弁等で構成されており、熱媒体の流路を切り替えるものである。第一の熱媒体流路切替装置22は、室内機2の設置台数に応じた個数(ここでは4つ)が設けられるようになっている。第一の熱媒体流路切替装置22は、三方のうちの一つが熱媒体間熱交換器15aに、三方のうちの一つが熱媒体間熱交換器15bに、三方のうちの一つが熱媒体流量調整装置25に、それぞれ接続され、利用側熱交換器26の熱媒体流路の出口側に設けられている。なお、室内機2に対応させて、紙面下側から22a、22b、22c、22dとして図示している。
 4つの第二の熱媒体流路切替装置23(23a~23d)は、三方弁等で構成されており、熱媒体の流路を切り替えるものである。第二の熱媒体流路切替装置23は、室内機2の設置台数に応じた個数(ここでは4つ)が設けられるようになっている。第二の熱媒体流路切替装置23は、三方のうちの一つが熱媒体間熱交換器15aに、三方のうちの一つが熱媒体間熱交換器15bに、三方のうちの一つが利用側熱交換器26に、それぞれ接続され、利用側熱交換器26の熱媒体流路の入口側に設けられている。なお、室内機2に対応させて、紙面下側から23a、23b、23c、23dとして図示している。
 4つの熱媒体流量調整装置25(25a~25d)は、開口面積を制御できる二方弁等で構成されており、熱媒体配管5に流れる流量を制御するものである。熱媒体流量調整装置25は、室内機2の設置台数に応じた個数(ここでは4つ)が設けられるようになっている。熱媒体流量調整装置25は、一方が利用側熱交換器26に、他方が第一の熱媒体流路切替装置22に、それぞれ接続され、利用側熱交換器26の熱媒体流路の出口側に設けられている。なお、室内機2に対応させて、紙面下側から25a、25b、25c、25dとして図示している。熱媒体流量調整装置25は、利用側熱交換器26の熱媒体流路の入口側に設けてもよい。
 また、熱媒体変換機3には、各種検出装置(2つの第1温度センサー31(31a,31b)、4つの第2温度センサー34(34a~34d)、4つの第3温度センサー35(35a~35d)、及び、圧力センサー36)が設けられている。これらの検出装置で検出された情報(温度情報、圧力情報)は、空気調和装置100の動作を統括制御する制御装置(図示省略)に送られ、圧縮機10の駆動周波数、図示省略の送風機の回転数、第一の冷媒流路切替装置11の切り替え、ポンプ21の駆動周波数、第二の冷媒流路切替装置18の切り替え、熱媒体の流路の切替等の制御に利用されることになる。
 2つの第1温度センサー31(31a,31b)は、熱媒体間熱交換器15から流出した熱媒体、つまり熱媒体間熱交換器15の出口における熱媒体の温度を検出するものであり、たとえばサーミスター等で構成するとよい。第1温度センサー31aは、ポンプ21aの入口側における熱媒体配管5に設けられている。第1温度センサー31bは、ポンプ21bの入口側における熱媒体配管5に設けられている。
 4つの第2温度センサー34(34a~34d)は、第一の熱媒体流路切替装置22と熱媒体流量調整装置25との間に設けられ、利用側熱交換器26から流出した熱媒体の温度を検出するものであり、サーミスター等で構成するとよい。第2温度センサー34は、室内機2の設置台数に応じた個数(ここでは4つ)が設けられるようになっている。なお、室内機2に対応させて、紙面下側から34a、34b、34c、34dとして図示している。
 4つの第3温度センサー35(35a~35d)は、熱媒体間熱交換器15の熱源側冷媒の入口側または出口側に設けられ、熱媒体間熱交換器15に流入する熱源側冷媒の温度または熱媒体間熱交換器15から流出した熱源側冷媒の温度を検出するものであり、サーミスター等で構成するとよい。第3温度センサー35aは、熱媒体間熱交換器15aと第二の冷媒流路切替装置18aとの間に設けられている。第3温度センサー35bは、熱媒体間熱交換器15aと絞り装置16aとの間に設けられている。第3温度センサー35cは、熱媒体間熱交換器15bと第二の冷媒流路切替装置18bとの間に設けられている。第3温度センサー35dは、熱媒体間熱交換器15bと絞り装置16bとの間に設けられている。
 圧力センサー36は、第3温度センサー35dの設置位置と同様に、熱媒体間熱交換器15bと絞り装置16bとの間に設けられ、熱媒体間熱交換器15bと絞り装置16bとの間を流れる熱源側冷媒の圧力を検出するものである。
 また、図示省略の制御装置は、マイコン等で構成されており、各種検出装置での検出情報及びリモコンからの指示に基づいて、圧縮機10の駆動周波数、送風機の回転数(ON/OFF含む)、第一の冷媒流路切替装置11の切り替え、ポンプ21の駆動、絞り装置16の開度、開閉装置17の開閉、第二の冷媒流路切替装置18の切り替え、第一の熱媒体流路切替装置22の切り替え、第二の熱媒体流路切替装置23の切り替え、及び、熱媒体流量調整装置25の開度等を制御し、後述する各運転モードを実行するようになっている。なお、制御装置は、ユニット毎に設けてもよく、室外機1または熱媒体変換機3に設けてもよい。
 熱媒体を導通する熱媒体配管5は、熱媒体間熱交換器15aに接続されるものと、熱媒体間熱交換器15bに接続されるものと、で構成されている。熱媒体配管5は、熱媒体変換機3に接続される室内機2の台数に応じて分岐(ここでは、各4分岐)されている。そして、熱媒体配管5は、第一の熱媒体流路切替装置22、及び、第二の熱媒体流路切替装置23で接続されている。第一の熱媒体流路切替装置22及び第二の熱媒体流路切替装置23を制御することで、熱媒体間熱交換器15aからの熱媒体を利用側熱交換器26に流入させるか、熱媒体間熱交換器15bからの熱媒体を利用側熱交換器26に流入させるかが決定されるようになっている。
 そして、空気調和装置100では、圧縮機10、第一の冷媒流路切替装置11、熱源側熱交換器12、開閉装置17、第二の冷媒流路切替装置18、熱媒体間熱交換器15の冷媒流路、絞り装置16、及び、アキュムレーター19を、冷媒配管4で接続して冷媒循環回路Aを構成している。また、熱媒体間熱交換器15の熱媒体流路、ポンプ21、第一の熱媒体流路切替装置22、熱媒体流量調整装置25、利用側熱交換器26、及び、第二の熱媒体流路切替装置23を、熱媒体配管5で接続して熱媒体循環回路Bを構成している。つまり、熱媒体間熱交換器15のそれぞれに複数台の利用側熱交換器26が並列に接続され、熱媒体循環回路Bを複数系統としているのである。
 よって、空気調和装置100では、室外機1と熱媒体変換機3とが、熱媒体変換機3に設けられている熱媒体間熱交換器15a,15bを介して接続され、熱媒体変換機3と室内機2とも、熱媒体間熱交換器15a,15bを介して接続されている。すなわち、空気調和装置100では、熱媒体間熱交換器15a及び熱媒体間熱交換器15bで冷媒循環回路Aを循環する熱源側冷媒と熱媒体循環回路Bを循環する熱媒体とが熱交換するようになっている。
 次に、空気調和装置100が実行する各運転モードについて説明する。この空気調和装置100は、各室内機2からの指示に基づいて、その室内機2で冷房運転あるいは暖房運転が可能になっている。つまり、空気調和装置100は、室内機2の全部で同一運転をすることができるとともに、室内機2のそれぞれで異なる運転をすることができるようになっている。
 空気調和装置100が実行する運転モードには、駆動している室内機2の全てが冷房運転を実行する全冷房運転モード、駆動している室内機2の全てが暖房運転を実行する全暖房運転モード、冷房負荷の方が大きい冷房主体運転モード、及び、暖房負荷の方が大きい暖房主体運転モードがある。以下に、各運転モードについて、熱源側冷媒及び熱媒体の流れとともに説明する。
[全冷房運転モード]
 図3は、空気調和装置100の全冷房運転モード時における冷媒の流れを示す冷媒回路図である。この図3では、利用側熱交換器26a及び利用側熱交換器26bでのみ冷熱負荷が発生している場合を例に全冷房運転モードについて説明する。なお、図3では、太線で表された配管が熱源側冷媒と熱媒体の流れる配管を示し、熱源側冷媒の流れ方向を実線矢印で、熱媒体の流れ方向を破線矢印で示している。
 また、図7は、高圧側が超臨界状態に遷移する冷凍サイクルの動作を示すP-h線図、図8は、高圧側が亜臨界状態にて動作する冷凍サイクルの動作を示すP-h線図である。通常の環境条件では、図7に示す高圧側が超臨界状態となる冷凍サイクルになり、低温外気冷房運転(外気温が低い状態での冷房運転)時等においては、高圧が低い状態で運転されることになり、図8に示す亜臨界状態の冷凍サイクルになる。
 図3に示す全冷房運転モードの場合、室外機1では、第一の冷媒流路切替装置11を、圧縮機10から吐出された熱源側冷媒を熱源側熱交換器12へ流入させるように切り替える。熱媒体変換機3では、ポンプ21a及びポンプ21bを駆動させ、熱媒体流量調整装置25a及び熱媒体流量調整装置25bを開放し、熱媒体流量調整装置25c及び熱媒体流量調整装置25dを全閉とし、熱媒体間熱交換器15a及び熱媒体間熱交換器15bのそれぞれと利用側熱交換器26a及び利用側熱交換器26bとの間を熱媒体が循環するようにしている。
 まず始めに、冷媒循環回路Aにおける熱源側冷媒の流れについて説明する。
 低温・低圧の冷媒(図7または図8の点A)が圧縮機10によって圧縮され、高温・高圧の超臨界状態または亜臨界状態の冷媒となって吐出される(図7または図8の点B)。圧縮機10から吐出された高温・高圧の超臨界状態または亜臨界状態の冷媒は、第一の冷媒流路切替装置11を介して熱源側熱交換器12に流入する。そして、熱源側熱交換器12がガスクーラーまたは凝縮器として動作して室外空気に放熱しながら冷却され、中温・高圧の超臨界状態または亜臨界状態の冷媒(図7または図8の点C)となる。この点の冷媒が臨界点よりも上の超臨界状態である場合は、冷媒はガスでも液でもない超臨界状態の冷媒のまま、温度が変化し、亜臨界状態の冷媒の場合は、二相状態を経て液冷媒となる。熱源側熱交換器12から流出した中温・高圧の超臨界状態または亜臨界状態の冷媒は、逆止弁13aを通って室外機1から流出し、冷媒配管4を通って熱媒体変換機3に流入する。熱媒体変換機3に流入した中温・高圧の超臨界状態または亜臨界状態の冷媒は、開閉装置17aを経由した後に分流装置14で分岐されて絞り装置16a及び絞り装置16bに入り、そこで膨張させられて、低温・低圧の二相冷媒(図7または図8の点D)となる。
