Nothing Special   »   [go: up one dir, main page]

WO2009098912A1 - 等速自在継手用ブーツの取付構造および等速自在継手の製造方法 - Google Patents

等速自在継手用ブーツの取付構造および等速自在継手の製造方法 Download PDF

Info

Publication number
WO2009098912A1
WO2009098912A1 PCT/JP2009/050122 JP2009050122W WO2009098912A1 WO 2009098912 A1 WO2009098912 A1 WO 2009098912A1 JP 2009050122 W JP2009050122 W JP 2009050122W WO 2009098912 A1 WO2009098912 A1 WO 2009098912A1
Authority
WO
WIPO (PCT)
Prior art keywords
boot
constant velocity
velocity universal
universal joint
diameter end
Prior art date
Application number
PCT/JP2009/050122
Other languages
English (en)
French (fr)
Inventor
Tatsuo Nakajima
Naoki Nakagawa
Seiji Katayama
Yousuke Kawahito
Original Assignee
Ntn Corporation
Osaka University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ntn Corporation, Osaka University filed Critical Ntn Corporation
Priority to EP09708158A priority Critical patent/EP2249053A4/en
Priority to US12/863,652 priority patent/US20100295256A1/en
Priority to CN2009801041985A priority patent/CN101939555A/zh
Publication of WO2009098912A1 publication Critical patent/WO2009098912A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D3/00Yielding couplings, i.e. with means permitting movement between the connected parts during the drive
    • F16D3/84Shrouds, e.g. casings, covers; Sealing means specially adapted therefor
    • F16D3/843Shrouds, e.g. casings, covers; Sealing means specially adapted therefor enclosed covers
    • F16D3/845Shrouds, e.g. casings, covers; Sealing means specially adapted therefor enclosed covers allowing relative movement of joint parts due to the flexing of the cover
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D3/00Yielding couplings, i.e. with means permitting movement between the connected parts during the drive
    • F16D3/16Universal joints in which flexibility is produced by means of pivots or sliding or rolling connecting parts
    • F16D3/20Universal joints in which flexibility is produced by means of pivots or sliding or rolling connecting parts one coupling part entering a sleeve of the other coupling part and connected thereto by sliding or rolling members
    • F16D3/22Universal joints in which flexibility is produced by means of pivots or sliding or rolling connecting parts one coupling part entering a sleeve of the other coupling part and connected thereto by sliding or rolling members the rolling members being balls, rollers, or the like, guided in grooves or sockets in both coupling parts
    • F16D3/223Universal joints in which flexibility is produced by means of pivots or sliding or rolling connecting parts one coupling part entering a sleeve of the other coupling part and connected thereto by sliding or rolling members the rolling members being balls, rollers, or the like, guided in grooves or sockets in both coupling parts the rolling members being guided in grooves in both coupling parts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16JPISTONS; CYLINDERS; SEALINGS
    • F16J3/00Diaphragms; Bellows; Bellows pistons
    • F16J3/04Bellows
    • F16J3/041Non-metallic bellows
    • F16J3/042Fastening details
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D3/00Yielding couplings, i.e. with means permitting movement between the connected parts during the drive
    • F16D3/16Universal joints in which flexibility is produced by means of pivots or sliding or rolling connecting parts
    • F16D3/20Universal joints in which flexibility is produced by means of pivots or sliding or rolling connecting parts one coupling part entering a sleeve of the other coupling part and connected thereto by sliding or rolling members
    • F16D3/22Universal joints in which flexibility is produced by means of pivots or sliding or rolling connecting parts one coupling part entering a sleeve of the other coupling part and connected thereto by sliding or rolling members the rolling members being balls, rollers, or the like, guided in grooves or sockets in both coupling parts
    • F16D3/223Universal joints in which flexibility is produced by means of pivots or sliding or rolling connecting parts one coupling part entering a sleeve of the other coupling part and connected thereto by sliding or rolling members the rolling members being balls, rollers, or the like, guided in grooves or sockets in both coupling parts the rolling members being guided in grooves in both coupling parts
    • F16D2003/22316Means for fastening or attaching the bellows or gaiters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2250/00Manufacturing; Assembly
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2300/00Special features for couplings or clutches
    • F16D2300/12Mounting or assembling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D3/00Yielding couplings, i.e. with means permitting movement between the connected parts during the drive
    • F16D3/16Universal joints in which flexibility is produced by means of pivots or sliding or rolling connecting parts
    • F16D3/20Universal joints in which flexibility is produced by means of pivots or sliding or rolling connecting parts one coupling part entering a sleeve of the other coupling part and connected thereto by sliding or rolling members
    • F16D3/22Universal joints in which flexibility is produced by means of pivots or sliding or rolling connecting parts one coupling part entering a sleeve of the other coupling part and connected thereto by sliding or rolling members the rolling members being balls, rollers, or the like, guided in grooves or sockets in both coupling parts
    • F16D3/223Universal joints in which flexibility is produced by means of pivots or sliding or rolling connecting parts one coupling part entering a sleeve of the other coupling part and connected thereto by sliding or rolling members the rolling members being balls, rollers, or the like, guided in grooves or sockets in both coupling parts the rolling members being guided in grooves in both coupling parts
    • F16D3/226Universal joints in which flexibility is produced by means of pivots or sliding or rolling connecting parts one coupling part entering a sleeve of the other coupling part and connected thereto by sliding or rolling members the rolling members being balls, rollers, or the like, guided in grooves or sockets in both coupling parts the rolling members being guided in grooves in both coupling parts the groove centre-lines in each coupling part lying on a cylinder co-axial with the respective coupling part
    • F16D3/227Universal joints in which flexibility is produced by means of pivots or sliding or rolling connecting parts one coupling part entering a sleeve of the other coupling part and connected thereto by sliding or rolling members the rolling members being balls, rollers, or the like, guided in grooves or sockets in both coupling parts the rolling members being guided in grooves in both coupling parts the groove centre-lines in each coupling part lying on a cylinder co-axial with the respective coupling part the joints being telescopic

