WO2010134559A1 - トリスフェノール類及びそのモノエステル置換体の製造方法及び4-アシルアラルキルフェノール誘導体 - Google Patents
トリスフェノール類及びそのモノエステル置換体の製造方法及び4-アシルアラルキルフェノール誘導体 Download PDFInfo
- Publication number
- WO2010134559A1 WO2010134559A1 PCT/JP2010/058476 JP2010058476W WO2010134559A1 WO 2010134559 A1 WO2010134559 A1 WO 2010134559A1 JP 2010058476 W JP2010058476 W JP 2010058476W WO 2010134559 A1 WO2010134559 A1 WO 2010134559A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- general formula
- group
- represented
- reaction
- hydrogen atom
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C49/00—Ketones; Ketenes; Dimeric ketenes; Ketonic chelates
- C07C49/76—Ketones containing a keto group bound to a six-membered aromatic ring
- C07C49/82—Ketones containing a keto group bound to a six-membered aromatic ring containing hydroxy groups
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C37/00—Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom of a six-membered aromatic ring
- C07C37/01—Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom of a six-membered aromatic ring by replacing functional groups bound to a six-membered aromatic ring by hydroxy groups, e.g. by hydrolysis
- C07C37/055—Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom of a six-membered aromatic ring by replacing functional groups bound to a six-membered aromatic ring by hydroxy groups, e.g. by hydrolysis the substituted group being bound to oxygen, e.g. ether group
- C07C37/0555—Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom of a six-membered aromatic ring by replacing functional groups bound to a six-membered aromatic ring by hydroxy groups, e.g. by hydrolysis the substituted group being bound to oxygen, e.g. ether group being esterified hydroxy groups
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C37/00—Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom of a six-membered aromatic ring
- C07C37/11—Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom of a six-membered aromatic ring by reactions increasing the number of carbon atoms
- C07C37/20—Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom of a six-membered aromatic ring by reactions increasing the number of carbon atoms using aldehydes or ketones
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C45/00—Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds
- C07C45/45—Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by condensation
- C07C45/455—Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by condensation with carboxylic acids or their derivatives
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C45/00—Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds
- C07C45/61—Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by reactions not involving the formation of >C = O groups
- C07C45/67—Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by reactions not involving the formation of >C = O groups by isomerisation; by change of size of the carbon skeleton
- C07C45/673—Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by reactions not involving the formation of >C = O groups by isomerisation; by change of size of the carbon skeleton by change of size of the carbon skeleton
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C49/00—Ketones; Ketenes; Dimeric ketenes; Ketonic chelates
- C07C49/76—Ketones containing a keto group bound to a six-membered aromatic ring
- C07C49/82—Ketones containing a keto group bound to a six-membered aromatic ring containing hydroxy groups
- C07C49/83—Ketones containing a keto group bound to a six-membered aromatic ring containing hydroxy groups polycyclic
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C67/00—Preparation of carboxylic acid esters
- C07C67/08—Preparation of carboxylic acid esters by reacting carboxylic acids or symmetrical anhydrides with the hydroxy or O-metal group of organic compounds
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C67/00—Preparation of carboxylic acid esters
- C07C67/14—Preparation of carboxylic acid esters from carboxylic acid halides
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C67/00—Preparation of carboxylic acid esters
- C07C67/28—Preparation of carboxylic acid esters by modifying the hydroxylic moiety of the ester, such modification not being an introduction of an ester group
- C07C67/29—Preparation of carboxylic acid esters by modifying the hydroxylic moiety of the ester, such modification not being an introduction of an ester group by introduction of oxygen-containing functional groups
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C69/00—Esters of carboxylic acids; Esters of carbonic or haloformic acids
- C07C69/017—Esters of hydroxy compounds having the esterified hydroxy group bound to a carbon atom of a six-membered aromatic ring
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C69/00—Esters of carboxylic acids; Esters of carbonic or haloformic acids
- C07C69/02—Esters of acyclic saturated monocarboxylic acids having the carboxyl group bound to an acyclic carbon atom or to hydrogen
- C07C69/12—Acetic acid esters
- C07C69/14—Acetic acid esters of monohydroxylic compounds
- C07C69/145—Acetic acid esters of monohydroxylic compounds of unsaturated alcohols
- C07C69/157—Acetic acid esters of monohydroxylic compounds of unsaturated alcohols containing six-membered aromatic rings
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C69/00—Esters of carboxylic acids; Esters of carbonic or haloformic acids
- C07C69/02—Esters of acyclic saturated monocarboxylic acids having the carboxyl group bound to an acyclic carbon atom or to hydrogen
- C07C69/22—Esters of acyclic saturated monocarboxylic acids having the carboxyl group bound to an acyclic carbon atom or to hydrogen having three or more carbon atoms in the acid moiety
- C07C69/24—Esters of acyclic saturated monocarboxylic acids having the carboxyl group bound to an acyclic carbon atom or to hydrogen having three or more carbon atoms in the acid moiety esterified with monohydroxylic compounds
Definitions
- the present invention relates to a method for industrially easily producing high-yield, high-purity trisphenols that are useful as raw materials for polymer compounds such as epoxy resins and polycarbonate resins, and as raw materials or additives for photoresists.
- the present invention relates to a novel 4-acylaralkylphenol derivative having bisphenyl as a molecular skeleton, an acyl group on one phenyl ring, and a hydroxyl group or an acyloxy group on the other phenyl ring.
- Such a compound produces trisphenols as raw materials for polymer compounds such as polycarbonate resins and raw materials for photoresists, especially by reacting with phenols, as various reactive materials having an effect of improving heat resistance and the like. It is useful as an intermediate raw material.
- trisphenols especially trisphenols other than triphenolmethane, 1- [1,1-bis (4-hydroxyphenyl) ethyl] -4- [1-methyl-1- (4-hydroxyphenyl) has been conventionally used.
- Ethyl] benzene and the like are known, and these are usefully used as raw materials for polymer compounds such as epoxy resins and polycarbonate resins, and as raw materials or additives for photoresists.
- Such trisphenols are known to be obtained by reaction of isopropenylacetophenone and phenols (Patent Document 1).
- the conventionally known raw material isopropenyl acetophenone has an active olefin group, so it has poor storage stability, and is easily polymerized due to the mixture of impurities such as heat and acid, so that a polymer is easily formed.
- a method for producing trisphenols which is not industrially easy to implement and uses highly available raw materials that do not use alkenyl acetophenones such as isopropenyl acetophenone as raw materials, and which are industrially easy to implement, and phenols
- the raw material compound which can manufacture trisphenol by reaction with is calculated
- the present invention has been made to solve the above-described problems in the production of trisphenols, and the object of the present invention is not to use alkenyl acetophenones as starting materials, has excellent storage stability, and is industrially easy. And a method for producing trisphenols in high yield and high purity by carrying out the reaction under industrially easy-to-implement reaction conditions. Also provided are methods for producing monoester-substituted trisphenols that are useful as intermediate raw materials or reactive monomers for trisphenols that easily become trisphenols by eliminating leaving groups, and phenols. It is to provide a compound capable of reacting with aldehydes to produce trisphenols as well as a compound which itself can be used as various reactive compounds.
- the inventors of the present invention can easily obtain by a conventionally known method using easily available raw materials such as reaction of phenols with styrenes or 1-hydroxyalkylbenzenes.
- 4-aralkylphenol derivatives of the following general formula (2) are used as starting materials, 4-acylaralkylphenol derivatives are obtained by selectively nuclear acylating the para-position of the phenyl nucleus of the aralkyl group of 4-aralkylphenol, The leaving group of the obtained 4-acyl aralkyl phenol derivatives is substituted with a hydrogen atom to give 4-acyl aralkyl phenols, and then the 4-acyl aralkyl phenols and phenols are subjected to a condensation reaction in the presence of an acid catalyst.
- 4-acylaralkylphenol derivatives and phenols are subjected to a condensation reaction in the presence of an acid catalyst.
- trisphenols of the target compound is obtained by substituting the leaving group of trisphenol derivatives obtained a hydrogen atom, and completed the present invention can solve the above problems.
- a 4-acylaralkylphenol derivative having bisphenyl as a molecular skeleton, having an acyl group at the para position of one phenyl ring and having a hydroxyl group or an acyloxy group at the para position of the other phenyl ring was found.
- Such compounds are novel and can easily generate trisphenol by reacting with phenols, or after reacting with phenols, by hydrolyzing acyloxy groups, as well as by themselves.
- the present invention was completed by finding that it has two reactive functional groups at both ends of the phenyl skeleton and can be used as various reaction intermediates.
- R 1 to R 4 each independently represents a hydrogen atom, an alkyl group, an alkoxyl group, an aromatic hydrocarbon group, a halogen atom, an acyloxy group or a hydroxyl group, and R 5 and R 6 are each independently hydrogen.
- R 7 represents a hydrogen atom or an alkyl group
- R 0 represents an alkyl group, an alkoxyl group or a halogen atom
- n represents 0 or an integer of 1 to 4, provided that n is 2 or more
- R 0 may be the same or different
- R 9 to R 11 each independently represents a hydrogen atom, an alkyl group, an alkoxyl group, an aromatic hydrocarbon group, a halogen atom or a hydroxyl group.
- the trisphenol according to claim 1 wherein, in the general formula (2), when X is a leaving group capable of substituting for a hydrogen atom, the leaving group (hereinafter sometimes referred to as Xa) is an acyl group. Is a preferred embodiment of the present invention.
- the production method is a preferred embodiment of the present invention.
- Step A1 4-aralkylphenyl esters represented by the general formula (2a) (In the formula, R 1 to R 4 , R 5 and R 6 , R 0 and n are the same as those in the general formula (2), and R 8 represents a hydrogen atom or a hydrocarbon group, provided that n is 1 or more. In this case, R 0 is not substituted at the 4-position of the phenyl group.) Or 4-aralkylphenols represented by the general formula (2b) (Wherein R 1 to R 4 , R 5 and R 6 , R 0 and n are the same as those in formula (2), provided that when n is 1 or more, R 0 is the 4-position of the phenyl group.
- Step C1 4-acylaralkylphenols represented by the above general formula (6) are obtained by hydrolysis, alcoholysis or phenol decomposition of the ester group of the 4-acylaralkylphenyl esters of the general formula (7).
- Step B1 Then, the 4-acylaralkylphenol obtained and the phenol represented by the general formula (4) are subjected to a condensation reaction to obtain a trisphenol represented by the general formula (1).
- Step B2 A 4-acylaralkylphenyl ester of the general formula (7) is subjected to a condensation reaction with a phenol represented by the general formula (4) to give a general formula (8) (Wherein R 1 to R 4 , R 5 and R 6 , R 0 and n, R 7 , R 9 to R 11 are the same as those in the general formula (1), and R 8 is represented by the formula (2a) Same as that.)
- 4-acylaralkylphenols represented by the above formula (6) and 4-acylaralkylphenyl esters represented by the above formula (7) which are 4-acylaralkylphenol derivatives. .
- 4-aralkylphenol or a derivative thereof, which is a starting material is relatively stable against acids and heat and is excellent in storage stability. It is advantageous for production, and its starting materials can be easily produced from inexpensive and easily available materials such as phenols and styrenes, etc., and subjected to a nuclear acylation reaction, followed by a condensation reaction with phenols.
- -Trisphenols having various structures suitable for various uses can be obtained by substituting the leaving group of acylaralkylphenol derivatives with a hydrogen atom. Furthermore, the target product can be obtained with high purity and high yield by selecting the leaving group and the reaction method.
- the 4-acylaralkylphenol derivative of the present invention has bisphenyl as a molecular skeleton, and has an acyl group at the para position of one phenyl ring and a hydroxyl group or an acyloxy group at the para position of the other phenyl ring. It is a novel 4-acylaralkylphenol derivative.
- trisphenols with various structures suitable for various applications can be obtained in high purity and in high yield, and the bisphenyl skeleton itself has a high yield. Since it has two functional groups rich in reactivity at both ends of the molecule, it can be used as various reaction intermediates excellent in heat resistance and the like. Further, such compounds are more stable than acids and heat, are superior in storage stability, and are 4-aralkyl which can be easily produced from phenols and styrenes which are inexpensive and readily available. Phenols can be used as a raw material.
- the target trisphenol represented by the general formula (1) is a 4-aralkylphenol derivative represented by the general formula (2) as a starting material, and the nuclear acylation step (A) and Thereafter, it is produced through a phenol condensation step (B) and a desorption step (C) in which X is replaced with a hydrogen atom.
- R 1 to R 4 are each independently a hydrogen atom, an alkyl group, An alkoxyl group, an aromatic hydrocarbon group, a halogen atom, an acyloxy group or a hydroxyl group
- R 5 and R 6 each independently represent a hydrogen atom or an alkyl group
- R 0 represents an alkyl group, an alkoxyl group or a halogen atom.
- N represents 0 or an integer of 1 to 4, provided that when n is 2 or more, R 0 may be the same or different.
- R 1 to R 4 are alkyl groups
- examples of the alkyl group include linear and branched alkyl groups having 1 to 10 carbon atoms, and cycloalkyl groups having 5 to 10 carbon atoms. Can be mentioned. A straight-chain or branched alkyl group having 1 to 4 carbon atoms and a cycloalkyl group having 5 to 6 carbon atoms are preferable. Specific examples of such an alkyl group include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, and a cyclohexyl group.
- the alkyl group may have a substituent such as a halogen atom, an alkoxyl group, a hydroxyl group, an acyloxy group, or a phenyl group. Accordingly, specific examples of the alkyl group include a methyl group, an ethyl group, an isopropyl group, a cyclohexyl group, a benzyl group, a methoxyethyl group, and a 3-chloropropyl group.