 この二相冷媒は、蒸発器として作用する熱媒体間熱交換器15a及び熱媒体間熱交換器15bのそれぞれに流入し、熱媒体循環回路Bを循環する熱媒体から吸熱することで、熱媒体を冷却しながら、低温・低圧のガス冷媒(図7または図8の点A)となる。熱媒体間熱交換器15a,15bから流出したガス冷媒は、第二の冷媒流路切替装置18a,18bを介して熱媒体変換機3から流出し、冷媒配管4を通って再び室外機1へ流入する。室外機1に流入した冷媒は、逆止弁13dを通って、第一の冷媒流路切替装置11及びアキュムレーター19を介して、圧縮機10へ再度吸入される。
 このとき、絞り装置16aは、第3温度センサー35aで検出された温度と第3温度センサー35bで検出された温度との差として得られるスーパーヒート(過熱度)が一定になるように開度が制御される。同様に、絞り装置16bは、第3温度センサー35cで検出された温度と第3温度センサー35dで検出された温度との差として得られるスーパーヒートが一定になるように開度が制御される。なお、開閉装置17aは開、開閉装置17bは閉となっている。
 次に、熱媒体循環回路Bにおける熱媒体の流れについて説明する。
 全冷房運転モードでは、熱媒体間熱交換器15a及び熱媒体間熱交換器15bの双方で熱源側冷媒の冷熱が熱媒体に伝えられ、冷やされた熱媒体がポンプ21a及びポンプ21bによって熱媒体配管5内を流動させられることになる。ポンプ21a及びポンプ21bで加圧されて流出した熱媒体は、第二の熱媒体流路切替装置23a及び第二の熱媒体流路切替装置23bを介して、利用側熱交換器26a及び利用側熱交換器26bに流入する。そして、熱媒体が利用側熱交換器26a及び利用側熱交換器26bで室内空気から吸熱することで、室内空間7の冷房を行なう。
 それから、熱媒体は、利用側熱交換器26a及び利用側熱交換器26bから流出して熱媒体流量調整装置25a及び熱媒体流量調整装置25bに流入する。このとき、熱媒体流量調整装置25a及び熱媒体流量調整装置25bの作用によって熱媒体の流量が室内にて必要とされる空調負荷を賄うのに必要な流量に制御されて利用側熱交換器26a及び利用側熱交換器26bに流入するようになっている。熱媒体流量調整装置25a及び熱媒体流量調整装置25bから流出した熱媒体は、第一の熱媒体流路切替装置22a及び第一の熱媒体流路切替装置22bを通って、熱媒体間熱交換器15a及び熱媒体間熱交換器15bへ流入し、再びポンプ21a及びポンプ21bへ吸い込まれる。
 なお、利用側熱交換器26の熱媒体配管5内では、第二の熱媒体流路切替装置23から熱媒体流量調整装置25を経由して第一の熱媒体流路切替装置22へ至る向きに熱媒体が流れている。また、室内空間7にて必要とされる空調負荷は、第1温度センサー31aで検出された温度、あるいは、第1温度センサー31bで検出された温度と第2温度センサー34で検出された温度との差を目標値に保つように制御することにより、賄うことができる。熱媒体間熱交換器15の出口温度は、第1温度センサー31aまたは第1温度センサー31bのどちらの温度を使用してもよいし、これらの平均温度を使用してもよい。このとき、第一の熱媒体流路切替装置22及び第二の熱媒体流路切替装置23は、熱媒体間熱交換器15a及び熱媒体間熱交換器15bの双方へ流れる流路が確保されるように、中間的な開度にしている。
 全冷房運転モードを実行する際、熱負荷のない利用側熱交換器26(サーモオフを含む)へは熱媒体を流す必要がないため、熱媒体流量調整装置25により流路を閉じて、利用側熱交換器26へ熱媒体が流れないようにする。図3においては、利用側熱交換器26a及び利用側熱交換器26bにおいては熱負荷があるため熱媒体を流しているが、利用側熱交換器26c及び利用側熱交換器26dにおいては熱負荷がなく、対応する熱媒体流量調整装置25c及び熱媒体流量調整装置25dを全閉としている。そして、利用側熱交換器26cや利用側熱交換器26dから熱負荷の発生があった場合には、熱媒体流量調整装置25cや熱媒体流量調整装置25dを開放し、熱媒体を循環させればよい。
[全暖房運転モード]
 図4は、空気調和装置100の全暖房運転モード時における冷媒の流れを示す冷媒回路図である。この図4では、利用側熱交換器26a及び利用側熱交換器26bでのみ温熱負荷が発生している場合を例に全暖房運転モードについて説明する。なお、図4では、太線で表された配管が熱源側冷媒と熱媒体の流れる配管を示し、熱源側冷媒の流れ方向を実線矢印で、熱媒体の流れ方向を破線矢印で示している。
 図4に示す全暖房運転モードの場合、室外機1では、第一の冷媒流路切替装置11を、圧縮機10から吐出された熱源側冷媒を熱源側熱交換器12を経由させずに熱媒体変換機3へ流入させるように切り替える。熱媒体変換機3では、ポンプ21a及びポンプ21bを駆動させ、熱媒体流量調整装置25a及び熱媒体流量調整装置25bを開放し、熱媒体流量調整装置25c及び熱媒体流量調整装置25dを全閉とし、熱媒体間熱交換器15a及び熱媒体間熱交換器15bのそれぞれと利用側熱交換器26a及び利用側熱交換器26bとの間を熱媒体が循環するようにしている。
 まず始めに、冷媒循環回路Aにおける熱源側冷媒の流れについて説明する。
 低温・低圧の冷媒(図7または図8の点A)が圧縮機10によって圧縮され、高温・高圧の超臨界状態または亜臨界状態の冷媒(図7または図8の点B)となって吐出される。圧縮機10から吐出された高温・高圧の超臨界状態または亜臨界状態の冷媒は、第一の冷媒流路切替装置11を通り、第1接続配管4aを導通し、逆止弁13bを通過し、室外機1から流出する。室外機1から流出した高温・高圧の超臨界状態または亜臨界状態の冷媒は、冷媒配管4を通って熱媒体変換機3に流入する。熱媒体変換機3に流入した高温・高圧の超臨界状態または亜臨界状態の冷媒は、熱媒体間熱交換器バイパス配管4dを通った後、分岐されて第二の冷媒流路切替装置18a及び第二の冷媒流路切替装置18bを通って、熱媒体間熱交換器15a及び熱媒体間熱交換器15bのそれぞれに流入する。
 熱媒体間熱交換器15a及び熱媒体間熱交換器15bに流入した高温・高圧の超臨界状態または亜臨界状態の冷媒は、熱媒体間熱交換器15a及び熱媒体間熱交換器15bがガスクーラーまたは凝縮器として動作して、熱媒体循環回路Bを循環する熱媒体に放熱しながら冷却され、中温・高圧の超臨界状態または亜臨界状態の冷媒(図7または図8の点C)となる。ガスクーラー内の冷媒が臨界点よりも上の超臨界状態である場合は、冷媒はガスでも液でもない超臨界状態の冷媒のまま、温度が変化し、凝縮器内の冷媒が亜臨界状態の冷媒の場合は、二相状態を経て液冷媒となる。熱媒体間熱交換器15a及び熱媒体間熱交換器15bから流出した中温・高圧の超臨界状態または亜臨界状態の冷媒は、絞り装置16a及び絞り装置16bで膨張させられて、低温・低圧の二相冷媒(図7または図8の点D)となる。この二相冷媒は、開閉装置17bを通って、熱媒体変換機3から流出し、冷媒配管4を通って再び室外機1へ流入する。室外機1に流入した冷媒は、第2接続配管4bを導通し、逆止弁13cを通過して、蒸発器として作用する熱源側熱交換器12に流入する。
 そして、熱源側熱交換器12に流入した冷媒は、熱源側熱交換器12で室外空気から吸熱して、低温・低圧のガス冷媒(図7または図8の点A)となる。熱源側熱交換器12から流出した低温・低圧のガス冷媒は、第一の冷媒流路切替装置11及びアキュムレーター19を介して圧縮機10へ再度吸入される。
 このとき、絞り装置16aは、高圧側が超臨界状態で動作している場合は、圧力センサー36で検出された圧力を擬似飽和温度に換算した値(図7のTcc)と第3温度センサー35bで検出された温度(図7のTco)との差として得られるサブクール(過冷却度)が一定になるように開度が制御される。ガスクーラー内においては、冷媒が超臨界状態のため、冷媒は二相状態にはならないため、飽和温度は存在せず、それに変わって、擬似飽和温度を使用する。同様に、絞り装置16bは、圧力センサー36で検出された圧力を擬似飽和温度に換算した値と第3温度センサー35dで検出された温度との差として得られるサブクールが一定になるように開度が制御される。また、高圧側が亜臨界状態で動作している場合は、圧力センサー36で検出された圧力を飽和温度(凝縮温度)に換算した値(図8のTc)と第3温度センサー35bで検出された温度(図8のTco)との差として得られるサブクール(過冷却度)が一定になるように開度が制御される。同様に、絞り装置16bは、圧力センサー36で検出された圧力を飽和温度(凝縮温度)に換算した値と第3温度センサー35dで検出された温度との差として得られるサブクールが一定になるように開度が制御される。なお、開閉装置17aは閉、開閉装置17bは開となっている。また、熱媒体間熱交換器15の中間位置の温度が測定できる場合は、その中間位置での温度を圧力センサー36の代わりに用いてもよく、安価にシステムを構成できる。
 次に、熱媒体循環回路Bにおける熱媒体の流れについて説明する。
 全暖房運転モードでは、熱媒体間熱交換器15a及び熱媒体間熱交換器15bの双方で熱源側冷媒の温熱が熱媒体に伝えられ、暖められた熱媒体がポンプ21a及びポンプ21bによって熱媒体配管5内を流動させられることになる。ポンプ21a及びポンプ21bで加圧されて流出した熱媒体は、第二の熱媒体流路切替装置23a及び第二の熱媒体流路切替装置23bを介して、利用側熱交換器26a及び利用側熱交換器26bに流入する。そして、熱媒体が利用側熱交換器26a及び利用側熱交換器26bで室内空気に放熱することで、室内空間7の暖房を行なう。
 それから、熱媒体は、利用側熱交換器26a及び利用側熱交換器26bから流出して熱媒体流量調整装置25a及び熱媒体流量調整装置25bに流入する。このとき、熱媒体流量調整装置25a及び熱媒体流量調整装置25bの作用によって熱媒体の流量が室内にて必要とされる空調負荷を賄うのに必要な流量に制御されて利用側熱交換器26a及び利用側熱交換器26bに流入するようになっている。熱媒体流量調整装置25a及び熱媒体流量調整装置25bから流出した熱媒体は、第一の熱媒体流路切替装置22a及び第一の熱媒体流路切替装置22bを通って、熱媒体間熱交換器15a及び熱媒体間熱交換器15bへ流入し、再びポンプ21a及びポンプ21bへ吸い込まれる。
