Nothing Special   »   [go: up one dir, main page]

WO2010106885A1 - 自動分析装置 - Google Patents

自動分析装置 Download PDF

Info

Publication number
WO2010106885A1
WO2010106885A1 PCT/JP2010/052868 JP2010052868W WO2010106885A1 WO 2010106885 A1 WO2010106885 A1 WO 2010106885A1 JP 2010052868 W JP2010052868 W JP 2010052868W WO 2010106885 A1 WO2010106885 A1 WO 2010106885A1
Authority
WO
WIPO (PCT)
Prior art keywords
sample
container
disposable
disk
automatic analyzer
Prior art date
Application number
PCT/JP2010/052868
Other languages
English (en)
French (fr)
Inventor
智憲 三村
彰久 牧野
作一郎 足立
Original Assignee
株式会社日立ハイテクノロジーズ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立ハイテクノロジーズ filed Critical 株式会社日立ハイテクノロジーズ
Priority to CN2010800083714A priority Critical patent/CN102326086A/zh
Priority to US13/202,337 priority patent/US20120039748A1/en
Priority to DE112010001896T priority patent/DE112010001896B4/de
Publication of WO2010106885A1 publication Critical patent/WO2010106885A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/02Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor using a plurality of sample containers moved by a conveyor system past one or more treatment or analysis stations
    • G01N35/025Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor using a plurality of sample containers moved by a conveyor system past one or more treatment or analysis stations having a carousel or turntable for reaction cells or cuvettes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/02Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor using a plurality of sample containers moved by a conveyor system past one or more treatment or analysis stations
    • G01N35/04Details of the conveyor system
    • G01N2035/0439Rotary sample carriers, i.e. carousels
    • G01N2035/0453Multiple carousels working in parallel
    • G01N2035/0455Coaxial carousels