- the alkoxyl group include linear and branched alkoxyl groups having 1 to 10 carbon atoms and cycloalkoxyl groups having 5 to 10 carbon atoms.
- it is a linear or branched alkoxyl group having 1 to 4 carbon atoms, and the alkoxyl group having 3 to 4 carbon atoms may be linear or branched,
- a preferred cycloalkoxyl group is a cycloalkoxyl group having 5 to 6 carbon atoms.
- Specific examples of such alkoxyl groups include methoxy group, ethoxy group, n-propoxy group, isopropoxy group, cyclohexyloxy group and the like.
- R 1 to R 4 are preferably a hydrogen atom, an alkyl group having 1 to 8 carbon atoms, or an alkoxyl group having 1 to 8 carbon atoms, more preferably a hydrogen atom or an alkyl group having 1 to 4 carbon atoms. is there. Furthermore, R 3 or R 4 is preferably a hydrogen atom, a methyl group, or an ethyl group, and more preferably one or both of R 3 and R 4 are hydrogen atoms.
- the alkyl group of the alkoxyl group may have a substituent such as a halogen atom, an alkoxyl group, a hydroxyl group, an acyloxy group, and a phenyl group. Therefore, specific examples of the alkoxyl group include a methoxy group, an ethoxy group, and a 2-chloroethoxy group.
- examples of the aromatic hydrocarbon group include aromatic hydrocarbon groups having 6 to 10 carbon atoms.
- the aromatic hydrocarbon group may have a substituent such as an alkyl group, a halogen atom, an alkoxyl group, a hydroxyl group, an acyloxy group, and a phenyl group.
- specific examples of the aromatic hydrocarbon group include a phenyl group, a 1-naphthyl group, a 4-methylphenyl group, and 4-chlorophenyl.
- the aromatic hydrocarbon group is a phenyl group, it is preferable that there is a substituent at the 4-position of the phenyl group.
- the halogen atom examples include bromine, chlorine, fluorine, and iodine.
- the substituent (R) bonded to the carbonyl group is an aliphatic hydrocarbon group, a cyclic hydrocarbon, an aromatic hydrocarbon group, or a hydrogen atom. Any of these may be used, but preferably, when R 1 to R 4 are an alkyl group or an aromatic hydrocarbon group, the alkyl group or the aromatic hydrocarbon group is the same as the alkyl group or aromatic hydrocarbon group. And more preferably the same alkyl group as described above.
- acyloxy group examples include formyloxy group, acetyloxy group, propionyloxy group, benzoyloxy group, and toluoyloxy group.
- R 1 to R 4 When at least one of R 1 to R 4 is a hydroxyl group or an acyloxy group, R 1 and R 2 are not simultaneously a hydroxyl group or an acyloxy group, and both R 1 and R 3 are a hydroxyl group or an acyloxy group, or , R 1 or R 3 is preferably a hydroxyl group or an acyloxy group, and R 3 and R 4 are both preferably a hydrogen atom or both.
- R 5 and R 6 each independently represent a hydrogen atom or an alkyl group
- the alkyl group includes, for example, the number of carbon atoms
- examples thereof include a linear or branched alkyl group having 1 to 10 and a cycloalkyl group having 5 to 10 carbon atoms.
- it is a linear or branched alkyl group having 1 to 10 carbon atoms, more preferably an alkyl group having 1 to 4 carbon atoms, and the alkyl group having 3 to 4 carbon atoms is a straight chain.
- R 5 and R 6 may be either only a hydrogen atom or both may be an alkyl group or a hydrogen atom, but either one or both of R 5 and R 6 may be a hydrogen atom or a primary atom. Or it is preferable that it is a secondary alkyl group.
- R 0 represents an alkyl group, an alkoxyl group or a halogen atom
- the alkyl group, alkoxyl group or halogen atom is an alkyl group in the case where R 1 to R 4 are an alkyl group, an alkoxyl group or a halogen atom. , The same as an alkoxyl group or a halogen atom.
- the alkyl group is a linear or branched alkyl group. Specific examples of such an alkyl group include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, and sec-butyl. Groups and the like.
- the alkoxyl group is a linear or branched alkoxyl group, and specific examples of such an alkoxyl group include, for example, a methoxy group, an ethoxy group, an n-propoxy group, Examples thereof include an isopropoxy group and a sec-butoxy group.
- n represents 0 or an integer of 1 to 4, provided that when n is 2 or more, R 0 may be the same or different, and preferred n is 0 or an integer of 1 to 2.
- Preferred R 0 is an alkyl group having 1 to 4 carbon atoms.
- X represents a hydrogen atom or a leaving group replaceable with a hydrogen atom (sometimes referred to as Xa).
- the leaving group capable of substituting for a hydrogen atom refers to a 4-aralkylphenol derivative represented by the general formula (2), which is represented by the general formula (3) after being subjected to the nuclear acylation step (A).
- the leaving group (Xa) bonded to the 4-acyl aralkylphenol derivative or the trisphenol derivative represented by the general formula (5) is not affected by the 4-acyl group, the aralkylphenol skeleton or the trisphenol skeleton.
- a substituent that can be substituted with a hydrogen atom is preferable, and is a substituent that can be easily removed by hydrolysis reaction, alcoholysis reaction, hydrogenolysis reaction, cleavage reaction, etc., and such leaving group (Xa)
- Examples thereof include an acyl group, a hydrocarbon group, a residue obtained by removing a hydroxyl group from sulfonic acid (R′—SO 2 group / R ′ represents a hydrocarbon group), and the like.
- an acetyl group, a 4-methylphenylcarbonyl group, a methyl group, a cyclohexyl group, a mesyl group, a trifluoromethylsulfonyl group, a tosyl group, and a 2-nitrobenzenesulfonyl group which are raw materials of the general formula (2)
- An acyl group is preferable and an alkylcarbonyl group such as an acetyl group is more preferable because it suppresses the decomposition of the alkylidene group of the 4-aralkylphenol derivative and improves the selectivity of the nuclear acylation reaction.
- 4-aralkylphenol derivatives represented by the general formula (2) include p-cumylphenol, 2-methyl-4-cumylphenol, and 2,6-dimethyl-4- Cumylphenol, 2,3,6-trimethyl-4-cumylphenol, 4-benzylphenol, 4- (1-phenylethyl) phenol, 2-chloro-4-cumylphenol, 2-chloro-4- [ (2,5-dimethylphenyl) methyl] -6-methylphenol, 2-phenyl-4-benzylphenol, 1- (4-acetoxyphenyl) -1-methylethylbenzene, 1-tosyloxy-4- (1-phenyl- 1-methylethyl) benzene, 1-mesyloxy-4- (1-phenyl-1-methylethyl) benzene, 1-methoxy-4- (1-phenyl) -1-methylethyl) benzene.
- Such 4-aralkylphenols can be obtained by the method described in US Pat. No. 2,247,402, US Pat. No. 2,714,120, US Pat. No. 2,769,844, etc., and phenols and styrenes or 1-hydroxyalkylbenzenes. It can be easily obtained by reaction.
- X is an acyl group
- such 4-aralkylphenyl esters are, for example, known to acylate a phenolic hydroxyl group of 4-aralkylphenol with an acylating agent such as acetic anhydride or propionic acid chloride. It can be easily obtained by the method.
- R′ is a residue obtained by removing a hydroxyl group from sulfonic acid
- R ′ is R 1.
- a 4-aralkylphenol derivative in which —R 4 is the same as that in the case of an aromatic hydrocarbon group or an alkyl group, and X is a residue obtained by removing a hydroxyl group from a sulfonic acid is, for example, 4 of the general formula (2b)
- Aralkylphenols can be easily obtained by a known method in which halogenated sulfonyl hydrocarbons such as tosyl chloride and mesyl chloride are reacted in the presence of an organic amine such as pyridine or an inorganic base such as potassium carbonate.
- R 1 to R 4 , R 5 and R 6 , R 0 , and n are represented by the general formula (2). It is the same.
- R 7 represents a hydrogen atom or an alkyl group, and the alkyl group is the same as the alkyl group in the case where R 1 to R 4 are an alkyl group, and the type of the alkyl group is primary or secondary. Alkyl groups are preferred.
- alkyl group examples include a methyl group, an ethyl group, an isopropyl group, a cyclohexyl group, a benzyl group, a methoxyethyl group, and a 3-chloropropyl group. Further, the alkyl group preferably has 1 to 4 carbon atoms.
- R 9 to R 11 each independently represents a hydrogen atom, an alkyl group, an alkoxyl group, an aromatic hydrocarbon group, a halogen atom or a hydroxyl group.
- R 1 to R 4 are the same as the alkyl group, alkoxyl group, aromatic hydrocarbon group, halogen atom, alkyl group, alkoxyl group, aromatic hydrocarbon group, halogen atom, An alkyl group having 1 to 4 atoms, a cycloalkyl group having 5 to 6 carbon atoms, an alkoxyl group having 1 to 4 carbon atoms, and a phenyl group are preferable.
- R 9 and R 10 are preferably not hydroxyl groups at the same time for production, and when R 7 is an alkyl group, R 11 is preferably a hydrogen atom for production.
- the trisphenols represented by the general formula (1) specifically, for example, 1- [ ⁇ -methyl- ⁇ - (3-methyl-4-hydroxyphenyl) ethyl] -4- [ ⁇ , ⁇ -bis (3-methyl-4-hydroxyphenyl) ethyl] benzene, 1- [ ⁇ -methyl- ⁇ - (3-methoxy-4-hydroxyphenyl) ethyl] -4- [ ⁇ , ⁇ -bis (3-methoxy-4-hydroxyphenyl) ethyl] benzene, 1- [ ⁇ -methyl- ⁇ - (4-hydroxyphenyl) ethyl] -4- [ ⁇ , ⁇ -bis (4-hydroxyphenyl) ethyl] benzene, And 1- [ ⁇ -methyl- ⁇ - (3-cyclohexyl-4-hydroxyphenyl) ethyl] -4- [ ⁇ , ⁇ -bis (3-cyclohexyl-4-hydroxyphenyl) ethyl] benzene.
- R 1 to R 4 , R 5 and R 6 , R 0 and n are the same as those in the general formula (2).
- R 8 is a hydrogen atom or a hydrocarbon group, and examples of the hydrocarbon group include an unsaturated aliphatic hydrocarbon group, an alkyl group, and an aromatic hydrocarbon group.
- the alkyl group and the aromatic hydrocarbon group are the same as the alkyl group and the aromatic hydrocarbon group in the case where R 1 to R 4 in the general formula (2) are an alkyl group or an aromatic hydrocarbon group.
- An alkyl group is preferred, and a primary or secondary alkyl group is preferred as the type.
- the 4-aralkylphenyl ethers represented by the general formula (2c) which is one of the 4-aralkylphenol derivatives of the general formula (2) used as a raw material in the method for producing trisphenol of the present invention, 1 to R 4 , R 5 and R 6 , R 0 and n are the same as those in formula (2), and R represents a hydrocarbon group.
- hydrocarbon group for R examples include an unsaturated aliphatic hydrocarbon group, an alkyl group, and an aromatic hydrocarbon group.
- the alkyl group and the aromatic hydrocarbon group are the same as the alkyl group and the aromatic hydrocarbon group in the case where R 1 to R 4 in the general formula (2) are an alkyl group or an aromatic hydrocarbon group.
- An alkyl group is preferred, and a primary or secondary alkyl group is preferred as the type.
- the general formula (2a) in which X of the 4-aralkylphenol derivative represented by the general formula (2) as a raw material is an acyl group, or the general formula in which X is a hydrogen atom
- the formula (2b) is preferably produced by the following reaction scheme 1.
- step A1 and step A in the production method of the present invention will be described.
- the 4-aralkylphenol derivatives of the general formula (2) preferably the 4-aralkylphenyl esters of the general formula (2a), or the 4-aralkyl of the general formula (2b) Phenols are used as starting materials.
- step A1 when the starting material is a 4-aralkylphenyl ester of the general formula (2a), in step A1, this is subjected to nuclear acylation with an acylating agent such as acetyl chloride or acetic anhydride, An acyl group is introduced into the 4-position of the phenyl group of the aralkyl group to obtain 4-acyl aralkyl phenyl esters represented by the general formula (7).
- an acylating agent such as acetyl chloride or acetic anhydride
- the 4-aralkylphenyl esters represented by the general formula (2a) of the starting material are, for example, 4-aralkylphenols represented by the general formula (2b) when X is a hydrogen atom in the general formula (2) Can be obtained by acylating the hydroxyl group.
- the starting material is a 4-aralkylphenol represented by the general formula (2b)
- the acylation of the hydroxy group and the nuclear acylation of the phenyl group are carried out in the same reaction step to obtain the general formula (7)
- 4-acylaralkylphenyl esters represented by In this case, after the hydroxyl group is acylated, the phenyl group is nuclear acylated.
- the starting material is a 4-aralkylphenol derivative in which X is a leaving group other than an acyl group in the general formula (2)
- X is a leaving group other than an acyl group in the general formula (2)
- 4-aralkylphenyl ester of the general formula (2a) nuclear acylation is performed.
- 4-acylaralkylphenol derivatives of the general formula (3) in which the leaving group Xa matches that of the starting 4-aralkylphenol derivatives can be obtained.
- a known acylation reaction can be used as a nuclear acylation reaction or an acylation reaction of a hydroxy group.
- the acylating agent is not particularly limited as long as it is used as an acylating agent.
- Preferred acylating agents include acyl halides represented by the following general formula (11), and the following general formula (12). And the like, and the like.
