Nothing Special   »   [go: up one dir, main page]

WO2009107639A1 - 圧延鋼材の冷却装置および冷却方法 - Google Patents

圧延鋼材の冷却装置および冷却方法 Download PDF

Info

Publication number
WO2009107639A1
WO2009107639A1 PCT/JP2009/053377 JP2009053377W WO2009107639A1 WO 2009107639 A1 WO2009107639 A1 WO 2009107639A1 JP 2009053377 W JP2009053377 W JP 2009053377W WO 2009107639 A1 WO2009107639 A1 WO 2009107639A1
Authority
WO
WIPO (PCT)
Prior art keywords
cooling
rolled steel
steel material
nozzle
chamber
Prior art date
Application number
PCT/JP2009/053377
Other languages
English (en)
French (fr)
Inventor
杉山 誠司
達也 山之口
木村 武
梶原 貢
和久 藤原
佐藤 琢也
Original Assignee
新日本製鐵株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2008046461A external-priority patent/JP4384695B2/ja
Priority claimed from JP2008048383A external-priority patent/JP4427585B2/ja
Priority to ES09714692.2T priority Critical patent/ES2665045T3/es
Priority to BRPI0908257-3A priority patent/BRPI0908257B1/pt
Priority to US12/867,706 priority patent/US8715565B2/en
Priority to KR1020107018740A priority patent/KR101227213B1/ko
Application filed by 新日本製鐵株式会社 filed Critical 新日本製鐵株式会社
Priority to AU2009218189A priority patent/AU2009218189B2/en
Priority to EP09714692.2A priority patent/EP2253394B1/en
Priority to CN2009801062869A priority patent/CN101959626B/zh
Priority to CA2715320A priority patent/CA2715320C/en
Publication of WO2009107639A1 publication Critical patent/WO2009107639A1/ja
Priority to US14/223,328 priority patent/US9255304B2/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/62Quenching devices
    • C21D1/667Quenching devices for spray quenching
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B45/00Devices for surface or other treatment of work, specially combined with or arranged in, or specially adapted for use in connection with, metal-rolling mills
    • B21B45/02Devices for surface or other treatment of work, specially combined with or arranged in, or specially adapted for use in connection with, metal-rolling mills for lubricating, cooling, or cleaning
    • B21B45/0203Cooling
    • B21B45/0209Cooling devices, e.g. using gaseous coolants
    • B21B45/0215Cooling devices, e.g. using gaseous coolants using liquid coolants, e.g. for sections, for tubes
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/04Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for rails
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B1/00Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations
    • B21B1/08Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling structural sections, i.e. work of special cross-section, e.g. angle steel
    • B21B1/085Rail sections
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B45/00Devices for surface or other treatment of work, specially combined with or arranged in, or specially adapted for use in connection with, metal-rolling mills
    • B21B45/02Devices for surface or other treatment of work, specially combined with or arranged in, or specially adapted for use in connection with, metal-rolling mills for lubricating, cooling, or cleaning
    • B21B45/0203Cooling
    • B21B45/0209Cooling devices, e.g. using gaseous coolants
    • B21B45/0215Cooling devices, e.g. using gaseous coolants using liquid coolants, e.g. for sections, for tubes
    • B21B45/0233Spray nozzles, Nozzle headers; Spray systems
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D11/00Process control or regulation for heat treatments
    • C21D11/005Process control or regulation for heat treatments for cooling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/0075Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for rods of limited length
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/04Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for rails
    • C21D9/06Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for rails with diminished tendency to become wavy
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/52Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for wires; for strips ; for rods of unlimited length
    • C21D9/525Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for wires; for strips ; for rods of unlimited length for wire, for rods
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/52Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for wires; for strips ; for rods of unlimited length
    • C21D9/54Furnaces for treating strips or wire
    • C21D9/56Continuous furnaces for strip or wire
    • C21D9/573Continuous furnaces for strip or wire with cooling
    • C21D9/5732Continuous furnaces for strip or wire with cooling of wires; of rods
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/52Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for wires; for strips ; for rods of unlimited length
    • C21D9/54Furnaces for treating strips or wire
    • C21D9/56Continuous furnaces for strip or wire
    • C21D9/573Continuous furnaces for strip or wire with cooling
    • C21D9/5735Details

