Nothing Special   »   [go: up one dir, main page]

WO2010116787A1 - 回転電機制御装置 - Google Patents

回転電機制御装置 Download PDF

Info

Publication number
WO2010116787A1
WO2010116787A1 PCT/JP2010/051882 JP2010051882W WO2010116787A1 WO 2010116787 A1 WO2010116787 A1 WO 2010116787A1 JP 2010051882 W JP2010051882 W JP 2010051882W WO 2010116787 A1 WO2010116787 A1 WO 2010116787A1
Authority
WO
WIPO (PCT)
Prior art keywords
torque
ripple
electrical machine
rotating electrical
amplitude
Prior art date
Application number
PCT/JP2010/051882
Other languages
English (en)
French (fr)
Inventor
衣笠誠一
伊澤仁
伊澤和幸
青木一男
Original Assignee
アイシン・エィ・ダブリュ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by アイシン・エィ・ダブリュ株式会社 filed Critical アイシン・エィ・ダブリュ株式会社
Priority to CN201080005927.4A priority Critical patent/CN102300743B/zh
Priority to DE112010000941.4T priority patent/DE112010000941B4/de
Publication of WO2010116787A1 publication Critical patent/WO2010116787A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/05Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation specially adapted for damping motor oscillations, e.g. for reducing hunting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/02Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles characterised by the form of the current used in the control circuit
    • B60L15/025Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles characterised by the form of the current used in the control circuit using field orientation; Vector control; Direct Torque Control [DTC]
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P2205/00Indexing scheme relating to controlling arrangements characterised by the control loops
    • H02P2205/05Torque loop, i.e. comparison of the motor torque with a torque reference
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Definitions