 なお、利用側熱交換器26の熱媒体配管5内では、第二の熱媒体流路切替装置23から熱媒体流量調整装置25を経由して第一の熱媒体流路切替装置22へ至る向きに熱媒体が流れている。また、室内空間7にて必要とされる空調負荷は、第1温度センサー31aで検出された温度、あるいは、第1温度センサー31bで検出された温度と第2温度センサー34で検出された温度との差を目標値に保つように制御することにより、賄うことができる。熱媒体間熱交換器15の出口温度は、第1温度センサー31aまたは第1温度センサー31bのどちらの温度を使用してもよいし、これらの平均温度を使用してもよい。
 このとき、第一の熱媒体流路切替装置22及び第二の熱媒体流路切替装置23は、熱媒体間熱交換器15a及び熱媒体間熱交換器15bの双方へ流れる流路が確保されるように、中間的な開度にしている。また、本来、利用側熱交換器26aは、その入口と出口の温度差で制御すべきであるが、利用側熱交換器26の入口側の熱媒体温度は、第1温度センサー31bで検出された温度とほとんど同じ温度であり、第1温度センサー31bを使用することにより温度センサーの数を減らすことができ、安価にシステムを構成できる。
 全暖房運転モードを実行する際、熱負荷のない利用側熱交換器26(サーモオフを含む)へは熱媒体を流す必要がないため、熱媒体流量調整装置25により流路を閉じて、利用側熱交換器26へ熱媒体が流れないようにする。図4においては、利用側熱交換器26a及び利用側熱交換器26bにおいては熱負荷があるため熱媒体を流しているが、利用側熱交換器26c及び利用側熱交換器26dにおいては熱負荷がなく、対応する熱媒体流量調整装置25c及び熱媒体流量調整装置25dを全閉としている。そして、利用側熱交換器26cや利用側熱交換器26dから熱負荷の発生があった場合には、熱媒体流量調整装置25cや熱媒体流量調整装置25dを開放し、熱媒体を循環させればよい。
[冷房主体運転モード]
 図5は、空気調和装置100の冷房主体運転モード時における冷媒の流れを示す冷媒回路図である。この図5では、利用側熱交換器26aで冷熱負荷が発生し、利用側熱交換器26bで温熱負荷が発生している場合を例に冷房主体運転モードについて説明する。なお、図5では、太線で表された配管が冷媒(熱源側冷媒及び熱媒体)の循環する配管を示している。また、図5では、熱源側冷媒の流れ方向を実線矢印で、熱媒体の流れ方向を破線矢印で示している。
 図5に示す冷房主体運転モードの場合、室外機1では、第一の冷媒流路切替装置11を、圧縮機10から吐出された熱源側冷媒を熱源側熱交換器12へ流入させるように切り替える。熱媒体変換機3では、ポンプ21a及びポンプ21bを駆動させ、熱媒体流量調整装置25a及び熱媒体流量調整装置25bを開放し、熱媒体流量調整装置25c及び熱媒体流量調整装置25dを全閉とし、熱媒体間熱交換器15aと利用側熱交換器26aとの間を、熱媒体間熱交換器15bと利用側熱交換器26bとの間を、それぞれ熱媒体が循環するようにしている。
 まず始めに、冷媒循環回路Aにおける熱源側冷媒の流れについて説明する。
 低温・低圧の冷媒(図7または図8の点A)が圧縮機10によって圧縮され、高温・高圧の超臨界状態または亜臨界状態の冷媒(図7または図8の点B)となって吐出される。圧縮機10から吐出された高温・高圧の超臨界状態または亜臨界状態の冷媒は、第一の冷媒流路切替装置11を介して熱源側熱交換器12に流入する。そして、熱源側熱交換器12がガスクーラーまたは凝縮器として動作して、室外空気に放熱しながら冷却されて、熱源側熱交換器12から流出し、逆止弁13aを通って室外機1から流出し、冷媒配管4を通って熱媒体変換機3に流入する。熱媒体変換機3に流入した高温・高圧の超臨界状態または亜臨界状態の冷媒は、熱媒体間熱交換器バイパス配管4dを介し、第二の冷媒流路切替装置18bを通ってガスクーラーまたは凝縮器として動作する熱媒体間熱交換器15bに流入する。
 熱媒体間熱交換器15bに流入した高温・高圧の超臨界状態または亜臨界状態の冷媒は、熱媒体循環回路Bを循環する熱媒体に放熱しながら冷却され、中温・高圧の超臨界状態または亜臨界状態の冷媒(図7または図8の点C)となる。熱媒体間熱交換器15bから流出した中温・高圧の超臨界状態または亜臨界状態の冷媒は、絞り装置16bで膨張させられて低圧二相冷媒(図7または図8の点D)となる。この低圧二相冷媒は、絞り装置16aを介して蒸発器として作用する熱媒体間熱交換器15aに流入する。熱媒体間熱交換器15aに流入した低圧二相冷媒は、熱媒体循環回路Bを循環する熱媒体から吸熱することで、熱媒体を冷却しながら、低圧のガス冷媒(図7または図8の点A)となる。このガス冷媒は、熱媒体間熱交換器15aから流出し、第二の冷媒流路切替装置18aを介して熱媒体変換機3から流出し、冷媒配管4を通って再び室外機1へ流入する。室外機1に流入した冷媒は、逆止弁13dを通って、第一の冷媒流路切替装置11及びアキュムレーター19を介して、圧縮機10へ再度吸入される。
 このとき、絞り装置16bは、第3温度センサー35aで検出された温度と第3温度センサー35bで検出された温度との差として得られるスーパーヒートが一定になるように開度が制御される。また、絞り装置16aは全開、開閉装置17aは閉、開閉装置17bは閉となっている。なお、絞り装置16bは、高圧側が超臨界状態で動作している場合は、圧力センサー36で検出された圧力を擬似飽和温度に換算した値(図7のTcc)と第3温度センサー35dで検出された温度(図7のTco)との差として得られるサブクールが一定になるように開度を制御してもよく、高圧側が亜臨界状態で動作している場合は、圧力センサー36で検出された圧力を飽和温度(凝縮温度)に換算した値(図8のTc)と第3温度センサー35dで検出された温度(図8のTco)との差として得られるサブクールが一定になるように開度を制御してもよい。また、絞り装置16bを全開とし、絞り装置16aでスーパーヒートまたはサブクールを制御するようにしてもよい。
 次に、熱媒体循環回路Bにおける熱媒体の流れについて説明する。
 冷房主体運転モードでは、熱媒体間熱交換器15bで熱源側冷媒の温熱が熱媒体に伝えられ、暖められた熱媒体がポンプ21bによって熱媒体配管5内を流動させられることになる。また、冷房主体運転モードでは、熱媒体間熱交換器15aで熱源側冷媒の冷熱が熱媒体に伝えられ、冷やされた熱媒体がポンプ21aによって熱媒体配管5内を流動させられることになる。ポンプ21a及びポンプ21bで加圧されて流出した熱媒体は、第二の熱媒体流路切替装置23a及び第二の熱媒体流路切替装置23bを介して、利用側熱交換器26a及び利用側熱交換器26bに流入する。
 利用側熱交換器26bでは熱媒体が室内空気に放熱することで、室内空間7の暖房を行なう。また、利用側熱交換器26aでは熱媒体が室内空気から吸熱することで、室内空間7の冷房を行なう。このとき、熱媒体流量調整装置25a及び熱媒体流量調整装置25bの作用によって熱媒体の流量が室内にて必要とされる空調負荷を賄うのに必要な流量に制御されて利用側熱交換器26a及び利用側熱交換器26bに流入するようになっている。利用側熱交換器26bを通過し若干温度が低下した熱媒体は、熱媒体流量調整装置25bおよび第一の熱媒体流路切替装置22bを通って、熱媒体間熱交換器15bへ流入し、再びポンプ21bへ吸い込まれる。利用側熱交換器26aを通過し若干温度が上昇した熱媒体は、熱媒体流量調整装置25aおよび第一の熱媒体流路切替装置22aを通って、熱媒体間熱交換器15aへ流入し、再びポンプ21aへ吸い込まれる。
 この間、暖かい熱媒体と冷たい熱媒体とは、第一の熱媒体流路切替装置22及び第二の熱媒体流路切替装置23の作用により、混合することなく、それぞれ温熱負荷、冷熱負荷がある利用側熱交換器26へ導入される。なお、利用側熱交換器26の熱媒体配管5内では、暖房側、冷房側ともに、第二の熱媒体流路切替装置23から熱媒体流量調整装置25を経由して第一の熱媒体流路切替装置22へ至る向きに熱媒体が流れている。また、室内空間7にて必要とされる空調負荷は、暖房側においては第1温度センサー31bで検出された温度と第2温度センサー34で検出された温度との差を、冷房側においては第2温度センサー34で検出された温度と第1温度センサー31aで検出された温度との差を目標値に保つように制御することにより、賄うことができる。
 冷房主体運転モードを実行する際、熱負荷のない利用側熱交換器26(サーモオフを含む)へは熱媒体を流す必要がないため、熱媒体流量調整装置25により流路を閉じて、利用側熱交換器26へ熱媒体が流れないようにする。図5においては、利用側熱交換器26a及び利用側熱交換器26bにおいては熱負荷があるため熱媒体を流しているが、利用側熱交換器26c及び利用側熱交換器26dにおいては熱負荷がなく、対応する熱媒体流量調整装置25c及び熱媒体流量調整装置25dを全閉としている。そして、利用側熱交換器26cや利用側熱交換器26dから熱負荷の発生があった場合には、熱媒体流量調整装置25cや熱媒体流量調整装置25dを開放し、熱媒体を循環させればよい。
[暖房主体運転モード]
 図6は、空気調和装置100の暖房主体運転モード時における冷媒の流れを示す冷媒回路図である。この図6では、利用側熱交換器26aで温熱負荷が発生し、利用側熱交換器26bで冷熱負荷が発生している場合を例に暖房主体運転モードについて説明する。なお、図6では、太線で表された配管が熱源側冷媒と熱媒体の循環する配管を示し、熱源側冷媒の流れ方向を実線矢印で、熱媒体の流れ方向を破線矢印で示している。
 図6に示す暖房主体運転モードの場合、室外機1では、第一の冷媒流路切替装置11を、圧縮機10から吐出された熱源側冷媒を熱源側熱交換器12を経由させずに熱媒体変換機3へ流入させるように切り替える。熱媒体変換機3では、ポンプ21a及びポンプ21bを駆動させ、熱媒体流量調整装置25a及び熱媒体流量調整装置25bを開放し、熱媒体流量調整装置25c及び熱媒体流量調整装置25dを全閉とし、熱媒体間熱交換器15a及び熱媒体間熱交換器15bのそれぞれと利用側熱交換器26a及び利用側熱交換器26bとの間を熱媒体が循環するようにしている。
 まず始めに、冷媒循環回路Aにおける熱源側冷媒の流れについて説明する。