- R 7 represents a hydrogen atom or an alkyl group
- R 8 represents a hydrogen atom or a hydrocarbon group
- Y is a halogen atom
- R 7 or R a R 7 or R 8 of the general formula (7) 8 indicates that each corresponds to 8
- the alkyl group of R 7 is the same as the alkyl group in the case where R 1 to R 4 are alkyl groups in the general formula (2)
- the hydrocarbon group of R 8 includes an unsaturated aliphatic hydrocarbon group, an alkyl group Group, aromatic hydrocarbon group and the like.
- an alkyl group in the case where R 1 to R 4 in formula (2) are an alkyl group or an aromatic hydrocarbon group, The same as the aromatic hydrocarbon group.
- acylating agent of the general formula (11) and general formula (12) containing the substituent R 7 specifically, for example, formyl chloride, acetyl chloride, acetyl bromide, propionic acid chloride, acetic anhydride, monochloro anhydride
- examples of the acylating agent of the general formula (11) and general formula (12) containing the substituent R 8 include acetic acid, propionic anhydride, etc.
- formyl chloride, acetyl chloride, acetyl bromide examples include propionic acid chloride, benzoyl chloride, toluic acid chloride, acetic anhydride, monochloroacetic anhydride, propionic anhydride, succinic anhydride, maleic anhydride and the like.
- the acylation of the 4-aralkylphenol represented by the general formula (2b) in step A1 may be performed by simultaneously acylating the hydroxyl group and the phenyl ring of 4-aralkylphenol (the following step A1b: one-step method)
- step A1b one-step method
- nuclear acylation of the phenyl ring (the following step A1a: two-step method) may be performed.
- the former one-stage acylation method is preferred.
- the nuclear acylation reaction in the following step A1a is the same as the nuclear acylation reaction in step A1 when the starting material is a 4-aralkylphenyl ester of the general formula (2a).
- Step A1b Reaction scheme for one-step acylation
- the acylating agent is, for example, an acylation of the general formula (11) or general formula (12) containing the substituent R 7 . It is an agent.
- Step A1a Reaction scheme for two-stage acylation
- R 7 and R 8 may be the same or different, and the acylating agent may be, for example, General Formula (11) or General Formula containing substituent R 8
- the acylating agent of the general formula (11) containing the acylating agent of (12) and the substituent R 7 and the acylating agent of the general formula (12) are sequentially used.
- the substituent R 7 in the formula Or R 8 is an acyl halide used in the acylation step and the acyl halide represented by the general formula (11), R 7 or R of the carboxylic acid anhydride represented by the general formula (12). 8 is derived from.
- R 7 and R 8 are the same.
- acylation catalyst is usually used.
- the acylation catalyst is not particularly limited as long as it is an acid catalyst that can acylate a carbon atom of an aromatic ring such as a benzene ring, and examples thereof include a Lewis acid, a solid acid, and a proton acid.
- Lewis acid examples include metal halides such as aluminum chloride, tin (IV) chloride, copper chloride, and (anhydrous) iron (III) chloride, and aluminum chloride is preferable.
- solid acid examples include heteropolyacids such as zeolite, phosphotungstic acid, phosphomolybdic acid, silicon tungstic acid, and silicon molybdic acid, and metal salts of heteropolyacids.
- the protonic acid include hydrogen chloride gas, sulfuric acid, and polyphosphoric acid. A Lewis acid is preferred.
- the molar ratio of the acylating agent (acylating agent / 4-aralkylphenol derivatives) to the 4-aralkylphenol derivatives of the general formula (2) is [ ⁇ 1+ (number of hydroxyl groups in the 4-aralkylphenol derivatives molecule) ⁇ . ] / 1 ”to [1.25 ⁇ ⁇ 1+ (the number of hydroxyl groups in the 4-aralkylphenol derivative molecule) ⁇ ] / 1”, for example, X is a hydrogen atom and has other hydroxyl groups.
- the diacylation method in which the acylation reaction of the hydroxyl group and the phenyl nucleus is carried out in the same reaction step, preferably 2/1 to 2. It is in the range of 5/1, more preferably in the range of 2.1 / 1 to 2.3 / 1.
- X is preferably in the range of 1/1 to 1.25 / 1, more preferably The range is 1.1 / 1 to 1.2 / 1.
- the hydroxyl group is preferably a phenolic hydroxyl group.
- the molar ratio of Lewis acid to the carbonyl group of the acylating agent (Lewis mole number / [number of acylating agent moles ⁇ number of carbonyl groups in acylating agent molecule]) is 1/1 to 1.
- the ratio is preferably in the range of /1.1, more preferably 1/1, and if the molar ratio is too large, the yield decreases, and if it is too small, the reaction rate of the acylating agent decreases.
- the molar ratio of Lewis acid used with respect to the acylating agent (Lewis acid / acylating agent)
- acyl halide preferably in the range of 1/1 to 1 / 1.1, particularly The ratio is preferably 1/1, and in the case of an acid anhydride, it is preferably in the range of 2/1 to 2 / 1.1, particularly preferably 2/1.
- the 4-aralkylphenol derivatives of the general formula (2) have an oxo ( ⁇ O) such as an acyloxy group or an alkylsulfonyloxy group
- the molar amount of Lewis acid used is (number of moles of acylating agent ⁇ Number of carbonyl groups in acylating agent molecule) to ([number of moles of acylating agent ⁇ number of carbonyl groups in acylating agent molecule] + [number of moles of 4-aralkylphenol derivatives ⁇ number of oxo groups in 4-aralkylphenol derivatives molecule] Therefore, for example, in the case of acylating 4-aralkylphenol derivatives having X as an acyloxy group and having no other oxo group and hydroxyl group, the acylating agent may be an acyl halide.
- the molar ratio (Lewis acid / acylating agent) is preferably 1/1 to 2/1.
- the molar ratio (Lewis acid / acylating agent) is 1/1. 3/1 is preferred.
- reaction temperature is The range is preferably ⁇ 50 ° C. to 50 ° C.
- Lewis acid it is preferably in the range of ⁇ 20 to 20 ° C., more preferably in the range of 0 to 10 ° C.
- a reaction solvent generally used in Friedel-Crafts reaction is usually used. Examples of the solvent used include halogenated saturated hydrocarbons such as chloroform and methylene chloride, chlorobenzene, and carbon disulfide.
- the reaction is usually a reaction using a Lewis acid that is completed in several hours to several tens of hours.
- the reaction is usually performed by mixing a Lewis acid and an acylating agent to form a complex (or an adduct). And a solution of 4-aralkylphenol derivatives is dropped into this solution.
- the acylation reaction can be performed using carbon monoxide and hydrogen chloride in the presence of aluminum chloride or copper chloride.
- the same acylating agent or The acylation reaction is similarly performed using different acylating agents.
- an excess of carboxylic acid anhydride is used for acylation to the hydroxyl group in the first reaction, usually Lewis acid is not necessary and it is preferable because the reaction is easy.
- the well-known purification method can be used for the method of refine
- the catalyst is a Lewis acid
- an acid aqueous solution such as a hydrochloric acid aqueous solution is added to decompose the adduct of the acid and the product, the acid is deactivated, and then dissolved in the aqueous layer.
- a solvent that separates from water is added to separate and remove the aqueous layer to obtain an oil layer.
- 4-acyl aralkyl phenyl esters include, for example, 1-acetyl-4- ⁇ 1-methyl-1- (4-acetyloxyphenyl) ethyl ⁇ benzene, 1-acetyl-4- ⁇ 1-methyl-1- (3-methyl-4-acetyloxyphenyl) ethyl ⁇ benzene, 1-acetyl-4- ⁇ 1-methyl-1- (3,5-dimethyl-4-acetyloxyphenyl) ethyl ⁇ benzene, 1-acetyl-4- ⁇ 1-methyl-1- (2,3,5-trimethyl-4-acetyloxyphenyl) ethyl ⁇ benzene, 1-acetyl-4- ⁇ 1-methyl-1- (3-cyclohexyl-4-acetyloxyphenyl) ethyl ⁇ benzene, 1-acetyl-4- ⁇ 1-methyl-1- (3-isobutyl-4-acetyl
- step C1 and step B1 in the production method of the present invention will be described.
- the 4-acylaralkylphenyl esters represented by the general formula (7) obtained in the step A1 are hydrolyzed, hydrolyzed or / and added as shown in the above reaction scheme.
- the step B1 comprises the obtained 4-acylaralkylphenols and the phenol represented by the general formula (4).
- This is a reaction step in which a trisphenol represented by the general formula (1), which is the target product, is obtained by a condensation reaction.
- step C1 the ester group hydrolysis reaction, alcoholic decomposition reaction or phenolic decomposition reaction can be carried out by a known method.
- the molar ratio of water, alcohols or / and phenols to [4-acyl aralkyl phenyl esters ([water, alcohols or / and phenols] / 4 -Acyl aralkylphenyl esters) are not particularly limited, but if they are too large, the volumetric efficiency is deteriorated, so the range is usually in the range of 1/1 to 100/1, preferably in the range of 10/1 to 30/1.
- the alcohol is preferably an aliphatic alcohol such as methanol or ethanol
- the phenol is preferably a mononuclear phenol such as phenol or o-cresol.
- the decomposition reaction is usually carried out in the presence of an alkali or an acid catalyst, but alkali is preferred in terms of reaction rate and yield.
- alkali examples include alkali metal hydroxides such as sodium hydroxide and potassium hydroxide, and organic strong bases such as tetramethylammonium hydroxide.
- the molar ratio of alkali to 4-acyl aralkyl phenyl esters (number of ester groups in the molecule of alkali / 4-acyl aralkyl phenyl esters) is usually in the range of 1/1 to 5/1, preferably 2/1 to 3 / 1 range.
- the reaction temperature is usually in the range of 0 ° C. to 150 ° C., preferably in the range of 50 to 100 ° C.
- a solvent can be used.
- the solvent used is not particularly limited as long as it does not inhibit the reaction or cause a side reaction, but examples thereof include aliphatic ketones such as methyl isobutyl ketone, lower aliphatic alcohols such as methanol and isopropanol, Mention may be made of aromatic hydrocarbons such as toluene and ethers such as tetrahydrofuran.
- the hydrolysis is performed using only water, the reaction rate is very slow. Therefore, it is preferable to add a small amount of water-soluble alcohol such as methanol to water.
- a known purification method can be used as a method for purifying the target product from the reaction mixed solution as necessary.
- an acid aqueous solution is added to the resulting reaction mixture to neutralize the alkali, and if necessary, a solvent that separates from water is added to separate and remove the aqueous layer to obtain an oil layer containing the target product.
- the obtained oil layer is washed with water, and a solvent or the like is distilled off from the obtained oil layer as necessary. Then, a solvent is added again to the crystal to obtain a crystalline or amorphous solid by crystallization or precipitation. .
- Recrystallization or reprecipitation may be performed once to a plurality of times if necessary, such as low purity of crystals or solids. In this way, a high-purity product of 4-acylaralkylphenols represented by the general formula (6) can be obtained.
- 4-acylaralkylphenols include: 1-acetyl-4- ⁇ 1-methyl-1- (4-hydroxyphenyl) ethyl ⁇ benzene, 1-acetyl-4- ⁇ 1-methyl-1- (3-methyl-4-hydroxyphenyl) ethyl ⁇ benzene, 1-acetyl-4- ⁇ 1-methyl-1- (3,5-dimethyl-4-hydroxyphenyl) ethyl ⁇ benzene, 1-acetyl-4- ⁇ 1-methyl-1- (2,3,5-trimethyl-4-hydroxyphenyl) ethyl ⁇ benzene, 1-acetyl-4- ⁇ 1-methyl-1- (3-cyclohexyl-4-hydroxyphenyl) ethyl ⁇ benzene, 1-acetyl-4- ⁇ 1-methyl-1- (3-isobutyl-4-hydroxyphenyl) ethyl ⁇ benzene, 1-butyryl-4- ⁇ 1-methyl-1- (4-hydroxyphen
- Step B1 the 4-acylaralkylphenol obtained above is subjected to a condensation reaction with a phenol represented by the general formula (4) to obtain a trisphenol.
- a phenol represented by the general formula (4) A known reaction method can be used for the condensation reaction.
- specific examples of the phenols represented by the general formula (4) include phenol, o-cresol, 2-ethylphenol, catechol, 2-cyclohexylphenol, 2-methoxyphenol, 2-isopyrrole.
- Examples include pyrphenol, 2-chlorophenol, 2-bromophenol, 2-phenylphenol, 2-benzylphenol, and 2,6-xylenol.
- the molar ratio of phenols to 4-acylaralkylphenols is usually in the range of 2/1 to 10/1, preferably 3/1 to 5/1. Range.
- the catalyst used in the reaction is preferably an inorganic acid or an organic acid, and a strong acid to a medium strength acid is used. Examples of the inorganic acid include 35% hydrochloric acid, hydrogen chloride gas, sulfuric acid, phosphoric acid and the like.
- the organic acid is preferably an organic sulfonic acid or a carboxylic acid, and examples thereof include p-toluenesulfonic acid, methanesulfonic acid, and oxalic acid.
- the amount of catalyst used varies depending on the type of catalyst, but is usually in the range of about 1 to 50 wt% with respect to the phenol. Moreover, it is preferable to use an appropriate amount of a co-catalyst together with the catalyst, particularly when R 7 in the general formula (6) is an alkyl group, since the yield is improved.
- the cocatalyst is preferably a compound having a mercapto group or a polymer compound.
- examples thereof include alkyl mercaptans such as n-dodecyl mercaptan and methyl mercaptan, mercaptan carboxylic acids such as mercaptoacetic acid and ⁇ -mercaptopropionic acid, Examples thereof include a cation exchange resin having a mercapto group or an organic polymer siloxane.
