Nothing Special   »   [go: up one dir, main page]

WO2010027073A1 - 半導体製造装置用部品及び半導体製造装置 - Google Patents

半導体製造装置用部品及び半導体製造装置 Download PDF

Info

Publication number
WO2010027073A1
WO2010027073A1 PCT/JP2009/065589 JP2009065589W WO2010027073A1 WO 2010027073 A1 WO2010027073 A1 WO 2010027073A1 JP 2009065589 W JP2009065589 W JP 2009065589W WO 2010027073 A1 WO2010027073 A1 WO 2010027073A1
Authority
WO
WIPO (PCT)
Prior art keywords
particles
component
semiconductor manufacturing
film
nitride
Prior art date
Application number
PCT/JP2009/065589
Other languages
English (en)
French (fr)
Inventor
道雄 佐藤
隆 中村
Original Assignee
株式会社東芝
東芝マテリアル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社東芝, 東芝マテリアル株式会社 filed Critical 株式会社東芝
Priority to JP2010527847A priority Critical patent/JP5566891B2/ja
Priority to KR1020117004962A priority patent/KR101284474B1/ko
Publication of WO2010027073A1 publication Critical patent/WO2010027073A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/04Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the coating material
    • C23C4/10Oxides, borides, carbides, nitrides or silicides; Mixtures thereof
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/04Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the coating material
    • C23C4/06Metallic material

