Nothing Special   »   [go: up one dir, main page]

WO2010131516A1 - 給湯システム - Google Patents

給湯システム Download PDF

Info

Publication number
WO2010131516A1
WO2010131516A1 PCT/JP2010/053964 JP2010053964W WO2010131516A1 WO 2010131516 A1 WO2010131516 A1 WO 2010131516A1 JP 2010053964 W JP2010053964 W JP 2010053964W WO 2010131516 A1 WO2010131516 A1 WO 2010131516A1
Authority
WO
WIPO (PCT)
Prior art keywords
hot water
temperature
water
storage tank
water supply
Prior art date
Application number
PCT/JP2010/053964
Other languages
English (en)
French (fr)
Inventor
宏和 田中
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Publication of WO2010131516A1 publication Critical patent/WO2010131516A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D19/00Details
    • F24D19/10Arrangement or mounting of control or safety devices
    • F24D19/1006Arrangement or mounting of control or safety devices for water heating systems
    • F24D19/1051Arrangement or mounting of control or safety devices for water heating systems for domestic hot water
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H15/00Control of fluid heaters
    • F24H15/10Control of fluid heaters characterised by the purpose of the control
    • F24H15/104Inspection; Diagnosis; Trial operation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H15/00Control of fluid heaters
    • F24H15/20Control of fluid heaters characterised by control inputs
    • F24H15/212Temperature of the water
    • F24H15/215Temperature of the water before heating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H15/00Control of fluid heaters
    • F24H15/20Control of fluid heaters characterised by control inputs
    • F24H15/212Temperature of the water
    • F24H15/219Temperature of the water after heating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H15/00Control of fluid heaters
    • F24H15/30Control of fluid heaters characterised by control outputs; characterised by the components to be controlled
    • F24H15/335Control of pumps, e.g. on-off control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H15/00Control of fluid heaters
    • F24H15/30Control of fluid heaters characterised by control outputs; characterised by the components to be controlled
    • F24H15/375Control of heat pumps
    • F24H15/38Control of compressors of heat pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H15/00Control of fluid heaters
    • F24H15/40Control of fluid heaters characterised by the type of controllers
    • F24H15/414Control of fluid heaters characterised by the type of controllers using electronic processing, e.g. computer-based
    • F24H15/421Control of fluid heaters characterised by the type of controllers using electronic processing, e.g. computer-based using pre-stored data
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H15/00Control of fluid heaters
    • F24H15/40Control of fluid heaters characterised by the type of controllers
    • F24H15/414Control of fluid heaters characterised by the type of controllers using electronic processing, e.g. computer-based
    • F24H15/45Control of fluid heaters characterised by the type of controllers using electronic processing, e.g. computer-based remotely accessible
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H15/00Control of fluid heaters
    • F24H15/20Control of fluid heaters characterised by control inputs
    • F24H15/269Time, e.g. hour or date
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H15/00Control of fluid heaters
    • F24H15/30Control of fluid heaters characterised by control outputs; characterised by the components to be controlled
    • F24H15/395Information to users, e.g. alarms

