WO2010047305A1 - 重合体微粒子の製造方法 - Google Patents
重合体微粒子の製造方法 Download PDFInfo
- Publication number
- WO2010047305A1 WO2010047305A1 PCT/JP2009/068005 JP2009068005W WO2010047305A1 WO 2010047305 A1 WO2010047305 A1 WO 2010047305A1 JP 2009068005 W JP2009068005 W JP 2009068005W WO 2010047305 A1 WO2010047305 A1 WO 2010047305A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- fine particles
- polymer fine
- macromonomer
- vinyl monomer
- meth
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F290/00—Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups
- C08F290/02—Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups on to polymers modified by introduction of unsaturated end groups
- C08F290/04—Polymers provided for in subclasses C08C or C08F
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F2/00—Processes of polymerisation
- C08F2/12—Polymerisation in non-solvents
- C08F2/16—Aqueous medium
- C08F2/20—Aqueous medium with the aid of macromolecular dispersing agents
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F2/00—Processes of polymerisation
- C08F2/12—Polymerisation in non-solvents
- C08F2/16—Aqueous medium
- C08F2/22—Emulsion polymerisation
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F290/00—Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups
- C08F290/02—Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups on to polymers modified by introduction of unsaturated end groups
- C08F290/06—Polymers provided for in subclass C08G
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F290/00—Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups
- C08F290/02—Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups on to polymers modified by introduction of unsaturated end groups
- C08F290/06—Polymers provided for in subclass C08G
- C08F290/061—Polyesters; Polycarbonates
Definitions
- the present invention relates to a method for producing polymer fine particles. More specifically, according to the present invention, by the dispersion polymerization method, micron-sized polymer fine particles having a narrow particle size distribution and a uniform particle size can be obtained smoothly and with high productivity by using a very small amount of a specific dispersion stabilizer. It relates to a method of manufacturing.
- a dispersion polymerization method in which a vinyl monomer is polymerized in a solvent that dissolves the vinyl monomer in the presence of a dispersion stabilizer but does not substantially dissolve the resulting polymer. It is known that micron-sized polymer particles having a relatively narrow particle size distribution can be obtained.
- a hydrophilic solvent or a non-hydrophilic solvent is used.
- polyvinyl pyrrolidone, polyethylene glycol, or the like is conventionally used as a dispersion stabilizer.
- a dispersion polymerization method using a macromonomer having a radical polymerizable functional group at the end of a polyethylene oxide chain as a dispersion stabilizer is known (see Patent Document 1).
- Patent Document 1 a dispersion polymerization technique
- a large amount of dispersion stabilizer remains in the coalesced fine particles, which tends to adversely affect the performance of the polymer fine particles.
- the dispersion stabilizing performance of the dispersion stabilizer is insufficient, and aggregation is likely to occur between the produced polymer fine particles.
- productivity is reduced. Low.
- the present inventors have studied to develop a method capable of smoothly producing micron-sized polymer fine particles having excellent monodispersibility by preventing the polymer fine particles from aggregating during dispersion polymerization. It has been repeated. Further, when dispersion polymerization is performed using a macromonomer having a carboxyl group and having a vinylidene type unsaturated bond at the molecular chain end as a dispersion stabilizer, aggregation does not occur between the polymer fine particles at the time of dispersion polymerization. It was discovered that polymer fine particles having excellent dispersibility could be obtained, and an application was made earlier (see Patent Document 2).
- Micron-sized polymer fine particles with a narrow particle size distribution and a uniform particle size are used in applications such as light diffusing agents, anti-glare agents (matting agents), anti-blocking agents, and spacers. In any application, it is required to cope with high definition. Along with this, there are many cases where polymer fine particles having a smaller particle diameter are required. From this point, as a result of further investigations on the dispersion polymerization method of Patent Document 2, the present inventors generally obtained a polymer when the dispersion stabilizer (macromonomer) of the invention of Patent Document 2 was used.
- An object of the present invention is to produce high-quality polymer fine particles having a narrow particle size distribution and having a smaller particle size than that of polymer fine particles obtained by conventional dispersion polymerization methods, and having a uniform particle size. It is an object of the present invention to provide a method of producing smoothly without causing aggregation between the two. Furthermore, the object of the present invention is to reduce the amount of dispersion stabilizer used compared to the prior art, to prevent adverse effects on the polymer fine particles due to heavy use of the dispersion stabilizer, and at low cost, smoothly and monodisperse. It is an object of the present invention to provide a method for producing excellent, high-quality fine polymer particles smoothly and with high productivity. Another object of the present invention is to provide polymer fine particles by dispersion polymerization having the above-described excellent characteristics.
- the present inventors have repeatedly studied to achieve the above-described purpose. As a result, it was found that a macromonomer having a (meth) acryloyl group at the end of the molecular chain and a carboxyl group in the middle of the molecular chain has extremely excellent dispersion stabilization performance. Therefore, when the macromonomer (dispersion stabilizer) was dispersed in a hydrophilic solvent using the macromonomer as a dispersion stabilizer, a very small amount of the macromonomer (dispersion stabilizer) was used, and the particle size distribution was narrow. The present inventors have found that uniform-sized polymer fine particles can be produced smoothly without causing aggregation between the polymer fine particles.
- the polymer fine particles obtained thereby have a smaller particle size while maintaining a narrow particle size distribution as compared with the case where the above-described conventional dispersion stabilizer is used, and there is a demand for the above-described recent high definition. It was found to match. Furthermore, when the present inventors use a dispersion stabilizer comprising the above-mentioned macromonomer having a (meth) acryloyl group at the end of the molecular chain and a carboxyl group in the middle of the molecular chain, the excellent dispersion stabilization is achieved.
- the present inventors have described the macromonomer used as a dispersion stabilizer as a macromonomer (A) having a (meth) acryloyl group at the end of the molecular chain and a hydroxyl group in the middle of the molecular chain, and dicarboxylic acid.
- the macromonomer obtained by addition reaction of an acid anhydride has excellent dispersion stabilization performance, ease of production of the macromonomer, and a large degree of design freedom when producing the macromonomer. I found it preferable.
- the present inventors have made the above-mentioned macromonomer used as a dispersion stabilizer more excellent in its dispersion stabilization performance and having a narrower particle size distribution when the carboxyl group content is in a specific range. It has been found that polymer fine particles can be obtained, and that polymer fine particles having a smaller particle diameter can be obtained in a smaller amount. Then, the present inventors have found that the dispersion stabilization performance becomes better when all or part of the carboxyl groups of the macromonomer is neutralized with a basic compound.
- the present inventors use a macromonomer having a (meth) acryloyl group at the end of a molecular chain and a carboxyl group in the middle of the molecular chain as a dispersion stabilizer to disperse and polymerize a vinyl monomer.
- a vinyl monomer containing at least a part of a vinyl monomer having a hydrolyzable silyl group as a vinyl monomer to produce polymer fine particles having a hydrolyzable silyl group, Crosslinked polymer fine particles with excellent strength, deformation resistance (particle shape maintenance), heat resistance, handleability, fluidity, solvent resistance, etc. by hydrolyzing hydrolyzable silyl groups It was found that can be obtained.
- the present inventors use a macromonomer having a (meth) acryloyl group at the end of a molecular chain and a carboxyl group in the middle of the molecular chain as a dispersion stabilizer to disperse and polymerize a vinyl monomer. Even when a vinyl monomer containing at least a part of a polyfunctional vinyl monomer having two or more ethylenically unsaturated groups is used as the vinyl monomer, strength and deformation resistance (particle shape maintaining property) The present inventors have found that crosslinked polymer fine particles having excellent heat resistance, handleability, fluidity, solvent resistance and the like can be obtained.
- the present inventors carried out dispersion polymerization of a vinyl monomer using a macromonomer having a (meth) acryloyl group at the end of the molecular chain and a carboxyl group in the middle of the molecular chain as a dispersion stabilizer.
- the polymer fine particles obtained are absorbed with a vinyl monomer containing a polyfunctional vinyl monomer, and then polymerized to obtain strength, deformation resistance (particle shape maintenance), heat resistance, handleability, and flow.
- the present inventors have found that crosslinked polymer fine particles having excellent properties and solvent resistance can be obtained, and have completed the present invention based on these various findings.
- the present invention (1) A polymer comprising a step of polymerizing a vinyl monomer in the presence of a dispersion stabilizer in a hydrophilic solvent that dissolves the vinyl monomer and the dispersion stabilizer but does not dissolve the produced polymer.
- a method for producing fine particles wherein the dispersion stabilizer is a macromonomer (Ma) having a (meth) acryloyl group at the end of a molecular chain and a carboxyl group in the middle of the molecular chain. This is a method for producing polymer fine particles.
- the macromonomer (Ma) is obtained by adding a dicarboxylic acid anhydride to a macromonomer (A) having a (meth) acryloyl group at the end of a molecular chain and a hydroxyl group in the middle of the molecular chain.
- the polymer fine particles having a hydrolyzable silyl group are produced using a vinyl monomer containing at least a part of the vinyl monomer having a hydrolyzable silyl group as the vinyl monomer ( 1) A method for producing polymer fine particles according to any one of (4); (6) A method for producing polymer fine particles, comprising a step of hydrolyzing and condensing hydrolyzable silyl groups in the polymer fine particles obtained in (5), and producing crosslinked polymer fine particles; and (7) A polymer fine particle crosslinked by using a vinyl monomer containing at least part of a polyfunctional vinyl monomer having two or more ethylenically unsaturated groups as the vinyl monomer is produced. 1) A method for producing polymer fine particles of any of (4); It is.
- the polymer fine particles obtained by the production method according to any one of (1) to (4) are provided with a step of polymerizing the polymer fine particles after absorbing a vinyl monomer containing a polyfunctional vinyl monomer, followed by crosslinking.
- a method for producing polymer fine particles comprising producing polymer fine particles.
- the present invention provides (9)
- the volume average particle diameter (dv) obtained by the production method of any one of (1) to (8) above is 0.7 to 2.0 ⁇ m, and the coefficient of variation (Cv) in particle size is 20 % Of polymer fine particles.
- (meth) acryl means acryl and / or methacryl
- (meth) acrylate means acrylate and / or methacrylate.
- the carboxyl group contained in the “macromonomer” means —COOH and / or —COO 2 — .
- a macromonomer (Ma) having a (meth) acryloyl group at the end of the molecular chain and a carboxyl group in the middle of the molecular chain as a dispersion stabilizer.
- the use of a very small amount of the macromonomer (Ma) has a narrow particle size distribution and a uniform size.
- the fine polymer particles can be produced smoothly, with good productivity and at low cost while maintaining good dispersion stability without causing aggregation between the polymer particles.
- the macromonomer (Ma) is obtained by addition reaction of a dicarboxylic acid anhydride with a macromonomer (A) having a (meth) acryloyl group at the end of the molecular chain and a hydroxyl group in the middle of the molecular chain.
- a macromonomer is used, the polymer is intended in view of its excellent dispersion stabilization performance, ease of production of the macromonomer, and a large degree of design freedom when producing the macromonomer. Fine particles can be produced more smoothly.
- a vinyl monomer containing at least a part of a vinyl monomer having a hydrolyzable silyl group is used as the vinyl monomer, and an ethylenically unsaturated group as the vinyl monomer.
- a vinyl monomer containing at least a part of a polyfunctional vinyl monomer having 2 or more is used, a vinyl containing a polyfunctional vinyl monomer in the polymer fine particles obtained by the dispersion polymerization method of the present invention is further used.
- polymerized after absorbing the monomer it has excellent strength, deformation resistance (particle shape maintenance), heat resistance, handleability, fluidity, solvent resistance, etc. Crosslinked polymer fine particles having a uniform diameter can be obtained smoothly.
- the polymer fine particles (PA-1) obtained in Example 1 were photographed at a magnification of 2,000 with a SEM (field emission scanning electron microscope FE-SEM “JSM-6330F” manufactured by JEOL Ltd.). It is a photograph. 2 is a photograph of polymer fine particles (PA-1) obtained in Example 1 taken with the SEM at a magnification of 12,000 times. 3 is a photograph taken of the polymer fine particles (PA-17) obtained in Example 17 at a magnification of 2,000 times with the SEM. 3 is a photograph taken of the polymer fine particles (PA-17) obtained in Example 17 at a magnification of 12,000 with the SEM.
- FIG. 3 is a photograph of the crosslinked polymer fine particles (PC-1) obtained in Example 20 taken with the SEM (before immersion in methyl ethyl kent).
- FIG. 4 is a photograph taken by the SEM after the crosslinked polymer fine particles (PC-1) obtained in Example 20 were immersed in methyl ethyl kent for 24 hours.
- the present invention is described in detail below.
- the present invention is a method for producing polymer fine particles by a dispersion polymerization method.
- the “dispersion polymerization method” in this specification means “a vinyl monomer is dissolved in the presence of a dispersion stabilizer, the vinyl monomer and the dispersion stabilizer are dissolved, but a polymer produced by polymerization is "Method of polymerizing in a solvent that does not substantially dissolve”.
- a hydrophilic solvent is used as “a solvent that dissolves the vinyl monomer and the dispersion stabilizer but does not dissolve the polymer to be produced”.
- the polymer produced by dispersion polymerization is in the form of fine particles and dispersed in a hydrophilic solvent.
- Hydrophilic solvent used for dispersion polymerization a hydrophilic organic solvent (a hydrophilic organic solvent not containing water) may be used as the hydrophilic solvent, or a mixed solvent of a hydrophilic organic solvent and water may be used. .
- the hydrophilic organic solvent those having a solubility in water at 20 ° C. of 5 g / 100 ml or more are preferably used.
- hydrophilic organic solvent examples include monoalcohols such as methyl alcohol, ethyl alcohol, isopropyl alcohol, n-butyl alcohol, isobutyl alcohol, tert-butyl alcohol, sec-butyl alcohol, and tetrahydrofurfuryl alcohol; Polyhydric alcohols such as ethylene glycol, glycerin, diethylene glycol; ether alcohols such as methyl cellosolve, cellosolve, isopropylpyro cellosolve, butyl cellosolve, ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, diethylene glycol monomethyl ether, diethylene glycol monoethyl ether; Ketones such as acetone and methyl ethyl ketone; S such as methyl acetate and ethyl acetate Ethers such as tetrahydrofuran; le such dimethylformamide, dimethyl sulfoxide and the like.
- hydrophilic organic solvent Only one type of hydrophilic organic solvent may be used, or two or more types may be used in combination.
- An appropriate hydrophilic organic solvent is selected from the above-mentioned hydrophilic organic solvents according to the type of vinyl monomer used for polymerization, the type of polymer to be produced, and the like.
- the hydrophilic organic solvent one or more of lower alcohols such as methanol, ethanol and isopropyl alcohol can effectively exert the dispersion stabilizing action of the dispersion stabilizer composed of the macromonomer (Ma). In view of the fact that polymer fine particles having a small particle diameter can be stably produced, it is preferably used.
- the polymerization stability is improved as compared with the case of using a hydrophobic solvent.
- the particle diameter, particle size distribution, molecular weight, etc. of the polymer fine particles to be produced can be easily and smoothly controlled while maintaining good properties.
- the hydrophilic solvent a mixed solvent of water and alcohol, and among them, a mixed solvent of water and one or more of lower alcohols such as methanol, ethanol, and isopropyl alcohol is more preferably used.
- a mixed solvent of water and the alcohol is used as the hydrophilic solvent
- particles of polymer fine particles to be generated are prepared by adjusting the mixing ratio of water and alcohol according to the type and composition of the vinyl monomer.
- the diameter, particle size distribution, molecular weight, etc. can be easily controlled, and the risk of ignition, explosion, etc. can be reduced, and the burden on the environment is small.
- a hydrophilic solvent a mixed solvent of water and methanol, of which a mixed solvent having a water: methanol mass ratio of 10:90 to 50:50, more preferably 20:80 to 40:60 is used. This is more preferable because polymer fine particles having a smaller particle size and a narrow particle size distribution can be produced smoothly.
- a part of the hydrophilic solvent used in the dispersion polymerization may be replaced with a hydrophobic solvent having a solubility in water at 20 ° C. of less than 5 g / 100 ml.
- the ratio of the hydrophobic solvent is preferably 30% by mass or less, more preferably 15% by mass or less, and still more preferably 5% by mass or less with respect to the total amount of the solvent.
- the content ratio of the hydrophobic solvent exceeds 30% by mass, the particle size distribution of the generated particles may be broadened or aggregates may be generated during dispersion polymerization.
- a macromonomer having a (meth) acryloyl group at the end of a molecular chain and a carboxyl group and an ethylenically unsaturated group in the middle of the molecular chain is used as a dispersion stabilizer during dispersion polymerization of the vinyl monomer.
- Ma is used as the macromonomer (Ma).
- any polymer having a carboxyl group and an ethylenically unsaturated group in the middle of the molecular chain can be used.
- the carboxyl group may be directly bonded in the middle of the molecular chain of the macromonomer (Ma), or bonded in a suspended state through the predetermined bonding group in the middle of the molecular chain of the macromonomer (Ma).
- the two types of coupling may be mixed.
- the “macromonomer having a (meth) acryloyl group at the end of a molecular chain and a carboxyl group in the middle of the molecular chain” in the present invention means a molecular chain (polymer chain) forming a macromonomer.
- the macromonomer (Ma) has an average of 0.2 to 1 (meth) acryloyl group per molecule of the macromonomer (Ma) (that is, per polymer chain) at the end of the molecular chain. It is preferable to have 0.5 to 1 on average. If the amount of the (meth) acryloyl group bonded to the end of the molecular chain is too small, the function as a dispersion stabilizer will be lowered, and a larger amount of macromonomer (Ma) (dispersion stabilizer) will be produced during the dispersion polymerization of the vinyl monomer. And the resulting polymer fine particles tend to be deteriorated in physical properties and cost.
- the (meth) acryloyl group that the macromonomer (Ma) has at the end of the molecular chain may be either a methacryloyl group or an acryloyl group.
- a polymer fine particle having a narrower particle size distribution can be obtained by being a methacryloyl group. It is preferable from the point.
- the macromonomer (Ma) preferably has a carboxyl group at a ratio of 0.5 to 4 meq per 1 g of the macromonomer (Ma) in the middle of its molecular chain. More preferably. If the content of the carboxyl group in the macromonomer (Ma) is too small, the dispersion stabilizing performance of the macromonomer (Ma) is lowered and it becomes difficult to obtain polymer fine particles having a narrow particle size distribution, while the content of the carboxyl group It is difficult to produce a macromonomer having an average of more than 4 meq / g.
- the carboxyl group that the macromonomer (Ma) has in the middle of the molecular chain is preferably neutralized with a base.
- the carboxyl group is dissociated into a carboxyl anion in a hydrophilic solvent by neutralization to cause electrostatic repulsion, thereby further improving the dispersion stabilization performance of the macromonomer (Ma), and a smaller amount of dispersion stabilizer. Aggregation between the polymer fine particles can be suppressed by the amount, and the polymer fine particles can be produced more stably.
- the neutralizing agent for the carboxyl group ammonia and / or a low boiling point amine compound is preferably used because it can be easily removed after the production of the polymer fine particles.
- the macromonomer (Ma) is preferably a chain polymer having a chain molecular structure from the viewpoints of a high dispersion stabilizing effect, easy production, and easy handling.
- the chain structure may be any of linear, branched, star-shaped, comb-shaped, etc. It is preferable that it is linear or substantially linear from the viewpoints of dispersion stabilization performance of the macromonomer (Ma), ease of production, ease of handling, and the like.
- the number average molecular weight (Mn) of the macromonomer (Ma) is preferably 500 to 20000, more preferably 1000 to 10,000 from the viewpoint of dispersion stabilization performance, handleability, ease of production, and the like. preferable.
- the number average molecular weight (Mn) of the macromonomer (Ma) in the present specification the number average molecular weight (Mn) of the macromonomer (A) [precursor of the macromonomer (Ma)] described below is gel permeation. This refers to the polystyrene-equivalent number average molecular weight (Mn) measured by Eation Chromatography (GPC), and the specific measurement method is as described in the following Examples.
- the production method of the macromonomer (Ma) is not particularly limited, but in the present invention, as the macromonomer (Ma), a macromonomer having a (meth) acryloyl group at the end of the molecular chain and a hydroxyl group in the middle of the molecular chain (A ), A macromonomer having a (meth) acryloyl group at the end of the molecular chain and having a carboxyl group in the middle of the molecular chain, which is obtained by addition reaction of dicarboxylic anhydride, has excellent dispersion stabilization performance,
- the macromonomer (Ma) is preferably used because it has a high degree of design freedom and is easy to manufacture.
- the hydroxyl group may be directly bonded in the middle of the molecular chain of the macromonomer (A), or in the middle of the molecular chain of the macromonomer (A). Bonding may be performed in a suspended state via a predetermined bonding group, or the two bonding types may be mixed.
- the macromonomer (A) having a (meth) acryloyl group at the end of the molecular chain and a hydroxyl group in the middle of the molecular chain is preferably a macromonomer having a chain molecular structure.
- the number of hydroxyl groups bonded in the middle of the molecular chain is preferably more than one on average per molecular chain of the macromonomer (A). More preferably, the average number is 5 or more.
- a macromonomer (A) having a (meth) acryloyl group at the end of the molecular chain and having a hydroxyl group in the middle of the molecular chain is reacted with a dicarboxylic acid anhydride to have a (meth) acryloyl group at the end of the molecular chain
- a production method comprising the following series of steps ⁇ 1 >> to ⁇ 3 >> has a large degree of freedom in designing molecular weight, composition, and the like.
- the macromonomer (Ma), which is superior in dispersion stabilization performance, is preferably employed because it can be industrially produced with high productivity.
- ⁇ 2 The terminal carboxyl group of the prepolymer obtained in the above ⁇ 1 >> is subjected to an addition reaction with a compound having a (meth) acryloyl group and an epoxy group, and has a (meth) acryloyl group at the end of the molecular chain, A macromonomer (A) having a hydroxyl group in the middle of the molecular chain is produced.
- ⁇ 3 Dihydroxy anhydride is added to the hydroxyl group existing in the middle of the molecular chain of the macromonomer (A) obtained in the above ⁇ 2 >> to have a (meth) acryloyl group at the end of the molecular chain.
- the macromonomer (Ma) which has a carboxyl group in the middle of a molecular chain is manufactured.
- Examples of the chain transfer agent having a carboxyl group used in the step ⁇ 1> include mercaptan compounds such as mercaptoacetic acid, mercaptopropionic acid, mercaptobutyric acid, and thiosalicylic acid.
- the mercaptan compound acts as an effective chain transfer agent in radical polymerization, and is bonded to one end of the polymer.
- the preferred amount of the mercaptan compound used is preferably an amount that is equimolar to the prepolymer obtained in the step ⁇ 1 >>, and the target number average molecular weight of the prepolymer to be produced, and hence the macromonomer (Ma), is preferably obtained. Set based on.
- Preferred examples of the vinyl monomer having a hydroxyl group used in the above step ⁇ 1 >> include hydroxyethyl (meth) acrylate, hydroxypropyl (meth) acrylate, hydroxybutyl (meth) acrylate, (meth ) Hydroxyalkyl (meth) acrylates such as hydroxyhexyl acrylate [mono (meth) acrylic esters of alkylene glycol]; Polyethylene glycol mono (meth) acrylic esters, polypropylene glycol mono (meth) acrylic esters, etc.
- Examples include mono (meth) acrylic acid esters of alkylene glycol; compounds obtained by adding lactone to hydroxyalkyl (meth) acrylate such as compounds obtained by adding ⁇ -caprolactone to hydroxyethyl (meth) acrylate, It may be used one or two or more of these.
- a vinyl monomer having a hydroxyl group a macromonomer (Ma), in which hydroxyethyl (meth) acrylate, hydroxypropyl (meth) acrylate, and hydroxybutyl (meth) acrylate are superior in dispersion stabilization performance, is industrially used. It is preferably used because it can be manufactured with good productivity.
- the proportion of the vinyl monomer having a hydroxyl group in the step ⁇ 1 >> depends on the carboxy equivalent required in the finally obtained macromonomer (Ma), the balance between hydrophilicity / hydrophobicity of the macromonomer (Ma), and the like. Generally, it is preferably 10 to 100% by mass, preferably 20 to 90% by mass with respect to the total mass of the vinyl monomer used in the production of the prepolymer in the step ⁇ 1 >>. More preferably, it is more preferably 30 to 70% by mass.
- step ⁇ 1 >> other vinyl monomers may be used in combination with the vinyl monomer having a hydroxyl group.
- the amount of other vinyl monomers used can be appropriately set according to the carboxy equivalent required in the finally obtained macromonomer (Ma), the hydrophilic / hydrophobic balance of the macromonomer (Ma), and the like. .
- it is preferably 0 to 85% by mass, more preferably 10 to 60% by mass, based on the total amount of vinyl monomers used for producing the macromonomer in the step ⁇ 1 >>. More preferably, it is 20 to 50% by mass.
- Examples of other vinyl monomers that can be used in the step ⁇ 1 >> include methyl (meth) acrylate, ethyl (meth) acrylate, n-butyl (meth) acrylate, isobutyl (meth) acrylate, (meth ) T-butyl acrylate, 2-ethylhexyl (meth) acrylate, cyclohexyl (meth) acrylate, stearyl (meth) acrylate, lauryl (meth) acrylate, decyl (meth) acrylate, isobornyl (meth) acrylate , (Meth) acrylic acid esters having no hydroxyl group, such as benzyl (meth) acrylate, trifluoroethyl (meth) acrylate, perfluoroalkylethyl (meth) acrylate, dimethylaminoethyl (meth) acrylate; styrene Styrene mono
- one or more vinyl monomers selected from (meth) acrylic acid esters and styrene are macromonomers (Ma) finally obtained. It is more preferably used from the viewpoints of dispersion stabilization performance and physical properties of polymer fine particles.
- (meth) acrylic acid esters include (meth) acrylic acid methyl, (meth) acrylic acid aliphatic lower alcohol esters such as isobutyl (meth) acrylate, and (meth) acrylic acid cyclohexyl (meth) )
- An alicyclic alcohol ester of acrylic acid, particularly an aliphatic lower alcohol ester of (meth) acrylic acid, is preferably used from the viewpoint of producing a macromonomer (Ma) having an excellent dispersion stabilizing effect.
- the hydroxyl group equivalent (number of millimoles of hydroxyl group per gram of prepolymer) in the prepolymer obtained in step ⁇ 1 >> is preferably 0.8 to 8 meq / g, and more preferably 2 to 6 meq / g.
- the number average molecular weight (Mn) of the prepolymer obtained in the process ⁇ 1 >> is 500 from the viewpoint of the dispersion stabilization performance of the macromonomer (Ma) finally obtained, handling properties, physical properties of polymer fine particles, and the like. It is preferably from 20,000 to 20,000, more preferably from 1,000 to 10,000.
- a solution polymerization method and a dispersion polymerization method which do not include water and alcohol as a polymerization solvent are preferably employed.
- water or alcohol is included as the polymerization solvent, the addition reaction of the carboxylic acid anhydride in the step ⁇ 3 >> becomes difficult, so that the solvent replacement is required before the step ⁇ 3 >>, and the process becomes complicated.
- Examples of the compound having a (meth) acryloyl group and an epoxy group used in the next step ⁇ 2 >> include, for example, glycidyl (meth) acrylate, 3,4-epoxycyclohexylmethyl (meth) acrylate, 4-hydroxybutyl (meta ) Acrylate glycidyl ether and the like.
- Examples of the dicarboxylic acid anhydride used in the last step ⁇ 3 >> described above include succinic anhydride, phthalic anhydride, citraconic anhydride, methyl succinic anhydride, and acetyl malic anhydride. Species or two or more can be used. Among these, succinic anhydride is preferably used because it is excellent in addition reactivity and excellent in the dispersion stability performance of the macromonomer (Ma).