Definitions

  • the present invention relates to a cooling device and a cooling method for cooling a long rolled steel material such as a hot-rolled rail.
  • This application claims priority based on Japanese Patent Application No. 2008-046461 filed in Japan on February 27, 2008 and Japanese Patent Application No. 2008-048383 filed in Japan on February 28, 2008. This is incorporated here.
  • Patent Document 2 in order to suppress the generation of proeutectoid cementite in the rail column and to stably generate a pearlite structure having a high cementite ratio and a high hardness in the rail head, the rail head is formed in the austenite region.
  • a pearlite system that accelerates cooling from 1 to 10 ° C / s from 700 to 500 ° C, and further accelerates rail columns from 1 to 10 ° C / s from austenite temperature to 750 to 600 ° C.
  • a method for manufacturing a rail is disclosed.
  • the vapor film formed on the rail surface obstructs the contact between the rail and the cooling medium, resulting in variations in the cooling rate.
  • the steel structure may also vary.
  • the method (2) using gas as a cooling medium has a drawback that the cooling rate is slower than the cooling method using liquid.
  • the present invention has been made in view of such circumstances, and suppresses formation of a vapor film on the surface of a long rolled steel material to greatly improve the cooling rate, and also provides a cooling device for a rolled steel material capable of uniform accelerated cooling and An object is to provide a cooling method.
  • the present invention is a rolled steel cooling device for cooling a hot rolled long rolled steel material, comprising a plurality of chambers arranged along the longitudinal direction of the rolled steel material.
  • Each of the plurality of chambers has a blow-out port for blowing out the cooling pressurized air introduced into the chamber from a gas introduction port connected to the chamber from the chamber toward the rolled steel material.
  • a nozzle plate provided to face the rolled steel material, having a plurality of nozzle holes, a cooling water supply nozzle for supplying cooling water into the chamber, and provided between the gas inlet and the cooling water supply nozzle And a rectifying plate for preventing the cooling pressurized gas introduced from the gas introduction port from directly hitting the nozzle plate.
  • the cooling device includes a cooling medium in which the cooling water supplied from the cooling water supply nozzle and a cooling pressurized gas introduced from the gas inlet and rectified by the rectifying plate are mixed. It sprays toward the said rolled steel material through the said nozzle hole of a plate, and the surface of this rolled steel material is cooled uniformly.
  • a cooling water supply nozzle for supplying cooling water is installed in a chamber for injecting the cooling pressurized gas from the outlet toward the rolled steel material, and the cooling pressurized gas and the cooling water are mixed. Then, the collision speed of water droplets is increased by spraying the mist from the nozzle plate through the nozzle holes in the vertical direction (preferably perpendicular) to the surface of the rolled steel material, thereby quickly removing the water droplets adhering to the rolled steel material. Thereby, formation of the vapor film is hindered, and uniform cooling is possible without changing the cooling rate.
  • a rectifying plate is installed between the gas introduction port and the cooling water supply nozzle so that the cooling pressurized gas introduced from the gas introduction port flows through the rectification plate to the entire chamber. This prevents variation in the amount of water related to the entire chamber.
  • a plurality of holes may be formed in the current plate.
  • it is formed at a location facing the gas inlet so that the discharge amount of the pressurized pressurized gas ejected from the nozzle plate through the nozzle hole is uniform in the longitudinal direction of the chamber. It is preferable that the total area per unit area of the holes formed is smaller than the total area per unit area of the holes formed in other places.
  • the cooling water supply nozzle is directed to the nozzle plate.
  • the ratio of the volume flow rate of the cooling pressurized gas to the volume flow rate of the cooling water may be 1000 to 50000.
  • the ratio of the volumetric flow rate of the cooling pressurized gas to the volumetric flow rate of the cooling water is called the air / water ratio.
  • the air / water ratio In the case of a high air / water ratio, the vapor film formed on the surface of the rolled steel material is eliminated by the pressurized gas for cooling, so the formation of the vapor film is hindered and stable cooling is ensured.
  • the air / water ratio is less than 1000, the cooling rate varies greatly, and when the air / water ratio exceeds 50000, the cooling effect is saturated.
  • the cooling pressurized gas may be air or nitrogen.
  • the kind of the cooling medium is not limited, but air or nitrogen is preferable from the viewpoint of ease of handling and economy.
  • the cooling water may be supplied from the cooling water supply nozzle in a mist shape, a shower shape, or a flowing water shape.
  • the particle size distribution of the mist injected from the nozzle plate through the nozzle hole has almost the same tendency regardless of the particle size of the water droplets supplied from the cooling water supply nozzle.
  • the reason for this is that the cooling water supplied in the chamber once merges in the nozzle plate, and the combined cooling water is re-dispersed when sprayed from the nozzle plate hole together with the cooling pressurized gas. It is thought to be.
  • the cooling water to be supplied may be in the form of mist, shower, or flowing water, and only cooling water may be supplied from the cooling water supply nozzle, or the cooling water and the pressurized gas for cooling are mixed. You may supply. In short, a predetermined amount of water may be supplied onto the nozzle plate.
  • the rolled steel material is a rail, and the chamber is disposed so as to have a gap between the top of the rail and the chamber, and the cooling medium is directed from the nozzle hole of the nozzle plate toward the top of the rail.
  • the chamber may be disposed so as to have a gap between the head side portion of the rail and the chamber, and the cooling is performed from the nozzle hole of the nozzle plate toward the head side portion of the rail.
  • a medium may be jetted.
  • Each of the chambers includes a widened portion having a wide width, a narrowed portion formed to be narrower than the widened portion, and the widened portion, And an inclined portion that connects them with the reduced width portion, and the outlet may be provided at an end of the reduced width portion.
  • the rolled steel material is a rail, the chamber is disposed above the rail, the rectifying plate is disposed in a horizontal state in the widened portion of the chamber, a side end of the rectifying plate and an inner wall of the widened portion, A gap may be formed so that the pressurized gas for cooling passes between them.
  • the rolling steel cooling device even when the chamber is disposed on the side of the rail, the chamber having the same configuration as the chamber disposed to face the top of the rail is turned sideways (90 degrees). Rolling) and arranged on both sides of the rail.
  • the cooling method for cooling a long rolled steel material comprises mixing a cooling water supply nozzle for supplying cooling water, cooling air introduced through a gas inlet and the cooling water.
  • a long rolled steel material that has been hot-rolled using a cooling device that includes a plurality of chambers having a blowout port that blows out the cooled cooling medium and a nozzle plate that is provided at an end of the blowout port and has a plurality of nozzle holes. It is the cooling method which cools.
  • the cooling pressurized air introduced into the chamber through the gas inlet is rectified by a rectifying plate disposed between the gas inlet and the cooling water supply nozzle.
  • the pressure air is rectified so as not to go directly to the outlet, and the cooling pressurized air rectified by the rectifying plate and the cooling water supplied from the cooling water supply nozzle are mixed as the cooling medium,
  • the cooling medium is sprayed at a speed of 50 to 200 m / sec through a plurality of nozzle holes of the nozzle plate toward the surface of the rolled steel material arranged along the air outlet, so that the entire length of the rolled steel material is uniform. Cool down.
  • the higher the collision speed the higher the cooling speed is obtained.
  • the collision speed is 50 m / s or more, the variation in the cooling speed is reduced to about ⁇ 1.5 ° C. If the collision speed exceeds 200 m / s, the cooling effect is saturated.
  • the ratio of the volume flow rate of the cooling pressurized gas to the volume flow rate of the cooling water may be 1000 to 50000.
  • the ratio of the volumetric flow rate of the cooling pressurized gas to the volumetric flow rate of the cooling water is called the air / water ratio.
  • the air / water ratio In the case of a high air / water ratio, the vapor film formed on the surface of the rolled steel material is eliminated by the pressurized gas for cooling, so the formation of the vapor film is hindered and stable cooling is ensured.
  • the air / water ratio is less than 1000, the cooling rate varies greatly, and when the air / water ratio exceeds 50000, the cooling effect is saturated.
  • the cooling water In the method for cooling rolled steel according to the present invention, it is preferable to supply the cooling water with the cooling water supply nozzle directed toward the nozzle plate.
  • the cooling pressurized gas may be air or nitrogen.
  • the kind of the cooling medium is not limited, but air or nitrogen is preferable from the viewpoint of ease of handling and economy.
  • the cooling water may be supplied from the cooling water supply nozzle in the form of mist, shower, or flowing water.
  • the cooling start temperature of the rolled steel material after hot rolling may be not less than the austenite temperature, and the cooling end temperature of the rolled steel material may be 450 to 600 ° C. This is because quenching does not occur unless the cooling start temperature is not lower than the austenite temperature and the cooling end temperature is not higher than 600 ° C. On the other hand, if accelerated cooling is continued to less than 450 ° C., a martensite structure is formed in the rail head portion.
  • the rolled steel material is a rail
  • the chamber is disposed so as to have a gap between the top and side of the rail and the chamber, and the top of the rail and the top of the rail from the nozzle hole of the nozzle plate.
  • the cooling medium may be sprayed toward the head side portion. By doing in this way, mist injection can be performed in the direction perpendicular to the surface of the rail head.
  • a cooling water supply nozzle for supplying cooling water is installed in a chamber for injecting a cooling pressurized gas from a blowout port toward the rolled steel material, and the cooling water is added.
  • the compressed gas and cooling water are mixed and sprayed from the nozzle plate through the nozzle hole in the mist direction in the direction perpendicular to the surface of the rolled steel material, thereby increasing the impact speed of the water droplets and quickly removing the water droplets adhering to the rolled steel material. .
  • formation of a vapor film is hindered, uniform cooling is possible without changing the cooling rate, and stable accelerated cooling is also possible.
  • a rectifying plate is installed between the gas inlet and the cooling water supply nozzle so that the cooling pressurized gas introduced from the gas inlet flows uniformly throughout the chamber through the rectifying plate.
  • variation in the water density in the entire chamber can be prevented.
  • FIG. 1 is a schematic diagram showing a rolled steel cooling device according to an embodiment of the present invention.
  • FIG. 2 is a plan view of the nozzle plate of the cooling device.
  • FIG. 3 is a perspective view of a pipe for supplying cooling water and a cooling water supply nozzle portion.
  • FIG. 4A is a schematic diagram illustrating a cooling water supply state of a cooling water supply nozzle.