 低温・低圧の冷媒(図7または図8の点A)が圧縮機10によって圧縮され、高温・高圧の超臨界状態または亜臨界状態の冷媒(図7または図8の点B)となって吐出される。圧縮機10から吐出された高温・高圧の超臨界状態または亜臨界状態の冷媒は、第一の冷媒流路切替装置11を通り、第1接続配管4aを導通し、逆止弁13bを通過し、室外機1から流出する。室外機1から流出した高温・高圧の超臨界状態または亜臨界状態の冷媒は、冷媒配管4を通って熱媒体変換機3に流入する。熱媒体変換機3に流入した高温・高圧の超臨界状態または亜臨界状態の冷媒は、熱媒体間熱交換器バイパス配管4dを介し、第二の冷媒流路切替装置18bを通ってガスクーラーまたは凝縮器として動作する熱媒体間熱交換器15bに流入する。
 熱媒体間熱交換器15bに流入した高温・高圧の超臨界状態または亜臨界状態の冷媒は、熱媒体循環回路Bを循環する熱媒体に放熱しながら冷却されて、中温・高圧の超臨界状態または亜臨界状態の冷媒(図7または図8の点C)となる。熱媒体間熱交換器15bから流出した中温・高圧の超臨界状態または亜臨界状態の冷媒は、絞り装置16bで膨張させられて低圧二相冷媒(図7または図8の点D)となる。この低圧二相冷媒は、絞り装置16aを介して蒸発器として作用する熱媒体間熱交換器15aに流入する。熱媒体間熱交換器15aに流入した低圧二相冷媒は、熱媒体循環回路Bを循環する熱媒体から吸熱することで蒸発し、熱媒体を冷却する。この低圧二相冷媒は、熱媒体間熱交換器15aから流出し、第二の冷媒流路切替装置18aを介して熱媒体変換機3から流出し、冷媒配管4を通って再び室外機1へ流入する。
 室外機1に流入した冷媒は、逆止弁13cを通って、蒸発器として作用する熱源側熱交換器12に流入する。そして、熱源側熱交換器12に流入した冷媒は、熱源側熱交換器12で室外空気から吸熱して、低温・低圧のガス冷媒(図7または図8の点A)となる。熱源側熱交換器12から流出した低温・低圧のガス冷媒は、第一の冷媒流路切替装置11及びアキュムレーター19を介して圧縮機10へ再度吸入される。
 このとき、絞り装置16bは、高圧側が超臨界状態で動作している場合は、圧力センサー36で検出された圧力を擬似飽和温度に換算した値(図7のTcc)と第3温度センサー35bで検出された温度(図7のTco)との差として得られるサブクールが一定になるように開度が制御される。ガスクーラー内においては、冷媒が超臨界状態のため、冷媒は二相状態にはならないため、飽和温度は存在せず、それに変わって、擬似飽和温度を使用する。また、高圧側が亜臨界状態で動作している場合は、圧力センサー36で検出された圧力を飽和温度(凝縮温度)に換算した値(図8のTc)と第3温度センサー35bで検出された温度(図8のTco)との差として得られるサブクール(過冷却度)が一定になるように開度が制御される。また、絞り装置16aは全開、開閉装置17aは閉、開閉装置17bは閉となっている。なお、絞り装置16bを全開とし、絞り装置16aでサブクールを制御するようにしてもよい。
 次に、熱媒体循環回路Bにおける熱媒体の流れについて説明する。
 暖房主体運転モードでは、熱媒体間熱交換器15bで熱源側冷媒の温熱が熱媒体に伝えられ、暖められた熱媒体がポンプ21bによって熱媒体配管5内を流動させられることになる。また、暖房主体運転モードでは、熱媒体間熱交換器15aで熱源側冷媒の冷熱が熱媒体に伝えられ、冷やされた熱媒体がポンプ21aによって熱媒体配管5内を流動させられることになる。ポンプ21a及びポンプ21bで加圧されて流出した熱媒体は、第二の熱媒体流路切替装置23a及び第二の熱媒体流路切替装置23bを介して、利用側熱交換器26a及び利用側熱交換器26bに流入する。
 利用側熱交換器26bでは熱媒体が室内空気から吸熱することで、室内空間7の冷房を行なう。また、利用側熱交換器26aでは熱媒体が室内空気に放熱することで、室内空間7の暖房を行なう。このとき、熱媒体流量調整装置25a及び熱媒体流量調整装置25bの作用によって熱媒体の流量が室内にて必要とされる空調負荷を賄うのに必要な流量に制御されて利用側熱交換器26a及び利用側熱交換器26bに流入するようになっている。利用側熱交換器26bを通過し若干温度が上昇した熱媒体は、熱媒体流量調整装置25bおよび第一の熱媒体流路切替装置22bを通って、熱媒体間熱交換器15aに流入し、再びポンプ21aへ吸い込まれる。利用側熱交換器26aを通過し若干温度が低下した熱媒体は、熱媒体流量調整装置25aおよび第一の熱媒体流路切替装置22aを通って、熱媒体間熱交換器15bへ流入し、再びポンプ21bへ吸い込まれる。
 この間、暖かい熱媒体と冷たい熱媒体とは、第一の熱媒体流路切替装置22及び第二の熱媒体流路切替装置23の作用により、混合することなく、それぞれ温熱負荷、冷熱負荷がある利用側熱交換器26へ導入される。なお、利用側熱交換器26の熱媒体配管5内では、暖房側、冷房側ともに、第二の熱媒体流路切替装置23から熱媒体流量調整装置25を経由して第一の熱媒体流路切替装置22へ至る向きに熱媒体が流れている。また、室内空間7にて必要とされる空調負荷は、暖房側においては第1温度センサー31bで検出された温度と第2温度センサー34で検出された温度との差を、冷房側においては第2温度センサー34で検出された温度と第1温度センサー31aで検出された温度との差を目標値に保つように制御することにより、賄うことができる。
 暖房主体運転モードを実行する際、熱負荷のない利用側熱交換器26(サーモオフを含む)へは熱媒体を流す必要がないため、熱媒体流量調整装置25により流路を閉じて、利用側熱交換器26へ熱媒体が流れないようにする。図6においては、利用側熱交換器26a及び利用側熱交換器26bにおいては熱負荷があるため熱媒体を流しているが、利用側熱交換器26c及び利用側熱交換器26dにおいては熱負荷がなく、対応する熱媒体流量調整装置25c及び熱媒体流量調整装置25dを全閉としている。そして、利用側熱交換器26cや利用側熱交換器26dから熱負荷の発生があった場合には、熱媒体流量調整装置25cや熱媒体流量調整装置25dを開放し、熱媒体を循環させればよい。
[冷凍機油]
 冷凍サイクルの冷媒回路内には、圧縮機10等の潤滑のために、冷凍機油が封入されている。冷凍機油は、圧縮機10から冷媒と一緒に吐出され、大部分は、圧縮機10の吐出側に設けられている油分離器(図示せず)によって、ガス冷媒と分離され、油分離器と圧縮機10の吸入側とを接続している油戻し配管(図示せず)によって、圧縮機10の吸入側に戻される。しかし、油分離器で分離されなかった冷凍機油は、冷媒と一緒に冷凍サイクル内を循環し、熱交換器12および15、絞り装置16を通って、圧縮機10へ戻される。
 冷凍機油としては、例えば、PAG(ポリアルキレングリコール)やPOE(ポリオールエステル)等が使用される。図9に、PAGと二酸化炭素の溶解度線図を示すが、PAGは、二酸化炭素とは使用温度範囲内の全領域で難相溶性(非相溶性)で、ほとんど溶け合わない。図10は、PAGと二酸化炭素の密度の関係を示したものであるが、温度Tgよりも高い温度では、冷凍機油PAGの方が密度が大きく(重量が重く)、温度Tgよりも低い温度では、冷凍機油PAGは冷媒よりも密度が小さく(重量が軽く)なる。ここでTgは、例えば-15℃~-20℃くらいである。
 また、図11は、POEと二酸化炭素の溶解度線図を示すが、POEは、使用温度範囲内において、二酸化炭素とは温度Tb'よりも高い温度では難相溶性を示し溶け合う量が少ないが、温度がTb'よりも低い領域では相溶性を示し、POEと二酸化炭素は互いに溶け合う。図12は、POEと二酸化炭素の密度の関係を示したものであるが、温度Tg'よりも高い温度では、冷凍機油POEの方が密度が大きく(重量が重く)、温度Tg'よりも低い温度では、冷凍機油POEは冷媒よりも密度が小さく(重量が軽く)なる。なお、Tg'はTb'よりも低い温度であり、POEが難相溶性を示している領域では、POEの密度は冷媒の密度よりも大きく(重く)、POEの密度が冷媒の密度よりも小さくなる(軽くなる)のは相溶性の領域に入ってからである。ここで、Tb'は、例えば0℃~10℃くらいであり、Tg'は、例えば-15℃~-20℃くらいである。また、POEの相溶性と難相溶性の境目の温度Tb'は、ここでは、0℃~10℃である場合について説明を行ったが、実際は、POEの種類によって多少異なり、おおよそ-10~15℃の間の数値を取る。なお、POEは、更に低い温度、例えば-45℃以下等にて、再び、非相溶性または難相溶性を示すものがあるが、実際の冷凍サイクル装置の使用範囲外の温度のため、図示していない。
 従って、冷凍機油としてPAGを使っている場合は、冷媒が高圧側の亜臨界液状態および低圧側のTgよりも温度が高い状態では、PAGと二酸化炭素の液冷媒は分離して、PAGは液冷媒の下に沈んでおり、低圧側のTgよりも温度が低い状態では、PAGと液冷媒は分離して、PAGは液冷媒の上に浮いている状態となる。一方、凍機油としてPOEを使っている場合は、冷媒が高圧側の亜臨界液状態または低圧側で温度がTb'よりも高い場合、例えば0℃以上の場合、では、POEと液冷媒は油リッチな層と冷媒リッチな層に分離して、POEは液冷媒の下に沈んでおり、冷媒が低圧でTb'よりも低い場合は、POEと冷媒は溶け合うため、お互いの密度は関係なく、分離することなく一緒に冷凍サイクル内を循環する。
[亜臨界状態での液冷媒の分流]
 二酸化炭素冷媒が、低温外気冷房運転の場合等、高圧側が亜臨界状態となり、凝縮器出口側では、液冷媒になっている運転状態が想定される。先に述べた通り、亜臨界液冷媒においては、冷凍機油がPAGであってもPOEであっても、冷凍機油と液冷媒は分離し、凝縮器出口の温度では、冷凍機油の密度が液冷媒の密度よりも大きいため、冷凍機油は液冷媒の下に沈みながら、冷媒と共に冷凍サイクルの冷媒回路内を循環している。なお、冷凍機油がPAGの場合、PAG内には微量の冷媒しか溶けず、POEの場合はPOE内にはPAGの場合よりは少し多く冷媒が溶けているが、油リッチの層と液冷媒リッチな層に分離していることには変わりなく、どちらの油であっても、冷凍機油が液冷媒の下に沈みながら冷媒と共に冷凍サイクル内を循環していると言って問題ない。