- a solvent may or may not be used. However, if the molar ratio of phenols / 4-acylaralkylphenols is low or the melting point of phenols is high and it is difficult to make a solution, a solvent is used.
- the solvent examples include lower aliphatic alcohols such as methanol and butanol, aromatic hydrocarbons such as toluene and xylene, aliphatic ketones such as methyl isobutyl ketone, catechol and the like having a high melting point and high solubility in water.
- lower aliphatic alcohols such as methanol and butanol
- aromatic hydrocarbons such as toluene and xylene
- aliphatic ketones such as methyl isobutyl ketone
- catechol catechol and the like having a high melting point and high solubility in water.
- water can be used as a reaction solvent.
- the amount of the solvent used is not particularly limited, but is usually in the range of 0.1 to 10 times by weight, preferably in the range of 0.5 to 2 times the weight of the phenol to be used.
- the reaction temperature is usually in the range of 0 to 100 ° C., preferably in the range of 30 to 60 ° C.
- the reaction is carried out, for example, by dropping a solvent solution of 4-acylaralkylphenols into a solvent solution of phenols and a catalyst at a temperature of 40 ° C. in nitrogen gas.
- a known purification method can be used as a method for purifying the target product from the reaction mixed solution as necessary.
- water such as toluene, xylene, methyl isobutyl ketone or ether is added to the resulting reaction mixture to neutralize the acid by adding alkaline water such as aqueous sodium hydroxide solution and to separate and remove the aqueous layer.
- alkaline water such as aqueous sodium hydroxide solution
- a separable solvent are added, and then the aqueous layer is separated and removed to obtain an oil layer containing the target product.
- the obtained oil layer is washed with water, and a solvent or the like is distilled off from the obtained oil layer as necessary.
- step A1, step C1, and step B1 first production method
- a high-purity product of trisphenol which is the target product in the production method of the present invention, can be obtained.
- step B2 the 4-acylaralkylphenyl esters represented by the general formula (7) obtained in the above step A1 are condensed with the phenols represented by the general formula (4) as shown in the above reaction scheme.
- step C2 is followed by hydrolysis, alcoholysis or / and / or hydrolysis of the ester group of the monoester-substituted trisphenol obtained.
- This is a reaction step in which trisphenol represented by the general formula (1), which is the target product, is obtained by phenol decomposition.
- the phenols represented by the general formula (4) are the same as the phenols described in the step B1.
- the reaction is a reaction with an acyl group bonded to the phenyl group at the 4-position, and thus, similar to the condensation reaction described in the above-mentioned step B1.
- the reaction can be carried out under the same conditions such as the molar ratio of phenols to the raw material compound (4-acyl aralkylphenyl esters), catalyst and amount thereof, use of promoter, solvent and amount thereof, reaction temperature and reaction method.
- the ester group of the 4-acylaralkylphenyl esters represented by the general formula (7) is partially hydrolyzed, or the ester group of the 4-acylaralkylphenyl esters is partially reacted.
- a known purification method can be used as a method for purifying the target product from the reaction mixed solution as necessary.
- monoester-substituted trisphenols represented by the general formula (8) can be obtained by the same method as described in Step B1.
- step C2 the ester group of the monoester-substituted trisphenol obtained above is hydrolyzed, subjected to alcoholysis or / and phenololysis.
- Hydrolysis, alcoholysis, and / or phenololysis reaction of the ester group of monoester-substituted trisphenols can be performed by a known method.
- decomposition with water, alcohol or / and phenols water, alcohols and / or phenols, as in the hydrolysis reaction, alcoholic decomposition reaction or / and phenolic decomposition reaction described in Step C1 above.
- the molar ratio with the raw material compound (monoester substituted trisphenols), alkali and its amount, use and amount of solvent, reaction temperature, reaction method, etc. can be carried out under the same conditions, but when using an acid catalyst.
- the acid catalyst include hydrochloric acid, hydrogen chloride gas, sulfuric acid, p-toluenesulfonic acid, methanesulfonic acid, and the like.
- the amount of the acid catalyst used is usually 0.1% relative to 1 mol of the ester group in the raw material compound. It is in the range of ⁇ 10 mol, preferably in the range of 1 to 5 mol.
- a publicly known purification method can be used as a method for purifying the target product from the reaction mixed solution as necessary after the reaction.
- the trisphenol represented by General formula (1) which is the target object of the present invention can be obtained by sequentially performing the steps A1, B2 and C2 (second production method).
- the reaction conditions in the condensation reaction step B1 or step B2 and the compound used, hydrolysis reaction, addition
- the reaction conditions in the alcohol decomposition reaction or the phenol decomposition reaction Step C1 or Step C2 and the compound to be used are the same, the condensation reaction and hydrolysis, the alcohol addition reaction or the phenol addition reaction are the same step.
- the reaction product may be taken out and the incomplete reaction may be continued, or the reaction product may be purified to obtain the desired trisphenol. Also good.
- X of the 4-aralkylphenol derivative represented by the general formula (2) as a raw material is a 4-aralkylphenyl ether represented by the general formula (2c) which is a hydrocarbon group
- the step A2 and the step Examples thereof include a method for producing trisphenols comprising any one of the production method (third production method) sequentially including C3 and the step B1, or the production method (fourth production method) sequentially including the step A2, the step B3, and the step C4.
- Step A2 4-Aralkylphenyl ethers represented by the general formula (2c) (Wherein R 1 to R 4 , R 5 and R 6 , R 0 and n are the same as those in the general formula (2), R represents a hydrocarbon group, provided that when n is 1 or more, R 0 Is not substituted at the 4-position of the phenyl group.) Is acylated to give the general formula (9) (In the formula, R 1 to R 4 , R 5 and R 6 , R 0 and n, and R 7 are the same as those in the general formula (1), and R is the same as R in the general formula (2c).) 4-acylaralkylphenyl ethers represented by the formula:
- Step C3 Cleavage of the ether group of the 4-acylaralkylphenyl ether represented by the general formula (9) obtained in the step A2 to obtain a 4-acylaralkylphenol represented by the general formula (6) .
- Step B3 The 4-acylaralkylphenyl ethers obtained in Step A2 are subjected to a condensation reaction with the phenol represented by the general formula (4) to give a general formula (10) (Wherein R 1 to R 4 , R 5 and R 6 , R 0 and n, R 7 , R 9 to R 11 are the same as those in general formula (1), and R is the same as that in general formula (2c). Same.) The monoether substituted trisphenol represented by this is obtained.
- Step C4 The trisphenol represented by the general formula (1) is obtained by cleaving the ether group of the monoether-substituted trisphenol represented by the general formula (10) obtained in the step B3.
- the nuclear acylation reaction is represented by the general formula (9) by acylating with an acylating agent such as acetyl chloride or acetic anhydride and introducing an acyl group into the 4-position of the phenyl nucleus of the aralkyl group. 4-acylaralkylphenyl ethers are obtained.
- acylation reaction a known acylation reaction can be used. For example, in the same manner as the second-stage nuclear acylation reaction in the reaction method of the two-step acylation (step A1a) described in step A1 above. It can be carried out.
- Step C3 a known cleavage reaction related to phenyl ether can be used for the cleavage reaction.
- a known cleavage reaction related to phenyl ether can be used for the cleavage reaction.
- an alkoxyl group (RO group) is selectively converted into a hydroxy group.
- RO group alkoxyl group
- the condensation reaction of the obtained 4-acylaralkylphenol represented by the general formula (6) and the phenols represented by the general formula (4) is the same as in the above-mentioned step B1.
- step B3 the condensation reaction of the 4-acylaralkylphenyl ethers represented by general formula (9) and the phenols represented by general formula (4) is the same as in the method described in step B2. Can be done.
- Step C4 a known cleavage reaction related to phenyl ether can be used as the cleavage reaction. For example, when cleavage is performed in the presence of HBr, an alkoxyl group (RO group) can be converted into a hydroxy group.
- RO group alkoxyl group
- Step A2 and Step C3 and Step B1 (Third Production Method) or Step A2 and Step B3 and Step C4 (Fourth Production Method)
- Step A2 and Step C3 and Step B1 (Third Production Method) or Step A2 and Step B3 and Step C4 (Fourth Production Method)
- trisphenols represented by the general formula (1) which is the object of the present invention, can be obtained.
- trisphenols of general formula (1) are produced from 4-acylaralkylphenol derivatives in which Xa is an organic sulfonyl group (R′—SO 2 group / R ′ represents a hydrocarbon group) in general formula (3)
- Xa is an organic sulfonyl group
- R′—SO 2 group / R ′ represents a hydrocarbon group
- a known elimination reaction involving the sulfonyloxy group
- Xa is a tosyl group
- a hydrolysis reaction with an alkali such as potassium carbonate or potassium hydroxide can convert a tosyloxy group into a hydroxyl group.
- Xa is a mesyl group
- phenylmagnesium bromide or phenyllithium is used.
- the mesyloxy group can be converted into a hydroxyl group.
- the resulting 4-acylaralkylphenols of the general formula (6) can be used to obtain the desired trisphenols by the aforementioned step B1.
- the phenols and the raw materials are the same as in the condensation reaction described in the step B1 or the step B2.
- the target trisphenols can be obtained using the known methods described above.
- Step A1b Synthesis of 4- (1- (4-acetoxyphenyl) -1-methylethyl) acetophenone (Step A1b)
- a 500 ml four-necked flask equipped with a dropping funnel, a condenser, and a stirrer was charged with 70.5 g (0.542 mol) of aluminum chloride and 105.8 g of chloroform (1.5 times the weight of aluminum chloride), and the system was filled with nitrogen. It cooled to 5 degreeC, replacing. After cooling, 42.3 g (0.542 mol) of acetyl chloride was added dropwise from the dropping funnel over 1 hour to form a complex. The complex did not dissolve in chloroform at 5 ° C., and the system became a slurry solution.
- HPLC high performance liquid chromatography
- Step C1 Synthesis of 4- (1- (4-hydroxyphenyl) -1-methylethyl) acetophenone (Step C1) 20.1 g of the crystals obtained in Example 1 were dissolved in 20 g of toluene, 24.0 g of a 16% aqueous sodium hydroxide solution and 2 g of methanol were added, and a hydrolysis reaction was performed at 50 ° C. for 2.5 hours. After completion of the reaction, the aqueous layer was removed after neutralization with 75% phosphoric acid. Toluene was distilled off from the obtained oil layer at 60 ° C. and 10 kPa to obtain 18.0 g of an orange solid having a purity by HPLC of 99.9%. This solid was analyzed by NMR and mass spectrometry, and confirmed to be 4- (1- (4-hydroxyphenyl) -1-methylethyl) acetophenone. The yield based on p-cumylphenol was 60.0%.
- Step B1 Synthesis of 1- ( ⁇ , ⁇ -bis (4-hydroxyphenyl) ethyl) -4- ( ⁇ -methyl- ⁇ - (4-hydroxyphenyl) ethyl) benzene (Step B1)
- a 300 ml four-necked flask equipped with a dropping funnel, a condenser, and a stirrer was charged with 55.6 g of phenol, 1.7 g of toluene (3 wt% based on the charged phenol), and dodecyl mercaptan (12.5 mol% based on the raw material ketone), The temperature was raised to 40 ° C. while replacing the system with nitrogen. After nitrogen replacement, the system was replaced with hydrogen chloride gas.
- Step A1b + Step C1 A 2L four-necked flask equipped with a dropping funnel, condenser, and stirrer was charged with 306.7 g (2.30 mol) of aluminum chloride and 460.0 g of chloroform (1.5 times the weight of aluminum chloride), and the atmosphere in the flask was replaced with nitrogen. And cooled to 5 ° C. After cooling, 117.4 g (1.15 mol) of acetic anhydride was added dropwise from a dropping funnel with stirring over 1 hour to form a complex. Since the complex does not dissolve in chloroform at 5 ° C., it becomes a slurry solution.
- the oil layer obtained by separating and removing the aqueous layer was distilled to remove 419.5 g of the solvent by distillation, and water was added to the resulting distillation residue and stirred to separate and remove the aqueous layer.
- To the obtained oil layer 127.6 g of a 16% aqueous sodium hydroxide solution and 36.1 g of methanol were added, and a hydrolysis reaction was carried out at 50 ° C. for 2 hours with stirring. After completion of the reaction, 75% phosphoric acid was added to neutralize and separate, and the aqueous layer was separated and removed. After adding water to wash the oil layer, the aqueous layer was separated and removed, and the resulting oil layer was removed under reduced pressure.
- Step A1a First stage
- a 500 ml four-necked flask equipped with a dropping funnel, a condenser, and a stirrer 100 g (0.471 mol) of p-cumylphenol, 50.0 g (0.832 mol) of glacial acetic acid, 0.6 g of 75% phosphoric acid (0 832 mol)
- the temperature was raised to 90 to 95 ° C. while purging the system with nitrogen.
- 57.7 g (0.565 mol) of acetic anhydride was added dropwise over 1 hour while the internal temperature was maintained at 90 to 95 ° C.
- Step A1a Synthesis of 4- (1- (4-acetoxyphenyl) -1-methylethyl) acetophenone (Step A1a, second stage)
- Into a 1 L four-necked flask equipped with a dropping funnel, a condenser, and a stirrer were charged 98.1 g (0.736 mol) of aluminum chloride and 147.2 g of dichloromethane, and the system was cooled to 5 ° C. while substituting nitrogen. After cooling, 37.6 g (0.368 mol) of acetic anhydride was added dropwise over 1.5 hours while maintaining 5 to 10 ° C. to form a complex.