Definitions

  • the present invention relates to an automatic analyzer that automatically analyzes components such as blood, and is particularly effective when applied to an apparatus that performs a plurality of test items such as biochemical tests, immune serum tests, and blood coagulation tests.
  • each test such as immunoserum test, blood coagulation test, etc. has been carried out separately on a dedicated device, such as sample transfer between devices, sample set to each device, analysis request operation, summary of output results, etc. It was necessary to carry out multiple operations, and the efficiency was poor. Therefore, by carrying out a series of inspections more efficiently, labor saving of inspections, speeding up of inspection reports, and downsizing by integration of inspection devices are desired.
  • Patent Document 2 proposes an inspection method in which a number of reaction vessels are sequentially moved by a frame advance operation, and light intensity is calculated at a photometric interval corresponding to each sample during a reciprocating operation.
  • Patent Documents 1 and 2 both perform preprocessing with a separate device, and the device configuration including preprocessing cannot be simplified.
  • the multipurpose disc of the apparatus corresponding to the inspection of a plurality of items be provided with a high-accuracy container that can be cleaned and reused and a disposable low-cost container.
  • the present invention has been made in view of the above problems, and an object of the present invention is to provide an automatic analyzer that can inspect a plurality of items with high accuracy and low cost without increasing the size of the apparatus. It is in.
  • the automatic analyzer of the present invention includes a container for performing a reaction between a sample and a reagent and / or pretreatment of the sample with a pretreatment liquid, a reaction / pretreatment combination disk in which the container is disposed, An automatic analyzer having a sample dispensing mechanism for dispensing the sample and an inspection mechanism for a plurality of items based on the reaction, wherein the reaction and pretreatment disk is used as the container as the reaction and pretreatment A fixed container fixed to the dual-purpose disk and a disposable container detachably provided on the reaction and pretreatment dual-purpose disk are arranged.
  • the fixed container and the disposable container that can be attached and detached are arranged on the reaction and pre-processing disk of the automatic analyzer that has the inspection mechanism for multiple items, high precision to clean and reuse the fixed container
  • the disposable container can be used as a disposable low-cost container according to the inspection item. Thereby, the inspection of a plurality of items can be performed with high accuracy and low cost without increasing the size of the apparatus.
  • FIG. 1 It is a schematic plan view which shows the outline of one Embodiment of the automatic analyzer of this invention. It is a figure which shows the flow of the sample in the automatic analyzer of FIG. 1, a pretreatment liquid, a reagent, and a disposable container.
  • (A)-(c) is explanatory drawing explaining the flow of operation
  • A)-(c) is explanatory drawing explaining the flow of operation
  • A)-(c) is explanatory drawing explaining the flow of operation
  • FIG. (A) is a principal part side view which shows the principal part of the sample dispensing probe in the case of using by washing
  • (b) is a principal part side surface which shows the principal part of the sample dispensing probe in the case of using a disposable tip.
  • FIG. (A)-(h) is explanatory drawing explaining the flow of operation
  • (A)-(h) is explanatory drawing explaining the flow of operation
  • A)-(c) is explanatory drawing explaining the flow of operation
  • FIG. 1 is a schematic plan view showing an outline of an embodiment of an automatic analyzer of the present invention
  • FIG. 2 is a diagram showing the flow of a sample, a pretreatment liquid, a reagent, and a disposable container in the automatic analyzer of FIG. is there.
  • the sample dispensing mechanism is not shown for the convenience of understanding.
  • the illustration of the control unit, the display unit, the input unit, and the storage unit is omitted in all figures.
  • the automatic analyzer 1 includes a sample disk 10, a common disk (reaction and pretreatment disk) 20, a biochemical test reagent disk 30, and a flow system as a test mechanism for a plurality of items.
  • Analyzing mechanisms 40a and 40b, a pretreatment liquid and flow analysis reagent container storage section (hereinafter referred to as a pretreatment liquid container storage section) 50, and a disposable container storage section 60 are provided.
  • sample containers 11 for holding a sample are arranged at predetermined intervals on the outer periphery 10a side and the center 10b side, respectively.
  • the common disk 20 is provided on the side of the sample disk 10, and performs both the reaction between the sample and the reagent and the sample pretreatment with the pretreatment liquid.
  • pretreatment includes sample dilution.
  • the common disk 20 has a photometric mechanism (inspection mechanism) 70 for biochemical inspection as one of the inspection mechanisms for a plurality of items, a container cleaning mechanism 80 on the outer periphery 20a side, and a sample (not shown).
  • a stirring mechanism for stirring with the pretreatment liquid or reagent is provided.
  • the photometric mechanism 70 includes a light source that emits analysis light for analyzing the reaction liquid in the container, a detector that spectrally detects the analysis light that has passed through the reaction liquid, and the like.
  • the photometric mechanism 70 may be used for inspection of items other than biochemistry.
  • a fixed container 21 fixed to the common disk 20 and a disposable container 22 detachably provided are alternately arranged.
  • the fixed container 21 is reused by washing in the container washing mechanism 80, and the disposable container 22 is disposable.
  • the fixed container 21 a known container having a high surface accuracy corresponding to the colorimetric analysis can be used, and a known container can be used as the disposable container 22.
  • the fixed container 21 and the disposable container 22 are alternately arranged from the viewpoint of facilitating control.
  • the fixed container 21 and the disposable container 22 may be arranged regularly, for example, every two disposable containers 22. I just need it. Further, the number of containers to be arranged can be appropriately increased or decreased as necessary.
  • a reagent disk 30 for biochemical examination is provided on the inner circumference 20b side of the common disk 20.
  • the biochemical test reagent disk 30 is provided with a biochemical test reagent cassette 31 that holds the first reagent and the second reagent for biochemical test in one container along the circumferential direction. This eliminates the need to manage the first reagent and the second reagent separately. However, the first reagent and the second reagent may be separately held in a container such as a test tube. Further, the biochemical test reagent disk 30 may be provided at another position in the automatic analyzer 1. Furthermore, the biochemical test reagent disk 30 and the biochemical test reagent cassette 31 may hold test reagents of other items.
  • the flow system analysis mechanisms 40 a and 40 b, the pretreatment liquid container storage unit 50, and the disposable container storage unit 60 are provided on the front side of the apparatus with respect to the common disk 20.
  • the flow system analysis mechanisms 40a and 40b can appropriately select a test known as a flow system analysis such as an immune serum test, a blood coagulation test, and an electrolyte test according to the requested items.
  • a test known as a flow system analysis
  • the number of flow system analysis mechanisms may be increased or decreased as appropriate according to the requested item. Thereby, the apparatus can be further downsized.
  • the container 51 accommodated in the pretreatment liquid container storage unit 50 holds the pretreatment liquid when performing the pretreatment, and the corresponding flow analysis reagent when performing the flow analysis. It has come to be.
  • the disposable container 22 stored in the disposable container storage unit 60 can be appropriately replaced with the disposable container 22 of the common disk 20 by a disposable container transfer mechanism (not shown in FIG. 1).
  • a flow of dispensing the sample, the reagent, and the pretreatment liquid to the 20 fixed containers 21 or the disposable container 22 is configured.
  • a flow of transferring the disposable container 22 from the disposable container storage unit 60 to the common disk 20 is configured.
  • FIGS. 3A to 3C, FIGS. 4A to 4C, and FIGS. 5A to 5C are explanatory diagrams for explaining the flow of operations in the automatic analyzer of FIG. 1 in this order. .
  • the actual automatic analyzer 1 includes a sample dispensing mechanism 15, a first reagent dispensing mechanism 35, a second reagent dispensing mechanism 45, and a disposable container transfer. And a mechanism 65.
  • the sample dispensing mechanism 15 includes a sample dispensing arm 16, a horizontal rail (first guide member) 17 provided along the width direction of the apparatus, that is, the horizontal direction (first direction), and the depth direction ( This is a so-called XY rail type dispensing mechanism including a vertical rail (second guide member) 18 provided along a second direction orthogonal to the first direction.
  • the sample dispensing mechanism 15 can dispense a sample by arbitrarily approaching the container at any position on the common disk 20. In this case, orthogonal to the horizontal direction is expressed as “vertical”.
  • the horizontal rail 17 is provided from the sample disk 10 to the common disk 20 at the rear end of the apparatus.
  • the vertical rail 18 extends from the horizontal rail 17 toward the inside of the apparatus, and slides on the horizontal rail 17.
  • the sample dispensing arm 16 is attached to the vertical rail 18 and slides on the vertical rail 18. That is, the sample dispensing arm 16 is guided through the vertical rail 18 by the horizontal rail 17 in the horizontal direction and directly by the vertical rail 18 in the depth direction.
  • the first reagent dispensing mechanism 35, the second reagent dispensing mechanism 45, and the disposable container transfer mechanism 65 are all XY rail type dispensing mechanisms.
  • the first reagent dispensing mechanism 35 is constructed between the first reagent dispensing arm 36, vertical rails 37a and 37b provided at both ends in the horizontal direction across the common disk 20, and the vertical rails 37a and 37b.
  • the horizontal rail 38 slides on the vertical rails 37a and 37b, and the first reagent dispensing arm 36 slides on the horizontal rail 38.
  • the vertical rail 37b is formed longer than the vertical rail 37a on the front side of the apparatus in order to be shared with the disposable container transfer mechanism 65.
  • the second reagent dispensing mechanism 45 shares the vertical rails 37a and 37b with the first reagent dispensing mechanism 35, and is installed between the second reagent dispensing arm 46 and the vertical rails 37a and 37b. And a horizontal rail 48. Similarly to the first reagent dispensing mechanism 35, the horizontal rail 48 slides on the vertical rails 37a and 37b, and the second reagent dispensing arm 46 slides on the horizontal rail 48.
  • the second reagent dispensing mechanism 45 also functions as a pretreatment liquid dispensing mechanism, which can further reduce the size of the apparatus.
  • the disposable container transfer mechanism 65 includes a container gripping arm 66 that grips the disposable container 22 at the tip, and a horizontal rail 68 that extends from the vertical rail 37b and is mounted on the vertical rail 37b.
  • the gripping arm 66 slides on the horizontal rail 68.
  • the sample dispensing arm 16 of the sample dispensing mechanism 15 is moved by the horizontal rail 17 and the vertical rail 18 to the sample disk 10.
  • the sample container 11 is moved to and the sample in the sample container 11 is sucked.
  • the sample dispensing arm 16 moves onto the disposable container 22 of the common disk 20 and discharges the sample into the disposable container 22 as shown in FIG.
  • the common disk 20 is rotated clockwise (see the arrow in the figure) and the sample (the black position in the figure is the position before moving for convenience of understanding). And after moving, both positions are blacked out). Further, the second reagent dispensing arm 46 of the second reagent dispensing mechanism 45 is moved onto the container 51 of the pretreatment liquid container storage unit 50 by the vertical rails 37a and 37b and the horizontal rail 48, and the container 51 Aspirate the pretreatment liquid inside.
  • the second reagent dispensing arm 46 moves onto the disposable container 22 containing the sample on the common disk 20, and the inside of the disposable container 22 The pretreatment liquid is discharged.
  • the common disk 20 rotates clockwise (see the arrow in the figure) and the pretreated sample moves.
  • the second reagent dispensing mechanism 45 moves in the direction of the flow system analyzing mechanism 40a.
  • the sample dispensing arm 16 moves onto the disposable container 22 containing the pre-processed sample, and the pre-processed sample in the disposable container 22 is moved. Suction.
  • the sample dispensing arm 16 moves on the fixed container 21 adjacent to the disposable container 22 containing the pretreated sample counterclockwise. A pretreated sample is discharged into the fixed container 21.
  • the common disk 20 rotates clockwise (see the arrow in the figure) and the preprocessed sample of the fixed container 21 (at the black-colored position in the figure). Yes, for convenience of understanding, both the positions before moving and after moving are painted black).
  • the first reagent dispensing arm 36 of the first reagent dispensing mechanism 35 is moved onto the biochemical test reagent cassette 31 of the biochemical test reagent disk 30 by the vertical rails 37a and 37b and the horizontal rail 38. Then, the first reagent in the biochemical examination reagent cassette 31 is aspirated.
  • the first reagent dispensing arm 36 has a biochemical test reagent cassette facing the fixed container 21 containing the pretreated sample via the inner peripheral edge 20b of the common disk 20 in order to reduce the amount of movement. Aspirate the first reagent from 31.