  • the present invention relates to a rotating electrical machine control device that controls driving of a rotating electrical machine that drives a vehicle.
  • JP 2003-88159 A (Patent Document 1) pays attention to the fact that the frequency of torque ripple is an integer multiple of the electrical angle of the motor.
  • a technique is disclosed in which a sine wave having an arbitrary phase is added to a torque command as a torque ripple correction amount to suppress fluctuations.
  • the torque ripple appears theoretically as a pulsation having harmonic components related to the number of poles of the permanent magnet and the number of salient poles of the iron core. Therefore, the torque ripple can be suppressed by the technique disclosed in Patent Document 1. Is possible.
  • a synchronous motor which is a kind of motor
  • the reluctance generated by the change in magnetic energy due to the position of the self-inductance. Torque is also used.
  • the self-inductance is a fluctuating value. For example, the self-inductance varies when the coil current increases and magnetic saturation occurs according to the output torque and the rotational speed.
  • the self-inductance also fluctuates due to the change in magnetic resistance depending on the rotation angle of the rotor of the motor. This is also one factor in which high-order harmonic components are superimposed on the torque ripple. Therefore, the torque ripple correction amount should be set appropriately according to the rotational state of the motor, and if the consistency is poor, the torque ripple suppression effect is limited.
  • Patent Document 1 describes that a sine wave as a torque ripple correction amount can be set freely, there is no suggestion about a specific determination method, and in obtaining a good torque ripple suppression effect. More technology is required.
  • the present invention was devised in view of the above problems, and has an object to provide a rotating electrical machine control device capable of appropriately suppressing torque ripple according to the rotational state of the rotating electrical machine with a simple configuration. To do.
  • the torque ripple correction amount is required to be set according to the rotation state of the rotating electrical machine as described above.
  • the inventors have discovered that when a rotating electrical machine is used as a vehicle drive source, the torque ripple generated differs depending on the difference between forward and reverse of the vehicle and the difference between power running and regeneration. For example, torque ripples with different characteristics may occur due to variations in the characteristics of the mount rubber of the support portion that supports the rotating electrical machine on the vehicle body and the structure of the drive transmission system from the rotating electrical machine to the wheels.
  • a ripple correction wave having a different phase is generated according to the sign of the output torque as in this feature configuration, an appropriate ripple correction wave corresponding to the generated torque ripple can be obtained.
  • Torque ripple is satisfactorily suppressed by driving and controlling the rotating electrical machine using the ripple correction wave.
  • the output torque includes the torque actually output from the rotating electrical machine, the torque estimated based on the current value, the required torque given from the host system, and the like.
  • the rotating electrical machine control device further includes a required torque setting unit that determines a required torque of the rotating electrical machine based on at least an operation amount of an accelerator pedal, and a target torque obtained by superimposing the ripple correction wave on the required torque. It is preferable to drive and control the rotating electrical machine based on the above.
  • the rotating electrical machine is controlled based on the target torque obtained by superimposing the torque ripple correction wave on the required torque of the rotating electrical machine, the torque ripple can be appropriately suppressed while controlling the torque of the rotating electrical machine as required by the driver. it can.
  • the correction parameter setting unit of the rotating electrical machine control device further sets the amplitude of the ripple correction wave according to the sign of the output torque.
  • the torque ripple has a sine wave component, and the component has an amplitude in addition to the phase. Since the amplitude is literally related to the magnitude of the vibration, the magnitude of the torque ripple of the rotating electrical machine can be appropriately attenuated by setting an appropriate amplitude for the ripple correction wave. When the amplitude of the ripple correction wave is further set according to the positive / negative of the output torque as in this configuration, a higher suppression effect can be obtained with respect to the generated torque ripple.
  • the correction parameter setting unit of the rotating electrical machine control device sets the amplitude of the ripple correction wave according to the rotational speed of the rotating electrical machine.
  • the unpleasant feeling that torque ripple gives to the vehicle occupant is related to the vehicle speed, that is, the rotational speed of the rotating electrical machine. Therefore, when the amplitude of the ripple correction wave is set in accordance with the rotation speed of the rotating electrical machine, the possibility of lowering the efficiency of the rotating electrical machine is suppressed by superimposing the ripple correction wave, and the efficiency of the rotating electrical machine is improved. Can do. That is, it is possible to achieve both reduction of torque ripple and suppression of reduction in efficiency of the rotating electrical machine.
  • the correction parameter setting unit of the rotating electrical machine control device includes the ripple as the rotational speed increases until the speed reaches a speed limit that exceeds a speed limit start speed and is set to a value larger than the speed limit start speed.
  • the amplitude of the correction wave is reduced, the amplitude of the ripple correction wave is limited so that the amplitude of the ripple correction wave becomes zero at the speed limit, and when the rotational speed of the rotating electrical machine is equal to or higher than the speed limit, the ripple It is preferable to limit the amplitude of the correction wave to zero.
  • a vehicle occupant is more likely to feel discomfort due to torque ripple when the vehicle speed is low, that is, when the rotating speed of the rotating electrical machine is low. Therefore, if the amplitude of the ripple correction wave is increased when the rotating speed of the rotating electrical machine is low and the amplitude is decreased as the rotating speed increases, the uncomfortable feeling caused by the torque ripple is suppressed and the rotating electrical machine is used with high efficiency. can do.
  • the rotational speed of the rotating electrical machine is high enough to exceed the speed limit, discomfort caused by torque ripple does not become a problem. Therefore, in this high rotation region, the rotary electric machine can be used with high efficiency when the amplitude is set to zero so that the ripple correction wave is practically not added. Further, since the amplitude of the ripple correction wave is reduced as the rotational speed increases from the limit start speed to the limit speed, the torque ripple correction amount does not change suddenly, and the passenger does not feel uncomfortable.
  • FIG. 1 is a block diagram schematically showing an example of a system configuration of a vehicle including a rotating electrical machine control device of the present invention. It is a block diagram which shows typically an example of a structure of the rotary electric machine control apparatus of this invention. It is a wave form diagram showing typically the relation between the harmonic component of torque ripple, and a ripple correction wave. It is a graph which shows the characteristic of the phase and amplitude of a torque ripple at the time of positive torque. It is a graph which shows the characteristic of the phase and amplitude of a torque ripple at the time of a negative torque. It is a flowchart which shows an example of the procedure which produces
  • FIG. 1 is a block diagram schematically illustrating an example of a system configuration of a vehicle including such a motor M control device (rotary electrical machine control device) 100.
  • the motor M is electrically connected to a battery (not shown) or a converter (not shown) that boosts the output voltage of the battery via the inverter 57, and generates a driving force when supplied with electric power.
  • the inverter 57 includes a plurality of switching elements.
  • An IGBT insulated gate bipolar transistor
  • MOSFET metal oxide field semiconductor effect transistor
  • the inverter 57 is configured by a three-phase bridge circuit as is well known. Two IGBTs are connected in series between the input plus side and the input minus side of the inverter 57, and this series circuit is connected in parallel in three lines. That is, a bridge circuit in which a set of series circuits corresponds to each of the stator coils Mu, Mv, and Mw corresponding to the u phase, the v phase, and the w phase of the motor M is configured.
  • the collector of the upper stage IGBT of each phase is connected to the input plus side of the inverter 57, and the emitter is connected to the collector of the lower stage IGBT of each phase.
  • the emitter of the IGBT on the lower side of each phase is connected to the input minus side (for example, ground) of the inverter 57.
  • the intermediate point of the series circuit of IGBTs of each phase that is a pair, that is, the connection point of the IGBT, is connected to the stator coils Mu, Mv, and Mw of the motor M, respectively.
  • a flywheel diode (regenerative diode) is connected in parallel to each IGBT.
  • the flywheel diode is connected in parallel to the IGBT such that the cathode terminal is connected to the collector terminal of the IGBT and the anode terminal is connected to the emitter terminal of the IGBT.
  • the gate of each IGBT is connected to an ECU (electronic control unit) 50 via a driver circuit 55, and is individually controlled for switching.
  • the ECU 50 is referred to as a TCU (trans-axle control unit) 50 in order to distinguish it from other ECUs.
  • the TCU 50 is configured with a logic circuit such as a microcomputer as a core.
  • the TCU 50 includes a CPU (central processing unit) 51 that is a microcomputer, an interface circuit 52, and other peripheral circuits.
  • the interface circuit 51 includes EMI (electro-magnetic interference) countermeasure parts, a buffer circuit, and the like.
  • the CPU 51 constitutes a control device 100 corresponding to the rotating electrical machine control device of the present invention.
  • the drive signal input to the gate of the IGBT or MOSFET that switches high voltage requires a voltage higher than the drive voltage of a general electronic circuit such as a microcomputer, and therefore is boosted through the driver circuit 55. , And input to the inverter 57.
  • the CPU 51 includes at least a CPU core 11, a program memory 12, a parameter memory 13, a work memory 14, a communication control unit 15, an A / D converter 16, a timer 17, and a port 18. Is done.
  • the CPU core 11 is the core of the CPU 51, and includes an instruction register, an instruction decoder, an ALU (arithmetic logic unit) that performs various operations, a flag register, a general-purpose register, an interrupt controller, and the like.
  • the program memory 12 is a non-volatile memory that stores a motor control program (rotary electric machine control program).
  • the parameter memory 13 is a non-volatile memory that stores various parameters that are referred to when the program is executed. The parameter memory 13 may be constructed without being distinguished from the program memory 12.
  • the program memory 12 and the parameter memory 13 are preferably constituted by a flash memory, for example.
  • the work memory 14 is a memory that temporarily stores temporary data during program execution.
  • the work memory 14 is composed of DRAM (dynamic RAM) or SRAM (static RAM) that is volatile and can read and write data at high speed.
  • the communication control unit 15 controls communication with other systems in the vehicle.
  • communication with the traveling control system 60, other systems, sensors, and the like is controlled via a CAN (controller area network) 80 in the vehicle.
  • the A / D converter 16 converts an analog electric signal into digital data.
  • detection results of motor currents Iu, Iv, and Iw flowing through the stator coils Mu, Mv, and Mw of the motor M are received from the current sensor 58 and converted into digital values. Since the three phases u phase, v phase, and w phase are balanced and the instantaneous value thereof is zero, the current for only two phases may be detected, and the remaining one phase may be obtained by calculation in the CPU 51. .
  • the interface circuit 52 may include a multiplexer, and an analog current value may be acquired from one analog input by time division.
  • the timer 17 measures time with the clock cycle of the CPU 51 as the minimum resolution. For example, the timer 17 monitors the program execution cycle and notifies the interrupt controller of the CPU core 11. The timer 17 measures the valid time of the gate drive signals (pu, nu, pv, nv, pw, nw) for driving the IGBT, and generates the gate drive signal.
  • the port 18 is a terminal control unit that outputs an IGBT gate drive signal of the inverter 57 via a terminal of the CPU 51 and receives a rotation detection signal R from the rotation detection sensor 59 input to the CPU 51.
  • the rotation detection sensor 59 is a sensor that is installed in the vicinity of the motor M and detects the rotation position and rotation speed of the rotor of the motor M, and is configured using, for example, a resolver.
  • the CPU 51 is communicably connected to various systems and sensors via the CAN 80 which is an in-vehicle network.
  • the CPU 51 is connected to the brake system 61 and the power steering system 63 in addition to the travel control system 60.
  • Each of these systems is configured with an electronic circuit such as a CPU as a core, similar to the control device 100 of the motor M, and is configured as an ECU (electronic control unit) together with peripheral circuits as with the TCU 50.
  • the brake system 61 detects the amount of operation of the brake pedal operated by the driver by the brake sensor 72, and has an electric motor having a brake assist for increasing the braking force by applying a braking force to the vehicle via the actuator 71.
  • the power steering system 63 is, for example, an electric power steering (EPS: power ⁇ ⁇ steering) system that detects an operation amount of a steering wheel operated by a driver by a steering sensor 74 and adds assist torque by an actuator 73.
  • EPS electric power steering
  • the wheel speed sensor 75 is a sensor that detects the amount of rotation of a vehicle wheel and the number of rotations per unit time. If the brake system 61 is an ABS (anti-lock braking ⁇ ⁇ ⁇ ⁇ system) that suppresses brake locking or a skid prevention device (ESC: electronic stability control) that suppresses vehicle skidding during cornering, wheels received via CAN 80 Various controls are executed based on the detection result of the speed sensor 75. For example, brake locking, wheel idling, and signs of skidding are determined from the difference in rotation between the left and right wheels, and control according to the determination result is executed. Therefore, the wheel speed sensor 75 may be provided in the brake system 61.
  • ABS anti-lock braking ⁇ ⁇ ⁇ ⁇ system
  • ESC electronic stability control
  • the accelerator sensor 76 is a sensor that detects the amount of operation of the accelerator pedal by the driver.
  • the shift lever sensor 77 is a sensor or switch that detects the position of the shift lever.
  • the traveling control system 60 calculates a required torque Tr of the motor M based on detection results obtained by the brake sensor 72, the accelerator sensor 76, the shift lever sensor 77, the wheel speed sensor 75, and the like. For example, if the accelerator pedal is depressed while the shift lever sensor 77 is set to “drive”, the traveling control system 60 calculates a required torque Tr (output torque) having a positive value. On the other hand, when the brake pedal is depressed, or when the accelerator pedal is depressed with the shift lever sensor 77 set to “reverse”, the traveling control system 60 has a negative value.
  • the required torque Tr is calculated. This required torque Tr is transmitted to the CPU 51 via the CAN 80 and received by the communication control unit 15 of the CPU 51.
  • the travel control system 60 functions as a required torque setting unit that determines the required torque Tr of the motor M based on at least the operation amount of the accelerator pedal.
  • the control device 100 of the motor M is configured with the CPU 51 as a core. That is, the control device 100 is configured mainly by the cooperation of the CPU core 11 and other hardware including the work memory 14 and the timer 17 with software such as programs and parameters stored in the program memory 12 and the parameter memory 13.
  • the embodiment of the control device 100 is not limited to such cooperation between hardware and software, and may be configured only by hardware using ASIC (application specific integrated circuit) or the like. .
  • FIG. 2 is a block diagram schematically showing an example of a functional configuration of the control device 100 of the motor M.
  • each functional unit shown in this figure may be configured only by hardware, or may be configured by cooperation of hardware and software.
  • Each functional unit has no problem as long as the function is realized regardless of the embodiment.
  • the control device 100 includes a torque control unit 10, a current control unit 20, a voltage control unit 30, and a rotation state calculation unit 40.
  • vector control field-oriented control: FOC
  • a coil current flowing in each of the three-phase stator coils of the AC motor is expressed by a vector of a d axis that is a direction of a magnetic field generated by a permanent magnet disposed on the rotor and a q axis that is orthogonal to the d axis.
  • a rotation detection sensor 59 such as a resolver is provided in the vicinity of the motor M.
  • the detection result is transmitted to the register in the CPU core 11 and the work memory 14 via the port 18 of the CPU 51 as described above.
  • the rotation state calculation unit 40 provided in the control device 100 obtains the rotor position (electrical angle ⁇ ) and the rotation speed (angular velocity ⁇ ) based on the detection result R of the rotation detection sensor 59.
  • the obtained electrical angle ⁇ and angular velocity ⁇ are used in the torque control unit 10, the current control unit 20, and the voltage control unit 30.
  • the rotation detection sensor 59 such as a resolver provides information on the rotor position and the rotation speed in a form that the control device 100 can use for calculation
  • the rotation state calculation unit 40 may not be provided in the control device 100. .
  • the torque control unit 10 is a functional unit that sets target currents (current commands) id and iq for current feedback control according to the required torque Tr (torque command Ti).
  • the target currents id and iq are set corresponding to the d axis and q axis described above. Therefore, the torque control unit 10 performs coordinate conversion of the torque command Ti into the d-axis target current id and the q-axis target current iq based on the electrical angle ⁇ obtained by the rotation state calculation unit 40. It is comprised.
  • the required torque Tr is the same as the torque command Ti.
  • the superimposing unit 5 that generates the target torque To by superimposing the ripple correction wave NTR 6 on the required torque Tr is provided.
  • the target torque To is a torque command Ti that is input to the two-phase converter 6.
  • the superimposing unit 5 functions as a target torque setting unit that sets the target torque To.
  • the ripple correction wave NTR 6 and its generation method will be described later.