- Example 5 After complex formation, 76.3 g (0.30 mol) of 1-acetoxy-4- (1-methyl-1-phenylethyl) benzene obtained in Example 5 was dissolved in 114.5 g of dichloromethane. The solution was added dropwise over 3 hours while maintaining the internal temperature at 5 to 10 ° C., and the reaction was performed at 5 ° C. for 1.5 hours after the completion of the addition. After completion of the reaction, 400 g of toluene was added to the reaction mixture. Next, 250.0 g of distilled water was charged into a 2 L four-necked flask equipped with a reflux condenser and a stirrer, and a toluene solution of the reaction mixture was added dropwise thereto.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
- Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
Abstract
Description
しかしながら、従来知られている原料のイソプロペニルアセトフェノンは活性なオレフィン基を有するために保存安定性が悪く、熱や酸等の不純物等の混在により容易に重合してポリマーを形成しやすいという問題があり、また、高価であったり、合成収率が低いという問題点もあった。
従って、イソプロペニルアセトフェノン等のアルケニルアセトフェノン類を原料としない、保存安定性が高く、入手容易な原料を用い、しかも、工業的に実施容易で、高効率なトリスフェノール類の製造方法、及びフェノール類との反応によりトリスフェノール類を製造することができる原料化合物が求められている。
加えて、ビスフェニルを分子の骨格とし、その一方のフェニル環のパラ位にアシル基を持ち、もう一方のフェニル環のパラ位に水酸基乃至アシルオキシ基を持つ4-アシルアラルキルフェノール誘導体を見出した。そして、このような化合物は新規であり、また、フェノール類と反応して、或いはフェノール類と反応した後、アシルオキシ基を加水分解することにより、容易にトリスフェノールを生成すること、並びにそれ自体ビスフェニル骨格の分子両端に2つの反応性に富む官能基を有するので各種の反応中間体として利用しうることを見出し本発明を完成した。
(式中、R1~R4は各々独立して水素原子、アルキル基、アルコキシル基、芳香族炭化水素基、ハロゲン原子、アシルオキシ基又は水酸基を表し、R5及びR6は各々独立して水素原子又はアルキル基を表し、R7は水素原子又はアルキル基を表し、R0はアルキル基、アルコキシル基又はハロゲン原子を表し、nは0又は1~4の整数を示し、但し、nが2以上の場合はR0は同一でも異なっていてもよく、R9~R11は各々独立して水素原子、アルキル基、アルコキシル基、芳香族炭化水素基、ハロゲン原子又は水酸基を表す。)
で表されるトリスフェノール類を製造するに際し、一般式(2)
(式中、R1~R4 、R5及びR6、R0及びnは一般式(1)のそれと同じであり、Xは水素原子又は水素原子と置換可能な脱離基を表す。但し、nが1以上の場合R0はフェニル基の4位には置換しない。)
で表される4-アラルキルフェノール誘導体類を出発原料とすることを特徴とする製造方法が提供される。
さらに、核アシル化工程(A)と、その後にフェノール類縮合工程(B)及びXaを水素原子に置換する脱離工程(C)を含むことを特徴とする請求項1記載のトリスフェノール類の製造方法は本発明の好ましい態様である。
(式中、R1~R4 、R5及びR6、R0及びnは一般式(2)のそれと同じであり、R7は一般式(1)のそれと同じであり、Xaは水素原子と置換可能な脱離基を表す。)で表される4-アシルアラルキルフェノール誘導体類を得る。
(式中、R9~R11は一般式(1)のそれと同じである。)
で表されるフェノール類と工程(A)で得られた前記一般式(3)で表される4-アシルアラルキルフェノール誘導体類を縮合反応させて、一般式(5)
(式中、R1~R4 、R5及びR6、R0及びn、R7、R9~R11は一般式(1)のそれと同じであり、Xaは水素原子と置換可能な脱離基を表す。)
で表されるトリスフェノール誘導体類を得るか、又は、前記フェノール類と工程(C)で得られた一般式(6)で表される4-アシルアラルキルフェノール類を縮合反応させて一般式(1)で表されるトリスフェノール類を得る。
(式中、R1~R4、R5及びR6、R0及びn、R7は一般式(1)のそれと同じである。)
で表される4-アシルアラルキルフェノール類を得るか、又は、工程(B)で得られた一般式(5)で表されるトリスフェノール誘導体のXa基を脱離させて一般式(1)で表されるトリスフェノール類を得る。
(式中、R1~R4 、R5及びR6、R0及びnは一般式(2)のそれと同じであり、R8は水素原子又は炭化水素基を表す。但し、nが1以上の場合R0は、フェニル基の4-位には置換しない。)
又は、一般式(2b)で表される4-アラルキルフェノール類
(式中、R1~R4、R5及びR6、R0及びnは一般式(2)のそれと同じである。但し、nが1以上の場合R0は、フェニル基の4-位には置換しない。)
を核アシル化して、一般式(7)
(式中、R1~R4 、R5及びR6、R0及びn、R7は一般式(1)のそれと同じであり、R8は一般式(2a)のそれと同じである。)
で表される4-アシルアラルキルフェニルエステル類を得る。
工程B1:ついで得られた4-アシルアラルキルフェノール類と前記一般式(4)で表されるフェノール類を縮合反応させて、一般式(1)で表されるトリスフェノール類を得る。
(式中、R1~R4 、R5及びR6、R0及びn、R7、R9~R11は一般式(1)のそれと同じであり、R8は一般式(2a)のそれと同じである。)
で表されるモノエステル置換トリスフェノールを得、
工程C2:ついで得られたモノエステル置換トリスフェノールのエステル基を加水分解、加アルコール分解又は加フェノール分解して、一般式(1)で表されるトリスフェノール類を得る。
また、本発明によれば、上記式(6)で示される4-アシルアラルキルフェノール類及び4-アシルアラルキルフェノール誘導体である上記式(7)で示される4-アシルアラルキルフェニルエステル類が提供される。
また、本発明の4-アシルアラルキルフェノール誘導体は、ビスフェニルを分子の骨格とし、その一方のフェニル環のパラ位にアシル基を持ち、もう一方のフェニル環のパラ位に水酸基乃至アシルオキシ基を持つ新規な4-アシルアラルキルフェノール誘導体であり、フェノール類と反応させることにより各種用途に適した種々の構造のトリスフェノール類を高純度に収率よく得ることができ、また、それ自体ビスフェニル骨格の分子両端に2つの反応性に富む官能基を有するので耐熱性等に優れた各種の反応中間体として利用できる。
さらに、このような化合物は、従来の原料化合物と比べて酸や熱に対して安定で保存安定性に優れ、しかも安価で入手容易なフェノール類及びスチレン類等から容易に製造可能な4-アラルキルフェノール類を原料として製造することができる。
また、アルコキシル基としては、例えば炭素原子数1~10の直鎖状、分枝鎖状のアルコキシル基、炭素原子数5~10のシクロアルコキシル基を挙げることができる。好ましくは、直鎖状又は分枝鎖状の炭素原子数1~4のアルコキシル基であり、炭素原子数3~4のアルコキシル基としては直鎖状乃至分枝鎖状であってもよく、また、好ましいシクロアルコキシル基としては、炭素原子数5~6のシクロアルコキシル基である。このようなアルコキシル基としては、具体的には例えば、メトキシ基、エトキシ基、n-プロポキシ基、イソプロポキシ基、シクロヘキシルオキシ基等を挙げることができる。好ましいR1~R4としては、水素原子、炭素原子数1~8のアルキル基又は炭素原子数1~8のアルコキシル基であり、より好ましくは水素原子、炭素原子数1~4のアルキル基である。さらに、R3又はR4は、水素原子、メチル基、エチル基が好ましく、R3又はR4のどちらか一方又は両方が水素原子であることがより好ましい。
また、アシルオキシ基(R-C(O)-O-)としては、そのカルボニル基に結合した置換基(R)は、脂肪族炭化水素基、環状炭化水素、芳香族炭化水素基、水素原子のいずれでもよいが、好ましくは前記したR1~R4がアルキル基である場合又は芳香族炭化水素基である場合のアルキル基又は芳香族炭化水素基と同様のアルキル基又は芳香族炭化水素基であり、より好ましくは、前記したと同様のアルキル基である。
nは0又は1~4の整数を示し、但し、nが2以上の場合はR0は同一でも異なっていてもよく、好ましいnは0又は1~2の整数である。好ましいR0としては、炭素原子数1~4のアルキル基である。
また、Xがアシル基である場合は、このような4-アラルキルフェニルエステル類は、例えば4-アラルキルフェノールのフェノール性ヒドロキシル基を無水酢酸、プロピオン酸クロリド等のアシル化剤でアシル化する公知の方法により容易に得ることができる。
また、R7は水素原子又はアルキル基を表し、アルキル基としては、前記したR1~R4がアルキル基である場合のアルキル基と同じであり、アルキル基の種類としては1級又は2級アルキル基が好ましい。従って、アルキル基としては、具体的には例えば、メチル基、エチル基、イソプロピル基、シクロヘキシル基、ベンジル基、メトキシエチル基、3-クロロプロピル基等を挙げることができる。また、アルキル基の炭素原子数は1~4が好ましい。
1-[α-メチル-α-(3-メチル-4-ヒドロキシフェニル)エチル]-4-[α,α-ビス(3-メチル-4-ヒドロキシフェニル)エチル]ベンゼン、
1-[α-メチル-α-(3-メトキシ-4-ヒドロキシフェニル)エチル]-4-[α,α-ビス(3-メトキシ-4-ヒドロキシフェニル)エチル]ベンゼン、
1-[α-メチル-α-(4-ヒドロキシフェニル)エチル]-4-[α,α-ビス(4-ヒドロキシフェニル)エチル]ベンゼン、
1-[α-メチル-α-(3-シクロヘキシル-4-ヒドロキシフェニル)エチル]-4-[α,α-ビス(3-シクロヘキシル-4-ヒドロキシフェニル)エチル]ベンゼン等が挙げられる。
本発明のトリスフェノールの製造方法に原料として用いられる一般式(2)の4-アラルキルフェノール誘導体の一つである一般式(2c)で表される4-アラルキルフェニルエーテル類において、式中、R1~R4、R5及びR6、R0及びnは一般式(2)のそれと同じであり、Rは炭化水素基を表す。Rの炭化水素基としては、不飽和脂肪族炭化水素基、アルキル基、芳香族炭化水素基等が挙げられる。アルキル基、芳香族炭化水素基としては、一般式(2)においてR1~R4がアルキル基又は芳香族炭化水素基である場合のアルキル基、芳香族炭化水素基と同じである。好ましくはアルキル基であり、種類としては1級又は2級アルキル基が好ましい。
本発明の製造方法おいては、前記一般式(2)の4-アラルキルフェノール誘導体類、好ましくは一般式(2a)の4-アラルキルフェニルエステル類、又は、前記一般式(2b)の4-アラルキルフェノール類を出発原料とする。そして、製造スキームに記載したように、出発原料が一般式(2a)の4-アラルキルフェニルエステル類の場合、工程A1において、これをアセチルクロライド、無水酢酸等のアシル化剤により核アシル化して、アラルキル基のフェニル基の4-位にアシル基を導入して一般式(7)で表される4-アシルアラルキルフェニルエステル類を得る。出発原料の一般式(2a)で表される4-アラルキルフェニルエステル類は、例えば、一般式(2)においてXが水素原子である場合の一般式(2b)で表される4-アラルキルフェノール類のヒドロキシル基をアシル化することによって得ることができる。
また、出発原料が一般式(2b)で表される4-アラルキルフェノール類の場合、工程A1において、同一反応工程でヒドロキシ基のアシル化とフェニル基の核アシル化をして一般式(7)で表される4-アシルアラルキルフェニルエステル類を得ることもできる。この場合、水酸基がアシル化された後、フェニル基が核アシル化される。また、出発原料が一般式(2)においてXがアシル基以外の脱離基である4-アラルキルフェノール誘導体類の場合も一般式(2a)の4-アラルキルフェニルエステルの場合と同様に核アシル化して、脱離基Xaが原料4-アラルキルフェノール誘導体類のそれと一致する一般式(3)の4-アシルアラルキルフェノール誘導体類を得ることができる。
(式中、R7は水素原子又はアルキル基を表し、R8は水素原子又は炭化水素基を表し、Yはハロゲン原子であり、R7又はR8は一般式(7)のR7又はR8に各々対応していることを表す。)
R7のアルキル基としては一般式(2)においてR1~R4がアルキル基である場合のアルキル基と同じであり、R8の炭化水素基としては、不飽和脂肪族炭化水素基、アルキル基、芳香族炭化水素基等が挙げられ、アルキル基、芳香族炭化水素基としては、一般式(2)においてR1~R4がアルキル基又は芳香族炭化水素基である場合のアルキル基、芳香族炭化水素基と同じである。
前記一般式(2b)で表される4-アラルキルフェノール類の工程A1におけるアシル化は、4-アラルキルフェノールの水酸基とフェニル環を同時にアシル化(下記工程A1b:一段法)してもよいし、先ず水酸基をアセチル基等のアシル基で保護したのち、フェニル環の核アシル化(下記工程A1a:2段法)を行っても良い。好ましくは前者の一段アシル化法である。また、下記工程A1aにおける核アシル化反応は、前記出発原料が一般式(2a)の4-アラルキルフェニルエステル類の場合の工程A1における核アシル化反応と同じである。
この方法では、一段で水酸基及びフェニル核のアシル化を行うのでR7=R8であり、アシル化剤は、例えば置換基R7を含む一般式(11)、一般式(12)のアシル化剤である。
この方法では、2回に分けてアシル化を行うのでR7とR8では同一でも、また異なっていてもよく、アシル化剤は、例えば置換基R8を含む一般式(11)、一般式(12)のアシル化剤と置換基R7を含む一般式(11)、一般式(12)のアシル化剤を順次用いる。
アシル化反応に際しては、通常、アシル化触媒を用いる。アシル化触媒としては、ベンゼン環等の芳香環の炭素原子をアシル化できる酸触媒であれば特に制限はないが、例えば、ルイス酸や固体酸、プロトン酸等が挙げられる。
アシル化剤に対して使用するルイス酸のモル比(ルイス酸/アシル化剤)について、具体的には、ハロゲン化アシルの場合は、好ましくは1/1~1/1.1の範囲、特に好ましくは1/1であり、酸無水物の場合は、好ましくは2/1~2/1.1の範囲、特に好ましくは2/1である。但し、一般式(2)の4-アラルキルフェノール誘導体類がアシルオキシ基やアルキルスルホニルオキシ基等のオキソ(=O)を有している場合、ルイス酸の使用モル量は(アシル化剤モル数×アシル化剤分子中のカルボニル基数)~([アシル化剤モル数×アシル化剤分子中のカルボニル基数]+[4-アラルキルフェノール誘導体類のモル数×4-アラルキルフェノール誘導体類分子中のオキソ基数])の範囲が好ましく、従って、例えば、Xがアシルオキシ基で、その他にオキソ基と水酸基を有していない4-アラルキルフェノール誘導体類をアシル化する場合において、アシル化剤がハロゲン化アシルであれば、モル比(ルイス酸/アシル化剤)は1/1~2/1が好ましく、酸無水物であれば、モル比(ルイス酸/アシル化剤)は1/1~3/1が好ましい。