Definitions

  • the present invention relates to a hot water supply system comprising a heating unit having a heating device for heating water and a hot water storage tank unit having a hot water storage tank for storing hot water heated by the heating device, and more particularly, a heating unit and hot water storage.
  • the present invention relates to a technique for detecting erroneous connection of pipes connected between tank units.
  • Patent Document 1 water is heated by heat exchange with a refrigerant in a water heat exchanger connected to a heat pump cycle, and hot water storage type heat pump type that stores the heated hot water in a hot water storage tank.
  • a hot water supply system In this heat pump hot water supply system, a hot water storage tank unit having a hot water storage tank and a heat pump unit having a water heat exchanger are connected to a water supply pipe for supplying water from the hot water storage tank unit to the heat pump unit, and from the heat pump unit to the hot water storage tank unit. It is connected by a hot water supply pipe for supplying hot water.
  • a water circulation path is formed that returns from the bottom of the hot water storage tank to the top of the hot water storage tank through the water heat exchanger.
  • a circulation pump that circulates water on the water circulation path is arranged in either the hot water storage tank unit or the heat pump unit.
  • Patent Document 1 it is set as a detection condition for erroneous connection that at least the temperature of water entering the water heat exchanger is higher than the temperature of tapping water from the water heat exchanger. Therefore, as disclosed in Patent Document 1, the circulation pump is arranged on the hot water storage tank unit side, and the water flow direction in the water heat exchanger is reversed when the water supply pipe and the hot water supply pipe are misconnected. In such a configuration, the erroneous connection can be detected. However, when the circulation pump is arranged on the heat pump unit side and the water supply pipe and the hot water supply pipe are erroneously connected, the flow direction in the water heat exchanger changes. In such a configuration, there is a problem that the erroneous connection cannot be detected.
  • a temperature sensor is provided for each of the water discharge path connected to the bottom of the hot water storage tank of the hot water storage tank unit and the hot water supply path connected to the top of the hot water storage tank, and the water temperature of the water discharge path is the water temperature of the hot water supply path. It is also conceivable to detect an erroneous connection between the water supply pipe and the hot water supply pipe on the condition that it is higher than the above. However, in this method, when the circulation pump is arranged on the heat pump unit side and the water supply pipe and the hot water supply pipe are misconnected, the drainage path and the hot water supply path of the hot water storage tank are reversed.
  • an object of the present invention is to provide a hot water supply system capable of detecting an erroneous connection between a water supply pipe and a hot water supply pipe regardless of the location of the circulation pump. It is to provide.
  • the present invention comprises a heating unit having a heating device for heating water and a tank unit having a hot water storage tank for storing hot water heated by the heating device.
  • a water outlet connected to the bottom of the heating device and a water inlet connected to the upstream side of the predetermined flow direction in the heating device are connected by a first connection pipe, and downstream of the predetermined flow direction in the heating device.
  • the hot water outlet connected to the side and the hot water inlet connected to the top of the hot water storage tank are connected by a second connecting pipe, thereby forming a water circulation path between the hot water storage tank and the heating device. Applied to the hot water system.
  • the said heating apparatus is a water heat exchanger which heats water by heat exchange with the refrigerant
  • the said hot water supply system is what is called a heat pump type hot water supply system.
  • the 1st form of the hot-water supply system which concerns on this invention is the said 1st temperature detection means which detects the water temperature in the said water circulation path from the bottom part of the said hot water storage tank to the said water outlet, and the said heating device from the said water inlet
  • the temperature difference between the temperature detected by the second temperature detection means for detecting the water temperature in the water circulation path to the first temperature detection means, and the first temperature detection means and the second temperature detection means is equal to or higher than a preset first set temperature.
  • an erroneous connection detection means for detecting an erroneous connection between the first connection pipe and the second connection pipe.
  • the second form of the hot water supply system includes a third temperature detecting means for detecting the water temperature in the water circulation path from the hot water inlet to the top of the hot water storage tank, and the outlet from the heating device.
  • the temperature difference between the temperature detected by the fourth temperature detection means for detecting the water temperature in the water circulation path to the first temperature detection means, and the third temperature detection means and the fourth temperature detection means is equal to or higher than a preset second set temperature.
  • an erroneous connection detecting means for detecting an erroneous connection between the first connection pipe and the second connection pipe is provided.
  • the first connection pipe and the second connection pipe are connected to each other regardless of a change in the flowing water direction on the water circulation path due to an erroneous connection between the first connection pipe and the second connection pipe.
  • the temperature difference between the temperature detected by the temperature detecting means and the second temperature detecting means is equal to or greater than a preset first set temperature, or the third temperature detecting means and the fourth temperature
  • An erroneous connection between the first connection pipe and the second connection pipe can be detected on the condition that the temperature difference between the detection temperatures detected by the detection means is equal to or greater than a preset second set temperature.
  • the second temperature detecting means and the fourth temperature detecting means are normally provided for heating control of water in the hot water supply system
  • the first temperature detecting means or the third temperature detecting means is provided. Since the present invention can be realized simply by newly providing any one of the temperature detecting means, the configuration is also simple.
  • a circulation pump for circulating water in the water circulation path is provided on the water circulation path from the water inlet port of the heating unit to the heating device, and the first connection pipe and the It is suitable for a configuration in which the flowing water direction in the heating device does not change when the second connection pipe is erroneously connected.
  • the hot water supply system for example, when stopping the heating (water heating operation) of water on condition that the temperature detected by the temperature detecting means arranged in the hot water storage tank reaches a preset hot water storage temperature.
  • the hot water of the hot water storage temperature cannot be stored up to the bottom of the hot water storage tank, and water and lukewarm water remain at the bottom.
  • the temperature detected by the second temperature detecting means disposed on the heating unit side reaches the hot water storage temperature. It is also conceivable to stop heating.
  • the heating of the water cannot be stopped until the hot water at the hot water storage temperature reaches the second temperature detecting means provided on the heating unit side, an unnecessary water boiling operation is performed.
  • high-temperature hot water may flow into the heating device. Therefore, in the first embodiment of the present invention in which the first temperature detection means is arranged on the water circulation path from the bottom of the hot water storage tank to the water outlet, the temperature detected by the first temperature detection means is It is desirable to stop heating the water by the heating device on condition that the temperature has reached a predetermined temperature or higher. Accordingly, it is possible to store hot water up to the bottom of the hot water storage tank, and it is possible to prevent unnecessary hot water boiling operation and inflow of high temperature hot water to the heating device.
  • the first temperature detecting means is configured to connect the water circulation path from the bottom of the hot water storage tank to the outlet port. It is desirable to arrange in the vicinity of the bottom of the hot water storage tank.
  • the first temperature detection unit and the second temperature detection unit are independent of changes in the direction of flowing water on the water circulation path due to erroneous connection of the first connection pipe and the second connection pipe.