- step ⁇ 3 all of the hydroxyl groups existing in the middle of the molecular chain of the macromonomer (A) may be subjected to addition reaction with dicarboxylic anhydride, or the hydroxyl groups present in the middle of the molecular chain of the macromonomer (A). Some of the hydroxyl groups may remain in the macromonomer (Ma) produced by the addition reaction of dicarboxylic acid anhydride with a part of the monomer.
- the macromonomer (Ma) exhibits extremely excellent performance as a dispersion stabilizer in dispersion polymerization and enables stable production of polymer fine particles having a narrow particle size distribution and a uniform particle size with a smaller amount of use.
- the macromonomer (Ma) produced by the above-described series of steps ⁇ 1 >> to ⁇ 3 >> has a polymer chain in which a carboxyl group existing in the middle of the molecular chain forms the macromonomer (Ma) ( Since it is located in a suspended state relatively far from the backbone, it is preferable because the dispersion stabilizing effect by the carboxyl group is exhibited particularly effectively.
- a vinyl monomer for producing polymer fine particles by dispersion polymerization a vinyl monomer that dissolves in a hydrophilic solvent as a reaction liquid before polymerization but does not dissolve in the reaction liquid (hydrophilic solvent) after polymerization. Any of these can be used.
- the type of vinyl monomer used for dispersion polymerization may vary depending on the type and composition of the hydrophilic solvent.
- styrene monomers such as styrene and ⁇ -methylstyrene, (meth) acrylic acid esters
- One or more vinyl monomers having a decomposable silyl group are preferably used from the viewpoint of excellent performance of the resulting polymer fine particles.
- (meth) acrylic acid ester preferably used as the vinyl monomer include methyl methacrylate, ethyl methacrylate, propyl methacrylate, n-butyl methacrylate, isobutyl methacrylate, t-butyl methacrylate, Alkyl esters of methacrylic acid such as pentyl methacrylate, 2-ethylhexyl methacrylate, lauryl methacrylate, stearyl methacrylate; methyl acrylate, ethyl acrylate, propyl acrylate, n-butyl acrylate, isobutyl acrylate, acrylic acid t -Alkyl esters of acrylic acid such as butyl, pentyl acrylate, 2-ethylhexyl acrylate, lauryl acrylate, stearyl acrylate; cyclohexyl (meth) acrylate, isoborate (meth) acrylate, iso
- any of vinyl monomers having one or more hydrolyzable silyl groups can be used.
- vinyltrimethoxysilane, vinyltriethoxysilane , Vinyl silanes such as vinylmethyldimethoxysilane and vinyldimethylmethoxysilane; silyl group-containing acrylates such as trimethoxysilylpropyl acrylate, triethoxysilylpropyl acrylate and methyldimethoxysilylpropyl acrylate; trimethoxy methacrylate Silyl group-containing methacrylates such as silylpropyl, triethoxysilylpropyl methacrylate, methyldimethoxysilylpropyl methacrylate, dimethylmethoxysilylpropyl methacrylate; trimethoxysilylpropyl vinyl Silyl group-containing vinyl ethers such as ether; and the like can be illustrated silyl group-containing
- hydrolyzable silyl group-containing acrylic acid ester and hydrolyzable silyl group-containing methacrylate ester are preferably used as the vinyl monomer having a hydrolyzable silyl group, and particularly triethoxysilylpropyl methacrylate (ie, Trimethoxysilylpropyl methacrylate) and the like are more preferably used.
- the polymer fine particle Based on the total mass of the vinyl monomer used in the production of the (meth) acrylic ester, the proportion is preferably 60% by mass or more, more preferably 65% by mass or more, and 70% by mass or more. More preferably it is.
- the (meth) acrylic acid ester in this case, (meth) acrylic acid alkyl ester having 1 to 12 carbon atoms, cycloalkyl ester, particularly (meth) acrylic acid alkyl ester having 1 to 4 carbon atoms can be obtained. It is preferably used since the performance of the polymer fine particles is excellent.
- the crosslinking reaction proceeds with the progress of polymerization. If the amount is large, the polymer fine particles tend to aggregate. Therefore, in the case of producing polymer fine particles crosslinked with a polyfunctional vinyl monomer, the usage ratio of the polyfunctional vinyl monomer is set to 0 with respect to the total amount of vinyl monomers used for producing the polymer fine particles. It is preferably 5 to 10% by mass.
- polyfunctional vinyl monomer examples include ethylene glycol di (meth) acrylate, trimethylolpropane tri (meth) acrylate, pentaerythritol tri (meth) acrylate, and pentaerythritol tetra (meth) acrylate.
- allyl (meth) acrylate is preferably used because it is easy to suppress aggregation between the polymer fine particles during dispersion polymerization.
- the pH of the reaction solution is kept near neutral during dispersion polymerization to suppress the crosslinking reaction during polymerization.
- the polymer fine particles can be crosslinked by adding an acid catalyst or a basic catalyst after the polymerization to cause hydrolysis-condensation-siloxane formation reaction of hydrolyzable silyl groups present in the polymer fine particles. Can be obtained.
- a low-boiling basic compound such as ammonia or triethylamine is preferably used because it can be easily removed after the crosslinking reaction.
- the use ratio of the vinyl monomer having a hydrolyzable silyl group is determined based on the total amount of the vinyl monomer.
- the content is preferably 0.5 to 70% by mass, and more preferably 1 to 30% by mass.
- the vinyl monomer having a hydrolyzable silyl group one or more of those listed above can be used.
- a vinyl monomer is dispersed and polymerized in a hydrophilic solvent to produce polymer fine particles.
- a dispersion stabilizer comprising a macromonomer (Ma)
- a vinyl monomer is dispersed and polymerized in a hydrophilic solvent to produce polymer fine particles.
- batch polymerization method in which vinyl monomers are charged into a reactor in a batch and dispersed and polymerized
- split polymerization method in which vinyl monomers are divided and charged in a reactor and then dispersed
- vinyl monomer in a reactor Any of the continuous addition polymerization methods (semi-batch polymerization method) in which the polymer is continuously added to and dispersion-polymerized may be employed.
- a continuous addition polymerization method it is preferable to employ a continuous addition polymerization method.
- the amount of the dispersion stabilizer composed of the macromonomer (Ma) when producing the polymer fine particles by dispersion polymerization of the vinyl monomer is 0.2% with respect to the total amount of the vinyl monomer used for the dispersion polymerization. It is preferably ⁇ 10% by mass, more preferably 0.5 to 5.0% by mass. If the amount of the dispersion stabilizer composed of the macromonomer (Ma) is too small, the stability at the time of polymerization is lowered and the produced polymer is likely to be aggregated. On the other hand, the amount of the dispersion stabilizer used is too large. And the resulting polymer fine particles have a wide particle size distribution and are likely to be uneven in size.
- the amount of the hydrophilic solvent used in the dispersion polymerization of the vinyl monomer is preferably 1 to 50 times by mass and more preferably 2 to 10 times by mass with respect to the total amount of the vinyl monomer. If the amount of the hydrophilic solvent used is too small, the polymerization stability at the time of dispersion polymerization may be poor, and the particle size distribution tends to be widened. On the other hand, if the amount of the hydrophilic solvent used is too large, the polymer fine particles may not be collected. The rate tends to decrease and productivity tends to deteriorate.
- a polymerization initiator usually used in radical polymerization can be used and is not particularly limited. Among them, a radical polymerization initiator that is soluble in a hydrophilic solvent is preferably used.
- examples of the radical polymerization initiator that can be used in the present invention include t-butyl peroxypivalate, t-butyl peroxy-2-ethylhexanoate, di-t-butyl peroxide, benzoyl peroxide, and lauroyl peroxide.
- Organic peroxides such as orthochlorobenzoyl peroxide, orthomethoxybenzoyl peroxide, 3,5,5-trimethylhexanoyl peroxide; azobisisobutyronitrile, azobiscyclohexacarbonitrile, azobis (2,4- Dimethylvaleronitrile) (V-65), 2,2′-azobis (2-amidinopropane) dihydrochloride (V-50), 4,4′-azobis (4-cyanovaleric acid) (V-501), etc. Azo compounds of the above; persulfate compounds such as potassium persulfate, etc. It can be used either alone or in combination.
- t-butyl peroxypivalate and azobis (2,4-dimethylvaleronitrile) are preferably used from the viewpoint that polymer fine particles having a narrow particle size distribution can be produced with high productivity.
- the amount of the polymerization initiator used is not particularly limited, and can be appropriately determined in consideration of the molecular weight of the polymer fine particles to be produced, the decomposition temperature of the polymerization initiator to be used, and the like.
- the polymerization initiator is preferably used in an amount of 0.1 to 40 parts by weight, preferably 1 to 10 parts by weight, based on 100 parts by weight of the total amount of vinyl monomers. More preferred. If the amount of the polymerization initiator used is too small, the yield of the polymer fine particles tends to be low. On the other hand, if the amount of the polymerization initiator used is too large, the polymerization rate becomes too high, making it difficult to perform dispersion polymerization stably.
- the polymerization temperature during dispersion polymerization is preferably 40 to 80 ° C, more preferably 45 to 70 ° C. If the polymerization temperature is too low, the polymerization rate of the vinyl monomer will be low and it will be difficult to produce polymer fine particles with good productivity. On the other hand, if the polymerization temperature is too high, aggregation between the produced polymer fine particles will easily occur. In addition, the particle size distribution of the polymer fine particles becomes wide.
- additives in order to further improve the dispersion stability of the produced polymer fine particles and narrow the particle size distribution, to impart magnetism and conductivity to the polymer fine particles, or to color the polymer fine particles,
- a dispersion stabilizer comprising a macromonomer (Ma).
- additives include, for example, metals such as cobalt, iron, and aluminum and alloys thereof; fine powders of metal oxides composed of iron oxide, copper oxide, nickel oxide, etc .; pigments such as carbon black nigrosine dye and aniline blue , Dyes: Anionic surfactants such as higher alcohol sulfates, alkylbenzene sulfonates, ⁇ -olefin sulfonates, phosphates; nonionic surfactants such as fatty acid amide derivatives and polyhydric alcohol derivatives, hydroxy High polar polymer compounds such as propyl cellulose, polyacrylic acid, polyvinyl pyrrolidone, polyethylene glycol, and polyvinyl alcohol can be used, and one or more of these can be used.
- metals such as cobalt, iron, and aluminum and alloys thereof
- pigments such as carbon black nigrosine dye and aniline blue
- the polymer fine particles produced by the dispersion polymerization may be used in the form of a dispersion of polymer fine particles while being dispersed in a hydrophilic solvent, or may be used after being separated and recovered from the hydrophilic solvent.
- a method for separating and recovering the polymer fine particles from the hydrophilic solvent for example, a sedimentation separation method, a centrifugal separation method, a decantation method or the like can be adopted, and further, washing and drying are performed as necessary.
- the produced polymer does not dissolve in the hydrophilic solvent and precipitates and aggregates one after another, but at this time, by copolymerization of the macromonomer (Ma) and the vinyl monomer Since a graft polymer having an extremely high dispersion stabilizing effect is also efficiently produced at the same time, more stable particles are formed at the very initial stage of polymerization. Further, at the stage where the polymerization of the vinyl monomer proceeds, the graft polymer [macromonomer (Ma) and the vinyl monomer are copolymerized in accordance with the speed at which the initially formed stable particles grow as the polymerization proceeds.
- the effect of the macromonomer (Ma) makes it possible to form smaller (more) initial stabilizing particles than when a conventional dispersion stabilizer is used, and to increase its growth. Since it can proceed stably, it is possible to produce polymer fine particles that are smaller and excellent in monodispersibility.
- the polymer fine particles obtained by dispersion polymerization may be used as they are without being subjected to crosslinking treatment, or may be used after further crosslinking treatment, if necessary. A treatment such as introduction of a group may be performed.
- the polymer fine particles obtained by dispersion polymerization are non-crosslinked polymer fine particles
- the polymer fine particles obtained by dispersion polymerization are used as seed particles, and vinyl containing a polyfunctional vinyl monomer in the seed particles.
- crosslinked polymer fine particles having improved heat resistance, chemical resistance, strength, solvent resistance and the like can be obtained.
- polyfunctional vinyl monomer a polyfunctional (meth) acrylate compound, a polyfunctional allyl compound, a polyfunctional propenyl compound, divinylbenzene and the like excellent in polymerizability are preferably used.
- polyfunctional (meth) acrylate compounds include ethylene glycol di (meth) acrylate, propylene glycol di (meth) acrylate, 1,6-hexanediol di (meth) acrylate, polyethylene glycol di (meth) acrylate, polypropylene Di (meth) acrylates of dihydric alcohols such as glycol di (meth) acrylate; trimethylolpropane tri (meth) acrylate, trimethylolpropane ethylene oxide modified tri (meth) acrylate, glycerin tri (meth) acrylate, penta Poly (tri) methacrylates of trihydric or higher polyhydric alcohols such as erythritol tri (meth) acrylate and
- (Meth) acrylate can be mentioned, can be used alone or in combination of two or more thereof. Among them, ethylene glycol di (meth) acrylate and trimethylolpropane tri (meth) acrylate are easily absorbed into the seed particles, can further increase the crosslinking density, and are excellent in polymerization stability. It is preferably used from the point of view.
- the vinyl monomer that is absorbed and polymerized by seed particles composed of polymer fine particles obtained by dispersion polymerization is a vinyl monomer mixture containing a monofunctional vinyl monomer together with the polyfunctional vinyl monomer described above. Is preferable from the viewpoint that the vinyl monomer is absorbed into the seed particles and the polymerization stability is improved.
- the monofunctional vinyl monomer at that time it is possible to use a vinyl monomer which is the same as or similar to the vinyl monomer used for the production of seed particles (polymer fine particles obtained by dispersion polymerization). This is preferable in that the polymer particles are well swelled, thereby promoting the absorption of the vinyl monomer mixture into the seed particles, thereby obtaining crosslinked polymer fine particles which are sufficiently crosslinked.
- the use ratio of the vinyl monomer (vinyl monomer mixture) containing the seed particles and the crosslinkable monomer in producing the polymer fine particles crosslinked using the polymer fine particles obtained by dispersion polymerization as seed particles is preferably 0.5 to 10 parts by mass, and more preferably 0.7 to 5 parts by mass.
- the proportion of the polyfunctional vinyl monomer is preferably 3 to 95% by mass, particularly 5 to 75% by mass, based on the total mass of the vinyl monomer mixture.
- the polymer fine particles obtained by the dispersion polymerization of the present invention described above generally have a volume average particle diameter (dv) of 0.7 to 0.7 in both cases of non-crosslinked polymer fine particles and crosslinked polymer fine particles. It is 2.0 ⁇ m, has a very fine particle shape, has a particle size variation coefficient (Cv) of 20% or less, has a narrow particle size distribution, and has a uniform size.
- the polymer fine particles obtained in the present invention preferably have a volume average particle diameter (dv) of 0.8 to 1.4 ⁇ m and a particle size variation coefficient (Cv) of 10% or less.
- the polymer fine particles can be produced smoothly by the method of the present invention.
- the volume average particle diameter (dv) of the polymer fine particles in the present specification is calculated based on a particle image obtained by taking a photograph of the polymer fine particles using a scanning electron microscope (dv).
- the detailed calculation method is as described in the following examples.
- the coefficient of variation (Cv) of the particle size of the polymer fine particles in this specification refers to the coefficient of variation (Cv) of the particle size obtained by the method described in the following examples.
- the polymer fine particles obtained by the dispersion polymerization method of the present invention have a very small particle size of micron size, and have a uniform size with a narrow particle size distribution, are monodisperse and have no aggregation between particles, Crosslinked polymer fine particles are also excellent in heat resistance, chemical resistance, strength, etc., and utilizing these properties, light diffusing agents such as liquid crystal display spacers, liquid crystal display light diffusion films, diffusion plates, It can be suitably used for various applications including conductive fine particles, column packing materials, and carriers for diagnostic agents.
- Addition rate of glycidyl methacrylate, amount of methacryloyl group that macromonomer (A) and macromonomer (Ma) have at the end of the molecular chain, acid value of macromonomer (Ma), polymerization stability, volume average particle diameter of polymer fine particles (Dv), number average particle diameter (dn), particle size variation coefficient (Cv), by-product small particle amount, and methyl ethyl ketone resistance (solvent resistance) of crosslinked polymer fine particles are measured or evaluated as follows. This was done as follows.
- Weight average molecular weight (Mw) and number average molecular weight (Mn) Prepolymer [precursor for producing macromonomer (A) having a carboxyl group at the end of the molecular chain and a hydroxyl group in the middle of the molecular chain] by gel permeation chromatography (GPC), macromonomer (A) (A macromonomer having a methacryloyl group at the end of the molecular chain and a hydroxyl group in the middle of the molecular chain) and a macromonomer (Ma) (having a methacryloyl group at the end of the molecular chain and a carboxyl group in the middle of the molecular chain) The molecular weight of the macromonomer) was measured, and the weight average molecular weight (Mw) and the number average molecular weight (Mn) of the prepolymer, the macromonomer (A) and the macromonomer (Ma) were determined in terms of polyst
- HLC-8120GPC manufactured by Tosoh Corporation is used as the GPC apparatus
- TSKgel super MP-M four is used as the column
- each reaction solution is dissolved in a solvent tetrahydrofuran (concentration 5 mg). / Ml) as a sample
- tetrahydrofuran was used as a developing solvent, and measurement was performed under the conditions of a flow rate of 0.35 ml / min and a column temperature of 40 ° C.
- the measurement results are analyzed using a calibration curve created with standard polystyrene, and the weight average molecular weight (Mw) and number average molecular weight (Mn) of the prepolymer, macromonomer (A) and macromonomer (Ma) in terms of polystyrene are calculated. Asked.
- the prepolymer can be regarded as having a carboxyl group derived from a chain transfer agent at one end of all the polymer chains, so the prepolymer determined in (2) above.
- the addition reaction rate of glycidyl methacrylate was defined as the number of ethylenically unsaturated groups per molecule such as the amount of methacryloyl possessed by the macromonomer (A) and the macromonomer (Ma) at the end of the molecular chain.
- Macromonomer (Ma) (a molecular chain having a methacryloyl group at the end of the molecular chain and a macromonomer having a hydroxyl group in the middle of the molecular chain) obtained by reacting the dicarboxylic acid anhydride
- a sample of a reaction solution containing a macromonomer having a methacryloyl group at the end and a carboxyl group in the middle of the molecular chain) (dispersion stabilizer) was sampled and weighed, and then diluted with tetrahydrofuran.
- volume average particle diameter (dv), number average particle diameter (dn), coefficient of variation of particle size (Cv) and amount of by-product small particles of polymer fine particles (I) Polymer fine particles recovered by removing volatile components (polymerization solvent, residual monomer, etc.) from the dispersion of polymer fine particles obtained by polymerization are collected using a field emission scanning electron microscope (FE-SEM) [JEOL Photographs were taken by the SEM method using “JSM-6330F” manufactured by Co., Ltd. At that time, the magnification of photography by the SEM method was set to a magnification at which about 200 particles were photographed in one photograph, and three photographs were taken at different photographing positions.
- FE-SEM field emission scanning electron microscope
- the coefficient of variation (Cv) of the particle size means that the smaller the value (closer to zero), the narrower the particle size distribution, the uniform particle diameter, and the uniform particle size. In the above calculation, the measurement result of polymer fine particles of 0.3 ⁇ m or more, which enables accurate particle diameter measurement, was used.
- Methyl ethyl ketone resistance (solvent resistance) of crosslinked polymer fine particles After the crosslinked polymer fine particles were dispersed in 20 times by mass of methyl ethyl ketone, the polymer fine particles were allowed to stand at 25 ° C. for 24 hours. After 24 hours, whether or not the polymer fine particles are dissolved or swollen in the methyl ethyl ketone is visually observed, and the polymer fine particles that are not dissolved or do not coalesce due to swelling and can be redispersed while maintaining the particle shape. In contrast, the methyl ethyl ketone was removed while standing at room temperature, and a photograph was taken by the SEM method.
- the SEM photograph was compared with the SEM photograph of the polymer fine particles before this test, and the change in the particle size, the morphology
- the methyl ethyl ketone resistance was evaluated according to the following evaluation criteria.
- evaluation criteria for methyl ethyl ketone resistance ⁇ : When comparing the SEM photographs of the polymer fine particles before and after the test, there is almost no change in the particle size and particle morphology.
- ⁇ SEM photograph of the polymer fine particle after the test confirmed that it had a particle form, but the particle size and / or the particle form was changed or eluted to the outside of the polymer fine particle The polymer component is confirmed.
- Polymer fine particles are dissolved in methyl ethyl ketone, or coalescence between the polymer fine particles due to swelling is remarkable and cannot be redispersed after standing for 24 hours.
- the polymer fine particles that have been crosslinked, especially the polymer fine particles that have been sufficiently crosslinked, have no or little change in the dissolution or form change of the polymer fine particles when this resistance to methyl ethyl ketone is tested. There are few.
- the crosslinked polymer fine particles are excellent in methyl ethyl ketone resistance and can be suitably used for applications requiring solvent resistance and heat resistance. This test was performed on the crosslinked polymer fine particles (PC-1) to (PC-4) obtained in Examples 20 to 23.
- Step ⁇ 1 [Prepolymer Production]
- a glass reactor equipped with a stirrer, a reflux condenser, a thermometer, a nitrogen introduction pipe and a liquid feed pipe connection section was added to 30 parts by mass of propylene glycol monomethyl ether acetate, 12.13 parts by mass of methyl methacrylate and 2- 1.765 parts by mass of mercaptopropionic acid was charged, and the internal temperature of the reactor was adjusted to 90 ° C. while blowing nitrogen gas with stirring.
- the polymerization initiator solution prepared in (iv) above is supplied over 2 hours at a constant rate by a metering pump, and has a carboxyl group at one end of the molecular chain, which is a precursor of the macromonomer (A), and A prepolymer having a hydroxyl group in the middle of the molecular chain was produced.
- a part of the reaction solution thus obtained was collected and measured for molecular weight by GPC as described above.
- the weight average molecular weight (Mw) of the prepolymer was 3900 and the number average molecular weight (Mn) was 2100.
- Step ⁇ 2 [Production of Macromonomer (A)] Subsequently, nitrogen blowing was switched to air blowing, 0.03 parts by mass of methoxyhydroquinone and 0.81 parts by mass of tetrabutylammonium bromide were added to the reactor, and the internal temperature of the reactor was raised to 110 ° C. After confirming that the internal temperature was stable at 110 ° C., 5.67 parts by mass of glycidyl methacrylate was added, and the internal temperature was maintained at 110 ° C. for 6 hours to carry out addition reaction of glycidyl methacrylate to the prepolymer. (A) was produced.
- a part of the reaction solution containing the macromonomer (A) (a macromonomer having a methacryloyl group at the end of the molecular chain and a hydroxyl group in the middle of the molecular chain) was collected, and the acid value was measured by the method described above.
- the addition rate was 99%, and the macromonomer (A) obtained here had molecular chain terminals (one terminal) per molecule.
- the methacryloyl group had an average of 0.99.
- the weight average molecular weight (Mw) was 4800 and the number average molecular weight (Mn) was 2400.
- Step ⁇ 3 [Production of Dispersion Stabilizing Liquid (Ma 1 )] (I) When 7 hours have elapsed since the addition of glycidyl methacrylate in (2) above, 30.30 parts by mass of succinic anhydride was added while maintaining the internal temperature of the reactor at 110 ° C., and the macromonomer (A ) Succinic anhydride was added to a hydroxyl group (hydroxyl group derived from 2-hydroxyethyl methacrylate) existing in the middle of the molecular chain.
- Dispersion stabilizer liquid (Ma 1 ) solid content 53%) containing (Ma- 1 ) (monomer having a methacryloyl group at the end of the molecular chain and a carboxyl group in the middle of the molecular chain) (dispersion stabilizer) Manufactured.
- a macromonomer (Ma) having a methacryloyl group at the end of the molecular chain and a carboxyl group in the middle of the molecular chain is added in the same manner as in (3) of Production Example 1 -2) to ( Dispersion stabilizer liquids (Ma 2 ) to (Ma 4 ) containing Ma-4) (dispersion stabilizer) were produced.
- the macromonomer (Mb-1) obtained in (3) above is pulverized into flakes, and 100 parts by mass of the pulverized macromonomer (Mb-1), 260 parts by mass of water and 25% aqueous ammonia 22. 5 parts by mass was charged into a glass flask equipped with a condenser and stirred while heating in a 90 ° C. warm bath to make the macromonomer (Mb-1) water-soluble. After confirming that the macromonomer (Mb-1) was dissolved, water was added so that the solid content was 25% by mass, and an aqueous solution of the macromonomer (Mb-1) [hereinafter referred to as “dispersion stabilizer liquid (Mb 1 )”. ) "] was manufactured. The pH of the dispersion stabilizer liquid (Mb 1 ) (aqueous solution) at 25 ° C. was 8.0.
- Example 1 [Production of polymer fine particles (PA-1)]
- Examples 2 to 10 [Production of polymer fine particles (PA-2) to (PA-10)] (1)
- the types and amounts used of the dispersion stabilizer liquid, the amounts of 25% aqueous ammonia, water and methanol used, and the polymerization temperature are as shown in Table 2 below, except that (1) to ( In the same manner as in 3), dispersions of polymer fine particles (PA-2) to (PA-10) were produced.
- the polymerization stability was evaluated by the method described above for each example in the same manner as in Example 1 (3), the results were as shown in Table 2 below.
- Examples 11 to 19 [Production of polymer fine particles (PA-11) to (PA-19)]
- the types and amounts used of the dispersion stabilizer liquid, the amounts used of 25% aqueous ammonia, water and methanol, and the polymerization temperature were as shown in Table 3 below, except that (1) to ( In the same manner as in 3), dispersions of polymer fine particles (PA-11) to (PA-19) were produced.
- the polymerization stability was evaluated by the method described above for each example in the same manner as in Example 1 (3), it was as shown in Table 3 below.
- Comparative Example 1 [Production of Polymer Fine Particles (PB-1)] (1) Instead of the dispersion stabilizer liquid (Ma 1 ), the dispersion stabilizer liquid (Mb 1 ) obtained in Production Example 5 was used as the dispersion stabilizer liquid in the amount shown in Table 4 below, and further 25% A dispersion of polymer fine particles (PB-1) was produced in the same manner as in (1) to (3) of Example 1 except that the amounts of ammonia water and water were changed as shown in Table 4 below. did. When the polymerization stability was evaluated by the method described above in the same manner as in Example 3 (3), the results were as shown in Table 4 below.
- the macromonomer (Mb-1) (dispersion stabilizer) contained in the dispersion stabilizer liquid (Mb 1 ) used in Comparative Example 1 has already neutralized the carboxyl group with ammonia at the stage of water solubilization. Therefore, no new ammonia was added.
- the volume average particle diameter (dv), number average particle diameter (dn), and coefficient of variation (Cv) of the particle size of the polymer fine particles (PB-1) obtained in (1) above are shown in Example 1. When obtained in the same manner as in (4), it was as shown in Table 4 below. Further, from the SEM photograph, the amount of by-product small particles having a size of 0.3 ⁇ m or less was evaluated by the method described above, and as shown in Table 4 below.
- FIGS. 3 is a photograph taken at a magnification of 2,000 times
- FIG. 4 is a photograph taken at a magnification of 12,000 times.
- Example 2 The volume average particle size (dv), number average particle size (dn), and particle size variation coefficient (Cv) of the polymer fine particles (PB-2) obtained in the above (1) are shown in Example 1. When obtained in the same manner as in (4), it was as shown in Table 4 below. Further, from the SEM photograph, the amount of by-product small particles having a size of 0.3 ⁇ m or less was evaluated by the method described above, and as shown in Table 4 below.