反応に際し、通常、フリーデルクラフツ反応で一般に用いられる反応溶媒が用いられる。用いられる溶媒としては、クロロホルム、塩化メチレン等のハロゲン化飽和炭化水素類やクロロベンゼン、二硫化炭素が挙げられる。
このような反応条件において、反応は、通常、数時間~十数時間で終了するルイス酸を用いる反応の場合、反応は、通常、ルイス酸とアシル化剤を混合して錯体(又は付加体)を形成し、この溶液中に4-アラルキルフェノール誘導体類の溶液を滴下して行われる。
また、4-アラルキルフェノールの水酸基をアセチル基等のアシル基で保護したのち、フェニル環の核アシル化を行う二段法アシル化の場合、水酸基のアシル化反応の後、再度同じアシル化剤又は異なるアシル化剤を用いて同様にアシル化反応を行う。この場合、第一反応の水酸基へのアシル化に過剰のカルボン酸無水物を用いると、通常、ルイス酸は必要でなく、反応が容易である理由で好ましい。
このような4-アシルアラルキルフェニルエステル類としては、具体的には例えば、
1-アセチル-4-{1-メチル-1-(4-アセチルオキシフェニル)エチル}ベンゼン、
1-アセチル-4-{1-メチル-1-(3-メチル-4-アセチルオキシフェニル)エチル}ベンゼン、
1-アセチル-4-{1-メチル-1-(3,5-ジメチル-4-アセチルオキシフェニル)エチル}ベンゼン、
1-アセチル-4-{1-メチル-1-(2,3,5-トリメチル-4-アセチルオキシフェニル)エチル}ベンゼン、
1-アセチル-4-{1-メチル-1-(3-シクロヘキシル-4-アセチルオキシフェニル)エチル}ベンゼン、
1-アセチル-4-{1-メチル-1-(3-イソブチル-4-アセチルオキシフェニル)エチル}ベンゼン、
1-ブチリル-4-{1-メチル-1-(4-ブチリルオキシフェニル)エチル}ベンゼン、
1-アセチル-4-{(4-アセチルオキシフェニル)メチル}ベンゼン、
1-アセチル-4-{1-(4-アセチルオキシフェニル)エチル}ベンゼン、
1-プロピオニル-4-{(4-アセチルオキシフェニル)メチル}ベンゼン、
等が挙げられる。
工程C1は、上記工程A1で得られた、一般式(7)で表される4-アシルアラルキルフェニルエステル類を前記反応スキームに示すように、エステル基を加水分解、加アルコール分解又は/及び加フェノール分解して一般式(6)で表される4-アシルアラルキルフェノール類を得る反応工程で、工程B1は、ついで得られた4-アシルアラルキルフェノール類と一般式(4)で表されるフェノール類を縮合反応して、目的物である一般式(1)で表されるトリスフェノール類を得る反応工程である。
このような4-アシルアラルキルフェノール類としては、具体的には例えば、
1-アセチル-4-{1-メチル-1-(4-ヒドロキシフェニル)エチル}ベンゼン、1-アセチル-4-{1-メチル-1-(3-メチル-4-ヒドロキシフェニル)エチル}ベンゼン、
1-アセチル-4-{1-メチル-1-(3,5-ジメチル-4-ヒドロキシフェニル)エチル}ベンゼン、
1-アセチル-4-{1-メチル-1-(2,3,5-トリメチル-4-ヒドロキシフェニル)エチル}ベンゼン、
1-アセチル-4-{1-メチル-1-(3-シクロヘキシル-4-ヒドロキシフェニル)エチル}ベンゼン、
1-アセチル-4-{1-メチル-1-(3-イソブチル-4-ヒドロキシフェニル)エチル}ベンゼン、
1-ブチリル-4-{1-メチル-1-(4-ヒドロキシフェニル)エチル}ベンゼン、
1-アセチル-4-{(4-ヒドロキシフェニル)メチル}ベンゼン、
1-アセチル-4-{1-(4-ヒドロキシフェニル)エチル}ベンゼン、
等が挙げられる。
反応に際し、溶媒は用いても、また用いなくてもよいが、フェノール類/4-アシルアラルキルフェノール類のモル比が低い、或いはフェノール類の融点が高く溶液化が困難な場合には溶媒を用いてもよい。溶媒としては例えばメタノール、ブタノール等の低級脂肪族アルコール類、トルエン、キシレン等の芳香族炭化水素類、メチルイソブチルケトン等の脂肪族ケトン類、カテコール等の融点が高くかつ水への溶解度が大きい原料を用いる場合は水を反応溶媒にすることができる。好ましくは低級脂肪族アルコール類である。
反応温度は、通常、0~100℃の範囲、好ましくは30~60℃の範囲である。
反応は、例えば窒素ガス中、温度40℃において、4-アシルアラルキルフェノール類の溶媒溶液を、フェノール類と触媒の溶媒溶液中に滴下することにより行われる。
工程B2は、上記工程A1で得られた、一般式(7)で表される4-アシルアラルキルフェニルエステル類に、上記反応スキームに示すように一般式(4)で表されるフェノール類を縮合反応して、一般式(8)で表されるモノエステル置換トリスフェノールを得る反応工程で、工程C2は、ついで得られたモノエステル置換トリスフェノールのエステル基を加水分解、加アルコール分解又は/及び加フェノール分解して目的物である一般式(1)で表されるトリスフェノール類を得る反応工程である。
反応終了後、反応混合溶液から、必要に応じ目的物を精製する方法は、公知の精製方法を用いることができる。例えば、前記工程B1で記載したと同様の方法で一般式(8)で表されるモノエステル置換トリスフェノール類を得ることができる。
モノエステル置換トリスフェノール類のエステル基の加水分解、加アルコール分解又は/及び加フェノール分解反応は、公知の方法により行うことができる。例えば、水、アルコール又は/及びフェノール類による分解の場合、前記工程C1で記載した加水分解反応、加アルコール分解反応又は/及び加フェノール分解反応と同様に、水、アルコール類又は/及びフェノール類と原料化合物(モノエステル置換トリスフェノール類)とのモル比、アルカリとその量、溶媒の使用とその量、反応温度、反応方法等同様の条件で行うことができるが、酸触媒を使用する場合、酸触媒としては、塩酸、塩化水素ガス、硫酸、p-トルエンスルホン酸、メタンスルホン酸等が挙げられ、酸触媒の使用量は、通常、原料化合物中のエステル基1モルに対して0.1~10モルの範囲、好ましくは1~5モルの範囲である。また、反応終了後、反応混合溶液から、必要に応じ目的物を精製する方法は、公知の精製方法を用いることができる。例えば、前記工程C1で記載したと同様の方法を用いることができる。このようにして、工程A1と工程B2及び工程C2(第2製法)を順次行うことにより、本発明の目的物である一般式(1)で表されるトリスフェノール類を得ることができる。なお、A1工程で得られた一般式(7)の4-アシルアラルキルフェニルエステルを次工程で反応させる際に縮合反応(B1工程又はB2工程)における反応条件及び使用する化合物と加水分解反応、加アルコール分解反応又は加フェノール分解反応(C1工程又はC2工程)における反応条件及び使用する化合物とが共通している場合には、縮合反応と加水分解、加アルコール分解反応又は加フェノール分解反応は同一工程内で行うことができる。条件によりどちらかの反応が不完全な場合でも、反応生成物を取り出して、さらに不完全な方の反応を続行してもよく、又は、反応生成物を精製して目的のトリスフェノールを得てもよい。
(式中、R1~R4 、R5及びR6、R0及びnは一般式(2)のそれと同じであり、Rは炭化水素基を表す。但し、nが1以上の場合R0は、フェニル基の4位には置換しない。)
を核アシル化して、一般式(9)
(式中、R1~R4 、R5及びR6、R0及びn、R7は一般式(1)のそれと同じであり、Rは一般式(2c)のRと同じである。)
で表される4-アシルアラルキルフェニルエーテル類を得る。
(式中、R1~R4 、R5及びR6、R0及びn、R7、R9~R11は一般式(1)のそれと同じであり、Rは一般式(2c)のそれと同じである。)
で表されるモノエーテル置換トリスフェノールを得る。
次いで、工程C4において開裂反応は、フェニルエーテルに係る公知の開裂反応を用いることができ、例えば、HBrの存在下に開裂させると、アルコキシル基(RO基)をヒドロキシ基とする事ができる。
かくして、一般式(2c)で表される4-アラルキルフェニルエーテル類を出発原料として、工程A2と工程C3と前記工程B1(第3製法)又は工程A2と工程B3と工程C4(第4製法)を順次行うことにより、本発明の目的物である一般式(1)で表されるトリスフェノール類を得ることができる。
滴下ロート、冷却管、攪拌機を備えた500ml四つ口フラスコに塩化アルミニウム70.5g(0.542モル)とクロロホルム105.8g(塩化アルミニウムに対し1.5重量倍)を仕込み、系内を窒素置換しながら5℃まで冷却した。冷却後、滴下ロートより塩化アセチル42.3g(0.542モル)を一時間かけて滴下し、錯体を形成した。錯体は5℃ではクロロホルムに溶解せず、系内はスラリー溶液となった。
錯体形成後、この溶液中にp-クミルフェノール 50.0 g(0.236モル)をクロロホルム75g (p-クミルフェノールに対して1.5重量倍)に溶解した溶液を、フラスコ内の温度を5℃に維持しながら、3時間をかけて滴下し、滴下終了後、20℃で2時間反応を行った。
反応終了後、反応終了混合液にトルエン171.8g(フラスコ内容物の0.5重量倍)を加えた。
次いで、還流冷却管、攪拌機を備えた1L四ツ口フラスコに水275.1gを仕込み、そこに、フラスコ内の温度を40~50℃に維持しながら前記の反応終了混合液のトルエン溶液を滴下した。
滴下終了後、35%塩酸103.1gを添加して30℃で1時間攪拌した後、水層を分液除去した。得られた有機層は、水酸化ナトリウム水溶液を加えて中和して、水層を除去した後に、常圧にてクロロホルムを留去した。
次に得られた液に水を加えて洗浄し、水層を分離除去して、油層に16%水酸化ナトリウム水溶液100gを加えて1時間攪拌して洗浄した後、75%リン酸を加えて中和し、水層を除去した。得られた油層を60℃で10kPaまで蒸留して、トルエンを除去した。留去後の残留物にトルエン73.9g及びイソオクタン73.9gを加えて昇温して溶解した後、晶析して、冷却し、濾過、乾燥して高速液体クロマトグラフィー(以下、HPLCという場合がある。)による純度が97.3%の淡黄白色結晶42.3gを得た。この結晶をNMR、質量分析で分析し、4-(1-(4-アセトキシフェニル)-1-メチルエチル)アセトフェノンであることを確認した。
実施例1で得られた結晶20.1gをトルエン20gに溶解させ、16%水酸化ナトリウム水溶液24.0gとメタノール2gを加えて、50℃で2.5時間加水分解反応を行った。反応終了後、75%リン酸で中和した後、水層を除去した。
得られた油層から60℃、10kPaまで蒸留してトルエンを留去し、HPLCによる純度が99.9%の橙色固体18.0gを得た。
この固体をNMR、質量分析で分析し、4-(1-(4-ヒドロキシフェニル)-1-メチルエチル)アセトフェノンであることを確認した。
また、p-クミルフェノールに対する収率は、60.0%であった。
滴下ロート、冷却管、攪拌機を備えた300ml4つ口フラスコにフェノール55.6gとトルエン1.7g(仕込みフェノールに対し3重量%)、ドデシルメルカプタン(原料ケトンに対し12.5モル%)を仕込み、系内を窒素置換しながら40℃まで昇温した。
窒素置換後、系内を塩化水素ガスで置換した。そこに塩化水素ガスの供給を続けながら、フラスコ内温40~45℃に維持しながら実施例2で得られた4-〔1-メチル-1-(4-ヒドロキシフェニル)エチル〕アセトフェノン24.6g(0.096モル)をフェノール24.6gに溶解した溶液を3時間かけて滴下した。
滴下終了後、40℃で18時間撹拌して反応を続けた。反応終了後、反応終了混合物にトルエン35.7gを加えた後、16%水酸化ナトリウム水溶液を加えて中和し、87℃まで昇温して、結晶を溶解した。その後、これを晶析して、30℃まで冷却後、析出した結晶を濾別、乾燥して、高速液体クロマトグラフィー(HPLC)による純度が96.5%の白色結晶58.7gを得た。
得られた結晶をトルエンに昇温溶解した後、晶析した。この晶析液を冷却後、濾過、乾燥することで99.6%の白色結晶を得た。この結晶をプロトンNMR及び質量分析で分析し、目的物の1-(α-メチル-α,α-ビス(4-ヒドロキシフェニル)エチル)-4-(α-メチル-α-(4-ヒドロキシフェニル)エチル)ベンゼンであることを確認した。
分子量 423(M-H)- (液体クロマトグラフィー質量分析法)
1H-NMR(400MHz、CD3OD、標準物質:テトラメチルシラン)
7.01~7.05(4H, m)、6.92(2H, d, J=7.81 Hz)、6.85(4H, d, J=7.81 Hz)、6.62~6.67(6H, m)、4.85(3H, brs)、2.01(3H, s)、1.58(6H, s)
滴下ロート、冷却管、攪拌機を備えた2L4つ口フラスコに塩化アルミニウム306.7g(2.30モル)とクロロホルム460.0g(塩化アルミニウムに対し1.5重量倍)を仕込み、フラスコ内を窒素置換して、5℃まで冷却した。冷却後、撹拌下に滴下ロートより無水酢酸117.4g(1.15モル)を1時間かけて滴下し、錯体を形成した。錯体は5℃ではクロロホルムに溶解しないため、スラリー溶液となる。
その後、p-クミルフェノール106.0g(0.50モル)をクロロホルム159.1g(p-クミルフェノールの1.5重量倍)で溶解した溶液を、5℃で3時間かけて撹拌下スラリー溶液に滴下した。滴下終了後、撹拌下に5℃でさらに2時間反応させた。
反応終了後、反応終了液にトルエン619.0gを加えて希釈した。冷却管、攪拌機を備えた3L4つ口フラスコに水574.6gを仕込み、この水に撹拌下、10~20℃で上記のトルエンで希釈した反応液を滴下した。滴下終了後、35%塩酸346.5gを添加して、50℃で、1時間攪拌した。その後、析出した固形物を濾別し、濾液の水層を分離除去した。得られた油層に16%水酸化ナトリウム水溶液を加えて中和した後、35%塩酸を加えて撹拌洗浄後、水層を分離し、得られた油層に再度16%水酸化ナトリウム水溶液を加えて中和した。水層を分離除去して得られた油層を蒸留して溶媒419.5gを留出除去し、得られた蒸留残液に水を加えて撹拌して、水層を分離除去した。得られた油層に16%水酸化ナトリウム水溶液127.6g及びメタノール36.1gを加えて撹拌下に50℃で加水分解反応を2時間行った。反応終了後、75%リン酸を加えて中和し分液した後、水層を分離除去し、水を加えて油層を水洗した後、水層を分離除去し、得られた油層を減圧下70℃で蒸留してトルエンを除去した。蒸留残液にメチルイソブチルケトン 56.1g(蒸留残液の0.5重量倍)、シクロへキサン224.5g(蒸留残液の2重量倍)を加えて昇温し溶解した後、晶析、濾過、乾燥して白色粉末65.7gを得た。この結晶をプロトンNMR及び質量分析で分析し、4-(1-(4-ヒドロキシフェニル)-1-メチルエチル)アセトフェノンであることを確認した。
p-クミルフェノールに対する収率は50.3%であった。