 亜臨界状態の液冷媒が流れる冷媒配管において、冷媒を分流するために、配管を分岐しなければならない場合がある。例えば、図3の冷房運転においては、熱媒体変換機3には、亜臨界状態の場合、冷媒は液冷媒で流れ込む。そして、この液冷媒は、開閉装置17aを通過した後、絞り装置16aを経由して熱媒体間熱交換器15aに流れる冷媒と、絞り装置16bを経由して熱媒体間熱交換器15bに流れる冷媒とに分流される。この時、液冷媒は、分流装置14によって、絞り装置16aと16bとに分流される。この分岐部は、例えば、図13のようになっている。図13は、冷媒の分岐部を上面方向から見た図である。ここでは分流装置14としてT型の分配器等が用いられ、液冷媒が分流装置14に水平方向から流入し、それを水平方向の2つの液冷媒に分流する。分流装置14には液冷媒と冷凍機油が共に流入するが、熱媒体間熱交換器内に冷凍機油が多く混入すると、熱交換性能が悪くなってしまうため、液冷媒と冷凍機油を双方の熱媒体間熱交換器に均等に分配する必要がある。冷凍機油は液冷媒の下部に分離されて流れているため、分岐部を流れがほぼ水平方向に分かれるように配置すれば、液冷媒と冷凍機油とが、双方の絞り装置および熱媒体間熱交換器に均等に分配でき、熱媒体間熱交換器での熱交換性能を維持することができ、省エネにできる。
 分流装置14は、なるべく圧力損失が小さく安価なものを用いる方がよいため、図13に示すT型の分流装置が使用される。T型分流装置では、分流装置14への冷媒の流入方向がほぼ水平方向であり、かつ、冷媒が分流装置から流出する方向がほぼ水平方向かつ分流装置への流入方向に対してほぼ直角な方向になっている。なお、分流装置14はこれに限れるものではない。例えば、図14のように、冷媒が分流装置に流入する方向がほぼ水平方向であり、かつ、冷媒が分流装置から流出する方向がほぼ水平方向かつ分流装置への流入方向に対してほぼ平行な方向であるような分流装置を使用してもよい。
 また、図15および図16に示すように、分流装置14に、液冷媒が下から鉛直上向きに流れ込むように配置してもよく、液冷媒と冷凍機油とを双方の絞り装置および熱媒体間熱交換器に均等に分配できる。なお、図15の冷媒分流装置においては、冷媒が分流装置に流入する方向がほぼ鉛直上向きであり、かつ、冷媒が分岐流装置から流出する方向がほぼ水平方向かつ分流装置への流入方向に対してほぼ直角な方向となっており、図16に示す冷媒分流装置においては、冷媒が分流装置に流入する方向がほぼ鉛直上向きであり、かつ、冷媒が分流装置から流出する方向がほぼ鉛直上向きかつ分流装置への流入方向に対してほぼ平行な方向となっている。
 なおここでは、冷媒分流装置14によって、冷媒を2つに分流する場合を例に説明を行ったが、分流の数はこれに限るものではなく、3つ以上に分流してもよい。
 また、ここでは、分流装置14が、開閉装置17aと絞り装置16との間の流路に設置されている場合を例に説明を行ったが、分流装置14の設置位置は、ここに限るものではない。例えば、価格面等から、絞り装置16aまたは/および絞り装置16bが、開口面積の小さい2つの絞り装置を2つ並列に並べて構成しようとした場合、図4に示す暖房運転では、液冷媒が絞り装置16aおよび16bに流入する。従って、熱媒体間熱交換器15aと絞り装置16aとの間の流路、または/および、熱媒体間熱交換器15bと絞り装置16bとの間の流路に、冷媒分流装置14を設置し、同様の方向に分流させる必要がある。
[冷媒配管4]
 以上説明したように、本実施の形態に係る空気調和装置100は、幾つかの運転モードを具備している。これらの運転モードにおいては、室外機1と熱媒体変換機3とを接続する冷媒配管4には熱源側冷媒が流れる。
[熱媒体配管5]
 本実施の形態に係る空気調和装置100が実行する幾つかの運転モードにおいては、熱媒体変換機3と室内機2を接続する熱媒体配管5には水や不凍液等の熱媒体が流れる。
 空気調和装置100では、利用側熱交換器26にて暖房負荷または冷房負荷のみが発生している場合は、対応する第一の熱媒体流路切替装置22及び第二の熱媒体流路切替装置23を中間の開度にし、熱媒体間熱交換器15a及び熱媒体間熱交換器15bの双方に熱媒体が流れるようにしている。これにより、熱媒体間熱交換器15a及び熱媒体間熱交換器15bの双方を暖房運転または冷房運転に使用することができるため、伝熱面積が大きくなり、効率のよい暖房運転または冷房運転を行なうことができる。
 また、利用側熱交換器26にて暖房負荷と冷房負荷とが混在して発生している場合は、暖房運転を行なっている利用側熱交換器26に対応する第一の熱媒体流路切替装置22及び第二の熱媒体流路切替装置23を加熱用の熱媒体間熱交換器15bに接続される流路へ切り替え、冷房運転を行なっている利用側熱交換器26に対応する第一の熱媒体流路切替装置22及び第二の熱媒体流路切替装置23を冷却用の熱媒体間熱交換器15aに接続される流路へ切り替えることにより、各室内機2にて、暖房運転、冷房運転を自由に行なうことができる。
 なお、実施の形態で説明した第一の熱媒体流路切替装置22及び第二の熱媒体流路切替装置23は、三方弁等の三方流路を切り替えられるもの、開閉弁等の二方流路の開閉を行なうものを2つ組み合わせる等、流路を切り替えられるものであればよい。また、ステッピングモーター駆動式の混合弁等の三方流路の流量を変化させられるもの、電子式膨張弁等の2方流路の流量を変化させられるものを2つ組み合わせる等して第一の熱媒体流路切替装置22及び第二の熱媒体流路切替装置23として用いてもよい。この場合は、流路の突然の開閉によるウォーターハンマーを防ぐこともできる。さらに、実施の形態では、熱媒体流量調整装置25が二方弁である場合を例に説明を行なったが、三方流路を持つ制御弁とし利用側熱交換器26をバイパスするバイパス管と共に設置するようにしてもよい。
 また、利用側熱媒体流量制御装置25は、ステッピングモーター駆動式で流路を流れる流量を制御できるものを使用するとよく、二方弁でも三方弁の一端を閉止したものでもよい。また、利用側熱媒体流量制御装置25として、開閉弁等の二法流路の開閉を行うものを用い、ON/OFFを繰り返して平均的な流量を制御するようにしてもよい。
 また、第二の冷媒流路切替装置18を四方弁として示したが、これに限るものではなく、二方流路切替弁や三方流路切替弁を複数個用い、同じように冷媒が流れるように構成してもよい。
 本実施の形態に係る空気調和装置100は、冷房暖房混在運転ができるものとして説明をしてきたが、これに限定するものではない。熱媒体間熱交換器15及び絞り装置16がそれぞれ1つで、それらに複数の利用側熱交換器26と熱媒体流量調整弁25が並列に接続され、冷房運転か暖房運転のいずれかしか行なえない構成であっても同様の効果を奏する。
 また、利用側熱交換器26と熱媒体流量調整弁25とが1つしか接続されていない場合でも同様のことが成り立つのは言うまでもなく、更に熱媒体間熱交換器15及び絞り装置16として、同じ動きをするものが複数個設置されていても問題ない。さらに、熱媒体流量調整弁25は、熱媒体変換機3に内蔵されている場合を例に説明したが、これに限るものではなく、室内機2に内蔵されていてもよく、熱媒体変換機3と室内機2とは別体に構成されていてもよい。
 熱源側冷媒としては、二酸化炭素、二酸化炭素とジエチルエーテルとの混合冷媒等の超臨界状態に遷移する冷媒が使用できるが、その他の超臨界状態に遷移する冷媒を用いても、同様の効果を奏する。
 熱媒体としては、たとえばブライン(不凍液)や水、ブラインと水の混合液、水と防食効果が高い添加剤の混合液等を用いることができる。したがって、空気調和装置100においては、熱媒体が室内機2を介して室内空間7に漏洩したとしても、熱媒体に安全性の高いものを使用しているため安全性の向上に寄与することになる。
 また、一般的に、熱源側熱交換器12および利用側熱交換器26a~26dには、送風機が取り付けられており、送風により凝縮あるいは蒸発を促進させる場合が多いが、これに限るものではなく、例えば利用側熱交換器26a~26dとしては放射を利用したパネルヒーターのようなものも用いることができるし、熱源側熱交換器12としては、水や不凍液により熱を移動させる水冷式のタイプのものも用いることができ、放熱あるいは吸熱をできる構造のものであればどんなものでも用いることができる。
 また、ここでは、利用側熱交換器26a~26dが4つである場合を例に説明を行ったが、利用側熱交換器26の個数は適宜に決定して良い。
 また、熱媒体間熱交換器15が2つである場合を例に説明を行ったが、これに限るものではなく、熱媒体を冷却または/および加熱できるように構成すれば、幾つ設置してもよい。
 また、ポンプ21は各熱媒体間熱交換器にそれぞれ一つとは限られず、複数の小容量のポンプを並列に並べてもよい。
 また、本発明は、熱源側熱交換器12と利用側熱交換器26とを配管接続し、熱源側熱交換器12から利用側熱交換器26の間に冷媒を循環させる図17のような完全直膨タイプの空気調和装置101に分流装置を採用する場合にも適用でき、同様の効果を奏する。
 また、空気調和装置に限らず、ショーケースやユニットクーラーと接続し、食品等を冷却する冷凍装置においても、同様のことが言え、同様の効果を奏する。
 1 熱源機(室外機)、2 室内機、2a 室内機、2b 室内機、2c 室内機、2d 室内機、3 熱媒体変換機、4(4a、4b) 冷媒配管、4d 熱媒体間熱交換器バイパス配管、5 熱媒体配管、6 室外空間、7 室内空間、8 天井裏等の室外空間および室内空間とは別の空間、9 ビル等の建物、10 圧縮機、11 四方弁(第一の冷媒流路切替装置)、12 熱源側熱交換器、13(13a、13b、13c、13d) 逆止弁、14 分流装置、15(15a、15b) 熱媒体間熱交換器、16(16a、16b) 絞り装置、17(17a、17b) 開閉装置、18(18a、18b) 第二の冷媒流路切替装置、19 アキュムレータ、21(21a、21b) ポンプ、22(22a、22b、22c、22d) 第一の熱媒体流路切替弁、23(23a、23b、23c、23d) 第二の熱媒体流路切替弁、25(25a、25b、25c、25d) 熱媒体流量調整弁、26(26a、26b、26c、26d) 利用側熱交換器、31(31a、31b) 熱媒体間熱交換器出口温度検出装置、34(34a、34b、34c、34d) 利用側熱交換器出口温度検出装置、35(35a、35b、35c、35d) 熱媒体間熱交換器冷媒温度検出装置、36 熱媒体間熱交換器冷媒圧力検出装置、100 空気調和装置、A 冷媒循環回路、B 熱媒体循環回路。