Definitions

  • the present invention relates to a component for a semiconductor manufacturing apparatus, a component for manufacturing a compound semiconductor, a semiconductor manufacturing apparatus, and a compound semiconductor manufacturing apparatus suitable for an apparatus for forming fine wiring using plasma discharge, such as a plasma etching apparatus, a plasma CVD apparatus, and a sputtering apparatus.
  • a plasma etching apparatus such as a plasma etching apparatus, a plasma CVD apparatus, and a sputtering apparatus.
  • Fine wiring in semiconductor device manufacturing and compound semiconductor device manufacturing is formed by using film formation by a sputtering apparatus or CVD apparatus and isotropic etching and anisotropic etching techniques by an etching apparatus.
  • plasma discharge is used for improving the film forming speed and etching property.
  • a plasma etching apparatus will be described as a typical example of a semiconductor manufacturing apparatus using plasma discharge.
  • a method is known in which plasma gas is used for fine etching of Si and dry etching processes of various thin films such as an insulating film, an electrode film, and a wiring film formed on a substrate.
  • a fluorine (F) system or a chlorine (Cl) system that is a gas between an upper electrode disposed in a chamber of a dry etching apparatus and a substrate mounted on a lower electrode surface disposed opposite to the upper electrode.
  • Plasma gas is discharged between the electrodes to generate fluorine or chlorine plasma, and the thin film formed on the substrate is dry etched with active ions or radicals generated in the plasma.
  • the method to be applied is applied.
  • the product formed by etching from the thin film on the substrate by dry etching using fluorine-based or chlorine-based plasma becomes a gas state and is discharged from the chamber to the outside by the exhaust pump.
  • a gas different from the fluorine-based or chlorine-based plasma gas used for the dry etching is used for the purpose of removing the adhesion film.
  • a process is employed in which dry etching is performed under conditions to discharge a product adhered in the chamber out of the chamber.
  • a thermal spray coating made of yttrium oxide (Y 2 O 3 ) or aluminum oxide (Al 2 O 3 ) having high plasma resistance and corrosion resistance is formed on the parts irradiated with plasma.
  • yttrium oxide or aluminum oxide is used to suppress generation of products and prevent damage due to plasma attack.
  • the coating of yttrium oxide or aluminum oxide formed by thermal spraying is formed by depositing raw material powder of yttrium oxide or aluminum oxide in a molten state, so that the molten particles are rapidly solidified by a plasma heat source and adhered. At this time, a large number of microcracks are generated in the particles deposited in a flat state, and further, a strain formed by rapid solidification remains in each flat particle, and a coating is formed.
  • an active radical generated by plasma discharge is irradiated to an yttrium oxide film or an aluminum oxide film in such a state, the active radical attacks the microcrack to develop the crack, There is a problem in that cracks propagate and the sprayed coating is lost to cause generation of particles.
  • the yttrium oxide film or aluminum oxide formed by the thermal spraying process is a deposited film of particles in the molten state, and therefore tends to be a source of particles and causes a reduction in product yield.
  • the formation tends to cause problems (see Patent Document 1).
  • the sprayed coating is deposited on the surface that has been subjected to a blasting process in which abrasive grains and the like are sprayed onto the substrate surface together with a high-pressure fluid. Residual pieces of material (abrasive grains) may exist, or a crushed layer may be formed by blasting on the part surface. Since the sprayed coating is deposited on the surface of the component as described above, the thermal film stress due to the temperature change caused by the plasma discharge causes the stress to act on the interface between the component and the sprayed coating, and the film is easily peeled off together with the sprayed coating.
  • the present invention is capable of stably and effectively suppressing the generation of fine dust generated from parts, and for semiconductor manufacturing equipment parts and compound semiconductor manufacturing equipment capable of preventing contamination by impurities from the parts.
  • An object is to provide a component and semiconductor manufacturing apparatus and a compound semiconductor manufacturing apparatus.
  • the particle size of the oxide powder as the supply powder is as large as about 10 to 45 ⁇ m, a maximum of about 15% of voids are generated in the formed sprayed coating, and the surface of the sprayed surface is rough.
  • the average roughness Ra is about 6 to 10 ⁇ m.
  • the wiring width is being reduced (for example, 0.18 ⁇ m, 0.13 ⁇ m, and further 0.09 ⁇ m or less).
  • the wiring width is being reduced (for example, 0.18 ⁇ m, 0.13 ⁇ m, and further 0.09 ⁇ m or less).
  • extremely fine particles micro particles having a diameter of about 0.2 ⁇ m are mixed, for example, wiring defects and element defects are caused. It is strongly desired to further suppress the generation of fine particles due to the device components.
  • the present invention has been made to cope with such problems, and aluminum nitride (AlN) having plasma resistance and corrosion resistance more than yttrium oxide and aluminum oxide is applied to parts for semiconductor manufacturing equipment and compound semiconductor manufacturing equipment.
  • AlN powder is deposited without causing internal defects, and it is possible to stably and effectively prevent peeling of products and deposited films adhering during etching and film-forming processes, and to perform frequent device cleaning, parts replacement, etc.
  • Reduces productivity and increases the cost of etching and film formation, and suppresses the generation of fine particles, as well as parts for semiconductor manufacturing equipment and compound semiconductor manufacturing equipment, and particles into the substrate Suppresses contamination and contamination of impurities, and supports high-integrated semiconductor devices, etc.
  • its object is to provide a semiconductor manufacturing apparatus and producing a compound semiconductor device that allows to achieve such reduction in the etching and deposition costs through.
  • the nitride sprayed coating deposited without melting the supply powder at the time of thermal spraying as in the present invention it is possible to reduce surface defects because molten particles are hardly generated. At the same time, it is possible to increase the density of the thermal spray coating and smooth the surface, thereby reducing internal defects. Furthermore, since the stability of the crystal structure of the nitride constituting the thermal spray coating is increased, the chemical stability of the thermal spray coating can be improved.
  • the plasma resistance of the parts can be improved, and the amount of particles generated and impurity contamination
  • the amount can be reduced, and the number of device cleaning and parts replacement can be greatly reduced.
  • Reduction of the amount of generated particles greatly contributes to the improvement of the yield of various thin films processed by the semiconductor manufacturing apparatus and the compound semiconductor manufacturing apparatus, as well as elements and parts using the thin films.
  • the reduction in the number of device cleanings and part replacements greatly contributes to the improvement of productivity and the reduction of etching costs and film formation costs.
  • a component for a semiconductor manufacturing apparatus and a component for a compound semiconductor manufacturing apparatus according to the present invention include a component main body and a thermal spray coating integrally formed on the surface of the component main body by spraying nitride particles.
  • the thermal spray coating is formed by depositing 90% by mass or more of nitride powder particles in an unmelted state.
  • a semiconductor manufacturing apparatus and a compound semiconductor manufacturing apparatus according to the present invention are characterized by including a component for a semiconductor manufacturing apparatus and a component for a compound semiconductor manufacturing apparatus each having the thermal spray coating.
  • generation of fine particles generated from a component is stably and effectively suppressed, and it is possible to suppress a decrease in productivity and an increase in component cost due to frequent device cleaning and component replacement. It can also be applied to the manufacture of highly integrated semiconductor devices, and it can be used for semiconductor manufacturing equipment parts and compound semiconductor manufacturing equipment parts that can reduce the cost of etching and film formation by improving the operating rate.
  • a semiconductor manufacturing apparatus or a compound semiconductor manufacturing apparatus can be provided.
  • SYMBOLS 1 ... Supply powder, 2 ... Heat source, 3 ... Heating medium, 4 ... Molten particle, 5 ... Acceleration gas, 6 ... Spraying torch, 7 ... Base material, 8a ... Flat particle, 9 ... Crevice, 10 ... Processing chamber, 11 ... Discharge tube, 12 ... Gas supply port, 13 ... Exhaust port, 14 ... Sample stage, 15 ... High frequency power supply, 16 ... Waveguide, 17 ... Solenoid coil, 18 ... Magnetron, 19 ... Wafer, 20 ... Thermal spray coating.
  • nitride film having plasma resistance and corrosion resistance For the purpose of reducing the number of exchange of particles and parts in the plasma etching apparatus, it is effective to form a nitride film having plasma resistance and corrosion resistance on the parts irradiated with active radicals by plasma.
  • the nitride having plasma resistance and corrosion resistance include aluminum nitride (AlN), boron nitride (BN), silicon nitride (Si 3 N 4 ), and the like.
  • the composite nitride include Al—BN.
  • the present invention exhibits a predetermined effect because it has a coating structure in which nitride powder particles are unmelted and deposited by 90 mass% or more.
  • a coating 8 formed by a thermal spraying method melts a raw material such as powder (feed powder 1) using electricity or combustion gas as a heat source 2, and melts the molten particles 4 into Ar gas or compressed air. It is formed by a method of spraying and spraying from the spraying torch 6 using an acceleration gas 5 such as. Therefore, when the molten particles 4 are deposited on the coating (base material 7), as shown in FIG. 1, the molten particles 4 are flattened by collision energy to become flat particles 8a, and this flat particle 8a is deposited. (Lamellar structure) is obtained. As shown in FIG. 2, the flat particles 8a described here have a ratio (X / Y) of 2.5 (X) to (Y) in the film thickness direction of the thermal spray coating 8 of 2.5 or more. Defined as particle.
  • the particles colliding when the molten particles 4 are deposited are scattered and adhered as the scattered particles 21, so that they are scattered on the flat particles 8a.
  • the surface morphology is such that the particles 21 are deposited in an unstable manner.
  • an adhesion film is deposited on the part according to the form of thermal spraying. The form is easy to occur.
  • the flattened molten particles are rapidly cooled and solidified, so that the microcracks 22 are generated in the flat particles 8a as shown in FIGS.
  • the crater 23 is generated.
  • the thermal spray material when oxide ceramics is used as the thermal spray material, the occurrence of cracks becomes significant. Therefore, when such a sprayed coating is used in a semiconductor manufacturing apparatus and a compound semiconductor manufacturing apparatus, the cracks 21 of the flat particles 8a develop due to the thermal stress caused by the plasma, and the strength of the sprayed coating 8 decreases, and the adhered film is formed. The problem that the crack 21 propagates and causes film peeling occurs. Furthermore, since the sprayed coating is formed in a molten state, when the composite oxide is used as the raw material powder, the composite oxide is separated and deposited due to the difference in melting point, and the material characteristics of the composite oxide cannot be obtained. There also arises a problem that the plasma resistance and corrosion resistance are lost.
  • thermal spraying equipment has realized that a film is formed by continuously depositing on a substrate without melting the material. Specifically, this is realized by changing the shape of the combustion chamber, making the nozzle pores, and adding an auxiliary combustion mechanism. Since it has become possible to deposit particles in an unmelted state, it has been impossible to form a film with a nitride that has been melted and sublimated by the thermal spraying method so far, but the nitride particles are in an unmelted state. Therefore, a nitride film can be formed.
  • the aluminum nitride film obtained by this equipment forms a film in a form in which fine particles 24 are bonded, and has a film structure in which unmelted particles are deposited. It exhibits a surface morphology free from surface defects such as cracks, craters and scattered particles as found in the sprayed film.
  • a nitride spray coating deposited without melting the supply powder during thermal spraying it is used in semiconductor manufacturing equipment and compound semiconductor manufacturing equipment such as plasma etching equipment, plasma CVD equipment and sputtering equipment using plasma discharge. It was found that the plasma resistance of the parts can be significantly improved, the particle can be reduced, the impurity contamination can be reduced, and the life of the parts can be extended.
  • the component for semiconductor manufacturing apparatus and the component for compound semiconductor manufacturing apparatus in the present invention have a sprayed coating of nitride particles on the surface of the component main body, and the nitride powder particles are unmelted and deposited by 90 mass% or more for thermal spraying. It is characterized by forming a film.
  • the nitride particles preferably maintain the crystal structure of the raw material powder. For this reason, the thermal spray coating of the present invention has high chemical stability, and even when composite nitride particles are used, the material characteristics of the raw material powder can be obtained without separation due to the difference in melting point.
  • the sprayed coating has a fine particle deposition structure, the gaps 9 between the deposited particles shown in FIG. 1 are small, and the sprayed coating 8 can be formed at a high density. It is possible to prevent intrusion of radicals (for example, active F radicals and Cl radicals) by attack, and it is possible to reduce impurity contamination from components.
  • radicals for example, active F radicals and Cl radicals
  • the adhesion film deposited on it is also an adhesion film form that stably deposits, and it is possible to stably and effectively suppress peeling of the deposits deposited on the part. it can. Further, since there is no generation of protrusions that induce the generation of particles formed on the melt-deposited sprayed coating, an effect of greatly reducing the amount of generated particles can be obtained.
  • nitride particles to be formed a sprayed coating is aluminum nitride (AlN) particles, it is preferably contained in addition to aluminum oxide (Al 2 O 3) is less than 10 wt% of a nitride of unmelted.
  • Aluminum nitride coating has higher corrosion resistance against active radicals from fluorine plasma and chlorine plasma than yttrium oxide coating, and the amount of corrosion products generated in the coating itself is extremely small, reducing the frequency of parts replacement due to wear. Is obtained.
  • aluminum nitride has high plasma etching property, an aluminum nitride sprayed coating on which unmelted particles are deposited has a particularly high effect.
  • the sprayed coating of aluminum nitride collides particles at a high speed and forms a coating with the collision energy, but when the aluminum nitride particles are coated by thermal spraying, the surface of the aluminum nitride particles changes to aluminum oxide. .
  • the aluminum oxide film formed on the surface of the aluminum nitride particles serves to facilitate the formation of the film by promoting bonding between the particles. For this reason, the sprayed coating of aluminum nitride has a coating structure containing aluminum oxide, but the ratio of aluminum oxide contained in the coating of aluminum nitride is preferably 10% or less.
  • the content ratio of aluminum oxide exceeds 10% by mass, the bonding force between particles is improved, but wear due to plasma etching is likely to occur, and the amount of generated particles may increase. Moreover, when the content ratio of aluminum oxide is 10% by mass or less, wear due to plasma attack and radical attack is reduced, the amount of particles generated is reduced, and plasma resistance is improved. A more preferable value of the content ratio is 5% by mass or less, and more preferably 3% by mass or less. In addition, in order to acquire the containing effect of aluminum oxide, 2 mass% or more is preferable. However, when the content of aluminum oxide is 0.2% or more, the particle bond of aluminum nitride is improved, so the lower limit is preferably 0.2% or more. The effect of adding aluminum oxide can be obtained not only when the thermal spray material is AlN but also when Si 3 N 4 or BN is used.
  • the porosity of the thermal spray coating is desirably 5% or less. Thereby, the plasma inflow into the pores can be suppressed and the bond strength between the particles constituting the thermal spray coating can be increased, so that the generation of particles due to wear can be reduced. If this porosity exceeds 5%, plasma etching occurs intensively in the pores, which may promote the generation of particles from that portion, and the thermal spray coating may be easily peeled off, resulting in the number of parts replacement. May increase and decrease productivity. A more preferable range of the porosity is 1% or less.
  • the surface roughness of the sprayed coating is desirably 5 ⁇ m or less in terms of the average roughness Ra.
  • the surface roughness of the sprayed coating is desirably 5 ⁇ m or less in terms of the average roughness Ra.
  • the lower layer is an aluminum oxide film
  • other oxides, nitrides, or a mixture thereof may be used, and it is preferable to select a material according to necessary characteristics. Further, the effect is exhibited even when an aluminum nitride film is formed and then the outermost surface of the film is fluorinated to form a fluoride film.