滴下ロート、冷却管、攪拌機を備えた500ml四つ口フラスコにp-クミルフェノール100g(0.471モル)、氷酢酸50.0g(0.832モル)、75%リン酸0.6g(0.832モル)を仕込み、系内を窒素置換しながら90~95℃まで昇温した。昇温後、内温を90~95℃に維持しながら無水酢酸57.7g(0.565モル)を1時間かけて滴下し反応させた。 滴下終了後、同温度で3時間攪拌下に反応を行った。反応終了後、減圧蒸留を行って酢酸を除去し、蒸留後の残留物にシクロヘキサン200gを加え溶解した。その溶液に10%炭酸ナトリウム水溶液を加えて攪拌した後、水層を分離除去した。得られた有機層に10%炭酸ナトリウム水溶液を加え、同様の操作で洗浄及び水層除去を行った。
得られた有機層にさらに蒸留水を加えて攪拌した後、水層を分離除去した。同様に得られた油層に水を加えて水洗及び水層を除去する操作を2回行った。得られた有機層から蒸留によりシクロヘキサンを除去して、ガスクロマトグラフィーによる純度が98.2%の無色透明液体を得た。
この液体をNMR、質量分析で分析し、1-アセトキシ-4-(1-メチル-1-フェニルエチル)ベンゼンであることを確認した。
p-クミルフェノールに対する収率は98.4%であった。
分子量 254 (ガスクロマトグラフィー質量分析法)
1H-NMR(400MHz、CDCl3、標準物質;テトラメチルシラン)
1.67 (6H, s), 2.27 (3H, s), 6.96-6.98 (2H, m), 7.17-7.26 (7H, m)
滴下ロート、冷却管、攪拌機を備えた1L四つ口フラスコに塩化アルミニウム98.1g(0.736モル)とジクロロメタン147.2gを仕込み、系内を窒素置換しながら5℃まで冷却した。冷却後、5~10℃を維持しながら、無水酢酸37.6g(0.368モル)を1.5時間かけて滴下し、錯体を形成した。
錯体形成後、この溶液中に、実施例5で得られた1-アセトキシ-4-(1-メチル-1-フェニルエチル)ベンゼン76.3g(0.30モル)をジクロロメタン114.5gに溶解した溶液を、内温を5~10℃に維持しながら3時間かけて滴下し、滴下終了後、5℃で1.5時間反応を行った。反応終了後、反応終了混合液にトルエン400gを加えた。
次いで、還流冷却管、攪拌機を備えた2L四つ口フラスコに蒸留水250.0gを仕込み、そこに前記の反応終了混合液のトルエン溶液を滴下した。
滴下終了後、水層を分離除去して得られた有機層に25%塩酸93.4gを添加して30℃で30分攪拌した後、水層を分離除去した。得られた有機層に25%塩酸93.4gを加え、同様の操作で洗浄、水層除去を行った。得られた有機層に水酸化ナトリウム水溶液を加えて中和し、水層を分離除去した後、有機層に蒸留水を加えて攪拌し、水層を分離除去した。有機層に蒸留水を加えて同様の操作で水洗、水層除去を行った。
その後、得られた有機層から減圧蒸留により溶媒を留去した。
蒸留後の残留物にメチルイソブチルケトン45.5g及びシクロヘキサン135.6gを加えて冷却して晶析した。析出した結晶を濾別、乾燥してガスクロマトグラフィーによる純度が97.6%の4-[1-(4-アセトキシフェニル)-1-メチルエチル]アセトフェノン19.5gを白色結晶として得た。
滴下ロート、冷却管、攪拌機を備えた200ml四つ口フラスコにフェノール22.6g(0.240モル)とトルエン0.7g(仕込みフェノールに対し3重量%)、ドデシルメルカプタン0.5mlを仕込み、系内を窒素置換しながら45℃まで昇温した。
窒素置換後、系内を塩化水素ガスで置換した。フラスコ内温を45℃に維持しながらそこに実施例6で得られた4-[1-(4-アセトキシフェニル)-1-メチルエチル]アセトフェノン11.2g(0.038モル)をフェノール11.2g(0.119モル)に溶解した溶液を1.5時間かけて滴下した。滴下中は系内への塩酸ガスの供給を続けた。滴下終了後、50℃で21時間攪拌して反応を続けた。反応終了後、反応終了混合物にトルエン50.0g及び蒸留水10.0gを加えた後、16%水酸化ナトリウム水溶液を加えて中和し、85℃まで昇温して結晶を溶解し、水層を分離除去した。得られた有機層に蒸留水を加えて水洗後、水層を分離除去する操作を2回行った。得られた有機層を晶析し、析出した結晶を濾別、乾燥して、高速液体クロマトグラフィーによる純度が95.5%の1-[α,α-ビス(4-ヒドロキシフェニル)エチル]-4-[α-メチル-α-(4-ヒドロキシフェニル)エチル]ベンゼン13.6gを白色結晶として得た。
4-(1-(4-アセトキシフェニル)-1-メチルエチル)アセトフェノンに対する収率は83.2%であった。
Claims (7)
- 一般式(1)
(式中、R1~R4は各々独立して水素原子、アルキル基、アルコキシル基、芳香族炭化水素基、ハロゲン原子、アシルオキシ基又は水酸基を表し、R5及びR6は各々独立して水素原子又はアルキル基を表し、R7は水素原子又はアルキル基を表し、R0はアルキル基、アルコキシル基又はハロゲン原子を表し、nは0又は1~4の整数を示し、但し、nが2以上の場合はR0は同一でも異なっていてもよく、R9~R11は各々独立して水素原子、アルキル基、アルコキシル基、芳香族炭化水素基、ハロゲン原子又は水酸基を表す。)
で表されるトリスフェノール類を製造するに際し、一般式(2)
(式中、R1~R4 、R5及びR6、R0及びnは一般式(1)のそれと同じであり、Xは水素原子又は水素原子と置換可能な脱離基を表す。但し、nが1以上の場合R0はフェニル基の4位には置換しない。)
で表される4-アラルキルフェノール誘導体類を出発原料とすることを特徴とする製造方法。 - 一般式(2)において、Xで表される水素原子と置換可能な脱離基がアシル基である請求項1記載のトリスフェノール類の製造方法。
- 核アシル化工程(A)と、その後にフェノール類縮合工程(B)及びXaを水素原子に置換する脱離工程(C)を含むことを特徴とする請求項1記載のトリスフェノール類の製造方法。
工程(A):前記一般式(2)で表される4-アラルキルフェノール誘導体類を核アシル化して、一般式(3)
(式中、R1~R4 、R5及びR6、R0及びnは一般式(2)のそれと同じであり、R7は一般式(1)のそれと同じであり、Xaは水素原子と置換可能な脱離基を表す。)
で表される4-アシルアラルキルフェノール誘導体類を得る。
工程(B):一般式(4)
(式中、R9~R11は一般式(1)のそれと同じである。)
で表されるフェノール類と工程(A)で得られた前記一般式(3)で表される4-アシルアラルキルフェノール誘導体類を縮合反応させて一般式(5)
(式中、R1~R4 、R5及びR6、R0及びn、R7、R9~R11は一般式(1)のそれと同じであり、Xaは水素原子と置換可能な脱離基を表す。)
で表されるトリスフェノール誘導体類を得るか、又は、前記フェノール類と工程(C)で得られた一般式(6)で表される4-アシルアラルキルフェノール類を縮合反応させて一般式(1)で表されるトリスフェノール類を得る。
工程(C):工程(A)で得られた一般式(3)で表される4-アシルアラルキルフェノール誘導体類のXa基を脱離させて一般式(6)
(式中、R1~R4、R5及びR6、R0及びn、R7は一般式(1)のそれと同じである。)
で表される4-アシルアラルキルフェノール類を得るか、又は、工程(B)で得られた一般式(5)で表されるトリスフェノール誘導体のXa基を脱離させて一般式(1)で表されるトリスフェノール類を得る。 - 前記一般式(2)においてXがアシル基である一般式(2a)、又は、Xが水素原子である一般式(2b)で表される場合、工程A1と工程C1と工程B1を順次含む製法(第1製法)、又は工程A1と工程B2と工程C2を順次含む製法(第2製法)よりなる請求項1記載のトリスフェノール類の製造方法。
工程A1:一般式(2a)で表される4-アラルキルフェニルエステル類
(式中、R1~R4 、R5及びR6、R0及びnは一般式(2)のそれと同じであり、R8は水素原子又は炭化水素基を表す。但し、nが1以上の場合R0は、フェニル基の4-位には置換しない。)
又は、一般式(2b)で表される4-アラルキルフェノール類
(式中、R1~R4、R5及びR6、R0及びnは一般式(2)のそれと同じである。但し、nが1以上の場合R0は、フェニル基の4-位には置換しない。)
を核アシル化して、一般式(7)
(式中、R1~R4 、R5及びR6、R0及びn、R7は一般式(1)のそれと同じであり、R8は一般式(2a)のそれと同じである。)
で表される4-アシルアラルキルフェニルエステル類を得る。
工程C1:一般式(7)の4-アシルアラルキルフェニルエステル類のエステル基を加水分解、加アルコール分解又は加フェノール分解して前記一般式(6)で表される4-アシルアラルキルフェノール類を得、
工程B1:ついで得られた4-アシルアラルキルフェノール類と前記一般式(4)で表されるフェノール類を縮合反応させて、一般式(1)で表されるトリスフェノール類を得る。
工程B2:一般式(7)の4-アシルアラルキルフェニルエステル類に一般式(4)で表されるフェノール類を縮合反応させ、一般式(8)
(式中、R1~R4 、R5及びR6、R0及びn、R7、R9~R11は一般式(1)のそれと同じであり、R8は一般式(2a)のそれと同じである。)
で表されるモノエステル置換トリスフェノール類を得、
工程C2:ついで得られたモノエステル置換トリスフェノール類のエステル基を加水分解、加アルコール分解又は加フェノール分解して、一般式(1)で表されるトリスフェノール類を得る。 - フェノール類との縮合反応と加水分解反応、加アルコール分解反応又は/及び加フェノール分解反応を同じ工程で行う請求項4に記載のトリスフェノール類の製造方法。
- 請求項3工程B記載の一般式(5)で表されるトリスフェノール誘導体類の製造方法。
- 上記一般式(6)で表される4-アシルアラルキルフェノール類及び一般式(7)で表される4-アシルアラルキルフェノール誘導体。
Priority Applications (7)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US13/321,535 US9090547B2 (en) | 2009-05-19 | 2010-05-19 | Method for producing trisphenols and monoester-substituted products thereof, and 4-acylaralkylphenol derivatives |
KR1020157005827A KR101752982B1 (ko) | 2009-05-19 | 2010-05-19 | 트리스페놀류 및 그의 모노에스테르 치환체의 제조방법, 및 4-아실아랄킬페놀 유도체 |
KR1020117027365A KR101530113B1 (ko) | 2009-05-19 | 2010-05-19 | 트리스페놀류 및 그의 모노에스테르 치환체의 제조방법, 및 4-아실아랄킬페놀 유도체 |
KR20147019095A KR20140097568A (ko) | 2009-05-19 | 2010-05-19 | 트리스페놀류 및 그의 모노에스테르 치환체의 제조방법, 및 4-아실아랄킬페놀 유도체 |
CN201080021841.0A CN102428061B (zh) | 2009-05-19 | 2010-05-19 | 三苯酚类及其单酯取代物的制造方法及4-酰基芳烷基苯酚衍生物 |
JP2011514441A JP5719292B2 (ja) | 2009-05-19 | 2010-05-19 | トリスフェノール類及びそのモノエステル置換体の製造方法及び4−アシルアラルキルフェノール誘導体 |
US14/248,144 US9567281B2 (en) | 2009-05-19 | 2014-04-08 | 4-acylaralkylphenols and derivatives thereof |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009-121169 | 2009-05-19 | ||
JP2009121170 | 2009-05-19 | ||
JP2009-121170 | 2009-05-19 | ||
JP2009121169 | 2009-05-19 |
Related Child Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US13/321,535 A-371-Of-International US9090547B2 (en) | 2009-05-19 | 2010-05-19 | Method for producing trisphenols and monoester-substituted products thereof, and 4-acylaralkylphenol derivatives |
US14/248,144 Division US9567281B2 (en) | 2009-05-19 | 2014-04-08 | 4-acylaralkylphenols and derivatives thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
WO2010134559A1 true WO2010134559A1 (ja) | 2010-11-25 |
WO2010134559A9 WO2010134559A9 (ja) | 2011-03-31 |
Family
ID=43126236
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2010/058476 WO2010134559A1 (ja) | 2009-05-19 | 2010-05-19 | トリスフェノール類及びそのモノエステル置換体の製造方法及び4-アシルアラルキルフェノール誘導体 |
Country Status (6)
Country | Link |
---|---|
US (2) | US9090547B2 (ja) |
JP (3) | JP5719292B2 (ja) |
KR (3) | KR101752982B1 (ja) |
CN (2) | CN102428061B (ja) |
TW (2) | TWI545109B (ja) |
WO (1) | WO2010134559A1 (ja) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9567281B2 (en) | 2009-05-19 | 2017-02-14 | Honshu Chemical Industry Co., Ltd. | 4-acylaralkylphenols and derivatives thereof |
JP2019069922A (ja) * | 2017-10-11 | 2019-05-09 | 東レ・ファインケミカル株式会社 | 高純度トリフルオロメチル基置換芳香族ケトンの製造方法 |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101786888B1 (ko) | 2015-07-07 | 2017-10-18 | 주식회사 제이엠씨 | 트리스페놀 유도체 화합물의 제조방법 |
CN107011124B (zh) * | 2017-03-15 | 2020-12-01 | 常州市天华制药有限公司 | 一种三苯酚类化合物的生产方法 |
CN110092722B (zh) * | 2019-06-03 | 2022-08-16 | 玉门千华制药有限公司 | 一种催化合成4-酰基芳烷基苯酚衍生物的方法 |
CN114436781B (zh) * | 2022-01-26 | 2023-03-24 | 安徽觅拓材料科技有限公司 | 一种取代的苯酚类化合物的制备方法 |