Definitions

  • the present invention relates to a structure for mounting a constant velocity universal joint boot and a method for manufacturing the constant velocity universal joint.
  • constant velocity universal joints built into the power transmission mechanisms of automobiles and various industrial machines have boots (constant velocity universal) for the purpose of preventing foreign matter such as dust from entering the joints and preventing leakage of grease contained in the joints. Fitting boots are installed.
  • This type of boot 100 has, for example, a cylindrical small-diameter end 101 and a large-diameter end 102 as shown in FIG.
  • the small-diameter end portion 101 is connected to the large-diameter end portion 102 via a bellows portion 106 in which peaks 104 and valleys 105 are alternately formed.
  • the small-diameter end portion 101 and the large-diameter end portion 102 of the boot 100 are fixed to the first mating member and the second mating member, respectively, by tightening the outer periphery with the boot band 108.
  • the first mating member is a shaft 112 extending from the inner ring 111 of the constant velocity universal joint 110
  • the second mating member is the outer ring 115 of the constant velocity universal joint 110.
  • Annular concave grooves 107 are respectively provided on the outer peripheral surfaces of the small-diameter end portion 101 and the large-diameter end portion 102 of the boot 100, and a boot band 108 is fitted into each concave groove 107.
  • two annular protrusions 113 and 114 are provided on the fixed portion of the small diameter end portion 101 on the outer peripheral surface of the shaft 112.
  • the boot 100 is generally formed of a resin material.
  • the seal performance at the small-diameter end portion 101 is provided on the shaft 112 by tightening the boot band 108.
  • the specification is ensured by biting the annular protrusions 113 and 114 into the inner diameter surface of the small-diameter end 101 (see, for example, Patent Document 1). Japanese Utility Model Publication No. 4-128536
  • the resin boot is generally molded, but when the concave grooves 107 are provided on the outer peripheral surfaces of the small diameter end portion 101 and the large diameter end portion 102 as described above, the mold for forming the boot 100 becomes complicated. Further, in the above structure, the shape of the shaft 112 is complicated because the annular protrusions 113 and 114 are provided on the shaft 112. These complicated molds and member shapes lead to high costs for constant velocity universal joints.
  • the present invention has been made in view of the above-mentioned problems, and an object of the present invention is to provide a mounting structure for a constant velocity universal joint boot capable of ensuring stable sealing performance at low cost.
  • a structure for mounting a constant velocity universal joint boot in which an end portion of a resin boot is fixed to a metal counterpart member, the resin boot constituting resin and the counterpart member configuration.
  • the mounting structure of the boot for a constant velocity universal joint wherein the mounting surface of the end portion of the resin boot is joined and integrated with the mounted surface of the mating member in an abutting state by physical interaction with the metal.
  • the mounting surface of the end of the resin boot is joined and integrated with the mounted surface of the mating member by physical interaction between the constituent resin of the resin boot and the constituent metal of the mating member
  • the two members to be fixed can be firmly fixed without elaborating the shape, and such high-strength fixing can be easily and accurately performed.
  • the boot band can be omitted, and the outer peripheral surface shape of the boot end can be simplified by omitting the boot band. From the above, it is possible to ensure stable sealing performance at low cost.
  • the above physical interaction is also referred to as van der Waals force.
  • the counterpart member may be either one or both of an outer member and an inner member that constitute a constant velocity universal joint that is provided so as to be relatively displaceable.
  • the relative displacement there are a case where only an angular displacement is allowed and a case where an angular displacement and an axial displacement are allowed. That is, the present invention can be adopted regardless of what is called a fixed type constant velocity universal joint and a sliding type constant velocity universal joint.
  • Laser bonding is performed, for example, by irradiating the mating member with a laser in a state where the mounting surface of the boot end and the mounting surface of the mating member are abutted, and the resin in the vicinity of the abutting portion (resin material constituting the boot) ) Is selectively heated to the melting temperature (melting point) or higher to bond the constituent resin of the boot to the constituent metal of the counterpart material and can firmly fix both in a very short time.
  • the laser beam may be directly applied to the mating member, or indirectly, specifically, the mating member may be irradiated so as to pass through the boot.
  • the resin boot may be a so-called rubber boot or a thermoplastic elastomer boot, but is preferably a thermoplastic elastomer boot exhibiting excellent properties such as moldability, fatigue resistance, and high-speed rotation.
  • thermoplastic elastomer that can be used in this case include various known thermoplastic elastomers such as polyester, polyurethane, polyolefin, polyamide, polystyrene, vinyl chloride, and fluorine.
  • polyester-based thermoplastic elastomers are particularly suitable.
  • ⁇ Anti-rust treatment such as Parker treatment may be applied to the mounting surface of the mating member. Even in this case, the resin boot can be firmly joined to the mating member.
  • FIG. 1 shows a first embodiment of a constant velocity universal joint and a constant velocity universal joint boot (hereinafter simply referred to as a boot) employing the mounting structure according to the present invention.
  • the constant velocity universal joint 10 shown in the figure includes an outer ring 11 as an outer member having a plurality of track grooves 12 formed on the inner peripheral surface, an inner ring 13 having a plurality of track grooves 14 formed on the outer peripheral surface, A main part is composed of a plurality of balls 15 arranged on a ball track formed in cooperation with the track groove 12 and the track groove 14 of the inner ring 13 and a cage 16 having a pocket 16a for accommodating the ball 15.
  • an outer ring 11 as an outer member having a plurality of track grooves 12 formed on the inner peripheral surface
  • an inner ring 13 having a plurality of track grooves 14 formed on the outer peripheral surface
  • a main part is composed of a plurality of balls 15 arranged on a ball track formed in cooperation with the track groove 12 and the track groove 14 of the inner ring 13
  • a shaft 17 is connected to the inner periphery of the inner ring 13 via torque transmission means such as serrations and splines, and the shaft 17 and the inner ring 13 constitute an inner member.
  • the inner member may be one in which the inner ring 13 and the shaft 17 are integrally provided.
  • the constant velocity universal joint 10 in the illustrated example is a so-called fixed type constant velocity universal joint in which only the relative angular displacement between the outer member and the inner member is allowed.
  • a boot 1 is attached. Therefore, a so-called sliding type constant velocity universal joint in which the outer member and the inner member are relatively angularly displaced and axially displaced may be used.
  • the boot 1 has a cylindrical small-diameter end 2 and a large-diameter end 3, and the small-diameter end 2 is connected to the large-diameter end 3 via a bellows portion 7.
  • the bellows portion 7 includes peak portions 5 and valley portions 6 that are alternately arranged along the axial direction, and an inclined portion 7 that connects the two portions.
  • the small diameter end 2 is fixed to the shaft 17, and the large diameter end 3 is fixed to the outer ring 11.