  • the film thickness of the thermal spray coating according to the present invention is preferably 10 ⁇ m or more, more preferably 50 ⁇ m or more.
  • the upper limit of the thermal spray coating is not particularly limited, but it is preferably 500 ⁇ m or less because no further effect can be obtained even if it is excessively thick.
  • the coating structure By controlling to such a coating structure, plasma resistance and corrosion resistance are greatly improved, so it becomes possible to reduce impurity contamination from the parts, and to remove the deposits deposited on the parts stably and effectively. Can be suppressed.
  • the surface of the coating is in the form of fine particles, the deposited film deposited on the surface also forms an deposited film that stably deposits, and projections that induce the generation of particles formed on the melt-deposited sprayed coating. Since there is no generation, an effect of greatly reducing the generation amount of particles can be obtained.
  • a nitride spray coating densely in an unmelted state to reduce the number of particles in the plasma etching apparatus and reduce the number of parts replacement (long life).
  • the porosity is small and the optimum sprayed surface roughness can be obtained, so that it is possible to achieve a surface form and sprayed structure with high plasma etching resistance, and the effects of both are demonstrated synergistically.
  • a sprayed coating is obtained.
  • the fine powder particles are preferably several ⁇ m or less. However, if the particles are excessively small, the particles form aggregates and the aggregates are bonded to each other, so that densification is inhibited and adhesion of the deposited particles is reduced.
  • the shape of the fine powder is preferably an angular shape like a pulverized powder rather than a spherical shape.
  • the coating surface is further sprayed with dry ice pellets to perform cleaning treatment to remove particles that are likely to fall off, fine particles can be removed. Since the surface roughness is reduced, dry eye screening is preferably performed. Further, after the coating is formed, post-processing may be performed by polishing and mirror finishing. However, since the minute foreign matter by the surface processing remains on the surface and easily becomes a generation source of particles, it is preferable to perform a removal cleaning process by spraying dry ice pellets after the processing.
  • the thermal spraying conditions appropriately selected according to the constituent material and shape of the component body, the environmental conditions used, the thermal spray material, etc. .
  • fine nitride particles having a powder particle size of about several microns are used.
  • a desired binding particle size and surface roughness can be obtained by selecting and using a particle size range of the supplied powder.
  • the average particle size of the supplied powder is preferably 10 ⁇ m or less, and more preferably 1 ⁇ m or more and 3 ⁇ m or less. Then, by controlling the spraying conditions such as the gas flow rate, pressure, spraying distance, nozzle diameter, and material supply amount, the sprayed coating structure in which unmelted particles are bonded, the surface roughness, the porosity, and the like can be controlled.
  • the critical speed at which the fine powder starts to deposit due to the impact energy varies depending on the material of the fine powder to be used, but the fine powder deposition is started by setting the speed of the fine powder particles to about 400 m / sec to 800 m / sec. As a result, a film is formed. In order to obtain this particle velocity, particles are deposited without blasting by spraying the fine powder with the combustion gas, so it is necessary to select a gas type. It is preferable to use combustion energy such as acetylene, oxygen, and kerosene as the combustion gas.
  • FIG. 9 is a schematic diagram showing a main configuration of a plasma etching apparatus which is an embodiment of the semiconductor manufacturing apparatus of the present invention.
  • Plasma etching processing of various thin films such as insulating films, electrode films, and wiring films formed on a substrate or microfabrication of Si is performed by utilizing the interaction between a microwave electric field and a magnetic field as shown in FIG. It can be carried out using a microwave etching apparatus that converts gas into plasma.
  • a quartz discharge tube 11 is provided in the upper part of the vacuum apparatus processing chamber 10, a gas supply port 12 for introducing an etching gas is disposed in the processing chamber 10, and a vacuum exhaust port 13 is provided.
  • the processing chamber 10 is provided with a sample stage 14 on which a wafer is placed.
  • a high frequency power supply 15 is connected to the sample stage 14 so that high frequency power is applied to the sample stage 14.
  • a waveguide 16 is provided outside the discharge tube 11, and a solenoid coil 17 for generating a magnetic field in the discharge tube is further provided outside the waveguide 16.
  • a magnetron 18 that oscillates microwaves is provided at the end of the waveguide 16.
  • an etching gas is introduced from the gas supply port 12 into the processing chamber 10, and the processing chamber 10 is evacuated, and then the microwave from the magnetron 18 is introduced into the discharge tube 11 through the waveguide 16, and the solenoid coil.
  • a magnetic field is formed by 17, and the etching gas in the discharge tube 11 is turned into plasma by the interaction between the microwave electric field and the magnetic field by the solenoid coil 17.
  • high frequency power is applied to the sample stage 14 from the high frequency power source 15 to generate a bias voltage, and ions in the plasma are drawn to the wafer 19 side to perform anisotropic etching.
  • the thermal spray coating 20 containing unmelted nitride particles is formed on the inner surface of a quartz discharge tube 11 as a component body.
  • thermal spray coating 20 can reduce wear due to plasma and radicals as described above, it is possible to reduce generation of particles due to peeling of the thermal spray coating 20. At the same time, since the quartz surface of the discharge tube 11 can be prevented from being exposed, generation of particles due to peeling from the quartz surface can be reduced.
  • Example 1 An AlN film having a film thickness of 50 ⁇ m was formed on the inner surface of the discharge tube 11 made of quartz, which is a component of the plasma etching apparatus as shown in FIG. That is, using an ultra-high-speed flame spraying equipment, an oxygen flow rate of 138 cc / min, a kerosene supply rate of 133 cc / min, a supply acetylene pressure of 30 psi were set, and an AlN powder material having an average particle size of 2.3 ⁇ m was injected together with combustion gas, An AlN film was formed by depositing on the surface of each part. At that time, the spraying distance was set in the range of 130 to 160 mm as shown in Table 1.
  • each part on which the AlN coating was formed is then subjected to conditions of a temperature of 200 ° C. ⁇ 2 hours. And dried.
  • plasma etching of an aluminum alloy film on an 8-inch wafer is performed using a mixed gas of BCl 3 + Cl 2 + N 2 , and the average particle generation amount up to a predetermined number of wafers processed A comparative study with the number of wafers processed was performed.
  • the generation amount of particles was obtained by measuring the number of particles having a diameter of 0.2 ⁇ m or more mixed on an 8-inch wafer with a particle counter. In addition, the service life was confirmed by the number of wafers processed immediately before the amount of particles generated increased rapidly and exceeded 50. These results are shown in Table 1.
  • Example 2 A Si 3 N 4 film 20 having a thickness of 50 ⁇ m was formed on the inner surface of a quartz discharge tube 11 as a component of the plasma etching apparatus as shown in FIG. That is, using an ultra-high-speed flame spraying equipment, setting an oxygen flow rate of 128 cc / min, a kerosene supply rate of 130 cc / min, and a supply acetylene pressure of 30 psi, an Si 3 N 4 powder material having an average particle size of 2.3 ⁇ m is injected together with combustion gas The Si 3 N 4 coating 20 was formed by depositing on the surface of each component. At that time, the spraying distance was set in the range of 130 to 160 mm as shown in Table 1.
  • plasma etching of an aluminum alloy film on an 8-inch wafer is performed using a mixed gas of BCl 3 + Cl 2 + N 2 , and the average particle generation amount up to a predetermined number of wafers processed A comparative study with the number of wafers processed was performed.
  • the generation amount of particles was obtained by measuring the number of particles having a diameter of 0.2 ⁇ m or more mixed on an 8-inch wafer with a particle counter. In addition, the service life was confirmed by the number of wafers processed immediately before the amount of particles generated increased rapidly and exceeded 50. These results are shown in Table 1.
  • Example 3 A BN film 20 having a film thickness of 50 ⁇ m was formed on the inner surface of the discharge tube 11 made of quartz, which is a component of the plasma etching apparatus as shown in FIG. That is, using an ultra-high-speed flame spraying equipment, setting an oxygen flow rate of 130 cc / min, a kerosene supply amount of 135 cc / min, and a supply acetylene pressure of 30 psi, BN powder material having an average particle size of 2.2 ⁇ m is injected together with combustion gas, A BN coating 20 was formed by depositing on the surface of each component. At that time, the spraying distance was set in the range of 140 to 160 mm as shown in Table 1.
  • the BN coating surface is cleaned by spraying dry ice pellets onto the surface of the BN coating 20 at a pressure of 5 kg / cm 2 , and then each component on which the BN coating 20 is formed is heated to 200 ° C. ⁇ 2 hours. The drying process was performed on the conditions of these.
  • plasma etching of an aluminum alloy film on an 8-inch wafer is performed using a mixed gas of BCl 3 + Cl 2 + N 2 , and the average particle generation amount up to a predetermined number of wafers processed A comparative study with the number of wafers processed was performed.
  • the generation amount of particles was obtained by measuring the number of particles having a diameter of 0.2 ⁇ m or more mixed on an 8-inch wafer with a particle counter. In addition, the service life was confirmed by the number of wafers processed immediately before the amount of particles generated increased rapidly and exceeded 50. These results are shown in Table 1.
  • Example 4 After the Al 2 O 3 coating 20 having a film thickness of 60 ⁇ m is formed on the inner surface of the discharge tube 11 made of quartz, which is a component of the plasma etching apparatus as shown in FIG. 9, the Al 2 O 3 An AlN film of 50 ⁇ m was formed on the film 20. That is, using an ultra-high-speed flame spraying equipment, oxygen flow rate of 132 cc / min, kerosene supply rate of 138 cc / min, supply acetylene pressure of 30 psi, and Al 2 O 3 powder material with an average particle size of 2.1 ⁇ m are injected together with combustion gas The Al 2 O 3 coating 20 was formed by depositing on the surface of each component.
  • the spraying distance was set to 130 to 160 mm.
  • an oxygen flow rate of 138 cc / min, a kerosene supply rate of 133 cc / min, and a supply acetylene pressure of 30 psi were set, and an AlN powder material having an average particle size of 2.3 ⁇ m was injected together with the combustion gas.
  • An AlN coating was formed by depositing on the surface of the Al 2 O 3 coating. By spraying dry ice pellets onto the surface of the AlN film at a pressure of 5 kg / cm 2 , the surface of the AlN film is cleaned, and then each part on which the AlN film is formed is dried at a temperature of 200 ° C. for 2 hours. Was given.
  • plasma etching of an aluminum alloy film on an 8-inch wafer is performed using a mixed gas of BCl 3 + Cl 2 + N 2 , and the average particle generation amount up to a predetermined number of wafers processed A comparative study with the number of wafers processed was performed.
  • the generation amount of particles was obtained by measuring the number of particles having a diameter of 0.2 ⁇ m or more mixed on an 8-inch wafer with a particle counter. In addition, the service life was confirmed by the number of wafers processed immediately before the amount of particles generated increased rapidly and exceeded 50. These results are shown in Table 1.
  • plasma etching is performed on an aluminum alloy film formed on an 8-inch wafer using a mixed gas of BCl 3 + Cl 2 + N 2 , and the average particle size up to a predetermined number of wafers processed
  • Table 1 A comparison between the generation amount and the number of wafers processed until just before the generation amount of particles exceeds 50 is shown in Table 1 below.
  • Example 2 An AlN film having a film thickness of 50 ⁇ m was formed on the inner surface of the discharge tube 11 made of quartz, which is a component of the plasma etching apparatus as shown in FIG. At that time, AlN raw material powder containing 40% (sample 15), 30% (sample 16) and 20% (sample 17) of Al 2 O 3 was used. As in Example 1, the treated product uses an ultra-high-speed flame spraying equipment, and is set to an oxygen flow rate of 138 cc / min, a kerosene supply rate of 133 cc / min, a supply acetylene pressure of 30 psi, and an AlN powder material having an average particle size of 1.8 ⁇ m.
  • plasma etching is performed on an aluminum alloy film formed on an 8-inch wafer using a mixed gas of BCl 3 + Cl 2 + N 2 , and the average particle size up to a predetermined number of wafers processed
  • Table 1 A comparison between the generation amount and the number of wafers processed until just before the generation amount of particles exceeds 50 is shown in Table 1 below.
  • Example 5 An AlN coating 20 having a thickness of 50 ⁇ m was formed on the inner surface of a quartz discharge tube 11 as a component of the plasma etching apparatus as shown in FIG. That is, using an ultra-high-speed flame spraying equipment, an oxygen flow rate of 138 cc / min, a kerosene supply rate of 133 cc / min, a supply acetylene pressure of 30 psi, an AlN powder material having an average particle size of 1.6 ⁇ m is injected together with combustion gas, An AlN film 20 was formed by depositing on the surface of each part. At that time, the spraying distance was set in the range of 130 to 160 mm as shown in Table 1.
  • plasma etching of the SiO 2 film formed on the 8-inch wafer is performed using a mixed gas of CF 4 + O 2 + Ar, and the average generation of particles up to a predetermined number of wafers processed The amount and the number of processed wafers were compared and the results are shown in Table 1 below.
  • a Y 2 O 3 film having a thickness of 50 ⁇ m was formed on the inner surface of the discharge tube 11 made of quartz, which is a component of the plasma etching apparatus as shown in FIG. That is, a thermal spray coating made of an oxide of Y 2 O 3 using a Y 2 O 3 powder having an average particle size of 33 ⁇ m, by setting the current 550 A, voltage 75 V, Ar gas flow rate / pressure to 100/100 by plasma spraying. Formed. At that time, the spraying distance was set in the range of 130 to 150 mm as shown in Table 1. On the surface of each particle constituting the sprayed coating, an Al oxide film of impurities contained in the raw material powder was formed.
  • plasma etching of the SiO 2 film on the 8-inch wafer is performed using a mixed gas of CF 4 + O 2 + Ar, and the average particle generation amount up to a predetermined number of wafers processed and the wafer Comparison with the number of processed sheets was performed, and the results are shown in Table 1 below.
  • Crystal structure ratio of particles constituting the thermal spray coating The surface of the sprayed coating was analyzed by X-ray mass spectrometry, and the content of Al 2 O 3 was calculated from the peak intensity ratio of the main peak of AlN and the main peak of Al 2 O 3 . Further, when Si 3 N 4 or BN is used as the thermal spray material, the content of each oxide is determined from the peak intensity ratio between the main peak of the thermal spray material and the main peak of each oxide (SiO 2 or B 2 O 3 ). The amount was calculated.
  • the thermal spray coating is directly formed on the surface of the component main body.
  • at least one oxide film made of Al 2 O 3 or the like is formed on the surface of the component main body, and the outermost surface thereof.
  • the component for a semiconductor manufacturing apparatus and the component for a compound semiconductor manufacturing apparatus According to the present invention, particles generated from the component parts can be stably and effectively prevented, and the coating film for preventing peeling itself. It becomes possible to improve the stability of the. Therefore, it is possible to reduce the number of times of cleaning and part replacement of the semiconductor manufacturing apparatus and the compound semiconductor manufacturing apparatus. Further, according to the semiconductor manufacturing apparatus and the compound semiconductor manufacturing apparatus of the present invention having such a component for a semiconductor manufacturing apparatus and a component for a compound semiconductor manufacturing apparatus, particles in a film that causes a defect in a wiring film or an element are generated. Mixing can be suppressed, and productivity can be improved and the cost of consumable parts can be reduced.
  • the present invention is not limited to the above-described embodiment as it is, and can be embodied by modifying constituent elements without departing from the scope of the invention in the implementation stage.
  • various inventions can be formed by appropriately combining a plurality of components disclosed in the embodiment. For example, some components may be deleted from all the components shown in the embodiment.
  • constituent elements over different embodiments may be appropriately combined.
  • the method of generating the plasma of the processing gas has been described using the interaction between the microwave electric field and the magnetic field, but the method of generating the plasma is not limited to this, for example, The same effects can be applied to plasma generators such as those using parallel plate electrodes, those using high frequency coils, and those using inductive energy.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Drying Of Semiconductors (AREA)
  • Coating By Spraying Or Casting (AREA)