CN115215734B (zh) * | 2022-08-17 | 2024-01-05 | 辽宁靖帆新材料有限公司 | 一种1-[4-(4-羟基苯基)苯基]-1,1-双(4-羟基苯基)乙烷的制备方法 |
CN118812327A (zh) * | 2024-07-02 | 2024-10-22 | 玉门千华制药有限公司 | 一种α,α,α'-三(4-羟苯基)-1-乙基-4-异丙苯的合成方法 |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008191413A (ja) * | 2007-02-05 | 2008-08-21 | Hyogo Prefecture | 感光性組成物 |
Family Cites Families (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CH621416A5 (ja) | 1975-03-27 | 1981-01-30 | Hoechst Ag | |
US4102862A (en) | 1976-03-31 | 1978-07-25 | Kenrich Petrochemicals, Inc. | Application of cumylphenol and derivatives thereof in plastic compositions |
GB1544872A (en) * | 1976-06-25 | 1979-04-25 | Sterling Drug Inc | 4-hydroxyphenylalkanolamine derivatives and preparation thereof |
JPS6284035A (ja) * | 1985-10-08 | 1987-04-17 | Mitsui Petrochem Ind Ltd | トリフエノ−ル系化合物 |
JPS63130565A (ja) | 1986-11-19 | 1988-06-02 | Kanto Kagaku Kk | ビフエニルカルボン酸エステル誘導体 |
JPH0632756A (ja) | 1992-07-14 | 1994-02-08 | Ube Ind Ltd | ビス(ヒドロキシフェニル)メタン類の製造方法 |
JP3275186B2 (ja) * | 1992-09-25 | 2002-04-15 | 本州化学工業株式会社 | 完全核アルキル置換トリスフェノール誘導体の製造方法 |
JP3467282B2 (ja) | 1992-12-28 | 2003-11-17 | 本州化学工業株式会社 | 新規なポリフェノール及びその製造方法 |
JPH07138200A (ja) | 1993-11-19 | 1995-05-30 | Asahi Organic Chem Ind Co Ltd | ビスレゾルシンの製造法 |
US5756781A (en) * | 1995-09-29 | 1998-05-26 | General Electric Company | Method for making tris(hydroxyphenyl) compounds using ion exchange |
JPH1097075A (ja) * | 1996-06-07 | 1998-04-14 | Fuji Photo Film Co Ltd | ポジ型フォトレジスト組成物 |
JPH1149714A (ja) | 1997-08-07 | 1999-02-23 | Mitsui Chem Inc | 4,4’−(1−フェニルエチリデン)ビスフェノールの製造方法 |
US6242654B1 (en) | 1998-12-22 | 2001-06-05 | Mitsui Chemicals, Inc. | Preparation process of fluorine substituted aromatic compound |
JP2004277358A (ja) * | 2003-03-17 | 2004-10-07 | Asahi Organic Chem Ind Co Ltd | ビスフェノールモノアルデヒド化合物及びその製造方法並びにこれを用いたテトラキスフェノール化合物及びその製造方法 |
MX2007014502A (es) | 2005-05-26 | 2008-02-07 | Metabasis Therapeutics Inc | Tiromimeticos para el tratamiento de enfermedades del higado graso. |
JP2007326847A (ja) | 2006-03-31 | 2007-12-20 | Honshu Chem Ind Co Ltd | 新規な多核体ポリフェノール化合物 |
JP5100646B2 (ja) | 2006-06-09 | 2012-12-19 | 本州化学工業株式会社 | 新規なトリス(ホルミルフェニル)類及びそれから誘導される新規な多核ポリフェノール類 |
WO2009096951A1 (en) | 2008-01-30 | 2009-08-06 | Applied Materials, Inc. | System and method for pre-ionization of surface wave launched plasma discharge sources |
TWI545109B (zh) | 2009-05-19 | 2016-08-11 | 本州化學工業有限公司 | 4-醯基芳烷基苯酚及其衍生物 |
-
2010
- 2010-05-19 TW TW104117749A patent/TWI545109B/zh active
- 2010-05-19 CN CN201080021841.0A patent/CN102428061B/zh active Active
- 2010-05-19 CN CN201410370129.1A patent/CN104211588B/zh active Active
- 2010-05-19 KR KR1020157005827A patent/KR101752982B1/ko active IP Right Grant
- 2010-05-19 TW TW099116045A patent/TWI500600B/zh active
- 2010-05-19 WO PCT/JP2010/058476 patent/WO2010134559A1/ja active Application Filing
- 2010-05-19 KR KR20147019095A patent/KR20140097568A/ko not_active Application Discontinuation
- 2010-05-19 US US13/321,535 patent/US9090547B2/en active Active
- 2010-05-19 JP JP2011514441A patent/JP5719292B2/ja active Active
- 2010-05-19 KR KR1020117027365A patent/KR101530113B1/ko active IP Right Grant
-
2014
- 2014-04-08 US US14/248,144 patent/US9567281B2/en active Active
-
2015
- 2015-02-18 JP JP2015029334A patent/JP5931239B2/ja active Active
-
2016
- 2016-04-25 JP JP2016087134A patent/JP6078675B2/ja active Active
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008191413A (ja) * | 2007-02-05 | 2008-08-21 | Hyogo Prefecture | 感光性組成物 |
Non-Patent Citations (1)
Title |
---|
FUJIMOTO, K. ET AL.: "Synthesis and molecular recognition properties of a self-assembling molecule consisted of a porphyrin core and two hydrogen-bonding moieties", MATERIALS SCIENCE & ENGINEERING, C: BIOMIMETIC AND SUPRAMOLECULAR SYSTEMS, vol. 27, no. 1, 2007, pages 142 - 147, XP005805818, DOI: doi:10.1016/j.msec.2006.04.002 * |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9567281B2 (en) | 2009-05-19 | 2017-02-14 | Honshu Chemical Industry Co., Ltd. | 4-acylaralkylphenols and derivatives thereof |
JP2019069922A (ja) * | 2017-10-11 | 2019-05-09 | 東レ・ファインケミカル株式会社 | 高純度トリフルオロメチル基置換芳香族ケトンの製造方法 |
Also Published As
Publication number | Publication date |
---|---|
US9567281B2 (en) | 2017-02-14 |
JP5719292B2 (ja) | 2015-05-13 |
TW201105624A (en) | 2011-02-16 |
TW201536733A (zh) | 2015-10-01 |
CN102428061A (zh) | 2012-04-25 |
WO2010134559A9 (ja) | 2011-03-31 |
CN104211588B (zh) | 2017-01-11 |
JPWO2010134559A1 (ja) | 2012-11-12 |
TWI545109B (zh) | 2016-08-11 |
US20140221680A1 (en) | 2014-08-07 |
CN102428061B (zh) | 2015-09-30 |
KR101752982B1 (ko) | 2017-06-30 |
JP2016179987A (ja) | 2016-10-13 |
JP2015120737A (ja) | 2015-07-02 |
KR20140097568A (ko) | 2014-08-06 |
US9090547B2 (en) | 2015-07-28 |
KR20120015322A (ko) | 2012-02-21 |
CN104211588A (zh) | 2014-12-17 |
US20120108853A1 (en) | 2012-05-03 |
JP5931239B2 (ja) | 2016-06-08 |
JP6078675B2 (ja) | 2017-02-08 |
KR20150035609A (ko) | 2015-04-06 |
KR101530113B1 (ko) | 2015-07-06 |
TWI500600B (zh) | 2015-09-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5931239B2 (ja) | トリスフェノール類及びそのモノエステル置換体の製造方法及び4−アシルアラルキルフェノール誘導体 | |
TWI520937B (zh) | 新穎之參酚化合物 | |
US4927956A (en) | 3,5-disubstituted-4-acetoxystyrene and process for its production | |
US4965400A (en) | Preparation of 3,5-disubstituted-4-acetoxystyrene | |
JP6138115B2 (ja) | トリスフェノール類の製造方法 | |
JP4997233B2 (ja) | 新規な多核体ポリ(ホルミルフェノール)類の製造方法 | |
KR102357570B1 (ko) | 신규한 비스(히드록시알콕시페닐)디페닐메탄류 | |
JP5752361B2 (ja) | 1−(4−ヒドロキシフェニル)−1−シクロヘキセン類の製造方法 | |
JP6071739B2 (ja) | 1,3−ビス(4−ヒドロキシフェニル)シクロヘキサン類の製造方法 | |
US5072025A (en) | Process for the production of 3,5-disubstituted-4-acetoxystyrene | |
JP6250453B2 (ja) | トリスフェノール化合物 | |
WO2008044568A1 (fr) | Nouveau bis(formylphényl)alcane et nouveau phénol polynucléaire dérivé de celui-ci | |
JP6234367B2 (ja) | 9,9−ビス(ヒドロキシアルコキシフェニル)フルオレン類の製造方法 | |
EP0307751A2 (en) | 3-mono- and 3,5-disubstituted-4-acetoxy and -4-hydroxystyrenes and process for their production | |
JP2008088179A (ja) | 非対称アルキリデン多価フェノール類とその製造方法 | |
JP2019026627A (ja) | 新規なビスフェノール化合物 | |
JP2002356453A (ja) | 新規なα,α’,α”−トリス(ヒドロキシフェニル)−1,3,5−トリイソプロピルベンゼン類 | |
JP2002284726A (ja) | α,α’,α”−トリス(4−ヒドロキシフェニル)−1,3,5−トリアルキルベンゼン類の製造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 201080021841.0 Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 10777792 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2011514441 Country of ref document: JP Kind code of ref document: A |
|
ENP | Entry into the national phase |
Ref document number: 20117027365 Country of ref document: KR Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 13321535 Country of ref document: US |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 10777792 Country of ref document: EP Kind code of ref document: A1 |