  • the boot 1 is formed of a resin material mainly composed of a thermoplastic elastomer such as polyester, polyurethane, polyolefin, polyamide, polystyrene, vinyl chloride, or fluorine.
  • a resin material mainly composed of a polyester-based thermoplastic elastomer thermoplastic polyester elastomer
  • thermoplastic polyester elastomer thermoplastic polyester elastomer
  • excellent properties such as mechanical strength, heat resistance, and oil resistance with respect to cost.
  • the polyester-based thermoplastic elastomer can generate a relatively large van der Waals force between the constituent metal of the shaft 17 and the constituent metal of the outer ring 11.
  • thermoplastic polyester elastomer is mainly composed of a polyester block copolymer composed of a high melting point crystalline polyester copolymer segment and a low melting point polymer segment.
  • the high-melting crystalline polyester copolymer segment of the polyester block copolymer constituting the thermoplastic polyester elastomer is, for example, a polyester formed from an aromatic dicarboxylic acid or an ester-forming derivative thereof and an aliphatic diol.
  • Polybutylene terephthalate derived from terephthalic acid and / or dimethyl terephthalate and 1,4-butanediol is particularly preferred.
  • the high-melting crystalline polyester copolymer segment that can be selected is not limited to this.
  • isophthalic acid, phthalic acid, naphthalene-2,6-dicarboxylic acid, or ester formation thereof may be used.
  • Dicarboxylic acid component such as a functional derivative and a diol having a molecular weight of 300 or less, for example, an alicyclic diol such as ethylene glycol, trimethylene glycol, pentamethylene glycol, hexamethylene glycol, neopentyl glycol, decamethylene glycol, or bis (p Polyesters derived from aromatic diols such as -hydroxy) diphenyl, bis (p-hydroxyphenyl) propane, 4,4'-dihydroxy-p-terphenyl, 4,4'-p-quarterphenyl, etc.
  • the dicarboxylic acid component of Fine diol component may be a combination of two or more copolymerized polyester.
  • copolymerized aliphatic dicarboxylic acid such as adipic acid and sebacic acid
  • copolymerized the trifunctional or more polyfunctional carboxylic acid component, the polyfunctional oxyacid component, the polyfunctional hydroxy component, etc. in 5 mol% or less can also be used.
  • the low-melting point polymer segment of the polyester block copolymer constituting the thermoplastic polyester elastomer is an aliphatic polyether and / or an aliphatic polyester, and its number average molecular weight is about 300 to 6000 in the copolymerized state.
  • the aliphatic polyether that can be used include poly (ethylene oxide) glycol, poly (propylene oxide) glycol, poly (tetramethylene oxide) glycol, poly (hexamethylene oxide) glycol, a copolymer of ethylene oxide and propylene oxide
  • examples include an ethylene oxide addition polymer of poly (propylene oxide) glycol, a copolymer of ethylene oxide and tetrahydrofuran, and the like.
  • polyester block copolymer examples include polycaprolactone, polyenantlactone, polycaprylolactone, polybutylene adipate, and polyethylene adipate.
  • poly (tetramethylene oxide) glycol, poly (propylene oxide) glycol ethylene oxide addition polymer, polycaprolactone, polybutylene adipate, polybutylene adipate Etc. are particularly suitable.
  • the copolymerization amount of the low melting point polymer segment in the polyester block copolymer is preferably 10 to 80% by mass, more preferably 15 to 75% by mass.
  • the resin material forming the boot 1 includes an antioxidant, a light-resistant agent, a hydrolysis-resistant agent, a colorant (carbon black, carbon black, etc.) as long as the bonding strength of the boot 1 to the shaft 17 and the outer ring 11 is not adversely affected.
  • a colorant carbon black, carbon black, etc.
  • Various additives such as pigments and dyes) and flame retardants may be added as appropriate.
  • the shaft 17 is formed into a hollow shaft or a solid shaft using, for example, carbon steel represented by S40C, SBM40C, etc., in particular, carbon steel that has been subjected to quenching such as induction hardening.
  • the shaft 17 is provided with a boot mounting portion 18 having a smooth cylindrical surface at a position protruding from the outer ring 11 by a predetermined amount.
  • the inner peripheral surface of the small-diameter end portion 2 of the boot 1 is joined and integrated in an abutting state with the outer peripheral surface of the boot mounting portion 18 by physical interaction between the constituent resin of the boot 1 and the constituent metal of the shaft 17. Thereby, the small diameter end portion 2 of the boot 1 is fixed to the boot mounting portion 18 of the shaft 17.
  • the inner peripheral surface of the small-diameter end portion 2 of the boot 1 is the “mounting surface” referred to in the present invention
  • the outer peripheral surface of the boot mounting portion 18 of the shaft 17 is the “attached surface” referred to in the present invention.
  • the manufacturing apparatus shown in FIG. 2 includes a laser irradiation device 30 disposed on the outer diameter side of the small-diameter end portion 2 of the boot 1, an inner peripheral surface (mounting surface) of the small-diameter end portion 2 of the boot 1, and the boot mounting of the shaft 17.
  • a clamp mechanism 32 that holds the outer peripheral surface (attached surface) of the portion 18 in an abutting state is provided as a main configuration.
  • the laser irradiation device 30 includes an excitation source such as a discharge lamp or a semiconductor laser, and irradiates a laser beam 31 having a predetermined power from the tip portion toward the small-diameter end portion 2 of the boot 1.
  • an excitation source such as a discharge lamp or a semiconductor laser
  • a laser beam 31 having a predetermined power from the tip portion toward the small-diameter end portion 2 of the boot 1.
  • a YAG laser excited by a lamp laser, a semiconductor laser or a fiber laser that is the same near infrared laser can be used, but in this embodiment, the beam quality of the laser beam 31, the economic efficiency, and the like are taken into consideration.
  • a laser diode (LD) excitation type Nd • YAG laser (wavelength: 1064 nm, manufactured by Roffin Basel Japan KK) is used.
  • the irradiation method of the laser beam 31 in the laser irradiation apparatus 30 may be either a continuous method or a pulse method, but a continuous method is particularly preferable because the bonding portion 20 with high accuracy and high strength can be formed. It is.
  • the power of the laser beam 31 to be irradiated can be arbitrarily adjusted.
  • a beam diameter adjusting means having a convex lens and a concave lens for adjusting the beam diameter of the laser beam 31 is disposed between the laser irradiation device 30 and the small diameter end portion 2 of the boot 1. It is also possible to do.
  • a shield gas injection device that blows argon gas, nitrogen gas, oxygen gas, or a mixed gas thereof for cooling the vicinity of the laser irradiation part during the joining operation is arranged. It is also possible to set up.
  • the small diameter end portion 2 of the boot 1 is externally fitted to the boot mounting portion 18 of the shaft 17, and then the boot 1 and the shaft 17 are clamped by the clamp mechanism 32. Thereby, the inner peripheral surface (mounting surface) of the small diameter end portion 2 of the boot 1 and the outer peripheral surface (attached surface) of the boot mounting portion 18 of the shaft 17 are held in an abutting state.
  • the laser beam 31 is irradiated from the laser irradiation device 30, the laser beam 31 passes through the small diameter end portion 2 of the boot 1 and reaches the surface of the boot mounting portion 18 of the shaft 17.
  • the 18 irradiated regions (irradiated portion 18a) are heated.
  • the resin melts in the contact portion with the irradiated portion 18a on the inner peripheral surface of the small diameter end portion 2.
  • a melted part 2a (part indicated by a dotted line in the figure) is formed.
  • the constituent resin (thermoplastic elastomer) of the boot 1 is generated by the melt around the melting portion 2a and the applied pressure applied from the clamp mechanism 32.
  • the constituent metal of the shaft 17 a physical interaction is generated, and a joint portion 20 formed by van der Waals bonding is formed (see FIG. 3B).