Abstract

 部品本体と、窒化物粒子の溶射により前記部品本体の表面に形成された溶射被膜とを具備する半導体製造装置用部品及び化合物半導体装置用部品であって、前記溶射被膜中の窒化物粒子が未溶融で90質量%以上堆積して形成されていることを特徴とする半導体製造装置用部品及び化合物半導体製造装置用部品である。溶融粒子が急冷凝固して形成された溶射被膜では、粒子にマイクロクラックが多数発生し、歪が残存した状態になっているため、プラズマ放電の工程において、部品の溶射被膜からパーティクルがダストとして発生する。本発明によれば上記ダストの発生を安定かつ有効に抑制した半導体製造装置用部品及び化合物半導体製造装置用部品を提供できる。

Description

半導体製造装置用部品及び半導体製造装置
 本発明は、プラズマエッチング装置、プラズマCVD装置及びスパッタリング装置などプラズマ放電を利用して微細配線を形成する装置に好適な半導体製造装置用部品や化合物半導体製造用部品及び半導体製造装置や化合物半導体製造装置に関する。
 半導体装置製造や化合物半導体装置製造における微細配線は、スパッタリング装置やCVD装置による成膜とエッチング装置による等方性エッチングおよび異方性エッチングの技術とを利用して形成されている。これらの装置では成膜速度やエッチング性の向上のためにプラズマ放電が利用されている。
 ここでは、プラズマ放電を利用している半導体製造装置の代表例としてプラズマエッチング装置について説明する。半導体製造装置の製造工程において、Siの微細加工や基板上に成膜された絶縁膜、電極膜及び配線膜等の各種薄膜のドライエッチングプロセスに、プラズマガスを用いて行う方法が知られている。具体的には、ドライエッチング装置のチャンバー内に配置された上部電極とそれに対向して配置された下部電極面に搭載された基板間に、気体である弗素(F)系や塩素(Cl)系のプラズマガスを導入し、前記電極間でプラズマ放電して弗素系や塩素系プラズマを発生させ、このプラズマ中で生成された活性なイオンやラジカル等で、基板上に形成された薄膜をドライエッチングする方法が適用されている。
 この弗素系や塩素系のプラズマを利用したドライエッチングにより、基板上の薄膜からエッチングされて形成された生成物は、気体状態となって、チャンバーから排気ポンプによりチャンバー外に排出される。また、生成物の一部は固体状態となり、チャンバー内に堆積して付着膜となるため、この付着膜の除去を目的に、前記ドライエッチングに用いた弗素系や塩素系プラズマガスとは異なるガス条件を用いてドライエッチングを行ってチャンバー内に付着した生成物をチャンバー外に排出する処理が採用されている。
 しかしながら、フルオロカーボン系のエッチング生成物が発生して堆積した場合、この生成物は弗素系や塩素系のプラズマには完全に反応しないために、生成物がチャンバー内に残留し、この堆積膜が剥離して基板上に混入して、パターン不良や歩留り低下を招くことになる。
 このようなことから、ドライエッチング装置では、プラズマが照射される部品には、耐プラズマ性及び耐食性が高い酸化イットリウム(Y)や酸化アルミニウム(Al)から成る溶射被膜を形成し、生成物の発生抑制とプラズマアタックによる損傷防止のために酸化イットリウムや酸化アルミニウムが使用されている。
 しかしながら、溶射法によって形成された酸化イットリウムや酸化アルミニウムの被膜は、酸化イットリウムや酸化アルミニウムの原料粉末を溶融状態で堆積して形成されているため、プラズマ熱源によって溶融粒子が急冷凝固して付着した際、扁平状態となって堆積した粒子にマイクロクラックが多数発生し、さらに急冷凝固によって発生した歪が各扁平粒子内に残留した状態となって被膜が形成されている。このような状態での酸化イットリウム被膜や酸化アルミニウム被膜にプラズマ放電で発生した活性ラジカルが照射された場合、マイクロクラックに活性ラジカルがアタックして、クラックを進展させるとともに、内部歪の開放とともに、さらにクラックが伝播して溶射被膜が欠損してパーティクルの発生を引き起す問題がある。
 また、溶射被膜のクラック進展に伴い、その上に生成した堆積物が剥離し、それがパーティクルの発生を誘発する問題がある。
 上記のように、溶射処理によって形成した酸化イットリウム被膜や酸化アルミニウムは、溶融状態での粒子の堆積膜であるため、パーティクルの発生源となり易く、製品歩留りの低下を引き起すため、溶射処理による被膜形成では問題を生じ易い(特許文献1参照)。
 さらに、溶射被膜を構成部品に形成する場合、砥粒等を高圧流体と共に基材表面に吹き付けるブラスト処理を事前に行った表面に溶射被膜を堆積するため、ブラスト処理を行った構成部品表面にブラスト材(砥粒)の残留片が存在したり、部品表面にブラストによって破砕層が形成されたりする。このような部品表面に溶射被膜が堆積しているため、プラズマ放電による温度変化による熱膜応力により、部品と溶射被膜との界面に応力が作用し、溶射被膜ごと膜剥離が発生し易くなる。特に、ブラスト処理の圧力や砥粒サイズを大きくした場合には、膜剥離の発生が顕著となる。そのため、溶射被膜の寿命は、溶射被膜自体の構成の他に、このブラスト処理の条件によって大きく左右される要因となる。
特開2002-313780号公報
発明の開示
 本発明は、部品から発生する微細なダストの発生を安定かつ有効に抑制することが可能であり、部品からの不純物による汚染防止が可能な半導体製造装置用部品や化合物半導体製造装置用部品及び半導体製造装置や化合物半導体製造装置を提供することを目的としている。
 上述したように、ドライエッチング装置の構成部品における付着物の剥離防止対策では、溶射法で形成した酸化イットリウムや酸化アルミニウムの被膜中及び部品との界面に欠陥が存在するために、耐プラズマ性や耐食性を有する酸化イットリウムや酸化アルミニウムでも被膜の長寿命化や、部品表面に付着した付着物の剥離を十分に抑制することができず、比較的短期間で付着物の剥離が生じてしまうという問題がある。付着物の剥離が発生すると急激にパーティクルの発生量が増加するため、装置のクリーニンク゛や部品の交換が頻繁に必要となり、結果的に生産性の低下や成膜コストの上昇などが生じてしまう。
 また、プラズマ溶射の場合、供給粉末である酸化物粉末の粒径が10~45μm程度と大きいため、形成された溶射被膜中に気孔(ボイド)が最大15%程度発生すると共に、溶射表面の粗さが平均粗さRaで6~10μm程度となる。そのような溶射被膜が形成されたプラズマエッチング装置部品を使用した場合、気孔を通じてプラズマエッチングが進行する。さらに、表面粗さが大きいと、プラズマ放電が溶射面の凸部に集中して叩かれる。このように内部欠陥にプラズマアタックが集中することに加えて、表面欠陥で溶射被膜が脆くなっているため、溶射被膜の損耗によるパーティクルの発生量が多くなり、部品及び装置の使用寿命の低下を招く。
 すなわち、耐プラズマ性と耐食性が必要とされるドライエッチング装置においては、酸化イットリウム被膜や酸化アルミニウムでも被膜欠陥を起因として付着物の剥離防止対策が完全に機能せず、生産性の低下やエッチングコストの増加などを招いている。
 また、最近の半導体素子においては、高集積度を達成するために配線幅の狭小化(例えば0.18μm、0.13μm、さらには0.09μm以下)が進められている。このように狭小化された配線やそれを有する素子においては、例えば直径0.2μm程度の極微小粒子(微小パーティクル)が混入しても、配線不良や素子不良などを引起すことになるため、装置構成部品に起因する微細なパーティクルの発生をより一層抑制することが強く望まれている。
 本発明はこのような課題に対処するためになされたもので、酸化イットリウムや酸化アルミニウムより耐プラズマ性及び耐食性を有する窒化アルミニウム(AlN)を半導体製造装置用部品及び化合物半導体製造装置用部品に適用し、AlN粉末を内部欠陥を生じることなく堆積して、エッチング及び成膜工程中に付着する生成物や堆積膜の剥離を安定的かつ有効的に防止し、頻繁な装置クリーニングや部品の交換などに伴う生産性の低下やエッチングや成膜コストの増加を押さえるとともに、微細なパーティクルの発生を抑制することを可能にした半導体製造装置用部品及び化合物半導体製造装置用部品、さらに基板中へのパーティクル混入や不純物の汚染を抑制し、高集積化された半導体素子などへの対応を図るとともに、稼働率の改善によりエッチングや成膜コストの低減などを図ることを可能にした半導体製造装置及び化合物半導体製造装置を提供することを目的としている。
 本発明のような、溶射時に供給粉末を溶融せずに堆積した窒化物溶射被膜によると、溶融粒子が生じ難いために表面欠陥を低減することができる。同時に、溶射被膜の高密度化と表面の平滑化とを図ることができるため、内部欠陥を少なくすることができる。さらには、溶射被膜を構成する窒化物の結晶構造の安定性が高くなるため、溶射被膜の化学的安定性を向上することができる。
 このような窒化物溶射被膜を、プラズマ放電を利用する半導体製造装置用部品及び化合物半導体製造装置用部品に施すことによって、部品の耐プラズマ性を向上させることができ、パーティクルの発生量や不純物汚染量を抑制することができると共に、装置クリーニングや部品交換の回数を大幅に減らすことができる。パーティクル発生量の低減は、半導体製造装置及び化合物半導体製造装置で処理する各種の薄膜、さらにはそれを用いた素子や部品の歩留り向上に大きく寄与する。また、装置クリーニングや部品交換回数の低減は、生産性の向上ならびにエッチングコストや成膜コストの削減に大きく寄与する。
 本発明に係る半導体製造装置用部品及び化合物半導体製造装置用部品は、部品本体と、窒化物粒子の溶射により前記部品本体の表面に一体に形成された溶射被膜とを具備する半導体製造装置用部品及び化合物半導体製造装置用部品であって、前記溶射被膜は窒化物の粉末粒子が未溶融で90質量%以上堆積して形成されていることを特徴とする。
 本発明に係る半導体製造装置及び化合物半導体製造装置は、前記溶射被膜を具備する半導体製造装置用部品及び化合物半導体製造装置用部品を具備することを特徴とする。
 本発明によれば、部品から発生する微細なパーティクルの発生が安定的にかつ有効的に抑制され、頻繁な装置クリーニングや部品の交換などに伴う生産性の低下や部品コストの増加を抑えることができ、高集積化された半導体素子の製造にも適用可能で、稼働率の改善によりエッチングや成膜コストの低減などを図ることも可能である半導体製造装置用部品や化合物半導体製造装置用部品と半導体製造装置や化合物半導体製造装置を提供することができる。