- Example 2 The volume average particle size (dv), number average particle size (dn), and particle size variation coefficient (Cv) of the polymer fine particles (PB-2) obtained in the above (1) are shown in Example 1. When obtained in the same manner as in (4), it was as shown in Table 4 below. Further, from the SEM photograph, the amount of by-product small particles having a size of 0.3 ⁇ m or less was evaluated by the method described above, and as shown in Table 4 below.
- Examples 1 to 19 are macromonomers having a metacycloyl group at the end of the molecular chain and a carboxyl group in the middle of the molecular chain as the dispersion stabilizer.
- the macromonomer (Ma-1) to (Ma-4) was used for dispersion polymerization of vinyl monomers (methyl methacrylate and isobutyl methacrylate) in a hydrophilic solvent, resulting in a very small amount (in terms of solid content) 6 parts by mass or less) of a dispersion stabilizer (macromonomer), a polymer fine particle having a volume average particle size (dv) of 1.78 ⁇ m or less and a very small particle size is obtained using a coefficient of variation in particle size (Cv ) With a narrow particle size distribution of less than 15%, it is smoothly obtained with good polymerization stability without causing aggregation between polymer fine particles.
- a dispersion stabilizer macromonomer
- Comparative Example 1 the macromonomer (Mb-1) was used as the dispersion stabilizer, but the macromonomer (Mb-1) had a vinylidene group as the unsaturated group at the end of the molecular chain. Since it is not a (meth) acryloyl group, the polymer fine particles obtained in Comparative Example 1 have a volume average particle diameter (dv) of 2.53 ⁇ m, which is higher than the polymer fine particles obtained in Examples 1 to 19. The size of the coalesced fine particles was significantly large. Moreover, in Comparative Example 1, it was necessary to use a larger amount of the macromonomer (Mb-1) as a dispersion stabilizer than in Examples 1 to 19 in order to perform dispersion polymerization stably.
- dv volume average particle diameter
- polymer fine particles having a volume average particle diameter (dv) of 2 ⁇ m or less When used in a large amount with a mass part (in terms of solid content), polymer fine particles having a volume average particle diameter (dv) of 2 ⁇ m or less can be produced (Comparative Example 2), but as seen in Comparative Example 4, When the amount of polyvinyl pyrrolidone used is as small as 2.00 parts by mass in terms of solid content, the dispersion polymerization cannot be stably performed, and the volume average particle diameter (dv) of the polymer fine particles obtained by the dispersion polymerization is low. Since it exceeded 3 ⁇ m, fine polymer particles could not be produced.
- Example 20 [Production of Crosslinked Polymer Fine Particles (PC-1)]
- the dispersion stabilizer liquid (Ma 1 ) obtained in Production Example 1 is used in the amounts shown in Table 5 below, and the usage amounts of 25% aqueous ammonia and water are shown in Table 5 below.
- the same procedure as in (1) to (3) of Example 1 was carried out except that allyl methacrylate was used as a crosslinkable monomer together with methyl methacrylate and isobutyl methacrylate in the amounts shown in Table 5 below.
- Crosslinked polymer fine particles (PC-1) [hereinafter sometimes referred to as “crosslinked polymer particles (PC-1)”.
- PC-1 Crosslinked polymer particles
- PC-1 crosslinked polymer fine particles obtained in the above (1) were dispersed in 20 mass times of methyl ethyl ketone and allowed to stand at 25 ° C. for 24 hours. After 24 hours, the crosslinked polymer fine particles (PC-1) were precipitated in methyl ethyl ketone, but no aggregation or coalescence between the particles occurred and they could be easily redispersed.
- the re-dispersed crosslinked polymer fine particles (PC-1) were taken out from methyl ethyl ketone, dried at room temperature, and then observed using SEM in the same manner as (2) above.
- the SEM image of the crosslinked polymer fine particles (PC-1) was slightly deformed compared to the SEM image of the crosslinked polymer fine particles (PC-1) obtained in (1) above before being immersed in methyl ethyl ketone. However, the particle shape was maintained, and the solvent resistance (methyl ethyl ketone resistance) was improved by crosslinking.
- An SEM photograph of the crosslinked polymer fine particles (PC-1) before being immersed in methyl ethyl kent obtained in the above (1) is shown in FIG. 5 (5,000 times magnification), and in methyl ethyl kent for 24 hours.
- An SEM photograph of the crosslinked polymer fine particles (PC-1) obtained after being immersed and taken out and dried is shown in FIG. 6 (5,000 magnifications).
- Example 21 [Production of crosslinked polymer fine particles (PC-2)] (1)
- a glass reactor equipped with a stirrer, a reflux condenser, a thermometer and a nitrogen introduction tube 115.2 parts by mass of ion-exchanged water, 460.5 parts by mass of methanol, 25% aqueous ammonia (for neutralization) 0 .79 parts by mass, 7.55 parts by mass of the dispersion stabilizer liquid (Ma 1 ) produced in Production Example 1, 45.0 parts by mass of methyl methacrylate and 50.0 parts by mass of isobutyl methacrylate were charged with stirring and nitrogen gas. While blowing, the temperature inside the reactor was adjusted to 55 ° C.
- Example 2 After confirming that the internal temperature of the reactor of the above (1) was stable at 55 ° C., 5.0 parts by mass of trimethoxysilylpropyl methacrylate was added to the reactor, and further 10 minutes later, Example 1 The polymerization was started by adding 2.4 parts by mass of the same polymerization initiator (perbutyl PV; 70% solution of t-butyl peroxypivalate) as used in 1. The reaction was started immediately after the addition of the polymerization initiator. It was confirmed that the liquid became turbid, gradually whitened to become milky white, and polymer fine particles were formed. A dispersion of polymer fine particles having hydrolyzable silyl groups was obtained by maintaining the internal temperature of the reactor at 55 ° C. for 4 hours after the addition of the polymerization initiator (perbutyl PV).
- perbutyl PV 70% solution of t-butyl peroxypivalate
- the crosslinked polymer fine particles (PC-2) obtained in (5) above were dispersed in 20 mass times methyl ethyl ketone, and then allowed to stand at 25 ° C. for 24 hours. After 24 hours, the crosslinked polymer fine particles (PC-2) were precipitated in methyl ethyl ketone, but no aggregation or coalescence between the particles occurred and they could be easily redispersed.
- the redispersed crosslinked polymer fine particles (PC-2) were taken out of methyl ethyl ketone, dried at room temperature, and then observed using SEM in the same manner as in (6) above.
- the SEM image of the crosslinked polymer fine particles (PC-2) is the same as the SEM image of the crosslinked polymer fine particles (PC-2) obtained in the above (5) before being immersed in methyl ethyl ketone.
- the evaluated evaluation result of methyl ethyl ketone resistance was evaluated as ⁇ .
- the crosslinked polymer fine particles (PC-2) were confirmed to be excellent in solvent resistance due to the crosslinking effect.
- Example 22 [Production of crosslinked polymer fine particles (PC-3)] (1)
- the amount used of the dispersion stabilizer liquid (Ma 1 ), the amount of 25% ammonia water and water used are the amounts shown in Table 5 below, and the vinyl monomers shown in Table 5 below are shown in Table 5 below.
- a dispersion of crosslinked polymer fine particles (PC-3) was produced in the same manner as in Example 21 (1) to (5) except that the above was used. When the polymerization stability was evaluated by the method described above for each example in the same manner as in Example 1 (3), the results were as shown in Table 5 below.
- the crosslinked polymer fine particles (PC-3) obtained in the above (1) were observed using an SEM in the same manner as in Example 1.
- PC-3 was precipitated in methyl ethyl ketone, there was no aggregation or coalescence between particles, and it could be easily redispersed.
- the redispersed polymer fine particles (PC-3) were taken out from methyl ethyl ketone, dried at room temperature, and then observed using SEM in the same manner as in (6) above.
- the SEM image of the crosslinked polymer fine particles (PC-3) after being immersed in methyl ethyl ketone for 24 hours shows the crosslinked polymer fine particles (PC-3) before being immersed in methyl ethyl ketone.
- the evaluation result of the methyl ethyl ketone resistance evaluated by the above-described method was determined as ⁇ . It was confirmed that the crosslinked polymer fine particles (PC-3) were excellent in solvent resistance due to the crosslinking effect.
- the volume average particle diameter (dv) can be obtained by using a very small amount of the dispersion stabilizer (Ma) (macromonomer). ) Is less than 2 ⁇ m, the particle diameter is extremely small, and the crosslinked polymer fine particles having excellent solvent resistance are aggregated between the polymer fine particles with a narrow particle size distribution with a coefficient of variation of particle size (Cv) of 20% or less. Can be obtained smoothly with good polymerization stability.
- Mo dispersion stabilizer
- Example 23 [Production of crosslinked polymer fine particles (PC-4)] (1) In a glass reactor equipped with a stirrer, a reflux condenser, a thermometer, and a nitrogen introduction tube, 299 parts by mass of ion-exchanged water and 3.0 parts by mass of a 10% KOH aqueous solution and obtained in (3) of Example 1 285.7 parts by mass of a dispersion of polymer fine particles (PA-1) obtained by removing a part of volatile components (water, methanol) under reduced pressure so that the solids concentration becomes 35% by mass (in terms of solids) , 100 parts by mass), and the reactor internal temperature was adjusted to 20 ° C. while stirring.
- PA-1 polymer fine particles
- the volume average particle diameter (dv) determined by the method described above from the SEM observation image of the crosslinked polymer fine particles (PC-4) obtained in (5) above is 1.82 ⁇ m, and the number average particle diameter (dn) was 1.81 ⁇ m, and the coefficient of variation (Cv) in particle size was 5.8%.
- the crosslinked polymer fine particles (PC-4) obtained in the above (5) were tested for methyl ethyl ketone resistance in the same manner as in Example 20. After 24 hours, the crosslinked polymer fine particles (PC-4) -4) was precipitated in methyl ethyl ketone, but no agglomeration or coalescence between particles occurred, and it could be easily redispersed.
- the redispersed polymer fine particles (PC-4) were taken out from methyl ethyl ketone, dried at room temperature, and then observed using SEM by the method described above.
- the SEM image of the crosslinked polymer fine particles (PC-4) after being immersed in methyl ethyl ketone for 24 hours is more eluted than the SEM image of the crosslinked polymer fine particles (PC-4) before being immersed in methyl ethyl ketone.
- the particle shape was maintained, and the solvent resistance (methyl ethyl ketone resistance) was improved by crosslinking.
- Non-crosslinked polymer particles or crosslinked polymer particles having an extremely small particle size of micron size, a narrow particle size distribution and a uniform particle size, and having no monodispersion and no aggregation between particles. It can be produced smoothly and with good productivity, and among the polymer fine particles obtained by the method of the present invention, the crosslinked polymer fine particles are excellent in heat resistance, solvent resistance, chemical resistance, strength and the like.
- the polymer fine particles obtained by the method of the present invention make use of the above-described excellent properties, and light diffusion agents such as spacers for liquid crystal displays, light diffusion films for liquid crystal displays, and diffusion plates, and AGs for liquid crystal displays. It can be effectively used in various applications including AG agents such as films, anti-blocking agents for various films, conductive fine particles, column fillers, and carriers for diagnostic agents.
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Macromonomer-Based Addition Polymer (AREA)
- Polymerisation Methods In General (AREA)
Abstract
極めて微細な粒子径を有し、粒度分布が狭くて均一な粒子サイズを有し、しかも凝集などがなく、単分散性に優れるミクロンサイズの重合体微粒子を、良好な分散安定性で、円滑に、生産性よく、低コストで製造する方法の提供。 分子鎖の末端に(メタ)アクリロイル基を有し且つ分子鎖の途中にカルボキシル基を有するマクロモノマーを分散安定剤として用いて、ビニル単量体を、ビニル単量体および分散安定剤を溶解するが、生成する重合体を溶解しない親水性溶媒中で分散重合して重合体微粒子を製造する方法。
Description
本発明は重合体微粒子の製造方法に関する。より詳細には、本発明は、分散重合法によって、粒度分布が狭くて粒径の均一なミクロンサイズの重合体微粒子を、極めて少量の特定の分散安定剤を使用して、円滑に生産性よく製造する方法に関する。
ビニル単量体を、分散安定剤の存在下に、ビニル単量体を溶解するが、生成する重合体を実質的に溶解しない溶媒中で重合して重合体を製造する分散重合法を採用すると、比較的狭い粒度分布を有する、ミクロンサイズの重合体粒子が得られることが知られている。
分散重合法では、親水性溶媒または非親水性溶媒のいずれかが用いられるが、親水性溶媒中で分散重合を行なう際には、従来、分散安定剤として、ポリビニルピロリドン、ポリエチレングリコールなどが用いられており、またポリエチレンオキシド鎖の末端にラジカル重合性官能基を有するマクロモノマーを分散安定剤として用いる分散重合する方法が知られている(特許文献1を参照)。