  • the joining portion 20 When the joining portion 20 is formed in a predetermined circumferential direction region between the small diameter end portion 2 of the boot 1 and the boot mounting portion 18 of the shaft 17 as described above, the laser irradiation device 30 and the assembly (the boot 1 is fixed). The shaft 17) is relatively rotated, and the joint portion 20 is formed in the other region in the circumferential direction between the small diameter end portion 2 and the boot mounting portion 18 in the same manner as described above.
  • the junction part 20 can also be formed intermittently in the circumferential direction in addition to being formed in an annular shape that is continuous in the circumferential direction.
  • the inner peripheral surface (mounting surface) of the small diameter end portion 2 of the boot 1 is joined to the outer peripheral surface (attached surface) of the boot mounting portion 18 of the shaft 17 in an abutting state.
  • the power of the laser beam 31 to be irradiated is excessive during the joint integration (formation of the joint portion 20), the irradiated portion 18a of the shaft 17 may be dissolved. In order to prevent such a situation, it is desirable to set the power of the laser beam 31 to 200 to 900 W. In this embodiment, the power of the laser beam 31 is set to 800 W.
  • the beam diameter of the laser beam 31 irradiated to the irradiated portion 18a of the shaft 17 is desirably adjusted to ⁇ 0.6 mm or more. This is because if the beam diameter is too small, it takes a long time to form the joint 20.
  • conditions are set so that the portion of the laser beam 31 shifted from the focus position is irradiated to the irradiated portion 18a of the shaft 17, thereby preventing the irradiated portion 18a from being melted and the beam.
  • the diameter of the joint portion 20 that can be formed in one cycle was increased.
  • the outer ring 11 is formed in a cup shape using, for example, carbon steel represented by S40C, SBM40C, etc., in particular, carbon steel that has been subjected to quenching treatment such as induction quenching, like the shaft 17.
  • a boot mounting portion 19 having a smooth cylindrical surface is provided on the outer peripheral surface of the opening of the outer ring 11.
  • the large-diameter end portion 3 of the boot 1 is joined and integrated in an abutting state with the outer peripheral surface of the boot mounting portion 19 of the outer ring 11 by physical interaction between the constituent resin of the boot 1 and the constituent metal of the outer ring 11. Thereby, the large-diameter end portion 3 of the boot 1 is fixed to the boot mounting portion 19 of the outer ring 11.
  • the inner peripheral surface of the large-diameter end portion 3 of the boot 1 is the “mounting surface” referred to in the present invention
  • the outer peripheral surface of the boot mounting portion 19 of the outer ring 11 is the “attached surface” referred to in the present invention. is there.
  • the method for generating the physical interaction is the same as that shown in FIGS.
  • the inner peripheral surface (mounting surface) of the small diameter end portion 2 of the boot 1 is It is joined and integrated with the outer peripheral surface (surface to be attached) of the boot mounting portion 18 of the shaft 17 in an abutting state. Therefore, both can be fixed with high strength on the inner peripheral surface of the small-diameter end portion 2 of the boot 1 and the outer peripheral surface of the boot mounting portion 18 of the shaft 17 which are fixed to each other without any elaboration of shape. Such high-strength fixation can be easily and accurately performed.
  • the boot band conventionally used for fixing both can be omitted, and the shape of the small-diameter end portion 2 of the boot 1 can be simplified as the boot band is omitted. Therefore, a boot structure for a constant velocity universal joint that ensures stable sealing performance at low cost can be obtained, thereby providing a constant velocity universal joint excellent in reliability and durability at low cost.
  • the cost of the constant velocity universal joint 10 can be further reduced.
  • the laser bonding method it is possible to suppress or prevent the generation of burrs that may be a problem when fixing two members to be fixed to each other by a technique involving vibration such as ultrasonic bonding. Since there are no restrictions on the size and shape, the joint design freedom is not impaired. Moreover, since dust etc. do not generate
  • FIG. 4 shows a second embodiment of a constant velocity universal joint and a constant velocity universal joint boot adopting the mounting structure according to the present invention.
  • a constant velocity universal joint 50 shown in FIG. 1 has a substantially cylindrical shape, an outer ring 51 as an outer member having a plurality of track grooves 52 formed on the inner peripheral surface, and an inner ring having a plurality of track grooves 54 formed on the outer peripheral surface. 53, a plurality of balls 55 disposed on a ball track formed in cooperation with the track groove 52 of the outer ring 51 and the track groove 54 of the inner ring 53, and a pocket 56a for holding the ball 55 in a freely rolling manner.
  • the main part is comprised with the cage 56 which has this.
  • a metal shaft 57 is connected to the inner periphery of the inner ring 53 through torque transmission means such as serrations and splines so that torque can be transmitted.
  • the shaft 57 and the inner ring 53 constitute an inner member.
  • One end of the outer ring 51 is sealed with an end cap 59, and the other end is sealed with a sealing device including a boot 40 and a boot adapter 44, thereby preventing foreign matter such as dust from entering the joint and enclosing it inside the joint. The leakage of the applied grease is prevented.
  • the boot 40 has a small-diameter end portion 41, a large-diameter end portion 42, and an intermediate portion 43 that connects the small-diameter end portion 41 and the large-diameter end portion 42.
  • the boot 40 is formed of a thermoplastic elastomer, and in particular, a resin material mainly composed of a polyester-based thermoplastic elastomer, like the boot 1 shown in FIG.
  • the boot adapter 44 is formed, for example, in a substantially cylindrical shape with a metal material, and has a flange 44 a fixed to an outer peripheral surface of the outer ring 51 by an appropriate means such as caulking at one end thereof.
  • the shaft 57 is provided with a boot mounting portion 58 having a smooth cylindrical surface at a position protruding from the outer ring 51 by a predetermined amount.
  • the inner peripheral surface of the small-diameter end portion 41 of the boot 40 is joined and integrated with the outer peripheral surface of the boot mounting portion 58 of the shaft 57 by physical interaction between the constituent resin of the boot 40 and the constituent metal of the shaft 57. Accordingly, the small-diameter end portion 41 of the boot 40 is fixed to the boot mounting portion 58 of the shaft 57.
  • both joining methods are based on FIG. 2 and FIG. 3, detailed description is abbreviate
  • the large-diameter end portion 42 of the boot 40 is caulked and fixed to one end (end portion 44 b) of the boot adapter 44 on the side opposite to the flange 44 a.
  • the small diameter end portion 41 of the boot 40 and the boot fixing portion 58 of the shaft 57 that are fixed to each other have high strength without elaborating on the shape.
  • such high-strength fixation can be easily and accurately performed.
  • the omission of the boot band can simplify the shape of the boot 40, specifically, the outer peripheral surface shape of the small-diameter end portion 41 of the boot 40. Therefore, the cost of this type of constant velocity universal joint can be reduced.
  • a rust prevention film such as a phosphate film
  • a rust prevention process such as a Parker process. It is also possible to use a formed one. By adopting such a configuration, it is possible to further increase the fixing strength of the boot with respect to the shaft.
  • the outer ring 11 in which a rust preventive film such as a phosphate film is formed on at least the surface of the boot mounting portion 19 can be used by performing a rust preventive treatment. .