  • the first reagent dispensing arm 36 moves onto the fixed container 21 containing the pre-processed sample, and this fixing is performed.
  • the first reagent is discharged into the container 21.
  • the second reagent dispensing arm 46 moves onto the biochemical test reagent cassette 31 as shown in the figure as necessary.
  • the second reagent is aspirated and then moved onto the fixed container 21 containing the pretreated sample and the first reagent, and this fixation is performed.
  • a second reagent is discharged into the container 21.
  • the dispensing of the second reagent is usually performed after about 5 minutes have elapsed since the first reagent was discharged.
  • the reaction liquid after the reaction between the sample and the first reagent and, if necessary, the second reagent is moved to the photometric mechanism 70 by the rotation of the common disk 20 and analyzed.
  • the fixed container 21 is cleaned by the container cleaning mechanism 80.
  • the disposable container 22 is transferred to the disposable container storage unit 60 by the container gripping arm 66 of the disposable container transfer mechanism 65 and then discarded.
  • the sample may be dispensed into the fixed container 21 from the beginning.
  • the sample is discharged into the fixed container 21 instead of the disposable container 22 in FIG. 3 (b), and the operations shown in FIGS. 3 (c) to 5 (a) are performed. Except for the absence, the operation is similar to that of a biochemical test that generally requires pretreatment.
  • FIG. 6 is a schematic plan view showing an outline of an embodiment of an automatic analyzer to which another sample dispensing mechanism is applied.
  • the sample dispensing mechanism 25 shown in FIG. 6 is a multi-joint arm that includes a rotation shaft 25a at the center of the common disk 20 and has a first joint 25b and a second joint 25c in order from the tip. That is, in the sample dispensing mechanism 25, the first joint 25b expands and contracts with the joint portion 25d with the second joint 25c as a rotation axis, and the second joint 25c rotates around the rotation axis 25a.
  • the sample can be dispensed by approaching the container.
  • the automatic analyzer 1 also uses the second reagent dispensing mechanism 45 as a pretreatment liquid dispensing mechanism.
  • the present invention is not limited to this, and the first reagent dispensing mechanism 35 is disposed in front. Both of the reagent dispensing mechanisms may be used as a pretreatment liquid dispensing mechanism as appropriate.
  • FIGS. 7 is an explanatory diagram for explaining the basic cycle of the common disk
  • FIG. 8 is an explanatory diagram for explaining the rotation operation of the common disk in the A cycle
  • FIGS. 9A and 9B show the rotation operation of the common disk in the B cycle. It is explanatory drawing demonstrated.
  • FIGS. 10A to 10D are explanatory views for explaining an example of the operation when the basic cycle of FIG. 7 is the shortest cycle
  • FIGS. 11 to 13 are common disks when 20 containers are arranged. It is a figure which shows the example of this rotation operation
  • FIGS. 8, 9 and 11 to 13 the arrangement of the common disk is omitted or changed as appropriate for the convenience of understanding.
  • the operation of the common disk is a basic cycle combining the A cycle in which the preprocessing operation is performed and the B cycle in which the resampling (pretreated sample dispensing) operation to the analysis unit is performed.
  • the A cycle and the B cycle are controlled independently, but the cycle time is the same, thereby making the operation timing of the preprocessing and the operation timing to the analysis unit common.
  • two B cycles are included after the A cycle.
  • the number of B cycles after the A cycle may be appropriately changed according to the inspection item, the number of samples, and the like.
  • sampling sample dispensing
  • pretreatment liquid dispensing stirring and washing are each performed in one cycle.
  • the common disk 20 regularly rotates in one direction by a step having a common factor with the number of containers disposed, such as N disposable containers, for example.
  • the B cycle operates at the stage where the sample to be resampled is ready after the series of pre-processing operations up to stirring in the A cycle is completed.
  • the container to be resampled next moves to the resampling position regardless of the position of the common disk 20.
  • the movement distance is arbitrary, but the common disk 20 can select either the clockwise rotation shown in FIG. 9A or the counterclockwise rotation shown in FIG. 9B. It is possible to reduce the travel distance and time.
  • the common disk When it is not necessary to leave or heat for a certain time in the pretreatment, the common disk operates on the sample in the procedure as shown in FIG. 10, for example.
  • a disposable container for sampling the first sample (sample 1) is set in the first A cycle, and the sample 1 is sampled in the next A cycle.
  • the pretreatment liquid is dispensed into the sample 1 and a disposable container for sampling the sample 2 following the sample 1 is set as shown in FIG.
  • the disposable container is not set because the fixed container is in the container setting position.
  • sample 1 is agitated and sample 2 is sampled.
  • Sample 1 is resampled in two B cycles following the A cycle. In the illustrated example, since there are six biochemical test items, resampling is also performed in two B cycles of the next and the next basic cycle.
  • the pretreatment liquid is dispensed to the sample 2 and a disposable container for sampling the sample 3 following the sample 2 is set as shown in FIG.
  • sample 2 is agitated and sample 3 is sampled.
  • the sample 2 is not resampled, and is performed in the B cycle of the subsequent basic cycle.
  • the pretreatment liquid is dispensed to the sample 3, and a disposable container for sampling the sample 4 following the sample 3 is set as shown in FIG.
  • FIG. 10 shows an example in the case of the shortest cycle, and an empty cycle may be provided as appropriate in order to avoid overlapping of each dispensing mechanism and carryover.
  • a circular container with an odd number represents a disposable container
  • a square container with an even number represents a fixed container
  • the common disk 20 is rotated counterclockwise by three containers, and the disposable container 22 with the number 1 set at the position g is It is sampled at the position.
  • the common disk 20 further rotates three containers counterclockwise, and the pretreatment liquid is dispensed at the position b.
  • the flow system reagent is dispensed at the position b and re-sampled by the flow system analysis mechanisms 40a and 40b at the position d.
  • the sample has already been dispensed into the disposable container numbered 15.
  • the fixed container After the end of re-sampling, at the timing of the next A cycle, the fixed container is subjected to sample suction, cleaning liquid discharge, and cleaning in this order at the e, f, and h cleaning mechanism positions, and the disposable container is discarded.
  • the sample dispensing arm 16 of the sample dispensing mechanism 15 described above holds a sample dispensing probe.
  • the sample dispensing probe can be used for cleaning and a disposable tip.
  • FIG. 14A is a side view showing the main part of the sample dispensing probe when used by cleaning
  • FIG. 14B is the main part showing the main part of the sample dispensing probe when using a disposable tip.
  • FIG. 15 (a) to 15 (h) are explanatory views for explaining the flow of operation of the sample dispensing probe when used by washing
  • the sample dispensing probe 19 includes a probe main body 19a exposed at the tip and a probe guard 19b protecting the probe main body 19a.
  • the sample is aspirated and discharged from 19a.
  • a disposable chip 90 is detachably attached to the probe guard 19b.
  • the disposable chip 90 includes a probe insertion portion 91 formed in a slit shape having the same diameter as the probe guard 19b, a probe holding portion 92 formed thick at both ends of the probe insertion portion 91, and a probe insertion portion 91. And a sample holder 93 extending so as to be slanted from the tip to the tip.
  • the disposable chip 90 can be attached without falling off from the probe guard 19b because the probe insertion portion 91 is formed to have the same diameter as the probe guard 19b and the probe holding portion 92 abuts at both ends of the probe guard 19b. . And since the probe holding
  • the sample dispensing probe 19 moves onto the sample container 11 containing the sample 12. After the movement of the sample dispensing probe 19, as shown in FIG. 15B, the sample dispensing probe 19 is lowered, and the probe main body 19a enters the sample 12 in the sample container 11 and sucks it. After sample suction, the sample dispensing probe 19 is raised as shown in FIG.
  • the sample dispensing probe 19 moves onto the fixed container 21 in the illustrated example, as shown in FIG. After the movement of the sample dispensing probe 19, as shown in FIG. 15 (e), the sample dispensing probe 19 descends, enters the fixed container 21, and discharges the sample 12. After the sample is discharged, the sample dispensing probe 19 is raised as shown in FIG.
  • the sample dispensing probe 19 After the sample dispensing probe 19 is lifted, it moves to the probe cleaning mechanism 85 as shown in FIG. After the sample dispensing probe 19 is moved, as shown in FIG. 15 (h), the cleaning liquid is discharged from the cleaning liquid discharge portion 86 of the probe cleaning mechanism 85, and the probe body 19a is cleaned. Then, after cleaning, the sample dispensing probe 19 moves again on the sample container 11 and the same operation is repeated.
  • the probe cleaning mechanism 85 is in the automatic analyzer 1 shown in FIGS. 1 to 6, but is omitted in these drawings.
  • the sample dispensing probe 19 moves onto the disposable chip 90 placed on the chip supply board 95. To do. After the sample dispensing probe 19 is moved, the sample dispensing probe 19 is lowered and the disposable tip 90 is mounted as shown in FIG. After mounting the disposable tip 90, the sample dispensing probe 19 is raised as shown in FIG. 16 (c).
  • FIGS. 16D to 16F After the sample dispensing probe 19 is lifted, as shown in FIGS. 16D to 16F, the movement of the sample dispensing probe 19, the lowering, the suction of the sample 12, and the rising are shown in FIGS. This is performed in the same manner as in the use by cleaning shown in (c). After the sample dispensing probe 19 is lifted in FIG. 16 (f), the sample dispensing probe 19 moves onto the disposable container 22 in the illustrated example, as shown in FIG. 16 (g). After the movement of the sample dispensing probe 19, the sample dispensing probe 19 descends and discharges the sample 12 to the disposable container 22 as shown in FIG.
  • the sample dispensing probe 19 rises as shown in FIG. After the sample dispensing probe 19 is lifted, the sample dispensing probe 19 moves onto the disposable tip disposal unit 96 as shown in FIG. After the sample dispensing probe 19 is moved, the disposable tip 90 is discarded in the disposable tip discarding section 96 as shown in FIG. After the disposable chip 90 is discarded, the sample dispensing probe 19 moves again on the chip supply board 95, and the same operation is repeated.
  • the chip supply board 95 and the disposable chip discarding unit 96 are in the automatic analyzer 1 shown in FIGS. 1 to 6, but are omitted in these drawings.
  • the disposable chip 90 is used for high-sensitivity analysis such as immune serum testing, and is used after washing the probe body 19a of the sample dispensing probe 19 for analysis that does not require high sensitivity such as biochemical testing, blood coagulation testing, and electrolyte testing. It is preferable from the viewpoint of both analysis accuracy and cost.
  • the reagent probe in the reagent arm of the reagent dispensing mechanism may be configured so that a disposable tip can be used together.
  • the sample pretreatment and the reaction are performed by the common disk 20 and the fixed container 21 and the disposable container 22 are arranged on the common disk 20, so that the apparatus is enlarged. Therefore, the inspection of a plurality of items can be performed with high accuracy and at low cost.
  • the apparatus can be made compact. If the container is required to have high surface accuracy, such as colorimetric analysis, the fixed container 21 is used, and if it is highly necessary to prevent contamination between samples, the disposable container 22 is used. High-precision analysis can be performed for any inspection item while achieving compactness. Furthermore, if the fixed container 21 is used when high surface accuracy is required for the container, the disposable container 22 does not need to be subjected to processing for improving surface accuracy, so that the disposable container 22 can be reduced in cost. .
  • the fixed container 21 and the disposable container 22 are regularly arranged on the common disk 20, and therefore, for example, the following arbitrary settings can be made according to the contents of the request. it can.
  • the disposable container 22 determines the ratio and number of containers for performing biochemical inspection pretreatment and each flow system inspection according to the number of requested items. (2) Increase / decrease the disposition rate of the disposable container 22 according to the small number of request items for flow system inspection.
  • the common disk 20 can easily control the rotation cycle of the common disk and the operation of each dispensing mechanism, and can be arbitrarily set. It becomes. This regular arrangement facilitates control for cleaning in the container cleaning mechanism 80.
  • the sample dispensing mechanism 15 can approach an arbitrary container and dispense a sample. Therefore, a sample for retesting is dispensed into the disposable container 22 in advance, When inspection becomes necessary, pre-sampling for analysis is possible.
  • the sample dispensing probe 19 in the sample dispensing arm 16 of the sample dispensing mechanism 15 can be used both for cleaning and the disposable chip 90, so that it can be used in a disposable manner. There is no need to add a sample dispensing mechanism dedicated to the chip, and the apparatus can be made more compact.
  • the present invention is applicable to an automatic analyzer that automatically analyzes components such as blood.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Automatic Analysis And Handling Materials Therefor (AREA)