Claims (13)

  1.  圧縮機と、第一の熱交換器と、絞り装置と、第二の熱交換器とが接続された冷媒回路を有し、前記冷媒回路内に超臨界状態に遷移する冷媒を流通させる冷凍サイクルを構成し、
     前記第一の熱交換器に超臨界状態の前記冷媒を流通させて前記第一の熱交換器をガスクーラーとして、または、亜臨界状態の前記冷媒を流通させて凝縮器として動作させ、
     前記第二の熱交換器に低圧二相状態の前記冷媒を流通させて蒸発器として動作させ、
     前記冷媒回路内に、使用温度範囲内の全領域で非相溶性あるいは難相溶性を示す油、または、使用温度範囲内のある温度以上で非相溶性あるいは難相溶性を示しかつ同温度未満では相溶性を示す冷凍機油を封入し、
     前記第一の熱交換器の出口側から前記絞り装置の入口側に至る流路のいずれかの位置に前記冷媒を2つ以上の流路に分流する分流装置を備え、
     前記分流装置は、前記冷媒が亜臨界状態で運転されている時に液状態となっている位置に設置され、前記冷媒が前記分流装置に流入する方向がほぼ水平方向またはほぼ鉛直上向き方向とされていることを特徴とする冷凍サイクル装置。
  2.  前記冷媒が前記分流装置に流入する方向がほぼ水平方向であり、かつ、前記冷媒が前記分流装置から流出する方向がほぼ水平方向かつ前記分流装置への流入方向に対してほぼ直角な方向であることを特徴とする請求項1に記載の冷凍サイクル装置。
  3.  前記冷媒が前記分流装置に流入する方向がほぼ水平方向であり、かつ、前記冷媒が前記分流装置から流出する方向がほぼ水平方向かつ前記分流装置への流入方向に対してほぼ平行な方向であることを特徴とする請求項1に記載の冷凍サイクル装置。
  4.  前記冷媒が前記分流装置に流入する方向がほぼ鉛直上向きであり、かつ、前記冷媒が前記分流装置から流出する方向がほぼ水平方向かつ前記分流装置への流入方向に対してほぼ直角な方向であることを特徴とする請求項1に記載の冷凍サイクル装置。
  5.  前記冷媒が前記分流装置に流入する方向がほぼ鉛直上向きであり、かつ、前記冷媒が前記分流装置から流出する方向がほぼ鉛直上向きかつ前記分流装置への流入方向に対してほぼ平行な方向であることを特徴とする請求項1に記載の冷凍サイクル装置。
  6.  前記使用温度範囲内のある温度以上で非相溶性あるいは難相溶性を示しかつ同温度未満では相溶性を示す前記冷凍機油の、非相溶性あるいは難相溶性と相溶性との境界の温度は、-10度から15度の間の温度であることを特徴とする請求項1から請求項5のいずれか一項に記載の冷凍サイクル装置。
  7.  前記圧縮機の出口側流路に、第一の冷媒流路切替装置を備え、前記第一の冷媒流路切替装置を切替えることにより、屋外または機械室に設置した熱源側熱交換器を前記第一の熱交換器として動作させる冷房運転と、前記熱源側熱交換器を前記第二の熱交換器として動作させる暖房運転と、を切り替えることが可能な請求項1から請求項6のいずれか一項に記載の冷凍サイクル装置。
  8.  前記第一の熱交換器または前記第二の熱交換器の一方の周囲に空気を流通させて屋外または機械室に設置した熱源側熱交換器として使用し、前記第一の熱交換器または前記第二の熱交換器の他方の周囲に空気を流通させて利用側熱交換器として使用し、
     前記利用側熱交換器を複数の熱交換器から構成し、前記複数の利用側熱交換器のうちのそれぞれを収容し、空調対象空間を空気調和できる位置に設置された複数の室内機を備えたことを特徴とする請求項1から請求項7のいずれか一項に記載の冷凍サイクル装置。
  9.  空気とは異なる熱媒体が流通し前記熱媒体と周囲空気との間で熱交換する利用側熱交換器を収容し、空調対象空間を空調できる位置に設置された複数の室内機と、
     前記第一の熱交換器または前記第二の熱交換器の一方を、前記冷媒と周囲空気との間で熱交換するようにした熱源側熱交換器と、
     前記第一の熱交換器または前記第二の熱交換器の他方を、前記冷媒と前記熱媒体との間で熱交換するようにした少なくとも2台の熱媒体間熱交換器と、
     前記圧縮機の出口側流路を、前記熱源側熱交換器と前記熱媒体間熱交換器との間で切替える第一の冷媒流路切替装置と、
     前記熱媒体間熱交換器の冷媒側流路を、前記圧縮機の出口側又は前記熱源側熱交換器の出口側と接続される高温高圧の前記冷媒が流れる高圧側流路と、前記圧縮機の入口側又は前記熱源側熱交換器の入口側と接続される低温低圧の冷媒が流れる低圧側流路との間で切替える第二の冷媒流路切替装置と、
     前記熱媒体を前記熱媒体間熱交換器と前記利用側熱交換器との間で循環させる熱媒体送出装置と、
     前記複数の利用側熱交換器の熱媒体流路の入口側または出口側に設置され前記利用側熱交換器に対する前記熱媒体の循環量を調整する複数の利用側流量制御装置と、
     前記複数の利用側熱交換器の熱媒体側流路の入口側および出口側のそれぞれに設置された複数の熱媒体流路切替装置と、
    を備えたことを特徴とする請求項1から請求項6のいずれか一項に記載の冷凍サイクル装置。
  10.  少なくとも前記圧縮機、前記複数の第一の冷媒流路切替装置および前記熱源側熱交換器を室外機に収容し、
     少なくとも前記絞り装置、前記複数の熱媒体間熱交換器および前記複数の第二の冷媒流路切替装置を熱媒体変換機に収容し、
     前記室外機と前記熱媒体変換機と前記室内機とは、それぞれ別体に形成されて互いに離れた場所に設置できるように構成されていることを特徴とする請求項9に記載の冷凍サイクル装置。
  11.  前記複数の熱媒体間熱交換器のすべてに高温高圧の前記冷媒を流して前記熱媒体を加熱する全暖房運転モードと、前記複数の熱媒体間熱交換器のすべてに低温低圧の前記冷媒を流して前記熱媒体を冷却する全冷房運転モードと、前記複数の熱媒体間熱交換器の一部に高温高圧の冷媒を流して前記熱媒体を加熱しかつ前記複数の熱媒体間熱交換器の一部に低温低圧の冷媒を流して前記熱媒体を冷却する冷房暖房混在運転モードと、を備えたことを特徴とする請求項9または請求項10に記載の冷凍サイクル装置。
  12.  前記室外機と前記熱媒体変換機とを2本の配管で接続したことを特徴とする請求項9から請求項11のいずれか一項に記載の冷凍サイクル装置。
  13.  前記冷媒が二酸化炭素であることを特徴とする請求項1から請求項12のいずれか一項に記載の冷凍サイクル装置。
PCT/JP2010/000838 2010-02-10 2010-02-10 冷凍サイクル装置 WO2011099067A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
PCT/JP2010/000838 WO2011099067A1 (ja) 2010-02-10 2010-02-10 冷凍サイクル装置
JP2011553624A JPWO2011099067A1 (ja) 2010-02-10 2010-02-10 冷凍サイクル装置
US13/522,072 US8904812B2 (en) 2010-02-10 2010-02-10 Refrigeration cycle apparatus
CN201080063503.3A CN102753910B (zh) 2010-02-10 2010-02-10 冷冻循环装置
EP10845673.2A EP2535666B1 (en) 2010-02-10 2010-02-10 Refrigeration cycle device
US14/305,615 US9285142B2 (en) 2010-02-10 2014-06-16 Refrigeration cycle apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2010/000838 WO2011099067A1 (ja) 2010-02-10 2010-02-10 冷凍サイクル装置