  • FIG. 4B is a graph showing the relationship between the position of the cooling water supply nozzle of FIG. 4A and the water amount density.
  • FIG. 5 is a perspective view showing a state in which a current plate is installed in the chamber.
  • FIG. 6A is a graph showing an air discharge distribution and a mist water density ratio in a state where there is no rectifying plate in the chamber.
  • FIG. 6B is a schematic diagram showing the flow of air in the chamber in the state of FIG. 6A.
  • FIG. 7A is a graph showing an air discharge distribution and a water density density ratio of mist in a state where a rectifying plate is installed immediately below the blower.
  • FIG. 7B is a schematic diagram showing the air flow in the chamber in the state of FIG. 7A.
  • FIG. 8 is a graph showing the relationship between the mist collision speed and the cooling speed.
  • FIG. 9 is a graph showing the relationship between the air / water ratio and the variation in cooling rate.
  • Cooling device 11 Chamber 11a Widening part 11b Inclination part 11cshrinking part 12 Air outlet 13 Gas introduction port 14 Nozzle plate 14c Nozzle hole 15 Cooling water supply nozzle 16 Current plate 17 Piping 17a Branch pipe 20
  • Cooling device 21 Chamber 21a Widening part 21b Inclined portion 21c Reduced width portion 22
  • Air outlet 23 Gas inlet 24
  • Nozzle plate 25 Cooling water supply nozzle 26
  • Current plate 27 Piping 30 Rail (Rolled steel) 31 head top 32 head side
  • a rail is taken as an example of a long rolled steel material.
  • Cooling devices 10 and 20 used for cooling rolled steel materials according to an embodiment of the present invention are cooling devices that cool the hot-rolled rail 30. As shown in FIG. 1, the cooling device 10 is disposed to face the top portion 31 of the rail 30, and the cooling device 20 is disposed to face the both-head side portions 32. The distance between the cooling device 10 and the top 31 of the rail 30 and the distance between the cooling device 20 and the head side 32 of the rail 30 are several mm to several tens mm, respectively.
  • the cooling device 10 has a plurality of box-shaped chambers 11 that are elongated in the longitudinal direction of the rail 30 (the longitudinal dimension is about 1000 to 5000 mm).
  • the plurality of chambers 11 are continuously arranged in a line along the longitudinal direction of the rail 30 over the entire length of the rail 30. That is, the number of chambers 11 is determined according to the length of the rail 30.
  • the length of each chamber 11 is preferably about 5 m to 10 m, for example. Therefore, for example, when the length of the rail 30 is 50 m, the number of chambers 11 continuously arranged in a row is 5 to 10. When the length of the rail 30 is 100 m, the number of chambers 11 arranged in a row is 10 to 20.
  • the chamber is arranged to cover the maximum rolling length of the rolled steel material produced in the facility, and the actual rolling length The number of chambers to be operated is selected accordingly.
  • the individual chambers 11 and 21 will be described in detail.
  • a gas inlet 13 for introducing air (an example of a pressurized gas for cooling) sent from a blower (not shown) is connected to the upper portion of the chamber 11 of the cooling device 10.
  • a cooling water supply nozzle 15 is installed in the box-shaped chamber 11 so as to supply the cooling water supplied via the pipe 17 in the direction of the top 31 of the rail 30.
  • a blower outlet 12 is provided at the downstream end of the chamber 11 and is configured to push the supplied cooling water toward the blower outlet 12 by air from the blower.
  • the chamber 11 is provided with a widened portion 11a having a wide width and a blowout port 12 provided at an end on the downstream side, and a reduced width that is narrower than the widened portion 11a. It is formed by the part 11c and the taper-shaped inclination part 11b which connects these between the wide part 11a and the narrow part 11c.
  • a nozzle plate 14 having a plurality of nozzle holes 14 c is attached to the air outlet 12 facing the rail 30 so as to be parallel to the top 31 of the rail 30.
  • a rectifying plate 16 that prevents the air introduced from the gas inlet 13 from directly hitting the nozzle plate 14 is in a horizontal state. Is installed.
  • the chamber 21 of the cooling device 20 is also connected to a gas inlet 23 for introducing air sent from a blower (not shown).
  • a cooling water supply nozzle 25 is installed in the box-shaped chamber 21 so as to supply the cooling water supplied via the pipe 27 in the direction of the head side portion 32 of the rail 30.
  • a blower outlet 22 is provided at the downstream end of the chamber 21 and is configured to push the supplied cooling water toward the blower outlet 22 by air from the blower.
  • the chamber 21 has a widened portion 21a having a wide width and a blowout port 22 provided at the end on the downstream side, and a narrower width than the widened portion 21a. It is formed by a width portion 21c and a tapered inclined portion 21b connecting the wide portion 21a and the reduced width portion 21c.
  • a nozzle plate 24 having a plurality of nozzle holes is attached to the air outlet 22 facing the rail 30 so as to be parallel to the head side portion 32 of the rail 30.
  • a rectifying plate 26 is installed between the gas inlet 23 and the cooling water supply nozzle 25 in the widened portion 21 a so that the gas is uniformly dispersed and flows in the entire chamber 21.
  • the nozzle plate 14, the cooling water supply nozzle 15, and the rectifying plate 16 of the cooling device 10 will be described in detail.
  • the nozzle plate 24, the cooling water supply nozzle 25, and the rectifying plate 26 of the cooling device 20 are substantially the same. is there.
  • the nozzle plate 14 is regularly formed with a large number of nozzle holes 14c having a diameter of about 2 to 10 mm, for example, with a predetermined interval (for example, an interval of about 2 mm to 10 mm).
  • the short direction of the region in which the nozzle hole 14c is formed (the width direction of the rail 30) so that the mist (a cooling medium composed of a mixture of air and cooling water) is perpendicular to the full width of the top 31 of the rail 30. ) Is substantially the same as the width of the top 31 of the rail 30.
  • a pipe 17 is arranged in the chamber 11 so as to be parallel to the longitudinal direction of the rail 30, and as shown in FIG. 3, a plurality of branch pipes 17a...
  • the cooling water supply nozzle 15 is attached to each end of the branch pipe 17a.
  • the cooling water supplied from the cooling water supply nozzle 15 may be mist, shower, or flowing water. Further, only the cooling water may be supplied from the cooling water supply nozzle 15, or the cooling water and air may be mixed and supplied.
  • the water density of the mist sprayed from the nozzle plate 14 through the nozzle hole 14c is uniform so that the water droplets supplied from the cooling water supply nozzle 15 are sprayed toward the nozzle plate 14 (see FIGS. 4A and 4B). ).
  • the rectifying plate 16 is disposed directly below at least a portion corresponding to the gas inlet 13 of the chamber 11 in a plan view. Further, a gap is formed between the side end of the rectifying plate 16 and the inner wall of the widened portion 11a so that air passes. As a result, the air introduced from the gas inlet 13 is distributed uniformly throughout the chamber 11 by the rectifying plate 16, and the water density distribution in the chamber 11 is prevented from being varied.
  • a large number of holes may be formed in the rectifying plate, and the total area per unit area of the holes formed immediately below each of the plurality of gas inlets at that time is formed in other locations.
  • the mist sprayed from the nozzle plate 14 through the nozzle hole 14 c may be uniform in the longitudinal direction of the chamber 11 by making it smaller than the total area per unit area of the holes.
  • FIG. 6A is a graph showing an air discharge distribution and a mist water density ratio in a state where there is no rectifying plate in the chamber 11 (see FIG. 6B).
  • the distance between the cooling water supply nozzle 15 and the nozzle plate 14 is 100 mm
  • the interval between the adjacent cooling water supply nozzles 15 is 500 mm
  • the gas inlet 13 is located at the center between the cooling water supply nozzles 15 (distance and All intervals are test examples).
  • the amount of air discharged in the longitudinal direction of the chamber 11 is large directly under the gas inlet 13 and decreases as the distance from the gas inlet 13 increases.
  • FIG. 7A is a graph showing the air discharge distribution and the water density density ratio of mist in a state (see FIG. 7B) in which a rectifying plate 16 having an appropriate shape is installed immediately below the gas inlet 13. Other conditions are the same as those in FIGS. 6A and 6B.
  • the distance between the current plate 16 and the nozzle plate 14 is 185 mm (test example).
  • the air-water ratio of the cooling medium composed of a mixture of air and cooling water injected from the nozzle plates 14 and 24 through the nozzle holes is set to 1000.
  • a cooling medium is supplied from the nozzle plate 14 disposed facing the head top 31 of the rail 30 toward the head top 31 through the nozzle hole 14c.
  • Mist spray is supplied from the nozzle plate 24 disposed facing the head side portion 32 of the rail 30 toward the head side portion 32 through the nozzle holes.
  • the rail head is uniformly cooled between the austenite region temperature and 450 to 600 ° C.
  • the reason why the cooling temperature is determined as described above is that, unless the cooling start temperature is not lower than the austenite region temperature and the cooling end temperature is not higher than 600 ° C., it is not preferable in performing quenching. On the other hand, if accelerated cooling is continued to less than 450 ° C., a martensite structure is generated in the rail head portion, so that the hardness increases but the toughness decreases, which is not preferable.
  • FIG. 8 is a graph showing the relationship between the collision speed of the mist and the cooling speed obtained by the experiment.
  • the cooling water supply nozzle was a nozzle BIM J 2015 manufactured by Ikeuchi Co., Ltd.
  • the test specimen was a 141 lb rail with a length of 100 mm, and a thermocouple embedded at a depth of 2 mm from the top of the specimen was used. .
  • the specimen was heated to 820 ° C. in a heating furnace, then taken out and cooled by the present cooling device from 750 ° C., and cooled to 500 ° C. or lower.
  • Cooling conditions were set such that the discharge cooling water density was constant at 70 L (liter) / m 2 ⁇ min, and the amount of air was changed to set the mist collision speed to 5, 20, 50, 150, and 200 m / s. .
  • the air pressure at this time was 1.1 to 1.2 atmospheres.
  • the experiment was conducted 10 times for each collision speed, and the cooling rate was determined from the time required for the indicated value of the thermocouple from 750 ° C to 500 ° C. As a result, it was found that the higher the collision speed, the higher the cooling speed, and when the collision speed was 50 m / s or more, the variation in cooling speed was reduced to about ⁇ 1.5 ° C. and stabilized. In addition, when the collision speed exceeds 200 m / s, it is not realistic because the facility is enlarged and the running cost is increased.
  • Table 1 shows the relationship between the air / water ratio and the cooling rate. From the table, it is understood that when the air / water ratio is 1000 or more, the standard deviation of the cooling rate is 2.2 or less, the effect is saturated at the air / water ratio of 50000, and stable cooling is possible.
  • FIG. 9 is a graph of the data in Table 1.
  • the pressurized gas for cooling introduced into the chamber is air, but it may be nitrogen.
  • a cooling apparatus and a cooling method for a rolled steel material capable of significantly improving the cooling rate by suppressing the formation of a vapor film on the surface of the long rolled steel material and capable of uniform accelerated cooling. it can.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Heat Treatments In General, Especially Conveying And Cooling (AREA)
  • Heat Treatment Of Strip Materials And Filament Materials (AREA)
  • Continuous Casting (AREA)