  • the temperature difference of the temperature detected by the temperature detection means is equal to or higher than the first preset temperature set in advance, or the temperature difference of the temperature detected by the third temperature detection means and the fourth temperature detection means
  • the second temperature detecting means and the fourth temperature detecting means are normally provided for heating control of water in the hot water supply system, the first temperature detecting means or the third temperature detecting means is provided.
  • the present invention can be realized simply by newly providing any one of the temperature detecting means, the configuration is also simple.
  • a circulation pump for circulating water in the water circulation path is provided on the water circulation path from the water inlet port of the heating unit to the heating device, and the first connection pipe and the It is suitable for a configuration in which the flowing water direction in the heating device does not change when the second connection pipe is erroneously connected.
  • a heat pump hot water supply system X (hereinafter, abbreviated as “hot water supply system X”) provided with a water heat exchanger 12 described later as a heating device for heating water.
  • hot water supply system X a heat pump hot water supply system X
  • the present invention can be applied to other hot water supply systems including a heating device that heats water by gas combustion or other energy sources.
  • the hot water supply system X is roughly divided into a heat pump unit 1 (an example of a heating unit) having a water heat exchanger 12 (an example of a heating device) that heats water, and a water heat exchanger 12. And a hot water storage tank unit 2 having a hot water storage tank 21 for storing hot water after being heated.
  • the water outlet 71 connected to the bottom of the hot water storage tank 21 by the water discharge path L11 and the water inlet path L12 upstream of the water flow direction R1 (corresponding to the predetermined water flow direction) in the water heat exchanger 12.
  • the water inlet port 81 connected in (1) is connected by a water supply pipe 31 (corresponding to a first connection pipe).
  • a hot water outlet 82 connected by a hot water supply path L13 on the downstream side of the flowing water direction R1 in the water heat exchanger 12 and a hot water inlet 72 connected by a hot water supply path L14 to the top of the hot water storage tank 21 are used for hot water supply. It is connected by a pipe 32 (corresponding to a second connection pipe).
  • a water circulation path L1 is formed that returns to the top of the hot water storage tank 21 via the hot water supply path L14.
  • the hot water supply system X as shown in FIG. 2, the water supply pipe 31 and the hot water supply pipe 32 may be erroneously connected (reversely connected) due to human error.
  • the hot water supply system X has a feature in a method of detecting an erroneous connection when the water supply pipe 31 and the hot water supply pipe 32 are erroneously connected as described above, which will be described in detail below.
  • the heat pump unit 1 includes a heat pump cycle (refrigeration cycle) 10 in which a compressor 11, a water heat exchanger 12, an expansion valve 13, and an outdoor air heat exchanger 14 are sequentially connected.
  • a heat pump cycle (refrigeration cycle) 10 in which a compressor 11, a water heat exchanger 12, an expansion valve 13, and an outdoor air heat exchanger 14 are sequentially connected.
  • the expansion valve 13 expands (changes state).
  • the low-temperature and low-pressure refrigerant expanded by the expansion valve 13 flows into the outdoor air heat exchanger 14 and absorbs heat and vaporizes by heat exchange with the outdoor air blown by a blower fan (not shown). It flows into the compressor 11 again.
  • the refrigerant is a CO 2 refrigerant which is an example of a carbon dioxide refrigerant capable of heating water to a high temperature of about 90 ° C., for example.
  • the refrigerant is not limited to the CO 2 refrigerant, and other refrigerants (for example, other natural refrigerants or chlorofluorocarbon refrigerants) may be used.
  • the water heat exchanger 12 is, for example, a refrigerant pipe through which a refrigerant flows and a water pipe through which water flows are arranged in contact with each other, and the refrigerant and water are circulated in a thermally coupled state. It is a conventionally well-known water heat exchanger which heat-exchanges and heats water.
  • the flowing water direction R ⁇ b> 1 in the water heat exchanger 12 is set in a direction opposite to the refrigerant circulation direction in the water heat exchanger 12. Thereby, high heat exchange efficiency is realized in the water heat exchanger 12.
  • the heat pump unit 1 includes a temperature sensor 41 (corresponding to a second temperature detection means) that detects the water temperature on the water inlet path L12 that forms the water circulation path L1 from the water inlet 81 to the water heat exchanger 12, and water A temperature sensor 42 (corresponding to a fourth temperature detecting means) for detecting the water temperature on the hot water supply path L13 that forms the water circulation path L1 from the heat exchanger 12 to the hot water outlet part 82, and the water heat exchanger from the water inlet part 81 12 is provided with a circulation pump 15 disposed on a water inlet path L12 that forms a water circulation path L1 to the motor 12, and a heat pump control unit (not shown) that controls the heat pump unit 1 (hereinafter referred to as “heat pump control unit ⁇ ”).
  • heat pump control unit ⁇ controls the heat pump unit 1
  • the temperature sensors 41 and 42 are temperature detection means using a thermistor, a thermocouple, etc., and the water temperature in each of the water inlet paths L12 and L13 detected by the temperature sensors 41 and 42 is input to the heat pump controller ⁇ .
  • the circulation pump 15 is driven to circulate water on the water inlet path L12 in the water circulation path L1 in the direction of arrow R2 (right direction in FIGS. 1 and 2).
  • the heat pump control unit ⁇ includes control devices such as a CPU, a RAM, and a ROM, and executes processing according to a control program stored in the ROM. Specifically, the heat pump control unit ⁇ executes an erroneous connection detection process (see the flowchart of FIG. 3) described later. Further, the heat pump control unit ⁇ controls the driving of the compressor 11 and the circulation pump 15 to circulate the refrigerant in the heat pump cycle 10 and circulate the water in the water circulation path L1. As a result, a water heating operation is realized in which the water output from the bottom of the hot water storage tank 21 is heated by heat exchange with the refrigerant in the water heat exchanger 12 and returned to the top of the hot water storage tank 21.
  • the heat pump control unit ⁇ realizes fine control of the compressor 11 and the circulation pump 15 based on the water temperature in each of the incoming water paths L12 and L13 detected by the temperature sensors 41 and 42.
  • the circulation pump 15 is disposed on the heat pump unit 1 side, and the heat pump control unit ⁇ can control the compressor 11 and the circulation pump 15 substantially simultaneously. It is possible to realize a kettle operation.
  • the hot water storage tank unit 2 has a hot water storage tank 21 for storing hot water after being heated by the water heat exchanger 12, and a hot water supply port 24 for hot water supplied from the hot water storage tank 21 to the hot water supply port 25 through the hot water supply path 22. And a hot water supply mixing valve 23 for adjusting the hot water supply temperature by mixing water from the hot water supply.
  • the hot water storage tank unit 2 when the hot water supply port 25 is opened, hot water is output from the top of the hot water storage tank 21 to the hot water supply port 22 through the hot water supply route 22 due to the water pressure applied from the water supply port 24 to the water supply route 26.
  • the hot water storage tank unit 2 includes a temperature sensor 51 (corresponding to a first temperature detection means) that detects the water temperature on the water discharge path L11 that forms the water circulation path L1 from the bottom of the hot water storage tank 21 to the water outlet 71. Temperature sensors 61 to 63 that detect water temperatures at different heights in the hot water storage tank 21 and a tank control unit (not shown) that controls the hot water storage tank unit 2 (hereinafter referred to as “tank control unit ⁇ ”) are provided. Yes.
  • the temperature sensor 51 is disposed near the bottom of the hot water storage tank 21 in the water discharge path L11.
  • the temperature sensor 51 and the temperature sensors 61 to 63 are temperature detection means using a thermistor, a thermocouple, or the like, and the water temperature and hot water storage tank 21 on the water discharge path L11 detected by the temperature sensor 51 and the temperature sensors 61 to 63 are used.
  • the water temperature inside is input to the tank controller ⁇ .