溶射法の原理を説明するための模式図である。 扁平形状の溶射粒子の模式図である。 Ar+Hプラズマ溶射によって形成した酸化アルミニウム被膜の表面形態を示す電子顕微鏡写真である。 図3の要部を拡大した電子顕微鏡写真である。 Ar+とHeプラズマ溶射によって形成した酸化アルミニウム被膜の表面形態を示す電子顕微鏡写真である。 図5の要部を拡大した電子顕微鏡写真である。 本発明の一実施例である窒化アルミニウム被膜の表面形態を示す電子顕微鏡写真である。 図7の要部を拡大した電子顕微鏡写真である。 本発明に係る半導体製造装置としてのドライエッチング装置の一例を示すマイクロ波エッチング装置の構成を示す断面図である。
 1…供給粉末、2…熱源、3…加熱媒体、4…溶融粒子、5…加速ガス、6…溶射トーチ、7…基材、8a…扁平粒子、9…隙間、10…処理室、11…放電管、12…ガス供給口、13…排気口、14…試料台、15…高周波電源、16…導波管、17…ソレノイドコイル、18…マグネトロン、19…ウェハー、20…溶射被膜。
 以下、本発明を実施するための形態について説明する。
 プラズマエッチング装置内のパーティクルおよび部品交換回数の低減を目的とする場合には、プラズマによる活性ラジカルが照射される部品に、耐プラズマ性及び耐食性を有する窒化物被膜を形成することが有効である。耐プラズマ性及び耐食性を有する窒化物としては、例えば、窒化アルミニウム(AlN)、窒化ボロン(BN)、窒化けい素(Si)などが挙げられる。また複合窒化物としては、Al-B-Nなどが挙げられる。本発明は、窒化物の粉末粒子が未溶融で90質量%以上堆積した被膜構造であるために所定の効果が発揮される。
 一般的に、溶射法による被膜8は、図1に示すように、粉末などの素材(供給粉末1)を電気や燃焼ガスなどを熱源2として溶融し、その溶融粒子4をArガスや圧縮空気などの加速ガス5を利用して溶射トーチ6から噴出させ吹付ける方法によって形成される。そのため、溶融粒子4が被覆物(基材7)に堆積する際、図1に示すように溶融粒子4が衝突エネルギーで扁平に変化して扁平粒子8aになり、この扁平粒子8aが堆積した構造(ラメラー構造)が得られる。ここで述べる扁平粒子8aとは、図2に示すように、溶射被膜8の膜厚方向に対して横(X)と縦(Y)との比率(X/Y)が2.5以上である粒子と定義される。
 しかし、扁平粒子8aが堆積した被膜構造の場合、図3~図6に示すように、溶融粒子4の堆積時に衝突した粒子が飛散して飛散粒子21として付着するため、扁平粒子8a上に飛散粒子21が不安定に堆積する表面形態となる。このような表面形態を有する溶射被膜8を形成した部品をそのまま半導体製造装置や化合物半導体製造装置に使用した場合、溶射の形態に応じて部品に付着膜が堆積するため、付着膜表面からパーティクルが発生し易い形態となる。また、溶融粒子4が堆積する際、扁平状となった溶融粒子が急激に冷却凝固するため、図4および図6に示すように扁平粒子8aに微小クラック22が発生したり、水素還元によって多数のクレータ23が発生したりする。
 特に、酸化物セラミックスを溶射材料として使用した場合、クラックの発生が顕著となる。そのため、このような溶射被膜を半導体製造装置及び化合物半導体製造装置に使用した場合、プラズマによる熱応力により、この扁平粒子8aのクラック21が進展して溶射被膜8の強度が低下し、付着膜にクラック21が伝播して膜剥離を引き起す問題が発生する。さらに、溶融状態で溶射被膜を形成しているため、複合酸化物を原料粉末とした場合、融点の相違により複合酸化物が分離堆積して、複合酸化物の材料特性が得られず、本来の耐プラズマ性及び耐食性を喪失してしまう問題も発生する。
 また、アルミナ砥粒を使用してブラスト処理した場合、アルミナ砥粒が構成部品に食い込み、残留アルミナが溶射被膜の密着性の低下を引き起こす問題もある。さらに、ブラスト処理を行った部品表面には、ブラストショットに起因したマイクロクラックが発生した破砕層が存在しているため、溶射被膜及びスパッタ堆積膜の密着性が低下する原因となっている。
 本発明者らは鋭意研究を重ねた結果、超高速フレーム溶射設備の溶射ノズルを改造することによって、フレームの低温化と供給粉末粒子の高速化とを図ることが可能となり、そのため、供給粉末粒子を溶融せずに基板に連続堆積して被膜を形成することを溶射設備で初めて実現したものである。具体的には燃焼室の形状変更、ノズルの細孔化及び補助燃焼機構の追加により実現したものである。未溶融状態で粒子を堆積することが可能となったことから、これまで溶射方式では溶融して昇華する窒化物は被膜形成が不可能であったが、窒化物粒子が未溶融の状態であるため、窒化物の被膜が形成できるようになった。
 図7及び図8に示すように、本設備により得られた窒化アルミニウム被膜は、微細粒子24が結合した形態で被膜を形成しており、未溶融の粒子が堆積した膜構造であるために、溶射膜に見られたようなクラック、クレータ及び飛散粒子等の表面欠陥が存在しない表面形態を呈する。
 このような溶射時に供給粉末を溶融せずに堆積した窒化物溶射被膜によると、プラズマ放電を利用したプラズマエッチング装置、プラズマCVD装置及びスパッタリング装置のような半導体製造装置及び化合物半導体製造装置に使用される部品における耐プラズマ性が著しく向上し、パーティクル低減と不純物汚染の低減、さらに部品使用の長寿命化を達成できるという知見が得られた。
 本発明における半導体製造装置用部品及び化合物半導体製造装置用部品は、部品本体の表面に窒化物粒子の溶射被膜を具備し、前記窒化物の粉末粒子が未溶融で90質量%以上堆積して溶射被膜を形成していることを特徴としている。また、前記窒化物粒子は原料粉末の結晶構造を維持していることが好ましい。このため、本発明の溶射被膜は高い化学安定性を有しており、複合窒化物粒子を使用した場合でも、融点の相違によって分離することなく原料粉末の材料特性を得ることができる。
 また、溶射被膜が微粒子の堆積構造を有しているため、図1に示す堆積粒子間の隙間9が小さく、溶射被膜8を高密度に形成することができ、プラズマアタックによるプラズマの侵入とラジカルアタックによるラジカル(例えば、活性なFラジカルやClラジカル)の侵入を阻止することが可能であり、部品からの不純物汚染の低減が可能となる。
 また、被膜の表面は微粒子の結合形態であるため、その上に堆積する付着膜も安定的に堆積する付着膜形態となり、部品上に堆積した付着物の剥離を安定かつ有効に抑制することができる。また、溶融堆積した溶射被膜に形成されるパーティクル発生を誘発するような突起の発生が無いため、パーティクルの発生量を大幅に低減する効果が得られる。
 これらの結果、プラズマアタック及びラジカルアタックによる損耗と、損耗に伴うパーティクルの発生量を減少させることができ、窒化物溶射被膜の耐プラズマ性および耐食性を向上させることができる。さらに、微粒子でのクラックの発生や、飛散粒子の付着も抑制することができる。
 また、溶射被膜を形成しようとする窒化物粒子が窒化アルミニウム(AlN)粒子であり、未溶融の窒化物の他に酸化アルミニウム(Al)を10質量%以下含有することが好ましい。窒化アルミニウム被膜は酸化イットリウム被膜より弗素系プラズマ及び塩素系プラズマによる活性ラジカルに対しての耐食性が高く、被膜自体の腐食生成物の発生量が極端に少ないため、損耗による部品交換頻度を低減できる被膜が得られる。また、窒化アルミニウムは、プラズマエッチング性が高いため、未溶融粒子を堆積した窒化アルミニウム溶射被膜は特に高い効果が得られる。
 窒化アルミニウムの溶射被膜は、粒子が高速度で衝突し、その衝突エネルギーで被膜を形成しているが、さらに窒化アルミニウム粒子を溶射により被膜形成した際、窒化アルミニウム粒子の表面が酸化アルミニウムに変化する。この窒化アルミニウム粒子の表面に生成した酸化アルミニウムの被膜が粒子間の結合を助長して被膜形成を可能とする働きをしている。そのため、窒化アルミニウムの溶射被膜中には酸化アルミニウムが含有した被膜構造となるが、窒化アルミニウムの被膜中に含有する酸化アルミニウムの比率は、10%以下にすることが望ましい。
 これは以下に説明する理由によるものである。酸化アルミニウムの含有比率が10質量%を超えると、粒子間の結合力が向上するが、プラズマエッチングによる損耗が生じやすく、パーティクル発生量が多くなる恐れがある。また、酸化アルミニウムの含有比率が10質量%以下になると、プラズマアタック及びラジカルアタックによる損耗が低減してパーティクル発生量が少なくなり、耐プラズマ性が向上する。含有比率のより好ましい値は、5質量%以下であり、さらに好ましくは3質量%以下である。なお、酸化アルミニウムの含有効果を得るためには2質量%以上が好ましい。但し、酸化アルミニウムの含有量が0.2%以上の場合、窒化アルミニウムの粒子結合が向上するため、下限値としては0.2%以上であることが好ましい。なお、上記酸化アルミニウムの添加の効果は、溶射材料がAlNの場合のみならず、SiやBNの場合についても同様に得られる。
 溶射被膜の気孔率は、5%以下にすることが望ましい。これにより、気孔内へのプラズマ流入を抑制することができると共に、溶射被膜を構成する粒子間の結合強度を高くすることができるため、損耗によるパーティクルの発生を低減することができる。この気孔率が5%を超えると、気孔内でプラズマエッチングが集中的に起り、その部分からパーティクルの発生が助長される可能性があるとともに、溶射皮膜の剥離が発生し易くなり、部品交換回数が増加して生産性の低下を招く恐れがある。気孔率のより好ましい範囲は、1%以下である。
 溶射被膜の表面粗さは平均粗さRaで5μm以下にすることが望ましい。これにより、プラズマエッチングの集中する部分を少なくすることができるため、エッチングの加速による損耗を低減することができ、溶射被膜の寿命を長くすることができる。一方、平均粗さRaが5μmを超えると、その凸部にプラズマ集中が起こって、その部分が選択エッチングされるため、パーティクルの増加と使用寿命の低下を招く恐れがある。平均粗さRaのより好ましい範囲は、3μm以下である。
 また、高密度プラズマを利用したエッチング装置では、部品の絶縁性が必要となる場合があり、その際は絶縁性の高い酸化アルミニウム被膜を堆積した後、その上に窒化アルミニウム被膜を形成した二層コーティングが有効となる。絶縁性に対しては、酸化アルミニウム被膜の厚さ調整と高密度被膜の形成が重要となり、特にα構造の酸化アルミニウム被膜を緻密に形成した場合、さらなる効果が発揮されるため、窒化アルミニウム被膜の形成と同等の条件に設定することが好ましい。