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Sealing Devices (AREA)
  • Diaphragms And Bellows (AREA)

Abstract

 安定したシール性能を低コストに確保し得る等速自在継手用ブーツの取付構造を提供する。  等速自在継手用の樹脂ブーツ(1)には円筒状の小径端部(2)および大径端部(3)が設けられている。ブーツ(1)の小径端部(2)は内方部材を構成するシャフト(17)に、また大径端部(3)は外方部材としての外輪(11)にそれぞれ固定されている。ブーツ(1)の小径端部(2)の内周面は、ブーツ(1)の構成樹脂とシャフト(17)の構成金属との物理的相互作用によってシャフト(17)のブーツ取付部(18)の外周面に衝合状態で接合一体化されている。またブーツ(1)の大径端部(3)の内周面は、ブーツ(1)の構成樹脂と外輪(11)の構成金属との物理的相互作用によって外輪(11)のブーツ取付部(19)の外周面に衝合状態で接合一体化されている。

Description

等速自在継手用ブーツの取付構造および等速自在継手の製造方法
 本発明は、等速自在継手用ブーツの取付構造および等速自在継手の製造方法に関する。
 例えば自動車や各種産業機械の動力伝達機構に組み込まれる等速自在継手には、継手内部への塵埃などの異物侵入防止や継手内部に封入されたグリースの漏洩防止を目的として、ブーツ(等速自在継手用ブーツ)が装着される。
 この種のブーツ100は、例えば図5に示すように、円筒状の小径端部101および大径端部102を有する。小径端部101は、山部104と谷部105とが交互に形成された蛇腹部106を介して大径端部102に接続される。ブーツ100の小径端部101および大径端部102は、その外周をブーツバンド108で締め付けることにより、それぞれ第1の相手部材および第2の相手部材に固定される。図示例において、第1の相手部材は等速自在継手110の内輪111から延びるシャフト112であり、第2の相手部材は等速自在継手110の外輪115である。
 ブーツ100の小径端部101および大径端部102の外周面には環状の凹溝107がそれぞれ設けられ、各凹溝107にブーツバンド108が嵌合される。一方、シャフト112の外周面のうち、小径端部101の固定部には二条の環状突起113,114が設けられている。ところで、ブーツ100は樹脂材料で形成されるのが一般的で、小径端部101および大径端部102のうち、特に小径端部101におけるシール性は、ブーツバンド108を締め付けてシャフト112に設けた環状突起113,114を小径端部101の内径面に食い込ませることによって確保される仕様となっている(例えば特許文献1を参照)。
実開平4-128536号公報
 上記構造で安定したシール性を確保するには、ブーツバンド108を所定の締め代で精度良く締め付ける必要があるが、かかる高精度な締め付けを簡便にかつ個体間でのばらつきを生じさせることなく行うのは困難である。特に上記のようにシール性向上を目的として、第1の相手部材(シャフト112)の外周面に環状突起を設けた場合には、ブーツバンド108を精度良く締め付けることが一層難しくなる。そして、かかるブーツバンド締め付けの困難性とブーツバンド108を用いることによる部品点数増とから、等速自在継手のコスト増が避けられないものとなっている。
 また、樹脂ブーツは一般に型成形されるが、上記のように小径端部101および大径端部102の外周面に凹溝107を設ける場合、ブーツ100の成形型が複雑化する。さらに、上記構造においては、シャフト112に環状突起113,114を設ける分、シャフト112形状が複雑化している。これら成形型や部材形状の複雑化は等速自在継手のコスト高を招く。
 本発明は上記の問題点に鑑みてなされたものであり、その課題とするところは、安定したシール性能を低コストに確保し得る等速自在継手用ブーツの取付構造を提供することにある。
 上記課題を解決するため、本発明では、樹脂ブーツの端部を金属製の相手部材に固定してなる等速自在継手用ブーツの取付構造であって、樹脂ブーツの構成樹脂と相手部材の構成金属との物理的相互作用により、樹脂ブーツの端部の取付面が、相手部材の被取付面に衝合状態で接合一体化されていることを特徴とする等速自在継手用ブーツの取付構造を提供する。
 上記のように、樹脂ブーツの構成樹脂と相手部材の構成金属との物理的相互作用により、樹脂ブーツの端部の取付面を、相手部材の被取付面に衝合状態で接合一体化すれば、固定すべき二部材間に形状的な工夫を凝らすことなく両者を強固に固定することができ、しかもかかる高強度の固定が、簡便に、かつ精度良く行い得る。また、ブーツバンドを省略することができ、さらにはブーツバンドの省略によってブーツ端部の外周面形状を簡略化することができる。以上のことから、安定したシール性能を低コストに確保することが可能となる。上記の物理的相互作用は、ファンデルワールス力とも称される。
 上記の具体的な構成として、相手部材は、相対変位可能に設けられた等速自在継手を構成する外方部材および内方部材のうち、何れか一方又は双方とすることができる。相対変位は、角度変位のみが許容される場合と、角度変位および軸方向変位が許容される場合とがある。すなわち、本発明は、いわゆる固定型等速自在継手、摺動型等速自在継手を問わずに採用可能である。
 樹脂ブーツの構成樹脂と相手部材の構成金属との間に物理的相互作用を生じさせるための具体的な手段として、相手部材にレーザを照射することが考えられる。これは、いわゆるレーザ接合法と称される手法を用いてブーツ端部を相手部材に接合一体化することを意図したものである。レーザ接合は、例えば、ブーツ端部の取付面と相手部材の被取付面とを衝合させた状態で相手部材にレーザを照射し、両者の衝合部近傍の樹脂(ブーツを構成する樹脂材料)を選択的に溶融温度(融点)以上に加熱することにより、ブーツの構成樹脂を相手材の構成金属にファンデルファールス結合させる手法であり、極めて短時間のうちに両者を強固に固定し得る。なお、レーザは、直接相手部材に照射しても良いし、間接的、具体的には、ブーツを透過させるようにして相手部材に照射することも可能である。
 樹脂ブーツは、いわゆるゴム製ブーツや熱可塑性エラストマー製ブーツとすることができるが、成形性、耐疲労性、高速回転性等に優れた特性を示す熱可塑性エラストマ-製ブーツとするのが望ましい。この場合に使用可能な熱可塑性エラストマーとしては、ポリエステル系、ポリウレタン系、ポリオレフィン系、ポリアミド系、ポリスチレン系、塩化ビニル系、フッ素系等公知の各種熱可塑性エラストマーを挙げることができるが、機械的強度、耐熱性、耐油性等、さらには相手部材の構成金属との物理的相互作用(ファンデルワールス力)の強さを考慮すると、ポリエステル系の熱可塑性エラストマーが特に好適である。
 相手部材の被取付面には、パーカー処理等の防錆処理を施しても良い。この場合でも、樹脂ブーツを相手部材に強固に接合することができる。
 以上のように、本発明によれば、安定したシール性能を低コストに確保することができる。これにより、信頼性および耐久性に優れた等速自在継手を低コストに提供することができる。
 以下、本発明の実施形態を図面に基づいて詳述する。
 図1は、本発明に係る取付構造を採用した等速自在継手と等速自在継手用ブーツ(以下、単にブーツと称す)の第1実施形態を示すものである。同図に示す等速自在継手10は、内周面に複数のトラック溝12を形成した外方部材としての外輪11と、外周面に複数のトラック溝14を形成した内輪13と、外輪11のトラック溝12と内輪13のトラック溝14とで協働して形成されるボールトラックに配された複数のボール15と、ボール15を収容するためのポケット16aを有するケージ16とで主要部が構成されている。内輪13の内周には、セレーションやスプライン等のトルク伝達手段を介してシャフト17が連結され、このシャフト17と内輪13とで内方部材が構成される。なお、内方部材は、内輪13とシャフト17が一体的に設けられたものとしても良い。
 図示例の等速自在継手10は外方部材と内方部材とが相対的な角度変位のみを許容する、いわゆる固定型等速自在継手であるが、等速自在継手10としてはブーツ1を取り付けることができればよいので、外方部材と内方部材とが相対的に角度変位および軸方向変位する、いわゆる摺動型等速自在継手であってもよい。