  • the tank control unit ⁇ includes control devices such as a CPU, a RAM, and a ROM, and executes processing according to a control program stored in the ROM. For example, the tank control unit ⁇ determines whether or not it is necessary to start a water heating operation for heating the water in the hot water storage tank 21 based on the temperatures detected by the temperature sensors 61 to 63. Specifically, the tank control unit ⁇ requests the heat pump control unit ⁇ of the heat pump unit 1 to start the water heating operation when the temperature detected by the temperature sensors 61 to 63 reaches a preset lower limit temperature. To do. As a result, the heat pump control unit ⁇ performs the water heating operation by controlling the drive of the compressor 11 and the circulation pump 15 as described above. Whether or not the water heater operation is necessary is determined based on other conditions such as the midnight time period or a predetermined time has elapsed since the previous water heater operation.
  • the tank controller ⁇ stops the water heating operation on the condition that the temperature detected by the temperature sensor 51 has reached a preset hot water storage temperature (predetermined temperature) or more during execution of the water heating operation.
  • the tank control unit ⁇ when executing such processing corresponds to the heating stop means.
  • the heating of water can be stopped according to the temperature detected by the temperature sensor 51 disposed on the water discharge path L11 between the bottom of the hot water storage tank 21 and the water outlet 71.
  • the hot water at the hot water storage temperature can be stored up to the bottom of the hot water storage tank 21 and the capacity of the hot water storage tank 21 can be utilized to the maximum.
  • the water supply pipe 31 and the hot water supply pipe 32 may be erroneously connected (see FIG. 2) due to human error.
  • an erroneous connection detection process (see the flowchart of FIG. 3) described later is executed to detect an erroneous connection between the water supply pipe 31 and the hot water supply pipe 32.
  • the trial run is executed by the heat pump control unit ⁇ according to, for example, a special operation on a remote controller (not shown) or an operation of a test run start switch provided in the hot water supply system X.
  • the trial operation at least a water heater operation in which the compressor 11 and the circulation pump 15 are driven by the heat pump control unit ⁇ is executed.
  • the heat pump control unit ⁇ when executing the erroneous connection detection process corresponds to the erroneous connection detection means.
  • the tank control unit ⁇ performs the same process as the erroneous connection detection process.
  • the tank control unit ⁇ corresponds to an erroneous connection detection unit.
  • the erroneous connection detection process is started from step S1 together with the start of the trial operation.
  • the erroneous connection detection process is not limited to the trial operation, but may be executed each time the hot water supply operation in the hot water supply system X is started.
  • Steps S1 and S2 First, after the start of the trial operation, the heat pump control unit ⁇ waits for processing until a predetermined time set in advance (No side of S1). This is because immediately after the start of the trial operation, water is not heated in the water heat exchanger 12, and there is no difference in the water temperature before and after the water heat exchanger 12 on the water circulation path L1.
  • the predetermined time is set based on the results of experiments, simulations, and the like in advance as the time required for water heating in the water heat exchanger 12 after the start of operation of the hot water supply system X. Then, when the predetermined time has elapsed (Yes side of S1), the process proceeds to step S2.
  • step S ⁇ b> 2 the heat pump control unit ⁇ acquires temperatures detected by the temperature sensor 51 and the temperature sensor 41. At this time, the temperature detected by the temperature sensor 51 is acquired by communication with the tank control unit ⁇ . Note that the temperature detected by the temperature sensor 51 may be directly input to the heat pump control unit ⁇ .
  • step S3 the heat pump control unit ⁇ calculates the temperature difference between the temperatures detected by the temperature sensor 51 and the temperature sensor 41.
  • the temperature sensor 51 and the temperature sensor 41 are heated from the hot water storage tank 21 on the water circulation path L1. Since the water temperature is detected up to the upstream side in the flowing water direction R1 of the exchanger 12, the temperature difference between the detected temperatures is little or infinitely small.
  • the temperature sensor 51 and the temperature sensor 41 perform water heat exchange on the water circulation path L1. The temperature before and after the vessel 12 is detected.
  • the temperature sensor 41 detects the temperature of water before being heated by the water heat exchanger 12 after being output from the top of the hot water storage tank 21. Will detect the temperature of the hot water which is heated by the water heat exchanger 12 and then returns to the bottom of the hot water storage tank 21. Therefore, the temperature difference between the temperatures detected by the temperature sensor 51 and the temperature sensor 41 is significantly larger than when the water supply pipe 31 and the hot water supply pipe 32 are normally connected.
  • Step S4 the heat pump control unit ⁇ determines whether or not the temperature difference between the temperatures detected by the temperature sensor 51 and the temperature sensor 41 is equal to or greater than a preset temperature (corresponding to the first preset temperature). to decide.
  • the set temperature is a threshold temperature for determining whether or not the temperature sensor 51 and the temperature sensor 41 are arranged on the water circulation path L1 with the water heat exchanger 12 interposed therebetween. It is set based on. The set temperature may be changed each time according to the hot water storage temperature set as the temperature of the hot water stored in the hot water storage tank 21 by the hot water operation.
  • step S41 the heat pump control unit ⁇ determines that the water supply pipe 31 and the hot water supply pipe 32 are normally connected, and indicates that the connection between the water supply pipe 31 and the hot water supply pipe 32 is normal. Are displayed on a display unit provided in the remote controller (not shown) or a display unit provided in the heat pump unit 1 or the hot water storage tank unit 2 (S41), and the erroneous connection detection process is terminated. In this case, after a conventionally known test operation for detecting the presence or absence of other abnormalities is executed, the test operation is stopped.
  • Step S5 to S6 On the other hand, if it is determined in step S4 that the temperature difference between the temperature detected by the temperature sensor 51 and the temperature sensor 41 is equal to or greater than the set temperature (Yes in S4), the process proceeds to step S5.
  • step S5 the heat pump control unit ⁇ determines that a misconnection has occurred in the water supply pipe 31 and the hot water supply pipe 32, stops driving the compressor 11 and the circulation pump 15, and ends the water heating operation (S5). ). Then, the heat pump control unit ⁇ indicates that a misconnection has occurred in the water supply pipe 31 and the hot water supply pipe 32, a display unit provided in the remote controller (not shown) of the hot water supply system X, the heat pump unit 1 or the hot water tank unit 2. (S6), and the test operation process is terminated.
  • the water supply pipe 31 and the hot water supply pipe 32 are erroneous. Since the connection is detected, the erroneous connection can be detected regardless of the change in the flowing water direction on the water circulation path L1 due to the erroneous connection of the water supply pipe 31 and the hot water supply pipe 32. Further, since the temperature sensor 41 is generally provided for controlling the heating of water in the hot water supply system X, the configuration is realized by simply providing the temperature sensor 51 in the conventional hot water supply system. It is possible.
  • the configuration in which the circulation pump 15 is disposed on the heat pump unit 1 side has been described as an example.
  • the water supply is performed regardless of the change in the direction of flowing water on the water circulation path L1. Since it is possible to detect an erroneous connection between the hot pipe 31 and the hot water supply pipe 32, the present invention can be similarly applied to a configuration in which the circulation pump 15 is disposed on the hot water storage tank unit 2 side.
  • route L11 between the bottom part of the hot water storage tank 21 and the water outlet part 71 was mentioned as an example, and was demonstrated.
  • the hot water storage tank 21 is replaced with a hot water inlet 72 as shown in FIGS. 4 and 5.
  • the structure provided with the temperature sensor 52 (equivalent to a 3rd temperature detection means) which detects the water temperature on the hot water supply path
  • the heat pump control unit ⁇ confirms that the temperature difference between the temperatures detected by the temperature sensor 52 and the temperature sensor 42 is greater than or equal to a preset temperature (corresponding to the second preset temperature). It is possible to detect an erroneous connection between the water supply pipe 31 and the hot water supply pipe 32 as a condition. Needless to say, the present invention can be applied to a configuration including both the temperature sensors 51 and 52.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Heat-Pump Type And Storage Water Heaters (AREA)