 なお、下層は酸化アルミニウム被膜としたが、他の酸化物や窒化物あるいはそれらの混合物でも良く、必要特性に応じて材料選定することが好ましい。さらに、窒化アルミニウム被膜を形成した後、被膜の最表面を弗化処理して弗化物被膜を形成しても効果が発揮される。
 本発明による溶射被膜の膜厚は10μm以上であることが好ましく、さらに好ましくは50μm以上である。なお、溶射被膜の上限は特に限定されるものではないが、過度に厚くしても、それ以上の効果が得られないので500μm以下が好ましい。
 このような被膜構造に制御することにより、耐プラズマ性及び耐食性が大幅に向上することから、部品からの不純物汚染の低減が可能となり、部品上に堆積した付着物の剥離を安定的にかつ有効的に抑制することができる。また、被膜の表面は微粒子の結合形態であるため、その上に堆積する付着膜も安定的に堆積する付着膜形態となり、溶融堆積した溶射被膜に形成されるパーティクル発生を誘発するような突起の発生が無いため、パーティクルの発生量を大幅に低減する効果が得られる。
 また、粉末を高速で吹付け、その衝突エネルギーで粒子を堆積しているため、構成部品に被膜を堆積する場合にはブラスト処理が不要となり、ブラスト材の残留や表面欠陥の発生が無いことにより、被膜の密着性が向上している。これは、粒子の高速衝突で構成部品の表面酸化被膜が破壊され、活性面が露出したことにより、部品表面に直接被膜が形成され、その後の粒子衝突によって粒子破壊による発熱で粒子間において接合が起こり、被膜として形成されるものと考えられる。
 したがって、装置用部品上に堆積する付着物の剥離によるパーティクルの発生を抑えることができると共に、装置クリーニングや部品交換の回数を大幅に減少させることができる。パーティクル発生量の低減は、半導体製造装置及び化合物半導体製造装置でエッチングや成膜する各種の薄膜、さらにはそれを用いた素子や部品の歩留り向上に大きく寄与する。また、装置クリーニングや部品交換回数の低減、ブラスト処理の不要化による部品の使用寿命の延長は、生産性の向上ならびにエッチングコストの削減に大きく寄与する。
 このように、プラズマエッチング装置のパーティクル低減と部品交換回数の低減(長寿命化)に対しては、窒化物溶射被膜を未溶融状態で緻密に堆積することが有効であり、微細で粒径を選定した溶射粉末を利用することにより、気孔率が小さく、最適な溶射表面粗さが得られるため、耐プラズマエッチング性が高い表面形態および溶射構造が達成可能となり、両者の効果が相乗的に発揮される溶射被膜が得られるのである。
 被膜の高密度化あるいは緻密性に対しては、微粉末を溶融することなく堆積することが肝要であり、微粉末が堆積し始める臨界速度以上に加速する必要がある。そのためには、微粉末粒子は数μm以下であることが好ましい。ただし、粒子が過度に小さいと、粒子同士が凝集体を形成し、その凝集体同士が結合するために、高密度化が阻害されるとともに、堆積粒子の密着性が低下する。特に、堆積膜を厚く形成した場合には、微粉末の形状は球状より粉砕粉のように角張った形状の方が好ましい。
 このように微粉末で被膜の表面粗さを調整した後、被膜表面を更にドライアイスペレットを吹付けてクリーニング処理を行って脱落し易い粒子を除去すれば、パーティクルとなる微粒子の除去ができると共に、表面粗さが低減されるため、ドライアイスクリーニング処理を行うことが好ましい。さらに、被膜を形成した後、研磨して鏡面仕上げする後加工を行っても良い。ただし、表面加工による微小異物が表面に残存してパーティクルの発生源となり易いため、加工後にはドライアイスペレットを吹き付けて除去クリーニング処理を行うことが好ましい。
 窒化物粒子の溶射被膜を得るための具体的な方法としては、部品本体の構成材料や形状、使用される環境条件、溶射材料などに応じて、溶射条件を適宜選択して使用することが望ましい。具体的には、未溶融結合粒子の大きさを制御するためには、粉末粒径が数ミクロン程度に選定された細かな窒化物粒子を使用する。また、結合粒子の大きさと溶射被膜の表面粗さを制御するためには、供給粉末の粒径範囲を選定して使用することによって、所望の結合粒子サイズおよび表面粗さが得られる。供給粉末の平均粒径は10μm以下が好ましく、さらに好ましい範囲は1μm以上3μm以下である。そして、ガス流量、圧力、溶射距離、ノズル径、材料供給量などの溶射条件をコントロールすることによって、未溶融粒子が結合した溶射被膜構造、表面粗さ、気孔率などを制御することができる。
 衝突エネルギーによって微粉末が堆積し始める臨界速度は、使用する微粉末の材料によって異なるが、微粉末粒子の速度を400m/sec以上800m/sec以下程度に設定することにより微粉末の堆積が開始されて被膜が形成される。この粒子速度が得られるように、燃焼ガスで微粉末を吹付けることで、ブラスト処理を行わずに粒子が堆積するため、ガス種の選定が必要である。燃焼ガスには、アセチレン、酸素、灯油等の燃焼エネルギーを利用することが好ましい。
 次に、本発明の半導体製造装置の実施形態について説明する。図9は本発明の半導体製造装置の一実施形態であるプラズマエッチング装置の要部構成を示す模式図である。
 Siの微細加工や基板上に成膜された絶縁膜、電極膜及び配線膜等の各種薄膜のプラズマエッチング処理は、図9に示すようなマイクロ波電界と磁界との相互作用を利用してエッチングガスをプラズマ化するマイクロ波エッチング装置を使用して行うことができる。
 真空装置処理室10の上部には石英製の放電管11が設けてあり、処理室内10にはエッチングガスを導入するガス供給口12が配置され、また真空排気口13が設けてある。処理室10にはウェハーを設置する試料台14が設けてあり、この試料台14に高周波電源15が接続され、試料台14に高周波電力が印加される構造となっている。放電管11の外側には導波管16が設けられ、さらにその外側には放電管に磁界を発生させるソレノイドコイル17が設けてある。この導波管16の端部にはマイクロ波を発振させるマグネトロン18が設けてある。
 このエッチング装置ではガス供給口12から処理室内10にエッチングガスを導入し、処理室内10を減圧排気してから、導波管16によりマグネトロン18からのマイクロ波を放電管内11に導入してソレノイドコイル17によって磁界を形成して、マイクロ波の電界とソレノイドコイル17による磁界との相互作用によって放電管内11のエッチングガスをプラズマ化する。さらに高周波電源15により試料台14に高周波電力を印加してバイアス電圧を発生させて、プラズマ中のイオンをウェハー19側に引き込み異方性エッチングを行うように構成されている。未溶融の窒化物粒子を含む溶射被膜20は、部品本体としての石英製の放電管11の内面に形成されている。
 溶射被膜20は、前述したようにプラズマ及びラジカルによる損耗を低減することができるため、溶射被膜20の剥離によるパーティクルの発生を低減することができる。同時に、放電管11の石英表面が露出することを防止できるため、石英表面からの剥離によるパーティクルの発生を少なくすることができる。
 以下、本発明の実施形態について以下の実施例を参照して詳細に説明する。
 (実施例1)
 前述した図9に示すようなプラズマエッチング装置の構成部品である石英製の放電管11の内面に、下記要領で膜厚が50μmであるAlN被膜を形成した。すなわち、超高速フレーム溶射設備を使用し、酸素流量138cc/min、灯油供給量133cc/min、供給アセチレン圧力30psiに設定し、平均粒径2.3μmのAlN粉末材料を燃焼ガスと共に噴射せしめ、上記各部品表面に堆積せしめてAlN被膜を形成した。その際、溶射距離は表1に示すように130~160mmの範囲に設定して実施した。次に、圧力5kg/cmでドライアイスペレットをAlN被膜表面に吹付けることにより、AlN被膜面のクリーニング処理を実施し、しかる後にAlN被膜を形成した各部品を温度200℃×2時間の条件で乾燥処理を施した。
 このように調製したプラズマエッチング装置において、BCl+Cl+Nの混合ガスを使用して8インチウェーハ上のアルミニウム合金膜のプラズマエッチングを行って、所定のウェハー処理枚数までのパーティクル平均発生量とウェハー処理枚数との比較検討を行った。
 なお、パーティクルの発生量は、8インチウェーハ上に混入した直径0.2μm以上のパーティクル数をパーティクルカウンタで測定することにより求めた。また、使用寿命は、パーティクル発生量が急激に増加し50個を超える直前までのウェハーの処理枚数で確認した。これらの結果を表1に示す。
 (実施例2)
 前述した図9に示すようなプラズマエッチング装置の構成部品である石英製の放電管11の内面に、下記要領で膜厚が50μmであるSi被膜20を形成した。すなわち、超高速フレーム溶射設備を使用し、酸素流量128cc/min、灯油供給量130cc/min、供給アセチレン圧力30psiに設定し、平均粒径2.3μmのSi粉末材料を燃焼ガスと共に噴射せしめ、上記各部品表面に堆積せしめてSi被膜20を形成した。その際、溶射距離は表1に示すように130~160mmの範囲に設定して実施した。次に、圧力5kg/cmでドライアイスペレットをSi被膜20の表面に吹付けることにより、Si被膜20面のクリーニング処理を実施し、しかる後にSi被膜20を形成した各部品を温度200℃×2時間の条件で乾燥処理を施した。
 このように調製したプラズマエッチング装置において、BCl+Cl+Nの混合ガスを使用して8インチウェーハ上のアルミニウム合金膜のプラズマエッチングを行って、所定のウェハー処理枚数までのパーティクル平均発生量とウェハー処理枚数との比較検討を行った。
 なお、パーティクルの発生量は、8インチウェーハ上に混入した直径0.2μm以上のパーティクル数をパーティクルカウンタで測定することにより求めた。また、使用寿命は、パーティクル発生量が急激に増加し50個を超える直前までのウェハーの処理枚数で確認した。これらの結果を表1に示す。
 (実施例3)