しかしながら、そのような従来の分散重合技術では、目的とする粒子径および粒度分布を有する重合体微粒子を製造するのに比較的多量の分散安定剤を使用する必要があり、それに伴って得られる重合体微粒子には分散安定剤が多く残留し、重合体微粒子の性能に悪影響を及ぼし易い。しかも、分散安定剤の分散安定化性能が不十分で、生成した重合体微粒子間に凝集が生じ易い。その上、前記した従来の分散重合技術では、重合により生成した重合体粒子間での凝集を防止するために、ビニル単量体の濃度を低くして重合を行なう必要があるため、生産性が低い。
分散重合法では、親水性溶媒または非親水性溶媒のいずれかが用いられるが、親水性溶媒中で分散重合を行なう際には、従来、分散安定剤として、ポリビニルピロリドン、ポリエチレングリコールなどが用いられており、またポリエチレンオキシド鎖の末端にラジカル重合性官能基を有するマクロモノマーを分散安定剤として用いる分散重合する方法が知られている(特許文献1を参照)。
しかしながら、そのような従来の分散重合技術では、目的とする粒子径および粒度分布を有する重合体微粒子を製造するのに比較的多量の分散安定剤を使用する必要があり、それに伴って得られる重合体微粒子には分散安定剤が多く残留し、重合体微粒子の性能に悪影響を及ぼし易い。しかも、分散安定剤の分散安定化性能が不十分で、生成した重合体微粒子間に凝集が生じ易い。その上、前記した従来の分散重合技術では、重合により生成した重合体粒子間での凝集を防止するために、ビニル単量体の濃度を低くして重合を行なう必要があるため、生産性が低い。
上記の点から、本発明者らは、分散重合時に重合体微粒子が凝集するのを防止して、単分散性に優れるミクロンサイズの重合体微粒子を円滑に製造し得る方法を開発すべく検討を重ねてきた。そして、カルボキシル基を有し且つ分子鎖末端にビニリデン型の不飽和結合を有するマクロモノマーを分散安定剤として用いて分散重合を行なうと、分散重合時に重合体微粒子間の凝集を生ずることなく、単分散性に優れる重合体微粒子が得られることを見出して先に出願した(特許文献2を参照)。
粒度分布が狭くて均一な粒径を有する、ミクロンサイズの重合体微粒子は、光拡散剤、アンチグレア剤(艶消し剤)、アンチブロッキング剤、スペーサなどの用途に使用されており、近年、前記したいずれの用途においても高精細化への対応が求められている。それに伴って、粒子径のより小さい重合体微粒子が必要となるケースが多くなっている。
かかる点から、本発明者らは、上記特許文献2の分散重合法について更に検討した結果、当該特許文献2の発明の分散安定剤(マクロモノマー)を用いた場合には、一般に得られる重合体微粒子の粒子径が2μmよりも大きくなり易く、粒子径のより小さな重合体微粒子を得るためには分散安定剤(マクロモノマー)の使用量を多くする必要があり、得られる重合体微粒子の性能の低下防止、コスト上昇の抑制などの点から改善の余地があることが判明した。
かかる点から、本発明者らは、上記特許文献2の分散重合法について更に検討した結果、当該特許文献2の発明の分散安定剤(マクロモノマー)を用いた場合には、一般に得られる重合体微粒子の粒子径が2μmよりも大きくなり易く、粒子径のより小さな重合体微粒子を得るためには分散安定剤(マクロモノマー)の使用量を多くする必要があり、得られる重合体微粒子の性能の低下防止、コスト上昇の抑制などの点から改善の余地があることが判明した。
本発明の目的は、粒度分布が狭く、しかも従来の分散重合法で得られる重合体微粒子に比べてより小さな粒子径を有する、粒子径の揃った、高品質の重合体微粒子を、重合体微粒子間の凝集などを生ずることなく、円滑に製造する方法を提供することである。
さらに、本発明の目的は、従来よりも低減された分散安定剤の使用量で、分散安定剤の多用による重合体微粒子への悪影響を防止しながら、低コストで、円滑に、単分散性に優れる、高品質な微細な重合体微粒子を円滑に生産性よく製造する方法を提供することである。
また、本発明の目的は、前記した優れた特性を有する、分散重合による重合体微粒子を提供することである。
さらに、本発明の目的は、従来よりも低減された分散安定剤の使用量で、分散安定剤の多用による重合体微粒子への悪影響を防止しながら、低コストで、円滑に、単分散性に優れる、高品質な微細な重合体微粒子を円滑に生産性よく製造する方法を提供することである。
また、本発明の目的は、前記した優れた特性を有する、分散重合による重合体微粒子を提供することである。
本発明者らは、上記した目的を達成すべく検討を重ねてきた。その結果、分子鎖の末端に(メタ)アクリロイル基を有し且つ分子鎖の途中にカルボキシル基を有するマクロモノマーが、極めて優れた分散安定化性能を有することを見出した。そこで、当該マクロモノマーを分散安定剤として用いて、親水性溶媒中でビニル単量体の分散重合を行なったところ、当該マクロモノマー(分散安定剤)のごく少量の使用で、粒度分布が狭くて、均一なサイズの重合体微粒子を、重合体微粒子間の凝集などを生ずることなく、円滑に製造できることを見出した。しかも、それにより得られる重合体微粒子は、上記した従来の分散安定剤を用いた場合に比べて、狭い粒度分布を維持しながら、より小粒径であり、上記した近年の高精細化に対する要望に合致することを見出した。さらに、本発明者らは、分子鎖の末端に(メタ)アクリロイル基を有し且つ分子鎖の途中にカルボキシル基を有する前記したマクロモノマーよりなる分散安定剤を用いると、その優れた分散安定化性能により、水性溶媒中でのビニル単量体の濃度を低減させる必要がないため、目的とする均一なサイズの重合体微粒子を生産性よく製造できることを見出した。また分散安定剤として当該マクロモノマーをごく少量使用するだけでよいため、従来の分散安定剤を使用した重合体微粒子分散液のように、洗浄などにより過剰な分散安定剤を除去する必要がなく、より高い生産性、より低いコストで、物性および取り扱い性に優れた重合体樹脂微粒子を製造できることも見出した。
また、本発明者らは、分散安定剤として用いる前記したマクロモノマーとしては、分子鎖の末端に(メタ)アクリロイル基を有し且つ分子鎖の途中に水酸基を有するマクロモノマー(A)に、ジカルボン酸無水物を付加反応させて得られるマクロモノマーが、その優れた分散安定化性能、当該マクロモノマーの製造の容易性、当該マクロモノマーを製造する際の設計の自由度が大きい点などの点から好ましいことを見出した。
さらに、本発明者らは、分散安定剤として用いる前記したマクロモノマーにおいて、カルボキシル基の含有量を特定の範囲にすると、その分散安定化性能がより優れたものになり、しかも粒度分布のより狭い重合体微粒子が得られ、その上より少量でより粒子径の小さい重合体微粒子が得られるという効果を発揮することを見出した。
そして、本発明者らは、当該マクロモノマーが有するカルボキシル基の全部または一部を塩基性化合物で中和しておくと、分散安定化性能がより良好になることを見出した。
さらに、本発明者らは、分散安定剤として用いる前記したマクロモノマーにおいて、カルボキシル基の含有量を特定の範囲にすると、その分散安定化性能がより優れたものになり、しかも粒度分布のより狭い重合体微粒子が得られ、その上より少量でより粒子径の小さい重合体微粒子が得られるという効果を発揮することを見出した。
そして、本発明者らは、当該マクロモノマーが有するカルボキシル基の全部または一部を塩基性化合物で中和しておくと、分散安定化性能がより良好になることを見出した。
また、本発明者らは、分子鎖の末端に(メタ)アクリロイル基を有し且つ分子鎖の途中にカルボキシル基を有するマクロモノマーを分散安定剤として用いて、ビニル単量体を分散重合するに当たり、ビニル単量体として加水分解性シリル基を有するビニル単量体を少なくとも一部として含むビニル単量体を用いて、加水分解性シリル基を有する重合体微粒子を製造し、重合体微粒子中の加水分解性シリル基を加水分解して架橋反応を生じさせることで、強度、耐変形性(粒子形状維持性)、耐熱性、取り扱い性、流動性、耐溶剤性などに優れる架橋した重合体微粒子が得られることを見出した。
また、本発明者らは、分子鎖の末端に(メタ)アクリロイル基を有し且つ分子鎖の途中にカルボキシル基を有するマクロモノマーを分散安定剤として用いて、ビニル単量体を分散重合するに当たり、ビニル単量体としてエチレン性不飽和基を2個以上有する多官能ビニル単量体を少なくとも一部として含むビニル単量体を用いた場合にも、強度、耐変形性(粒子形状維持性)、耐熱性、取り扱い性、流動性、耐溶剤性などに優れる架橋した重合体微粒子が得られることを見出した。
さらに、本発明者らは、分子鎖の末端に(メタ)アクリロイル基を有し且つ分子鎖の途中にカルボキシル基を有するマクロモノマーを分散安定剤として用いてビニル単量体を分散重合することによって得られる重合体微粒子に、多官能ビニル単量体を含むビニル単量体を吸収させた後、重合させることによっても、強度、耐変形性(粒子形状維持性)、耐熱性、取り扱い性、流動性、耐溶剤性などに優れる架橋した重合体微粒子が得られることを見出し、それらの種々の知見に基づいて本発明を完成した。
また、本発明者らは、分子鎖の末端に(メタ)アクリロイル基を有し且つ分子鎖の途中にカルボキシル基を有するマクロモノマーを分散安定剤として用いて、ビニル単量体を分散重合するに当たり、ビニル単量体としてエチレン性不飽和基を2個以上有する多官能ビニル単量体を少なくとも一部として含むビニル単量体を用いた場合にも、強度、耐変形性(粒子形状維持性)、耐熱性、取り扱い性、流動性、耐溶剤性などに優れる架橋した重合体微粒子が得られることを見出した。
さらに、本発明者らは、分子鎖の末端に(メタ)アクリロイル基を有し且つ分子鎖の途中にカルボキシル基を有するマクロモノマーを分散安定剤として用いてビニル単量体を分散重合することによって得られる重合体微粒子に、多官能ビニル単量体を含むビニル単量体を吸収させた後、重合させることによっても、強度、耐変形性(粒子形状維持性)、耐熱性、取り扱い性、流動性、耐溶剤性などに優れる架橋した重合体微粒子が得られることを見出し、それらの種々の知見に基づいて本発明を完成した。
すなわち、本発明は、
(1)分散安定剤の存在下に、ビニル単量体を、ビニル単量体および分散安定剤を溶解するが、生成する重合体を溶解しない親水性溶媒中で重合する工程を備える、重合体微粒子を製造する方法であって、前記分散安定剤が、分子鎖の末端に(メタ)アクリロイル基を有し且つ分子鎖の途中にカルボキシル基を有するマクロモノマー(Ma)であることを特徴とする重合体微粒子の製造方法である。
(1)分散安定剤の存在下に、ビニル単量体を、ビニル単量体および分散安定剤を溶解するが、生成する重合体を溶解しない親水性溶媒中で重合する工程を備える、重合体微粒子を製造する方法であって、前記分散安定剤が、分子鎖の末端に(メタ)アクリロイル基を有し且つ分子鎖の途中にカルボキシル基を有するマクロモノマー(Ma)であることを特徴とする重合体微粒子の製造方法である。
そして、本発明は、
(2)前記マクロモノマー(Ma)が、分子鎖の末端に(メタ)アクリロイル基を有し、分子鎖の途中に水酸基を有するマクロモノマー(A)に、ジカルボン酸無水物を付加反応させて得られたものである前記(1)の重合体微粒子の製造方法;
(3)前記マクロモノマー(Ma)が、0.5~4meq/gのカルボキシル基を有する前記(1)または(2)の重合体微粒子の製造方法;および、
(4)前記マクロモノマー(Ma)が有するカルボキシル基の全部または一部が、塩基性化合物により中和されている前記(1)~(3)のいずれかの重合体微粒子の製造方法;
である。
(2)前記マクロモノマー(Ma)が、分子鎖の末端に(メタ)アクリロイル基を有し、分子鎖の途中に水酸基を有するマクロモノマー(A)に、ジカルボン酸無水物を付加反応させて得られたものである前記(1)の重合体微粒子の製造方法;
(3)前記マクロモノマー(Ma)が、0.5~4meq/gのカルボキシル基を有する前記(1)または(2)の重合体微粒子の製造方法;および、
(4)前記マクロモノマー(Ma)が有するカルボキシル基の全部または一部が、塩基性化合物により中和されている前記(1)~(3)のいずれかの重合体微粒子の製造方法;
である。
さらに、本発明は、
(5)前記ビニル単量体として、加水分解性シリル基を有するビニル単量体を少なくとも一部として含むビニル単量体を用いて、加水分解性シリル基を有する重合体微粒子を製造する前記(1)~(4)のいずれかの重合体微粒子の製造方法;
(6)前記(5)で得られる重合体微粒子中の加水分解性シリル基を加水分解縮合させる工程を備え、架橋した重合体微粒子を製造することからなる重合体微粒子の製造方法;および、
(7)前記ビニル単量体として、エチレン性不飽和基を2個以上有する多官能ビニル単量体を少なくとも一部として含むビニル単量体を用いて架橋した重合体微粒子を製造する、前記(1)~(4)のいずれの重合体微粒子の製造方法;
である。
(5)前記ビニル単量体として、加水分解性シリル基を有するビニル単量体を少なくとも一部として含むビニル単量体を用いて、加水分解性シリル基を有する重合体微粒子を製造する前記(1)~(4)のいずれかの重合体微粒子の製造方法;
(6)前記(5)で得られる重合体微粒子中の加水分解性シリル基を加水分解縮合させる工程を備え、架橋した重合体微粒子を製造することからなる重合体微粒子の製造方法;および、
(7)前記ビニル単量体として、エチレン性不飽和基を2個以上有する多官能ビニル単量体を少なくとも一部として含むビニル単量体を用いて架橋した重合体微粒子を製造する、前記(1)~(4)のいずれの重合体微粒子の製造方法;
である。
そして、本発明は、
(8)前記(1)~(4)のいずれかの製造方法で得られる重合体微粒子に多官能ビニル単量体を含むビニル単量体を吸収させた後、重合させる工程を備え、架橋した重合体微粒子を製造することからなる重合体微粒子の製造方法である。
さらに、本発明は、
(9)前記(1)~(8)のいずれか1項の製造方法で得られる、体積平均粒子径(dv)が0.7~2.0μmで、粒子サイズの変動係数(Cv)が20%以下である重合体微粒子である。
(8)前記(1)~(4)のいずれかの製造方法で得られる重合体微粒子に多官能ビニル単量体を含むビニル単量体を吸収させた後、重合させる工程を備え、架橋した重合体微粒子を製造することからなる重合体微粒子の製造方法である。
さらに、本発明は、
(9)前記(1)~(8)のいずれか1項の製造方法で得られる、体積平均粒子径(dv)が0.7~2.0μmで、粒子サイズの変動係数(Cv)が20%以下である重合体微粒子である。
本明細書において、「(メタ)アクリル」とは、アクリル及び/又はメタクリルを意味し、「(メタ)アクリレート」とは、アクリレート及び/又はメタクリレートを意味する。
「マクロモノマー」に含まれるカルボキシル基は、-COOH及び/又は-COO-を意味する。
「マクロモノマー」に含まれるカルボキシル基は、-COOH及び/又は-COO-を意味する。
分子鎖の末端に(メタ)アクリロイル基を有し且つ分子鎖の途中にカルボキシル基を有するマクロモノマー(Ma)を分散安定剤として用いて、親水性溶媒中でビニル単量体を分散重合する本発明の方法による場合は、当該マクロモノマー(Ma)の極めて優れた分散安定化性能によって、当該マクロモノマー(Ma)のごく少量の使用で、粒度分布が狭くて、均一なサイズを有する、極めて微細な重合体微粒子を、重合体微粒子間の凝集などを生ずることなく、良好な分散安定性を維持しながら、円滑に、生産性よく、低コストで製造することができる。
特に、前記マクロモノマー(Ma)として、分子鎖の末端に(メタ)アクリロイル基を有し且つ分子鎖の途中に水酸基を有するマクロモノマー(A)に、ジカルボン酸無水物を付加反応させて得られるマクロモノマーを使用した場合は、その優れた分散安定化性能、当該マクロモノマーの製造の容易性、当該マクロモノマーを製造する際の設計の自由度が大きい点などの点から、目的とする重合体微粒子をより円滑に製造することができる。
また、本発明の方法において、ビニル単量体として加水分解性シリル基を有するビニル単量体を少なくとも一部として含むビニル単量体を用いた場合、およびビニル単量体としてエチレン性不飽和基を2個以上有する多官能ビニル単量体を少なくとも一部として含むビニル単量体を用いた場合、更には本発明の分散重合法によって得られる重合体微粒子に多官能ビニル単量体を含むビニル単量体を吸収させた後、重合させた場合には、強度、耐変形性(粒子形状維持性)、耐熱性、取り扱い性、流動性、耐溶剤性などに優れる、粒度分布が狭くて粒径の均一な、架橋した重合体微粒子を円滑に得ることができる。
特に、前記マクロモノマー(Ma)として、分子鎖の末端に(メタ)アクリロイル基を有し且つ分子鎖の途中に水酸基を有するマクロモノマー(A)に、ジカルボン酸無水物を付加反応させて得られるマクロモノマーを使用した場合は、その優れた分散安定化性能、当該マクロモノマーの製造の容易性、当該マクロモノマーを製造する際の設計の自由度が大きい点などの点から、目的とする重合体微粒子をより円滑に製造することができる。
また、本発明の方法において、ビニル単量体として加水分解性シリル基を有するビニル単量体を少なくとも一部として含むビニル単量体を用いた場合、およびビニル単量体としてエチレン性不飽和基を2個以上有する多官能ビニル単量体を少なくとも一部として含むビニル単量体を用いた場合、更には本発明の分散重合法によって得られる重合体微粒子に多官能ビニル単量体を含むビニル単量体を吸収させた後、重合させた場合には、強度、耐変形性(粒子形状維持性)、耐熱性、取り扱い性、流動性、耐溶剤性などに優れる、粒度分布が狭くて粒径の均一な、架橋した重合体微粒子を円滑に得ることができる。
以下に本発明について詳細に説明する。
本発明は、分散重合法によって重合体微粒子を製造する方法である。
ここで、本明細書における「分散重合法」とは、『ビニル単量体を、分散安定剤の存在下で、ビニル単量体および分散安定剤を溶解するが、重合により生成する重合体を実質的に溶解しない溶媒中で重合する方法』をいう。
本発明では、「ビニル単量体および分散安定剤を溶解するが、生成する重合体を溶解しない溶媒」として、親水性溶媒を用いる。分散重合により生成した重合体は、微粒子状で親水性溶媒中に分散している。
本発明は、分散重合法によって重合体微粒子を製造する方法である。
ここで、本明細書における「分散重合法」とは、『ビニル単量体を、分散安定剤の存在下で、ビニル単量体および分散安定剤を溶解するが、重合により生成する重合体を実質的に溶解しない溶媒中で重合する方法』をいう。
本発明では、「ビニル単量体および分散安定剤を溶解するが、生成する重合体を溶解しない溶媒」として、親水性溶媒を用いる。分散重合により生成した重合体は、微粒子状で親水性溶媒中に分散している。
《分散重合に用いる親水性溶媒について》
本発明では、親水性溶媒として、親水性の有機溶媒(水を含有しない親水性有機溶媒)を使用してもよいし、または親水性の有機溶媒と水との混合溶媒を使用してもよい。その際に、親水性の有機溶媒としては、20℃での水への溶解度が5g/100ml以上であるものが好ましく用いられる。
前記した親水性の有機溶媒の具体例としては、メチルアルコール、エチルアルコール、イソプロピルアルコール、n-ブチルアルコール、イソブチルアルコール、tert-ブチルアルコール、sec-ブチルアルコール、テトラヒドロフルフリルアルコールなどのモノアルコール類;エチレングリコール、グリセリン、ジエチレングリコールなどの多価アルコール類;メチルセロソルブ、セロソルブ、イソプロピロピルセロソルブ、ブチルセロソルブ、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、ジエチレングリコールモノメチルエーテル、ジエチレングリコールモノエチルエーテルなどのエーテルアルコール類;アセトン、メチルエチルケトンなどのケトン類;酢酸メチル、酢酸エチルなどのエステル類;テトラヒドロフランなどのエーテル類;ジメチルホルムアミド、ジメチルスルホキシドなどを挙げることができる。親水性の有機溶媒は1種類のみを用いてよいし、2種以上を併用してもよい。
重合に使用するビニル単量体の種類、生成する重合体の種類などに応じて、前記した親水性有機溶媒のうちから、適切な親水性の有機溶媒を選択して使用する。
そのうちでも、親水性の有機溶媒としては、メタノール、エタノール、イソプロピルアルコールなどの低級アルコールの1種または2種以上が、マクロモノマー(Ma)からなる分散安定剤の分散安定化作用を有効に発揮させて、粒子径の小さな重合体微粒子を安定に製造することができる点から、好ましく用いられる。
本発明では、親水性溶媒として、親水性の有機溶媒(水を含有しない親水性有機溶媒)を使用してもよいし、または親水性の有機溶媒と水との混合溶媒を使用してもよい。その際に、親水性の有機溶媒としては、20℃での水への溶解度が5g/100ml以上であるものが好ましく用いられる。
前記した親水性の有機溶媒の具体例としては、メチルアルコール、エチルアルコール、イソプロピルアルコール、n-ブチルアルコール、イソブチルアルコール、tert-ブチルアルコール、sec-ブチルアルコール、テトラヒドロフルフリルアルコールなどのモノアルコール類;エチレングリコール、グリセリン、ジエチレングリコールなどの多価アルコール類;メチルセロソルブ、セロソルブ、イソプロピロピルセロソルブ、ブチルセロソルブ、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、ジエチレングリコールモノメチルエーテル、ジエチレングリコールモノエチルエーテルなどのエーテルアルコール類;アセトン、メチルエチルケトンなどのケトン類;酢酸メチル、酢酸エチルなどのエステル類;テトラヒドロフランなどのエーテル類;ジメチルホルムアミド、ジメチルスルホキシドなどを挙げることができる。親水性の有機溶媒は1種類のみを用いてよいし、2種以上を併用してもよい。
重合に使用するビニル単量体の種類、生成する重合体の種類などに応じて、前記した親水性有機溶媒のうちから、適切な親水性の有機溶媒を選択して使用する。
そのうちでも、親水性の有機溶媒としては、メタノール、エタノール、イソプロピルアルコールなどの低級アルコールの1種または2種以上が、マクロモノマー(Ma)からなる分散安定剤の分散安定化作用を有効に発揮させて、粒子径の小さな重合体微粒子を安定に製造することができる点から、好ましく用いられる。
本発明では、親水性溶媒中で、マクロモノマー(Ma)からなる分散安定剤の存在下に、ビニル単量体の分散重合を行なうことにより、疎水性溶媒を用いた場合に比べて、重合安定性を良好に維持しながら、生成する重合体微粒子の粒子径、粒度分布、分子量などを容易に且つ円滑に制御することができる。
本発明では、親水性溶媒として、水とアルコールとの混合溶媒、そのうちでも水とメタノール、エタノール、イソプロピルアルコールなどの低級アルコールの1種または2種以上との混合溶媒がより好ましく用いられる。親水性溶媒として水と前記したアルコールとの混合溶媒を用いると、ビニル単量体の種類、組成などに応じて、水とアルコールとの混合比率を調整することで、生成する重合体微粒子の粒子径、粒度分布、分子量などを容易にコントロールすることができ、しかも引火、爆発などの危険性を低減することができ、環境への負荷も小さい。
特に、親水性溶媒として、水とメタノールとの混合溶媒、そのうちでも、水:メタノールの質量比が10:90~50:50、更には20:80~40:60である混合溶媒を用いると、粒子径がより小さくて且つ粒度分布の狭い重合体微粒子を円滑に製造することができるので、一層好ましい。
なお、分散重合において用いる親水性溶媒は、その一部を、20℃での水への溶解度が5g/100ml未満の疎水性溶媒に置き換えて使用してもよい。この場合、疎水性溶媒の割合は、溶媒の全量に対して、好ましくは30質量%以下、より好ましくは15質量%以下、更に好ましくは5質量%以下である。疎水性溶媒の含有割合が30質量%を超える場合、生成粒子の粒度分布が広くなったり、分散重合の際に、凝集物が生成したりする場合がある。
本発明では、親水性溶媒として、水とアルコールとの混合溶媒、そのうちでも水とメタノール、エタノール、イソプロピルアルコールなどの低級アルコールの1種または2種以上との混合溶媒がより好ましく用いられる。親水性溶媒として水と前記したアルコールとの混合溶媒を用いると、ビニル単量体の種類、組成などに応じて、水とアルコールとの混合比率を調整することで、生成する重合体微粒子の粒子径、粒度分布、分子量などを容易にコントロールすることができ、しかも引火、爆発などの危険性を低減することができ、環境への負荷も小さい。
特に、親水性溶媒として、水とメタノールとの混合溶媒、そのうちでも、水:メタノールの質量比が10:90~50:50、更には20:80~40:60である混合溶媒を用いると、粒子径がより小さくて且つ粒度分布の狭い重合体微粒子を円滑に製造することができるので、一層好ましい。
なお、分散重合において用いる親水性溶媒は、その一部を、20℃での水への溶解度が5g/100ml未満の疎水性溶媒に置き換えて使用してもよい。この場合、疎水性溶媒の割合は、溶媒の全量に対して、好ましくは30質量%以下、より好ましくは15質量%以下、更に好ましくは5質量%以下である。疎水性溶媒の含有割合が30質量%を超える場合、生成粒子の粒度分布が広くなったり、分散重合の際に、凝集物が生成したりする場合がある。
《分散安定剤について》
本発明では、ビニル単量体の分散重合時の分散安定剤として、分子鎖の末端に(メタ)アクリロイル基を有し且つ分子鎖の途中にカルボキシル基とエチレン性不飽和基を有するマクロモノマー(Ma)を使用する。前記マクロモノマー(Ma)としては、分子鎖の途中にカルボキシル基とエチレン性不飽和基を有する重合体であればいずれも使用可能である。
その際に、カルボキシル基は、マクロモノマー(Ma)の分子鎖の途中に直接結合していてもよいし、マクロモノマー(Ma)の分子鎖の途中に所定の結合基を介して懸垂状態で結合してもよいし、または前記2つの結合形式が混在していてもよい。
ここで、本発明における「分子鎖の末端に(メタ)アクリロイル基を有し且つ分子鎖の途中にカルボキシル基を有するマクロモノマー」とは、マクロモノマーを形成している分子鎖(重合体鎖)の末端に(メタ)アクリロイル基が結合し且つ当該分子鎖(重合体鎖)の末端ではない途中の位置にカルボキシル基が結合(存在)しているマクロモノマーを意味する。
本発明では、ビニル単量体の分散重合時の分散安定剤として、分子鎖の末端に(メタ)アクリロイル基を有し且つ分子鎖の途中にカルボキシル基とエチレン性不飽和基を有するマクロモノマー(Ma)を使用する。前記マクロモノマー(Ma)としては、分子鎖の途中にカルボキシル基とエチレン性不飽和基を有する重合体であればいずれも使用可能である。
その際に、カルボキシル基は、マクロモノマー(Ma)の分子鎖の途中に直接結合していてもよいし、マクロモノマー(Ma)の分子鎖の途中に所定の結合基を介して懸垂状態で結合してもよいし、または前記2つの結合形式が混在していてもよい。
ここで、本発明における「分子鎖の末端に(メタ)アクリロイル基を有し且つ分子鎖の途中にカルボキシル基を有するマクロモノマー」とは、マクロモノマーを形成している分子鎖(重合体鎖)の末端に(メタ)アクリロイル基が結合し且つ当該分子鎖(重合体鎖)の末端ではない途中の位置にカルボキシル基が結合(存在)しているマクロモノマーを意味する。
前記マクロモノマー(Ma)は、その分子鎖の末端に、(メタ)アクリロイル基を、マクロモノマー(Ma)1分子当たり(すなわち重合体鎖1本当たり)につき、平均して0.2~1個有していることが好ましく、平均して0.5~1個有していることがより好ましい。
分子鎖の末端に結合した(メタ)アクリロイル基の量が少なすぎると、分散安定剤としての機能が低くなり、ビニル単量体の分散重合時により多量のマクロモノマー(Ma)(分散安定剤)を使用することが必要になり、得られる重合体微粒子の物性の低下、コストの上昇などを生じ易くなる。
一方、マクロモノマー(Ma)の分子鎖の末端に結合した(メタ)アクリロイル基の量が多すぎると、ビニル単量体を分散重合して得られる重合体微粒子の粒度分布が広くなり、サイズが不揃いになり易い。
マクロモノマー(Ma)が分子鎖の末端に有する(メタ)アクリロイル基は、メタクリロイル基またはアクリロイル基のいずれでもよいが、メタクリロイル基であることが、より粒度分布の狭い重合体微粒子を得ることができる点から好ましい。
分子鎖の末端に結合した(メタ)アクリロイル基の量が少なすぎると、分散安定剤としての機能が低くなり、ビニル単量体の分散重合時により多量のマクロモノマー(Ma)(分散安定剤)を使用することが必要になり、得られる重合体微粒子の物性の低下、コストの上昇などを生じ易くなる。
一方、マクロモノマー(Ma)の分子鎖の末端に結合した(メタ)アクリロイル基の量が多すぎると、ビニル単量体を分散重合して得られる重合体微粒子の粒度分布が広くなり、サイズが不揃いになり易い。
マクロモノマー(Ma)が分子鎖の末端に有する(メタ)アクリロイル基は、メタクリロイル基またはアクリロイル基のいずれでもよいが、メタクリロイル基であることが、より粒度分布の狭い重合体微粒子を得ることができる点から好ましい。
前記マクロモノマー(Ma)は、その分子鎖の途中に、マクロモノマー(Ma)1g当たりにつき、カルボキシル基を0.5~4meqの割合で有していることが好ましく、1~4meqの割合で有していることがより好ましい。
マクロモノマー(Ma)におけるカルボキシル基の含有量が少なすぎると、マクロモノマー(Ma)の分散安定化性能が低下して、粒度分布の狭い重合体微粒子が得られにくくなり、一方カルボキシル基の含有量が4meq/gを超えるマクロモノマーは実際的には製造が困難である。
マクロモノマー(Ma)におけるカルボキシル基の含有量が少なすぎると、マクロモノマー(Ma)の分散安定化性能が低下して、粒度分布の狭い重合体微粒子が得られにくくなり、一方カルボキシル基の含有量が4meq/gを超えるマクロモノマーは実際的には製造が困難である。
マクロモノマー(Ma)が分子鎖の途中に有するカルボキシル基は、塩基によって中和されていることが好ましい。カルボキシル基は、中和によって親水性溶媒中でカルボキシルアニオンに解離して、静電反発作用を生じ、それによってマクロモノマー(Ma)の分散安定化性能が一層向上して、より少量の分散安定剤量で重合体微粒子間の凝集を抑制することが可能となり、より安定に重合体微粒子を製造することが可能となる。
カルボキシル基の中和剤としては、重合体微粒子製造後の除去が容易であることなどから、アンモニアおよび/または低沸点アミン化合物が好ましく用いられる。