Abstract

 循環ポンプの配置箇所にかかわらず給水用配管及び給湯用配管の誤接続を検出することができる給湯システムを提供するため,給湯システムXでは,貯湯タンク21の底部から出水口部71への水循環経路L1を形成する出水経路L11における水温を検出する温度センサ51と,入水口部81から水熱交換器12への水循環経路L1を形成する入水経路L12における水温を検出する温度センサ41との検出温度の温度差が,予め設定された設定温度以上である場合に,給水用配管31及び給湯用配管32の誤接続を検出する。

Description

給湯システム
 本発明は,水を加熱する加熱装置を有する加熱ユニットと該加熱装置で加熱された後の温水を貯留する貯湯タンクを有する貯湯タンクユニットとを備えてなる給湯システムに関し,特に,加熱ユニット及び貯湯タンクユニットの間に接続される配管の誤接続を検出するための技術に関するものである。
 例えば特許文献1に開示されているように,ヒートポンプサイクルに接続された水熱交換器における冷媒との熱交換によって水を加熱し,その加熱後の温水を貯湯タンクに貯留する貯湯式のヒートポンプ式給湯システムが従来から存在する。
 このヒートポンプ式給湯システムでは,貯湯タンクを有する貯湯タンクユニットと水熱交換器を有するヒートポンプユニットとが,貯湯タンクユニットからヒートポンプユニットに水を供給するための給水用配管と,ヒートポンプユニットから貯湯タンクユニットにお湯を供給するための給湯用配管とによって接続される。これにより,ヒートポンプ式給湯システムでは,貯湯タンクの底部から水熱交換器を経て貯湯タンクの頂部に戻る水循環経路が形成されている。また,水循環経路上で水を循環させる循環ポンプは,貯湯タンクユニット又はヒートポンプユニットのいずれかに配置される。
 ところで,ヒートポンプ式給湯システムの設置工事などにおいて,人為的なミスにより給水用配管及び給湯用配管が誤接続(逆に接続)されるおそれがある。この場合,循環ポンプが貯湯タンクユニット側に配置された構成では,水熱交換器における流水方向が逆方向となってしまう。一方,循環ポンプがヒートポンプユニット側に配置された構成では,前記水循環経路が貯湯タンクの頂部から底部に戻る経路となってしまう。
 そのため,特許文献1では,水熱交換器への入水温度が水熱交換器からの出湯温度よりも高くなったこと等を条件に,給水用配管及び給湯用配管の誤接続を検出する構成が開示されている。
特開2005-147616号公報
 しかしながら,特許文献1に係る構成では,少なくとも水熱交換器への入水温度が水熱交換器からの出湯温度よりも高くなったことを誤接続の検出条件としている。そのため,特許文献1に開示されているように,循環ポンプが貯湯タンクユニット側に配置されており,給水用配管及び給湯用配管が誤接続されたときに水熱交換器における流水方向が逆方向になる構成では,その誤接続を検出することができるが,循環ポンプがヒートポンプユニット側に配置され,給水用配管及び給湯用配管が誤接続されたときに水熱交換器における流水方向に変化がない構成では,その誤接続を検出することはできないという問題がある。
 これに対し,貯湯タンクユニットの貯湯タンクの底部に接続された出水経路と貯湯タンクの頂部に接続された入湯経路とのそれぞれに温度センサを設けておき,その出水経路の水温が入湯経路の水温よりも高くなったことを条件に,給水用配管及び給湯用配管の誤接続を検出することも考えられる。しかしながら,この手法では,循環ポンプがヒートポンプユニット側に配置されており,給水用配管及び給湯用配管が誤接続されたときに貯湯タンクの出水経路と入湯経路とが反転する構成では,その誤接続を検出することができるが,循環ポンプが貯湯タンクユニット側に配置され,給水用配管及び給湯用配管が誤接続されたときに出水経路と入湯経路とが反転しない構成では,その誤接続を検出することができないという問題が生じる。そのため,循環ポンプの配置箇所によって給水用配管及び給湯用配管の誤接続の検出手法を変える必要があった。
 従って,本発明は上記事情に鑑みてなされたものであり,その目的とするところは,循環ポンプの配置箇所にかかわらず給水用配管及び給湯用配管の誤接続を検出することができる給湯システムを提供することにある。
 上記目的を達成するために本発明は,水を加熱する加熱装置を有する加熱ユニットと前記加熱装置により加熱された後の温水を貯留する貯湯タンクを有するタンクユニットとを備えてなり,前記貯湯タンクの底部に接続された出水口部と前記加熱装置における既定の流水方向の上流側に接続された入水口部とが第1の接続配管によって接続され,前記加熱装置における前記既定の流水方向の下流側に接続された出湯口部と前記貯湯タンクの頂部に接続された入湯口部とが第2の接続配管によって接続されることにより,前記貯湯タンク及び前記加熱装置の間に水循環経路が形成されてなる給湯システムに適用される。なお,前記加熱装置は,例えばヒートポンプサイクルに循環される冷媒との熱交換により水を加熱する水熱交換器であり,この場合,前記給湯システムは所謂ヒートポンプ式給湯システムである。
 そして,本発明に係る給湯システムの第1形態は,前記貯湯タンクの底部から前記出水口部への前記水循環経路における水温を検出する第1の温度検出手段と,前記入水口部から前記加熱装置への前記水循環経路における水温を検出する第2の温度検出手段と,前記第1の温度検出手段及び前記第2の温度検出手段による検出温度の温度差が予め設定された第1の設定温度以上である場合に,前記第1の接続配管及び前記第2の接続配管の誤接続を検出する誤接続検出手段とを備えてなることを特徴として構成される。
 また,本発明に係る給湯システムの第2形態は,前記入湯口部から前記貯湯タンクの頂部への前記水循環経路における水温を検出する第3の温度検出手段と,前記加熱装置から前記出湯口部への前記水循環経路における水温を検出する第4の温度検出手段と,前記第3の温度検出手段及び前記第4の温度検出手段による検出温度の温度差が予め設定された第2の設定温度以上である場合に,前記第1の接続配管及び前記第2の接続配管の誤接続を検出する誤接続検出手段とを備えてなることを特徴として構成されることも考えられる。
 このように構成された本発明に係る給湯システムでは,前記第1の接続配管及び前記第2の接続配管の誤接続に起因する前記水循環経路上の流水方向の変化にかかわらず,前記第1の温度検出手段及び前記第2の温度検出手段による検出温度の温度差が予め設定された第1の設定温度以上であることを条件に,或いは,前記第3の温度検出手段及び前記第4の温度検出手段による検出温度の温度差が予め設定された第2の設定温度以上であることを条件に,前記第1の接続配管及び前記第2の接続配管の誤接続を検出することができる。ここで,前記第2の温度検出手段や前記第4の温度検出手段は,前記給湯システムにおける水の加熱制御のために通常設けられるものであるため,前記第1の温度検出手段又は前記第3の温度検出手段のいずれか一方を新たに設けるだけで本発明を具現することができるため構成も簡素である。
 例えば,本発明は,前記水循環経路において水を循環させる循環ポンプが,前記加熱ユニットの前記入水口部から前記加熱装置への前記水循環経路上に設けられており,前記第1の接続配管及び前記第2の接続配管の誤接続されたときに前記加熱装置における流水方向が変化しない構成に好適である。
 ところで,当該給湯システムにおいて,例えば前記貯湯タンクの内部に配置された温度検出手段による検出温度が予め設定された貯湯温度に達したことを条件に水の加熱(湯沸かし運転)を停止させる場合には,その貯湯温度の温水を前記貯湯タンクの底部まで目一杯貯めることができず,底部に水やぬるま湯が残るという問題がある。
 また,前記貯湯温度の温水を前記貯湯タンクの底部まで目一杯貯めるために,前記加熱ユニット側に配置された前記第2の温度検出手段による検出温度が前記貯湯温度に達したことを条件に水の加熱を停止させることも考えられる。しかしながら,この場合には,前記加熱ユニット側に設けられた前記第2の温度検出手段にその貯湯温度のお湯が到達するまで水の加熱を停止させることができないため,不要な湯沸かし運転が行われることになり,また,前記加熱装置に高温の温水が流れ込むおそれがある。
 そこで,前記貯湯タンクの底部から前記出水口部への前記水循環経路上に前記第1の温度検出手段が配置される本発明の前記第1形態では,該第1の温度検出手段による検出温度が所定温度以上に達したことを条件に前記加熱装置による水の加熱を停止させることが望ましい。これにより,前記貯湯タンク内の底部まで目一杯お湯を貯めることが可能となり,且つ不要な湯沸かし動作や前記加熱装置への高温の温水の流入を防止することができる。特に,前記貯湯タンク内の底部まで目一杯お湯が貯まったときに迅速に湯沸かし運転を停止させるため,前記第1の温度検出手段は,前記貯湯タンクの底部から前記出水口部への前記水循環経路上における該貯湯タンクの底部近傍に配置しておくことが望ましい。
 本発明によれば,前記第1の接続配管及び前記第2の接続配管の誤接続に起因する前記水循環経路上の流水方向の変化にかかわらず,前記第1の温度検出手段及び前記第2の温度検出手段による検出温度の温度差が予め設定された第1の設定温度以上であることを条件に,或いは,前記第3の温度検出手段及び前記第4の温度検出手段による検出温度の温度差が予め設定された第2の設定温度以上であることを条件に,前記第1の接続配管及び前記第2の接続配管の誤接続を検出することができる。ここで,前記第2の温度検出手段や前記第4の温度検出手段は,前記給湯システムにおける水の加熱制御のために通常設けられるものであるため,前記第1の温度検出手段又は前記第3の温度検出手段のいずれか一方を新たに設けるだけで本発明を具現することができるため構成も簡素である。