Abstract

 熱間圧延された長尺の圧延鋼材を冷却する圧延鋼材の冷却装置であって、前記圧延鋼材の長手方向に沿って配置された複数のチャンバーを備える。前記複数のチャンバーはそれぞれ、前記チャンバーから前記圧延鋼材に向けて、前記チャンバーに接続された気体導入口からチャンバーに導入された前記冷却用加圧空気を吹出す吹出口と、この吹出口に前記圧延鋼材に面するように設けられ、複数のノズル孔を有するノズルプレートと、前記チャンバー内に冷却水を供給する冷却水供給ノズルと、前記気体導入口と前記冷却水供給ノズルとの間に設けられ、前記気体導入口から導入された前記冷却用加圧気体が前記ノズルプレートに直接当たるのを防止する整流板とを備える。本発明の冷却装置は、前記冷却水供給ノズルから供給された前記冷却水と、前記気体導入口から導入され前記整流板によって整流された冷却用加圧気体とが混合された冷却媒体を前記ノズルプレートの前記ノズル孔を通じて、前記圧延鋼材に向けて噴射し、この圧延鋼材の表面の均一冷却を行う。

Description

圧延鋼材の冷却装置および冷却方法
 本発明は、熱間圧延されたレール等の長尺圧延鋼材を冷却する冷却装置および冷却方法に関する。
 本願は、2008年2月27日に日本出願された特願2008-046461と2008年2月28日に日本出願された特願2008-048383とに基づいて優先権を主張し、それらの内容をここに援用する。
 重荷重鉄道や曲線区間に用いられる鉄道用レールは、通常のレール以上に耐摩耗性が要求される。このため、熱間圧延後に、オーステナイト域温度からパーライト変態が終了するまでの間、加速冷却によってレール頭部の強度を高める処理が行われている。近年では、さらなる耐摩耗性向上のため、過共析領域まで炭素量を増加させたパーライト系レールが開発され、実用化されている(特許文献1参照)。
 しかし、耐摩耗性を向上させるために炭素量を増加させると、レール頭部に初析セメンタイトが生成し易くなり、レールの靭性及び延性が大きく低下するという問題点があった。
 そこで、特許文献2では、レール柱部の初析セメンタイトの生成を抑制し、且つ、レール頭部においてセメンタイト比率が高く、高硬度のパーライト組織を安定的に生成させるため、レール頭部をオーステナイト域温度から700~500℃までの間、1~10℃/sで加速冷却し、さらにレール柱部をオーステナイト域温度から750~600℃までの間、1~10℃/sで加速冷却するパーライト系レールの製造法が開示されている。
 他方、レールの加速冷却方法としては、冷却媒体の違いにより、(1)ミストを用いる方法(特許文献3~5参照)、(2)空気等の気体を用いる方法(特許文献6、7参照)、(3)レール頭部を冷却液に浸漬する方法(特許文献8、9参照)が知られている。
特開平8-144016号公報 特開平9-137228号公報 特開昭47-7606号公報 特開昭54-147124号公報 特開平8-319515号公報 特開昭61-149436号公報 特開昭61-279626号公報 特開昭57-85929号公報 特開平8-170120号公報
 高炭素レール鋼においてパーライト組織を安定的に生成させるには、加速冷却時における冷却速度を、より速くする必要がある。しかしながら、上述した従来の加速冷却方法によって、これを実現しようとした場合、以下のような課題がある。
 液滴が高温物体と接触すると、液滴と高温物体との間に蒸気膜が形成され、液滴が高温物体上を浮遊するライデンフロスト現象が発生する。冷却媒体に液体を用いる(1)と(3)の方法の場合、レール表面に形成される蒸気膜によって、レールと冷却媒体との接触が阻害され、冷却速度にバラツキが生じる。その結果、レールに温度偏差が生じ、温度偏差が大きくなると、鋼組織にも偏差が生じるおそれがある。
 また、気体を冷却媒体に用いる(2)の方法は、液体による冷却方法に比べて冷却速度が遅いという難点がある。
 本発明はかかる事情に鑑みてなされたもので、長尺の圧延鋼材表面における蒸気膜の形成を抑制して冷却速度を大幅に向上させるとともに、均一な加速冷却が可能な圧延鋼材の冷却装置および冷却方法を提供することを目的とする。
 上記目的を達成するため、本発明は、熱間圧延された長尺の圧延鋼材を冷却する圧延鋼材の冷却装置であって、前記圧延鋼材の長手方向に沿って配置された複数のチャンバーを備える。前記複数のチャンバーはそれぞれ、前記チャンバーから前記圧延鋼材に向けて、前記チャンバーに接続された気体導入口からチャンバーに導入された前記冷却用加圧空気を吹出す吹出口と、この吹出口に前記圧延鋼材に面するように設けられ、複数のノズル孔を有するノズルプレートと、前記チャンバー内に冷却水を供給する冷却水供給ノズルと、前記気体導入口と前記冷却水供給ノズルとの間に設けられ、前記気体導入口から導入された前記冷却用加圧気体が前記ノズルプレートに直接当たるのを防止する整流板とを備える。本発明の冷却装置は、前記冷却水供給ノズルから供給された前記冷却水と、前記気体導入口から導入され前記整流板によって整流された冷却用加圧気体とが混合された冷却媒体を前記ノズルプレートの前記ノズル孔を通じて、前記圧延鋼材に向けて噴射し、この圧延鋼材の表面の均一冷却を行う。
 冷却媒体に液体を使用すると、大きな冷却能力が確保できるが、圧延鋼材の表面に形成される蒸気膜により、冷却速度にバラツキが生じ、不均一な冷却となる。そこで、本発明では、圧延鋼材に向けて吹出口から冷却用加圧気体を噴出するチャンバー内に、冷却水を供給する冷却水供給ノズルを設置し、冷却用加圧気体と冷却水とを混合してノズルプレートからノズル孔を通じて圧延鋼材表面に対して垂直方向(好ましくは垂直)にミスト噴射することで水滴の衝突速度を高めて、圧延鋼材に付着する水滴を迅速に除去する。これにより、蒸気膜の形成が阻害され、冷却速度を変動させることなく、均一な冷却が可能となる。
 なお、冷却水に対する冷却用加圧気体の比率を高めた高気水比のノズルの使用も考えられるが、長尺圧延鋼材を一挙に均一に冷却しようとすると、多数のノズルが必要となるうえ、ノズルのメンテナンスが頻繁に発生するため、工業化設備としては現実的ではない。
 ノズルプレートからノズル孔を通じて噴出する冷却用加圧気体について、チャンバーの長手方向、即ち圧延鋼材の長手方向の吐出分布を見ると、気体導入口近傍が吐出量が最も多く、気体導入口から離れるにつれて吐出量は減少する。この状態で、冷却水供給ノズルからノズルプレートに向けて冷却水を供給させた場合、冷却用加圧気体の流れが強い気体導入口近傍では、水滴が背後からの冷却用加圧気体に押され、ノズルプレートからノズル孔を通じて噴射される水量が減少する。その結果、チャンバー全体で水量にバラツキが生じる。
 そこで、本発明では、気体導入口と冷却水供給ノズルとの間に整流板を設置して、気体導入口から導入された冷却用加圧気体が整流板を介してチャンバー全体に流れるようにすることで、チャンバー全体に関する水量のバラツキを防止している。
 また、本発明に係る圧延鋼材の冷却装置では、前記整流板に複数の孔を形成してもよい。
 但し、孔を形成する場合には、前記ノズルプレートからノズル孔を通じて噴出する冷却用加圧気体の吐出量が前記チャンバーの長手方向で均一となるように、前記気体導入口に面する箇所に形成された前記孔の単位面積当たりの合計面積が、他の箇所に形成された前記孔の単位面積当たりの合計面積より小さくなるようにすることが好ましい。
また、本発明に係る圧延鋼材の冷却装置では、前記冷却水供給ノズルを前記ノズルプレートに指向させることが好ましい。
 前記冷却水の体積流量に対する前記冷却用加圧気体の体積流量の比が1000~50000であってもよい。
 前記冷却水の体積流量に対する前記冷却用加圧気体の体積流量の比は、気水比と呼ばれる。
 高気水比の場合、圧延鋼材の表面に形成された蒸気膜が冷却用加圧気体によって排除されるため、蒸気膜の形成が阻害され、安定した冷却が確保される。この際、気水比を1000未満とすると、冷却速度のバラツキが大きく、気水比が50000を超えると、冷却効果が飽和する。
 前記冷却用加圧気体は、空気又は窒素であってもよい。
 本発明では冷却媒体の種類は問わないが、扱いやすさと経済性の点から、空気又は窒素が好ましい。
 前記冷却水が、前記冷却水供給ノズルからミスト状、シャワー状、又は流水状に供給されてもよい。
 冷却水供給ノズルから供給される水滴の粒径に依らず、ノズルプレートからノズル孔を通じて噴射されるミストの粒径分布は、ほぼ同一傾向にあることが本発明者等の実験により確認された。この理由としては、チャンバー内で供給された冷却水がノズルプレートで一旦合体し、合体した冷却水が冷却用加圧気体と一緒にノズルプレートの孔から噴射される際に再分散されるからであろうと考えられる。
 従って、供給される冷却水は、ミスト状、シャワー状、流水状のいずれでも良く、冷却水供給ノズルから冷却水のみ供給しても良いし、冷却水と冷却用加圧気体とを混合して供給しても良い。要は、ノズルプレート上に所定の水量が供給されればよい。
 前記圧延鋼材がレールであり、このレールの頭頂部と前記チャンバーとの間に隙間を有するように前記チャンバーが配置され、前記ノズルプレートの前記ノズル孔から前記レールの頭頂部に向けて前記冷却媒体が噴射されてもよく、前記レールの頭側部と前記チャンバーとの間に隙間を有するように前記チャンバーが配置され、前記ノズルプレートの前記ノズル孔から前記レールの頭側部に向けて前記冷却媒体が噴射されてもよい。このようにすることで、レール頭部の表面に対して垂直方向にミスト噴射することができる。
 前記各チャンバーは、前記チャンバーは、前記気体導入口を設けるために、その幅が広く形成された拡幅部と、この拡幅部よりも幅が狭く形成された縮幅部と、前記拡幅部と前記縮幅部との間でこれらを互いに連結する傾斜部と、で形成され、 前記吹出口が前記縮幅部の端部に設けられていてもよい。
 前記圧延鋼材がレールであり、前記チャンバーが前記レールの上方に配置され、前記チャンバーの前記拡幅部内に、前記整流板が水平状態で配置され、この整流板の側端と前記拡幅部の内壁との間を前記冷却用加圧気体が通過するように隙間が形成されてもよい。
 また、本発明に係る圧延鋼材の冷却装置では、前記チャンバーを前記レールの側方に配置する場合も、レールの頭頂部に対向して配置されるチャンバーと同様な構成のチャンバーを横向き(90度転回)とし、レールの側方の両側に配置される。
 本発明の熱間圧延された長尺の圧延鋼材を冷却する冷却方法は、冷却水を供給する冷却水供給ノズルと、気体導入口を通じて導入された冷却用加圧空気と前記冷却水とを混合した冷却媒体を吹き出す吹出口と、前記吹出口の端部に設けられ複数のノズル孔を有するノズルプレートとを有する複数のチャンバーを備える冷却装置を使って、熱間圧延された長尺の圧延鋼材を冷却する冷却方法である。前記気体導入口を通じて前記チャンバーに導入された前記冷却用加圧空気を、前記気体導入口と前記冷却水供給ノズルとの間に配置された整流板により、前記チャンバに導入された前記冷却用加圧空気が前記吹出口に直接向かわないように整流し、前記整流板によって整流された冷却用加圧空気と、前記冷却水供給ノズルから供給された冷却水とを混合して前記冷却媒体とし、前記冷却媒体を、前記吹出口に沿って配置された前記圧延鋼材の表面に向けて、前記ノズルプレートの複数のノズル孔を通じて50~200m/秒の速度で噴射し、前記圧延鋼材の全長を均一に冷却する。
 衝突速度を速くするほど高い冷却速度が得られ、衝突速度を50m/s以上とすると、冷却速度のバラツキが±1.5℃程度まで低減されることが判明した。なお、衝突速度が200m/sを超えると、冷却効果が飽和する。
 前記冷却水の体積流量に対する前記冷却用加圧気体の体積流量の比を1000~50000としてもよい。
 前記冷却水の体積流量に対する前記冷却用加圧気体の体積流量の比は、気水比と呼ばれる。
 高気水比の場合、圧延鋼材の表面に形成された蒸気膜が冷却用加圧気体によって排除されるため、蒸気膜の形成が阻害され、安定した冷却が確保される。この際、気水比を1000未満とすると、冷却速度のバラツキが大きく、気水比が50000を超えると、冷却効果が飽和する。
 また、本発明に係る圧延鋼材の冷却方法では、前記冷却水供給ノズルを前記ノズルプレートに指向させて前記冷却水を供給することが好ましい。
 前記冷却用加圧気体は、空気又は窒素であってもよい。
 本発明では冷却媒体の種類は問わないが、扱いやすさと経済性の点から、空気又は窒素が好ましい。
 前記冷却水供給ノズルから前記冷却水を、ミスト状、シャワー状、又は流水状に供給するようにしてもよい。
 熱間圧延後の前記圧延鋼材の冷却開始温度をオーステナイト域温度以上とすると共に、この圧延鋼材の冷却終了温度を450~600℃としてもよい。
 冷却開始温度をオーステナイト域温度以上、且つ冷却終了温度を少なくとも600℃以下としなければ、焼き入れが生じず好ましくないからである。一方、450℃未満まで加速冷却を継続すると、レール頭部にマルテンサイト組織が生じるため、硬度は増すものの延靭性が低下するため好ましくない。
 前記圧延鋼材がレールであり、このレールの頭頂部及び頭側部と前記チャンバーとの間に隙間を有するように前記チャンバーを配置し、前記ノズルプレートの前記ノズル孔から前記レールの前記頭頂部及び前記頭側部に向けて前記冷却媒体を噴射してもよい。このようにすることで、レール頭部の表面に対して垂直方向にミスト噴射することができる。
 本発明に係る圧延鋼材の冷却装置および冷却方法では、圧延鋼材に向けて吹出口から冷却用加圧気体を噴出するチャンバー内に、冷却水を供給する冷却水供給ノズルを設置し、冷却用加圧気体と冷却水とを混合してノズルプレートからノズル孔を通じて圧延鋼材表面に対して垂直方向にミスト噴射させることで水滴の衝突速度を高くして、圧延鋼材に付着する水滴を迅速に除去する。これにより、蒸気膜の形成が阻害され、冷却速度を変動させることなく、均一な冷却が可能となり、また安定した加速冷却も可能となる。
 加えて、気体導入口と冷却水供給ノズルとの間に整流板を設置して、気体導入口から導入された冷却用加圧気体が、整流板を介してチャンバー全体に均整に流れるようにすることで、チャンバー内の全体での水量密度のバラツキを防止することができる。
図1は、本発明の一実施の形態に係る圧延鋼材の冷却装置を示す模式図である。 図2は、同冷却装置のノズルプレートの平面図である。 図3は、冷却水を供給する配管と冷却水供給ノズル部分の斜視図である。 図4Aは、冷却水供給ノズルの冷却水の供給状況を示した模式図である。 図4Bは、図4Aの冷却水供給ノズルの位置と水量密度との関係を示したグラフである。 図5は、チャンバー内に整流板が設置された状態を示す斜視図である。 図6Aは、チャンバー内に整流板が無い状態における空気の吐出分布及びミストの水量密度割合を示したグラフである。 図6Bは、図6Aの状態におけるチャンバー内の空気の流れを示した模式図である。 図7Aは、ブロワーの直下に整流板が設置された状態における空気の吐出分布及びミストの水量密度割合を示したグラフである。 図7Bは、図7Aの状態におけるチャンバー内の空気の流れを示した模式図である。 図8は、ミストの衝突速度と冷却速度との関係を示したグラフである。 図9は、気水比と冷却速度のバラツキとの関係を示したグラフである。
符号の説明
 10 冷却装置
 11 チャンバー
 11a 拡幅部
 11b 傾斜部
 11c 縮幅部
 12 吹出口
 13 気体導入口
 14 ノズルプレート
 14c ノズル孔
 15 冷却水供給ノズル
 16 整流板
 17 配管
 17a 分岐管
 20 冷却装置
 21 チャンバー
 21a 拡幅部
 21b 傾斜部
 21c 縮幅部
 22 吹出口
 23 気体導入口
 24 ノズルプレート
 25 冷却水供給ノズル
 26 整流板
 27 配管
 30 レール(圧延鋼材)
 31 頭頂部
 32 頭側部
 続いて、添付した図面を参照しつつ、本発明を具体化した実施の形態につき説明し、本発明の理解に供する。なお、以下では、長尺の圧延鋼材としてレールを例に採り説明する。
 本発明の一実施の形態に係る圧延鋼材の冷却に使用する冷却装置(以下、単に冷却装置という)10、20は、熱間圧延されたレール30を冷却する冷却装置である。図1に示すように、レール30の頭頂部31に対向して冷却装置10が配置され、両頭側部32にそれぞれ対向して冷却装置20が配置される。冷却装置10とレール30の頭頂部31との距離、及び冷却装置20とレール30の頭側部32との距離は、それぞれ数mm~数十mmとされる。
 冷却装置10は、レール30の長手方向に細長い形状(長手方向の寸法は1000~5000mm程度)の箱形のチャンバー11を複数有している。レール30の全長を同時に冷却する必要があるため、複数のチャンバー11が、レール30の長手方向に沿い、レール30の全長に渡って一列に連続して配置される。つまり、チャンバー11の数は、レール30の長さに応じて決められる。1個あたりのチャンバー11の長さは、例えば、5m~10m程度が好ましい。そのため、例えば、レール30の長さが50mの場合は、一列に連続して配置されるチャンバー11の数は、5~10個になる。また、レール30の長さが100mの場合は、一列に連続して配置されるチャンバー11の数は、10~20個になる。
 上記は、本発明のチャンバーの長さや数を限定するものではなく、実際の製造設備では、その設備において製造される圧延鋼材の最大圧延長さを覆う分だけチャンバーを配置し、実際の圧延長さに応じて稼動するチャンバーの数を選択することになる。
 以下、個々のチャンバー11,21について詳細に説明する。
 冷却装置10のチャンバー11には、図示しないブロワーから送出される空気(冷却用加圧気体の一例)を導入する気体導入口13が上部に接続されている。この箱形のチャンバー11内には、配管17を介して供給される冷却水をレール30の頭頂部31の方向に供給するように冷却水供給ノズル15が設置されている。チャンバー11の下流側の端部には、吹出口12が設けられ、ブロワーからの空気によって、供給された冷却水を吹出口12に向けて押すように構成されている。