 前述した図9に示すようなプラズマエッチング装置の構成部品である石英製の放電管11の内面に、下記要領で膜厚が50μmであるBN被膜20を形成した。すなわち、超高速フレーム溶射設備を使用し、酸素流量130cc/min、灯油供給量135cc/min、供給アセチレン圧力30psiに設定し、平均粒径2.2μmのBN粉末材料を燃焼ガスと共に噴射せしめ、上記各部品表面に堆積せしめてBN被膜20を形成した。その際、溶射距離は表1に示すように140~160mmの範囲に設定して実施した。次に、圧力5kg/cmでドライアイスペレットをBN被膜20表面に吹付けることにより、BN被膜面のクリーニング処理を実施し、しかる後にBN被膜20を形成した各部品を温度200℃×2時間の条件で乾燥処理を施した。
 このように調製したプラズマエッチング装置において、BCl+Cl+Nの混合ガスを使用して8インチウェーハ上のアルミニウム合金膜のプラズマエッチングを行って、所定のウェハー処理枚数までのパーティクル平均発生量とウェハー処理枚数との比較検討を行った。
 なお、パーティクルの発生量は、8インチウェーハ上に混入した直径0.2μm以上のパーティクル数をパーティクルカウンタで測定することにより求めた。また、使用寿命は、パーティクル発生量が急激に増加し50個を超える直前までのウェハーの処理枚数で確認した。これらの結果を表1に示す。
 (実施例4)
 前述した図9に示すようなプラズマエッチング装置の構成部品である石英製の放電管11の内面に、下記要領で膜厚が60μmであるAl被膜20形成した後、そのAl被膜20の上にAlN被膜を50μm形成した。すなわち、超高速フレーム溶射設備を使用し、酸素流量132cc/min、灯油供給量138cc/min、供給アセチレン圧力30psiに設定し、平均粒径2.1μmのAl粉末材料を燃焼ガスと共に噴射せしめ、上記各部品表面に堆積せしめてAl被膜20を形成した。その際、溶射距離は130~160mmに設定して実施した。次に、超高速フレーム溶射設備を使用し、酸素流量138cc/min、灯油供給量133cc/min、供給アセチレン圧力30psiに設定し、平均粒径2.3μmのAlN粉末材料を燃焼ガスと共に噴射せしめ、上記Al被膜表面に堆積せしめてAlN被膜を形成した。圧力5kg/cmでドライアイスペレットをAlN被膜表面に吹付けることにより、AlN被膜面のクリーニング処理を実施し、しかる後にAlN被膜を形成した各部品を温度200℃×2時間の条件で乾燥処理を施した。
 このように調製したプラズマエッチング装置において、BCl+Cl+Nの混合ガスを使用して8インチウェーハ上のアルミニウム合金膜のプラズマエッチングを行って、所定のウェハー処理枚数までのパーティクル平均発生量とウェハー処理枚数との比較検討を行った。
 なお、パーティクルの発生量は、8インチウェーハ上に混入した直径0.2μm以上のパーティクル数をパーティクルカウンタで測定することにより求めた。また、使用寿命は、パーティクル発生量が急激に増加し50個を超える直前までのウェハーの処理枚数で確認した。これらの結果を表1に示す。
 (比較例1)
 前述した図9に示すようなプラズマエッチング装置の構成部品である石英製の放電管11の内面に、下記要領で膜厚が50μmであるAl溶射被膜を形成した。すなわち、プラズマ溶射設備を使用し、電流650A、電圧55V、Arガス流量/圧力を75/80に設定し、平均粒径32μmのAl粉末材料を上記各部品表面に堆積せしめてAl溶射被膜を形成した。その際、溶射距離は表1に示すように120~150mmの範囲に設定して実施した。しかる後に、Al溶射被膜を形成した各部品を温度200℃×2時間の条件で乾燥処理を施した。
 このように調製したプラズマエッチング装置において、BCl+Cl+Nの混合ガスを使用して8インチウェーハ上に形成されたアルミニウム合金膜のプラズマエッチングを行って、所定のウェハー処理枚数までのパーティクル平均発生量とパーティクル発生量が50個を超える直前までのウェハー処理枚数との比較検討を行い、その結果を下記表1に示す。
 (比較例2)
 前述した図9に示すようなプラズマエッチング装置の構成部品である石英製の放電管11の内面に、下記要領で膜厚が50μmであるAlN被膜を形成した。その際、Alが夫々40%(試料15)、30%(試料16)及び20%(試料17)含有するAlN原料粉末を使用した。処理品は実施例1と同様に、超高速フレーム溶射設備を使用し、酸素流量138cc/min、灯油供給量133cc/min、供給アセチレン圧力30psiに設定し、平均粒径1.8μmのAlN粉末材料を燃焼ガスと共に噴射せしめ、上記各部品表面に堆積せしめてAlN被膜を形成した。その際、溶射距離は表1に示すように130~160mmの範囲に設定して実施した。次に、圧力5kg/cmでドライアイスペレットをAlN被膜表面に吹付けることにより、AlN被膜面のクリーニング処理を実施し、しかる後にAlN被膜を形成した各部品を温度200℃×2時間の条件で乾燥処理を施した。
 このように調製したプラズマエッチング装置において、BCl+Cl+Nの混合ガスを使用して8インチウェーハ上に形成されたアルミニウム合金膜のプラズマエッチングを行って、所定のウェハー処理枚数までのパーティクル平均発生量とパーティクル発生量が50個を超える直前までのウェハー処理枚数との比較検討を行い、その結果を下記表1に示す。
 (実施例5)
 前述した図9に示すようなプラズマエッチング装置の構成部品である石英製の放電管11の内面に、下記要領で膜厚が50μmであるAlN被膜20を形成した。すなわち、超高速フレーム溶射設備を使用し、酸素流量138cc/min、灯油供給量133cc/min、供給アセチレン圧力30psiに設定し、平均粒径1.6μmのAlN粉末材料を燃焼ガスと共に噴射せしめ、上記各部品表面に堆積せしめてAlN被膜20を形成した。その際、溶射距離は表1に示すように130~160mmの範囲に設定して実施した。次に、圧力5kg/cmでドライアイスペレットをAlN被膜表面に吹付けることにより、AlN被膜面のクリーニング処理を実施し、しかる後にAlN被膜20を形成した各部品を温度200℃×2時間の条件で乾燥処理を施した。
 このように調製したプラズマエッチング装置において、CF+O+Arの混合ガスを使用して8インチウェーハ上に形成されたSiO膜のプラズマエッチングを行って、所定のウェハー処理枚数までのパーティクル平均発生量とウェハー処理枚数との比較検討を行い、その結果を下記表1に示す。
 (比較例3)
 前述した図9に示すようなプラズマエッチング装置の構成部品である石英製の放電管11の内面に、下記要領で膜厚が50μmであるY被膜を形成した。すなわちプラズマ溶射法により、電流550A、電圧75V、Arガス流量/圧力を100/100に設定し、平均粒径33μmのY粉末を使用し、Yの酸化物から成る溶射被膜を形成した。その際、溶射距離は表1に示すように130~150mmの範囲に設定して実施した。溶射被膜を構成する各粒子表面には原料粉末中に含有される不純物のAlの酸化膜が形成されていた。
 このように調製したプラズマエッチング装置において、CF+O+Arの混合ガスを使用して8インチウェーハ上のSiO膜のプラズマエッチングを行って、所定のウェハー処理枚数までのパーティクル平均発生量とウェハー処理枚数との比較検討を行い、その結果を下記表1に示す。
 上記実施例1~5及び比較例1~3の溶射被膜の表面粗さRaと気孔率と、溶射被膜を構成する粒子の結晶構造比率とを以下に説明する方法で確認し、その結果を下記表1に併記する。
 (溶射被膜の表面粗さRa)
 日本工業規格(JIS B 0601-1994)で規定する算術平均粗さを表面粗さRaとした。
 (溶射被膜の気孔率)
 溶射被膜の膜厚方向に切断した断面組織を、倍率500倍の光学顕微鏡で観察し、縦210μm×横270μmの観察視野で空孔の面積を測定し、下記(1)式から気孔率(%)として換算し、各視野10箇所の平均値を気孔率として下記表1に示す。    
   気孔率(%)=(S2/S1)×100   (1)
 但し、S1は縦210μm×横270μmの視野面積(μm)で、S2は縦210μm×横270μmの視野内における空孔の合計面積(μm)である。
 (溶射被膜を構成する粒子の結晶構造比率)
 溶射被膜の表面を、X線質量分析法によって分析し、AlNの主ピークとAlの主ピークのピーク強度比からAlの含有量を算出した。また、溶射材料としてSiやBNを使用した場合についても、溶射材料の主ピークと各酸化物(SiOやB)の主ピークとのピーク強度比から各酸化物の含有量を算出した。
Figure JPOXMLDOC01-appb-T000001
 上記表1に示す結果から明らかなように、実施例1~5に係るプラズマエッチング装置の場合、比較例1~3に比較してパーティクル発生量が少なく、使用寿命も長くなることが判明した。これらから、実施例1~5の溶射被膜によりパーティクル発生を有効かつ安定的に防止でき、使用寿命の延長が達成できることが確認された。
 なお、上記各実施例では部品本体表面に直接に溶射被膜を形成した例で示しているが、部品本体表面にAl等から成るような酸化膜を少なくとも1層形成し、その最表面に溶射被膜を形成することにより、部品として絶縁性をも高められる効果が発揮される。
 以上説明したように、本発明に係る半導体製造装置用部品及び化合物半導体製造装置用部品によれば、構成部品から発生するパーティクルを安定的にかつ有効的に防止できると共に、剥離防止用の被膜自体の安定性を高めることが可能となる。したがって、半導体製造装置及び化合物半導体製造装置のクリーニングや部品の交換回数を削減することができる。また、このような半導体製造装置用部品及び化合物半導体製造装置用部品を有する本発明の半導体製造装置及び化合物半導体製造装置によれば、配線膜や素子の不良発生原因となる膜中へのパーティクルの混入を抑制することが可能となると共に、生産性の向上ならびに消耗部品コストの低減を図ることが可能となる。
 なお、本発明は上記実施形態そのままに限定されるものではなく、実施段階ではその要旨を逸脱しない範囲で構成要素を変形して具体化できる。また、上記実施形態に開示されている複数の構成要素の適宜な組み合わせにより、種々の発明を形成できる。例えば、実施形態に示される全構成要素から幾つかの構成要素を削除してもよい。さらに、異なる実施形態にわたる構成要素を適宜組み合わせてもよい。
 また、本実施例では処理ガスのプラズマを発生させる方法として、マイクロ波電界と磁界との相互作用を用いたものについて説明したが、プラズマの発生方法としてこれに限定されるものではなく、例えば、平行平板電極を用いたもの、高周波コイルを用いたもの、その他誘導エネルギーを用いたもの等のプラズマ発生装置に同様の効果があり、適用できる。