 例えば,本発明は,前記水循環経路において水を循環させる循環ポンプが,前記加熱ユニットの前記入水口部から前記加熱装置への前記水循環経路上に設けられており,前記第1の接続配管及び前記第2の接続配管の誤接続されたときに前記加熱装置における流水方向が変化しない構成に好適である。
本発明の実施の形態に係る給湯システムXの概略構成を示すブロック図であって正常接続状態を示す図。 本発明の実施の形態に係る給湯システムXの概略構成を示すブロック図であって誤接続状態を示す図。 本発明の実施の形態に係る給湯システムXで実行される誤接続検出処理の手順の一例を説明するためのフローチャート。 本発明の実施の形態に係る給湯システムXの変形例を示すブロック図であって正常接続状態を示す図。 本発明の実施の形態に係る給湯システムXの変形例を示すブロック図であって誤接続状態を示す図。
 以下添付図面を参照しながら,本発明の実施の形態について説明し,本発明の理解に供する。尚,以下の実施の形態は,本発明を具体化した一例であって,本発明の技術的範囲を限定する性格のものではない。
 本実施の形態では,本発明に係る給湯システムの一例として,水を加熱する加熱装置として後述の水熱交換器12を備えるヒートポンプ式給湯システムX(以下,「給湯システムX」と略称する)を例に挙げて説明するが,ガス燃焼やその他のエネルギー源により水を加熱する加熱装置を備えるその他の給湯システムにも本発明を適用することが可能である。
 まず,図1及び図2のブロック図を参照しつつ,本発明の実施の形態に係る給湯システムXの概略構成について説明し,その後,図3のフローチャートを用いて当該給湯システムXにおいて実行される誤接続検出処理について説明する。
 図1に示すように,給湯システムXは,大別すると,水を加熱する水熱交換器12(加熱装置の一例)を有するヒートポンプユニット1(加熱ユニットの一例)と,水熱交換器12より加熱された後の温水を貯留する貯湯タンク21を有する貯湯タンクユニット2とを備えている。
 そして,給湯システムXでは,貯湯タンク21の底部に出水経路L11で接続された出水口部71と,水熱交換器12における流水方向R1(既定の流水方向に相当)の上流側に入水経路L12で接続された入水口部81とが,給水用配管31(第1の接続配管に相当)によって接続される。また,水熱交換器12における流水方向R1の下流側に出湯経路L13で接続された出湯口部82と,貯湯タンク21の頂部に入湯経路L14で接続された入湯口部72とが,給湯用配管32(第2の接続配管に相当)によって接続される。これにより,貯湯タンク21及び水熱交換器12の間には,貯湯タンク21の底部から,出水経路L11,給水用配管31,入水経路L12,水熱交換器12,出湯経路L13,給湯用配管32,入湯経路L14を経て貯湯タンク21の頂部に戻る水循環経路L1が形成される。
 しかしながら,給湯システムXでは,図2に示すように,人為的なミスにより給水用配管31及び給湯用配管32が誤接続(逆に接続)されるおそれがある。当該給湯システムXは,このように給水用配管31及び給湯用配管32が誤接続された場合にその誤接続を検出する手法に特徴を有しており,以下この点について詳説する。
 ヒートポンプユニット1は,圧縮機11,水熱交換器12,膨張弁13及び室外空気熱交換器14が順に接続されたヒートポンプサイクル(冷凍サイクル)10を備えている。
 ヒートポンプサイクル10では,圧縮機11において圧縮して吐出された高温高圧の冷媒が,水熱交換器12に流入して貯湯タンクユニット2から供給される水との間の熱交換によって冷却された後,膨張弁13において膨張(状態変化)する。その後,膨張弁13で膨張した低温低圧の冷媒は,室外空気熱交換器14に流入し,送風ファン(不図示)で送風される室外空気との間の熱交換によって吸熱して気化した後,再度圧縮機11に流入する。これにより,水熱交換器12では,ヒートポンプサイクル10に循環される冷媒と水循環経路L1に流通する水との間の熱交換によってその水が加熱される。前記冷媒は,例えば水を90℃程度の高温まで加熱することができる炭酸ガス冷媒の一例であるCO2冷媒である。なお,前記冷媒はCO2冷媒に限らず他の冷媒(例えば,他の自然冷媒や,フロン系冷媒など)を用いてもよい。
 ここに,水熱交換器12は,例えば冷媒が流通する冷媒配管及び水が流通する水配管を接触させて配置したものであって,冷媒及び水を熱的に結合した状態で流通させることにより熱交換を行い水を加熱する従来周知の水熱交換器である。ヒートポンプユニット1では,水熱交換器12における流水方向R1が,該水熱交換器12における冷媒の循環方向と逆方向に設定されている。これにより,水熱交換器12において高い熱交換効率が実現される。
 また,ヒートポンプユニット1は,入水口部81から水熱交換器12への水循環経路L1を形成する入水経路L12上の水温を検出する温度センサ41(第2の温度検出手段に相当)と,水熱交換器12から出湯口部82への水循環経路L1を形成する出湯経路L13上の水温を検出する温度センサ42(第4の温度検出手段に相当)と,入水口部81から水熱交換器12への水循環経路L1を形成する入水経路L12上に配置された循環ポン
プ15と,当該ヒートポンプユニット1を制御する不図示のヒートポンプ制御部(以下,「ヒートポンプ制御部α」と称する)とを備えている。
 温度センサ41,42はサーミスタや熱電対などを用いた温度検出手段であって,該温度センサ41,42によって検出された入水経路L12,L13各々における水温はヒートポンプ制御部αに入力される。循環ポンプ15は,駆動することにより水循環経路L1における入水経路L12上の水を矢印R2方向(図1,2における右方向)に循環させる。
 ヒートポンプ制御部αは,CPUやRAM,ROMなどの制御機器を有してなり,該ROMに記憶された制御プログラムに従って処理を実行する。具体的に,ヒートポンプ制御部αは,後述の誤接続検出処理(図3のフローチャート参照)を実行する。
 また,ヒートポンプ制御部αは,圧縮機11や循環ポンプ15などの駆動を制御することにより,ヒートポンプサイクル10において冷媒を循環させ,水循環経路L1において水を循環させる。これにより,貯湯タンク21の底部から出力された水を,水熱交換器12における冷媒との熱交換によって加熱し,貯湯タンク21の頂部に還流させる湯沸かし運転が実現される。このとき,ヒートポンプ制御部αは,温度センサ41,42によって検出された入水経路L12,L13各々における水温に基づいて圧縮機11及び循環ポンプ15のきめ細やかな制御を実現する。
 特に,給湯システムXでは,循環ポンプ15がヒートポンプユニット1側に配置されており,ヒートポンプ制御部αが圧縮機11及び循環ポンプ15を略同時に制御することが可能であるため,応答性の早い緻密な湯沸かし運転を実現することができる。
 一方,貯湯タンクユニット2は,水熱交換器12で加熱された後の温水を貯留する貯湯タンク21と,貯湯タンク21から給湯経路22を通じて給湯口25に向けて供給される温水に給水口24からの水を混合して給湯温度を調節するための給湯混合弁23とを備えている。
 貯湯タンクユニット2では,給湯口25が開かれると,給水口24から給水経路26にかかっている水圧により,貯湯タンク21の頂部から給湯経路22を通じて給湯口25に温水が出力される。
 また,貯湯タンクユニット2は,貯湯タンク21の底部から出水口部71への水循環経路L1を形成する出水経路L11上の水温を検出する温度センサ51(第1の温度検出手段に相当)と,貯湯タンク21内の異なる高さの水温を検出する温度センサ61~63と,当該貯湯タンクユニット2を制御する不図示のタンク制御部(以下,「タンク制御部β」と称する)とを備えている。
 温度センサ51は,出水経路L11における貯湯タンク21の底部近傍に配置されている。温度センサ51及び温度センサ61~63は,サーミスタや熱電対などを用いた温度検出手段であって,該温度センサ51及び温度センサ61~63によって検出された出水経路L11上の水温及び貯湯タンク21内の水温はタンク制御部βに入力される。
 タンク制御部βは,CPUやRAM,ROMなどの制御機器を有してなり,該ROMに記憶された制御プログラムに従って処理を実行する。
 例えば,タンク制御部βは,温度センサ61~63による検出温度に基づいて,貯湯タンク21内の水を加熱する湯沸かし運転の開始の要否を判断する。具体的に,タンク制御部βは,温度センサ61~63による検出温度が予め設定された下限温度に達した場合に,ヒートポンプユニット1のヒートポンプ制御部αに対して,前記湯沸かし運転の開始を要求する。これにより,ヒートポンプ制御部αは,前述したように圧縮機11及び循環ポンプ15などの駆動制御を行うことにより前記湯沸かし運転を実行する。なお,前記湯沸かし運転の実行の要否は,深夜時間帯になったことや,前回の湯沸かし運転の実行から所定時間が経過したことなどの他の条件にも基づいて判断される。
 また,タンク制御部βは,前記湯沸かし運転の実行中,温度センサ51による検出温度が予め設定された貯湯温度(所定温度)以上に達したことを条件に,該湯沸かし運転を停止させる。ここに,係る処理を実行するときのタンク制御部βが加熱停止手段に相当する。