 ブーツ1は、円筒状の小径端部2および大径端部3を有し、小径端部2は蛇腹部7を介して大径端部3に接続されている。蛇腹部7は、軸方向に沿って交互に配設される山部5および谷部6と、両部を接続する傾斜部7とからなる。小径端部2はシャフト17に固定され、大径端部3は外輪11に固定される。
 ブーツ1は、ポリエステル系、ポリウレタン系、ポリオレフィン系、ポリアミド系、ポリスチレン系、塩化ビニル系、フッ素系等の熱可塑性エラストマーを主成分とする樹脂材料で形成される。本実施形態ではこの中でも、コストに対して機械的強度、耐熱性、耐油性等に優れた特性を示すポリエステル系の熱可塑性エラストマー(熱可塑性ポリエステルエラストマー)を主成分とする樹脂材料で形成される。また、詳細は後述するが、ポリエステル系の熱可塑性エラストマーは、シャフト17の構成金属および外輪11の構成金属との間に比較的大きなファンデルワールス力を生じさせることが、換言すると、ブーツ1とシャフト17との間、およびブーツ1と外輪11との間に高い接合強度を確保することができるため好適である。このブーツ1の製造方法に特段の限定はないが、例えば、押出ブロー、射出ブロー、プレスブローなどのブロー成形や射出成形などが採用可能である。熱可塑性ポリエステルエラストマーは、高融点結晶性ポリエステル共重合体セグメントと低融点重合体セグメントとからなるポリエステルブロック共重合体を主体とするものである。
 熱可塑性ポリエステルエラストマーを構成するポリエステルブロック共重合体の高融点結晶性ポリエステル共重合体セグメントは、例えば、芳香族ジカルボン酸又はそのエステル形成性誘導体と脂肪族ジオールから形成されるポリエステルであり、その中でもテレフタル酸および/又はジメチルテレフタレートと1,4-ブタンジオールとから誘導されるポリブチレンテレフタレートが特に好適である。もちろん、選択可能な高融点結晶性ポリエステル共重合体セグメントはこれに限定されるわけではなく、上記以外にも例えば、イソフタル酸、フタル酸、ナフタレン-2,6-ジカルボン酸、あるいはこれらのエステル形成性誘導体などのジカルボン酸成分と、分子量300以下のジオール、例えば、エチレングリコール、トリメチレングリコール、ペンタメチレングリコール、ヘキサメチレングリコール、ネオペンチルグリコール、デカメチレングリコール等の脂環式ジオール、あるいはビス(p-ヒドロキシ)ジフェニル、ビス(p-ヒドロキシフェニル)プロパン、4,4’-ジヒドロキシ-p-ターフェニル、4,4’-p-クオーターフェニル等の芳香族ジオール等とから誘導されるポリエステルや、これらのジカルボン酸成分およびジオール成分を2種以上併用した共重合ポリエステル等であってもよい。また、アジピン酸やセバシン酸などの脂肪族ジカルボン酸を共重合したものであってもよい。さらに、3官能以上の多官能カルボン酸成分、多官能オキシ酸成分および多官能ヒドロキシ成分などを5モル%以下の範囲で共重合したものも使用可能である。
 また、熱可塑性ポリエステルエラストマーを構成するポリエステルブロック共重合体の低融点重合体セグメントは、脂肪族ポリエーテルおよび/又は脂肪族ポリエステルであり、その数平均分子量が共重合された状態において300~6000程度のものが特に好適である。使用可能な脂肪族ポリエーテルとしては、例えば、ポリ(エチレンオキシド)グリコール、ポリ(プロピレンオキシド)グリコール、ポリ(テトラメチレンオキシド)グリコール、ポリ(ヘキサメチレンオキシド)グリコール、エチレンオキシドとプロピレンオキシドの共重合体、ポリ(プロピレンオキシド)グリコールのエチレンオキシド付加重合体、エチレンオキシドとテトラヒドロフランの共重合体などが挙げられる。
 また、使用可能な脂肪族ポリエステルとしては、ポリカプロラクトン、ポリエナントラクトン、ポリカプリロラクトン、ポリブチレンアジペート、ポリエチレンアジペートなどが挙げられる。ポリエステルブロック共重合体としての弾性特性を考慮すると、以上で例示したもののうち、ポリ(テトラメチレンオキシド)グリコール、ポリ(プロピレンオキシド)グリコールのエチレンオキシド付加重合体、ポリカプロラクトン、ポリブチレンアジペート、ポリブチレンアジペートなどが特に好適である。
 ポリエステルブロック共重合体における低融点重合体セグメントの共重合量は10~80質量%とするのが望ましく、15~75質量%とするのがより望ましい。
 なお、ブーツ1を形成する樹脂材料には、ブーツ1のシャフト17および外輪11に対する接合強度に悪影響を及ぼさない範囲で、酸化防止剤、耐光剤、耐加水分解防止剤、着色剤(カーボンブラック、顔料、染料等)、難燃剤などの各種添加剤を適宜添加することも可能である。
 シャフト17は、例えば、S40C、SBM40C等に代表される炭素鋼、特に高周波焼入れ等の焼入れ処理が施された炭素鋼を用いて中空軸あるいは中実軸に形成されている。シャフト17には、外輪11から所定量突出した位置に平滑な円筒面状をなすブーツ取付部18が設けられている。そして、ブーツ1の小径端部2の内周面は、ブーツ1の構成樹脂とシャフト17の構成金属との物理的相互作用によりブーツ取付部18の外周面に衝合状態で接合一体化され、これによりブーツ1の小径端部2がシャフト17のブーツ取付部18に固定されている。つまり、ここでは、ブーツ1の小径端部2の内周面が本発明で言う「取付面」であり、シャフト17のブーツ取付部18の外周面が本発明で言う「被取付面」である。
 ここで、シャフト17のブーツ取付部18に、ブーツ1の小径端部2を固定する方法を図2および図3に基づいて詳述する。
 図2に示す製造装置は、ブーツ1の小径端部2の外径側に配置されるレーザ照射装置30と、ブーツ1の小径端部2の内周面(取付面)とシャフト17のブーツ取付部18の外周面(被取付面)とを衝合状態で保持するクランプ機構32とを主要な構成として備える。
 レーザ照射装置30は、放電ランプや半導体レーザ等の励起源を備え、その先端部からブーツ1の小径端部2に向けて所定パワーのレーザビーム31を照射するものである。レーザとしては、ランプレーザ励起のYAGレーザや同じ近赤外線レーザである半導体レーザ,ファイバレーザを使用することが可能であるが、本実施形態では、レーザビーム31のビーム品質、経済性等を考慮して、レーザダイオード(LD)励起方式のNd・YAGレーザ(波長:1064nm、ロフィン・バーゼルジャパン(株)製)が用いられる。レーザ照射装置30におけるレーザビーム31の照射方式としては、連続式またはパルス式の何れであっても良いが、高精度かつ高強度な接合部20を形成可能であることから、特に連続式が好適である。また照射するレーザビーム31のパワーは任意に調整可能である。
 なお、図示は省略しているが、レーザ照射装置30とブーツ1の小径端部2との間に、レーザビーム31のビーム径を調整するための凸レンズや凹レンズを有するビーム径調整手段を配設することも可能である。また、上記同様に図示は省略しているが、接合作業中にレーザの照射部位近傍を冷却するためのアルゴンガス、窒素ガス、酸素ガス、あるいはこれらの混合ガス等を吹き付けるシールドガス噴射装置を配設することも可能である。
 以上の構成からなる製造装置において、まず、シャフト17のブーツ取付部18にブーツ1の小径端部2を外嵌した後、ブーツ1およびシャフト17をクランプ機構32で挟持する。これにより、ブーツ1の小径端部2の内周面(取付面)とシャフト17のブーツ取付部18の外周面(被取付面)とが衝合状態で保持される。次いで図3Aに示すように、レーザ照射装置30からレーザビーム31を照射すると、レーザビーム31はブーツ1の小径端部2を透過してシャフト17のブーツ取付部18の表面に至り、ブーツ取付部18の被照射領域(被照射部18a)が加熱される。レーザビーム31を引き続き照射し、被照射部18aをブーツ1の構成樹脂の融点以上まで加熱すると、小径端部2の内周面のうち、被照射部18aとの接触部には樹脂が溶融してなる溶融部2a(図中点線で示す部分)が形成される。そして、所定時間レーザビーム31を照射した後レーザビーム31の照射を一旦停止すると、溶融部2a周辺の融液とクランプ機構32から付与される加圧力とによって、ブーツ1の構成樹脂(熱可塑性エラストマー)とシャフト17の構成金属との間に物理的相互作用が生じ、両者がファンデルワールス結合してなる接合部20が形成される(図3Bを参照)。