  • the current control unit 20 performs, for example, proportional-integral control (PI control) or proportional-calculus control (PID control) based on the deviation between the target currents id, iq and the fed back motor current, and a target voltage (voltage command).
  • PI control proportional-integral control
  • PID control proportional-calculus control
  • the current control unit 20 includes a PID control unit 21 and a two-phase conversion unit 22. Since the current values detected by the current sensor 58 are the three-phase currents Iu, Iv, and Iw, the two-phase conversion unit 22 determines the two-phase current Id based on the electrical angle ⁇ obtained by the rotation state calculation unit 40.
  • the PID control unit 21 performs PID control based on the deviation between the target currents id, iq and the two-phase motor currents Id, Iq, and the angular velocity ⁇ obtained by the rotation state calculation unit 40, so that the target voltages vd, Set vq.
  • the voltage control unit 30 generates gate drive signals pu, nu, pv, nv, pw, nw for driving the three-phase IGBT of the inverter 57 based on the target voltages vd, vq.
  • the voltage control unit 30 includes a three-phase conversion unit 31 and a PWM control unit 32. Since the inverter 57 is provided for three phases corresponding to the three-phase stator coils Mu, Mv, and Mw of the motor M, the two-phase target voltages vd and vq are obtained by the rotation state calculation unit 40. Based on the electrical angle ⁇ , the coordinates are converted into three-phase target voltages vu, vv, vw.
  • the PWM controller 32 controls the IGBT of the inverter 57 by PWM (pulse width modulation).
  • the PWM control unit 32 includes six IGBTs that individually control the gates of the IGBTs in each stage, each phase being constituted by two stages of IGBTs on the upper stage side and the lower stage side, and a total of six stages in three phases.
  • Gate drive signals pu, nu, pv, nv, pw, nw are generated.
  • the gate drive signals pu, nu, pv, nv, pw, and nw correspond to the gate drive signals of the IGBTs in the u-phase upper stage, u-phase lower stage, v-phase upper stage, v-phase lower stage, w-phase upper stage, and w-phase lower stage in order.
  • the valid time of each gate drive signal is measured by the timer 17 of the CPU 51, and pulsed gate drive signals pu, nu, pv, nv, pw, nw are output via the port 18.
  • the torque ripple has a harmonic component of the fundamental component of the three-phase alternating current that drives the motor.
  • the order of this harmonic component is related to the number of poles of the permanent magnet and the number of salient poles of the iron core.
  • the number of slots per pole is often six, and the harmonic having a great influence is often the sixth harmonic.
  • the number of poles is often 8 and the number of slots is 48. 6th harmonic.
  • FIG. 3 shows waveforms obtained by the inventors of the harmonic component of torque ripple by FFT (fast Fourier transform) analysis and FEM (finite element method) analysis.
  • the horizontal axis is the phase, and a period corresponding to 0 to 60 ° of the electrical angle of the AC fundamental wave that drives the motor M is extracted. The time when the electrical angle is 0 ° is set as the reference phase.
  • a waveform TR shown in FIG. 3 indicates torque ripple.
  • the ideal torque in this example is a constant value of 100 [Nm], and a torque ripple TR is superimposed on this torque as an AC component.
  • the torque ripple TR is a waveform in which high-order harmonics of various components are synthesized.
  • a waveform TR 6 shown in FIG. 3 is obtained by extracting the sixth harmonic component which is the largest frequency component of the torque ripple TR by the FFT analysis and the FEM analysis.
  • the waveform TR 6 is the sixth harmonic of the fundamental wave
  • the entire period is included in the range of 0 to 60 ° of the electrical angle of the AC fundamental wave.
  • the phase is delayed by 240 ° (or advanced by 120 °) from the reference phase which is 0 ° of the electrical angle of the AC fundamental wave, for example.
  • the amplitude is 105 [Nm] with respect to 100 [Nm] which is a steady value, it is 5% increase of the steady value.
  • an antiphase sine wave may be used as shown in FIG.
  • a sine wave having an antiphase with respect to the sixth harmonic component TR 6 of the torque ripple TR is referred to as a ripple correction wave NTR 6 .
  • the ripple correction wave NTR 6 Since the ripple correction wave NTR 6 is opposite in phase to the sixth harmonic component TR 6 of the torque ripple TR, the ripple correction wave NTR 6 is delayed by 60 ° from the reference phase which is 0 ° of the electrical angle of the AC fundamental wave (or advanced by 300 °). )
  • the ripple correction wave NTR 6 is more preferably a sine wave having an opposite phase and the same amplitude as the sixth harmonic component TR 6 of the torque ripple TR.
  • the reference phase is not limited to this example, and may be set to another phase.
  • a ripple correction wave NTR 6 having a defined phase and amplitude is generated and superimposed on the required torque Tr, the sixth harmonic component TR 6 of the generated torque ripple TR Can be offset, and the pulsation of the motor M can be suppressed.
  • Generates a ripple correction wave NTR 6 phase and the amplitude is defined in the correction wave calculation unit 4 shown in FIG. 2, when superimposing the ripple correction wave NTR 6 on the required torque Tr in superimposing section 5, a preferred target torque To Is set.
  • FIG. 4 is a graph showing the phase and amplitude characteristics of the sixth harmonic component TR 6 of the torque ripple TR when the motor M is moving forward, such as when the vehicle moves forward.
  • FIG. 5 is a graph showing the phase and amplitude characteristics of the sixth harmonic component TR 6 of the torque ripple TR when the motor M is negative torque when the vehicle is moving backward or performing regenerative braking.
  • the horizontal axis is the absolute value of torque
  • the left vertical axis is the amplitude ratio indicating the ratio (percentage) to the absolute value and steady value of the amplitude
  • the right vertical axis is the phase.
  • the phase difference of the sixth harmonic component TR6 of the torque ripple TR with respect to the reference phase is generally stable regardless of the absolute value of the torque.
  • the phase difference at the time of positive torque is about 110 ° to 135 °
  • the phase difference at the time of negative torque is different from ⁇ 108 to ⁇ 138 °.
  • the amplitude of the sixth harmonic component TR 6 of the torque ripple TR varies greatly depending on the absolute value of the torque. Due to the occurrence of the torque ripple TR, the ratio of the torque ripple TR (TR 6 ) relative to the steady value is more strongly related to the feeling of the driver and passengers riding in the vehicle than the absolute value of the amplitude of the torque ripple TR (TR 6 ). Therefore, attention is focused on the torque having the largest amplitude ratio (amplitude ratio) with respect to the steady value of the torque ripple TR (TR 6 ). As shown in FIG. 4, in the case of positive torque, the amplitude ratio becomes maximum when the absolute value of the torque is 30 [Nm]. As shown in FIG.
  • the amplitude ratio becomes maximum when the absolute value of the torque is 60 [Nm].
  • the torque with the largest amplitude ratio (amplitude ratio) with respect to the steady value of the torque ripple TR (TR 6 ) differs depending on whether the torque of the motor M is positive torque or negative torque.
  • the control device 100 sets the phase and amplitude when generating the ripple correction wave NTR 6 according to the sign of the required torque Tr.
  • the correction wave calculation unit 4 of the torque control unit 10 includes a positive / negative determination unit 1, a correction parameter setting unit 2, and a correction wave generation unit 3. .
  • the positive / negative determining unit 1 is a functional unit that determines whether the required torque Tr (output torque) is positive or negative.
  • the correction parameter setting unit 2 is a functional unit that sets the phase difference of the ripple correction wave with respect to the reference phase as a correction parameter according to the sign of the required torque Tr (output torque).
  • the correction parameter setting unit 2 includes a selection switch 2s that selects a positive torque parameter 2p and a negative torque parameter 2n. The selection switch 2s is controlled based on the determination result of the positive / negative determination unit 1, and the positive torque parameter 2p or the negative torque parameter 2n is set as the correction parameter 2h.
  • the correction wave generator 3 generates a ripple correction wave NTR 6 based on the correction parameter 2h.
  • the maximum amplitude ratio is 5.2% when the absolute value of the torque is 30 [Nm].
  • the absolute value of the amplitude is 1.5 [Nm]
  • the phase difference is 120 °.
  • An amplitude ratio of 5.2% is a correction parameter (amplitude parameter) A related to amplitude. Since the ripple correction wave NTR 6 is an inversion of the sixth harmonic component TR 6 of the torque ripple TR, a value obtained by the following equation (1) is a correction parameter (phase difference parameter) ⁇ related to the phase difference.
  • the amplitude ratio is 5.0% at the maximum when the absolute value of the torque is 60 [Nm].
  • the absolute value of the amplitude is 3.0 [Nm]
  • the phase difference is ⁇ 110 °.
  • An amplitude ratio of 5.0% is a correction parameter (amplitude parameter) A related to amplitude.
  • the ripple correction wave NTR 6 is an inversion of the sixth harmonic component TR 6 of the torque ripple TR, but is automatically inverted because the sign of the torque is negative. Accordingly, the phase difference of ⁇ 110 ° is the correction parameter (phase difference parameter) ⁇ .
  • the correction parameters are selected one by one according to the sign of the torque is illustrated, but the present invention is not limited to this, and a plurality of correction parameters are set for each of the positive and negative values. Also good. For example, a plurality of correction parameters may be set according to the absolute value of the torque.
  • the CPU 51 that has received the required torque Tr from the travel control system 60 temporarily stores the required torque Tr in a general-purpose register of the CPU core 11 or a work area such as the work memory 14. Then, the CPU core 11 refers to the work area and executes a positive / negative determination function for determining the positive / negative of the required torque Tr for the motor M (positive / negative determination step # 1).
  • the CPU core 11 executes a correction parameter setting function for setting the phase difference of the ripple correction wave NTR 6 with respect to the reference phase as a correction parameter (phase difference parameter ⁇ ) 2h according to the sign of the required torque Tr (correction).
  • the correction parameter setting function may include a function of setting a correction parameter (amplitude parameter A) 2h that defines the amplitude of the ripple correction wave NTR 6 .
  • the CPU core 11 reads the correction parameter 2p for the positive torque from the parameter memory 13 and temporarily stores it in the work area (correction parameter setting step # 2 for the positive torque). .
  • the correction parameter 2p for the positive torque has the phase difference parameter ⁇ of “ ⁇ 60 °” and the amplitude parameter A of “5.2%”.
  • the CPU core 11 executes a correction wave generation function for generating the ripple correction wave NTR 6 by calculating the following equation (2) based on the set correction parameter 2h ( ⁇ , A) (correction wave) Generation step # 4).
  • FIG. 7 a ripple correction wave NTR 6 at the time of positive torque is generated.
  • the horizontal axis represents time
  • the vertical axis represents the electrical angle ⁇ (magnetic pole position) of the AC fundamental wave that drives the motor M.
  • FIG. 7 generally shows one cycle of the electrical angle ⁇ .
  • the lower part of FIG. 7 shows a sixth harmonic component TR 6 of the torque ripple and a ripple correction wave NTR 6 corresponding thereto.
  • a time at which the electrical angle ⁇ is zero is set as a reference phase, a sine wave having a phase delay of 60 ° as the phase of the sixth harmonic component and having an amplitude of 5.2% of the required torque Tr is generated as the ripple correction wave NTR 6. Yes.
  • the CPU core 11 reads the correction parameter 2n for negative torque from the parameter memory 13 and temporarily stores it in the work area (correction parameter setting step # 3 for negative torque). .
  • the correction parameter 2n for negative torque has the phase difference parameter ⁇ of “ ⁇ 110 °” and the amplitude parameter A of “5.0%”.
  • the CPU core 11 executes the correction wave generation function for generating the ripple correction wave NTR 6 by calculating the following equation (3) based on the set correction parameter 2h ( ⁇ , A) (correction wave generation step #) 4).
  • the ripple correction wave NTR 6 at the time of negative torque is generated.
  • the horizontal axis is time as in FIG. 7, and the vertical axis indicates the electrical angle ⁇ (magnetic pole position) of the AC fundamental wave that drives the motor M.
  • the traveling direction of the time axis is opposite to that in FIG.
  • FIG. 8 also shows one cycle of the electrical angle ⁇ in general, as in FIG.
  • the lower part of FIG. 8 shows a sixth harmonic component TR 6 of torque ripple and a ripple correction wave NTR 6 corresponding thereto.
  • a time when the electrical angle ⁇ is zero is set as a reference phase, and a sine wave having a phase delay of 112 ° as the phase of the sixth harmonic component and having an amplitude of 5.0% of the required torque Tr is generated as the ripple correction wave NTR 6. Yes.
  • This is a sine wave having an opposite phase to the sixth harmonic component TR 6 of the torque ripple, and the motor control calculation described above is executed based on the target torque To in which the ripple correction wave NTR 6 is superimposed on the required torque Tr.
  • torque ripple TR is suppressed.
  • the correction parameter setting unit 2 may further set the amplitude of the ripple correction wave NTR 6 according to the rotational speed of the motor M.
  • the correction parameter setting unit 2 may include a rotation speed filter 2r, and a speed coefficient kr corresponding to the rotation speed (angular speed ⁇ ) of the motor M may be set as a correction parameter.
  • the rotation speed filter 2r is preferably configured as a table with the rotation speed (angular velocity ⁇ ) of the motor M as an argument and stored in the parameter memory 13, for example.
  • the correction wave generation unit 3 generates a ripple correction wave NTR 6 by the following equation (4).
  • NTR 6 kr / A / Tr / sin (6 ⁇ + ⁇ ) (4)
  • the rotation speed filter 2r has a characteristic as shown in FIG.
  • the vertical axis of the graph shown in FIG. 9 is the speed coefficient kr, and the horizontal axis is the absolute value of the rotational speed of the motor M.
  • the amplitude of the ripple correction wave NTR 6 is not limited.
  • the amplitude of the ripple correction wave NTR 6 decreases, and the amplitude of the ripple correction wave NTR 6 is zero at the limit speed S2 greater than the limit start speed S1.
  • the amplitude of the ripple correction wave NTR 6 is limited so that Further, when the speed is not less than the speed limit S2, the amplitude of the ripple correction wave NTR 6 is limited to zero.
  • the torque ripple Tr has less influence on the occupant when the rotational speed of the motor M increases, that is, the occupant is less likely to experience the occurrence of the torque ripple Tr. Therefore, when the rotational speed of the motor M is equal to or lower than the limit start speed S1, the ripple correction wave NTR 6 is superimposed on the required torque Tr with an amplitude of 100%, and after exceeding the limit start speed S1, the amplitude of the ripple correction wave NTR 6 gradually increases. After the speed is reduced and the speed limit S2 is exceeded, it is preferable that the amplitude of the ripple correction wave NTR 6 is set to zero so that the ripple correction wave NTR 6 is not superimposed on the required torque Tr.
  • the correction parameter setting unit 2 may further set the amplitude of the ripple correction wave NTR 6 according to the required torque Tr of the motor M. That is, the correction parameter setting unit 2 may include a torque filter (not shown), and the torque coefficient kt corresponding to the required torque Tr may be set as the correction parameter 2h. When the torque coefficient kt is included in the correction parameter, the correction wave generation unit 3 generates a ripple correction wave NTR 6 by the following equation (5).
  • NTR 6 kt / kr / A / Tr / sin (6 ⁇ + ⁇ ) (5)
  • the torque filter is preferably configured to have characteristics as shown in FIG.
  • the vertical axis of the graph shown in FIG. 10 is the torque coefficient kt, and the horizontal axis is the absolute value of the required torque.
  • the amplitude of the ripple correction wave NTR 6 is not limited.
  • the amplitude of the ripple correction wave NTR 6 decreases, and the amplitude of the ripple correction wave NTR 6 becomes zero at the limit torque T2 larger than the limit start torque T1.
  • the amplitude of the ripple correction wave NTR 6 is limited.
  • the amplitude of the ripple correction wave NTR 6 is limited to zero.
  • the instantaneous value of the target torque To reaches the limit torque T2 or exceeds the limit torque T2.
  • the target torque To and the target currents id and iq are limited, another pulsation may occur due to the limitation. Therefore, the center of the amplitude where the instantaneous value of the ripple correction wave NTR 6 does not sufficiently reach the limit torque is set as the limit torque T2, and the amplitude of the ripple correction wave NTR 6 is gradually decreased from the limit start torque T1 until the limit torque T2 is reached. It is preferable to do so.
  • the ripple correction wave NTR 6 is superimposed on the required torque Tr with an amplitude of 100%. Since the torque coefficient kt gradually changes according to the required torque Tr, the amplitude of the ripple correction wave NTR 6 does not change abruptly, and the passenger does not feel uncomfortable.
  • the correction parameter is set according to the sign of the required torque Tr. Since the correction parameter includes the phase difference ⁇ , the ripple correction wave NTR 6 has a greatly different waveform depending on whether the required torque Tr is positive or negative. For example, when the sign of the required torque Tr is suddenly reversed, the ripple correction wave NTR 6 may fluctuate greatly, which may cause discomfort to the passenger. For this reason, hysteresis is often set in the control including such positive / negative determination. However, for the reason described below, it is not necessary to set hysteresis in the present invention. Therefore, the control device 100 can be configured in a simple manner, and can quickly follow positive and negative changes in the required torque Tr.
  • the torque accuracy which is the difference between the actual torque and the required torque Tr, is approximately ⁇ 1.5 [Nm]. That is, it can be said that the region where the sign of the torque is likely to be reversed is the range where the required torque Tr is ⁇ 1.5 [Nm].
  • the running resistance of the vehicle is about ⁇ 5 [Nm]
  • the vehicle is in a stopped state when the required torque Tr is in the range of ⁇ 1.5 [Nm]. Therefore, since the state in which the vehicle is substantially stopped also plays a role of hysteresis, the positive / negative determination unit 1 that determines whether the required torque Tr is positive or negative does not need to be provided with hysteresis. As a result, a very simple system can be constructed.
  • the present invention is not limited to this, and may be superimposed on a current command calculated based on the required torque Tr (torque command).
  • the present invention can be applied to a rotating electrical machine control device that drives and controls a motor (rotating electrical machine) that drives a vehicle such as a hybrid vehicle or an electric vehicle based on a target torque and a rotational speed.
  • a motor rotating electrical machine

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Control Of Ac Motors In General (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Control Of Motors That Do Not Use Commutators (AREA)

Abstract

 簡単な構成で、回転電機の回転状態に応じて適切にトルクリップルを抑制することが可能な回転電機制御装置を提供する。回転電機の出力トルクの正負を判定する正負判定部1と、回転電機のトルクリップルを低減するための正弦波状のリップル補正波NTRの基準位相に対する位相差を、出力トルクの正負に応じて補正パラメータとして設定する補正パラメータ設定部2と、補正パラメータに基づいて、リップル補正波NTRを生成する補正波生成部3とを備える。

Description

回転電機制御装置
 本発明は、車両を駆動する回転電機を駆動制御する回転電機制御装置に関する。
 永久磁石を利用するモータでは、回転磁界を作り出すコイルに電流を流さない場合でも永久磁石による磁束が残存し、永久磁石とコイルの鉄心との間にトルクリップルが生じる。特開2003-88159号公報(特許文献1)には、トルクリップルの周波数がモータの電気角の整数倍であることに着目して、モータ電気角の整数倍の任意の周波数、任意の振幅、任意の位相の正弦波をトルクリップル補正量としてトルク指令に加算して、変動を抑える技術が開示されている。
特開2003-88159号公報
 トルクリップルは、理論的には永久磁石の極数と鉄心の突極数とに関係する高調波成分を有した脈動として現れるので、特許文献1に示された技術によりトルクリップルを抑制することが可能である。ところで、モータの一種である同期モータでは、永久磁石の磁界により形成される鎖交磁束とコイルに流れる電流との積によって生じるマグネットトルクに加えて、自己インダクタンスの位置による磁気エネルギーの変化によって生じるリラクタンストルクも活用される。但し、自己インダクタンスは変動する値である。例えば、出力トルクや回転数に応じてコイル電流が増加して磁気飽和が発生した場合に自己インダクタンスは変動する。また、モータのロータの回転角度によって、磁気抵抗が変化することによっても、自己インダクタンスは変動する。これも、トルクリップルに高次高調波成分が重畳される一要因となる。従って、トルクリップル補正量は、モータの回転状態などに応じて適切に設定されるべきであり、整合性が悪ければ、トルクリップルの抑制効果は限定的となる。特許文献1には、トルクリップル補正量としての正弦波を自由に設定できることが記載されているものの、具体的な決定方法については示唆もされておらず、良好なトルクリップル抑制効果を求める上で、さらなる技術が求められる。
 但し、自己インダクタンスの変動が非線形であることや、一般的なモータ制御に用いられるPWM制御の分解能を考慮すれば、発生するトルクリップル対して厳密な補正量を求めてトルクリップルを抑制することは現実的ではない。このため、回転電機としてのモータを制御する回転電機制御装置の構成規模をいたずらに大きくすることなく、また、演算負荷を大きく増大させることもなく、回転電機の回転状態などに応じて適切なトルクリップル補正量を得ることが必要である。
 本発明は、上記課題に鑑みて創案されたもので、簡単な構成で、回転電機の回転状態に応じて適切にトルクリップルを抑制することが可能な回転電機制御装置を提供することを目的とする。
 上記目的を達成するための本発明に係る、車両を駆動する回転電機を駆動制御する回転電機制御装置の特徴構成は、前記回転電機の出力トルクの正負を判定する正負判定部と、前記回転電機の磁極位置に対する、前記回転電機のトルクリップルを低減するための正弦波状のリップル補正波の位相差を、前記出力トルクの正負に応じて補正パラメータとして設定する補正パラメータ設定部と、前記補正パラメータに基づいて、前記リップル補正波を生成する補正波生成部とを備え、前記リップル補正波を用いて前記回転電機を駆動制御する点にある。
 特許文献1を参照して上述したように、トルクリップルに応じた正弦波をトルクリップル補正量としてトルク指令に加算することによって、トルクリップルを抑制することが可能である。但し、高い抑制効果を得ようとすれば、トルクリップル補正量は、上述したように、回転電機の回転状態に応じて設定されることが要求される。発明者らは、回転電機が車両の駆動源として用いられる場合、車両の前進と後進との違いや力行と回生との違いにより発生するトルクリップルが異なることを発見した。例えば、回転電機を車体に支持する支持部のマウントゴムの特性のバラツキや、回転電機から車輪までの駆動伝達系の構造に起因して、異なる特性のトルクリップルを生じる場合がある。本特徴構成のように、出力トルクの正負に応じて異なる位相のリップル補正波を生成すれば、発生するトルクリップルに応じた適切なリップル補正波を得ることができる。リップル補正波を用いて回転電機を駆動制御することで、トルクリップルが良好に抑制される。このように、本特徴構成によれば、回転電機の回転状態に応じて適切にトルクリップルを抑制することが可能な回転電機制御装置を提供することが可能となる。尚、出力トルクは、回転電機が実際に出力しているトルク、電流値などに基づいて推測されるトルク、上位のシステムから与えられる要求トルク等を含むものである。
 また、本発明に係る回転電機制御装置は、少なくともアクセルペダルの操作量に基づいて前記回転電機の要求トルクを決定する要求トルク設定部を備え、前記要求トルクに前記リップル補正波を重畳した目標トルクに基づいて前記回転電機を駆動制御すると好適である。
 トルクリップル補正波を回転電機の要求トルクに重畳した目標トルクに基づいて回転電機を制御するので、回転電機のトルクを運転者の要求に通りに制御しながら、適切にトルクリップルを抑制することができる。
 また、本発明に係る回転電機制御装置の前記補正パラメータ設定部は、前記出力トルクの正負に応じて、更に、前記リップル補正波の振幅を設定すると好適である。
 トルクリップルは正弦波成分を有しており、その成分には位相の他に振幅も存在する。振幅は、文字通り振動の大きさに関連するので、リップル補正波に適切な振幅が設定されることによって、回転電機のトルクリップルの大きさを適切に減衰させることができる。本構成のように、出力トルクの正負に応じて、さらにリップル補正波の振幅が設定されると、発生するトルクリップルに対して、より高い抑制効果が得られる。
 また、本発明に係る回転電機制御装置の前記補正パラメータ設定部は、前記回転電機の回転速度に応じて前記リップル補正波の振幅を設定すると好適である。
 トルクリップルが車両の搭乗者に与える不快感は、車両の速度、つまり回転電機の回転速度と関係がある。従って、回転電機の回転速度に応じて前記リップル補正波の振幅が設定されると、リップル補正波の重畳により、回転電機の効率を低下させる可能性を抑制し、回転電機の効率を向上させることができる。つまり、トルクリップルの低減と、回転電機の効率の低下の抑制とを両立させることができる。
 また、本発明に係る回転電機制御装置の前記補正パラメータ設定部は、制限開始速度を超えて、当該制限開始速度より大きい値に設定された制限速度に達するまで、前記回転速度が上がるに従って前記リップル補正波の振幅が小さくなり、前記制限速度において前記リップル補正波の振幅がゼロとなるように前記リップル補正波の振幅を制限し、前記回転電機の回転速度が前記制限速度以上の時、前記リップル補正波の振幅をゼロに制限すると好適である。
 車両の搭乗者は、車両の速度が低いとき、つまり、回転電機の回転速度が遅い時の方が、トルクリップルに起因する不快感を覚え易い。従って、回転電機の回転速度が遅いときにリップル補正波の振幅を大きくし、回転速度が上がるに従って、振幅を小さくすると、トルクリップルの発生による不快感を抑制すると共に、回転電機を高い効率で使用することができる。回転電機の回転速度が制限速度以上の高回転となると、トルクリップルに起因する不快感が問題にならなくなる。従って、この高回転域においては、リップル補正波を事実上加えないように、振幅をゼロとすると、回転電機を高い効率で利用することができる。また、制限開始速度から制限速度へと回転速度が上昇するに従って、リップル補正波の振幅を小さくするので、トルクリップルの補正量が急変することがなく、搭乗者に違和感を覚えさせることもない。
本発明の回転電機制御装置を含む車両のシステム構成の一例を模式的に示すブロック図である。 本発明の回転電機制御装置の構成の一例を模式的に示すブロック図である。 トルクリップルの高調波成分及びリップル補正波の関係を模式的に示す波形図である。 正トルク時のトルクリップルの位相及び振幅の特性を示すグラフである。 負トルク時のトルクリップルの位相及び振幅の特性を示すグラフである。 リップル補正波を生成する手順の一例を示すフローチャートである。 正トルク時のリップル補正波を模式的に示す波形図である。 負トルク時のリップル補正波を模式的に示す波形図である。 リップル補正波の振幅を制限する速度係数の特性図である。 リップル補正波の振幅を制限するトルク係数の特性図である。
 以下、本発明に係る回転電機制御装置の実施形態を、ハイブリッド自動車や電気自動車などの車両の駆動源となるモータ(回転電機)を制御する制御装置を例として、図面に基づいて説明する。図1は、そのようなモータMの制御装置(回転電機制御装置)100を含む車両のシステム構成の一例を模式的に示すブロック図である。モータMは、インバータ57を介して不図示のバッテリや、バッテリの出力電圧を昇圧する不図示のコンバータなどに電気的に接続され、電力の供給を受けて駆動力を発生する。インバータ57は、複数のスイッチング素子を有して構成される。スイッチング素子には、IGBT(insulated gate bipolar transistor)やMOSFET(metal oxide semiconductor field effect transistor)を適用すると好適である。以下、スイッチング素子としてIGBTを用いる場合を例として説明する。
 インバータ57は、よく知られているように3相のブリッジ回路により構成される。インバータ57の入力プラス側と入力マイナス側との間に2つのIGBTが直列に接続され、この直列回路が3回線並列接続される。つまり、モータMのu相、v相、w相に対応するステータコイルMu、Mv、Mwのそれぞれに一組の直列回路が対応したブリッジ回路が構成される。各相の上段側のIGBTのコレクタはインバータ57の入力プラス側に接続され、エミッタは各相の下段側のIGBTのコレクタに接続される。また、各相の下段側のIGBTのエミッタは、インバータ57の入力マイナス側(例えば、グラウンド)に接続される。対となる各相のIGBTによる直列回路の中間点、つまり、IGBTの接続点は、モータMのステータコイルMu、Mv、Mwにそれぞれ接続される。
 尚、IGBTには、それぞれフライホイールダイオード(回生ダイオード)が並列に接続される。フライホイールダイオードは、カソード端子がIGBTのコレクタ端子に接続され、アノード端子がIGBTのエミッタ端子に接続される形で、IGBTに対して並列に接続される。各IGBTのゲートは、ドライバ回路55を介してECU(electronic control unit)50に接続されており、それぞれ個別にスイッチング制御される。本実施形態では、他のECUと区別するために、ECU50をTCU(trans-axle control unit)50と称する。
 TCU50は、マイクロコンピュータなどの論理回路を中核として構成される。本実施形態では、TCU50は、マイクロコンピュータであるCPU(central processing unit)51と、インターフェース回路52と、その他の周辺回路等とを有して構成される。
インターフェース回路51は、EMI(electro-magnetic interference)対策部品やバッファ回路などにより構成される。CPU51は、本発明の回転電機制御装置に相当する制御装置100を構成する。高電圧をスイッチングするIGBTやMOSFETのゲートに入力される駆動信号は、マイクロコンピュータなどの一般的な電子回路の駆動電圧よりも高い電圧を必要とするため、ドライバ回路55を介して昇圧された後、インバータ57に入力される。
 CPU51は、少なくとも、CPUコア11と、プログラムメモリ12と、パラメータメモリ13と、ワークメモリ14と、通信制御部15と、A/Dコンバータ16と、タイマ17と、ポート18とを有して構成される。CPUコア11は、CPU51の中核であり、命令レジスタや命令デコーダ、種々の演算の実行主体となるALU(arithmetic logic unit)、フラグレジスタ、汎用レジスタ、割り込みコントローラなどを有して構成される。プログラムメモリ12は、モータ制御プログラム(回転電機制御プログラム)が格納された不揮発性のメモリである。パラメータメモリ13は、プログラムの実行の際に参照される種々のパラメータが格納された不揮発性のメモリである。パラメータメモリ13は、プログラムメモリ12と区別することなく構築されてもよい。プログラムメモリ12やパラメータメモリ13は、例えばフラッシュメモリなどによって構成されると好適である。ワークメモリ14は、プログラム実行中の一時データを一時記憶するメモリである。ワークメモリ14は、揮発性で問題なく、高速にデータの読み書きが可能なDRAM(dynamic RAM)やSRAM(static RAM)により構成される。
 通信制御部15は、車両内の他のシステムとの通信を制御する。本実施形態では、車両内のCAN(controller area network)80を介して、走行制御システム60やその他のシステム、センサ等との通信を制御する。A/Dコンバータ16は、アナログの電気信号をデジタルデータに変換する。本実施形態では、モータMの各ステータコイルMu,Mv,Mwに流れるモータ電流Iu,Iv,Iwの検出結果を電流センサ58から受け取り、デジタル値に変換する。尚、u相、v相、w相の3相は平衡しており、その瞬時値はゼロであるので、2相分のみの電流を検出し、残る1相はCPU51において演算により求めてもよい。本実施形態では、3相の全てが検出される場合を例示している。また、本例では、A/Dコンバータ16が3つのアナログ入力を有しているように図示しているが、これは3相の電流を計測していることを明示するためのものであって、必ずしも3つの入力を有する必要はない。例えば、インターフェース回路52にマルチプレクサを備えて、時分割により1つのアナログ入力からアナログの電流値を取得してもよい。
 タイマ17は、CPU51のクロック周期を最小分解能として時間を計測する。例えば、タイマ17は、プログラムの実行周期を監視し、CPUコア11の割り込みコントローラに通知する。また、タイマ17は、IGBTを駆動するゲート駆動信号(pu,nu,pv,nv,pw,nw)の有効時間を計測して、当該ゲート駆動信号を生成する。
 ポート18は、インバータ57のIGBTのゲート駆動信号などをCPU51の端子を介して出力したり、CPU51に入力される回転検出センサ59からの回転検出信号Rを受け取ったりする端子制御部である。回転検出センサ59は、モータMの近傍に設置されてモータMのロータの回転位置や回転速度を検出センサであり、例えば、レゾルバなどを用いて構成される。
 上述したように、CPU51は車内ネットワークであるCAN80を介して種々のシステムやセンサと通信可能に接続されている。CPU51は、走行制御システム60の他、ブレーキシステム61やパワーステアリングシステム63と接続される。これら各システムは、モータMの制御装置100と同様にCPUなどの電子回路を中核として構成され、TCU50と同様に周辺回路と共にECU(electronic control unit)として構成される。
 ブレーキシステム61は、運転者により操作されるブレーキペダルの操作量をブレーキセンサ72により検出して、アクチュエータ71を介して車両に制動力を付加してブレーキ力を増強させるブレーキアシストなどを有した電動ブレーキシステムである。パワーステアリングシステム63は、例えば、運転者により操作されるステアリングホイールの操作量をステアリングセンサ74により検出してアクチュエータ73によりアシストトルクを付加する電動パワーステアリング(EPS : electric power steering)システムである。
 車輪速センサ75は、車両の車輪の回転量や単位時間当たりの回転数を検出するセンサである。ブレーキシステム61が、ブレーキのロックを抑制するABS(anti lock braking system)や、コーナリング時の車両の横滑りを抑制する横滑り防止装置(ESC : electronic stability control)である場合、CAN80を介して受け取った車輪速センサ75の検出結果に基づいて各種制御が実行される。例えば、左右の車輪の回転差などからブレーキのロックや、車輪の空回り、横滑りの兆候などが判定され、判定結果に応じた制御が実行される。従って、車輪速センサ75は、ブレーキシステム61に備えられている場合もある。
 アクセルセンサ76は、運転者によるアクセルペダルの操作量を検出するセンサである。シフトレバーセンサ77は、シフトレバーの位置を検出するセンサ又はスイッチである。走行制御システム60は、ブレーキセンサ72、アクセルセンサ76、シフトレバーセンサ77、車輪速センサ75などによる検出結果に基づいて、モータMの要求トルクTrを演算する。例えば、シフトレバーセンサ77によりシフトレバーが「ドライブ」に設定されている状態でアクセルペダルが踏み込まれていれば、走行制御システム60は、正の値の要求トルクTr(出力トルク)を演算する。一方、ブレーキペダルが踏み込まれているとき、あるいは、シフトレバーセンサ77によりシフトレバーが「リバース」に設定されている状態でアクセルペダルが踏み込まれているとき、走行制御システム60は、負の値の要求トルクTrを演算する。この要求トルクTrは、CAN80を介してCPU51に伝達され、CPU51の通信制御部15によって受信される。走行制御システム60は、少なくともアクセルペダルの操作量に基づいてモータMの要求トルクTrを決定する要求トルク設定部として機能する。
 本実施形態において、モータMの制御装置100は、CPU51を中核として構成される。つまり、CPUコア11を主として、ワークメモリ14やタイマ17なども含むハードウェアと、プログラムメモリ12やパラメータメモリ13に格納されたプログラムやパラメータなどのソフトウェアとの協働により、制御装置100が構成される。但し、制御装置100の実施態様は、このようなハードウェアとソフトウェアとの協働に限定されるものではなく、ASIC(application specific integrated circuit)などを利用してハードウェアのみで構成されてもよい。
 図2は、モータMの制御装置100の機能的な構成の一例を模式的に示したブロック図である。この図に示された各機能部は、当然ながら、ハードウェアのみによって構成されてもよいし、ハードウェアとソフトウェアとの協働によって構成されてもよい。各機能部は、その実施態様に拘わらず、その機能が実現されれば問題はない。図2に示すように、制御装置100は、トルク制御部10と、電流制御部20と、電圧制御部30と、回転状態演算部40とを有して構成される。
 交流モータを制御する方法として、ベクトル制御(field oriented control : FOC)と呼ばれる制御方法が知られている。ベクトル制御では、交流モータの3相のそれぞれのステータコイルに流れるコイル電流を、回転子に配置された永久磁石が発生する磁界の方向であるd軸と、d軸に直交するq軸とのベクトル成分に座標変換してフィードバック制御を行う。本例においても、このベクトル制御を採用している。
 ベクトル制御における座標変換に際しては、モータMの回転状態をリアルタイムで知る必要がある。従って、図1に示すように、モータMの近傍にレゾルバなどの回転検出センサ59が備えられる。その検出結果は、上述したように、CPU51のポート18を介して、CPUコア11内のレジスタやワークメモリ14に伝達される。制御装置100に設けられた回転状態演算部40は、回転検出センサ59の検出結果Rに基づいて、ロータ位置(電気角θ)や、回転速度(角速度ω)を求める。求められた電気角θや角速度ωは、トルク制御部10や電流制御部20や電圧制御部30において用いられる。レゾルバなどの回転検出センサ59が、制御装置100が演算に利用可能な形態でロータ位置や回転速度の情報を提供する場合には、回転状態演算部40は制御装置100に設けられなくてもよい。
 トルク制御部10は、要求トルクTr(トルク指令Ti)に応じて電流フィードバック制御のための目標電流(電流指令)id,iqを設定する機能部である。目標電流id,iqは、上述したd軸及びq軸に対応して設定される。このため、トルク制御部10は、回転状態演算部40により求められた電気角θに基づいてトルク指令Tiをd軸の目標電流id及びq軸の目標電流iqに座標変換する2相変換部6を有して構成される。通常、要求トルクTrはトルク指令Tiと同じである。しかし、本実施形態においては、トルクリップルを抑制するために、要求トルクTrに対してリップル補正波NTRを重畳させて目標トルクToを生成する重畳部5が備えられる。目標トルクToは、2相変換部6の入力となるトルク指令Tiとなる。このため、重畳部5は目標トルクToを設定する目標トルク設定部として機能するともいえる。リップル補正波NTR及び、その生成方法については後述する。
 電流制御部20は、目標電流id,iqと、フィードバックされたモータ電流との偏差に基づいて、例えば比例積分制御(PI制御)や、比例微積分制御(PID制御)を行い、目標電圧(電圧指令)vd,vqを設定する機能部である。ここでは、比例微積分制御(PID制御)が行われる場合を例示しており、電流制御部20は、PID制御部21と2相変換部22とを有して構成される。電流センサ58により検出された電流値は、3相電流Iu,Iv,Iwであるから、2相変換部22は、回転状態演算部40により求められた電気角θに基づいて、2相電流Id,Iqに座標変換する。PID制御部21は、目標電流id,iqと、2相モータ電流Id,Iqとの偏差、及び、回転状態演算部40により求められた角速度ωに基づいて、PID制御を行い、目標電圧vd,vqを設定する。
 電圧制御部30は、目標電圧vd,vqに基づいて、インバータ57の3相のIGBTを駆動するゲート駆動信号pu,nu,pv,nv,pw,nwを生成する。電圧制御部30は、3相変換部31とPWM制御部32とを有して構成される。インバータ57は、モータMの3相のステータコイルMu,Mv,Mwに対応して、3相分設けられているから、2相の目標電圧vd,vqが、回転状態演算部40により求められた電気角θに基づいて、3相の目標電圧vu,vv,vwに座標変換される。PWM制御部32は、インバータ57のIGBTを、PWM(pulse width modulation )制御する。
 具体的には、PWM制御部32は、各相が上段側、下段側の2段のIGBTにより構成され、3相で合計6段構成された各段のIGBTのゲートを個別に制御する6つのゲート駆動信号pu,nu,pv,nv,pw,nwを生成する。ゲート駆動信号pu,nu,pv,nv,pw,nwは、順に、u相上段、u相下段、v相上段、v相下段、w相上段、w相下段のIGBTのゲート駆動信号に相当する。CPU51のタイマ17により各ゲート駆動信号の有効時間が計測され、ポート18を介してパルス状のゲート駆動信号pu,nu,pv,nv,pw,nwが出力される。
 ところで、上述したように、永久磁石を利用するモータでは、回転磁界を作り出すコイルに電流を流さない場合でも永久磁石による磁束が残存し、永久磁石とコイルの鉄心との間にトルクリップルが生じる。トルクリップルは、モータを駆動する3相交流の基本波成分の高調波成分を有している。この高調波成分の次数は、永久磁石の極数と鉄心の突極数とに関係する。一般的な3相交流モータの場合、1極当たりのスロット数が6であることが多く、影響の大きい高調波は6次高調波となる場合が多い。例えば、ロータ1/4回転(機械角90°)で電気角が360°となるモータでは、極数が8で、スロット数が48であることが多く、この場合も、影響の大きい高調波は6次高調波となる。
 図3には、発明者らにより、トルクリップルの高調波成分をFFT(fast Fourier transform)解析、及び、FEM(finite element method)解析した波形が示されている。図3においては、横軸は位相であり、モータMを駆動する交流基本波の電気角の0~60°に相当する期間が抜き出されている。電気角0°の時点を基準位相とする。図3に示す波形TRは、トルクリップルを示している。この例における理想的なトルクは、100[Nm]の一定値であり、このトルクに対して交流成分としてトルクリップルTRが重畳されている。図3から明らかなように、トルクリップルTRは、種々の成分の高次高調波が合成された波形である。FFT解析、FEM解析によって、トルクリップルTRの最も大きな周波数成分である6次高調波成分を取りだした波形が、図3に示す波形TRである。
 波形TRは、基本波の6次高調波であるから、交流基本波の電気角の0~60°の範囲に1周期の全てが含まれる。但し、その位相は、例えば交流基本波の電気角の0°である基準位相から240°遅れている(又は、120°進んでいる。)。また、その振幅は、定常値である100[Nm]に対して105[Nm]であるから、定常値の5%増である。このトルクリップルTRの6次高調波成分TRを打ち消すためには、図3に示すように、逆位相の正弦波を用いればよい。トルクリップルTRの6次高調波成分TRに対して、逆位相の正弦波をリップル補正波NTRと称する。リップル補正波NTRは、トルクリップルTRの6次高調波成分TRの逆位相であるので、交流基本波の電気角の0°である基準位相から60°遅れている(又は、300°進んでいる。)。また、リップル補正波NTRは、トルクリップルTRの6次高調波成分TRに対して、逆位相且つ同一振幅の正弦波であるとさらに好適である。トルクリップルTRに、リップル補正波NTRを加えることによって、トルクリップルTRの6次高調波成分TRを消去することができる。尚、基準位相は、この例に限らず、他の位相に設定されてもよい。
 図3を利用して説明したように、位相と振幅とが定義されたリップル補正波NTRを生成して、要求トルクTrに重畳すれば、発生するトルクリップルTRの6次高調波成分TRを相殺することができ、モータMの脈動を抑制することが可能となる。図2に示す補正波演算部4において位相と振幅とが定義されたリップル補正波NTRを生成し、重畳部5において要求トルクTrにリップル補正波NTRを重畳すれば、好適な目標トルクToが設定される。
 ところで、発明者らによる実験によれば、モータMが車両の駆動源となるモータの場合、正トルクを出力する際と、負トルクを出力する際とにおいて、トルクリップルTRの特性に違いが見られることがわかった。図4は、車両が前進する際等のモータMが正トルク時のトルクリップルTRの6次高調波成分TRの位相及び振幅の特性を示すグラフである。図5は、車両が後進する際や回生制動を行う際等のモータMが負トルク時のトルクリップルTRの6次高調波成分TRの位相及び振幅の特性を示すグラフである。これらのグラフにおいて、横軸は、トルクの絶対値であり、左側の縦軸は、振幅の絶対値及び定常値に対する割合(百分率)を表す振幅比であり、右側の縦軸は、位相である。
 図4及び図5に示すように、基準位相に対するトルクリップルTRの6次高調波成分TRの位相差は、トルクの絶対値に拘わらず、概ね安定している。但し、正トルク時の位相差が110°~135°程度であるのに対し、負トルク時の位相差は-108~-138°と異なった値となっている。
 一方、図4及び図5に示すように、トルクリップルTRの6次高調波成分TRの振幅は、トルクの絶対値により大きく変動する。トルクリップルTRの発生により、車両に乗っている運転者や同乗者の体感には、トルクリップルTR(TR)の振幅の絶対値よりも、定常値に対する割合の方が強く関係する。そこで、トルクリップルTR(TR)の定常値に対する振幅の割合(振幅比)が最も大きいトルクに注目する。図4に示すように、正トルクの場合には、トルクの絶対値が30[Nm]の際に、振幅比が最大となる。また、図5に示すように、負トルクの場合には、トルクの絶対値が60[Nm]の際に、振幅比が最大となる。このように、モータMのトルクが正トルクの際と、負トルクの際とで、トルクリップルTR(TR)の定常値に対する振幅の割合(振幅比)が最も大きいトルクが異なる。
 このように、モータMが正トルクを出力する際と負トルクを出力する際とにおいて、トルクリップルTRの特性に違いが見られる。従って、制御装置100は、要求トルクTrの正負に応じて、リップル補正波NTRを生成する際の位相や振幅を設定する。具体的には、図2に示すように、トルク制御部10の補正波演算部4は、正負判定部1と、補正パラメータ設定部2と、補正波生成部3とを有して構成される。正負判定部1は、要求トルクTr(出力トルク)の正負を判定する機能部である。補正パラメータ設定部2は、基準位相に対するリップル補正波の位相差を、要求トルクTr(出力トルク)の正負に応じて補正パラメータとして設定する機能部である。補正パラメータ設定部2は、正トルクパラメータ2pと負トルクパラメータ2nとを選択する選択スイッチ2sを備えて構成される。正負判定部1の判定結果に基づいて、選択スイッチ2sが制御され、正トルクパラメータ2p又は負トルクパラメータ2nが補正パラメータ2hとして設定される。補正波生成部3は、補正パラメータ2hに基づいて、リップル補正波NTRを生成する。
 上述したように、図4を参照すれば、モータMが正トルクを出力する場合、トルクの絶対値が30[Nm]の際に、振幅比が最大の5.2%となる。この時、振幅の絶対値は1.5[Nm]であり、位相差は120°である。振幅比5.2%が、振幅に関する補正パラメータ(振幅パラメータ)Aとなる。リップル補正波NTRはトルクリップルTRの6次高調波成分TRの反転であるから、下記式(1)により求められる値が、位相差に関する補正パラメータ(位相差パラメータ)φとなる。
 φ = 120- 180 = -60 [°] ・・・(1)
 上述したように、図5を参照すれば、モータMが負トルクを出力する場合、トルクの絶対値が60[Nm]の際に、振幅比が最大の5.0%となる。この時、振幅の絶対値は3.0[Nm]であり、位相差は-110°である。振幅比5.0%が、振幅に関する補正パラメータ(振幅パラメータ)Aとなる。リップル補正波NTRはトルクリップルTRの6次高調波成分TRの反転であるが、トルクの符号が負のために自動的に反転されることになる。従って、上記位相差-110°が補正パラメータ(位相差パラメータ)φとなる。
 尚、本実施形態においては、トルクの正負に応じて、それぞれ1つずつ補正パラメータが選択される場合を例示したが、これに限定されることなく、正負それぞれ、複数の補正パラメータが設定されてもよい。例えば、トルクの絶対値に応じて、複数の補正パラメータが設定されていてもよい。
 以下、図6のフローチャートも利用して、リップル補正波NTRの生成手順について説明する。上述したように、走行制御システム60から要求トルクTrを受け取ったCPU51は、CPUコア11の汎用レジスタや、ワークメモリ14などのワークエリアに要求トルクTrを一時記憶させる。そして、CPUコア11は、ワークエリアを参照し、モータMに対する要求トルクTrの正負を判定する正負判定機能を実行する(正負判定工程#1)。
 次に、CPUコア11は、基準位相に対するリップル補正波NTRの位相差を、要求トルクTrの正負に応じて補正パラメータ(位相差パラメータφ)2hとして設定する補正パラメータ設定機能を実行する(補正パラメータ設定工程#2及び#3)。尚、補正パラメータ設定機能には、リップル補正波NTRの振幅を定義する補正パラメータ(振幅パラメータA)2hを設定する機能を含めてもよい。要求トルクTrが正の値であった場合は、CPUコア11は、正トルク用の補正パラメータ2pをパラメータメモリ13から読み出し、ワークエリアに一時記憶させる(正トルク用の補正パラメータ設定工程#2)。正トルク用の補正パラメータ2pは、上述したように、位相差パラメータφが「-60°」、振幅パラメータAが「5.2%」である。
 次に、CPUコア11は、設定された補正パラメータ2h(φ、A)に基づいて、下記式(2)を演算してリップル補正波NTRを生成する補正波生成機能を実行する(補正波生成工程#4)。
 NTR = A・Tr・sin(6θ+φ) = 0.052Tr・sin(6θ-60) ・・・(2)
 これにより、図7に示すように、正トルク時のリップル補正波NTRが生成される。図7の上段は、横軸が時間であり、縦軸はモータMを駆動する交流基本波の電気角θ(磁極位置)を示している。図7には、概ね、電気角θの1周期分が示されている。図7の下段には、トルクリップルの6次高調波成分TRと、それに対するリップル補正波NTRが示されている。電気角θがゼロの時刻を基準位相とし、6次高調波成分の位相として60°位相が遅れ、要求トルクTrの5.2%の振幅を有する正弦波がリップル補正波NTRとして生成されている。これは、トルクリップルの6次高調波成分TRの逆位相の正弦波であり、要求トルクTrにリップル補正波NTRが重畳された目標トルクToに基づいて、上述したモータ制御演算が実行されることで、トルクリップルTRが抑制される。
 要求トルクTrが負の値であった場合は、CPUコア11は、負トルク用の補正パラメータ2nをパラメータメモリ13から読み出し、ワークエリアに一時記憶させる(負トルク用の補正パラメータ設定工程#3)。負トルク用の補正パラメータ2nは、上述したように、位相差パラメータφが「-110°」、振幅パラメータAが「5.0%」である。CPUコア11は、設定された補正パラメータ2h(φ、A)に基づいて、下記式(3)を演算してリップル補正波NTRを生成する補正波生成機能を実行する(補正波生成工程#4)。
 NTR = A・Tr・sin(6θ+φ) = 0.050Tr・sin(6θ-110) ・・・(3)
 これにより、図8に示すように、負トルク時のリップル補正波NTRが生成される。図8の上段は、図7と同様に横軸が時間であり、縦軸はモータMを駆動する交流基本波の電気角θ(磁極位置)を示している。但し、時間軸の進行方向は図7とは逆である。図8にも、図7と同様に、概ね、電気角θの1周期分が示されている。図8の下段には、トルクリップルの6次高調波成分TRと、それに対するリップル補正波NTRが示されている。電気角θがゼロの時刻を基準位相とし、6次高調波成分の位相として112°位相が遅れ、要求トルクTrの5.0%の振幅を有する正弦波がリップル補正波NTRとして生成されている。これは、トルクリップルの6次高調波成分TRの逆位相の正弦波であり、要求トルクTrにリップル補正波NTRが重畳された目標トルクToに基づいて、上述したモータ制御演算が実行されることで、トルクリップルTRが抑制される。
 尚、トルクリップルTrは、モータMの回転数により、乗員への影響が異なることも発明者らの実験によって知られている。従って、補正パラメータ設定部2は、さらに、モータMの回転速度に応じてリップル補正波NTRの振幅を設定するとよい。1つの形態として、図2に示すように、補正パラメータ設定部2に、回転数フィルタ2rを備え、モータMの回転数(角速度ω)に応じた速度係数krが補正パラメータとして設定されるとよい。回転数フィルタ2rは、例えば、モータMの回転数(角速度ω)を引数としたテーブルとして構成され、パラメータメモリ13に格納されると好適である。速度係数krが補正パラメータに含まれる場合、補正波生成部3は、下記式(4)によりリップル補正波NTRを生成する。
 NTR = kr・A・Tr・sin(6θ+φ)  ・・・(4)
 また、回転数フィルタ2rは、図9に示すような特性を有して構成されると好適である。図9に示すグラフの縦軸は、速度係数krであり、横軸は、モータMの回転速度の絶対値である。モータMの回転速度が所定の制限開始速度S1以下の場合には、リップル補正波NTRの振幅は制限されない。モータMの回転速度が所定の制限開始速度S1を超え、回転速度が上がるに従ってリップル補正波NTRの振幅が小さくなり、制限開始速度S1より大きい制限速度S2においてリップル補正波NTRの振幅がゼロとなるようにリップル補正波NTRの振幅が制限される。さらに、制限速度S2以上の時、リップル補正波NTRの振幅をゼロに制限する。
 トルクリップルTrは、モータMの回転数が上がると乗員への影響が少なくなること、つまり、乗員がトルクリップルTrの発生を体感しにくくなることが発明者らの実験によって知られている。従って、モータMの回転速度が制限開始速度S1以下では、リップル補正波NTRを100%の振幅で要求トルクTrに重畳させ、制限開始速度S1を超えた後、次第にリップル補正波NTRの振幅を小さくし、制限速度S2を超えた後には、リップル補正波NTRの振幅をゼロとして、リップル補正波NTRの要求トルクTrへの重畳を無くすと好適である。このような回転数フィルタ2rを設けることにより、低速回転時には良好にトルクリップルTrを抑制でき、高速回転時には不要なトルク指令を加えることがなく効率のよい制御が可能となる。また、速度係数krは、回転速度に応じて徐々に変化するため、急激にリップル補正波NTRの振幅が変わることがなく乗員に対する不快感も与えることがない。
 補正パラメータ設定部2は、さらに、モータMの要求トルクTrに応じてリップル補正波NTRの振幅を設定してもよい。つまり、補正パラメータ設定部2に、不図示のトルクフィルタを備え、要求トルクTrに応じたトルク係数ktが補正パラメータ2hとして設定されてもよい。トルク係数ktが補正パラメータに含まれる場合、補正波生成部3は、下記式(5)によりリップル補正波NTRを生成する。
 NTR = kt・kr・A・Tr・sin(6θ+φ)  ・・・(5)
 トルクフィルタは、回転数フィルタ2rと同様、図10に示すような特性を有して構成されると好適である。図10に示すグラフの縦軸は、トルク係数ktであり、横軸は、要求トルクの絶対値である。モータMの要求トルクTrが所定の制限開始トルクT1以下の場合には、リップル補正波NTRの振幅は制限されない。要求トルクTrが所定の制限開始トルクT1を超え、要求トルクTrが上がるに従ってリップル補正波NTRの振幅が小さくなり、制限開始トルクT1より大きい制限トルクT2においてリップル補正波NTRの振幅がゼロとなるようにリップル補正波NTRの振幅が制限される。さらに、制限トルクT2以上の時、リップル補正波NTRの振幅をゼロに制限する。
 要求トルクTrがモータMの制限トルクT2の近傍に有るとき、要求トルクTrにリップル補正波NTRが重畳されると、目標トルクToの瞬時値が制限トルクT2に達したり、制限トルクT2を超えたりする可能性がある。これにより、目標トルクToや、目標電流id,iqに制限が掛かると、この制限により別の脈動を生じる可能性がある。従って、リップル補正波NTRの瞬時値が充分に制限トルクに達しないような振幅中心を制限トルクT2とし、制限トルクT2に達するまで制限開始トルクT1から徐々にリップル補正波NTRの振幅を減少させると好適である。モータMの要求トルクTrが制限開始トルクT1以下では、リップル補正波NTRは100%の振幅で要求トルクTrに重畳される。トルク係数ktは、要求トルクTrに応じて徐々に変化するため、急激にリップル補正波NTRの振幅が変わることがなく乗員に対する不快感も与えることがない。
 尚、本発明においては、要求トルクTrの正負に応じて補正パラメータが設定される。補正パラメータには、位相差φも含まれるため、要求トルクTrが正の場合と負の場合とにおいて、リップル補正波NTRは大きく異なる波形となる。例えば、急激に要求トルクTrの正負が反転した場合、リップル補正波NTRは大きく変動し、乗員に不快感を与える可能性がある。このため、このような正負の判定を含む制御においては、しばしばヒステリシスが設定される。しかし、以下に説明する理由により、本発明においては、ヒステリシスの設定は不要である。従って、制御装置100を簡潔に構成することができ、また、要求トルクTrの正負の変化に対しても迅速に追従することができる。
 1つの実用的な数値を例に挙げて検証してみれば、要求トルクTrに対する実トルクの差であるトルク精度は、概ね±1.5[Nm]である。つまり、トルクの正負が反転する可能性が生じる領域は、要求トルクTrが±1.5[Nm]の範囲であると言える。しかし、車両の走行抵抗が、±5[Nm]程度存在するため、要求トルクTrが±1.5[Nm]の範囲では、車両は停止状態である。従って、実質的に車両が停止している状態がヒステリシスの役割を果たすことにもなるので、要求トルクTrの正負を判定する正負判定部1はヒステリシスを設けて判定を行う必要がない。その結果、非常に簡潔なシステムを構築することができる。
〔他の実施形態〕
 図2に示したように、上記実施形態においては、要求トルクTrに基づいて、トルクの正負が判定される場合を例として説明した。しかし、トルクの正負の判定は、モータMが実際に出力しているトルク、電流値などに基づいて推測されるトルクであってもよい。これらのトルク及び要求トルクTrは、本発明の出力トルクに相当するものである。
 また、同様に図2に示したように、上記実施形態においては、要求トルクTrに対してリップル補正波NTRが重畳される場合を例として説明した。しかし、これに限定されることなく、要求トルクTr(トルク指令)に基づいて演算される電流指令に重畳されてもよい。
 本発明は、ハイブリッド自動車や電気自動車などの車両を駆動するモータ(回転電機)を、目標トルクと回転速度とに基づいて駆動制御する回転電機制御装置に適用することができる。
1:正負判定部
2:補正パラメータ設定部
3:補正波生成部
5:目標トルク設定部
60:走行制御システム(要求トルク設定部)
100:モータの制御装置(回転電機制御装置)
M:モータ(回転電機)
NTR:リップル補正波
S1:制限開始速度
S2:制限速度
To:目標トルク
Tr:要求トルク(出力トルク)
TR:トルクリップル
φ:リップル補正波の位相差
ω:角速度(回転速度)

Claims (5)

  1.  車両を駆動する回転電機を駆動制御する回転電機制御装置であって、
     前記回転電機の出力トルクの正負を判定する正負判定部と、
     前記回転電機の磁極位置に対する、前記回転電機のトルクリップルを低減するための正弦波状のリップル補正波の位相差を、前記出力トルクの正負に応じて補正パラメータとして設定する補正パラメータ設定部と、
     前記補正パラメータに基づいて、前記リップル補正波を生成する補正波生成部とを備え、
     前記リップル補正波を用いて前記回転電機を駆動制御する回転電機制御装置。
  2.  少なくともアクセルペダルの操作量に基づいて前記回転電機の要求トルクを決定する要求トルク設定部を備え、
     前記要求トルクに前記リップル補正波を重畳した目標トルクに基づいて前記回転電機を駆動制御する請求項1に記載の回転電機制御装置。
  3.  前記補正パラメータ設定部は、前記出力トルクの正負に応じて、更に、前記リップル補正波の振幅を設定する請求項1又は2に記載の回転電機制御装置。
  4.  前記補正パラメータ設定部は、前記回転電機の回転速度に応じて前記リップル補正波の振幅を設定する請求項1~3のいずれか1項に記載の回転電機制御装置。
  5.  前記補正パラメータ設定部は、制限開始速度を超えて、当該制限開始速度より大きい値に設定された制限速度に達するまで、前記回転速度が上がるに従って前記リップル補正波の振幅が小さくなり、前記制限速度において前記リップル補正波の振幅がゼロとなるように、前記リップル補正波の振幅を制限し、前記回転電機の回転速度が前記制限速度以上の時、前記リップル補正波の振幅をゼロに制限する請求項4に記載の回転電機制御装置。
PCT/JP2010/051882 2009-03-30 2010-02-09 回転電機制御装置 WO2010116787A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201080005927.4A CN102300743B (zh) 2009-03-30 2010-02-09 旋转电机控制装置
DE112010000941.4T DE112010000941B4 (de) 2009-03-30 2010-02-09 Steuerungsvorrichtung für eine drehende Elektromaschine

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009082095A JP4835959B2 (ja) 2009-03-30 2009-03-30 回転電機制御装置
JP2009-082095 2009-03-30

Publications (1)

Publication Number Publication Date
WO2010116787A1 true WO2010116787A1 (ja) 2010-10-14

Family

ID=42783310

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/051882 WO2010116787A1 (ja) 2009-03-30 2010-02-09 回転電機制御装置

Country Status (5)

Country Link
US (1) US8446118B2 (ja)
JP (1) JP4835959B2 (ja)
CN (1) CN102300743B (ja)
DE (1) DE112010000941B4 (ja)
WO (1) WO2010116787A1 (ja)

Families Citing this family (50)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008108292A1 (ja) * 2007-03-07 2008-09-12 Kabushiki Kaisha Yaskawa Denki モータ制御装置とモータおよびトルクリプル補正方法
US8751192B2 (en) * 2010-08-24 2014-06-10 GM Global Technology Operations LLC Methods and systems for assessing vehicle transmissions
JP5414723B2 (ja) * 2011-03-18 2014-02-12 三菱電機株式会社 車両用モータ制御装置
JP2012200076A (ja) * 2011-03-22 2012-10-18 Hitachi Automotive Systems Ltd 電動車両の制御装置
JP5626592B2 (ja) * 2011-08-08 2014-11-19 アイシン・エィ・ダブリュ株式会社 制御装置
WO2013042237A1 (ja) * 2011-09-22 2013-03-28 三菱電機株式会社 モータ制御装置
JP5652664B2 (ja) * 2011-10-21 2015-01-14 アイシン・エィ・ダブリュ株式会社 回転電機制御装置
JP5845889B2 (ja) * 2011-12-27 2016-01-20 株式会社アドヴィックス 車両の制動制御装置
US9347532B2 (en) 2012-01-19 2016-05-24 Dana Limited Tilting ball variator continuously variable transmission torque vectoring device
EP2815152A1 (en) 2012-02-15 2014-12-24 Dana Limited Transmission and driveline having a tilting ball variator continuously variable transmission
US8766578B2 (en) 2012-02-27 2014-07-01 Canadian Space Agency Method and apparatus for high velocity ripple suppression of brushless DC motors having limited drive/amplifier bandwidth
CN102946226B (zh) * 2012-05-28 2015-11-04 同济大学 永磁同步电机6i阶电磁转矩波动检测方法及装置
US9556941B2 (en) 2012-09-06 2017-01-31 Dana Limited Transmission having a continuously or infinitely variable variator drive
WO2014039846A2 (en) * 2012-09-07 2014-03-13 Dana Limited Active torque ripple rectifier
JP6320386B2 (ja) 2012-09-07 2018-05-09 デーナ リミテッド 遊星ギヤセットを含むボール式cvt/ivt
CN104755812A (zh) 2012-09-07 2015-07-01 德纳有限公司 包括动力分流路径的基于球型cvp的ivt
CN104768787A (zh) 2012-09-07 2015-07-08 德纳有限公司 具有动力分流路径的球型cvt
EP2893220A4 (en) 2012-09-07 2016-12-28 Dana Ltd CONTINUOUS BALL VARIATION TRANSMISSION WITH DIRECT DRIVE MODE
US9599204B2 (en) 2012-09-07 2017-03-21 Dana Limited Ball type CVT with output coupled powerpaths
WO2014039901A1 (en) 2012-09-07 2014-03-13 Dana Limited Ball type continuously variable transmission/ infinitely variable transmission
US9252689B2 (en) 2012-09-18 2016-02-02 Nissan Motor Co., Ltd. Motor control device and motor control method
CN104718103B (zh) 2012-10-15 2016-10-26 三菱电机株式会社 电动车辆的电动机控制装置
WO2014078583A1 (en) 2012-11-17 2014-05-22 Dana Limited Continuously variable transmission
CN103879303B (zh) * 2012-12-21 2017-04-19 上海大郡动力控制技术有限公司 消除电机驱动车辆低速抖动的控制系统
JP6279211B2 (ja) * 2013-01-31 2018-02-14 Ntn株式会社 電気自動車用同期モータの制御装置
WO2014124063A1 (en) 2013-02-08 2014-08-14 Microsoft Corporation Pervasive service providing device-specific updates
CN105121905A (zh) 2013-03-14 2015-12-02 德纳有限公司 球型连续式无级变速器
EP2971860A4 (en) 2013-03-14 2016-12-28 Dana Ltd CONTINUOUS VARIATION TRANSMISSION AND CONTINUOUS VARIATION TRANSMISSION VARIATOR DRIVE
WO2014167667A1 (ja) * 2013-04-10 2014-10-16 三菱電機株式会社 回転機制御装置
JP2016520782A (ja) 2013-06-06 2016-07-14 デーナ リミテッド 3モード前輪駆動および後輪駆動連続可変遊星トランスミッション
US10030751B2 (en) 2013-11-18 2018-07-24 Dana Limited Infinite variable transmission with planetary gear set
US10088022B2 (en) 2013-11-18 2018-10-02 Dana Limited Torque peak detection and control mechanism for a CVP
FR3013275B1 (fr) * 2013-11-19 2017-09-01 Renault Sas Procede d'elaboration d'un couple de consigne d'un moteur electrique de vehicule automobile et groupe motopropulseur associe
JP2015116092A (ja) * 2013-12-13 2015-06-22 トヨタ自動車株式会社 電動車両
JP6044585B2 (ja) * 2014-05-07 2016-12-14 株式会社デンソー 多相交流モータの制御装置
CN104135213A (zh) * 2014-07-31 2014-11-05 苏州汇川技术有限公司 具有短路保护功能的电机控制器及具备其的电机控制系统
US9473060B2 (en) * 2014-08-11 2016-10-18 Nidec Motor Corporation Motor control system and method for skipping resonant operating frequencies
JP6342747B2 (ja) * 2014-08-22 2018-06-13 株式会社デンソー 回転電機の制御装置
US10030594B2 (en) 2015-09-18 2018-07-24 Dana Limited Abuse mode torque limiting control method for a ball-type continuously variable transmission
JP6400231B2 (ja) * 2015-12-24 2018-10-03 三菱電機株式会社 回転電機の制御装置
JP6173520B1 (ja) * 2016-04-19 2017-08-02 三菱電機株式会社 回転電機の制御装置
JP2018098978A (ja) * 2016-12-15 2018-06-21 アイシン精機株式会社 モータ制御装置
JP6867885B2 (ja) * 2017-06-05 2021-05-12 川崎重工業株式会社 角度伝達誤差同定システム、角度伝達誤差同定方法及びロボットシステム
CN111034018B (zh) 2017-09-29 2023-06-20 日本电产株式会社 电力转换装置、马达驱动单元以及电动助力转向装置
CN109808510B (zh) * 2019-02-26 2020-11-03 北京经纬恒润科技有限公司 电动汽车输出扭矩的控制方法及整车控制器
CN110539648A (zh) * 2019-08-14 2019-12-06 深圳熙斯特新能源技术有限公司 一种可靠的新能源电动汽车功能安全保护方法
CN114502414B (zh) * 2019-10-16 2023-10-13 三菱自动车工业株式会社 电动车辆的电机控制装置
JP7311778B2 (ja) * 2019-10-23 2023-07-20 ダイキン工業株式会社 電力変換装置
JP7321385B2 (ja) * 2020-09-11 2023-08-04 三菱電機株式会社 回転機の制御装置
GB2625070A (en) * 2022-12-02 2024-06-12 Dyson Technology Ltd A method of controlling a brushless permanent magnet motor

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1155986A (ja) * 1997-08-05 1999-02-26 Hitachi Ltd 永久磁石回転電機の制御装置
JP2003088159A (ja) * 2001-09-05 2003-03-20 Yaskawa Electric Corp トルクリップル補正方法および装置
JP2005224051A (ja) * 2004-02-06 2005-08-18 Yaskawa Electric Corp モータ制御装置
WO2008108292A1 (ja) * 2007-03-07 2008-09-12 Kabushiki Kaisha Yaskawa Denki モータ制御装置とモータおよびトルクリプル補正方法

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01155986A (ja) * 1987-12-11 1989-06-19 Yasuo Sato 浄水塔
DE3941495A1 (de) 1988-12-15 1990-06-21 Papst Motoren Gmbh & Co Kg Mess- und pruefstand fuer elektromechanische wandler
US7117754B2 (en) 2002-10-28 2006-10-10 The Curators Of The University Of Missouri Torque ripple sensor and mitigation mechanism
JP4033030B2 (ja) * 2003-04-21 2008-01-16 株式会社ジェイテクト 電動パワーステアリング装置
US7474067B2 (en) * 2003-10-07 2009-01-06 Jtekt Corporation Electric power steering system
US20080067960A1 (en) * 2004-11-24 2008-03-20 Nsk, Ltd. Unconnected Motor, Drive Control Device Thereof, And Electric Power Steering Device Using Drive Control Device Of Unconnected Motor
JP4876661B2 (ja) * 2006-03-24 2012-02-15 株式会社デンソー 車両用発電電動装置
JP2007274779A (ja) 2006-03-30 2007-10-18 Aisin Aw Co Ltd 電動駆動制御装置及び電動駆動制御方法
WO2007119755A1 (ja) * 2006-04-11 2007-10-25 Nsk Ltd. モータ制御装置及びこれを使用した電動パワーステアリング装置
JP4800861B2 (ja) * 2006-06-21 2011-10-26 三菱電機株式会社 交流回転機の制御装置
DE102008062515A1 (de) * 2007-12-21 2009-06-25 Denso Corporation, Kariya Vorrichtung zum Steuern eines Drehmoments einer elektrischen Drehmaschine
US7952308B2 (en) * 2008-04-04 2011-05-31 GM Global Technology Operations LLC Method and apparatus for torque ripple reduction
US7768220B2 (en) * 2008-04-24 2010-08-03 Gm Global Technology Operations, Inc. Harmonic torque ripple reduction at low motor speeds

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1155986A (ja) * 1997-08-05 1999-02-26 Hitachi Ltd 永久磁石回転電機の制御装置
JP2003088159A (ja) * 2001-09-05 2003-03-20 Yaskawa Electric Corp トルクリップル補正方法および装置
JP2005224051A (ja) * 2004-02-06 2005-08-18 Yaskawa Electric Corp モータ制御装置
WO2008108292A1 (ja) * 2007-03-07 2008-09-12 Kabushiki Kaisha Yaskawa Denki モータ制御装置とモータおよびトルクリプル補正方法

Also Published As

Publication number Publication date
US20100244755A1 (en) 2010-09-30
JP2010239681A (ja) 2010-10-21
CN102300743B (zh) 2014-04-16
CN102300743A (zh) 2011-12-28
US8446118B2 (en) 2013-05-21
DE112010000941T5 (de) 2012-09-20
JP4835959B2 (ja) 2011-12-14
DE112010000941B4 (de) 2022-01-27

Similar Documents

Publication Publication Date Title
JP4835959B2 (ja) 回転電機制御装置
EP2642658B1 (en) Controller for electric motor
JP4798075B2 (ja) モータ駆動システム
JP5633639B2 (ja) 電動機の制御装置およびそれを備える電動車両、ならびに電動機の制御方法
JP5888567B2 (ja) 交流電動機の制御装置
JP6173520B1 (ja) 回転電機の制御装置
JP7343269B2 (ja) モータの制御装置および制御方法
JP5742879B2 (ja) 車両用の回転電機の制御装置
JP4110865B2 (ja) 永久磁石型電動機の制御システム
JP5483218B2 (ja) 交流電動機の制御装置
JP5737123B2 (ja) 回転機の制御装置及び回転角算出装置
US20230412099A1 (en) Motor control device and electric power steering device provided with same
JP2009201250A (ja) モータの制御装置
JP6678739B2 (ja) モータ制御装置
JP6838469B2 (ja) 駆動装置
JP6400231B2 (ja) 回転電機の制御装置
JP2012138982A (ja) モータ制御装置及び電気機器
JP7317250B2 (ja) 回転電機の制御装置及び電動パワーステアリング装置
JP7073799B2 (ja) モータ制御方法、及び、モータ制御装置
JP6950409B2 (ja) 駆動装置
JP6305603B1 (ja) 回転電機の制御装置
JP4526628B2 (ja) 交流モータの制御装置
JP7317249B2 (ja) 回転電機の制御装置及び電動パワーステアリング装置
WO2023073823A1 (ja) 回転機の制御装置及び電動パワーステアリング装置
JP2010226780A (ja) 交流電動機の制御システム

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080005927.4

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10761489

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 112010000941

Country of ref document: DE

Ref document number: 1120100009414

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10761489

Country of ref document: EP

Kind code of ref document: A1