 このように,当該給湯システムXでは,貯湯タンク21の底部から出水口部71の間の出水経路L11上に配置された温度センサ51による検出温度に応じて水の加熱を停止させることができるため,前記貯湯温度の温水を貯湯タンク21の底部まで目一杯貯めることが可能であり,該貯湯タンク21の容量を最大限有効利用することができる。そのため,一度に多くのお湯を沸かすことができ,エネルギー消費効率の向上を図ることも可能である。
 また,ヒートポンプユニット1側の温度センサ41による検出温度に応じて水の加熱を停止させる場合に比べて,貯湯タンク21の底部まで温水が貯まったときに迅速に湯沸かし運転を停止させることが可能である。特に,当該給湯システムXでは,温度センサ51が,出水経路L11上における貯湯タンク21の底部近傍に設置されているため,該貯湯タンク21の底部から前記貯湯温度の温水が出力された直後に湯沸かし運転を停止させることができ,不要な湯沸かし運転や水熱交換器12への高温の温水の流入などを防止することができる。
 そして,前述したように,給湯システムXでは,人為的なミスにより給水用配管31及び給湯用配管32が誤接続(図2参照)されるおそれがあるため,ヒートポンプ制御部αは,給湯システムXの設置時やメンテナンス時などに実行する試運転と共に,後述の誤接続検出処理(図3のフローチャート参照)を実行することにより,給水用配管31及び給湯用配管32の誤接続を検出する。
 前記試運転は,例えばリモコン(不図示)に対する特殊操作や給湯システムXに設けられた試運転開始用のスイッチの操作などに応じて,ヒートポンプ制御部αによって実行される。前記試運転では,ヒートポンプ制御部αによって圧縮機11及び循環ポンプ15が駆動される湯沸かし運転が少なくとも実行される。
 以下,図3のフローチャートに従って,ヒートポンプ制御部αによって実行される誤接続検出処理の手順の一例について説明する。なお,図中のS1,S2,…は処理手順(ステップ)の番号を表している。
 ここに,当該誤接続検出処理を実行するときのヒートポンプ制御部αが誤接続検出手段に相当する。なお,タンク制御部βによって当該誤接続検出処理と同様の処理が実行されることも他の実施例として考えられ,この場合には該タンク制御部βが誤接続検出手段に相当する。
 当該誤接続検出処理は,前記試運転の開始と共にステップS1から開始される。なお,当該誤接続検出処理は,前記試運転時に限らず,給湯システムXにおける湯沸かし運転開始時にその都度実行されるものであってもよい。
(ステップS1~S2)
 まず,ヒートポンプ制御部αは,前記試運転の開始後,予め設定された所定時間が経過するまでは処理を待機させる(S1のNo側)。これは,前記試運転の開始直後では,水熱交換器12における水の加熱が行われず,水循環経路L1上の水熱交換器12の前後における水温に差異が生じないためである。なお,前記所定時間は,当該給湯システムXの稼働開始後,水熱交換器12における水の加熱が可能となるまでに要する時間として,予め実験やシミュレーションなどの結果に基づいて設定される。
 そして,前記所定時間が経過すると(S1のYes側),処理はステップS2に移行する。
 ステップS2では,ヒートポンプ制御部αは,温度センサ51及び温度センサ41による検出温度を取得する。このとき,温度センサ51による検出温度は,タンク制御部βとの間の通信によって取得する。なお,温度センサ51による検出温度がヒートポンプ制御部αに直接入力される構成であってもよい。
(ステップS3)
 そして,ステップS3では,ヒートポンプ制御部αは,温度センサ51及び温度センサ41による検出温度の温度差を算出する。
 ここで,図1に示すように,給水用配管31及び給湯用配管32が正常に接続されている場合には,温度センサ51及び温度センサ41が,水循環経路L1上における貯湯タンク21から水熱交換器12の流水方向R1の上流側までの間において水温を検出することになるため,その検出温度の温度差はほとんど無く或いは限りなく小さい。
 しかしながら,図2に示すように,給水用配管31及び給湯用配管32が誤接続(逆に接続)されている場合には,温度センサ51及び温度センサ41が,水循環経路L1上における水熱交換器12の前後の温度を検出することになる。具体的に,図2に示す例では,温度センサ41が貯湯タンク21の頂部から出力された後,水熱交換器12によって加熱される前の水の温度を検出するのに対し,温度センサ41は,水熱交換器12によって加熱された後,貯湯タンク21の底部に戻る温水の温度を検出することとなる。そのため,温度センサ51及び温度センサ41による検出温度の温度差は,給水用配管31及び給湯用配管32が正常に接続されている場合に比べて著しく大きくなる。
(ステップS4)
 そこで,続くステップS4において,ヒートポンプ制御部αは,温度センサ51及び温度センサ41による検出温度の温度差が,予め設定された設定温度(第1の設定温度に相当)以上であるか否かを判断する。前記設定温度は,温度センサ51及び温度センサ41が,水循環経路L1上において水熱交換器12を挟んで配置されているか否かを判断するための閾値温度として,予め実験やシミュレーションなどの結果に基づいて設定されたものである。なお,前記設定温度は,前記湯沸かし運転によって貯湯タンク21に貯湯する温水の温度として設定された貯湯温度に応じてその都度変更されることも考えられる。
 ここで,温度センサ51及び温度センサ41による検出温度の温度差が前記設定温度未満であると判断されると(S4のNo側),処理はステップS41に移行する。
 ステップS41において,ヒートポンプ制御部αは,給水用配管31及び給湯用配管32が正常に接続されていると判断し,給水用配管31及び給湯用配管32の接続が正常である旨を給湯システムXのリモコン(不図示)に設けられた表示部やヒートポンプユニット1又は貯湯タンクユニット2に設けられた表示部に表示し(S41),当該誤接続検出処理を終了する。なお,この場合には,その他の異常の有無などを検出する従来周知の試運転が実行された後,当該試運転は停止される。
(ステップS5~S6)
 一方,ステップS4において,温度センサ51及び温度センサ41による検出温度の温度差が前記設定温度以上であると判断されると(S4のYes側),処理はステップS5に移行する。
 ステップS5では,ヒートポンプ制御部αは,給水用配管31及び給湯用配管32に誤接続が生じていると判断し,圧縮機11及び循環ポンプ15の駆動を停止させて湯沸かし運転を終了させる(S5)。
 そして,ヒートポンプ制御部αは,給水用配管31及び給湯用配管32に誤接続が生じている旨を給湯システムXのリモコン(不図示)に設けられた表示部やヒートポンプユニット1又は貯湯タンクユニット2に設けられた表示部に表示し(S6),当該試運転処理を終了させる。
 以上説明したように,給湯システムXでは,温度センサ51及び温度センサ41の温度差が前記設定温度以上であることを条件に(S4のYes側),給水用配管31及び給湯用配管32の誤接続を検出しているため,給水用配管31及び給湯用配管32の誤接続に起因する水循環経路L1上の流水方向の変化にかかわらず,その誤接続の検出を行うことができる。また,温度センサ41は,給湯システムXにおける水の加熱制御のために従来から一般に設けられるものであるため,構成上は従来の給湯システムに温度センサ51を新たに設けるだけで当該構成を具現することが可能である。
 なお,本実施の形態では,循環ポンプ15がヒートポンプユニット1側に配置されている構成を例に挙げて説明したが,本発明によれば,水循環経路L1上の流水方向の変化にかかわらず給水用配管31及び給湯用配管32の誤接続の検出を行うことができるため,該循環ポンプ15が貯湯タンクユニット2側に配置される構成についても同様に適用可能である。
 ところで,本実施の形態では,貯湯タンク21の底部から出水口部71の間の出水経路L11上に温度センサ51を備える構成を例に挙げて説明した。
 しかし,給水用配管31及び給湯用配管32の誤接続を検出する目的からすれば,図4及び図5に示すように,温度センサ51に代えて,貯湯タンク21の頂部から入湯口部72への水循環経路L1を形成する入湯経路L14上の水温を検出する温度センサ52(第3の温度検出手段に相当)を備える構成も考えられる。
 この場合,ヒートポンプ制御部αは,前記誤接続検出処理において,温度センサ52及び温度センサ42による検出温度の温度差が予め設定された設定温度(第2の設定温度に相当)以上であることを条件に,給水用配管31及び給湯用配管32の誤接続を検出することが可能である。なお,温度センサ51,52を共に備える構成においても本発明を適用することが可能であることはいうまでもない。
1…ヒートポンプユニット
2…貯湯タンクユニット
10…ヒートポンプサイクル
11…圧縮機
12…水熱交換器
13…膨張弁
14…室外空気熱交換器
15…循環ポンプ
21…貯湯タンク
22…給水経路
23…給湯混合弁
24…給水口
25…給湯口
26…給水経路
31…給水用配管
32…給湯用配管
41…温度センサ(第2の温度検出手段に相当)
42…温度センサ(第4の温度検出手段に相当)
51…温度センサ(第1の温度検出手段に相当)
52…温度センサ(第3の温度検出手段に相当)
61~63…温度センサ
71…出水口部
72…入湯口部
81…入水口部
82…出湯口部
X,X1…ヒートポンプ式給湯システム(本発明に係る給湯システムの一例)
S1,S2,…:処理手順(ステップ)番号