 以上のようにしてブーツ1の小径端部2とシャフト17のブーツ取付部18との間の円周方向所定領域に接合部20が形成されると、レーザ照射装置30とアセンブリ(ブーツ1が固定されたシャフト17)とを相対回転させ、小径端部2とブーツ取付部18との間の円周方向他領域に上記同様にして接合部20を形成する。なお、接合部20は、円周方向で連続した円環状に形成する他、円周方向で断続的に形成することも可能である。このようにして所定の接合部20を形成すると、ブーツ1の小径端部2の内周面(取付面)がシャフト17のブーツ取付部18の外周面(被取付面)に衝合状態で接合一体化される。
 なお、両者の接合一体化(接合部20の形成)に際し、照射するレーザビーム31のパワーが過大であると、シャフト17の被照射部18aが溶解するおそれがある。かかる事態を防止するためにレーザビーム31のパワーは200~900Wに設定するのが望ましく、本実施形態ではレーザビーム31のパワーを800Wに設定した。また、シャフト17の被照射部18aに照射するレーザビーム31のビーム径は、φ0.6mm以上に調整するのが望ましい。ビーム径が小さすぎると、接合部20の形成に多大な時間を要すからである。なお、本実施形態では、レーザビーム31のフォーカス位置からずらした部分がシャフト17の被照射部18aに照射されるように条件設定を行い、これにより被照射部18aの溶解を防止すると共に、ビーム径の拡大、すなわち1サイクルで形成し得る接合部20の面積拡大を図った。
 外輪11は、シャフト17同様に、例えば、S40C、SBM40C等に代表される炭素鋼、特に高周波焼入れ等の焼入れ処理が施された炭素鋼を用いてカップ状に形成される。外輪11の開口部外周面には平滑な円筒面状をなすブーツ取付部19が設けられる。そして、ブーツ1の大径端部3は、ブーツ1の構成樹脂と外輪11の構成金属との物理的相互作用により外輪11のブーツ取付部19の外周面に衝合状態で接合一体化され、これによりブーツ1の大径端部3が外輪11のブーツ取付部19に固定されている。つまり、ここでは、ブーツ1の大径端部3の内周面が本発明で言う「取付面」であり、外輪11のブーツ取付部19の外周面が本発明で言う「被取付面」である。なお、上記の物理的相互作用を生じさせるための手法(接合部20を形成するための手法)は、図2および図3に準じるので重複説明を省略する。
 以上に示すように、本発明では、ブーツ1の構成樹脂と相手部材としてのシャフト17の構成金属との物理的相互作用により、ブーツ1の小径端部2の内周面(取付面)が、シャフト17のブーツ取付部18の外周面(被取付面)に衝合状態で接合一体化される。そのため、相互に固定されるブーツ1の小径端部2の内周面およびシャフト17のブーツ取付部18の外周面に形状的な工夫を凝らすことなく両者を高強度に固定することができ、しかもかかる高強度の固定が、簡便に、かつ精度良く行い得る。また、従来両者の固定に用いていたブーツバンドを省略することができ、さらにはブーツバンドの省略に伴ってブーツ1の小径端部2形状を簡略化することができる。従って、安定したシール性能を低コストに確保した等速自在継手用ブーツの取付構造が得られ、これにより、信頼性および耐久性に優れた等速自在継手を低コストに提供することができる。
 本実施形態では、さらに、ブーツ1の大径端部3が、上記同様の手法で外輪11に固定されているため、等速自在継手10のより一層の低コスト化が図られる。
 また、レーザ接合法であれば、超音波接合等の振動を伴う手法で固定すべき二部材を相互に固定する際に問題となるバリの発生を抑制あるいは防止することができる他、対応可能なサイズや形状に制約がないので、継手の設計自由度を損なうこともない。また、接合に伴って粉塵等が発生しないので、作業者に安全であると共に粉塵除去装置等を設ける必要もない。また、ろう接合等では熱影響によってブーツ1全体に歪み等が生じる事態が懸念されるが、上述したレーザ接合法ではかかる事態も防止される。
 なお、以上では、ブーツ1の小径端部2および大径端部3の双方を、レーザ接合法によって相手部材としてのシャフト17および外輪11にそれぞれ固定した場合について説明を行ったが、かかる取付構造は、ブーツ1の小径端部2側あるいは大径端部3側のみに採用してもよい。このように、何れか一方側だけに本発明の取付構造を採用しても、従来構成に比べて十分な低コスト化が図られる。
 図4は、本発明に係る取付構造を採用した等速自在継手と等速自在継手用ブーツの第2実施形態を示すものである。同図に示す等速自在継手50は、略円筒状をなし、内周面に複数のトラック溝52を形成した外方部材としての外輪51と、外周面に複数のトラック溝54を形成した内輪53と、外輪51のトラック溝52と内輪53のトラック溝54とで協働して形成されるボールトラックに配された複数のボール55と、ボール55を転動自在に保持するためのポケット56aを有するケージ56とで主要部が構成されている。内輪53の内周には、セレーションやスプライン等のトルク伝達手段を介して金属製のシャフト57がトルク伝達可能に連結され、このシャフト57と内輪53とで内方部材が構成されている。外輪51の一端はエンドキャップ59によって封止される一方、他端はブーツ40およびブーツアダプタ44からなる密封装置によって封止され、これにより継手内部への塵埃などの異物侵入防止や継手内部に封入されたグリースの漏洩防止が図られる。
 ブーツ40は小径端部41、大径端部42、および小径端部41と大径端部42を接続する中間部43を有する。このブーツ40は、図1に示すブーツ1と同様に、熱可塑性エラストマー、その中でもポリエステル系の熱可塑性エラストマーを主成分とする樹脂材料で形成されている。一方、ブーツアダプタ44は、例えば金属材料で略円筒状に形成され、その一端に外輪51の外周面に加締め等の適宜の手段で固定されたフランジ44aを有する。
 シャフト57には、外輪51から所定量突出した位置に平滑な円筒面状をなすブーツ取付部58が設けられる。そして、ブーツ40の小径端部41の内周面は、ブーツ40の構成樹脂とシャフト57の構成金属との物理的相互作用によりシャフト57のブーツ取付部58の外周面に衝合状態で接合一体化され、これによりブーツ40の小径端部41がシャフト57のブーツ取付部58に固定されている。なお、両者の接合方法は図2および図3に準じるので詳細説明を省略する。ブーツ40の大径端部42は、ブーツアダプタ44の反フランジ44a側一端(端部44b)に加締め固定されている。
 かかる取付構造を採用することにより、第1実施形態と同様に、相互に固定されるブーツ40の小径端部41およびシャフト57のブーツ固定部58に形状的な工夫を凝らすことなく両者を高強度に固定することができ、しかもかかる高強度の固定が、簡便に、かつ精度良く行い得る。また、ブーツバンドを省略することができる他、ブーツバンドの省略に伴ってブーツ40の形状、具体的にはブーツ40の小径端部41の外周面形状を簡略化することができるため、この点からもこの種の等速自在継手の低コスト化が図られる。
 なお、図示は省略するが、以上で示したシャフト17,57として、パーカー処理等の防錆処理を施すことにより、少なくともブーツ取付部18,58の表面にリン酸塩被膜等の防錆被膜が形成されたものを使用することも可能である。かかる構成を採用すれば、シャフトに対するブーツの固定強度を一層高めることが可能となる。
 同様の観点から、特に図1に示す実施形態においては、防錆処理を施すことによって、少なくともブーツ取付部19の表面にリン酸塩被膜等の防錆被膜を形成した外輪11を用いることもできる。
 以上、本発明の実施形態について説明を行ったが、本発明は前述した実施形態に何ら限定されるものでなく、本発明の要旨を逸脱しない範囲において、さらに種々なる形態で実施し得ることは勿論のことである。本発明の範囲は、特許請求の範囲によって示され、さらに特許請求の範囲に記載の均等の意味、および範囲内の全ての変更を含む。
本発明の第1実施形態で、ブーツを等速自在継手に装着した状態を示す断面図である。 ブーツの取付工程を概念的に示す図である。 接合部の形成プロセスを概念的に示す図である。 接合部の形成プロセスを概念的に示す図である。 本発明の第2実施形態で、ブーツを等速自在継手の装着した状態を示す断面図である。 ブーツを等速自在継手に装着した状態の従来構成を示す断面図である。
符号の説明
 1  ブーツ(等速自在継手用ブーツ)
 2  小径端部
 3  大径端部
 10 等速自在継手
 11 外輪
 13 内輪
 15 ボール
 16 ケージ
 17 シャフト
 18、19 ブーツ取付部
 20 接合部
 30 レーザ照射装置
 31 レーザビーム
 32 クランプ機構