 チャンバー11は、上部に気体導入口13を設けるために、その幅が広く形成された拡幅部11aと、吹出口12が下流側の端部に設けられ、拡幅部11aよりも幅が狭い縮幅部11cと、拡幅部11aと縮幅部11cとの間でこれらを連結するテーパー状の傾斜部11bとで形成される。レール30に対向する吹出口12には、複数のノズル孔14c(図2参照)を有するノズルプレート14が、レール30の頭頂部31と平行になるように装着されている。また、拡幅部11a内で、気体導入口13と冷却水供給ノズル15との間には、気体導入口13から導入された空気がノズルプレート14に直接当たるのを防止する整流板16が水平状態に設置されている。
 一方、冷却装置20のチャンバー21も、図示しないブロワーから送出される空気を導入する気体導入口23が接続されている。箱形のチャンバー21内には、配管27を介して供給される冷却水をレール30の頭側部32の方向に供給するように冷却水供給ノズル25を設置されている。チャンバー21の下流側の端部には、吹出口22が設けられ、ブロワーからの空気によって、供給された冷却水を吹出口22に向けて押すように構成されている。
 チャンバー21は、側部に気体導入口23を設けるために、その幅が広く形成された拡幅部21aと、吹出口22が下流側の端部に設けられ、拡幅部21aよりも幅が狭い縮幅部21cと、拡幅部21aと縮幅部21cとの間でこれらを連結するテーパー状の傾斜部21bとで形成される。レール30に対向する吹出口22には、複数のノズル孔を有するノズルプレート24が、レール30の頭側部32と平行になるように装着されている。また、拡幅部21a内で、気体導入口23と冷却水供給ノズル25との間には、チャンバー21全体に均一に気体が分散して流れるように整流板26が設置されている。
 次に、冷却装置10のノズルプレート14、冷却水供給ノズル15、及び整流板16について詳細に説明するが、冷却装置20のノズルプレート24、冷却水供給ノズル25、及び整流板26もほぼ同様である。
 ノズルプレート14には、図2に示すように、例えば直径2~10mm程度の多数のノズル孔14c…が所要の間隔(例えば2mm~10mm程度の間隔)をおいて規則的に形成されている。また、ミスト(空気と冷却水との混合体からなる冷却媒体)がレール30の頭頂部31全幅に垂直に当たるように、ノズル孔14cが形成されている領域の短手方向(レール30の幅方向)の幅Wは、レール30の頭頂部31の幅と略同一とされている。
 チャンバー11内にレール30の長手方向と平行になるように配管17が配置され、図3に示すように、この配管17から複数の分岐管17a…が下方に向けて分岐している。冷却水供給ノズル15は、分岐管17aの各先端に装着されている。冷却水供給ノズル15から供給される冷却水は、ミスト状、シャワー状、流水状のいずれでも良い。
 また、冷却水供給ノズル15から冷却水のみを供給しても良いし、冷却水と空気とを混合して供給しても良い。
 冷却水供給ノズル15から供給される水滴がノズルプレート14に向けて噴射されるように、ノズルプレート14からノズル孔14cを通じて噴射されるミストの水量密度は均一とする(図4A、図4B、参照)。
 整流板16は、図5に示すように、平面視でチャンバー11の少なくとも気体導入口13相当部の直下に配置される。また、整流板16の側端と拡幅部11aの内壁との間には空気が通過するように隙間が形成されている。これにより、気体導入口13から導入された空気は、整流板16によりチャンバー11全体に分散して均整に流れ、チャンバー11内における水量密度分布のバラツキが防止される。
 なお、図示しないが、整流板に多数の孔を形成してもよく、さらにその際に複数ある気体導入口の各直下に形成される孔の単位面積当たりの合計面積が、他の箇所に形成される孔の単位面積当たりの合計面積より小さくなるようにすることで、ノズルプレート14からノズル孔14cを通じて噴射されるミストがチャンバー11の長手方向で均一となるようにしてもよい。
 図6Aは、チャンバー11内に整流板が無い状態(図6B参照)における空気の吐出分布及びミストの水量密度割合を示したグラフである。冷却水供給ノズル15とノズルプレート14との距離は100mm、隣接する冷却水供給ノズル15間の間隔は500mmとし、冷却水供給ノズル15間の中央に気体導入口13が位置している(距離及び間隔はいずれも試験例)。
 チャンバー11内に整流板が無い場合、チャンバー11の長手方向に関する空気の吐出量は、気体導入口13直下が大きく、気体導入口13から離れるにつれて小さくなる。この状態で、冷却水供給ノズル15からミストを供給した場合、空気の流れが強い気体導入口13直下では、ミストが空気に押されるため、ノズルプレート14からノズル孔14cを通じて噴射されるミストの量は減少する。このため、チャンバー11長手方向の水量は不均一となる。
 図7Aは、気体導入口13の直下に適切な形状の整流板16を設置した状態(図7B参照)における空気の吐出分布及びミストの水量密度割合を示したグラフである。他の条件は、図6Aおよび図6Bと同条件である。整流板16とノズルプレート14との距離は185mm(試験例)である。
 気体導入口13の直下に整流板16を設置した場合、気体導入口13からチャンバー11内に導入された空気は、整流板16に一旦衝突した後、チャンバー11全体に分散されるため、ノズルプレート14からノズル孔14cを通じて噴出する空気の吐出量は、チャンバー11全体で均一となる。
 気体導入口13から導入された空気は、整流板16によりチャンバー11の長手方向にも流れるため、チャンバー11の長手方向の水量分布は均一となる。
 上記構成を有する冷却装置10、20を用いてレール頭部を冷却する場合、ノズルプレート14、24からノズル孔を通じて噴射される空気と冷却水との混合体からなる冷却媒体の気水比を1000~50000、レール頭部へのミストの衝突速度を50~200m/sとして、レール30の頭頂部31に対向して配置したノズルプレート14からノズル孔14cを通じて該頭頂部31に向けて冷却媒体をミスト噴射する。またこれと同時に、レール30の頭側部32に対向して配置したノズルプレート24からノズル孔を通じて該頭側部32に向けて冷却媒体をミスト噴射する。そして、オーステナイト域温度から450~600℃までの間についてレール頭部を均一に冷却する。
 冷却温度を上記のように定めた理由は、冷却開始温度をオーステナイト域温度以上、且つ冷却終了温度を少なくとも600℃以下としなければ、焼き入れを実施する上で好ましくないためである。一方、450℃未満まで加速冷却を継続すると、レール頭部にマルテンサイト組織が生じるため、硬度は増すものの延靭性が低下するため好ましくない。
 図8は、実験によって得られた、ミストの衝突速度と冷却速度との関係をグラフ化したものである。
 冷却水供給ノズルは、株式会社いけうち製のノズルBIM J 2015、供試体は、長さ100mmの141ポンドレールとし、供試体の頭頂部から深さ2mmの位置に熱電対を埋め込んだものを使用した。
 供試体を加熱炉で820℃まで加熱した後、取り出して750℃から本冷却装置による冷却を開始し、500℃以下になるまで冷却した。冷却条件は、吐出冷却水量密度を70L(リットル)/m・min一定とし、空気の量を変化させてミストの衝突速度を10、20、50、150、200m/sの5条件に設定した。なお、この際の空気圧は、1.1~1.2気圧とした。
 ミストの衝突速度Vaは、吐出速度をVe、吹出口とレールとの間の距離をh、吹出口径をdとして、次式により算出した。
 Va=6.39×Ve/(h/d+0.6)
 各衝突速度について10回ずつ実験を行い、熱電対の指示値が750℃から500℃までに要した時間から冷却速度を求めた。その結果、衝突速度を速くするほど高い冷却速度が得られ、衝突速度を50m/s以上とすると、冷却速度のバラツキが±1.5℃程度まで低減し安定することが判明した。なお、衝突速度が200m/sを超えると、設備の大型化やランニングコストの増大を伴い、現実的ではない。
 また、表1は、気水比と冷却速度との関係を示したものである。同表より、気水比を1000以上とすると、冷却速度の標準偏差が2.2以下となり、気水比50000でその効果が飽和し、安定的な冷却が可能となることがわかる。なお、図9は、表1のデータをグラフ化したものである。
Figure JPOXMLDOC01-appb-T000001
 なお、本冷却装置を用いてレールの柱部や足部を冷却する場合については、これらの部位の冷却速度が頭部より速くなるため、別途、冷却条件を設定する必要がある。
 以上、本発明の実施の形態について説明してきたが、本発明は何ら上記した実施の形態に記載の構成に限定されるものではなく、特許請求の範囲に記載されている事項の範囲内で考えられるその他の実施の形態や変形例も含むものである。例えば、上記の実施の形態では、チャンバーに導入される冷却用加圧気体は空気としたが、窒素でも良い。
 本発明によれば、長尺の圧延鋼材表面における蒸気膜の形成を抑制して冷却速度を大幅に向上させるとともに、均一な加速冷却が可能な圧延鋼材の冷却装置および冷却方法を提供することができる。

Claims (14)

  1.  熱間圧延された長尺の圧延鋼材を冷却する圧延鋼材の冷却装置であって、
     前記圧延鋼材の長手方向に沿って配置された複数のチャンバーを備え、
     前記複数のチャンバーはそれぞれ、
     前記チャンバーから前記圧延鋼材に向けて、前記チャンバーに接続された気体導入口からチャンバーに導入された前記冷却用加圧空気を吹出す吹出口と、
     この吹出口に前記圧延鋼材に面するように設けられ、複数のノズル孔を有するノズルプレートと、
     前記チャンバー内に冷却水を供給する冷却水供給ノズルと、
     前記気体導入口と前記冷却水供給ノズルとの間に設けられ、前記気体導入口から導入された前記冷却用加圧気体が前記ノズルプレートに直接当たるのを防止する整流板と、
    を備え、
     前記冷却水供給ノズルから供給された前記冷却水と、前記気体導入口から導入され前記整流板によって整流された冷却用加圧気体とが混合された冷却媒体を前記ノズルプレートの前記ノズル孔を通じて、前記圧延鋼材に向けて噴射し、この圧延鋼材の表面の均一冷却を行う圧延鋼材の冷却装置。
  2.  請求項1に記載の圧延鋼材の冷却装置であって、
     前記圧延鋼材がレールであり、このレールの頭頂部と前記チャンバーとの間に隙間を有するように前記チャンバーが配置され、前記ノズルプレートの前記ノズル孔から前記レールの頭頂部に向けて前記冷却媒体が噴射される圧延鋼材の冷却装置。
  3.  請求項1に記載の圧延鋼材の冷却装置であって、
     前記圧延鋼材がレールであり、このレールの頭側部と前記チャンバーとの間に隙間を有するように前記チャンバーが配置され、前記ノズルプレートの前記ノズル孔から前記レールの頭側部に向けて前記冷却媒体が噴射される圧延鋼材の冷却装置。
  4.  請求項1に記載の圧延鋼材の冷却装置であって、前記チャンバーは、
     前記気体導入口を設けるために、その幅が広く形成された拡幅部と、
     この拡幅部よりも幅が狭く形成された縮幅部と、
     前記拡幅部と前記縮幅部との間でこれらを互いに連結する傾斜部と、
    で形成され、
     前記吹出口が前記縮幅部の端部に設けられている圧延鋼材の冷却装置。
  5.  請求項4に記載の圧延鋼材の冷却装置であって、
     前記圧延鋼材がレールであり、前記チャンバーが前記レールの上方に配置され、
     前記チャンバーの前記拡幅部内に、前記整流板が水平状態で配置され、
     この整流板の側端と前記拡幅部の内壁との間を前記冷却用加圧気体が通過するように隙間が形成されている圧延鋼材の冷却装置。
  6.  請求項1~5のいずれか1項に記載の圧延鋼材の冷却装置であって、前記冷却水の体積流量に対する前記冷却用加圧気体の体積流量の比が1000~50000である圧延鋼材の冷却装置。
  7.  請求項1~6のいずれか1項に記載の圧延鋼材の冷却装置であって、前記冷却用加圧気体が、空気又は窒素である圧延鋼材の冷却装置。
  8.  請求項1~7のいずれか1項に記載の圧延鋼材の冷却装置であって、前記冷却水が、前記冷却水供給ノズルからミスト状、シャワー状、又は流水状に供給される圧延鋼材の冷却装置。
  9.  冷却水を供給する冷却水供給ノズルと、気体導入口を通じて導入された冷却用加圧空気と前記冷却水とを混合した冷却媒体を吹き出す吹出口と、前記吹出口の端部に設けられ複数のノズル孔を有するノズルプレートとを有する複数のチャンバーを備える冷却装置を使って、熱間圧延された長尺の圧延鋼材を冷却する冷却方法であって、
     前記気体導入口を通じて前記チャンバーに導入された前記冷却用加圧空気を、前記気体導入口と前記冷却水供給ノズルとの間に配置された整流板により、前記チャンバーに導入された前記冷却用加圧空気が前記吹出口に直接向かわないように整流し、
     前記整流板によって整流された冷却用加圧空気と、前記冷却水供給ノズルから供給された冷却水とを混合して前記冷却媒体とし、
     前記冷却媒体を、前記吹出口に沿って配置された前記圧延鋼材の表面に向けて、前記ノズルプレートの複数のノズル孔を通じて50~200m/秒の速度で噴射し、前記圧延鋼材の全長を均一に冷却する圧延鋼材の冷却方法。
  10.  請求項9に記載の圧延鋼材の冷却方法であって、前記冷却水の体積流量に対する前記冷却用加圧気体の体積流量の比を1000~50000とする圧延鋼材の冷却方法。
  11.  請求項9または10に記載の圧延鋼材の冷却方法であって、前記冷却用加圧気体が、空気又は窒素である圧延鋼材の冷却方法。
  12.  請求項9~11のいずれか1項に記載の圧延鋼材の冷却方法であって、前記冷却水供給ノズルから前記冷却水を、ミスト状、シャワー状、又は流水状に供給する圧延鋼材の冷却方法。
  13.  請求項9~12のいずれか1項に記載の圧延鋼材の冷却方法であって、熱間圧延後の前記圧延鋼材の冷却開始温度をオーステナイト域温度以上とすると共に、この圧延鋼材の冷却終了温度を450~600℃とする圧延鋼材の冷却方法。
  14.  請求項9~13のいずれか1項に記載の圧延鋼材の冷却方法であって、前記圧延鋼材がレールであり、このレールの頭頂部及び頭側部と前記チャンバーとの間に隙間を有するように前記チャンバーを配置し、前記ノズルプレートの前記ノズル孔から前記レールの前記頭頂部及び前記頭側部に向けて前記冷却媒体を噴射する圧延鋼材の冷却方法。
PCT/JP2009/053377 2008-02-27 2009-02-25 圧延鋼材の冷却装置および冷却方法 WO2009107639A1 (ja)

Priority Applications (9)

Application Number Priority Date Filing Date Title
CA2715320A CA2715320C (en) 2008-02-27 2009-02-25 Cooling system and cooling method of rolling steel
CN2009801062869A CN101959626B (zh) 2008-02-27 2009-02-25 轧制钢材的冷却装置以及冷却方法
BRPI0908257-3A BRPI0908257B1 (pt) 2008-02-27 2009-02-25 sistema de resfriamento e método de resfriamento de aço laminado
US12/867,706 US8715565B2 (en) 2008-02-27 2009-02-25 Cooling system and cooling method of rolling steel
KR1020107018740A KR101227213B1 (ko) 2008-02-27 2009-02-25 압연 강재의 냉각 장치 및 냉각 방법
ES09714692.2T ES2665045T3 (es) 2008-02-27 2009-02-25 Sistema de refrigeración y método de refrigeración de acero de laminación
AU2009218189A AU2009218189B2 (en) 2008-02-27 2009-02-25 Cooling system and cooling method of rolling steel
EP09714692.2A EP2253394B1 (en) 2008-02-27 2009-02-25 Cooling system and cooling method of rolling steel
US14/223,328 US9255304B2 (en) 2008-02-27 2014-03-24 Cooling system and cooling method of rolling steel

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2008046461A JP4384695B2 (ja) 2008-02-27 2008-02-27 圧延鋼材の冷却方法
JP2008-046461 2008-02-27
JP2008048383A JP4427585B2 (ja) 2008-02-28 2008-02-28 圧延鋼材の冷却装置
JP2008-048383 2008-02-28

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US12/867,706 A-371-Of-International US8715565B2 (en) 2008-02-27 2009-02-25 Cooling system and cooling method of rolling steel
US14/223,328 Division US9255304B2 (en) 2008-02-27 2014-03-24 Cooling system and cooling method of rolling steel

Publications (1)

Publication Number Publication Date
WO2009107639A1 true WO2009107639A1 (ja) 2009-09-03

Family

ID=41016028

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/053377 WO2009107639A1 (ja) 2008-02-27 2009-02-25 圧延鋼材の冷却装置および冷却方法

Country Status (10)

Country Link
US (2) US8715565B2 (ja)
EP (1) EP2253394B1 (ja)
KR (1) KR101227213B1 (ja)
CN (1) CN101959626B (ja)
AU (1) AU2009218189B2 (ja)
BR (1) BRPI0908257B1 (ja)
CA (1) CA2715320C (ja)
ES (1) ES2665045T3 (ja)
RU (1) RU2450877C1 (ja)
WO (1) WO2009107639A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101782483A (zh) * 2010-03-02 2010-07-21 武汉钢铁(集团)公司 一种用于钢材冷却控制的试验平台
WO2014171848A1 (ru) 2013-04-17 2014-10-23 Общество С Ограниченной Ответственностью Научно-Производственное Предприятие "Томская Электронная Компания" (Ооо Нпп "Тэк") Устройство для термической обработки рельсов
WO2015105432A1 (ru) 2014-01-13 2015-07-16 Общество С Ограниченной Ответственностью Научно-Производственное Предприятие "Томская Электронная Компания" (Ооо Нпп "Тэк") Способ и устройство для термической обработки стального изделия

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102269668B (zh) * 2011-07-11 2013-01-02 南京钢铁股份有限公司 一种对压缩试样进行急速水淬的试验方法
CN102534145B (zh) * 2012-02-17 2013-06-19 上海电机学院 大型筒形工件的淬火冷却装置
KR101435278B1 (ko) * 2012-10-31 2014-09-29 현대제철 주식회사 물고임 방지용 형강 냉각 장치
CN103042054A (zh) * 2013-01-25 2013-04-17 中冶赛迪工程技术股份有限公司 异形钢材防止冷却弯曲装置及工艺方法
CN105074019B (zh) * 2013-03-28 2017-03-08 杰富意钢铁株式会社 钢轨的制造方法和制造装置
JP2014202320A (ja) * 2013-04-08 2014-10-27 株式会社神戸製鋼所 低温液化ガスの気化装置
DE102013221397A1 (de) * 2013-10-22 2015-04-23 Robert Bosch Gmbh Thermisches Verfahren und Vorrichtung zur lokalen Festigkeitssteigerung der Randschicht bei einem dickwandigen Bauteil
CN103594126B (zh) * 2013-11-18 2016-04-13 国核(北京)科学技术研究院有限公司 环境风冷却系统以及具有该系统的非能动安全壳
CN103820734B (zh) * 2014-01-10 2015-10-21 卢璐娇 一种贝氏体钢轨件的制造方法
KR102005208B1 (ko) * 2015-05-29 2019-07-29 고요 써모 시스템 가부시끼 가이샤 탱크 냉각 장치
WO2017043138A1 (ja) * 2015-09-11 2017-03-16 光洋サーモシステム株式会社 熱処理装置
CN105363799B (zh) * 2015-10-21 2017-11-17 钢铁研究总院 一种组织与性能均匀化钢材的非均温控轧控冷工艺
CN108085469B (zh) * 2018-02-12 2023-05-23 辽宁科技大学 一种提供高速、均匀钢轨风冷淬火风源的装置
JP6938402B2 (ja) * 2018-02-22 2021-09-22 光洋サーモシステム株式会社 熱処理装置
CN113042528A (zh) * 2021-03-05 2021-06-29 海南立磨焊接工程有限公司 复合耐磨钢板的轧制工艺
DE102021212523A1 (de) 2021-05-31 2022-12-01 Sms Group Gmbh Forcierte Luftkühlung zur Kühlung von Langstahlerzeugnissen
CN114226470B (zh) * 2021-12-10 2024-06-21 山西太钢不锈钢股份有限公司 一种热模拟控冷系统及使用方法
CN118109666A (zh) * 2022-11-30 2024-05-31 中冶南方工程技术有限公司 一种热轧不锈钢线材轧后喷淋冷却系统