Abstract

 装置を大型化することなく、複数の項目の検査を高精度かつ低コストで行うことができる自動分析装置を提供する。測光機構70およびフロー系分析機構40a,40bの複数の項目の検査機構を有する自動分析装置1は、共通ディスク(反応および前処理兼用ディスク)20を備え、この共通ディスク20には、共通ディスク20に固定された固定容器21と、着脱可能に設けられたディスポーザブル容器22とが配置される。これにより、装置のコンパクト化を図りつつ、固定容器21を洗浄して使い回す高精度の容器とし、ディスポーザブル容器22を使い捨ての低コストの容器として検査項目に応じて使い分けられる。

Description

自動分析装置
 本発明は血液等の成分を自動的に分析する自動分析装置に関し、特に生化学検査、免疫血清検査、血液凝固検査等の複数の項目の検査を行う装置に適用して有効な技術である。
 従来、臨床検査は、免疫血清検査、血液凝固検査等の各検査が、専用の装置で別々に実施され、装置間の検体移動、各装置への検体セット、分析依頼操作、出力結果のまとめ等の複数の業務を実施する必要があり、効率が悪かった。そのため、一連の検査をより一層効率的に実施することで、検査の省力化、検査報告の迅速化、検査装置の集約による小型化が望まれている。
 これらの要求を考慮して、生化学検査、免疫血清検査、血液凝固検査等の複数の項目の検査を同じ装置内で行えるようにしたものが知られている。そのような装置においても、より構成を単純にするための提案がされており、例えば、特許文献1では、生化学および免疫血清検査を行う第1の検査機構と免疫凝固検査を行う第2の検査機構とから構成された装置が提案されている。特許文献2では、コマ送り操作によって多数の反応容器を順次移動させ、往復動操作の際に各試料に応じた測光間隔で光強度を算出する検査方法が提案されている。
 また、臨床検査では、検体(試料)希釈、HbA1cの溶血、免疫血清検査における抗原抗体反応のB/F分離などの種々の前処理が必要である。これらの前処理は各検査の専用機内で行われることが多いため、前処理と分析とを1台の装置で行うためには、例えばモジュラー方式のように、個々に独立性を保った専用機を検体ラック搬送ラインで接続して運用する。このモジュラー方式は、様々な専用機を概ね自由に接続でき、分析の多様性への対応のしやすさ、処理能力の高さの点で優れている一方、装置の大型化や装置価格が高くなるなどの問題がある。
 したがって、これらの多様な分析を1台の装置で行うためには、各検査の前処理を共通に行う前処理ディスクがあると便利であるが、この前処理ディスクの他に、検査項目毎の反応ディスクがあると、装置が大型化してしまう問題がある。
 これらの問題点を考慮して、近年では、複数の項目の検査が行えるのみならず、試料と試薬との反応を行う反応ディスクで前処理も併せて行えるようにした多目的ディスクを備えた装置が市販されている。
特開2001-13151号公報 特開2001-27639号公報
 しかしながら、特許文献1および2の提案は、いずれも前処理を別装置で行うものであり、前処理を含めた装置構成を単純化することはできない。
 また、上述の近年市販された多目的ディスクを備えた装置では、ディスポーザブルの容器を、使い捨ておよび使い回しの双方で使用している。そのため、使い回した場合には高精度な比色分析で投光面の面精度が十分でなくなるし、使い捨てとした場合には使い回しできるように面精度を向上させる加工がしてある分だけコストが高くなる問題がある。
 ここで、生化学検査用の反応ディスクの使い回し反応容器にて前処理を行う装置は存在するが、複数の項目の検査には対応していない。
 したがって、複数の項目の検査に対応する装置の多目的ディスクに、洗浄して使い回す高精度の容器と、使い捨ての低コストの容器とを備えることが望まれていた。
 本発明は、上記課題に鑑みてなされたものであり、その目的は、装置を大型化することなく、複数の項目の検査を高精度かつ低コストで行うことができる自動分析装置を提供することにある。
 本発明の前記ならびにその他の目的と新規な特徴は、本明細書の記述および添付図面から明らかになるであろう。
 本願において開示される発明のうち、代表的なものの概要を簡単に説明すれば、次のとおりである。
 すなわち、本発明の自動分析装置は、試料と試薬との反応および/または前処理液による前記試料の前処理を行う容器と、この容器が配置された反応および前処理兼用ディスクと、前記容器に前記試料を分注する試料分注機構と、前記反応に基づく複数の項目の検査機構とを有する自動分析装置であって、前記反応および前処理兼用ディスクは、前記容器として、前記反応および前処理兼用ディスクに固定された固定容器と、前記反応および前処理兼用ディスクに着脱可能に設けられたディスポーザブル容器とが配置される。
 本願において開示される発明のうち、代表的なものによって得られる効果を簡単に説明すれば以下のとおりである。
 すなわち、複数の項目の検査機構を有する自動分析装置の反応および前処理兼用ディスクに、固定容器と、着脱可能に設けられたディスポーザブル容器とを配置したので、固定容器を洗浄して使い回す高精度の容器とし、ディスポーザブル容器を使い捨ての低コストの容器として検査項目に応じて使い分けられる。これにより、装置を大型化することなく、複数の項目の検査を高精度かつ低コストで行うことができる。
本発明の自動分析装置の一実施の形態の概略を示す概略平面図である。 図1の自動分析装置における試料、前処理液、試薬およびディスポーザブル容器の流れを示す図である。 (a)~(c)は、図1の自動分析装置における動作の流れを説明する説明図である。 (a)~(c)は、図1の自動分析装置における動作の流れを説明する説明図である。 (a)~(c)は、図1の自動分析装置における動作の流れを説明する説明図である。 他の試料分注機構を適用した自動分析装置の一実施の形態の概略を示す概略平面図である。 共通ディスクの基本サイクルを説明する説明図である。 Aサイクルにおける共通ディスクの回転動作を説明する説明図である。 (a)、(b)は、Bサイクルにおける共通ディスクの回転動作を説明する説明図である。 (a)~(d)は、図7の基本サイクルで最短サイクルとした場合の動作の例を説明する説明図である。 容器が20個配置された場合の共通ディスクの回転動作の例を示す図である。 容器が20個配置された場合の共通ディスクの回転動作の例を示す図である。 容器が20個配置された場合の共通ディスクの回転動作の例を示す図である。 (a)は洗浄による使用をする場合の試料分注プローブの要部を示す要部側面図であり、(b)はディスポーザブルチップを使用する場合の試料分注プローブの要部を示す要部側面図である。 (a)~(h)は、洗浄による使用をする場合の試料分注プローブの動作の流れを説明する説明図である。 (a)~(h)は、ディスポーザブルチップを使用する場合の試料分注プローブの動作の流れを説明する説明図である。 (a)~(c)は、ディスポーザブルチップを使用する場合の試料分注プローブの動作の流れを説明する説明図である。
 以下、本発明の実施の形態を図面に基づいて詳細に説明する。なお、本実施の形態を説明するための全図において同一機能を有するものは原則として同一の符号を付すようにし、その繰り返しの説明は可能な限り省略するようにしている。
 図1は本発明の自動分析装置の一実施の形態の概略を示す概略平面図であり、図2は図1の自動分析装置における試料、前処理液、試薬およびディスポーザブル容器の流れを示す図である。なお、図1および図2では、試料分注機構の図示は理解の便宜のために敢えて省略している。また、制御部、表示部、入力部および記憶部の図示は、いずれの図でも敢えて省略している。
 図1に示すように、自動分析装置1は、試料ディスク10と、共通ディスク(反応および前処理兼用ディスク)20と、生化学検査用試薬ディスク30と、複数の項目の検査機構としてのフロー系分析機構40a,40bと、前処理液およびフロー系分析試薬容器収納部(以下、前処理液容器等収納部)50と、ディスポーザブル容器収納部60とを備えている。
 試料ディスク10は、試料を保持する試料容器11が、外周10a側と中心10b側とに所定間隔でそれぞれ配置されている。
 共通ディスク20は、試料ディスク10の側方に設けられており、試料と試薬との反応および前処理液による試料の前処理の双方を行うようになっている。なお、本発明において前処理という場合には、試料の希釈も含む。
 共通ディスク20は、外周20a側に、複数の項目の検査機構の1つとしての生化学検査用の測光機構(検査機構)70と、容器洗浄機構80と、図示は省略しているが試料を前処理液または試薬と攪拌する攪拌機構とが設けられている。測光機構70は、同様に図示はしないが、容器内の反応液を分析する分析光を照射する光源や、反応液を透過した分析光を分光して検出する検出器等を備えている。なお、測光機構70は、生化学以外の項目の検査に使用してもよい。
 共通ディスク20の周方向に沿っては、この共通ディスク20に固定された固定容器21と、着脱可能に設けられたディスポーザブル容器22とが交互に配置されている。固定容器21は容器洗浄機構80での洗浄により使い回され、ディスポーザブル容器22は使い捨てされるようになっている。
 固定容器21としては、比色分析に対応して面精度が高くなっている公知の容器を使用することができ、ディスポーザブル容器22としても、公知のものを使用することができる。なお、固定容器21およびディスポーザブル容器22は、図示の例では、制御を容易にする観点から交互に配置しているが、例えば、2個おきにディスポーザブル容器22を配置する等の規則的な配置であればよい。また、配置する容器の個数も、必要に応じて適宜増減することができる。
 共通ディスク20の内周20b側には、生化学検査用試薬ディスク30が設けられている。生化学検査用試薬ディスク30は、周方向に沿って生化学検査用の第1の試薬と第2の試薬とを1つの容器で保持する生化学検査用試薬カセット31が配置されている。これにより、第1の試薬と第2の試薬とを別々に管理する必要がなくなる。ただし、第1の試薬および第2の試薬は、試験管等の容器により別々に保持してもよい。また、生化学検査用試薬ディスク30は、自動分析装置1中の他の位置に設けてもよい。さらに、生化学検査用試薬ディスク30および生化学検査用試薬カセット31は、他の項目の検査用試薬を保持してもよい。
 フロー系分析機構40a,40b、前処理液容器等収納部50およびディスポーザブル容器収納部60は、共通ディスク20よりも装置前方側に設けられている。
 フロー系分析機構40a,40bは、免疫血清検査、血液凝固検査、電解質検査等のフロー系分析として公知の検査を、依頼項目に応じて適宜選択して行うことができる。フロー系分析機構の数は、依頼項目に応じて適宜増やしてもよいし、減らしたりなくしてもよい。これにより、装置のさらなるコンパクト化を図ることができる。
 前処理液容器等収納部50に収納される容器51は、言うまでもないが、前処理を行う際には前処理液が、フロー系分析を行う場合には対応するフロー系分析試薬が、それぞれ保持されるようになっている。
 ディスポーザブル容器収納部60に収納されるディスポーザブル容器22は、ディスポーザブル容器移送機構(図1では図示せず)により、共通ディスク20のディスポーザブル容器22と適宜交換できるようになっている。