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US13/522,072 A-371-Of-International US8904812B2 (en) 2010-02-10 2010-02-10 Refrigeration cycle apparatus
US14/305,615 Division US9285142B2 (en) 2010-02-10 2014-06-16 Refrigeration cycle apparatus

Publications (1)

Publication Number Publication Date
WO2011099067A1 true WO2011099067A1 (ja) 2011-08-18

Family

ID=44367381

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/000838 WO2011099067A1 (ja) 2010-02-10 2010-02-10 冷凍サイクル装置

Country Status (5)

Country Link
US (2) US8904812B2 (ja)
EP (1) EP2535666B1 (ja)
JP (1) JPWO2011099067A1 (ja)
CN (1) CN102753910B (ja)
WO (1) WO2011099067A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013144994A1 (ja) * 2012-03-27 2013-10-03 三菱電機株式会社 空気調和装置
US11156412B2 (en) * 2016-09-12 2021-10-26 Mitsubishi Electric Corporation Heat exchanger and air-conditioning apparatus

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2634498B1 (en) * 2010-10-27 2017-07-05 Technomirai Co., Ltd Air conditioning control system and program
EP2927612B1 (en) * 2012-11-30 2021-06-09 Mitsubishi Electric Corporation Air conditioning device
JP6742200B2 (ja) * 2016-08-31 2020-08-19 日立ジョンソンコントロールズ空調株式会社 空調給湯システム
US11073311B2 (en) * 2018-05-17 2021-07-27 Emerson Climate Technologies, Inc. Climate-control system having pump
CN113573543B (zh) * 2021-06-10 2023-09-29 华为数字能源技术有限公司 分布式复合制冷系统和数据中心