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54147124A (en) 1978-05-10 1979-11-17 Nippon Kokan Kk <Nkk> Heat treating method for rail
JPS5785929A (en) 1980-07-23 1982-05-28 Centre Rech Metallurgique Improvement for manufacturing rail and rail thereby
JPS61149436A (ja) 1984-12-24 1986-07-08 Nippon Steel Corp レ−ルの熱処理方法
JPS61279626A (ja) 1985-06-05 1986-12-10 Nippon Steel Corp レ−ルの熱処理方法
JPH08144016A (ja) 1994-11-15 1996-06-04 Nippon Steel Corp 高耐摩耗パーライト系レール
JPH08170120A (ja) 1994-07-19 1996-07-02 Voest Alpine Schienen Gmbh 異形圧延材を熱処理するための方法及び装置
JPH08319515A (ja) 1995-05-19 1996-12-03 Nippon Steel Corp 軌条の冷却方法
JPH09137228A (ja) 1995-09-14 1997-05-27 Nippon Steel Corp 耐摩耗性に優れたパーライト系レールの製造法
JP2000026916A (ja) * 1998-07-10 2000-01-25 Honda Motor Co Ltd 金型鋳造品の熱処理方法

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2109121A5 (ja) 1970-10-02 1972-05-26 Wendel Sidelor
FR2421678A2 (fr) * 1978-04-03 1979-11-02 Bertin & Cie Dispositif de pulverisation a jet bidimensionnel
SU1066688A1 (ru) * 1982-08-05 1984-01-15 Всесоюзный Научно-Исследовательский И Проектный Институт По Очистке Технологических Газов,Сточных Вод И Использованию Вторичных Энергоресурсов Предприятий Черной Металлургии Устройство дл охлаждени проката
JPS59135852U (ja) * 1983-02-25 1984-09-11 株式会社神戸製鋼所 連続鋳造設備に用いる冷却用ミスト噴出装置
JPS59222531A (ja) * 1983-05-31 1984-12-14 Nippon Kokan Kk <Nkk> レ−ル頭部の冷却装置
US4660619A (en) * 1985-07-23 1987-04-28 Continuous Casting Systems Inc. Mold cooling apparatus and method for continuous casting machines
US4950338A (en) * 1988-03-24 1990-08-21 Bethlehem Steel Corporation Method for the controlled cooling of hot rolled steel samples
US5004510A (en) * 1989-01-30 1991-04-02 Panzhihua Iron & Steel Co. Process for manufacturing high strength railroad rails
US6689230B1 (en) * 1995-02-04 2004-02-10 Sms Schloemann-Siemag Aktiengesellschaft Method and apparatus for cooling hot-rolled sections
JPH08319514A (ja) 1995-05-22 1996-12-03 Nippon Steel Corp 外観の極めて良好な一次被膜を有する方向性電磁鋼板及びその製造方法
JP3945545B2 (ja) * 1996-02-27 2007-07-18 Jfeスチール株式会社 レールの熱処理方法
JP2000290777A (ja) 1999-04-07 2000-10-17 Tokyo Electron Ltd ガス処理装置、バッフル部材、及びガス処理方法
CN1906314B (zh) * 2004-01-09 2011-05-04 新日本制铁株式会社 钢轨制造方法
JP4063813B2 (ja) 2004-10-18 2008-03-19 新日本製鐵株式会社 熱間圧延鋼板のミスト冷却装置
CN200954522Y (zh) * 2006-10-08 2007-10-03 南京钢铁股份有限公司 高强度低合金钢轧后层流冷却水的侧喷吹扫系统

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54147124A (en) 1978-05-10 1979-11-17 Nippon Kokan Kk <Nkk> Heat treating method for rail
JPS5785929A (en) 1980-07-23 1982-05-28 Centre Rech Metallurgique Improvement for manufacturing rail and rail thereby
JPS61149436A (ja) 1984-12-24 1986-07-08 Nippon Steel Corp レ−ルの熱処理方法
JPS61279626A (ja) 1985-06-05 1986-12-10 Nippon Steel Corp レ−ルの熱処理方法
JPH08170120A (ja) 1994-07-19 1996-07-02 Voest Alpine Schienen Gmbh 異形圧延材を熱処理するための方法及び装置
JPH08144016A (ja) 1994-11-15 1996-06-04 Nippon Steel Corp 高耐摩耗パーライト系レール
JPH08319515A (ja) 1995-05-19 1996-12-03 Nippon Steel Corp 軌条の冷却方法
JPH09137228A (ja) 1995-09-14 1997-05-27 Nippon Steel Corp 耐摩耗性に優れたパーライト系レールの製造法
JP2000026916A (ja) * 1998-07-10 2000-01-25 Honda Motor Co Ltd 金型鋳造品の熱処理方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101782483A (zh) * 2010-03-02 2010-07-21 武汉钢铁(集团)公司 一种用于钢材冷却控制的试验平台
WO2014171848A1 (ru) 2013-04-17 2014-10-23 Общество С Ограниченной Ответственностью Научно-Производственное Предприятие "Томская Электронная Компания" (Ооо Нпп "Тэк") Устройство для термической обработки рельсов
EA027490B1 (ru) * 2013-04-17 2017-07-31 Общество С Ограниченной Ответственностью Научно-Производственное Предприятие "Томская Электронная Компания" Устройство для термической обработки рельсов
WO2015105432A1 (ru) 2014-01-13 2015-07-16 Общество С Ограниченной Ответственностью Научно-Производственное Предприятие "Томская Электронная Компания" (Ооо Нпп "Тэк") Способ и устройство для термической обработки стального изделия

Also Published As

Publication number Publication date
EP2253394B1 (en) 2018-04-04
CA2715320A1 (en) 2009-09-03
EP2253394A1 (en) 2010-11-24
KR101227213B1 (ko) 2013-01-28
ES2665045T3 (es) 2018-04-24
AU2009218189A1 (en) 2009-09-03
US9255304B2 (en) 2016-02-09
US20140208780A1 (en) 2014-07-31
RU2450877C1 (ru) 2012-05-20
US20100307646A1 (en) 2010-12-09
RU2010136833A (ru) 2012-04-10
CN101959626B (zh) 2012-10-03
EP2253394A4 (en) 2016-11-30
CN101959626A (zh) 2011-01-26
KR20100102232A (ko) 2010-09-20
US8715565B2 (en) 2014-05-06
AU2009218189B2 (en) 2014-05-22
CA2715320C (en) 2013-10-29
BRPI0908257A2 (pt) 2015-07-21
BRPI0908257B1 (pt) 2020-10-13

Similar Documents

Publication Publication Date Title
WO2009107639A1 (ja) 圧延鋼材の冷却装置および冷却方法
US10125405B2 (en) Method and system for thermal treatments of rails
TW201107052A (en) Cooling system, cooling method, manufacturing apparatus, and manufacturing method of hot-rolled steel sheet
JP5515483B2 (ja) 厚鋼板の冷却設備および冷却方法
JP4384695B2 (ja) 圧延鋼材の冷却方法
CN101702888B (zh) 具有冷却装置的轧机及轧制方法
KR20140024474A (ko) 열연 강판용 냉각수 제거 장치 및 제거 방법
JP4427585B2 (ja) 圧延鋼材の冷却装置
JP6179673B1 (ja) 連続焼鈍炉における冷却設備
JP2010253528A (ja) 連続鋳造における二次冷却方法
KR20110034452A (ko) 열가공 제어 압연의 가속 냉각 방법과 가속 냉각 장치
KR20090071136A (ko) 고온강재 냉각장치
JP6264464B2 (ja) 厚鋼板の製造設備および製造方法
JP6108041B2 (ja) 厚鋼板の製造方法
JPH0516206Y2 (ja)
JP2006297410A (ja) 厚鋼板の冷却装置及び方法
JP4752252B2 (ja) H形鋼の冷却方法
US4161800A (en) Apparatus for improving the quality of steel sections
JP2008126293A (ja) 鋼板の冷却設備および冷却方法
JP2006239742A (ja) 鋼板の上下面均一冷却装置
JP2000190015A (ja) 形鋼の冷却装置
KR20140057714A (ko) 물고임 방지용 형강 냉각 장치

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980106286.9

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09714692

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2715320

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 12867706

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2009218189

Country of ref document: AU

Ref document number: 5795/DELNP/2010

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 2009714692

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20107018740

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2009218189

Country of ref document: AU

Date of ref document: 20090225

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2010136833

Country of ref document: RU

ENP Entry into the national phase

Ref document number: PI0908257

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20100824