カルボキシル基の中和剤としては、重合体微粒子製造後の除去が容易であることなどから、アンモニアおよび/または低沸点アミン化合物が好ましく用いられる。
マクロモノマー(Ma)は、鎖状の分子構造を有する鎖状重合体であることが、分散安定化効果が高い点、製造が容易である点、取り扱い易い点などの点から好ましい。マクロモノマー(Ma)が鎖状重合体である場合に、その鎖状構造としては、直鎖状、分岐鎖状、星形、櫛形などのいずれであってもよく、そのうちでも、直鎖状であるかまたはほぼ直鎖状であることが、マクロモノマー(Ma)の分散安定化性能、製造の容易性、取り扱い易さなどの点から好ましい。
また、マクロモノマー(Ma)の数平均分子量(Mn)は、分散安定化性能、取り扱い性、製造の容易性などの点から、500~20000であることが好ましく、1000~10000であることがより好ましい。
ここで、本明細書におけるマクロモノマー(Ma)の数平均分子量(Mn)、以下で説明するマクロモノマー(A)[マクロモノマー(Ma)の前駆体]の数平均分子量(Mn)は、ゲルパーミエーションクロマトグラフィー(GPC)にて測定したポリスチレン換算の数平均分子量(Mn)をいい、その具体的な測定法は以下の実施例に記載するとおりである。
ここで、本明細書におけるマクロモノマー(Ma)の数平均分子量(Mn)、以下で説明するマクロモノマー(A)[マクロモノマー(Ma)の前駆体]の数平均分子量(Mn)は、ゲルパーミエーションクロマトグラフィー(GPC)にて測定したポリスチレン換算の数平均分子量(Mn)をいい、その具体的な測定法は以下の実施例に記載するとおりである。
マクロモノマー(Ma)の製法は特に制限されないが、本発明では、マクロモノマー(Ma)として、分子鎖の末端に(メタ)アクリロイル基を有し且つ分子鎖の途中に水酸基を有するマクロモノマー(A)に、ジカルボン酸無水物を付加反応させて得られる、分子鎖の末端に(メタ)アクリロイル基を有し且つ分子鎖の途中にカルボキシル基を有するマクロモノマーが、分散安定化性能に優れる点、マクロモノマー(Ma)を製造する際の設計の自由度が高くて製造が容易である点などから好ましく用いられる。
その際に、前駆体であるマクロモノマー(A)においては、水酸基は、マクロモノマー(A)の分子鎖の途中に直接結合していてもよいし、マクロモノマー(A)の分子鎖の途中に所定の結合基を介して懸垂状態で結合してもよいし、または前記2つの結合形式が混在していてもよい。
また、分子鎖の末端に(メタ)アクリロイル基を有し且つ分子鎖の途中に水酸基を有するマクロモノマー(A)は、鎖状の分子構造をなすマクロモノマーであることが好ましい。
前駆体であるマクロモノマー(A)においては、分子鎖の途中に結合している水酸基の数は、マクロモノマー(A)の分子鎖1本当たりにつき、平均して1個よりも多いことが好ましく、平均して5個以上であることがより好ましい。
その際に、前駆体であるマクロモノマー(A)においては、水酸基は、マクロモノマー(A)の分子鎖の途中に直接結合していてもよいし、マクロモノマー(A)の分子鎖の途中に所定の結合基を介して懸垂状態で結合してもよいし、または前記2つの結合形式が混在していてもよい。
また、分子鎖の末端に(メタ)アクリロイル基を有し且つ分子鎖の途中に水酸基を有するマクロモノマー(A)は、鎖状の分子構造をなすマクロモノマーであることが好ましい。
前駆体であるマクロモノマー(A)においては、分子鎖の途中に結合している水酸基の数は、マクロモノマー(A)の分子鎖1本当たりにつき、平均して1個よりも多いことが好ましく、平均して5個以上であることがより好ましい。
分子鎖の末端に(メタ)アクリロイル基を有し且つ分子鎖の途中に水酸基を有するマクロモノマー(A)にジカルボン酸無水物を反応させて、分子鎖の末端に(メタ)アクリロイル基を有し且つ分子鎖の途中にカルボキシル基を有するマクロモノマー(Ma)を製造するに当たっては、以下の一連の工程《1》~《3》からなる製造方法が、分子量、組成などの設計の自由度が大きく、分散安定化性能により優れるマクロモノマー(Ma)を工業的に生産性よく製造できる点から好ましく採用される。
[マクロモノマー(Ma)の好ましい製造方法]
《1》 カルボキシル基を有する連鎖移動剤および水酸基を有するビニル単量体を含むビニル単量体組成物のラジカル重合により、分子鎖(重合体鎖)の末端にカルボキシル基を有し、分子鎖(重合体鎖)の途中に水酸基を有するプレポリマーを合成する。
《2》 上記《1》で得られたプレポリマーの末端カルボキシル基に、(メタ)アクリロイル基とエポキシ基を有する化合物を付加反応させて、分子鎖の末端に(メタ)アクリロイル基を有し、分子鎖の途中に水酸基を有するマクロモノマー(A)を製造する。
《3》 上記《2》で得られたマクロモノマー(A)の分子鎖の途中に存在する水酸基に、ジカルボン酸無水物を付加反応させて、分子鎖の末端に(メタ)アクリロイル基を有し、且つ分子鎖の途中にカルボキシル基を有するマクロモノマー(Ma)を製造する。
《1》 カルボキシル基を有する連鎖移動剤および水酸基を有するビニル単量体を含むビニル単量体組成物のラジカル重合により、分子鎖(重合体鎖)の末端にカルボキシル基を有し、分子鎖(重合体鎖)の途中に水酸基を有するプレポリマーを合成する。
《2》 上記《1》で得られたプレポリマーの末端カルボキシル基に、(メタ)アクリロイル基とエポキシ基を有する化合物を付加反応させて、分子鎖の末端に(メタ)アクリロイル基を有し、分子鎖の途中に水酸基を有するマクロモノマー(A)を製造する。
《3》 上記《2》で得られたマクロモノマー(A)の分子鎖の途中に存在する水酸基に、ジカルボン酸無水物を付加反応させて、分子鎖の末端に(メタ)アクリロイル基を有し、且つ分子鎖の途中にカルボキシル基を有するマクロモノマー(Ma)を製造する。
前記の工程《1》で使用するカルボキシル基を有する連鎖移動剤としては、メルカプト酢酸、メルカプトプロピオン酸、メルカプト酪酸またはチオサリチル酸などのメルカプタン化合物を挙げることができる。メルカプタン化合物は、ラジカル重合において有効な連鎖移動剤として作用して、重合体の片末端に結合する。
メルカプタン化合物の好ましい使用量は、工程《1》で得られるプレポリマーと等モルとなる量であることが好ましく、製造しようとするプレポリマー、ひいてはマクロモノマー(Ma)の目標とする数平均分子量に基づいて設定する。
メルカプタン化合物の好ましい使用量は、工程《1》で得られるプレポリマーと等モルとなる量であることが好ましく、製造しようとするプレポリマー、ひいてはマクロモノマー(Ma)の目標とする数平均分子量に基づいて設定する。
また、前記の工程《1》で使用する水酸基を有するビニル単量体の好ましい例としては、(メタ)アクリル酸ヒドロキシエチル、(メタ)アクリル酸ヒドロキシプロピル、(メタ)アクリル酸ヒドロキシブチル、(メタ)アクリル酸ヒドロキシヘキシル、などの(メタ)アクリル酸ヒドロキシアルキル[アルキレングリコールのモノ(メタ)アクリル酸エステル];ポリエチレングリコールモノ(メタ)アクリル酸エステル、ポリプロピレングリコールモノ(メタ)アクリル酸エステルなどのポリアルキレングリコールのモノ(メタ)アクリル酸エステル;(メタ)アクリル酸ヒドロキシエチルにε-カプロラクトンを付加させた化合物などの(メタ)アクリル酸ヒドロキシアルキルにラクトンを付加させた化合物などを挙げることができ、これらの1種または2種以上を用いることができる。
そのうちでも、水酸基を有するビニル単量体としては、(メタ)アクリル酸ヒドロキシエチル、(メタ)アクリル酸ヒドロキシプロピル、(メタ)アクリル酸ヒドロキシブチルが分散安定化性能により優れるマクロモノマー(Ma)を工業的に生産性よく製造できる点から好ましく用いられる。
工程《1》における水酸基を有するビニル単量体の使用割合は、最終的に得られるマクロモノマー(Ma)において必要なカルボキシ当量、マクロモノマー(Ma)の親水性/疎水性のバランスなどに応じて適宜設定することができ、一般的には、工程《1》においてプレポリマーの製造に用いるビニル単量体の全質量に対して10~100質量%であることが好ましく、20~90質量%であることがより好ましく、30~70質量%であることが更に好ましい。
そのうちでも、水酸基を有するビニル単量体としては、(メタ)アクリル酸ヒドロキシエチル、(メタ)アクリル酸ヒドロキシプロピル、(メタ)アクリル酸ヒドロキシブチルが分散安定化性能により優れるマクロモノマー(Ma)を工業的に生産性よく製造できる点から好ましく用いられる。
工程《1》における水酸基を有するビニル単量体の使用割合は、最終的に得られるマクロモノマー(Ma)において必要なカルボキシ当量、マクロモノマー(Ma)の親水性/疎水性のバランスなどに応じて適宜設定することができ、一般的には、工程《1》においてプレポリマーの製造に用いるビニル単量体の全質量に対して10~100質量%であることが好ましく、20~90質量%であることがより好ましく、30~70質量%であることが更に好ましい。
また、前記の工程《1》では、水酸基を有するビニル単量体と共に、それ以外の他のビニル単量体を併用してもよい。他のビニル単量体の使用量は、最終的に得られるマクロモノマー(Ma)において必要なカルボキシ当量、マクロモノマー(Ma)の親水性/疎水性のバランスなどに応じて適宜設定することができる。一般的には、工程《1》においてマクロモノマーを製造するのに用いるビニル単量体の全量に対して、0~85質量%であることが好ましく、10~60質量%であることがより好ましく、20~50質量%であることが更に好ましい。
工程《1》で用い得る他のビニル単量体としては、例えば、(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸n-ブチル、(メタ)アクリル酸イソブチル、(メタ)アクリル酸t-ブチル、(メタ)アクリル酸2-エチルヘキシル、(メタ)アクリル酸シクロヘキシル、(メタ)アクリル酸ステアリル、(メタ)アクリル酸ラウリル、(メタ)アクリル酸デシル、(メタ)アクリル酸イソボルニル、(メタ)アクリル酸ベンジル、(メタ)アクリル酸トリフルオロエチル、(メタ)アクリル酸パーフルオロアルキルエチル、(メタ)アクリル酸ジメチルアミノエチルなどの水酸基を持たない(メタ)アクリル酸エステル類;スチレン、α-メチルスチレンなどのスチレン系単量体;アクリロニトリル、α-メチルアクリロニトリルなどの不飽和ニトリル;スチレン、α-メチルスチレンなどのスチレン系単量体;酢酸ビニルなどのカルボン酸のビニルエステル;塩化ビニル、塩化ビニリデンなどの不飽和ハロゲン化合物;エチレン、プロピレン、イソブチレンなどのオレフィン類などを挙げることができ、これらの1種または2種以上を使用することができる。
そのうちでも、工程《1》で用いる他のビニル単量体としては、(メタ)アクリル酸エステル、スチレンから選ばれる1種以上のビニル単量体が、最終的に得られるマクロモノマー(Ma)の分散安定化性能、重合体微粒子の物性などの点からより好ましく用いられる。
その際に、(メタ)アクリル酸エステルとしては、(メタ)アタクリル酸メチル、(メタ)アクリル酸イソブチルなどの(メタ)アクリル酸の脂肪族低級アルコールエステル、(メタ)アクリル酸シクロヘキシルなどの(メタ)アクリル酸の脂環族アルコールエステル、特に(メタ)アクリル酸の脂肪族低級アルコールエステルが分散安定化効果に優れるマクロモノマー(Ma)を生成する点から好ましく用いられる。
その際に、(メタ)アクリル酸エステルとしては、(メタ)アタクリル酸メチル、(メタ)アクリル酸イソブチルなどの(メタ)アクリル酸の脂肪族低級アルコールエステル、(メタ)アクリル酸シクロヘキシルなどの(メタ)アクリル酸の脂環族アルコールエステル、特に(メタ)アクリル酸の脂肪族低級アルコールエステルが分散安定化効果に優れるマクロモノマー(Ma)を生成する点から好ましく用いられる。
工程《1》で得られるプレポリマーにおける水酸基当量(プレポリマー1g当たりの水酸基のミリモル数)は、0.8~8meq/gであることが好ましく、2~6meq/gであることがより好ましい。
また、工程《1》で得られるプレポリマーの数平均分子量(Mn)は、最終的に得られるマクロモノマー(Ma)の分散安定化性能、取り扱い性、重合体微粒子の物性などの点から、500~20000であることが好ましく、1000~10000であることがより好ましい。
工程《1》におけるプレポリマーを得るための重合法としては、重合溶媒として水およびアルコールを含まない、溶液重合法、および分散重合法が好ましく採用される。重合溶媒として水またはアルコールを含む場合、工程《3》におけるカルボン酸無水物の付加反応が困難となるため工程《3》の前に溶剤置換が必要となるため工程が煩雑となる。
上記した次の工程《2》で用いる(メタ)アクリロイル基とエポキシ基を有する化合物としては、例えば、グリシジル(メタ)アクリレート、3,4-エポキシシクロヘキシルメチル(メタ)アクリレート、4-ヒドロキシブチル(メタ)アクリレートグリシジルエーテルなどを挙げることができる。
上記した最後の工程《3》で使用するジカルボン酸無水物としては、例えば、無水コハク酸、無水フタル酸、無水シトラコン酸、無水メチルコハク酸または無水アセチルリンゴ酸などを挙げることができ、これらの1種または2種以上を用いることができる。そのうちでも、無水コハク酸が、付加反応性に優れ、かつマクロモノマー(Ma)の分散安定性性能に優れる点から好ましく用いられる。
工程《3》では、マクロモノマー(A)の分子鎖の途中に存在する水酸基の全てにジカルボン酸無水物を付加反応させてもよいし、マクロモノマー(A)の分子鎖の途中に存在する水酸基の一部にジカルボン酸無水物を付加反応させて生成するマクロモノマー(Ma)中に多少の水酸基を残留させてもよい。
工程《3》では、マクロモノマー(A)の分子鎖の途中に存在する水酸基の全てにジカルボン酸無水物を付加反応させてもよいし、マクロモノマー(A)の分子鎖の途中に存在する水酸基の一部にジカルボン酸無水物を付加反応させて生成するマクロモノマー(Ma)中に多少の水酸基を残留させてもよい。
上記した一連の工程《1》~《3》によって製造される、分子鎖の末端に(メタ)アクリロイル基を有し且つ分子鎖の途中にカルボキシル基を有するマクロモノマー(Ma)は、重合体微粒子の製造に用いるビニル単量体との共重合性に優れ、しかも当該マクロモノマー(Ma)の分子鎖の途中に存在するカルボキシル基が親水性溶媒中で生成した重合体微粒子の分散安定化に有効に機能する。そのため、マクロモノマー(Ma)は、分散重合における分散安定剤として極めて優れた性能を発揮し、より少量の使用量で、粒度分布の狭い、粒子径の均一な重合体微粒子の安定な製造を可能にし、さらに狭い粒度分布を維持したまま重合体微粒子の粒子径の微小化をもたらす点で、極めて有利である。
特に、上記した一連の工程《1》~《3》によって製造されるマクロモノマー(Ma)は、分子鎖の途中に存在するカルボキシル基が、マクロモノマー(Ma)を形成している重合体鎖(バックボーン)から比較的離れて懸垂状態で位置するため、カルボキシル基による分散安定化効果が特に有効に発揮されるため好ましい。
特に、上記した一連の工程《1》~《3》によって製造されるマクロモノマー(Ma)は、分子鎖の途中に存在するカルボキシル基が、マクロモノマー(Ma)を形成している重合体鎖(バックボーン)から比較的離れて懸垂状態で位置するため、カルボキシル基による分散安定化効果が特に有効に発揮されるため好ましい。
《重合体微粒子製造用のビニル単量体について》
分散重合によって重合体微粒子を製造するためのビニル単量体としては、重合前は反応液である親水性溶媒に溶解するが、重合後は反応液(親水性溶媒)に溶解しないビニル単量体のいずれもが使用可能である。
分散重合に使用するビニル単量体の種類は、親水性溶媒の種類や組成などによって異なり得るが、例えば、スチレン、α-メチルスチレンなどのスチレン系単量体、(メタ)アクリル酸エステル、加水分解性シリル基を有するビニル単量体の1種または2種以上が、得られる重合体微粒子の性能が優れる点から好ましく用いられる。
分散重合によって重合体微粒子を製造するためのビニル単量体としては、重合前は反応液である親水性溶媒に溶解するが、重合後は反応液(親水性溶媒)に溶解しないビニル単量体のいずれもが使用可能である。
分散重合に使用するビニル単量体の種類は、親水性溶媒の種類や組成などによって異なり得るが、例えば、スチレン、α-メチルスチレンなどのスチレン系単量体、(メタ)アクリル酸エステル、加水分解性シリル基を有するビニル単量体の1種または2種以上が、得られる重合体微粒子の性能が優れる点から好ましく用いられる。
ビニル単量体として好ましく用いられる前記した(メタ)アクリル酸エステルの具体例としては、メタクリル酸メチル、メタクリル酸エチル、メタクリル酸プロピル、メタクリル酸n-ブチル、メタクリル酸イソブチル、メタクリル酸t-ブチル、メタクリル酸ペンチル、メタクリル酸2-エチルヘキシル、メタクリル酸ラウリル、メタクリル酸ステアリルなどのメタクリル酸のアルキルエステル;アクリル酸メチル、アクリル酸エチル、アクリル酸プロピル、アクリル酸n-ブチル、アクリル酸イソブチル、アクリル酸t-ブチル、アクリル酸ペンチル、アクリル酸2-エチルヘキシル、アクリル酸ラウリル、アクリル酸ステアリルなどのアクリル酸のアルキルエステル;(メタ)アクリル酸シクロヘキシル、(メタ)アクリル酸イソボルニルなどの(メタ)アクリル酸の脂環基含有エステル;(メタ)アクリル酸グリシジル、(メタ)アクリル酸テトラヒドロフルフリルなどの(メタ)アクリル酸の複素環基含有エステル;(メタ)アクリル酸2-ヒドロキシエチル、(メタ)アクリル酸ヒドロキシプロピルなどの(メタ)アクリル酸のヒドロキシアルキルエステル;(メタ)アクリル酸2-メトキシエチルなどの(メタ)アクリル酸のアルコキシアルキルエステル;ジ(メタ)アクリル酸エチレングリコール、トリ(メタ)アクリル酸トリメチロールプロパン、トリ(メタ)アクリル酸ペンタエリスリトール、テトラ(メタ)アクリル酸ペンタエリスリトールなどの(メタ)アクリル酸の多価アルコールエステル;(メタ)アクリル酸アリルなどを挙げることができ、これらの1種または2種以上を用いることができる。
また、前記した加水分解性シリル基を有するビニル単量体としては、加水分解性シリル基を1個以上有するビニル単量体のいずれもが使用でき、例えば、ビニルトリメトキシシラン、ビニルトリエトキシシラン、ビニルメチルジメトキシシラン、ビニルジメチルメトキシシランンなどのビニルシラン類;アクリル酸トリメトキシシリルプロピル、アクリル酸トリエトキシシリルプロピル、アクリル酸メチルジメトキシシリルプロピルなどのシリル基含有アクリル酸エステル類;メタクリル酸トリメトキシシリルプロピル、メタクリル酸トリエトキシシリルプロピル、メタクリル酸メチルジメトキシシリルプロピル、メタクリル酸ジメチルメトキシシリルプロピルなどのシリル基含有メタクリル酸エステル類;トリメトキシシリルプロピルビニルエーテルなどのシリル基含有ビニルエーテル類;トリメトキシシリルウンデカン酸ビニルなどのシリル基含有ビニルエステル類などを挙げることができ、これらの1種または2種以上を用いることができる。
そのうちでも、加水分解性シリル基を有するビニル単量体としては、加水分解性シリル基含有アクリル酸エステル、加水分解性シリル基含有メタクリル酸エステルが好ましく用いられ、特にメタクリル酸トリエトキシシリルプロピル(すなわちトリメトキシシリルプロピルメタクリレート)などがより好ましく用いられる。
そのうちでも、加水分解性シリル基を有するビニル単量体としては、加水分解性シリル基含有アクリル酸エステル、加水分解性シリル基含有メタクリル酸エステルが好ましく用いられ、特にメタクリル酸トリエトキシシリルプロピル(すなわちトリメトキシシリルプロピルメタクリレート)などがより好ましく用いられる。
生成する重合体微粒子間の凝集を防止しながら、分散重合を円滑に行なって、粒度分布の狭い、均一なサイズの、物性、取り扱い性などに優れる重合体微粒子を得るためには、重合体微粒子の製造に用いるビニル単量体の全質量に基づいて、(メタ)アクリル酸エステルの割合が60質量%以上であることが好ましく、65質量%以上であることがより好ましく、70質量%以上であることが更に好ましい。その際の(メタ)アクリル酸エステルとしては、(メタ)アクリル酸の炭素数1~12のアルキルエステル、シクロアルキルエステル、特に(メタ)アクリル酸の炭素数1~4のアルキルエステルが、得られる重合体微粒子の性能が優れる点から好ましく用いられる。
重合体微粒子の製造に当たって、エチレン性不飽和基(ビニル基)を2個以上有する多官能ビニル単量体および/または加水分解性シリル基を有するビニル単量体を使用すると、耐熱性や耐溶剤性に優れる架橋した重合体微粒子を製造することができる。
架橋した重合体微粒子を製造するために、エチレン性不飽和基を2個以上有する多官能ビニル単量体を使用すると、重合の進行とともに架橋反応も進行するため、多官能ビニル単量体の割合が多いと重合体微粒子が凝集しやすくなる。そのため、多官能ビニル単量体を用いて架橋した重合体微粒子を製造する場合は、多官能ビニル単量体の使用割合を、重合体微粒子の製造に用いるビニル単量体の全量に対して0.5~10質量%とすることが好ましい。
多官能ビニル単量体としては、例えば、上記したジ(メタ)アクリル酸エチレングリコール、トリ(メタ)アクリル酸トリメチロールプロパン、トリ(メタ)アクリル酸ペンタエリスリトール、テトラ(メタ)アクリル酸ペンタエリスリトールなどの(メタ)アクリル酸の多価アルコールエステル、(メタ)アクリル酸アリルなどを挙げることができ、これらの1種または2種以上を用いることができる。
そのうちでも、分散重合時における重合体微粒子間の凝集の抑制が容易である点から、(メタ)アクリル酸アリルが好ましく用いられる。
多官能ビニル単量体としては、例えば、上記したジ(メタ)アクリル酸エチレングリコール、トリ(メタ)アクリル酸トリメチロールプロパン、トリ(メタ)アクリル酸ペンタエリスリトール、テトラ(メタ)アクリル酸ペンタエリスリトールなどの(メタ)アクリル酸の多価アルコールエステル、(メタ)アクリル酸アリルなどを挙げることができ、これらの1種または2種以上を用いることができる。
そのうちでも、分散重合時における重合体微粒子間の凝集の抑制が容易である点から、(メタ)アクリル酸アリルが好ましく用いられる。
架橋した重合体微粒子を製造するために、加水分解性のシリル基を有するビニル単量体を用いる場合は、分散重合時に反応液のpHを中性付近に保つことで重合時の架橋反応を抑制することができ、重合後に酸触媒または塩基性触媒を添加して重合体微粒子中に存在する加水分解性シリル基の加水分解-縮合-シロキサンの形成反応を行わせることで、架橋した重合体微粒子を得ることができる。その際の触媒としては、アンモニア、トリエチルアミンなどの低沸点塩基性化合物が架橋反応後に除去が容易であることから好ましく用いられる。
加水分解性シリル基を有するビニル単量体を用いて架橋した重合体微粒子を製造する場合は、加水分解性シリル基を有するビニル単量体の使用割合を、ビニル単量体の全量に対して0.5~70質量%とすることが好ましく、1~30質量%とすることがより好ましい。
加水分解性シリル基を有するビニル単量体としては、上記で挙げたものの1種または2種以上を用いることができる。
加水分解性シリル基を有するビニル単量体を用いて架橋した重合体微粒子を製造する場合は、加水分解性シリル基を有するビニル単量体の使用割合を、ビニル単量体の全量に対して0.5~70質量%とすることが好ましく、1~30質量%とすることがより好ましい。
加水分解性シリル基を有するビニル単量体としては、上記で挙げたものの1種または2種以上を用いることができる。
《分散重合による重合体微粒子の製造》
マクロモノマー(Ma)からなる分散安定剤の存在下に、ビニル単量体を親水性溶媒中で分散重合して、重合体微粒子を製造する。
重合は、ビニル単量体を一括して反応器に仕込んで分散重合する回分重合法、ビニル単量体を分割して反応器に仕込んで分散重合する分割重合法、ビニル単量体を反応器に連続的に添加して分散重合する連続添加重合法(半回分重合法)のいずれを採用してもよい。重合熱の制御が必要な場合には連続添加重合法を採用することが好ましい。
マクロモノマー(Ma)からなる分散安定剤の存在下に、ビニル単量体を親水性溶媒中で分散重合して、重合体微粒子を製造する。
重合は、ビニル単量体を一括して反応器に仕込んで分散重合する回分重合法、ビニル単量体を分割して反応器に仕込んで分散重合する分割重合法、ビニル単量体を反応器に連続的に添加して分散重合する連続添加重合法(半回分重合法)のいずれを採用してもよい。重合熱の制御が必要な場合には連続添加重合法を採用することが好ましい。
ビニル単量体を分散重合して重合体微粒子を製造する際の、マクロモノマー(Ma)からなる分散安定剤の使用量は、分散重合に用いるビニル単量体の全量に対して、0.2~10質量%であることが好ましく、0.5~5.0質量%であることがより好ましい。マクロモノマー(Ma)からなる分散安定剤の使用量が少なすぎると、重合時の安定性が低下して生成した重合体の凝集などが生じ易くなり、一方当該分散安定剤の使用量が多すぎると生成する重合体微粒子の粒度分布が広くなって、サイズが不揃いになり易い。
ビニル単量体の分散重合時における親水性溶媒の使用量は、ビニル単量体の全量に対して、1~50質量倍であることが好ましく、2~10質量倍であることがより好ましい。親水性溶媒の使用量が少なすぎると、分散重合時の重合安定性が不良となる場合があり、また粒度分布が広くなり易く、一方親水性溶媒の使用量が多すぎると重合体微粒子の収率が低下し生産性が悪くなり易い。
ビニル単量体を分散重合する際の重合開始剤としては、ラジカル重合において通常用いられている重合開始剤を使用することができ、特に制限されない。そのうちでも親水性溶媒に溶解するラジカル重合開始剤が好ましく用いられる。本発明で用い得るラジカル重合開始剤としては、例えば、t-ブチルパーオキシピバレート、t-ブチルパーオキシ-2-エチルヘキサノエート、ジ-t-ブチルパーオキサイド、過酸化ベンゾイル、過酸化ラウロイル、オルソクロロ過酸化ベンゾイル、オルソメトキシ過酸化ベンゾイル、3,5,5-トリメチルヘキサノイルパーオキサイドなどの有機過酸化物;アゾビスイソブチロニトリル、アゾビスシクロヘキサカルボニトリル、アゾビス(2,4-ジメチルバレロニトリル)(V-65)、2,2'-アゾビス(2-アミジノプロパン)ジヒドロクロリド(V-50)、4,4'-アゾビス(4-シアノバレリックアシッド)(V-501)などのアゾ系化合物;過硫酸カリウムなどの過硫酸系化合物などを挙げることができ、これらの1種または2種以上を用いることができる。
そのうちでも、重合開始剤としては、t-ブチルパーオキシピバレート、アゾビス(2,4-ジメチルバレロニトリル)が、粒度分布の狭い重合体微粒子を生産性よく製造できる点から好ましく用いられる。
そのうちでも、重合開始剤としては、t-ブチルパーオキシピバレート、アゾビス(2,4-ジメチルバレロニトリル)が、粒度分布の狭い重合体微粒子を生産性よく製造できる点から好ましく用いられる。
重合開始剤の使用量は特に限定されず、製造する重合体微粒子の分子量、使用する重合開始剤の分解温度などを考慮して適宜決めることができる。一般的には、ビニル単量体の合計100質量部に対して、重合開始剤を0.1~40質量部の量で使用することが好ましく、1~10質量部の量で使用することがより好ましい。重合開始剤の使用量が少なすぎると重合体微粒子の収率が低くなり易く、一方重合開始剤の使用量が多すぎると重合速度が大きくなりすぎて、分散重合を安定に行ないにくくなる。
分散重合時の重合温度としては、40~80℃が好ましく、45~70℃がより好ましい。重合温度が低すぎると、ビニル単量体の重合速度が低くなって重合体微粒子を生産性よく製造できにくくなり、一方重合温度が高すぎると、生成した重合体微粒子間の凝集などが生じ易くなり、また重合体微粒子の粒度分布が広くなる。
本発明では、生成する重合体微粒子の分散安定性をより向上させ、粒度分布をより狭くするため、重合体微粒子に磁性、導電性を付与するため、もしくは重合体微粒子を着色するために、他の添加剤をマクロモノマー(Ma)よりなる分散安定剤と併用してもよい。他の添加剤としては、例えば、コバルト、鉄、アルミニウムなどの金属やこれらの合金;酸化鉄、酸化銅、酸化ニッケルなどからなる金属酸化物の微粉体;カーボンブラックニグロシン染料、アニリンブルーなどの顔料、染料類:高級アルコール硫酸エステル塩、アルキルベンゼンスルホン酸塩、α-オレフィンスルホン酸塩、リン酸エステルなどの陰イオン界面活性剤;脂肪酸アミド誘導体、多価アルコール誘導体などの非イオン界面活性剤、ヒドロキシプロピルセルロース、ポリアクリル酸、ポリビニルピロリドン、ポリエチレングリコール、ポリビニルアルコールなどの高極性高分子化合物などを挙げることができ、これらの1種または2種以上を用いることができる。
分散重合により生成した重合体微粒子は、親水性溶媒中に分散させたままで重合体微粒子の分散液の状態で使用してもよいし、親水性溶媒から分離回収して使用してもよい。
重合体微粒子を親水性溶媒から分離回収する方法としては、例えば、沈降分離法、遠心分離法、デカンテーション法などを採用することができ、更に必要に応じて洗浄、乾燥を行う。
本発明の方法による場合は、重合の開始とともに、生成した重合体が親水性溶媒に溶解せずに次々に析出凝集するが、その際にマクロモノマー(Ma)とビニル単量体の共重合により極めて分散安定化効果の高いグラフトポリマーも同時に効率よく生成するため、重合の極初期段階でより多くの安定粒子が形成される。さらにビニル単量体の重合が進行する段階においては、初期に形成された安定粒子が重合の進行とともに成長する速度に合わせて、グラフトポリマー[マクロモノマー(Ma)とビニル単量体の共重合により生成]が主に成長粒子表面で生成するため、粒子間の凝集、および新粒子の発生が高度に抑制されて、極めて単分散性に優れる、粒度分布の狭い重合体微粒子を再現性よく、安定にかつ簡便に製造することができる。また、本発明ではマクロモノマー(Ma)の効果により、従来の分散安定剤を使用した場合に比べ、より小さな(より多くの)初期安定化粒子を形成することが可能であり、かつその成長を安定に進行させることができるため、より小さくかつ単分散性に優れた重合体微粒子を製造することが可能となる。