Claims (7)

  1.  樹脂ブーツの端部を金属製の相手部材に固定してなる等速自在継手用ブーツの取付構造であって、
     樹脂ブーツの構成樹脂と相手部材の構成金属との物理的相互作用により、樹脂ブーツの端部の取付面が、相手部材の被取付面に衝合状態で接合一体化されていることを特徴とする等速自在継手用ブーツの取付構造。
  2.  等速自在継手は、相対変位可能に設けられた外方部材および内方部材を有し、
     前記相手部材が、内方部材である請求項1記載の等速自在継手用ブーツの取付構造。
  3.  等速自在継手は、相対変位可能に設けられた外方部材および内方部材を有し、
     前記相手部材が、外方部材である請求項1記載の等速自在継手用ブーツの取付構造。
  4.  樹脂ブーツの構成樹脂が、熱可塑性エラストマーである請求項1記載の等速自在継手用ブーツの取付構造。
  5.  相手部材の被取付面に、防錆処理が施された請求項1記載の等速自在継手用ブーツの取付構造。
  6.  樹脂ブーツの端部を金属製の相手部材に固定するに際し、
     樹脂ブーツの構成樹脂と相手部材の構成金属との間に物理的相互作用を生じさせることにより、樹脂ブーツの端部の取付面を相手部材の被取付面に衝合状態で接合一体化することを特徴とする等速自在継手の製造方法。
  7.  相手部材にレーザを照射することにより、物理的相互作用を生じさせる請求項6記載の等速自在継手の製造方法。
PCT/JP2009/050122 2008-02-05 2009-01-08 等速自在継手用ブーツの取付構造および等速自在継手の製造方法 WO2009098912A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP09708158A EP2249053A4 (en) 2008-02-05 2009-01-08 INSTALLATION STRUCTURE FOR BELLOW FOR HOMOCINETIC JOINT AND METHOD FOR MANUFACTURING HOMOCINETIC SEAL
US12/863,652 US20100295256A1 (en) 2008-02-05 2009-01-08 Installation structure for boot for constant velocity universal joint and method of manufacturing constant velocity universal joint
CN2009801041985A CN101939555A (zh) 2008-02-05 2009-01-08 等速万向接头用护罩的安装结构及等速万向接头的制造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008025479A JP5352874B2 (ja) 2008-02-05 2008-02-05 等速自在継手の製造方法
JP2008-025479 2008-02-05

Publications (1)

Publication Number Publication Date
WO2009098912A1 true WO2009098912A1 (ja) 2009-08-13

Family

ID=40951990

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/050122 WO2009098912A1 (ja) 2008-02-05 2009-01-08 等速自在継手用ブーツの取付構造および等速自在継手の製造方法

Country Status (5)

Country Link
US (1) US20100295256A1 (ja)
EP (1) EP2249053A4 (ja)
JP (1) JP5352874B2 (ja)
CN (1) CN101939555A (ja)
WO (1) WO2009098912A1 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011094700A (ja) * 2009-10-29 2011-05-12 Ntn Corp 中空シャフトおよび等速自在継手
US9367069B2 (en) * 2012-09-14 2016-06-14 Kimray, Inc. Pneumatic level switch
US10907692B2 (en) 2015-03-26 2021-02-02 Ntn Corporation Boot attachment method and constant velocity universal joint
JP6622620B2 (ja) * 2016-02-24 2019-12-18 日立オートモティブシステムズ株式会社 プロペラシャフト及びプロペラシャフトの製造方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04128536A (ja) 1990-09-18 1992-04-30 Daihatsu Motor Co Ltd 内燃機関の失火検出方法
JP2004011759A (ja) * 2002-06-06 2004-01-15 Nhk Spring Co Ltd ブーツバンド
JP2006266412A (ja) * 2005-03-24 2006-10-05 Ntn Corp 等速自在継手および等速自在継手用ブーツ
JP2006275161A (ja) * 2005-03-29 2006-10-12 Showa Corp プロペラシャフト用ブーツ、プロペラシャフト、プロペラシャフト用ブーツの取付方法及びプロペラシャフトのシール方法
JP2007056995A (ja) * 2005-08-24 2007-03-08 Ntn Corp 等速自在継手用フレキシブルブーツ

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57126618A (en) * 1981-01-29 1982-08-06 Kiipaa Kk Method for combining boot made of thermosetting resin
CA2085965A1 (en) * 1992-01-23 1993-07-24 Mark John Vanophem Method of attaching a seal to a cylindrical housing
JP3957778B2 (ja) * 1995-12-08 2007-08-15 株式会社リケン ピストンロッド用シール装置
US6120033A (en) * 1998-06-17 2000-09-19 Rosemount Inc. Process diaphragm seal
DE19914930A1 (de) * 1999-04-01 2000-10-19 Freudenberg Carl Fa Gleitringdichtung
US20030150844A1 (en) * 2002-02-14 2003-08-14 Siemens Vdo Automotive, Inc. Method and apparatus for laser welding hoses in an air induction system
JP2007024056A (ja) * 2003-07-15 2007-02-01 Toyo Tire & Rubber Co Ltd 樹脂製ジョイントブーツ
US20060086457A1 (en) * 2004-06-09 2006-04-27 Toyo Tire & Rubber Co., Ltd. Method of producing resin joint boot
JP5122218B2 (ja) * 2007-08-28 2013-01-16 Ntn株式会社 ブーツ取付方法
CN101779067B (zh) * 2007-07-31 2012-06-13 Ntn株式会社 保护罩固定方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04128536A (ja) 1990-09-18 1992-04-30 Daihatsu Motor Co Ltd 内燃機関の失火検出方法
JP2004011759A (ja) * 2002-06-06 2004-01-15 Nhk Spring Co Ltd ブーツバンド
JP2006266412A (ja) * 2005-03-24 2006-10-05 Ntn Corp 等速自在継手および等速自在継手用ブーツ
JP2006275161A (ja) * 2005-03-29 2006-10-12 Showa Corp プロペラシャフト用ブーツ、プロペラシャフト、プロペラシャフト用ブーツの取付方法及びプロペラシャフトのシール方法
JP2007056995A (ja) * 2005-08-24 2007-03-08 Ntn Corp 等速自在継手用フレキシブルブーツ

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2249053A4

Also Published As

Publication number Publication date
JP2009185879A (ja) 2009-08-20
CN101939555A (zh) 2011-01-05
EP2249053A4 (en) 2011-11-02
JP5352874B2 (ja) 2013-11-27
EP2249053A1 (en) 2010-11-10
US20100295256A1 (en) 2010-11-25

Similar Documents

Publication Publication Date Title
JP5352874B2 (ja) 等速自在継手の製造方法
US7972218B2 (en) Drive shaft and constant velocity joint for it
US20130228026A1 (en) Power steering system
JP2007263299A (ja) 車輪用軸受装置の製造方法
JP2010048375A (ja) 等速自在継手用ブーツの取付構造
JP2010230046A (ja) ブーツ取付構造
JP2010071319A (ja) 等速自在継手用ブーツの取付構造
JP5730731B2 (ja) ブーツ取付構造
JP5266943B2 (ja) 転がり軸受用の樹脂製保持器及びその製造方法
JP2010071318A (ja) 等速自在継手用ブーツの取付構造
JP2010242777A (ja) 等速自在継手用ブーツ
JP2010230047A (ja) ブーツ取付構造
JP2011208775A (ja) ブーツ取付構造
JP4071795B2 (ja) 樹脂製ジョイントブーツの製造方法
JP2010230049A (ja) ブーツ取付構造
JP5122218B2 (ja) ブーツ取付方法
JP2010230048A (ja) ブーツ取付構造
JP2008064166A (ja) 玉軸受
KR20180135541A (ko) 웜휠의 제조 방법
JP2011144850A (ja) 等速自在継手
JP2011144849A (ja) 等速自在継手
JP2012154372A (ja) 等速自在継手
JP2007198566A (ja) 車輪用軸受装置
JP2007263298A (ja) 車輪用軸受装置の製造方法
JP2005036961A (ja) 樹脂製ジョイントブーツ

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980104198.5

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09708158

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 12863652

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 5443/CHENP/2010

Country of ref document: IN

Ref document number: 2009708158

Country of ref document: EP