Claims (8)

  1.  部品本体と、原料粉末としての窒化物粒子の溶射により前記部品本体の表面に形成された溶射被膜とを具備する半導体製造装置用部品であって、前記溶射被膜は窒化物の粉末粒子が未溶融で90%以上堆積して形成されていることを特徴とする半導体製造装置用部品。
  2.  請求項1記載の半導体製造装置用部品において、前記溶射被膜の窒化物以外の残部は酸化物であり、前記未溶融の窒化物粒子は原料粉末の結晶構造を維持していることを特徴とする半導体製造装置用部品。
  3.  請求項1または請求項2に記載の半導体製造装置用部品において、前記窒化物粒子は窒化アルミニウム、窒化ボロン、窒化けい素の少なくとも1種であることを特徴とする半導体製造装置用部品。
  4.  請求項1ないし請求項3のいずれか1項に記載の半導体製造装置用部品において、前記窒化物粒子は窒化アルミニウム(AlN)粒子であり、前記溶射被膜は未溶融の窒化物の他に酸化物としての酸化アルミニウム(Al)を10質量%以下含有することを特徴とする半導体製造装置用部品。
  5.  請求項1ないし請求項4のいずれか1項記載の半導体製造装置用部品において、前記溶射被膜の気孔率が5%以下であることを特徴とする半導体製造装置用部品。
  6.  請求項1ないし請求項5のいずれか1項記載の半導体製造装置用部品において、前記溶射被膜の表面粗さが算術平均粗さRaで5μm以下であることを特徴とする半導体製造装置用部品。
  7.  請求項1ないし請求項6のいずれか1項記載の半導体製造装置用部品において、前記部品本体表面には少なくとも1層の酸化膜皮膜が形成されており、前記溶射被膜が酸化物被膜の最表面に形成されていることを特徴とする半導体製造装置用部品。
  8.  請求項1ないし請求項7のいずれか1項に記載の半導体製造装置用部品を具備することを特徴とする半導体製造装置。
PCT/JP2009/065589 2008-09-05 2009-09-07 半導体製造装置用部品及び半導体製造装置 WO2010027073A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2010527847A JP5566891B2 (ja) 2008-09-05 2009-09-07 半導体製造装置用部品及び半導体製造装置
KR1020117004962A KR101284474B1 (ko) 2008-09-05 2009-09-07 반도체 제조 장치용 부품 및 반도체 제조 장치

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008228916 2008-09-05
JP2008-228916 2008-09-05

Publications (1)

Publication Number Publication Date
WO2010027073A1 true WO2010027073A1 (ja) 2010-03-11

Family

ID=41797236

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/065589 WO2010027073A1 (ja) 2008-09-05 2009-09-07 半導体製造装置用部品及び半導体製造装置

Country Status (3)

Country Link
JP (1) JP5566891B2 (ja)
KR (1) KR101284474B1 (ja)
WO (1) WO2010027073A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013191224A1 (ja) * 2012-06-20 2013-12-27 東京エレクトロン株式会社 シーズニング方法、プラズマ処理装置及び製造方法
JP2014122418A (ja) * 2012-11-22 2014-07-03 Gunma Prefecture 複層皮膜付き基材およびその製造方法
JP2017071835A (ja) * 2015-10-08 2017-04-13 広島県 窒化アルミニウムの皮膜製造方法及びその方法により製造される窒化アルミニウム皮膜
JP2021015937A (ja) * 2019-07-16 2021-02-12 日本特殊陶業株式会社 加熱部材
KR20210039464A (ko) 2018-08-27 2021-04-09 도카로 가부시키가이샤 용사피막의 형성방법
US11873553B2 (en) 2017-09-01 2024-01-16 Shibaura Institute Of Technology Component and apparatus of manufacturing semiconductor

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102504290B1 (ko) 2015-12-04 2023-02-28 삼성전자 주식회사 수소 플라스마 어닐링 처리 준비 방법, 수소 플라스마 어닐링 처리 방법, 및 수소 플라스마 어닐링 장치

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59227800A (ja) * 1983-05-20 1984-12-21 Sumitomo Electric Ind Ltd 化合物半導体製造用部材
JPH0869970A (ja) * 1994-08-29 1996-03-12 Souzou Kagaku:Kk 半導体基板のプラズマ処理用ベルジャー
JP2004083929A (ja) * 2002-08-22 2004-03-18 Tosoh Corp 窒化アルミニウム溶射膜及びその製造方法
JP2006108178A (ja) * 2004-09-30 2006-04-20 Toshiba Corp 半導体製造装置用部品及び半導体製造装置
JP2006307298A (ja) * 2005-04-28 2006-11-09 Toyohashi Univ Of Technology 窒化物膜及びその成膜方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4686159B2 (ja) * 1999-12-28 2011-05-18 株式会社東芝 真空成膜装置用部品とそれを用いた真空成膜装置およびターゲット装置
JP2004162147A (ja) * 2002-11-15 2004-06-10 Plasma Giken Kogyo Kk 溶射被膜を有する窒化アルミニウム焼結体
JP4851700B2 (ja) * 2004-09-30 2012-01-11 株式会社東芝 真空成膜装置用部品及び真空成膜装置
WO2008117482A1 (ja) * 2007-03-22 2008-10-02 Kabushiki Kaisha Toshiba 真空成膜装置用部品及び真空成膜装置
JP2009235558A (ja) * 2007-12-28 2009-10-15 Tosoh Corp 窒化アルミニウム溶射部材及びその製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59227800A (ja) * 1983-05-20 1984-12-21 Sumitomo Electric Ind Ltd 化合物半導体製造用部材
JPH0869970A (ja) * 1994-08-29 1996-03-12 Souzou Kagaku:Kk 半導体基板のプラズマ処理用ベルジャー
JP2004083929A (ja) * 2002-08-22 2004-03-18 Tosoh Corp 窒化アルミニウム溶射膜及びその製造方法
JP2006108178A (ja) * 2004-09-30 2006-04-20 Toshiba Corp 半導体製造装置用部品及び半導体製造装置
JP2006307298A (ja) * 2005-04-28 2006-11-09 Toyohashi Univ Of Technology 窒化物膜及びその成膜方法

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013191224A1 (ja) * 2012-06-20 2013-12-27 東京エレクトロン株式会社 シーズニング方法、プラズマ処理装置及び製造方法
JPWO2013191224A1 (ja) * 2012-06-20 2016-05-26 東京エレクトロン株式会社 シーズニング方法、プラズマ処理装置及び製造方法
JP2014122418A (ja) * 2012-11-22 2014-07-03 Gunma Prefecture 複層皮膜付き基材およびその製造方法
JP2017071835A (ja) * 2015-10-08 2017-04-13 広島県 窒化アルミニウムの皮膜製造方法及びその方法により製造される窒化アルミニウム皮膜
US11873553B2 (en) 2017-09-01 2024-01-16 Shibaura Institute Of Technology Component and apparatus of manufacturing semiconductor
KR20210039464A (ko) 2018-08-27 2021-04-09 도카로 가부시키가이샤 용사피막의 형성방법
JP2021015937A (ja) * 2019-07-16 2021-02-12 日本特殊陶業株式会社 加熱部材
JP7312631B2 (ja) 2019-07-16 2023-07-21 日本特殊陶業株式会社 加熱部材

Also Published As

Publication number Publication date
KR20110050492A (ko) 2011-05-13
JP5566891B2 (ja) 2014-08-06
KR101284474B1 (ko) 2013-07-15
JPWO2010027073A1 (ja) 2012-02-02

Similar Documents

Publication Publication Date Title
WO2015151857A1 (ja) 耐プラズマ部品及び耐プラズマ部品の製造方法及び耐プラズマ部品の製造に用いる膜堆積装置
JP5566891B2 (ja) 半導体製造装置用部品及び半導体製造装置
JP6117195B2 (ja) プラズマ処理装置用部品およびプラズマ処理装置用部品の製造方法
KR101453706B1 (ko) 플라즈마 에칭 장치용 부품 및 플라즈마 에칭 장치용 부품의 제조 방법
JP5558807B2 (ja) 真空成膜装置用部品及び真空成膜装置
JP2012191200A (ja) プラズマ処理装置
JP2005240171A (ja) 耐食性部材およびその製造方法
KR20100011576A (ko) 내 플라즈마성 갖는 세라믹 코팅체
CN114059000A (zh) 热喷涂用钇类颗粒粉末、钇类粒子以及它们的制备方法
JP6526568B2 (ja) プラズマ装置用部品およびその製造方法
JP4585260B2 (ja) 半導体製造装置用部品及び半導体製造装置
JP5283880B2 (ja) 真空成膜装置
JP4851700B2 (ja) 真空成膜装置用部品及び真空成膜装置
JP6526569B2 (ja) プラズマ装置用部品及びその製造方法
US20240229216A1 (en) Method for manufacturing thermal spray coating and yttrium-based thermal spray coating manufactured by the same
KR20240111630A (ko) 대기 플라즈마 용사법에 의한 고밀도의 이트리아 피막의 제조 방법 및 이를 이용하여 제조된 이트리아 용사 피막
JP2006307311A (ja) 耐食性部材およびその製造方法
WO2006043429A1 (ja) 耐食性部材およびその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09811597

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010527847

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 20117004962

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09811597

Country of ref document: EP

Kind code of ref document: A1