重合体微粒子を親水性溶媒から分離回収する方法としては、例えば、沈降分離法、遠心分離法、デカンテーション法などを採用することができ、更に必要に応じて洗浄、乾燥を行う。
本発明の方法による場合は、重合の開始とともに、生成した重合体が親水性溶媒に溶解せずに次々に析出凝集するが、その際にマクロモノマー(Ma)とビニル単量体の共重合により極めて分散安定化効果の高いグラフトポリマーも同時に効率よく生成するため、重合の極初期段階でより多くの安定粒子が形成される。さらにビニル単量体の重合が進行する段階においては、初期に形成された安定粒子が重合の進行とともに成長する速度に合わせて、グラフトポリマー[マクロモノマー(Ma)とビニル単量体の共重合により生成]が主に成長粒子表面で生成するため、粒子間の凝集、および新粒子の発生が高度に抑制されて、極めて単分散性に優れる、粒度分布の狭い重合体微粒子を再現性よく、安定にかつ簡便に製造することができる。また、本発明ではマクロモノマー(Ma)の効果により、従来の分散安定剤を使用した場合に比べ、より小さな(より多くの)初期安定化粒子を形成することが可能であり、かつその成長を安定に進行させることができるため、より小さくかつ単分散性に優れた重合体微粒子を製造することが可能となる。
分散重合により得られた重合体微粒子は、架橋処理などを行なわずにそのままで使用してもよいし、必要に応じて更に架橋処理などを施してから使用してもよいし、或いは新たな官能基を導入する等の処理を施してもよい。
特に、分散重合により得られる重合体微粒子が、架橋されていない重合体微粒子である場合に、分散重合で得られる重合体微粒子をシード粒子として、当該シード粒子に多官能ビニル単量体を含むビニル単量体を吸収させた後、重合させて架橋すると、耐熱性、耐薬品性、強度、耐溶剤性などの向上した架橋した重合体微粒子を得ることができる。
前記多官能ビニル単量体としては、重合性に優れる多官能(メタ)アクリレート化合物、多官能アリル化合物、多官能プロペニル化合物、ジビニルベンゼンなどが好ましく用いられる。多官能(メタ)アクリレート化合物の具体例としては、エチレングリコールジ(メタ)アクリレート、プロピレングリコールジ(メタ)アクリレート、1,6-ヘキサンジオールジ(メタ)アクリレート、ポリエチレングリコールジ(メタ)アクリレート、ポリプロピレングリコールジ(メタ)アクリレートなどの2価アルコールのジ(メタ)アクリレート類;トリメチロールプロパントリ(メタ)アクリレート、トリメチロールプロパンエチレンオキサイド変性体のトリ(メタ)アクリレート、グリセリントリ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレートなどの3価以上の多価アルコールのトリ(メタ)アクリレート、テトラ(メタ)アクリレートなどのポリ(メタ)アクリレートを挙げることができ、これらの1種または2種以上を用いることができる。そのうちでもエチレングリコールジ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレートが、シード粒子への吸収が容易であること、さらに架橋密度を高くすることが可能であること、および重合安定性に優れるなどの点から好ましく用いられる。
特に、分散重合により得られる重合体微粒子が、架橋されていない重合体微粒子である場合に、分散重合で得られる重合体微粒子をシード粒子として、当該シード粒子に多官能ビニル単量体を含むビニル単量体を吸収させた後、重合させて架橋すると、耐熱性、耐薬品性、強度、耐溶剤性などの向上した架橋した重合体微粒子を得ることができる。
前記多官能ビニル単量体としては、重合性に優れる多官能(メタ)アクリレート化合物、多官能アリル化合物、多官能プロペニル化合物、ジビニルベンゼンなどが好ましく用いられる。多官能(メタ)アクリレート化合物の具体例としては、エチレングリコールジ(メタ)アクリレート、プロピレングリコールジ(メタ)アクリレート、1,6-ヘキサンジオールジ(メタ)アクリレート、ポリエチレングリコールジ(メタ)アクリレート、ポリプロピレングリコールジ(メタ)アクリレートなどの2価アルコールのジ(メタ)アクリレート類;トリメチロールプロパントリ(メタ)アクリレート、トリメチロールプロパンエチレンオキサイド変性体のトリ(メタ)アクリレート、グリセリントリ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレートなどの3価以上の多価アルコールのトリ(メタ)アクリレート、テトラ(メタ)アクリレートなどのポリ(メタ)アクリレートを挙げることができ、これらの1種または2種以上を用いることができる。そのうちでもエチレングリコールジ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレートが、シード粒子への吸収が容易であること、さらに架橋密度を高くすることが可能であること、および重合安定性に優れるなどの点から好ましく用いられる。
分散重合により得られる重合体微粒子からなるシード粒子に吸収させて重合させるビニル単量体は、上記した多官能ビニル単量体と共に単官能ビニル単量体を含有するビニル単量体混合物であることが、シード粒子へのビニル単量体の吸収および重合安定性が良好になる点から好ましい。その際の単官能ビニル単量体としては、シード粒子(分散重合により得られる重合体微粒子)の製造に用いたビニル単量体と同じか又は近似したビニル単量体を用いることが、シード粒子の膨潤が良好に行なわれ、それによってシード粒子へのビニル単量体混合物の吸収を促進させて、架橋が十分になされた架橋した重合体微粒子が得られる点から好ましい。
分散重合により得られる重合体微粒子をシード粒子として用いて架橋した重合体微粒子を製造する際のシード粒子と架橋性単量体を含むビニル単量体(ビニル単量体混合物)の使用割合は、シード粒子1質量部に対して、ビニル単量体(ビニル単量体混合物)の割合が0.5~10質量部であることが好ましく、0.7~5質量部であることがより好ましい。その際に、ビニル単量体混合物の全質量に基づいて、多官能ビニル単量体の割合を3~95質量%、特に5~75質量%にすることが好ましい。
上記した本発明の分散重合で得られる重合体微粒子は、架橋していない重合体微粒子および架橋した重合体微粒子のいずれの場合にも、一般に、その体積平均粒子径(dv)が0.7~2.0μmであって、極めて微小な粒子状をなし、しかも粒子サイズの変動係数(Cv)が20%以下であって粒度分布が狭く、均一なサイズを有している。
本発明で得られる重合体微粒子では、その体積平均粒子径(dv)が0.8~1.4μmであることが好ましく、また粒子サイズの変動係数(Cv)が10%以下であることが好ましく、本発明の方法により当該重合体微粒子を円滑に製造することができる。
ここで、本明細書における重合体微粒子の体積平均粒子径(dv)は、走査型電子顕微鏡を使用して重合体微粒子を写真撮影した粒子像に基づいて算出される体積平均粒子径(dv)であり、その詳細な算出方法は、以下の実施例に記載するとおりである。
また、本明細書における重合体微粒子の粒子サイズの変動係数(Cv)は、以下の実施例に記載した方法で求められる粒子サイズの変動係数(Cv)をいう。
本発明で得られる重合体微粒子では、その体積平均粒子径(dv)が0.8~1.4μmであることが好ましく、また粒子サイズの変動係数(Cv)が10%以下であることが好ましく、本発明の方法により当該重合体微粒子を円滑に製造することができる。
ここで、本明細書における重合体微粒子の体積平均粒子径(dv)は、走査型電子顕微鏡を使用して重合体微粒子を写真撮影した粒子像に基づいて算出される体積平均粒子径(dv)であり、その詳細な算出方法は、以下の実施例に記載するとおりである。
また、本明細書における重合体微粒子の粒子サイズの変動係数(Cv)は、以下の実施例に記載した方法で求められる粒子サイズの変動係数(Cv)をいう。
本発明の分散重合法により得られる重合体微粒子は、ミクロンサイズの極めて微小な粒子径を有し、しかも粒度分布が狭くて均一なサイズを有し、単分散性で粒子間の凝集がなく、また架橋した重合体微粒子では耐熱性、耐薬品性、強度などにも優れているため、それらの特性を活かして、液晶表示用スペーサ、液晶表示用光拡散フィルム、拡散板などの光拡散剤、導電性微粒子、カラム用充填剤、診断薬用の担体などをはじめとして種々の用途に好適に使用することができる。
以下に実施例などによって本発明について具体的に説明するが、本発明は以下の例に何ら限定されるものではない。
以下の例において、プレポリマー[マクロモノマー(A)製造用の前駆体]、マクロモノマー(A)およびマクロモノマー(Ma)の重量平均分子量(Mw)および数平均分子量(Mn)、当該プレポリマーへのグリシジルメタクリレートの付加率、マクロモノマー(A)およびマクロモノマー(Ma)が分子鎖の末端に有するメタクリロイル基量、マクロモノマー(Ma)の酸価、重合安定性、重合体微粒子の体積平均粒子径(dv)、数平均粒子径(dn)、粒子サイズの変動係数(Cv)、副生小粒子量、並びに架橋した重合体微粒子の耐メチルエチルケトン性(耐溶剤性)の測定または評価は、以下のようにして行なった。
以下の例において、プレポリマー[マクロモノマー(A)製造用の前駆体]、マクロモノマー(A)およびマクロモノマー(Ma)の重量平均分子量(Mw)および数平均分子量(Mn)、当該プレポリマーへのグリシジルメタクリレートの付加率、マクロモノマー(A)およびマクロモノマー(Ma)が分子鎖の末端に有するメタクリロイル基量、マクロモノマー(Ma)の酸価、重合安定性、重合体微粒子の体積平均粒子径(dv)、数平均粒子径(dn)、粒子サイズの変動係数(Cv)、副生小粒子量、並びに架橋した重合体微粒子の耐メチルエチルケトン性(耐溶剤性)の測定または評価は、以下のようにして行なった。
(1)重量平均分子量(Mw)および数平均分子量(Mn):
ゲルパーミエーションクロマトグラフィー(GPC)により、プレポリマー[分子鎖の末端にカルボキシル基を有し且つ分子鎖の途中の水酸基を有する、マクロモノマー(A)製造用の前駆体]、マクロモノマー(A)(分子鎖の末端にメタクリロイル基を有し且つ分子鎖の途中に水酸基を有するマクロモノマー)およびマクロモノマー(Ma)(分子鎖の末端にメタクリロイル基を有し且つ分子鎖の途中にカルボキシル基を有するマクロモノマー)の分子量を測定して、ポリスチレン換算で当該プレポリマー、マクロモノマー(A)およびマクロモノマー(Ma)の重量平均分子量(Mw)と数平均分子量(Mn)を求めた。
具体的には、GPC装置として、東ソー社製「HLC-8120GPC」を使用し、カラムとしてTSKgel super MP-M(4本)を使用して、各反応液を溶媒テトラヒドロフランに溶解した溶液(濃度5mg/ml)をサンプルとして、展開溶媒にテトラヒドロフランを用い、流速0.35ml/分、カラム温度40℃の条件にて測定を行った。測定結果を標準ポリスチレンにて作成した検量線を用いて解析し、ポリスチレン換算でのプレポリマー、マクロモノマー(A)およびマクロモノマー(Ma)の重量平均分子量(Mw)と数平均分子量(Mn)を求めた。
ゲルパーミエーションクロマトグラフィー(GPC)により、プレポリマー[分子鎖の末端にカルボキシル基を有し且つ分子鎖の途中の水酸基を有する、マクロモノマー(A)製造用の前駆体]、マクロモノマー(A)(分子鎖の末端にメタクリロイル基を有し且つ分子鎖の途中に水酸基を有するマクロモノマー)およびマクロモノマー(Ma)(分子鎖の末端にメタクリロイル基を有し且つ分子鎖の途中にカルボキシル基を有するマクロモノマー)の分子量を測定して、ポリスチレン換算で当該プレポリマー、マクロモノマー(A)およびマクロモノマー(Ma)の重量平均分子量(Mw)と数平均分子量(Mn)を求めた。
具体的には、GPC装置として、東ソー社製「HLC-8120GPC」を使用し、カラムとしてTSKgel super MP-M(4本)を使用して、各反応液を溶媒テトラヒドロフランに溶解した溶液(濃度5mg/ml)をサンプルとして、展開溶媒にテトラヒドロフランを用い、流速0.35ml/分、カラム温度40℃の条件にて測定を行った。測定結果を標準ポリスチレンにて作成した検量線を用いて解析し、ポリスチレン換算でのプレポリマー、マクロモノマー(A)およびマクロモノマー(Ma)の重量平均分子量(Mw)と数平均分子量(Mn)を求めた。
(2)プレポリマーへのグリシジルメタクリレートの付加率:
プレポリマー[分子鎖の末端にカルボキシル基を有し且つ分子鎖の途中に水酸基を有する、マクロモノマー(A)製造用の前駆体]へのグリシジルメタクリレートの付加率は、反応液の酸価を測定して算出した。
具体的には、プレポリマーにグリシジルメタクリレートを反応させて得られた、マクロモノマー(A)(分子鎖の末端にメタクリロイル基を有し且つ分子鎖の途中に水酸基を有するマクロモノマー]を含有する反応液の一部を試料として採取して秤量した後、テトラヒドロフランにて希釈した試料を、オートタイトレーター(HIRANUMA製「COM-900」)を使用して、中和滴定溶液として0.1N-水酸化カリウム溶液を用いて、中和滴定して、反応液の酸価を測定し、測定した酸価の値から、プレポリマーの分子鎖の末端に導入された連載移動剤に由来するカルボキシル基の消費率、すなわちプレポリマーの分子鎖末端のカルボキシル基へのグリシジルメタクリレートの付加反応率を算出した。
プレポリマー[分子鎖の末端にカルボキシル基を有し且つ分子鎖の途中に水酸基を有する、マクロモノマー(A)製造用の前駆体]へのグリシジルメタクリレートの付加率は、反応液の酸価を測定して算出した。
具体的には、プレポリマーにグリシジルメタクリレートを反応させて得られた、マクロモノマー(A)(分子鎖の末端にメタクリロイル基を有し且つ分子鎖の途中に水酸基を有するマクロモノマー]を含有する反応液の一部を試料として採取して秤量した後、テトラヒドロフランにて希釈した試料を、オートタイトレーター(HIRANUMA製「COM-900」)を使用して、中和滴定溶液として0.1N-水酸化カリウム溶液を用いて、中和滴定して、反応液の酸価を測定し、測定した酸価の値から、プレポリマーの分子鎖の末端に導入された連載移動剤に由来するカルボキシル基の消費率、すなわちプレポリマーの分子鎖末端のカルボキシル基へのグリシジルメタクリレートの付加反応率を算出した。
(3)マクロモノマー(A)およびマクロモノマー(Ma)が分子鎖の末端に有するメタクリロイル量などのエチレン性不飽和基の1分子当たりの個数:
本実施例の条件では、プレポリマーは、実質的にすべてのポリマー鎖の片末端に連鎖移動剤由来のカルボキシル基を有しているとみなすことができるため、上記(2)で求めたプレポリマーへのグリシジルメタクリレートの付加反応率をマクロモノマー(A)およびマクロモノマー(Ma)が分子鎖の末端に有するメタクリロイル量等のエチレン性不飽和基の1分子当たりの個数とした。
本実施例の条件では、プレポリマーは、実質的にすべてのポリマー鎖の片末端に連鎖移動剤由来のカルボキシル基を有しているとみなすことができるため、上記(2)で求めたプレポリマーへのグリシジルメタクリレートの付加反応率をマクロモノマー(A)およびマクロモノマー(Ma)が分子鎖の末端に有するメタクリロイル量等のエチレン性不飽和基の1分子当たりの個数とした。
(4)マクロモノマー(Ma)の酸価:
マクロモノマー(A)(分子鎖の末端にメタクリロイル基を有し且つ分子鎖の途中に水酸基を有するマクロモノマー)にジカルボン酸無水物を反応させて得られた、マクロモノマー(Ma)(分子鎖の末端にメタクリロイル基を有し且つ分子鎖の途中にカルボキシル基を有するマクロモノマー)(分散安定剤)を含む反応液の一部を試料として採取して秤量した後、テトラヒドロフランにて希釈した試料を、オートタイトレーター(HIRANUMA製「COM-900」)を使用して、中和滴定溶液として0.1N-水酸化カリウム溶液を用いて、中和滴定して、反応液の酸価を測定し、測定した酸価の値を200℃×20分の揮発残分より決定した固形分値で除算して、マクロモノマー(Ma)(分散安定剤)固形分1g当たりの酸価(meq/g-solid)を算出した。
マクロモノマー(A)(分子鎖の末端にメタクリロイル基を有し且つ分子鎖の途中に水酸基を有するマクロモノマー)にジカルボン酸無水物を反応させて得られた、マクロモノマー(Ma)(分子鎖の末端にメタクリロイル基を有し且つ分子鎖の途中にカルボキシル基を有するマクロモノマー)(分散安定剤)を含む反応液の一部を試料として採取して秤量した後、テトラヒドロフランにて希釈した試料を、オートタイトレーター(HIRANUMA製「COM-900」)を使用して、中和滴定溶液として0.1N-水酸化カリウム溶液を用いて、中和滴定して、反応液の酸価を測定し、測定した酸価の値を200℃×20分の揮発残分より決定した固形分値で除算して、マクロモノマー(Ma)(分散安定剤)固形分1g当たりの酸価(meq/g-solid)を算出した。
(5)重合安定性の評価:
重合により得られた重合体微粒子の分散液を反応器から取り出した後、反応器の内部および攪拌翼への重合体の付着量を目視により観察した。また、反応器から取り出した重合体微粒子の分散液を、200目ポリネット(目開き:114μm)で濾過し、ポリネット上に残留している凝集物の量を目視で観察し、それらの両方の観察結果から、下記の評価基準に従って重合安定性の評価を行なった。
[重合安定性の評価基準]
○:反応器の内部および撹拌翼への重合体の付着がないか又は付着がごく僅かであり、しかもポリネット上に凝集物の残留がないか又は残留がごく僅かである。
△:反応器の内部および撹拌翼への重合体の付着が少なく、かつポリネット上での凝集物の残留が少ない。
×:反応器の内部および撹拌翼への重合体の付着が多く、しかもポリネット上での凝集物の残留が多い。
重合により得られた重合体微粒子の分散液を反応器から取り出した後、反応器の内部および攪拌翼への重合体の付着量を目視により観察した。また、反応器から取り出した重合体微粒子の分散液を、200目ポリネット(目開き:114μm)で濾過し、ポリネット上に残留している凝集物の量を目視で観察し、それらの両方の観察結果から、下記の評価基準に従って重合安定性の評価を行なった。
[重合安定性の評価基準]
○:反応器の内部および撹拌翼への重合体の付着がないか又は付着がごく僅かであり、しかもポリネット上に凝集物の残留がないか又は残留がごく僅かである。
△:反応器の内部および撹拌翼への重合体の付着が少なく、かつポリネット上での凝集物の残留が少ない。
×:反応器の内部および撹拌翼への重合体の付着が多く、しかもポリネット上での凝集物の残留が多い。
(6)重合体微粒子の体積平均粒子径(dv)、数平均粒子径(dn)、粒子サイズの変動係数(Cv)および副生小粒子量:
(i) 重合により得られた重合体微粒子の分散液から揮発分(重合溶媒、残存モノマーなど)を除去して回収した重合体微粒子を、電界放射走査型電子顕微鏡(FE-SEM)[日本電子(株)製「JSM-6330F」]を使用するSEM方法によって写真撮影した。その際に、SEM法による写真撮影の倍率は、1枚の写真に200個程度の粒子が撮影される倍率とし、撮影位置を変えて、3枚撮影した。
(ii) 上記(i)で撮影したSEM写真において、全ての重合体微粒子のそれぞれについてその粒子径(di)(写真撮影した粒子の面積から求められる面積円相当径)を測定し、以下の数式(I)、(II)および(III)に従って、重合体微粒子の体積平均
粒子径(dv)、数平均粒子径(dn)および粒子サイズの変動係数(Cv)を算出した。niは粒子径がdiである粒子の個数を示す。
体積平均粒子径(dv)=(Σnidi3/Σni)1/3 (I)
数平均粒子径(dn)=(Σnidi/Σni) (II)
粒子サイズの変動係数(Cv)(%)=100σ/dn (III)
σ(標準偏差)=(Σ(di-dn)2/Σni)1/2 (IV)
粒子サイズの変動係数(Cv)は、その値が小さいほど(ゼロに近いほど)、粒度分布が狭く、粒子の径が均一で粒子サイズが揃っていることを意味する。
なお、上記計算に当たっては、正確な粒子径の測定が可能な、0.3μm以上の重合体微粒子の測定結果を使用した。
(i) 重合により得られた重合体微粒子の分散液から揮発分(重合溶媒、残存モノマーなど)を除去して回収した重合体微粒子を、電界放射走査型電子顕微鏡(FE-SEM)[日本電子(株)製「JSM-6330F」]を使用するSEM方法によって写真撮影した。その際に、SEM法による写真撮影の倍率は、1枚の写真に200個程度の粒子が撮影される倍率とし、撮影位置を変えて、3枚撮影した。
(ii) 上記(i)で撮影したSEM写真において、全ての重合体微粒子のそれぞれについてその粒子径(di)(写真撮影した粒子の面積から求められる面積円相当径)を測定し、以下の数式(I)、(II)および(III)に従って、重合体微粒子の体積平均
粒子径(dv)、数平均粒子径(dn)および粒子サイズの変動係数(Cv)を算出した。niは粒子径がdiである粒子の個数を示す。
体積平均粒子径(dv)=(Σnidi3/Σni)1/3 (I)
数平均粒子径(dn)=(Σnidi/Σni) (II)
粒子サイズの変動係数(Cv)(%)=100σ/dn (III)
σ(標準偏差)=(Σ(di-dn)2/Σni)1/2 (IV)
粒子サイズの変動係数(Cv)は、その値が小さいほど(ゼロに近いほど)、粒度分布が狭く、粒子の径が均一で粒子サイズが揃っていることを意味する。
なお、上記計算に当たっては、正確な粒子径の測定が可能な、0.3μm以上の重合体微粒子の測定結果を使用した。
(iii) 上記において、粒子径が0.3μm以下の小粒子(副生小粒子)の生成量については、SEM写真を目視にて観察した結果から、以下の評価基準に従って評価した。
[副生小粒子の生成量の評価基準]
○:副生小粒子の生成がないかまたはごく僅かである。
△:副生小粒子が少量生成している。
×:副生小粒子が多量に生成している。
[副生小粒子の生成量の評価基準]
○:副生小粒子の生成がないかまたはごく僅かである。
△:副生小粒子が少量生成している。
×:副生小粒子が多量に生成している。
(7)架橋した重合体微粒子の耐メチルエチルケトン性(耐溶剤性):
架橋した重合体微粒子を20質量倍のメチルエチルケトンに分散させた後、25℃で24時間静置した。24時間後に、重合体微粒子がメチルエチルケトンに溶解または膨潤したか否かを目視により観察し、溶解しないか又は膨潤による粒子間の合一がなく、粒子状を保って再分散が可能な重合体微粒子については、室温下に静置状態でメチルエチルケトンを除去してSEM法により写真撮影し、そのSEM写真を、本試験を行なう前の重合体微粒子のSEM写真と比較して、粒子サイズの変化、形態の変化、溶出ポリマー成分の有無を調べて、下記の評価基準に従って耐メチルエチルケトン性を評価した。
[耐メチルエチルケトン性の評価基準]
○:重合体微粒子の試験前後のSEM写真を比較したときに、粒子サイズおよび粒子形態にほとんど変化が見られない。
△:試験後の重合体微粒子のSEM写真では、粒子形態を有していることは確認されるが、粒子サイズおよび/または粒子形態に変化が生じているか、或いは重合体微粒子の外部に溶出した重合体成分が確認される。
×:重合体微粒子がメチルエチルケトンに溶解するか、または膨潤による重合体微粒子間の合一が顕著で24時間静置後に再分散できない。
架橋されている重合体微粒子、特に十分な架橋がなされている重合体微粒子ほど、この耐メチルエチルケトン性の試験を行なった際に、重合体微粒子の溶解や形態変化がないかまたは小さく、溶出ポリマー成分も少ない。以下の試験結果から明らかなように、架橋した重合体微粒子は、耐メチルエチルケトン性に優れており、耐溶剤性や耐熱性が要求される用途に好適に使用することができる。
なお、この試験は、実施例20~23で得られた架橋した重合体微粒子(PC-1)~(PC-4)について行なった。
架橋した重合体微粒子を20質量倍のメチルエチルケトンに分散させた後、25℃で24時間静置した。24時間後に、重合体微粒子がメチルエチルケトンに溶解または膨潤したか否かを目視により観察し、溶解しないか又は膨潤による粒子間の合一がなく、粒子状を保って再分散が可能な重合体微粒子については、室温下に静置状態でメチルエチルケトンを除去してSEM法により写真撮影し、そのSEM写真を、本試験を行なう前の重合体微粒子のSEM写真と比較して、粒子サイズの変化、形態の変化、溶出ポリマー成分の有無を調べて、下記の評価基準に従って耐メチルエチルケトン性を評価した。
[耐メチルエチルケトン性の評価基準]
○:重合体微粒子の試験前後のSEM写真を比較したときに、粒子サイズおよび粒子形態にほとんど変化が見られない。
△:試験後の重合体微粒子のSEM写真では、粒子形態を有していることは確認されるが、粒子サイズおよび/または粒子形態に変化が生じているか、或いは重合体微粒子の外部に溶出した重合体成分が確認される。
×:重合体微粒子がメチルエチルケトンに溶解するか、または膨潤による重合体微粒子間の合一が顕著で24時間静置後に再分散できない。
架橋されている重合体微粒子、特に十分な架橋がなされている重合体微粒子ほど、この耐メチルエチルケトン性の試験を行なった際に、重合体微粒子の溶解や形態変化がないかまたは小さく、溶出ポリマー成分も少ない。以下の試験結果から明らかなように、架橋した重合体微粒子は、耐メチルエチルケトン性に優れており、耐溶剤性や耐熱性が要求される用途に好適に使用することができる。
なお、この試験は、実施例20~23で得られた架橋した重合体微粒子(PC-1)~(PC-4)について行なった。
《製造例1》[分散安定剤液(Ma1)の製造]
(1)工程《1》[プレポリマーの製造]
(i) 攪拌機、還流冷却器、温度計、窒素導入管および送液配管連結部を備えたガラス製反応器に、プロピレングリコールモノメチルエーテルアセテート30質量部、メタクリル酸メチル12.13質量部および2-メルカプトプロピオン酸1.765質量部を仕込み、攪拌下に窒素ガスを吹き込みながら、反応器の内温を90℃に調整した。
(ii) 定量ポンプによる送液配管を取り付けたガラス製容器にプロピレングリコールモノメチルエーテルアセテート15質量部、メタクリル酸メチル18.19質量部、メタクリル酸2-ヒドロキシエチル39.39質量部および2-メルカプトプロピオン酸1.765質量部を仕込み、攪拌してビニル単量体混合液74.35質量部を調製した。
(iii) 定量ポンプによる送液配管を取り付けたガラス製容器にプロピレングリコールモノメチルエーテルアセテート15質量部および重合開始剤[2,2’-アゾビス(2-メチルブチロニトリル、和光純薬(株)製「V-59」]0.165質量部を仕込み、攪拌、溶解して重合開始剤溶液15.17質量部を調製した。
(iv) 定量ポンプによる送液配管を取り付けたガラス製容器にプロピレングリコールモノメチルエーテルアセテート40質量部および前記と同じ重合開始剤(V-59)0.385質量部を仕込み、攪拌、溶解して重合開始剤溶液40.39質量部を調製した。
(v) 上記(i)で調製した混合液の温度が90℃で安定したことを確認したのち、上記(ii)で調製したビニル単量体混合液と上記(iii)で調製した重合開始剤溶液の上記(i)の反応器への供給を開始した。定量ポンプにより、一定速度で、上記(ii)で調製したビニル単量体混合液は2時間かけて、また上記(iii)で調製した重合開始剤溶液は3時間かけて供給を行った。上記(iii)で調製した重合開始剤溶液の供給が完了した後、上記(iv)で調製した重合開始剤溶液の反応器への供給を直ちに開始した。定量ポンプにより、一定速度で、上記(iv)で調製した重合開始剤溶液を2時間かけて供給し、マクロモノマー(A)の前駆体である、分子鎖の片末端にカルボキシル基を有し且つ分子鎖の途中に水酸基を有するプレポリマーを製造した。これにより得られた反応液の一部を採取してGPCにより上記した方法で分子量を測定した結果、プレポリマーの重量平均分子量(Mw)は3900および数平均分子量(Mn)は2100であった。
(1)工程《1》[プレポリマーの製造]
(i) 攪拌機、還流冷却器、温度計、窒素導入管および送液配管連結部を備えたガラス製反応器に、プロピレングリコールモノメチルエーテルアセテート30質量部、メタクリル酸メチル12.13質量部および2-メルカプトプロピオン酸1.765質量部を仕込み、攪拌下に窒素ガスを吹き込みながら、反応器の内温を90℃に調整した。
(ii) 定量ポンプによる送液配管を取り付けたガラス製容器にプロピレングリコールモノメチルエーテルアセテート15質量部、メタクリル酸メチル18.19質量部、メタクリル酸2-ヒドロキシエチル39.39質量部および2-メルカプトプロピオン酸1.765質量部を仕込み、攪拌してビニル単量体混合液74.35質量部を調製した。
(iii) 定量ポンプによる送液配管を取り付けたガラス製容器にプロピレングリコールモノメチルエーテルアセテート15質量部および重合開始剤[2,2’-アゾビス(2-メチルブチロニトリル、和光純薬(株)製「V-59」]0.165質量部を仕込み、攪拌、溶解して重合開始剤溶液15.17質量部を調製した。
(iv) 定量ポンプによる送液配管を取り付けたガラス製容器にプロピレングリコールモノメチルエーテルアセテート40質量部および前記と同じ重合開始剤(V-59)0.385質量部を仕込み、攪拌、溶解して重合開始剤溶液40.39質量部を調製した。
(v) 上記(i)で調製した混合液の温度が90℃で安定したことを確認したのち、上記(ii)で調製したビニル単量体混合液と上記(iii)で調製した重合開始剤溶液の上記(i)の反応器への供給を開始した。定量ポンプにより、一定速度で、上記(ii)で調製したビニル単量体混合液は2時間かけて、また上記(iii)で調製した重合開始剤溶液は3時間かけて供給を行った。上記(iii)で調製した重合開始剤溶液の供給が完了した後、上記(iv)で調製した重合開始剤溶液の反応器への供給を直ちに開始した。定量ポンプにより、一定速度で、上記(iv)で調製した重合開始剤溶液を2時間かけて供給し、マクロモノマー(A)の前駆体である、分子鎖の片末端にカルボキシル基を有し且つ分子鎖の途中に水酸基を有するプレポリマーを製造した。これにより得られた反応液の一部を採取してGPCにより上記した方法で分子量を測定した結果、プレポリマーの重量平均分子量(Mw)は3900および数平均分子量(Mn)は2100であった。