 以上により、自動分析装置1では、図2に示す矢印L~Lのように、試料ディスク10、生化学検査用試薬ディスク30および前処理液容器等収納部50の各容器から、共通ディスク20の固定容器21またはディスポーザブル容器22への試料、試薬および前処理液の分注の流れが構成されるようになっている。また、ディスポーザブル容器収納部60から、共通ディスク20へのディスポーザブル容器22の移送の流れが構成されるようになっている。
 つづいて、自動分析装置1の動作の流れを、生化学検査において前処理が必要な場合を例にとって説明する。図3(a)~(c)、図4(a)~(c)および図5(a)~(c)は、この順に図1の自動分析装置における動作の流れを説明する説明図である。
 まず、図3(a)に示すように、実際の自動分析装置1は、試料分注機構15と、第1の試薬分注機構35と、第2の試薬分注機構45と、ディスポーザブル容器移送機構65とをさらに備えている。
 試料分注機構15は、試料分注アーム16と、装置の幅方向つまり水平方向(第1の方向)に沿って設けられた水平レール(第1のガイド部材)17と、装置の奥行き方向(第1の方向と直交する第2の方向)に沿って設けられた鉛直レール(第2のガイド部材)18とを備えた、いわゆるXYレール式の分注機構である。これにより、試料分注機構15は、共通ディスク20上のいずれの位置にある容器に対しても任意に近づいて試料を分注することができる。なお、ここでは水平方向に直交することを「鉛直」と表現している。
 水平レール17は、装置の後方端において試料ディスク10から共通ディスク20にかけて設けられている。鉛直レール18は、水平レール17から装置内方に向けて延びて取り付けられており、この水平レール17上を摺動する。試料分注アーム16は、鉛直レール18に取り付けられており、この鉛直レール18上を摺動する。つまり、試料分注アーム16は、鉛直レール18を介して水平レール17により水平方向への移動が、鉛直レール18により直接に奥行き方向への移動が、それぞれガイドされるようになっている。
 第1の試薬分注機構35、第2の試薬分注機構45およびディスポーザブル容器移送機構65は、試料分注機構15と同様に、いずれもXYレール式の分注機構である。
 第1の試薬分注機構35は、第1の試薬分注アーム36と、共通ディスク20を挟んだ水平方向両端に設けられた鉛直レール37a,37bと、この鉛直レール37a,37b間に架設された水平レール38とからなり、水平レール38が鉛直レール37a,37b上を、第1の試薬分注アーム36が水平レール38上を摺動する。なお、鉛直レール37bは、ディスポーザブル容器移送機構65と共用するために、鉛直レール37aより装置前方側に長く形成されている。
 第2の試薬分注機構45は、鉛直レール37a,37bを第1の試薬分注機構35と共用しており、第2の試薬分注アーム46と、鉛直レール37a,37b間に架設された水平レール48とを備えている。そして、第1の試薬分注機構35と同様に、水平レール48が鉛直レール37a,37b上を、第2の試薬分注アーム46が水平レール48上を摺動する。第2の試薬分注機構45は、前処理液分注機構としても機能するようになっており、これにより装置のさらなるコンパクト化を図ることができる。
 ディスポーザブル容器移送機構65は、先端でディスポーザブル容器22を把持する容器把持アーム66と、鉛直レール37bから延びて取り付けられた水平レール68とを備えており、水平レール68が鉛直レール37b上を、容器把持アーム66が水平レール68上を摺動する。
 これらの機構を備えた自動分析装置1は、前処理が必要な生化学検査が開始されると、試料分注機構15の試料分注アーム16が、水平レール17および鉛直レール18により試料ディスク10の試料容器11上に移動し、試料容器11内の試料を吸引する。
 試料吸引後、図3(b)に示すように、試料分注アーム16が、共通ディスク20のディスポーザブル容器22上に移動し、このディスポーザブル容器22内に試料を吐出する。
 試料吐出後、図3(c)に示すように、共通ディスク20が時計回り(図中矢印参照)に回転して試料(図中の黒塗りの位置であり、理解の便宜のために移動前と移動後双方の位置を黒塗りにしてある。)が移動する。また、第2の試薬分注機構45の第2の試薬分注アーム46が、鉛直レール37a,37bおよび水平レール48により、前処理液容器等収納部50の容器51上に移動し、容器51内の前処理液を吸引する。
 試料移動および前処理液吸引後、図4(a)に示すように、第2の試薬分注アーム46が、共通ディスク20の試料の入ったディスポーザブル容器22上に移動し、このディスポーザブル容器22内に前処理液を吐出する。
 前処理液吐出後、前処理が済むと、図4(b)に示すように、共通ディスク20が時計回り(図中矢印参照)に回転して前処理済み試料が移動する。なお、図示の例では、第2の試薬分注機構45がフロー系分析機構40aの方向に移動する。
 前処理済み試料移動後、図4(c)に示すように、試料分注アーム16が、前処理済み試料の入ったディスポーザブル容器22上に移動し、このディスポーザブル容器22内の前処理済み試料を吸引する。
 前処理済み試料吸引後、図5(a)に示すように、試料分注アーム16が、前処理済み試料の入ったディスポーザブル容器22と反時計回りで隣り合う固定容器21上に移動し、この固定容器21に前処理済み試料を吐出する。
 前処理済み試料吐出後、図5(b)に示すように、共通ディスク20が時計回り(図中矢印参照)に回転して固定容器21の前処理済み試料(図中の黒塗りの位置であり、理解の便宜のために移動前と移動後双方の位置を黒塗りにしてある。)が移動する。
 また、第1の試薬分注機構35の第1の試薬分注アーム36が、鉛直レール37a,37bおよび水平レール38により、生化学検査用試薬ディスク30の生化学検査用試薬カセット31上に移動し、この生化学検査用試薬カセット31内の第1の試薬を吸引する。なお、第1の試薬分注アーム36は、その移動量を少なくするため、共通ディスク20の内周20b縁を介して前処理済み試料の入った固定容器21と対向する生化学検査用試薬カセット31から第1の試薬を吸引する。
 前処理済み試料移動および第1の試薬吸引後、図5(c)に示すように、第1の試薬分注アーム36が、前処理済み試料の入った固定容器21上に移動し、この固定容器21に第1の試薬を吐出する。第1の試薬吐出後、必要に応じて図示のように第2の試薬分注アーム46が生化学検査用試薬カセット31上に移動する。
 第2の試薬分注アーム46の移動後、図示は省略するが、第2の試薬を吸引してから、前処理済み試料および第1の試薬が入った固定容器21上に移動し、この固定容器21に第2の試薬を吐出する。なお、第2の試薬の分注は、通常第1の試薬吐出から約5分経過後に行われる。
 以上により、試料と第1の試薬および必要に応じて第2の試薬との反応後の反応液が、共通ディスク20の回転により測光機構70に移動して分析される。分析終了後は、固定容器21は、容器洗浄機構80により洗浄される。また、ディスポーザブル容器22は、ディスポーザブル容器移送機構65の容器把持アーム66によりディスポーザブル容器収納部60に移送された後、これに廃棄される。
 前処理が試料希釈である場合には、試料間のコンタミネーションの虞がないため、当初から試料を固定容器21に分注してもよい。
 前処理の必要がない生化学検査では、図3(b)で試料をディスポーザブル容器22ではなく、固定容器21に吐出することと、図3(c)~図5(a)で示した動作がないこと以外は、概ね前処理が必要な生化学検査と同様の動作をする。
 免疫血清検査等のフロー系分析では、図3(a)~図4(a)の動作が、前処理液の代わりにフロー系試薬を分注すること以外は、前処理が必要な生化学検査と同様である。そして、試料とフロー系試薬との反応後、反応液がフロー系分析機構40a,40bに吸引される。
 自動分析装置1において、試料分注機構15は、共通ディスク20上のいずれの位置にある容器に対しても任意に近づいて試料を分注することができれば、他の公知の機構を適用してもよい。図6は、他の試料分注機構を適用した自動分析装置の一実施の形態の概略を示す概略平面図である。
 図6に示す試料分注機構25は、共通ディスク20の中心に回転軸25aを備え、先端から順に第1の関節25bと第2の関節25cとを有する多関節アームである。つまり、試料分注機構25は、第1の関節25bが第2の関節25cとの接合部25dを回転軸として伸縮するとともに、第2の関節25cが回転軸25aを中心に回転するので、任意の容器に近づいて試料を分注することができる。なお、本発明の自動分析装置1では、制御がしやすい観点から、図1~図5で示した試料分注機構15および図6で示した試料分注機構25を適用することが好ましい。
 また、自動分析装置1は、図示の例では、第2の試薬分注機構45を前処理液分注機構として兼用しているが、これに限らず、第1の試薬分注機構35を前処理液分注機構として兼用してもよいし、双方の試薬分注機構を適宜前処理液分注機構として兼用してもよい。
 つづいて、前処理を行う場合の共通ディスク20の回転動作について説明する。図7は共通ディスクの基本サイクルを説明する説明図、図8はAサイクルにおける共通ディスクの回転動作を説明する説明図、図9(a)、(b)はBサイクルにおける共通ディスクの回転動作を説明する説明図である。図10(a)~(d)は図7の基本サイクルで最短サイクルとした場合の動作の例を説明する説明図であり、図11~図13は容器が20個配置された場合の共通ディスクの回転動作の例を示す図である。なお、図8、図9および図11~13では、共通ディスクの配置については理解の便宜のために敢えて適宜省略ないしは変更している。
 図7に示すように、共通ディスクの動作は、前処理動作を行うAサイクルと、分析部への再サンプリング(前処理済み試料分注)動作を行うBサイクルとを組み合わせて基本サイクルとする。AサイクルとBサイクルは、それぞれ独立して制御されるが、サイクル時間を同じくし、これにより前処理の動作タイミングと分析部への動作タイミングとを共通化する。なお、図7の例では、Aサイクルの後に2つのBサイクルが入っているが、Aサイクル後のBサイクルの数は、検査項目や試料数等に応じて適宜変更してもよい。
 図8に示すように、Aサイクルでは、サンプリング(試料分注)、前処理液分注、攪拌および洗浄を各々1サイクル中で行う。共通ディスク20は、例えばディスポーザブル容器N個分等の、配置された容器数に1を足した数と共通の因数となるステップにより規則的に一方向に回転する。
 Bサイクルは、Aサイクルで攪拌までの前処理の一連の動作が終了し、再サンプリングされるサンプルが準備できた段階で動作する。図9に示すように、Bサイクルでは、次に再サンプリングされる容器が共通ディスク20のどの位置にあっても、再サンプリング位置に移動する。この場合の移動距離は自由であるが、共通ディスク20は、図9(a)に示した時計回りの回転、図9(b)に示した反時計回りの回転のいずれをも選択することができるようにし、移動する距離や時間を短縮することができる。
 前処理において放置や一定時間の加温を要しない場合には、共通ディスクは、例えば図10に示すような手順で試料に対して動作する。
 まず、図10(a)に示すように、最初のAサイクルで最初の試料(試料1)をサンプリングするためのディスポーザブル容器がセットされ、次のAサイクルで試料1がサンプリングされる。
 3回目のAサイクルでは、試料1に前処理液が分注されるとともに、図10(b)に示すように、試料1につづく試料2をサンプリングするためのディスポーザブル容器がセットされる。なお、2回目のAサイクルでは、固定容器が容器セット位置にあるため、ディスポーザブル容器がセットされない。
 4回目のAサイクルでは、試料1が攪拌されるとともに、試料2がサンプリングされる。また、試料1は、このAサイクルにつづく2つのBサイクルで再サンプリングがされる。そして、図示の例では、6つの生化学検査項目があるため、次およびその次の基本サイクルの2つのBサイクルでも再サンプリングがされる。
 5回目のAサイクルでは、試料2に前処理液が分注されるとともに、図10(c)に示すように、試料2につづく試料3をサンプリングするためのディスポーザブル容器がセットされる。6回目のAサイクルでは、試料2が攪拌されるとともに、試料3がサンプリングされる。このAサイクルにつづくBサイクルでは、試料1の再サンプリングが行われているため、試料2の再サンプリングは行われず、次以降の基本サイクルのBサイクルで行われる。
 7回目のAサイクルでは、試料3に前処理液が分注されるとともに、図10(d)に示すように、試料3につづく試料4をサンプリングするためのディスポーザブル容器がセットされる。
 このようにして、順次サンプリング、前処理液分注、攪拌および再サンプリングを繰り返して行く。なお、図10は最短サイクルの場合の例であり、各分注機構の重なりやキャリーオーバーの回避等のために、適宜空きサイクルを設けてもよい。
 例えば、共通ディスク20に固定容器およびディスポーザブル容器を合わせて20個交互に配置した場合には、共通ディスク20は図11~図13に示すように回転動作する。なお、図11~図13では、奇数番号が付いた円状の容器はディスポーザブル容器を、偶数番号が付いた方形状の容器は固定容器を表わしている。
 まず、図11に示すように、Aサイクルのタイミングで、共通ディスク20が容器3つ分、反時計回りに回転し、gの位置でセットされた1の番号が付いたディスポーザブル容器22が、aの位置でサンプリングされる。
 次に、図12に示すように、共通ディスク20がさらに容器3つ分、反時計回りに回転し、bの位置で前処理液が分注される。
 そして、共通ディスク20がさらに容器3つ分、反時計回りに回転し、cの位置で前処理液が攪拌された後、図13に示すように、Bサイクルのタイミングで、共通ディスク20がdの位置まで回転し、この位置で1の番号がついたディスポーザブル容器から、隣の2の番号がついた固定容器に再サンプリングされる。このとき、フロー系分析では、bの位置でフロー系試薬が分注され、dの位置でフロー系分析機構40a,40bに再サンプリングされる。なお、図13では、15の番号がついたディスポーザブル容器にも、既に試料が分注された状態となっている。
 再サンプリング終了後は、再び次のAサイクルのタイミングで、固定容器はe,f,hの洗浄機構の位置で、試料吸引、洗浄液吐出、洗浄が順に行われ、ディスポーザブル容器は廃棄される。
 ところで、先に述べた試料分注機構15の試料分注アーム16には、試料分注プローブが保持されている。この試料分注プローブは、洗浄による使用と、ディスポーザブルチップの使用とができるようになっている。
 図14(a)は洗浄による使用をする場合の試料分注プローブの要部を示す要部側面図であり、(b)はディスポーザブルチップを使用する場合の試料分注プローブの要部を示す要部側面図である。図15(a)~(h)は洗浄による使用をする場合の試料分注プローブの動作の流れを説明する説明図、図16(a)~(h)および図17(a)~(c)はディスポーザブルチップを使用する場合の試料分注プローブの動作の流れを説明する説明図である。なお、これらの図では、理解の便宜のため全てを実線で表わす。
 図14(a)に示すように、試料分注プローブ19は、先端に露出するプローブ本体19aと、これを保護するプローブガード19bとを備えており、洗浄による使用をする場合には、プローブ本体19aより試料を吸引および吐出するようになっている。
 図14(b)に示すように、プローブガード19bには、ディスポーザブルチップ90が着脱可能に取り付けられるようになっている。ディスポーザブルチップ90は、プローブガード19bの径と同径のスリット状に形成されたプローブ挿入部91と、このプローブ挿入部91の両端に肉厚に形成されたプローブ保持部92と、プローブ挿入部91から先端に傾斜状に細くなるように延びる試料保持部93とを備えている。
 ディスポーザブルチップ90は、プローブ挿入部91がプローブガード19bの径と同径に形成されるとともに、プローブ保持部92がプローブガード19bの両端で当接するので、プローブガード19bから抜け落ちることなく取り付けることができる。そして、プローブ保持部92が肉厚に形成されているので、基端から先端方向に押し込むことで容易に外すことができる。
 図15(a)に示すように、洗浄による使用時に試料12を分注するに際しては、まず、試料分注プローブ19が試料12の入った試料容器11上に移動する。試料分注プローブ19の移動後、図15(b)に示すように、試料分注プローブ19は下降し、プローブ本体19aが試料容器11内の試料12に入り込んで吸引する。試料吸引後、図15(c)に示すように、試料分注プローブ19は上昇する。
 試料分注プローブ19の上昇後、図15(d)に示すように、試料分注プローブ19は、図示の例では固定容器21上に移動する。試料分注プローブ19の移動後、図15(e)に示すように、試料分注プローブ19は下降し、固定容器21内に入り込んで試料12を吐出する。試料吐出後、図15(f)に示すように、試料分注プローブ19は上昇する。
 試料分注プローブ19の上昇後、図15(g)に示すように、プローブ洗浄機構85に移動する。試料分注プローブ19の移動後、図15(h)に示すように、プローブ洗浄機構85の洗浄液吐出部86より洗浄液が吐出され、プローブ本体19aが洗浄される。そして、洗浄後は、再び試料容器11上に試料分注プローブ19が移動し、同じ動作が繰り返される。なお、プローブ洗浄機構85は、図1~図6で示した自動分析装置1にあるが、これらの図では省略している。
 また、図16(a)に示すように、ディスポーザブルチップ90使用時に試料12を分注するに際しては、まず、試料分注プローブ19が、チップ供給ボード95に載置されたディスポーザブルチップ90上に移動する。試料分注プローブ19の移動後、図16(b)に示すように、試料分注プローブ19は下降し、ディスポーザブルチップ90を装着する。ディスポーザブルチップ90の装着後、図16(c)に示すように、試料分注プローブ19は上昇する。
 試料分注プローブ19の上昇後、図16(d)~(f)に示すように、試料分注プローブ19の移動と、下降および試料12の吸引と、上昇とが、図15(a)~(c)で示した洗浄による使用時と同様に行われる。図16(f)で試料分注プローブ19の上昇後、図16(g)に示すように、試料分注プローブ19は、図示の例ではディスポーザブル容器22上に移動する。試料分注プローブ19の移動後、図16(h)に示すように、試料分注プローブ19は下降し、ディスポーザブル容器22に試料12を吐出する。
 試料吐出後、図17(a)に示すように、試料分注プローブ19は上昇する。試料分注プローブ19の上昇後、図17(b)に示すように、試料分注プローブ19は、ディスポーザブルチップ廃棄部96上に移動する。試料分注プローブ19の移動後、図17(c)に示すように、ディスポーザブルチップ廃棄部96内にディスポーザブルチップ90が廃棄される。そして、ディスポーザブルチップ90の廃棄後は、再びチップ供給ボード95上に試料分注プローブ19が移動し、同じ動作が繰り返される。なお、チップ供給ボード95およびディスポーザブルチップ廃棄部96は、図1~図6で示した自動分析装置1にあるが、これらの図では省略している。
 ディスポーザブルチップ90は、免疫血清検査等の高感度分析で使用し、生化学検査、血液凝固検査、電解質検査等の高い感度を要しない分析では試料分注プローブ19のプローブ本体19aを洗浄して使用することが、分析精度およびコストの双方の観点から好ましい。
 なお、試薬分注機構の試薬アームにおける試薬プローブを同様に、ディスポーザブルチップを併用できる構成としてもよい。
 このように、本発明の自動分析装置1では、試料の前処理と反応とを共通ディスク20で行うとともに、この共通ディスク20に固定容器21とディスポーザブル容器22とを配置したので、装置を大型化することなく、複数の項目の検査を高精度かつ低コストで行うことができる。
 つまり、試料の前処理と反応とを行うことができる多目的ディスクである共通ディスク20を備えたので装置のコンパクト化を図ることができる。そして、比色分析のように容器に高い面精度が要求される場合に固定容器21を用い、試料間のコンタミネーションを防ぐ必要性が高い場合にディスポーザブル容器22を用いることとすれば、装置のコンパクト化を図りつつ、いずれの検査項目でも高精度な分析ができる。さらには、容器に高い面精度が要求される場合に固定容器21を使えば、ディスポーザブル容器22に面精度向上のための加工を施す必要がないので、ディスポーザブル容器22を低コストとすることができる。
 また、本発明の自動分析装置1では、固定容器21とディスポーザブル容器22とを共通ディスク20上に規則的に配置したので、依頼内容に応じて、例えば以下のような任意の設定をすることができる。
 (1)固定容器21では生化学検査を行う一方で、ディスポーザブル容器22では各依頼項目の数に応じて生化学検査の前処理や各フロー系検査を行う容器の比率や数を決定する。(2)フロー系検査の依頼項目数が多い少ないに応じて、ディスポーザブル容器22の配置率を増減する。
 つまり、固定容器とディスポーザブル容器とを不規則に配置すると、ディスクの回転サイクルと各分注機構の動作とのタイミングを合わせにくくなるため、複数の検査項目に対応した制御が困難になる。これに対し、共通ディスク20は、固定容器21とディスポーザブル容器22とを規則的に配置したことで、共通ディスクの回転サイクルや各分注機構の動作の制御が容易になり、任意の設定が可能となるのである。そして、この規則的な配置により、容器洗浄機構80における洗浄のための制御も容易になる。
 さらに、本発明の自動分析装置1では、試料分注機構15が任意の容器に近づいて試料を分注することができるので、再検用の試料を予めディスポーザブル容器22に分注しておき、再検査が必要となった場合には、優先的に分析のために再サンプリングすることが可能となる。
 つまり、前処理ディスクの回転にサイクルがあるため、試料分注機構の動きに制限がある場合には、前処理ディスクが近づいたタイミングでしか再サンプリングができない。また、試料分注機構の動きに合わせて前処理ディスクの回転サイクルを変えると、測光機構での分析タイミングを制御することが困難になる。これに対し、試料分注機構15は、共通ディスク20上の任意の容器に制限なく移動できるので、このような優先的な再サンプリングが可能となるのである。
 さらに、本発明の自動分析装置1では、試料分注機構15の試料分注アーム16における試料分注プローブ19を、洗浄による使用とディスポーザブルチップ90の使用との双方ができるようにしたので、ディスポーザブルチップ専用の試料分注機構を増設する必要がなく、装置のさらなるコンパクト化を図ることができる。
 本発明は、血液等の成分を自動的に分析する自動分析装置に利用可能である。
 