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60114662A (ja) * 1983-11-26 1985-06-21 株式会社東芝 空気調和機
JPH05280818A (ja) 1992-04-01 1993-10-29 Matsushita Refrig Co Ltd 多室冷暖房装置
JPH09101070A (ja) * 1995-07-28 1997-04-15 Fuji Electric Co Ltd 冷凍装置
JPH10318628A (ja) * 1997-05-16 1998-12-04 Hitachi Ltd 冷媒分配器
JP2001289465A (ja) 2000-04-11 2001-10-19 Daikin Ind Ltd 空気調和装置
JP2003343936A (ja) 2002-05-28 2003-12-03 Mitsubishi Electric Corp 冷凍サイクル装置
JP2005140444A (ja) 2003-11-07 2005-06-02 Matsushita Electric Ind Co Ltd 空気調和機およびその制御方法
JP2005337524A (ja) * 2004-05-24 2005-12-08 Daikin Ind Ltd 分岐用管継手及びそれを備えた空気調和装置
JP2008122059A (ja) * 2006-10-18 2008-05-29 Daikin Ind Ltd 熱交換器及び冷凍装置
JP2008241086A (ja) * 2007-03-27 2008-10-09 Hitachi Appliances Inc 二酸化炭素冷媒ヒートポンプ式給湯機

Family Cites Families (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6479555A (en) 1987-09-18 1989-03-24 Matsushita Refrigeration Refrigerant flow diverter
JP3289366B2 (ja) * 1993-03-08 2002-06-04 ダイキン工業株式会社 冷凍装置
JP3112003B2 (ja) * 1998-12-25 2000-11-27 ダイキン工業株式会社 冷凍装置
JP4114337B2 (ja) * 2001-10-31 2008-07-09 ダイキン工業株式会社 冷凍装置
ES2443644T3 (es) * 2002-03-18 2014-02-20 Daikin Industries, Ltd. Sistema de aire acondicionado
KR100437802B1 (ko) * 2002-06-12 2004-06-30 엘지전자 주식회사 냉난방 동시형 멀티공기조화기
KR100437804B1 (ko) * 2002-06-12 2004-06-30 엘지전자 주식회사 2배관식 냉난방 동시형 멀티공기조화기 및 그 운전방법
KR100459137B1 (ko) * 2002-08-24 2004-12-03 엘지전자 주식회사 냉난방 동시형 멀티공기조화기
JP4396521B2 (ja) * 2002-10-30 2010-01-13 三菱電機株式会社 空気調和装置
US7174726B2 (en) * 2003-08-07 2007-02-13 Parker-Hannifin Corporation Adjustable nozzle distributor
US7363940B2 (en) * 2004-03-18 2008-04-29 Parker-Hannifin Corporation Flow-rate restrictor insert for orifice expansion device
JP3861891B2 (ja) * 2004-08-04 2006-12-27 ダイキン工業株式会社 空気調和装置
US7845185B2 (en) * 2004-12-29 2010-12-07 York International Corporation Method and apparatus for dehumidification
US20060288713A1 (en) * 2005-06-23 2006-12-28 York International Corporation Method and system for dehumidification and refrigerant pressure control
JP2006183950A (ja) * 2004-12-28 2006-07-13 Sanyo Electric Co Ltd 冷凍装置及び冷蔵庫
KR100688171B1 (ko) * 2004-12-29 2007-03-02 엘지전자 주식회사 냉난방 동시형 멀티 공기조화기 및 냉매 회수방법
KR101172445B1 (ko) * 2005-02-15 2012-08-07 엘지전자 주식회사 냉난방 동시형 멀티 에어컨
WO2006095993A2 (en) * 2005-03-09 2006-09-14 Lg Electronics Inc. Refrigerant distributing device for multi-type air conditioner
JP2006275496A (ja) 2005-03-30 2006-10-12 Sanyo Electric Co Ltd 冷凍装置及び冷蔵庫
JP4387974B2 (ja) 2005-04-25 2009-12-24 パナソニック株式会社 冷凍サイクル装置
JP4571019B2 (ja) * 2005-06-14 2010-10-27 ダイキン工業株式会社 冷媒分流器
DE102006006731A1 (de) * 2006-02-13 2007-08-16 Danfoss A/S Kühlanlage
JP4592617B2 (ja) * 2006-02-27 2010-12-01 三洋電機株式会社 冷却加熱装置
JP5332093B2 (ja) 2006-09-11 2013-11-06 ダイキン工業株式会社 冷凍装置
JP2008070029A (ja) 2006-09-13 2008-03-27 Daikin Ind Ltd 油分離装置
JP4254863B2 (ja) * 2007-01-23 2009-04-15 ダイキン工業株式会社 空気調和装置
US7597137B2 (en) * 2007-02-28 2009-10-06 Colmac Coil Manufacturing, Inc. Heat exchanger system
WO2008117408A1 (ja) * 2007-03-27 2008-10-02 Mitsubishi Electric Corporation ヒートポンプ装置
JP5169295B2 (ja) * 2007-03-27 2013-03-27 ダイキン工業株式会社 冷凍装置
US9212825B2 (en) * 2008-04-30 2015-12-15 Mitsubishi Electric Corporation Air conditioner
CN102016450B (zh) 2008-04-30 2014-01-01 三菱电机株式会社 空气调节装置
US20110049878A1 (en) 2008-05-01 2011-03-03 Goode Sidney H Profiled Gasket For Lined Piping
KR101547353B1 (ko) * 2008-11-10 2015-08-25 엘지전자 주식회사 분배기 및 이를 포함하는 냉매순환시스템
JP2010196953A (ja) * 2009-02-24 2010-09-09 Daikin Ind Ltd ヒートポンプシステム

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60114662A (ja) * 1983-11-26 1985-06-21 株式会社東芝 空気調和機
JPH05280818A (ja) 1992-04-01 1993-10-29 Matsushita Refrig Co Ltd 多室冷暖房装置
JPH09101070A (ja) * 1995-07-28 1997-04-15 Fuji Electric Co Ltd 冷凍装置
JPH10318628A (ja) * 1997-05-16 1998-12-04 Hitachi Ltd 冷媒分配器
JP2001289465A (ja) 2000-04-11 2001-10-19 Daikin Ind Ltd 空気調和装置
JP2003343936A (ja) 2002-05-28 2003-12-03 Mitsubishi Electric Corp 冷凍サイクル装置
JP2005140444A (ja) 2003-11-07 2005-06-02 Matsushita Electric Ind Co Ltd 空気調和機およびその制御方法
JP2005337524A (ja) * 2004-05-24 2005-12-08 Daikin Ind Ltd 分岐用管継手及びそれを備えた空気調和装置
JP2008122059A (ja) * 2006-10-18 2008-05-29 Daikin Ind Ltd 熱交換器及び冷凍装置
JP2008241086A (ja) * 2007-03-27 2008-10-09 Hitachi Appliances Inc 二酸化炭素冷媒ヒートポンプ式給湯機

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013144994A1 (ja) * 2012-03-27 2013-10-03 三菱電機株式会社 空気調和装置
JPWO2013144994A1 (ja) * 2012-03-27 2015-08-03 三菱電機株式会社 空気調和装置
EP2833086A4 (en) * 2012-03-27 2015-12-02 Mitsubishi Electric Corp AIR CONDITIONING
US9958171B2 (en) 2012-03-27 2018-05-01 Mitsubishi Electric Corporation Air-conditioning apparatus
US11156412B2 (en) * 2016-09-12 2021-10-26 Mitsubishi Electric Corporation Heat exchanger and air-conditioning apparatus

Also Published As

Publication number Publication date
CN102753910B (zh) 2015-09-30
US9285142B2 (en) 2016-03-15
EP2535666B1 (en) 2020-07-22
EP2535666A1 (en) 2012-12-19
EP2535666A4 (en) 2017-07-05
CN102753910A (zh) 2012-10-24
US20140290298A1 (en) 2014-10-02
US8904812B2 (en) 2014-12-09
US20130061623A1 (en) 2013-03-14
JPWO2011099067A1 (ja) 2013-06-13

Similar Documents

Publication Publication Date Title
JP5188629B2 (ja) 空気調和装置
JP5752148B2 (ja) 空気調和装置
JP5279919B2 (ja) 空気調和装置
JP5784117B2 (ja) 空気調和装置
JP5595521B2 (ja) ヒートポンプ装置
JP6095764B2 (ja) 空気調和装置
JP5921719B2 (ja) 空気調和装置
JP5377653B2 (ja) 空気調和装置
WO2014097869A1 (ja) 空気調和装置
WO2012070083A1 (ja) 空気調和装置
JP5490245B2 (ja) 空気調和装置
WO2011030407A1 (ja) 空気調和装置
WO2013008365A1 (ja) 空気調和装置
WO2014083681A1 (ja) 空気調和装置
JPWO2012104892A1 (ja) 空気調和装置
WO2011099067A1 (ja) 冷凍サイクル装置
JP5312606B2 (ja) 空気調和装置
JP5312681B2 (ja) 空気調和装置
JP2014089042A (ja) 冷凍サイクル装置
WO2014128971A1 (ja) 空気調和装置
JP5791717B2 (ja) 空気調和装置
WO2011030420A1 (ja) 空気調和装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080063503.3

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10845673

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011553624

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 13522072

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2010845673

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE