WO2008149869A1 - 電気絶縁用二軸配向フィルム - Google Patents
電気絶縁用二軸配向フィルム Download PDFInfo
- Publication number
- WO2008149869A1 WO2008149869A1 PCT/JP2008/060239 JP2008060239W WO2008149869A1 WO 2008149869 A1 WO2008149869 A1 WO 2008149869A1 JP 2008060239 W JP2008060239 W JP 2008060239W WO 2008149869 A1 WO2008149869 A1 WO 2008149869A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- film
- polyester
- biaxially oriented
- radical scavenging
- stabilizer
- Prior art date
Links
- 238000010292 electrical insulation Methods 0.000 title claims abstract description 20
- 239000003381 stabilizer Substances 0.000 claims abstract description 135
- 229920000728 polyester Polymers 0.000 claims abstract description 91
- 229920006267 polyester film Polymers 0.000 claims abstract description 47
- 150000003609 titanium compounds Chemical class 0.000 claims abstract description 28
- 239000003054 catalyst Substances 0.000 claims abstract description 22
- 230000002292 Radical scavenging effect Effects 0.000 claims description 88
- 230000015556 catabolic process Effects 0.000 claims description 63
- 238000010438 heat treatment Methods 0.000 claims description 20
- -1 polyethylene 1,6-naphthalene dicarboxylate Polymers 0.000 claims description 19
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N Phenol Chemical compound OC1=CC=CC=C1 ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 claims description 17
- 239000002245 particle Substances 0.000 claims description 17
- 239000003990 capacitor Substances 0.000 claims description 15
- 229910052751 metal Inorganic materials 0.000 claims description 13
- 239000002184 metal Substances 0.000 claims description 12
- 238000009413 insulation Methods 0.000 claims description 11
- 150000001412 amines Chemical class 0.000 claims description 6
- 238000002844 melting Methods 0.000 claims description 6
- 230000008018 melting Effects 0.000 claims description 6
- 230000007774 longterm Effects 0.000 abstract description 15
- 238000011282 treatment Methods 0.000 abstract description 10
- 239000002516 radical scavenger Substances 0.000 abstract 3
- 239000010408 film Substances 0.000 description 126
- 238000000034 method Methods 0.000 description 58
- 229920000642 polymer Polymers 0.000 description 25
- 239000010410 layer Substances 0.000 description 19
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 17
- 229920001225 polyester resin Polymers 0.000 description 17
- 239000004645 polyester resin Substances 0.000 description 17
- 229920005989 resin Polymers 0.000 description 17
- 239000011347 resin Substances 0.000 description 17
- 239000000203 mixture Substances 0.000 description 15
- 238000006068 polycondensation reaction Methods 0.000 description 14
- 238000004898 kneading Methods 0.000 description 13
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 12
- 239000011248 coating agent Substances 0.000 description 12
- 238000000576 coating method Methods 0.000 description 12
- 238000004519 manufacturing process Methods 0.000 description 11
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 10
- 230000015572 biosynthetic process Effects 0.000 description 9
- 238000006116 polymerization reaction Methods 0.000 description 9
- 239000000463 material Substances 0.000 description 8
- 239000010936 titanium Substances 0.000 description 8
- 229910052719 titanium Inorganic materials 0.000 description 8
- ARCGXLSVLAOJQL-UHFFFAOYSA-N trimellitic acid Chemical compound OC(=O)C1=CC=C(C(O)=O)C(C(O)=O)=C1 ARCGXLSVLAOJQL-UHFFFAOYSA-N 0.000 description 8
- 229920005992 thermoplastic resin Polymers 0.000 description 7
- 239000002253 acid Substances 0.000 description 6
- 238000006243 chemical reaction Methods 0.000 description 6
- 230000000694 effects Effects 0.000 description 6
- 238000005809 transesterification reaction Methods 0.000 description 6
- OFOBLEOULBTSOW-UHFFFAOYSA-N Malonic acid Chemical compound OC(=O)CC(O)=O OFOBLEOULBTSOW-UHFFFAOYSA-N 0.000 description 5