(2)工程《2》[マクロモノマー(A)の製造]
引き続き、窒素吹き込みを空気吹き込みに切り替え、反応器にメトキシハイドロキノン0.03質量部およびテトラブチルアンモニウムブロマイド0.81質量部を添加し、反応器の内温を110℃まで昇温した。内温が110℃で安定したことを確認し、グリシジルメタクリレート5.67質量部を添加し、内温110℃で6時間保持して、プレポリマーへのグリシジルメタクリレートの付加反応を行って、マクロモノマー(A)を製造した。マクロモノマー(A)(分子鎖の末端にメタクリロイル基を有し且つ分子鎖の途中に水酸基を有するマクロモノマー)を含む反応液の一部を採取して、上記した方法で酸価を測定して、プレポリマーの末端カルボキシル基へのグリシジルメタクリレート付加率を測定した結果、付加率は99%であり、ここで得られたマクロモノマー(A)は、1分子当たり、分子鎖の末端(片末端)にメタクリロイル基を平均して0.99個の割合で有していた。また、GPCにより上記した方法でマクロモノマー(A)の分子量を測定した結果、重量平均分子量(Mw)は4800および数平均分子量(Mn)は2400であった。
引き続き、窒素吹き込みを空気吹き込みに切り替え、反応器にメトキシハイドロキノン0.03質量部およびテトラブチルアンモニウムブロマイド0.81質量部を添加し、反応器の内温を110℃まで昇温した。内温が110℃で安定したことを確認し、グリシジルメタクリレート5.67質量部を添加し、内温110℃で6時間保持して、プレポリマーへのグリシジルメタクリレートの付加反応を行って、マクロモノマー(A)を製造した。マクロモノマー(A)(分子鎖の末端にメタクリロイル基を有し且つ分子鎖の途中に水酸基を有するマクロモノマー)を含む反応液の一部を採取して、上記した方法で酸価を測定して、プレポリマーの末端カルボキシル基へのグリシジルメタクリレート付加率を測定した結果、付加率は99%であり、ここで得られたマクロモノマー(A)は、1分子当たり、分子鎖の末端(片末端)にメタクリロイル基を平均して0.99個の割合で有していた。また、GPCにより上記した方法でマクロモノマー(A)の分子量を測定した結果、重量平均分子量(Mw)は4800および数平均分子量(Mn)は2400であった。
(3)工程《3》[分散安定化液(Ma1)の製造]
(i) 上記(2)のグリシジルメタクリレートの添加から7時間経過した時点で、反応器の内温を110℃に保持したまま、無水コハク酸30.30質量部を添加して、マクロモノマー(A)の分子鎖の途中に存在する水酸基(メタクリル酸2-ヒドロキシエチル由来の水酸基)に無水コハク酸を付加させた。無水コハク酸の添加から2時間経過した時点で反応液を冷却し、200℃で20分間加熱したときの残分が53%になるような量でプロピレングリコールモノメチルエーテルアセテートを添加して、マクロモノマー(Ma-1)(分子鎖の末端にメタクリロイル基を有し且つ分子鎖の途中にカルボキシル基を有するモノマー)(分散安定剤)を含有する分散安定剤液(Ma1)(固形分53%)を製造した。
(ii) 上記(i)で得られた分散安定剤液(Ma1)に含まれるマクロモノマー(Ma-1)の酸価を上記した方法で測定した結果、162.4meq/g-solidであった。また、分散安定剤液(Ma1)に含まれているマクロモノマー(Ma-1)(分散安定剤)の分子量をGPCにより上記した方法で測定したところ、重量平均分子量(Mw)は6800および数平均分子量(Mn)は3600であった。
(i) 上記(2)のグリシジルメタクリレートの添加から7時間経過した時点で、反応器の内温を110℃に保持したまま、無水コハク酸30.30質量部を添加して、マクロモノマー(A)の分子鎖の途中に存在する水酸基(メタクリル酸2-ヒドロキシエチル由来の水酸基)に無水コハク酸を付加させた。無水コハク酸の添加から2時間経過した時点で反応液を冷却し、200℃で20分間加熱したときの残分が53%になるような量でプロピレングリコールモノメチルエーテルアセテートを添加して、マクロモノマー(Ma-1)(分子鎖の末端にメタクリロイル基を有し且つ分子鎖の途中にカルボキシル基を有するモノマー)(分散安定剤)を含有する分散安定剤液(Ma1)(固形分53%)を製造した。
(ii) 上記(i)で得られた分散安定剤液(Ma1)に含まれるマクロモノマー(Ma-1)の酸価を上記した方法で測定した結果、162.4meq/g-solidであった。また、分散安定剤液(Ma1)に含まれているマクロモノマー(Ma-1)(分散安定剤)の分子量をGPCにより上記した方法で測定したところ、重量平均分子量(Mw)は6800および数平均分子量(Mn)は3600であった。
《製造例2~4》[分散安定剤液(Ma2)~(Ma4)の製造]
(1) 下記の表1に示す組成の単量体混合液を用いて、製造例1の(1)と同様の操作を行なって、分子鎖の末端にカルボキシル基を有し且つ分子鎖の途中に水酸基を有するプレポリマーを製造した後、当該プレポリマーを含む反応液に、下記の表1に示す量のグリシジルメタクリレートを添加して、製造例1の(2)と同様にしてマクロモノマー(A)(分子鎖の片末端にメタクリロイル基を有し且つ分子鎖の途中にカルボキシル基を有するマクロモノマー)を製造し、それにより得られたマクロモノマー(A)を含む反応液に、下記の表1に示す量の無水コハク酸を添加して製造例1の(3)と同様にして反応させて、分子鎖の末端にメタクリロイル基を有し且つ分子鎖の途中にカルボキシル基を有するマクロモノマー(Ma-2)~(Ma-4)(分散安定剤)を含む分散安定剤液(Ma2)~(Ma4)を製造した。
(2) 上記(1)の反応で生成したプレポリマーの分子量、当該プレポリマーへのグリシジルメタクリレートの付加率、プレポリマーにグリシジルメタクリレートを付加反応させて生成したマクロモノマー(A)における分子鎖の末端に結合したメタクリロイル基の個数、マクロモノマー(A)の分子量、マクロモノマー(A)に無水コハク酸を反応させて得られたマクロモノマー(Ma2)~(Ma4)における分子鎖の末端に結合したメタクリロイル基の個数およびマクロモノマー(Ma2)~(Ma4)の分子量を上記した方法で測定した結果、下記の表1に示すとおりであった。
(1) 下記の表1に示す組成の単量体混合液を用いて、製造例1の(1)と同様の操作を行なって、分子鎖の末端にカルボキシル基を有し且つ分子鎖の途中に水酸基を有するプレポリマーを製造した後、当該プレポリマーを含む反応液に、下記の表1に示す量のグリシジルメタクリレートを添加して、製造例1の(2)と同様にしてマクロモノマー(A)(分子鎖の片末端にメタクリロイル基を有し且つ分子鎖の途中にカルボキシル基を有するマクロモノマー)を製造し、それにより得られたマクロモノマー(A)を含む反応液に、下記の表1に示す量の無水コハク酸を添加して製造例1の(3)と同様にして反応させて、分子鎖の末端にメタクリロイル基を有し且つ分子鎖の途中にカルボキシル基を有するマクロモノマー(Ma-2)~(Ma-4)(分散安定剤)を含む分散安定剤液(Ma2)~(Ma4)を製造した。
(2) 上記(1)の反応で生成したプレポリマーの分子量、当該プレポリマーへのグリシジルメタクリレートの付加率、プレポリマーにグリシジルメタクリレートを付加反応させて生成したマクロモノマー(A)における分子鎖の末端に結合したメタクリロイル基の個数、マクロモノマー(A)の分子量、マクロモノマー(A)に無水コハク酸を反応させて得られたマクロモノマー(Ma2)~(Ma4)における分子鎖の末端に結合したメタクリロイル基の個数およびマクロモノマー(Ma2)~(Ma4)の分子量を上記した方法で測定した結果、下記の表1に示すとおりであった。
《製造例5》[分散安定剤液(Mb1)(水溶液)の製造]
(1) ホットオイルによる加熱装置を備えた容量500mlの加圧式攪拌槽型反応器を3-エトキシプロピオン酸エチルで満たした。反応器を約250℃に加温し、反応器内圧力を圧力調節器により3-エトキシプロピオン酸エチルの蒸気圧以上に設定した。
(2) メタクリル酸メチル20質量部、アクリル酸シクロヘキシル55質量部、アクリル酸25質量部およびジ-t-ブチルパーオキサイド0.1部を秤量して、単量体混合液を調製し、この単量体混合液を原料タンクに貯蔵した。
(3) 上記(1)の反応器内の圧力を一定に保ちながら、上記(2)で調製した単量体混合液を原料タンクから反応器に連続的に供給した。このとき、単量体混合液の反応器内での平均滞留時間が12分となるように供給速度を設定した。単量体混合液の供給量に相当する反応液を反応器の出口から連続的に抜き出した。単量体混合液の連続供給中、反応器内温度を230±2℃に維持した。反応器の出口から抜き出した反応液を薄膜蒸発器に導入して、反応液中の未反応単量体などの揮発性成分を除去して、分子鎖末端にビニリデン基を有するマクロモノマー(Mb-1)を得た。単量体混合液の供給開始から90分後、薄膜蒸発器の出口からマクロモノマー(Mb-1)の採取を開始し、60分間採取を行った。
(1) ホットオイルによる加熱装置を備えた容量500mlの加圧式攪拌槽型反応器を3-エトキシプロピオン酸エチルで満たした。反応器を約250℃に加温し、反応器内圧力を圧力調節器により3-エトキシプロピオン酸エチルの蒸気圧以上に設定した。
(2) メタクリル酸メチル20質量部、アクリル酸シクロヘキシル55質量部、アクリル酸25質量部およびジ-t-ブチルパーオキサイド0.1部を秤量して、単量体混合液を調製し、この単量体混合液を原料タンクに貯蔵した。
(3) 上記(1)の反応器内の圧力を一定に保ちながら、上記(2)で調製した単量体混合液を原料タンクから反応器に連続的に供給した。このとき、単量体混合液の反応器内での平均滞留時間が12分となるように供給速度を設定した。単量体混合液の供給量に相当する反応液を反応器の出口から連続的に抜き出した。単量体混合液の連続供給中、反応器内温度を230±2℃に維持した。反応器の出口から抜き出した反応液を薄膜蒸発器に導入して、反応液中の未反応単量体などの揮発性成分を除去して、分子鎖末端にビニリデン基を有するマクロモノマー(Mb-1)を得た。単量体混合液の供給開始から90分後、薄膜蒸発器の出口からマクロモノマー(Mb-1)の採取を開始し、60分間採取を行った。
(4) 上記(3)で得られたマクロモノマー(Mb-1)について、上記した方法で重量平均分子量(Mw)および数平均分子量(Mn)を上記した方法で測定したところ、重量平均分子量(Mw)は10600、数平均分子量(Mn)は3100であった。
また、上記(3)で得られたマクロモノマー(Mb-1)では、1H-NMRにより測定した末端エチレン性不飽和結合の濃度と数平均分子量(Mn)から算出される末端エチレン性不飽和結合(末端ビニリデン基)の導入率は98%であった。
(5) 上記(3)で得られたマクロモノマー(Mb-1)をフレーク状に粉砕し、マクロモノマー(Mb-1)の粉砕物100質量部、水260質量部および25%アンモニア水22.5質量部を冷却管付ガラス製フラスコに仕込み、90℃の温浴で加温しながら攪拌してマクロモノマー(Mb-1)を水溶化させた。マクロモノマー(Mb-1)が溶解したことを確認した後、固形分が25質量%となるように水を加えて、マクロモノマー(Mb-1)の水溶液[以下「分散安定剤液(Mb1)」という]を製造した。この分散安定剤液(Mb1)(水溶液)の25℃でのpHは8.0であった。
また、上記(3)で得られたマクロモノマー(Mb-1)では、1H-NMRにより測定した末端エチレン性不飽和結合の濃度と数平均分子量(Mn)から算出される末端エチレン性不飽和結合(末端ビニリデン基)の導入率は98%であった。
(5) 上記(3)で得られたマクロモノマー(Mb-1)をフレーク状に粉砕し、マクロモノマー(Mb-1)の粉砕物100質量部、水260質量部および25%アンモニア水22.5質量部を冷却管付ガラス製フラスコに仕込み、90℃の温浴で加温しながら攪拌してマクロモノマー(Mb-1)を水溶化させた。マクロモノマー(Mb-1)が溶解したことを確認した後、固形分が25質量%となるように水を加えて、マクロモノマー(Mb-1)の水溶液[以下「分散安定剤液(Mb1)」という]を製造した。この分散安定剤液(Mb1)(水溶液)の25℃でのpHは8.0であった。
上記の製造例1~4で得られた分散安定剤液(Ma1)~(Ma4)および製造例5で得られた分散安定剤液(Mb1)の内容を下記の表1に示す。
《実施例1》[重合体微粒子(PA-1)の製造]
(1) 攪拌機、還流冷却器、温度計、窒素導入管を備えたガラス製反応器に、イオン交換水115.5質量部、メタノール460.5質量部、製造例1で製造した分散安定剤液(Ma1)7.55質量部(固形分4質量部相当)、25%アンモニア水0.55質量部、メタクリル酸メチル50質量部およびメタクリル酸イソブチル50質量部を仕込み、攪拌および窒素ガスの吹き込みを行いながら、反応器内温を55℃に調整した。
(2) 上記(1)の反応器内温が55℃で安定したことを確認した後、当該反応器に重合開始剤[日本油脂株式会社製「パーブチルPV」;t-ブチルパーオキシピバレートの70%溶液]2.4質量部を添加して重合を開始させたところ、重合開始剤の添加直後に反応液に濁りが生じ、徐々に白化して乳白色となり、重合体微粒子が生成していることが確認された。
(1) 攪拌機、還流冷却器、温度計、窒素導入管を備えたガラス製反応器に、イオン交換水115.5質量部、メタノール460.5質量部、製造例1で製造した分散安定剤液(Ma1)7.55質量部(固形分4質量部相当)、25%アンモニア水0.55質量部、メタクリル酸メチル50質量部およびメタクリル酸イソブチル50質量部を仕込み、攪拌および窒素ガスの吹き込みを行いながら、反応器内温を55℃に調整した。
(2) 上記(1)の反応器内温が55℃で安定したことを確認した後、当該反応器に重合開始剤[日本油脂株式会社製「パーブチルPV」;t-ブチルパーオキシピバレートの70%溶液]2.4質量部を添加して重合を開始させたところ、重合開始剤の添加直後に反応液に濁りが生じ、徐々に白化して乳白色となり、重合体微粒子が生成していることが確認された。
(3) 重合開始剤の添加後、240分経過した時点で反応液を冷却して重合を完了させた。重合反応液を、200目ポリネットを通過させて、重合体微粒子(PA-1)の分散液を回収した。重合反応液を抜き出した後の反応器の内部や攪拌翼に重合体の付着はなく、更に200目ポリネット上にろ過残渣は認められず、上記した評価方法による重合安定性の評価では○と判定された。
(4) 上記(3)で得られた重合体微粒子(PA-1)の分散液から室温で揮発分を除去して、上記した方法で重合体微粒子(PA-1)について、SEM(電界放射走査型電子顕微鏡FE-SEM)[日本電子(株)製「JSM-6330F」]を使用して観察を行った。その得られたSEM写真より、上記した方法で求めた体積平均粒子径(dv)は1.46μm、数平均粒子径(dn)は1.45μm、粒子サイズの変動係数(Cv)は8.0%であった。また、SEM写真より、0.3μm以下の副生小粒子生成量はごく僅かであることが確認された。
この実施例1で得られた重合体微粒子(PA-1)のSEM写真を図1および図2に示す。図1は倍率2,000倍で撮影したものであり、図2は倍率12,000倍で撮影したものである。
(4) 上記(3)で得られた重合体微粒子(PA-1)の分散液から室温で揮発分を除去して、上記した方法で重合体微粒子(PA-1)について、SEM(電界放射走査型電子顕微鏡FE-SEM)[日本電子(株)製「JSM-6330F」]を使用して観察を行った。その得られたSEM写真より、上記した方法で求めた体積平均粒子径(dv)は1.46μm、数平均粒子径(dn)は1.45μm、粒子サイズの変動係数(Cv)は8.0%であった。また、SEM写真より、0.3μm以下の副生小粒子生成量はごく僅かであることが確認された。
この実施例1で得られた重合体微粒子(PA-1)のSEM写真を図1および図2に示す。図1は倍率2,000倍で撮影したものであり、図2は倍率12,000倍で撮影したものである。
《実施例2~10》[重合体微粒子(PA-2)~(PA-10)の製造]
(1) 分散安定剤液の種類および使用量並びに25%アンモニア水、水、メタノールの使用量、および重合温度を下記の表2に示すようにした以外は、実施例1の(1)~(3)と同様に行なって、重合体微粒子(PA-2)~(PA-10)の分散液を製造した。実施例1の(3)と同様にして、各実施例について上記した方法で重合安定性の評価を行なったところ、下記の表2に示すとおりであった。
(2) 上記(1)で得られた重合体微粒子(PA-2)~(PA-10)の体積平均粒子径(dv)、数平均粒子径(dn)、粒子サイズの変動係数(Cv)を、実施例1の(4)と同様にして求めたところ、下記の表2に示すとおりであった。
また、SEM写真より、0.3μm以下の副生小粒子の生成量の評価を上記した方法で行なったところ、下記の表2に示すとおりであった。
(1) 分散安定剤液の種類および使用量並びに25%アンモニア水、水、メタノールの使用量、および重合温度を下記の表2に示すようにした以外は、実施例1の(1)~(3)と同様に行なって、重合体微粒子(PA-2)~(PA-10)の分散液を製造した。実施例1の(3)と同様にして、各実施例について上記した方法で重合安定性の評価を行なったところ、下記の表2に示すとおりであった。
(2) 上記(1)で得られた重合体微粒子(PA-2)~(PA-10)の体積平均粒子径(dv)、数平均粒子径(dn)、粒子サイズの変動係数(Cv)を、実施例1の(4)と同様にして求めたところ、下記の表2に示すとおりであった。
また、SEM写真より、0.3μm以下の副生小粒子の生成量の評価を上記した方法で行なったところ、下記の表2に示すとおりであった。
《実施例11~19》[重合体微粒子(PA-11)~(PA-19)の製造]
(1) 分散安定剤液の種類および使用量並びに25%アンモニア水、水、メタノールの使用量、および重合温度を下記の表3に示すようにした以外は、実施例1の(1)~(3)と同様に行なって、重合体微粒子(PA-11)~(PA-19)の分散液を製造した。実施例1の(3)と同様にして、各実施例について上記した方法で重合安定性の評価を行なったところ、下記の表3に示すとおりであった。
(2) 上記(1)で得られた重合体微粒子(PA-11)~(PA-19)の体積平均粒子径(dv)、数平均粒子径(dn)、粒子サイズの変動係数(Cv)を、実施例1の(4)と同様にして求めたところ、下記の表3に示すとおりであった。
また、SEM写真より、0.3μm以下の副生小粒子の生成量の評価を上記した方法で行なったところ、下記の表3に示すとおりであった。
(1) 分散安定剤液の種類および使用量並びに25%アンモニア水、水、メタノールの使用量、および重合温度を下記の表3に示すようにした以外は、実施例1の(1)~(3)と同様に行なって、重合体微粒子(PA-11)~(PA-19)の分散液を製造した。実施例1の(3)と同様にして、各実施例について上記した方法で重合安定性の評価を行なったところ、下記の表3に示すとおりであった。
(2) 上記(1)で得られた重合体微粒子(PA-11)~(PA-19)の体積平均粒子径(dv)、数平均粒子径(dn)、粒子サイズの変動係数(Cv)を、実施例1の(4)と同様にして求めたところ、下記の表3に示すとおりであった。
また、SEM写真より、0.3μm以下の副生小粒子の生成量の評価を上記した方法で行なったところ、下記の表3に示すとおりであった。
《比較例1》[重合体微粒子(PB-1)の製造]
(1) 分散安定剤液として、分散安定剤液(Ma1)の代りに、製造例5で得られた分散安定剤液(Mb1)を下記の表4に示す量で用い、更に25%アンモニア水と水の使用量を下記の表4のように変更した以外は、実施例1の(1)~(3)と同様に行なって、重合体微粒子(PB-1)の分散液を製造した。実施例1の(3)と同様にして、上記した方法で重合安定性の評価を行なったところ、下記の表4に示すとおりであった。
なお、この比較例1で用いた分散安定剤液(Mb1)に含まれるマクロモノマー(Mb-1)(分散安定剤)は、水溶化の段階で既にカルボキシル基をアンモニアで中和しているため、アンモニアを新たに添加しなかった。
(2) 上記(1)で得られた重合体微粒子(PB-1)の体積平均粒子径(dv)、数平均粒子径(dn)、粒子サイズの変動係数(Cv)を、実施例1の(4)と同様にして求めたところ、下記の表4に示すとおりであった。
また、SEM写真より、0.3μm以下の副生小粒子の生成量の評価を上記した方法で行なったところ、下記の表4に示すとおりであった。
また、実施例17で得られた重合体微粒子(PA-17)のSEM写真を図3および図4に示す。図3は倍率2,000倍で撮影したものであり、図4は倍率12,000倍で撮影したものである。
(1) 分散安定剤液として、分散安定剤液(Ma1)の代りに、製造例5で得られた分散安定剤液(Mb1)を下記の表4に示す量で用い、更に25%アンモニア水と水の使用量を下記の表4のように変更した以外は、実施例1の(1)~(3)と同様に行なって、重合体微粒子(PB-1)の分散液を製造した。実施例1の(3)と同様にして、上記した方法で重合安定性の評価を行なったところ、下記の表4に示すとおりであった。
なお、この比較例1で用いた分散安定剤液(Mb1)に含まれるマクロモノマー(Mb-1)(分散安定剤)は、水溶化の段階で既にカルボキシル基をアンモニアで中和しているため、アンモニアを新たに添加しなかった。
(2) 上記(1)で得られた重合体微粒子(PB-1)の体積平均粒子径(dv)、数平均粒子径(dn)、粒子サイズの変動係数(Cv)を、実施例1の(4)と同様にして求めたところ、下記の表4に示すとおりであった。
また、SEM写真より、0.3μm以下の副生小粒子の生成量の評価を上記した方法で行なったところ、下記の表4に示すとおりであった。
また、実施例17で得られた重合体微粒子(PA-17)のSEM写真を図3および図4に示す。図3は倍率2,000倍で撮影したものであり、図4は倍率12,000倍で撮影したものである。
《比較例2》[重合体微粒子(PB-2)の製造]
(1) 分散安定剤として、分散安定剤液(Ma1)の代りに、ポリビニルピロリドン(和光純薬製「K-30」)(特許文献1の実施例1で使用)を下記の表4に示す量で用い、更に25%アンモニア水と水の使用量を下記の表4のように変更した以外は、実施例1の(1)~(3)と同様に行なって、重合体微粒子(PB-2)の分散液を製造した。実施例1の(3)と同様にして、上記した方法で重合安定性の評価を行なったところ、下記の表4に示すとおりであった。
(2) 上記(1)で得られた重合体微粒子(PB-2)の体積平均粒子径(dv)、数平均粒子径(dn)、粒子サイズの変動係数(Cv)を、実施例1の(4)と同様にして求めたところ、下記の表4に示すとおりであった。
また、SEM写真より、0.3μm以下の副生小粒子の生成量の評価を上記した方法で行なったところ、下記の表4に示すとおりであった。
(1) 分散安定剤として、分散安定剤液(Ma1)の代りに、ポリビニルピロリドン(和光純薬製「K-30」)(特許文献1の実施例1で使用)を下記の表4に示す量で用い、更に25%アンモニア水と水の使用量を下記の表4のように変更した以外は、実施例1の(1)~(3)と同様に行なって、重合体微粒子(PB-2)の分散液を製造した。実施例1の(3)と同様にして、上記した方法で重合安定性の評価を行なったところ、下記の表4に示すとおりであった。
(2) 上記(1)で得られた重合体微粒子(PB-2)の体積平均粒子径(dv)、数平均粒子径(dn)、粒子サイズの変動係数(Cv)を、実施例1の(4)と同様にして求めたところ、下記の表4に示すとおりであった。
また、SEM写真より、0.3μm以下の副生小粒子の生成量の評価を上記した方法で行なったところ、下記の表4に示すとおりであった。
《比較例3》[重合体微粒子(PB-3)の製造]
分散安定剤として、分散安定剤液(Ma1)の代りに、片末端にメタクリロイル基を有するポリエチレンオキシド(新中村化学工業製「M-90G」、平均エチレンオキサイド付加数9、もう一方の末端はメトキシ基)(特許文献1の実施例3で使用)を下記の表4に示す量で用い、更に25%アンモニア水と水の使用量を下記の表4のように変更した以外は、実施例1の(1)~(3)と同様に行なって、重合体微粒子(PB-3)の分散液を製造しようとしたところ、重合開始剤の添加から1時間以内に多量の凝集物が発生して撹拌が困難になったため、重合を停止し、重合体微粒子を製造することができなかった。
分散安定剤として、分散安定剤液(Ma1)の代りに、片末端にメタクリロイル基を有するポリエチレンオキシド(新中村化学工業製「M-90G」、平均エチレンオキサイド付加数9、もう一方の末端はメトキシ基)(特許文献1の実施例3で使用)を下記の表4に示す量で用い、更に25%アンモニア水と水の使用量を下記の表4のように変更した以外は、実施例1の(1)~(3)と同様に行なって、重合体微粒子(PB-3)の分散液を製造しようとしたところ、重合開始剤の添加から1時間以内に多量の凝集物が発生して撹拌が困難になったため、重合を停止し、重合体微粒子を製造することができなかった。
《比較例4》[重合体微粒子(PB-4)の製造]
(1) 分散安定剤として、分散安定剤液(Ma1)の代りに、ポリビニルピロリドン(和光純薬製「K-30」)(特許文献1の実施例1で使用)を下記の表4に示す量で用い、更に25%アンモニア水と水の使用量を下記の表4のように変更した以外は、実施例1の(1)~(3)と同様に行なって、重合体微粒子(PB-2)の分散液を製造した。実施例1の(3)と同様にして、上記した方法で重合安定性の評価を行なったところ、下記の表4に示すとおりであった。
(2) 上記(1)で得られた重合体微粒子(PB-2)の体積平均粒子径(dv)、数平均粒子径(dn)、粒子サイズの変動係数(Cv)を、実施例1の(4)と同様にして求めたところ、下記の表4に示すとおりであった。
また、SEM写真より、0.3μm以下の副生小粒子の生成量の評価を上記した方法で行なったところ、下記の表4に示すとおりであった。
(1) 分散安定剤として、分散安定剤液(Ma1)の代りに、ポリビニルピロリドン(和光純薬製「K-30」)(特許文献1の実施例1で使用)を下記の表4に示す量で用い、更に25%アンモニア水と水の使用量を下記の表4のように変更した以外は、実施例1の(1)~(3)と同様に行なって、重合体微粒子(PB-2)の分散液を製造した。実施例1の(3)と同様にして、上記した方法で重合安定性の評価を行なったところ、下記の表4に示すとおりであった。
(2) 上記(1)で得られた重合体微粒子(PB-2)の体積平均粒子径(dv)、数平均粒子径(dn)、粒子サイズの変動係数(Cv)を、実施例1の(4)と同様にして求めたところ、下記の表4に示すとおりであった。
また、SEM写真より、0.3μm以下の副生小粒子の生成量の評価を上記した方法で行なったところ、下記の表4に示すとおりであった。
上記の表2~表4の結果にみるように、実施例1~19では、分散安定剤として、分子鎖の末端にメタクイロイル基を有し且つ分子鎖の途中にカルボキシル基を有するマクロモノマーであるマクロモノマー(Ma-1)~(Ma-4)を用いて、親水性溶媒中でビニル単量体(メタクリル酸メチルおよびメタクリル酸イソブチル)の分散重合を行なったことにより、極めて少量(固形分換算で6質量部以下)の分散安定剤(マクロモノマー)の使用で、体積平均粒子径(dv)が1.78μm以下であって粒子径の極めて小さい重合体微粒子を、粒子サイズの変動係数(Cv)15%未満の狭い粒度分布で、重合体微粒子間の凝集などを生ずることなく、良好な重合安定性で円滑に得られている。
それに対して、比較例1では、分散安定剤としてマクロモノマー(Mb-1)を用いたが、当該マクロモノマー(Mb-1)は分子鎖の末端に有する不飽和基がビニリデン基であって、(メタ)アクリロイル基でないために、比較例1で得られた重合体微粒子の体積平均粒子径(dv)が2.53μmであり、実施例1~19で得られた重合体微粒子に比べて重合体微粒子のサイズが大幅に大きいものであった。
しかも、比較例1では、分散重合を安定に行なうために、分散安定剤であるマクロモノマー(Mb-1)を、実施例1~19に比べて多量に使用する必要があった。
しかも、比較例1では、分散重合を安定に行なうために、分散安定剤であるマクロモノマー(Mb-1)を、実施例1~19に比べて多量に使用する必要があった。
また、比較例2および比較例4の結果にみるように、特許文献1などの従来技術で用いられているポリビニルピロリドンを分散安定剤として用いて分散重合を行なった場合には、ポリビニルピロリドンを10質量部(固形分換算)と多量に使用した場合には体積平均粒子径(dv)が2μm以下の重合体微粒子を製造することができるが(比較例2)、比較例4にみるように、ポリビニルピロリドンの使用量が固形分換算で2.00質量部と少ない場合には、安定に分散重合を行なうことができず、しかも分散重合により得られる重合体微粒子の体積平均粒子径(dv)が3μmを超えており、微小な重合体微粒子を製造することができなかった。
さらに、比較例3の結果にみるように、特許文献1などの従来技術で用いられている片末端にメタクリロイル基を有するポリエチレンオキシドからなるマクロモノマーを分散安定剤として用いて分散重合を行なった場合には、当該マクロモノマーを多量に使用したにも拘わらず、重合の初期の段階で重合体の凝集が生じて、分散重合を行なうことができず、片末端にメタクリロイル基を有するポリエチレンオキシドからなるマクロモノマーは、分散安定剤としての性能に大きく劣っていた。
《実施例20》[架橋した重合体微粒子(PC-1)の製造]
(1) 分散安定剤液として製造例1で得られた分散安定剤液(Ma1)を下記の表5に示す量で用いると共に25%アンモニア水と水の使用量を下記の表5に示すようにし、更にメタクリル酸メチルおよびメタクリル酸イソブチルと共に架橋性単量体としてアリルメタクリレートを下記の表5に示す量で使用した以外は、実施例1の(1)~(3)と同様に行なって、架橋した重合体微粒子(PC-1)[以下「架橋重合体粒子(PC-1)」ということがある。以下の実施例でも同じ]の分散液を製造した。実施例1の(3)と同様にして、上記した方法で重合安定性の評価を行なったところ、下記の表5に示すように、重合反応液を抜き出した後の反応器の内部や攪拌翼に重合体の付着はなく、更に200目ポリネット上にろ過残渣は認められず、重合安定性に優れており、○と評価された。
(2) 上記(1)で得られた架橋重合体微粒子(PC-1)について実施例1の(4)と同様にしてSEMを使用して観察を行い、得られたSEM写真より、上記した方法で体積平均粒子径(dv)、数平均粒子径(dn)、粒子サイズの変動係数(Cv)を求めたところ、下記の表5に示すとおりであった。また、また、SEM写真より、0.3μm以下の副生小粒子生成量を上記した方法で判定したところ、下記の表5に示すとおりであった。
(1) 分散安定剤液として製造例1で得られた分散安定剤液(Ma1)を下記の表5に示す量で用いると共に25%アンモニア水と水の使用量を下記の表5に示すようにし、更にメタクリル酸メチルおよびメタクリル酸イソブチルと共に架橋性単量体としてアリルメタクリレートを下記の表5に示す量で使用した以外は、実施例1の(1)~(3)と同様に行なって、架橋した重合体微粒子(PC-1)[以下「架橋重合体粒子(PC-1)」ということがある。以下の実施例でも同じ]の分散液を製造した。実施例1の(3)と同様にして、上記した方法で重合安定性の評価を行なったところ、下記の表5に示すように、重合反応液を抜き出した後の反応器の内部や攪拌翼に重合体の付着はなく、更に200目ポリネット上にろ過残渣は認められず、重合安定性に優れており、○と評価された。
(2) 上記(1)で得られた架橋重合体微粒子(PC-1)について実施例1の(4)と同様にしてSEMを使用して観察を行い、得られたSEM写真より、上記した方法で体積平均粒子径(dv)、数平均粒子径(dn)、粒子サイズの変動係数(Cv)を求めたところ、下記の表5に示すとおりであった。また、また、SEM写真より、0.3μm以下の副生小粒子生成量を上記した方法で判定したところ、下記の表5に示すとおりであった。
(3) 上記(1)で得られた架橋重合体微粒子(PC-1)を20質量倍のメチルエチルケトンに分散させた後、25℃で24時間静置させた。24時間後に架橋重合体微粒子(PC-1)はメチルエチルケトン中で沈降していたが、粒子間の凝集や合一などが生じておらず、容易に再分散できた。再分散させた架橋重合体微粒子(PC-1)をメチルエチルケトンから取り出し、室温で乾燥させた後、上記(2)と同様にしてSEMを使用して観察を行った。架橋重合体微粒子(PC-1)のSEM像は、上記(1)で得られた、メチルエチルケトンに浸漬する前の架橋重合体微粒子(PC-1)のSEM像と比較して多少変形していたが、粒子形状を維持しており、架橋により耐溶剤性(耐メチルエチルケトン性)が向上した。
(4) 上記(1)で得られたメチルエチルケントに浸漬する前の架橋重合体微粒子(PC-1)のSEM写真を図5(倍率5,000倍)に、またメチルエチルケントに24時間浸漬した後に取り出し乾燥して得られた架橋重合体微粒子(PC-1)のSEM写真を図6(倍率5,000倍)に示す。
(4) 上記(1)で得られたメチルエチルケントに浸漬する前の架橋重合体微粒子(PC-1)のSEM写真を図5(倍率5,000倍)に、またメチルエチルケントに24時間浸漬した後に取り出し乾燥して得られた架橋重合体微粒子(PC-1)のSEM写真を図6(倍率5,000倍)に示す。
《実施例21》[架橋した重合体微粒子(PC-2)の製造]
(1) 攪拌機、還流冷却器、温度計および窒素導入管を備えたガラス製反応器に、イオン交換水115.2質量部、メタノール460.5質量部、25%アンモニア水(中和用)0.79質量部、製造例1で製造した分散安定剤液(Ma1)7.55質量部、メタクリル酸メチル45.0質量部およびメタクリル酸イソブチル50.0質量部を仕込み、攪拌および窒素ガスの吹き込みを行いながら、反応器内温を55℃に調整した。
(2) 上記(1)の反応器の内温が55℃で安定したことを確認した後、トリメトキシシリルプロピルメタクリレート5.0質量部を反応器に投入し、さらにその10分後に実施例1で使用したのと同じ重合開始剤(パーブチルPV;t-ブチルパーオキシピバレートの70%溶液)2.4質量部を添加して重合を開始させたところ、重合開始剤の添加後、直ちに反応液に濁りが生じ、徐々に白化して乳白色となり、重合体微粒子が生成していることが確認された。重合開始剤(パーブチルPV)の添加から4時間にわたって反応器の内温を55℃に保持して、加水分解性シリル基を有する重合体微粒子の分散液を得た。
(1) 攪拌機、還流冷却器、温度計および窒素導入管を備えたガラス製反応器に、イオン交換水115.2質量部、メタノール460.5質量部、25%アンモニア水(中和用)0.79質量部、製造例1で製造した分散安定剤液(Ma1)7.55質量部、メタクリル酸メチル45.0質量部およびメタクリル酸イソブチル50.0質量部を仕込み、攪拌および窒素ガスの吹き込みを行いながら、反応器内温を55℃に調整した。
(2) 上記(1)の反応器の内温が55℃で安定したことを確認した後、トリメトキシシリルプロピルメタクリレート5.0質量部を反応器に投入し、さらにその10分後に実施例1で使用したのと同じ重合開始剤(パーブチルPV;t-ブチルパーオキシピバレートの70%溶液)2.4質量部を添加して重合を開始させたところ、重合開始剤の添加後、直ちに反応液に濁りが生じ、徐々に白化して乳白色となり、重合体微粒子が生成していることが確認された。重合開始剤(パーブチルPV)の添加から4時間にわたって反応器の内温を55℃に保持して、加水分解性シリル基を有する重合体微粒子の分散液を得た。
(3) 引き続き、加水分解性シリル基を架橋させるための塩基性触媒として25%アンモニア水32.9質量部を添加し、反応器の内温を68℃に昇温させて同温度に3時間保持して、架橋した重合体微粒子を製造した。
(4) 上記(3)で得られた反応液を冷却した後、200目ポリネットでろ過しながら反応器から取り出しを行なって、架橋した重合体微粒子(PC-2)]の分散液を回収した。重合反応液を抜き出した後の反応器の内部や攪拌翼に重合体の付着はなく、更に200目ポリネット上にろ過残渣は認められず、上記した評価方法による重合安定性の評価では○と判定された。
(5) 上記(4)で回収した架橋重合体微粒子(PC-2)の分散液を、155℃で30分加熱した時の不揮発分が98質量%以上になるまで60℃で乾燥し、乾燥後に解砕して、架橋重合体微粒子(PC-2)を得た。
(6) 上記(5)で得られた架橋重合体微粒子(PC-2)について、SEMを使用して観察を行い、そのSEM写真より、上記した方法で求めた体積平均粒子径(dv)は1.46μm、数平均粒子径(dn)は1.46μm、粒子サイズの変動係数(Cv)は7.4%であった。また、SEM写真より、0.3μm以下の副生小粒子生成量はごく僅かであることが確認された。
(4) 上記(3)で得られた反応液を冷却した後、200目ポリネットでろ過しながら反応器から取り出しを行なって、架橋した重合体微粒子(PC-2)]の分散液を回収した。重合反応液を抜き出した後の反応器の内部や攪拌翼に重合体の付着はなく、更に200目ポリネット上にろ過残渣は認められず、上記した評価方法による重合安定性の評価では○と判定された。
(5) 上記(4)で回収した架橋重合体微粒子(PC-2)の分散液を、155℃で30分加熱した時の不揮発分が98質量%以上になるまで60℃で乾燥し、乾燥後に解砕して、架橋重合体微粒子(PC-2)を得た。
(6) 上記(5)で得られた架橋重合体微粒子(PC-2)について、SEMを使用して観察を行い、そのSEM写真より、上記した方法で求めた体積平均粒子径(dv)は1.46μm、数平均粒子径(dn)は1.46μm、粒子サイズの変動係数(Cv)は7.4%であった。また、SEM写真より、0.3μm以下の副生小粒子生成量はごく僅かであることが確認された。
(7) 上記(5)で得られた架橋重合体微粒子(PC-2)を20質量倍のメチルエチルケトンに分散させた後、25℃で24時間静置させた。24時間後に架橋重合体微粒子(PC-2)はメチルエチルケトン中で沈降していたが、粒子間の凝集や合一などが生じておらず、容易に再分散できた。再分散させた架橋重合体微粒子(PC-2)をメチルエチルケトンから取り出し、室温で乾燥させた後、上記(6)と同様にしてSEMを使用して観察を行った。架橋重合体微粒子(PC-2)のSEM像は、上記(5)で得られた、メチルエチルケトンに浸漬する前の架橋重合体微粒子(PC-2)のSEM像と変わりがなく、上記した方法で評価した耐メチルエチルケトン性の評価結果は○と判定された。架橋重合体微粒子(PC-2)は、その架橋効果よって耐溶剤性に優れた微粒子であることが確認された。
《実施例22》[架橋した重合体微粒子(PC-3)の製造]
(1) 分散安定剤液(Ma1)の使用量、25%アンモニア水および水の使用量を下記の表5に示す量とし、ビニル単量体として下記の表5に示すものを表5に示す量で使用し、それ以外は実施例21の(1)~(5)と同様に行なって、架橋した重合体微粒子(PC-3)の分散液を製造した。実施例1の(3)と同様にして、各実施例について上記した方法で重合安定性の評価を行なったところ、下記の表5に示すとおりであった。
(2) 上記(1)で得られた架橋重合体微粒子(PC-3)について、実施例1と同様にしてSEMを使用して観察を行い、得られたSEM写真より、上記した方法で体積平均粒子径(dv)、数平均粒子径(dn)、粒子サイズの変動係数(Cv)を求めたところ、下記の表5に示すとおりであった。また、また、SEM写真より、0.3μm以下の副生小粒子生成量を上記した方法で判定したところ、下記の表5に示すとおりであった。
(3) 上記(1)で得られた架橋重合体微粒子(PC-3)について、実施例21の(7)と同様にして耐メチルエチルケトン性の試験を行なったところ、24時間後に架橋重合体微粒子(PC-3)はメチルエチルケトン中で沈降していたが、粒子間の凝集や合一などが生じておらず、容易に再分散できた。再分散させた重合体微粒子(PC-3)をメチルエチルケトンから取り出し、室温で乾燥させた後、上記(6)と同様にしてSEMを使用して観察を行った。メチルエチルケトン中に24時間浸漬後の架橋重合体微粒子(PC-3)のSEM像は、メチルエチルケトンに浸漬する前の架橋重合体微粒子(PC-3
)のSEM像と変わりがなく、上記した方法で評価した耐メチルエチルケトン性の評価結果は○と判定された。架橋重合体微粒子(PC-3)は、その架橋効果よって耐溶剤性に優れた微粒子であることが確認された。
(1) 分散安定剤液(Ma1)の使用量、25%アンモニア水および水の使用量を下記の表5に示す量とし、ビニル単量体として下記の表5に示すものを表5に示す量で使用し、それ以外は実施例21の(1)~(5)と同様に行なって、架橋した重合体微粒子(PC-3)の分散液を製造した。実施例1の(3)と同様にして、各実施例について上記した方法で重合安定性の評価を行なったところ、下記の表5に示すとおりであった。
(2) 上記(1)で得られた架橋重合体微粒子(PC-3)について、実施例1と同様にしてSEMを使用して観察を行い、得られたSEM写真より、上記した方法で体積平均粒子径(dv)、数平均粒子径(dn)、粒子サイズの変動係数(Cv)を求めたところ、下記の表5に示すとおりであった。また、また、SEM写真より、0.3μm以下の副生小粒子生成量を上記した方法で判定したところ、下記の表5に示すとおりであった。
(3) 上記(1)で得られた架橋重合体微粒子(PC-3)について、実施例21の(7)と同様にして耐メチルエチルケトン性の試験を行なったところ、24時間後に架橋重合体微粒子(PC-3)はメチルエチルケトン中で沈降していたが、粒子間の凝集や合一などが生じておらず、容易に再分散できた。再分散させた重合体微粒子(PC-3)をメチルエチルケトンから取り出し、室温で乾燥させた後、上記(6)と同様にしてSEMを使用して観察を行った。メチルエチルケトン中に24時間浸漬後の架橋重合体微粒子(PC-3)のSEM像は、メチルエチルケトンに浸漬する前の架橋重合体微粒子(PC-3
)のSEM像と変わりがなく、上記した方法で評価した耐メチルエチルケトン性の評価結果は○と判定された。架橋重合体微粒子(PC-3)は、その架橋効果よって耐溶剤性に優れた微粒子であることが確認された。
上記の表5における実施例20~22の結果にみるように、本発明の分散重合法による場合は、極めて少量の分散安定剤(Ma)(マクロモノマー)の使用で、体積平均粒子径(dv)が2μm未満であって粒子径が極めて小さく、しかも耐溶剤性に優れる架橋した重合体微粒子を、粒子サイズの変動係数(Cv)20%以下の狭い粒度分布で、重合体微粒子間の凝集などを生ずることなく、良好な重合安定性で円滑に得ることができる。
《実施例23》[架橋した重合体微粒子(PC-4)の製造]
(1) 攪拌機、還流冷却器、温度計および窒素導入管を備えたガラス製反応器に、イオン交換水299質量部、10%KOH水溶液3.0質量部および実施例1の(3)で得られた重合体微粒子(PA-1)の分散液を固形分濃度が35質量%となるように揮発分(水、メタノール)の一部を減圧除去した分散液285.7質量部(固形分換算、100質量部)を仕込み、攪拌しながら、反応器内温を20℃に調整した。
(2) ステンレス鋼製容器に、メタクリル酸メチル50.0質量部およびエチレングリコールジメタクリレート50.0質量部を仕込み攪拌混合し、さらにイオン交換水100質量部に乳化剤[花王(株)製、ラウリル硫酸ナトリウムの30%水溶液「エマール2F-30」]1.5質量部を溶解させた乳化剤水溶液を加えて乳化器を用いて乳化させて、ビニル単量体混合物の乳化液を調製した。
(3) 上記(1)の反応器に、上記(2)で調製したビニル単量体混合物の乳化液を加え、さらに重合開始剤[2,2’-アゾビス(2,4-ジメチルバレロニトリル;和光純薬(株)製「V-65」]1質量部を加えて、反応器の内温20℃で12時間攪拌を行って、重合体微粒子(PA-1)にビニル単量体混合物および重合開始剤を吸収させた。
(1) 攪拌機、還流冷却器、温度計および窒素導入管を備えたガラス製反応器に、イオン交換水299質量部、10%KOH水溶液3.0質量部および実施例1の(3)で得られた重合体微粒子(PA-1)の分散液を固形分濃度が35質量%となるように揮発分(水、メタノール)の一部を減圧除去した分散液285.7質量部(固形分換算、100質量部)を仕込み、攪拌しながら、反応器内温を20℃に調整した。
(2) ステンレス鋼製容器に、メタクリル酸メチル50.0質量部およびエチレングリコールジメタクリレート50.0質量部を仕込み攪拌混合し、さらにイオン交換水100質量部に乳化剤[花王(株)製、ラウリル硫酸ナトリウムの30%水溶液「エマール2F-30」]1.5質量部を溶解させた乳化剤水溶液を加えて乳化器を用いて乳化させて、ビニル単量体混合物の乳化液を調製した。
(3) 上記(1)の反応器に、上記(2)で調製したビニル単量体混合物の乳化液を加え、さらに重合開始剤[2,2’-アゾビス(2,4-ジメチルバレロニトリル;和光純薬(株)製「V-65」]1質量部を加えて、反応器の内温20℃で12時間攪拌を行って、重合体微粒子(PA-1)にビニル単量体混合物および重合開始剤を吸収させた。
(4) 反応器に、液面より上部にセットした窒素導入管より窒素ガスを吹き込み、内温を20℃から70℃まで2時間かけた昇温させることで、重合体微粒子(PA-1)に吸収されたビニル単量体混合物を重合させ、70℃到達後にさらに内温を2時間、70℃に維持した後、酸化防止剤[(株)ADEKA製「AO-70」;トリエチレングリコールビス(3-(3-t-ブチル-4-ヒドロキシ-5-メチルフェニル)プロピオネート)]1質量部をメタノール19質量部に溶解した液を加えて、70℃でさらに30分間保持した後、冷却して架橋した重合体微粒子(PC-4)の分散液を製造した。
(5) 上記(4)で得られた架橋重合体微粒子(PC-4)の分散液を遠心分離処理し、上澄みを除去して架橋樹脂微粒子の沈降ケーキを回収した。回収した架橋重合体微粒子(PC-4)の沈降物を同質量のイオン交換水と混合して再分散させた後、再度遠心分離処理を行い、上澄みを除去して回収した沈降物を、155℃で30分間加熱したときの不揮発分が98質量%以上になるまで80℃で乾燥した後、解砕して架橋重合体微粒子(PC-4)を製造した。
(5) 上記(4)で得られた架橋重合体微粒子(PC-4)の分散液を遠心分離処理し、上澄みを除去して架橋樹脂微粒子の沈降ケーキを回収した。回収した架橋重合体微粒子(PC-4)の沈降物を同質量のイオン交換水と混合して再分散させた後、再度遠心分離処理を行い、上澄みを除去して回収した沈降物を、155℃で30分間加熱したときの不揮発分が98質量%以上になるまで80℃で乾燥した後、解砕して架橋重合体微粒子(PC-4)を製造した。
(6) 上記(5)で得られた架橋重合体微粒子(PC-4)のSEM観察像より上記した方法で求めた体積平均粒子径(dv)は1.82μm、数平均粒子径(dn)は1.81μmであり、粒子サイズの変動係数(Cv)は5.8%であった。
(7) また、上記(5)で得られた架橋重合体微粒子(PC-4)について、実施例20と同様にして耐メチルエチルケトン性の試験を行なったところ、24時間後に架橋重合体微粒子(PC-4)はメチルエチルケトン中で沈降していたが、粒子間の凝集や合一などが生じておらず、容易に再分散できた。再分散させた重合体微粒子(PC-4)をメチルエチルケトンから取り出し、室温で乾燥させた後、上記した方法でSEMを使用して観察を行った。メチルエチルケトン中に24時間浸漬後の架橋重合体微粒子(PC-4)のSEM像は、メチルエチルケトンに浸漬する前の架橋重合体微粒子(PC-4)のSEM像と比較して非架橋ポリマー成分の溶出が認められるものの、粒子形状を維持しており、架橋により耐溶剤性(耐メチルエチルケトン性)が向上した。
(7) また、上記(5)で得られた架橋重合体微粒子(PC-4)について、実施例20と同様にして耐メチルエチルケトン性の試験を行なったところ、24時間後に架橋重合体微粒子(PC-4)はメチルエチルケトン中で沈降していたが、粒子間の凝集や合一などが生じておらず、容易に再分散できた。再分散させた重合体微粒子(PC-4)をメチルエチルケトンから取り出し、室温で乾燥させた後、上記した方法でSEMを使用して観察を行った。メチルエチルケトン中に24時間浸漬後の架橋重合体微粒子(PC-4)のSEM像は、メチルエチルケトンに浸漬する前の架橋重合体微粒子(PC-4)のSEM像と比較して非架橋ポリマー成分の溶出が認められるものの、粒子形状を維持しており、架橋により耐溶剤性(耐メチルエチルケトン性)が向上した。
分子鎖の末端に(メタ)アクリロイル基を有し且つ分子鎖の途中にカルボキシル基を有するマクロモノマー(Ma)を分散安定剤として用いて分散重合法により重合体微粒子を製造する本発明の方法により、ミクロンサイズの極めて微小な粒子径を有し、しかも粒度分布が狭くて均一な粒径を有し、単分散性で粒子間の凝集のない非架橋の重合体微粒子または架橋した重合体微粒子を円滑に生産性よく製造することができ、本発明の方法で得られる重合体微粒子のうち、架橋した重合体微粒子は耐熱性、耐溶剤性、耐薬品性、強度などにも優れている。そのため、本発明の方法で得られる重合体微粒子は、前記した優れた特性を活かして、液晶表示用スペーサ、液晶表示用の光拡散フィルム、および拡散板などの光拡散剤、液晶表示用のAGフィルムなどのAG剤、各種フィルム用のアンチブロッキング剤、導電性微粒子、カラム用充填剤、診断薬用の担体などをはじめとして、種々の用途に有効に使用することができる。
Claims (9)
- 分散安定剤の存在下に、ビニル単量体を、ビニル単量体および分散安定剤を溶解するが、生成する重合体を溶解しない親水性溶媒中で重合する工程を備える、重合体微粒子を製造する方法であって、前記分散安定剤が、分子鎖の末端に(メタ)アクリロイル基を有し且つ分子鎖の途中にカルボキシル基を有するマクロモノマー(Ma)であることを特徴とする重合体微粒子の製造方法。
- 前記マクロモノマー(Ma)が、分子鎖の末端に(メタ)アクリロイル基を有し、分子鎖の途中に水酸基を有するマクロモノマー(A)に、ジカルボン酸無水物を付加反応させて得られたものである請求項1に記載の重合体微粒子の製造方法。
- 前記マクロモノマー(Ma)が、0.5~4meq/gのカルボキシル基を有する請求項1または2に記載の重合体微粒子の製造方法。
- 前記マクロモノマー(Ma)が有するカルボキシル基の全部または一部が、塩基性化合物により中和されている請求項1~3のいずれか1項に記載の重合体微粒子の製造方法。
- 前記ビニル単量体として、加水分解性シリル基を有するビニル単量体を少なくとも一部として含むビニル単量体を用いて、加水分解性シリル基を有する重合体微粒子を製造する請求項1~4のいずれか1項に記載の重合体微粒子の製造方法。
- 請求項5で得られる重合体微粒子中の加水分解性シリル基を加水分解縮合させる工程を備え、架橋した重合体微粒子を製造することからなる重合体微粒子の製造方法。
- 前記ビニル単量体として、エチレン性不飽和基を2個以上有する多官能ビニル単量体を少なくとも一部として含むビニル単量体を用いて架橋した重合体微粒子を製造する請求項1~4のいずれか1項に記載の重合体微粒子の製造方法。
- 請求項1~4のいずれか1項に記載の製造方法で得られる重合体微粒子に多官能ビニル単量体を含むビニル単量体を吸収させた後、重合させる工程を備え、架橋した重合体微粒子を製造することからなる重合体微粒子の製造方法。
- 請求項1~8のいずれか1項の製造方法で得られる、体積平均粒子径(dv)が0.7~2.0μmで、粒子サイズの変動係数(Cv)が20%以下である重合体微粒子。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010534801A JP5578080B2 (ja) | 2008-10-22 | 2009-10-19 | 重合体微粒子の製造方法 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008271726 | 2008-10-22 | ||
JP2008-271726 | 2008-10-22 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2010047305A1 true WO2010047305A1 (ja) | 2010-04-29 |
Family
ID=42119343
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2009/068005 WO2010047305A1 (ja) | 2008-10-22 | 2009-10-19 | 重合体微粒子の製造方法 |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP5578080B2 (ja) |
WO (1) | WO2010047305A1 (ja) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2014505764A (ja) * | 2010-12-21 | 2014-03-06 | ダウ グローバル テクノロジーズ エルエルシー | オレフィン系ポリマーの重合方法およびラマン分析 |
WO2016043225A1 (ja) * | 2014-09-18 | 2016-03-24 | 東亞合成株式会社 | 重合体微粒子およびその製造方法 |
WO2016056497A1 (ja) * | 2014-10-07 | 2016-04-14 | 東亞合成株式会社 | 重合体微粒子およびその製造方法 |
JP2016069621A (ja) * | 2014-09-30 | 2016-05-09 | 積水化成品工業株式会社 | 重合体粒子及びその用途 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06122725A (ja) * | 1992-10-12 | 1994-05-06 | Mitsubishi Kasei Corp | ポリマー微粒子およびその製造方法 |
JP2004352832A (ja) * | 2003-05-28 | 2004-12-16 | Sanyo Chem Ind Ltd | 粒度分布の狭いポリマービーズ |
JP2005334767A (ja) * | 2004-05-26 | 2005-12-08 | Kri Inc | 分散安定剤及び重合体微粒子 |
-
2009
- 2009-10-19 WO PCT/JP2009/068005 patent/WO2010047305A1/ja active Application Filing
- 2009-10-19 JP JP2010534801A patent/JP5578080B2/ja active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06122725A (ja) * | 1992-10-12 | 1994-05-06 | Mitsubishi Kasei Corp | ポリマー微粒子およびその製造方法 |
JP2004352832A (ja) * | 2003-05-28 | 2004-12-16 | Sanyo Chem Ind Ltd | 粒度分布の狭いポリマービーズ |
JP2005334767A (ja) * | 2004-05-26 | 2005-12-08 | Kri Inc | 分散安定剤及び重合体微粒子 |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2014505764A (ja) * | 2010-12-21 | 2014-03-06 | ダウ グローバル テクノロジーズ エルエルシー | オレフィン系ポリマーの重合方法およびラマン分析 |
WO2016043225A1 (ja) * | 2014-09-18 | 2016-03-24 | 東亞合成株式会社 | 重合体微粒子およびその製造方法 |
JP2016060824A (ja) * | 2014-09-18 | 2016-04-25 | 東亞合成株式会社 | 重合体微粒子およびその製造方法 |
JP2016069621A (ja) * | 2014-09-30 | 2016-05-09 | 積水化成品工業株式会社 | 重合体粒子及びその用途 |
WO2016056497A1 (ja) * | 2014-10-07 | 2016-04-14 | 東亞合成株式会社 | 重合体微粒子およびその製造方法 |
JP2016074821A (ja) * | 2014-10-07 | 2016-05-12 | 東亞合成株式会社 | 重合体微粒子およびその製造方法 |
Also Published As
Publication number | Publication date |
---|---|
JP5578080B2 (ja) | 2014-08-27 |
JPWO2010047305A1 (ja) | 2012-03-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5256590B2 (ja) | 重合体微粒子の製造方法 | |
JP5683263B2 (ja) | 非イオン性水溶性添加剤 | |
JP5578080B2 (ja) | 重合体微粒子の製造方法 | |
JP5630266B2 (ja) | 重合体微粒子の製造方法 | |
JP5703567B2 (ja) | 架橋重合体微粒子の製造方法 | |
JP3991840B2 (ja) | 重合体微粒子の製造方法 | |
JP6465275B2 (ja) | 重合体微粒子およびその製造方法 | |
WO2021095739A1 (ja) | 重合体微粒子の製造方法及び分散安定剤 | |
JP5552726B2 (ja) | 重合体微粒子の製造方法 | |
JP4513359B2 (ja) | 既架橋微粒子 | |
JPH0543608A (ja) | 水性架橋ポリマー粒子およびその製法 | |
WO2016043225A1 (ja) | 重合体微粒子およびその製造方法 | |
JP7035327B2 (ja) | マクロモノマー共重合体の製造方法 | |
JP4165152B2 (ja) | 既架橋微粒子の製造方法 | |
JP4052026B2 (ja) | 樹脂分散液の製造方法 | |
JP7276315B2 (ja) | 重合体微粒子の製造方法 | |
JP4513600B2 (ja) | 水分散型アクリル系ポリマーの製造方法 | |
JP2002129093A (ja) | エマルションの製造方法およびこのエマルションを用いた塗料組成物 | |
JP2002308992A (ja) | 既架橋微粒子の分散液 | |
WO2021095740A1 (ja) | ポリアクリル酸系微粒子 | |
JP2022065185A (ja) | 共重合体、樹脂組成物、成形体、フィルム状成形体、及び共重合体の製造方法 | |
JP2003165815A (ja) | 水性樹脂分散体の製造方法及び粘着剤組成物 | |
JP2007063344A (ja) | 親水性基含有既架橋微粒子分散液 | |
WO2016143595A1 (ja) | 水溶性重合体の製造方法 | |
JP2002284807A (ja) | 架橋ポリマー粒子の製造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 09822002 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2010534801 Country of ref document: JP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 09822002 Country of ref document: EP Kind code of ref document: A1 |