Claims (7)

  1.  試料と試薬との反応および/または前処理液による前記試料の前処理を行う容器と、この容器が配置された反応および前処理兼用ディスクと、前記容器に前記試料を分注する試料分注機構と、前記反応に基づく複数の項目の検査機構とを有する自動分析装置であって、前記反応および前処理兼用ディスクは、前記容器として、前記反応および前処理兼用ディスクに固定された固定容器と、前記反応および前処理兼用ディスクに着脱可能に設けられたディスポーザブル容器とが配置されたことを特徴とする自動分析装置。
  2.  請求項1に記載の自動分析装置において、前記固定容器と、前記ディスポーザブル容器とが、規則的に配置されたことを特徴とする自動分析装置。
  3.  請求項1または2に記載の自動分析装置において、前記固定容器と、前記ディスポーザブル容器とが、交互に配置されたことを特徴とする自動分析装置。
  4.  請求項1~3のいずれか1項に記載の自動分析装置において、前記試料分注機構は、前記反応および前処理兼用ディスクの任意の前記容器に近づいて前記試料を分注可能であることを特徴とする自動分析装置。
  5.  請求項1~4のいずれか1項に記載の自動分析装置において、前記試料分注機構は、(a)試料分注アームと、この試料分注アームの第1の方向への移動をガイドする第1のガイド部材と、前記試料分注アームの前記第1の方向と直交する第2の方向への移動をガイドする第2のガイド部材とを有するか、(b)前記反応および前処理兼用ディスクの中心に回転軸を備えた多関節アームを有することを特徴とする自動分析装置。
  6.  請求項1~5のいずれか1項に記載の自動分析装置において、前記容器に再検用の試料を予め分注することを特徴とする自動分析装置。
  7.  請求項1~6のいずれか1項に記載の自動分析装置において、前記試料分注機構は、洗浄による使用と、ディスポーザブルチップの使用との双方が可能である試料分注プローブを有することを特徴する自動分析装置。
PCT/JP2010/052868 2009-03-18 2010-02-24 自動分析装置 WO2010106885A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN2010800083714A CN102326086A (zh) 2009-03-18 2010-02-24 自动分析装置
US13/202,337 US20120039748A1 (en) 2009-03-18 2010-02-24 Automatic analysis apparatus
DE112010001896T DE112010001896B4 (de) 2009-03-18 2010-02-24 Automatische Analysevorrichtung

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-065393 2009-03-18
JP2009065393A JP5286120B2 (ja) 2009-03-18 2009-03-18 自動分析装置

Publications (1)

Publication Number Publication Date
WO2010106885A1 true WO2010106885A1 (ja) 2010-09-23