Claims (6)

  1.  水を加熱する加熱装置を有する加熱ユニットと前記加熱装置により加熱された後の温水を貯留する貯湯タンクを有するタンクユニットとを備えてなり,
     前記貯湯タンクの底部に接続された出水口部と前記加熱装置における既定の流水方向の上流側に接続された入水口部とが第1の接続配管によって接続され,前記加熱装置における前記既定の流水方向の下流側に接続された出湯口部と前記貯湯タンクの頂部に接続された入湯口部とが第2の接続配管によって接続されることにより,前記貯湯タンク及び前記加熱装置の間に水循環経路が形成されてなる給湯システムであって,
     前記貯湯タンクの底部から前記出水口部への前記水循環経路における水温を検出する第1の温度検出手段と,前記入水口部から前記加熱装置への前記水循環経路における水温を検出する第2の温度検出手段と,前記第1の温度検出手段及び前記第2の温度検出手段による検出温度の温度差が予め設定された第1の設定温度以上である場合に,前記第1の接続配管及び前記第2の接続配管の誤接続を検出する誤接続検出手段とを備えてなることを特徴とする給湯システム。
  2.  水を加熱する加熱装置を有する加熱ユニットと前記加熱装置により加熱された後の温水を貯留する貯湯タンクを有するタンクユニットとを備えてなり,
     前記貯湯タンクの底部に接続された出水口部と前記加熱装置における既定の流水方向の上流側に接続された入水口部とが第1の接続配管によって接続され,前記加熱装置における前記既定の流水方向の下流側に接続された出湯口部と前記貯湯タンクの頂部に接続された入湯口部とが第2の接続配管によって接続されることにより,前記貯湯タンク及び前記加熱装置の間に水循環経路が形成されてなる給湯システムであって,
     前記入湯口部から前記貯湯タンクの頂部への前記水循環経路における水温を検出する第3の温度検出手段と,前記加熱装置から前記出湯口部への前記水循環経路における水温を検出する第4の温度検出手段と,前記第3の温度検出手段及び前記第4の温度検出手段による検出温度の温度差が予め設定された第2の設定温度以上である場合に,前記第1の接続配管及び前記第2の接続配管の誤接続を検出する誤接続検出手段とを備えてなることを特徴とする給湯システム。
  3.  前記水循環経路において水を循環させる循環ポンプが,前記加熱ユニットの前記入水口部から前記加熱装置への前記水循環経路上に設けられてなる請求項1又は2のいずれかに記載の給湯システム。
  4.  前記第1の温度検出手段による検出温度が所定温度以上に達したことを条件に前記加熱装置による水の加熱を停止させる加熱停止手段を更に備えてなる請求項1に記載の給湯システム。
  5.  前記第1の温度検出手段が,前記貯湯タンクの底部から前記出水口部への前記水循環経路上における該貯湯タンクの底部近傍に配置されてなる請求項4に記載の給湯システム。
  6.  前記加熱装置が,ヒートポンプサイクルに循環される冷媒との熱交換により水を加熱する水熱交換器である請求項1~5のいずれかに記載の給湯システム。
PCT/JP2010/053964 2009-05-13 2010-03-10 給湯システム WO2010131516A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-116117 2009-05-13
JP2009116117A JP2010266093A (ja) 2009-05-13 2009-05-13 給湯システム

Publications (1)

Publication Number Publication Date
WO2010131516A1 true WO2010131516A1 (ja) 2010-11-18

Family

ID=43084897

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/053964 WO2010131516A1 (ja) 2009-05-13 2010-03-10 給湯システム

Country Status (2)

Country Link
JP (1) JP2010266093A (ja)
WO (1) WO2010131516A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3019631A1 (fr) * 2014-04-04 2015-10-09 Charot Ets Procede et unite de regulation d'une installation de production d'eau chaude sanitaire

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013068393A (ja) * 2011-09-26 2013-04-18 Noritz Corp 貯湯給湯システム
JP5862936B2 (ja) * 2011-09-27 2016-02-16 株式会社ノーリツ 熱回収装置、コージェネレーションシステム、並びに、配管の誤接続検知方法
JP5811990B2 (ja) * 2012-11-30 2015-11-11 ダイキン工業株式会社 給湯システム
KR101592814B1 (ko) 2015-03-02 2016-02-05 린나이코리아 주식회사 열기기
TWM588696U (zh) * 2019-08-28 2020-01-01 阿里山製酒股份有限公司 流水調溫發酵槽及其發酵槽循環水溫度控制系統

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003056906A (ja) * 2001-08-10 2003-02-26 Denso Corp 貯湯式給湯装置の通信制御装置
JP2003156254A (ja) * 2001-11-16 2003-05-30 Mitsubishi Electric Corp ヒートポンプ式給湯器
JP2003194400A (ja) * 2001-12-26 2003-07-09 Daikin Ind Ltd ヒートポンプ式給湯装置
JP2003254606A (ja) * 2002-03-01 2003-09-10 Mitsubishi Electric Corp ヒートポンプ式給湯器
JP2004239581A (ja) * 2003-02-10 2004-08-26 Rinnai Corp コージェネレーションシステム
JP2005147543A (ja) * 2003-11-17 2005-06-09 Matsushita Electric Ind Co Ltd ヒートポンプ給湯装置
JP2005147616A (ja) * 2003-11-19 2005-06-09 Matsushita Electric Ind Co Ltd ヒートポンプ給湯装置
JP2007255769A (ja) * 2006-03-22 2007-10-04 Daikin Ind Ltd 給湯機の異常検出装置
JP2008064338A (ja) * 2006-09-05 2008-03-21 Corona Corp 貯湯装置
JP2008116146A (ja) * 2006-11-06 2008-05-22 Corona Corp ヒートポンプ式給湯機
JP2009092330A (ja) * 2007-10-10 2009-04-30 Daikin Ind Ltd 給湯機の異常検出装置

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007198691A (ja) * 2006-01-27 2007-08-09 Corona Corp ヒートポンプ式給湯装置

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003056906A (ja) * 2001-08-10 2003-02-26 Denso Corp 貯湯式給湯装置の通信制御装置
JP2003156254A (ja) * 2001-11-16 2003-05-30 Mitsubishi Electric Corp ヒートポンプ式給湯器
JP2003194400A (ja) * 2001-12-26 2003-07-09 Daikin Ind Ltd ヒートポンプ式給湯装置
JP2003254606A (ja) * 2002-03-01 2003-09-10 Mitsubishi Electric Corp ヒートポンプ式給湯器
JP2004239581A (ja) * 2003-02-10 2004-08-26 Rinnai Corp コージェネレーションシステム
JP2005147543A (ja) * 2003-11-17 2005-06-09 Matsushita Electric Ind Co Ltd ヒートポンプ給湯装置
JP2005147616A (ja) * 2003-11-19 2005-06-09 Matsushita Electric Ind Co Ltd ヒートポンプ給湯装置
JP2007255769A (ja) * 2006-03-22 2007-10-04 Daikin Ind Ltd 給湯機の異常検出装置
JP2008064338A (ja) * 2006-09-05 2008-03-21 Corona Corp 貯湯装置
JP2008116146A (ja) * 2006-11-06 2008-05-22 Corona Corp ヒートポンプ式給湯機
JP2009092330A (ja) * 2007-10-10 2009-04-30 Daikin Ind Ltd 給湯機の異常検出装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3019631A1 (fr) * 2014-04-04 2015-10-09 Charot Ets Procede et unite de regulation d'une installation de production d'eau chaude sanitaire

Also Published As

Publication number Publication date
JP2010266093A (ja) 2010-11-25

Similar Documents

Publication Publication Date Title
CN102168899A (zh) 热泵系统及其控制方法
JP5185091B2 (ja) ヒートポンプ式給湯システム
WO2010131516A1 (ja) 給湯システム
JP4622990B2 (ja) 空気調和機
JP2013119954A (ja) ヒートポンプ式温水暖房機
JP6398324B2 (ja) ヒートポンプ給湯装置
JP5170219B2 (ja) 給湯機の異常検出装置
JP4993384B2 (ja) 空調システム
JP2012172869A (ja) ヒートポンプ装置
JP6123650B2 (ja) ヒートポンプサイクル装置
JP4089745B2 (ja) ヒートポンプ給湯装置
JP5865103B2 (ja) 空気調和装置
JP6551783B2 (ja) ヒートポンプ装置およびこれを備えた給湯装置
JP4785630B2 (ja) ヒートポンプ式給湯機
JP5594278B2 (ja) 床暖房システム
JP3876721B2 (ja) 給湯装置
JP2009092330A (ja) 給湯機の異常検出装置
JP6523015B2 (ja) 貯湯式給湯装置
JP2005337550A (ja) ヒートポンプ式給湯機
JP2002340439A (ja) ヒートポンプ式給湯器
JP3969383B2 (ja) ヒートポンプ給湯装置
JP7174732B2 (ja) ヒートポンプ式給湯機
JP2005140439A (ja) ヒートポンプ給湯機
JP5613903B2 (ja) 温度調整装置
JP2008039335A (ja) ヒートポンプ用デフロスト回路およびヒートポンプ式給湯機並びにヒートポンプ式給湯機におけるデフロスト方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10774775

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10774775

Country of ref document: EP

Kind code of ref document: A1