- 239000011247 coating layer Substances 0.000 description 5
- 230000007423 decrease Effects 0.000 description 5
- 238000005259 measurement Methods 0.000 description 5
- 239000000155 melt Substances 0.000 description 5
- 239000000047 product Substances 0.000 description 5
- 238000012360 testing method Methods 0.000 description 5
- HEDRZPFGACZZDS-UHFFFAOYSA-N Chloroform Chemical compound ClC(Cl)Cl HEDRZPFGACZZDS-UHFFFAOYSA-N 0.000 description 4
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 4
- 239000004698 Polyethylene Substances 0.000 description 4
- KKEYFWRCBNTPAC-UHFFFAOYSA-N Terephthalic acid Chemical compound OC(=O)C1=CC=C(C(O)=O)C=C1 KKEYFWRCBNTPAC-UHFFFAOYSA-N 0.000 description 4
- 239000000654 additive Substances 0.000 description 4
- WNLRTRBMVRJNCN-UHFFFAOYSA-N adipic acid Chemical compound OC(=O)CCCCC(O)=O WNLRTRBMVRJNCN-UHFFFAOYSA-N 0.000 description 4
- 239000012298 atmosphere Substances 0.000 description 4
- 150000001875 compounds Chemical class 0.000 description 4
- 238000001816 cooling Methods 0.000 description 4
- 229920001577 copolymer Polymers 0.000 description 4
- 150000002009 diols Chemical class 0.000 description 4
- 238000010030 laminating Methods 0.000 description 4
- 239000012046 mixed solvent Substances 0.000 description 4
- IWDCLRJOBJJRNH-UHFFFAOYSA-N p-cresol Chemical compound CC1=CC=C(O)C=C1 IWDCLRJOBJJRNH-UHFFFAOYSA-N 0.000 description 4
- 229910052698 phosphorus Inorganic materials 0.000 description 4
- 239000011574 phosphorus Substances 0.000 description 4
- 229920000573 polyethylene Polymers 0.000 description 4
- 239000002244 precipitate Substances 0.000 description 4
- 230000008569 process Effects 0.000 description 4
- CXMXRPHRNRROMY-UHFFFAOYSA-N sebacic acid Chemical compound OC(=O)CCCCCCCCC(O)=O CXMXRPHRNRROMY-UHFFFAOYSA-N 0.000 description 4
- 230000002195 synergetic effect Effects 0.000 description 4
- ZWEHNKRNPOVVGH-UHFFFAOYSA-N 2-Butanone Chemical compound CCC(C)=O ZWEHNKRNPOVVGH-UHFFFAOYSA-N 0.000 description 3
- XEKOWRVHYACXOJ-UHFFFAOYSA-N Ethyl acetate Chemical compound CCOC(C)=O XEKOWRVHYACXOJ-UHFFFAOYSA-N 0.000 description 3
- WSFSSNUMVMOOMR-UHFFFAOYSA-N Formaldehyde Chemical compound O=C WSFSSNUMVMOOMR-UHFFFAOYSA-N 0.000 description 3
- MUBZPKHOEPUJKR-UHFFFAOYSA-N Oxalic acid Chemical compound OC(=O)C(O)=O MUBZPKHOEPUJKR-UHFFFAOYSA-N 0.000 description 3
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 3
- 229910052787 antimony Inorganic materials 0.000 description 3
- WATWJIUSRGPENY-UHFFFAOYSA-N antimony atom Chemical compound [Sb] WATWJIUSRGPENY-UHFFFAOYSA-N 0.000 description 3
- YHWCPXVTRSHPNY-UHFFFAOYSA-N butan-1-olate;titanium(4+) Chemical compound [Ti+4].CCCC[O-].CCCC[O-].CCCC[O-].CCCC[O-] YHWCPXVTRSHPNY-UHFFFAOYSA-N 0.000 description 3
- 230000000295 complement effect Effects 0.000 description 3
- 238000007796 conventional method Methods 0.000 description 3
- 150000002148 esters Chemical group 0.000 description 3
- 238000009998 heat setting Methods 0.000 description 3
- 238000000691 measurement method Methods 0.000 description 3
- 239000003921 oil Substances 0.000 description 3
- 125000004430 oxygen atom Chemical group O* 0.000 description 3
- 239000011541 reaction mixture Substances 0.000 description 3
- 239000002904 solvent Substances 0.000 description 3
- 230000000153 supplemental effect Effects 0.000 description 3
- BYEAHWXPCBROCE-UHFFFAOYSA-N 1,1,1,3,3,3-hexafluoropropan-2-ol Chemical compound FC(F)(F)C(O)C(F)(F)F BYEAHWXPCBROCE-UHFFFAOYSA-N 0.000 description 2
- 238000005160 1H NMR spectroscopy Methods 0.000 description 2
- WPMYUUITDBHVQZ-UHFFFAOYSA-M 3-(3,5-ditert-butyl-4-hydroxyphenyl)propanoate Chemical compound CC(C)(C)C1=CC(CCC([O-])=O)=CC(C(C)(C)C)=C1O WPMYUUITDBHVQZ-UHFFFAOYSA-M 0.000 description 2
- DGIRHPMUWGNFDO-UHFFFAOYSA-N 4-[[3,5-bis[(3,5-ditert-butyl-4-hydroxyphenyl)methyl]-1,3,5-triazinan-1-yl]methyl]-2,6-ditert-butylphenol Chemical compound CC(C)(C)C1=C(O)C(C(C)(C)C)=CC(CN2CN(CC=3C=C(C(O)=C(C=3)C(C)(C)C)C(C)(C)C)CN(CC=3C=C(C(O)=C(C=3)C(C)(C)C)C(C)(C)C)C2)=C1 DGIRHPMUWGNFDO-UHFFFAOYSA-N 0.000 description 2