Family

ID=42739550

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/052868 WO2010106885A1 (ja) 2009-03-18 2010-02-24 自動分析装置

Country Status (5)

Country Link
US (1) US20120039748A1 (ja)
JP (1) JP5286120B2 (ja)
CN (1) CN102326086A (ja)
DE (1) DE112010001896B4 (ja)
WO (1) WO2010106885A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9335338B2 (en) 2013-03-15 2016-05-10 Toshiba Medical Systems Corporation Automated diagnostic analyzers having rear accessible track systems and related methods
US9400285B2 (en) 2013-03-15 2016-07-26 Abbot Laboratories Automated diagnostic analyzers having vertically arranged carousels and related methods
US10001497B2 (en) 2013-03-15 2018-06-19 Abbott Laboratories Diagnostic analyzers with pretreatment carousels and related methods
US10184948B2 (en) * 2011-10-18 2019-01-22 Hitachi High-Technologies Corporation Automated analyzer
US11709172B2 (en) 2017-05-29 2023-07-25 Roche Diagnostics Operations, Inc. Method for operating a laboratory system

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5400021B2 (ja) 2010-12-20 2014-01-29 日本電子株式会社 自動分析装置
CN103376333B (zh) * 2012-04-17 2015-09-16 深圳迈瑞生物医疗电子股份有限公司 全自动生化分析仪
JP6255339B2 (ja) 2012-06-11 2017-12-27 株式会社日立ハイテクノロジーズ 自動分析装置
JP6110947B2 (ja) * 2013-08-23 2017-04-05 株式会社日立ハイテクノロジーズ 分析装置及び分析方法
US10094842B2 (en) 2014-10-17 2018-10-09 Shenzhen Mindray Bio-Medical Electronics Co., Ltd. Automatic biochemical analyzer
CN112924705A (zh) * 2014-11-25 2021-06-08 株式会社日立高新技术 自动分析装置
EP3460467A4 (en) * 2016-05-20 2020-04-15 Shimadzu Corporation PREPROCESSING DEVICE AND ANALYSIS SYSTEM WITH THE PREPROCESSING DEVICE
JP6788745B2 (ja) * 2017-07-25 2020-11-25 株式会社日立ハイテク 自動分析装置
US11639943B2 (en) 2017-09-13 2023-05-02 Hitachi High-Tech Corporation Automatic analysis device
CN108020677A (zh) * 2017-12-07 2018-05-11 北京京仪博电光学技术有限责任公司 蛋白分析设备
CN113711053B (zh) 2019-04-26 2024-10-25 株式会社日立高新技术 自动分析装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0239161U (ja) * 1988-09-07 1990-03-15
JPH02284064A (ja) * 1989-04-25 1990-11-21 Olympus Optical Co Ltd 自動分析装置
JPH0394162A (ja) * 1989-09-06 1991-04-18 Hitachi Ltd 自動分析装置用反応容器構造体
JPH11242032A (ja) * 1998-02-26 1999-09-07 Hitachi Ltd 試料分析装置および試料分析方法
JP2000146987A (ja) * 1998-11-05 2000-05-26 Hitachi Ltd 自動分析装置及び自動分析方法
JP2001281259A (ja) * 2000-03-29 2001-10-10 Sysmex Corp 液体サンプリング装置

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2970114B2 (ja) * 1991-09-20 1999-11-02 株式会社日立製作所 自動分析装置
EP0564907B1 (de) * 1992-04-06 1997-05-28 F. Hoffmann-La Roche Ag Analysenvorrichtung
JPH11316235A (ja) * 1998-05-02 1999-11-16 Shimadzu Corp 自動分析装置
JP2001013151A (ja) 1999-06-30 2001-01-19 Mitsubishi Chemicals Corp 血液の検査装置
JP2001027639A (ja) 1999-07-15 2001-01-30 Mitsubishi Chemicals Corp 血液の検査方法
US20010027269A1 (en) * 2000-03-29 2001-10-04 Yousuke Tanaka Liquid sampler and blood analyzer using the same
JP4016811B2 (ja) * 2002-11-15 2007-12-05 日立工機株式会社 自動分注装置
US7125727B2 (en) * 2003-01-29 2006-10-24 Protedyne Corporation Sample handling tool with piezoelectric actuator
CN101147071B (zh) * 2005-04-01 2011-12-14 三菱化学美迪恩斯株式会社 生物样品的复合自动分析装置、自动分析方法以及反应杯
JP4812352B2 (ja) * 2005-07-21 2011-11-09 株式会社東芝 自動分析装置及びその分注方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0239161U (ja) * 1988-09-07 1990-03-15
JPH02284064A (ja) * 1989-04-25 1990-11-21 Olympus Optical Co Ltd 自動分析装置
JPH0394162A (ja) * 1989-09-06 1991-04-18 Hitachi Ltd 自動分析装置用反応容器構造体
JPH11242032A (ja) * 1998-02-26 1999-09-07 Hitachi Ltd 試料分析装置および試料分析方法
JP2000146987A (ja) * 1998-11-05 2000-05-26 Hitachi Ltd 自動分析装置及び自動分析方法
JP2001281259A (ja) * 2000-03-29 2001-10-10 Sysmex Corp 液体サンプリング装置

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10184948B2 (en) * 2011-10-18 2019-01-22 Hitachi High-Technologies Corporation Automated analyzer
US9335338B2 (en) 2013-03-15 2016-05-10 Toshiba Medical Systems Corporation Automated diagnostic analyzers having rear accessible track systems and related methods
US9400285B2 (en) 2013-03-15 2016-07-26 Abbot Laboratories Automated diagnostic analyzers having vertically arranged carousels and related methods
US10001497B2 (en) 2013-03-15 2018-06-19 Abbott Laboratories Diagnostic analyzers with pretreatment carousels and related methods
US10197585B2 (en) 2013-03-15 2019-02-05 Abbott Laboratories Automated diagnostic analyzers having vertically arranged carousels and related methods
US10267818B2 (en) 2013-03-15 2019-04-23 Abbott Laboratories Automated diagnostic analyzers having rear accessible track systems and related methods
US10775398B2 (en) 2013-03-15 2020-09-15 Abbott Laboratories Automated diagnostic analyzers having vertically arranged carousels and related methods
US11125766B2 (en) 2013-03-15 2021-09-21 Abbott Laboratories Automated diagnostic analyzers having rear accessible track systems and related methods
US11435372B2 (en) 2013-03-15 2022-09-06 Abbott Laboratories Diagnostic analyzers with pretreatment carousels and related methods
US11536739B2 (en) 2013-03-15 2022-12-27 Abbott Laboratories Automated diagnostic analyzers having vertically arranged carousels and related methods
US12007403B2 (en) 2013-03-15 2024-06-11 Abbott Laboratories Automated diagnostic analyzers having rear accessible track systems and related methods
US11709172B2 (en) 2017-05-29 2023-07-25 Roche Diagnostics Operations, Inc. Method for operating a laboratory system

Also Published As

Publication number Publication date
CN102326086A (zh) 2012-01-18
US20120039748A1 (en) 2012-02-16
DE112010001896T5 (de) 2012-06-14
DE112010001896B4 (de) 2013-10-24
JP2010217057A (ja) 2010-09-30
JP5286120B2 (ja) 2013-09-11

Similar Documents

Publication Publication Date Title
JP5286120B2 (ja) 自動分析装置
JP5564037B2 (ja) 自動分析装置
CN113176417B (zh) 一种检测血液样本中血常规参数和c反应蛋白参数的方法
JP4119845B2 (ja) 積み重ね可能なアリクォット容器アレイ
US5213761A (en) Automatic chemical analyzer having an improved delivery mechanism
JP3914837B2 (ja) 自動分析装置
JP4712363B2 (ja) 着脱自在なホルダ又は遠心機を備えた分析器
JP5531010B2 (ja) 自動分析装置
JPS62278460A (ja) 自動分析装置
JP4477398B2 (ja) 固定多機能プローブを有する分析装置
JP6120763B2 (ja) 反応槽を搬送する装置およびプロセス
WO2007139212A1 (ja) 自動分析装置
US20150168435A1 (en) Automated Analyzer
JP4819324B2 (ja) 同心のロータを備えたアナライザ
WO2020217636A1 (ja) 自動分析装置
JP5661259B2 (ja) 自動分析装置
JP5017421B2 (ja) 自動分析装置
JP4146873B2 (ja) 自動分析装置
JP7506071B2 (ja) 自動分析装置
WO2023127182A1 (ja) 自動分析装置及び自動分析方法
EP2077446A1 (en) Method of determining abnormality and analyzer
JP2009036680A (ja) 分析装置
JP2006250957A (ja) 自動分析装置
JP2006250958A (ja) 自動分析装置
JP5321324B2 (ja) 反応容器の供給手段を切り替え可能な自動分析装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080008371.4

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10753380

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13202337

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 112010001896

Country of ref document: DE

Ref document number: 1120100018960

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10753380

Country of ref document: EP

Kind code of ref document: A1