- VTYYLEPIZMXCLO-UHFFFAOYSA-L Calcium carbonate Chemical compound [Ca+2].[O-]C([O-])=O VTYYLEPIZMXCLO-UHFFFAOYSA-L 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 2
- 238000005481 NMR spectroscopy Methods 0.000 description 2
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 2
- ABLZXFCXXLZCGV-UHFFFAOYSA-N Phosphorous acid Chemical compound OP(O)=O ABLZXFCXXLZCGV-UHFFFAOYSA-N 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 2
- DTQVDTLACAAQTR-UHFFFAOYSA-N Trifluoroacetic acid Chemical compound OC(=O)C(F)(F)F DTQVDTLACAAQTR-UHFFFAOYSA-N 0.000 description 2
- 235000011037 adipic acid Nutrition 0.000 description 2
- 239000001361 adipic acid Substances 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 2
- 229940058905 antimony compound for treatment of leishmaniasis and trypanosomiasis Drugs 0.000 description 2
- 150000001463 antimony compounds Chemical class 0.000 description 2
- ADCOVFLJGNWWNZ-UHFFFAOYSA-N antimony trioxide Chemical compound O=[Sb]O[Sb]=O ADCOVFLJGNWWNZ-UHFFFAOYSA-N 0.000 description 2
- TZCXTZWJZNENPQ-UHFFFAOYSA-L barium sulfate Chemical compound [Ba+2].[O-]S([O-])(=O)=O TZCXTZWJZNENPQ-UHFFFAOYSA-L 0.000 description 2
- 239000011230 binding agent Substances 0.000 description 2
- 239000003795 chemical substances by application Substances 0.000 description 2
- 230000000052 comparative effect Effects 0.000 description 2
- 238000011109 contamination Methods 0.000 description 2
- 238000001514 detection method Methods 0.000 description 2
- 150000001991 dicarboxylic acids Chemical class 0.000 description 2
- 238000001035 drying Methods 0.000 description 2
- 239000000428 dust Substances 0.000 description 2
- 238000005886 esterification reaction Methods 0.000 description 2
- 238000001125 extrusion Methods 0.000 description 2
- 230000009477 glass transition Effects 0.000 description 2
- QQVIHTHCMHWDBS-UHFFFAOYSA-N isophthalic acid Chemical compound OC(=O)C1=CC=CC(C(O)=O)=C1 QQVIHTHCMHWDBS-UHFFFAOYSA-N 0.000 description 2
- 239000002346 layers by function Substances 0.000 description 2
- OJURWUUOVGOHJZ-UHFFFAOYSA-N methyl 2-[(2-acetyloxyphenyl)methyl-[2-[(2-acetyloxyphenyl)methyl-(2-methoxy-2-oxoethyl)amino]ethyl]amino]acetate Chemical compound C=1C=CC=C(OC(C)=O)C=1CN(CC(=O)OC)CCN(CC(=O)OC)CC1=CC=CC=C1OC(C)=O OJURWUUOVGOHJZ-UHFFFAOYSA-N 0.000 description 2
- 238000002156 mixing Methods 0.000 description 2
- RXOHFPCZGPKIRD-UHFFFAOYSA-N naphthalene-2,6-dicarboxylic acid Chemical compound C1=C(C(O)=O)C=CC2=CC(C(=O)O)=CC=C21 RXOHFPCZGPKIRD-UHFFFAOYSA-N 0.000 description 2
- KPSSIOMAKSHJJG-UHFFFAOYSA-N neopentyl alcohol Chemical compound CC(C)(C)CO KPSSIOMAKSHJJG-UHFFFAOYSA-N 0.000 description 2
- 150000002989 phenols Chemical class 0.000 description 2
- 125000002467 phosphate group Chemical class [H]OP(=O)(O[H])O[*] 0.000 description 2
- 239000002685 polymerization catalyst Substances 0.000 description 2
- 229920001296 polysiloxane Polymers 0.000 description 2
- 239000000843 powder Substances 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 239000002994 raw material Substances 0.000 description 2
- 230000002000 scavenging effect Effects 0.000 description 2
- 229910052710 silicon Inorganic materials 0.000 description 2
- 239000010703 silicon Substances 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 238000004544 sputter deposition Methods 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 239000013589 supplement Substances 0.000 description 2
- 239000004094 surface-active agent Substances 0.000 description 2
- 229920001187 thermosetting polymer Polymers 0.000 description 2
- 239000010409 thin film Substances 0.000 description 2
- 150000003568 thioethers Chemical class 0.000 description 2
- JMXKSZRRTHPKDL-UHFFFAOYSA-N titanium ethoxide Chemical compound [Ti+4].CC[O-].CC[O-].CC[O-].CC[O-] JMXKSZRRTHPKDL-UHFFFAOYSA-N 0.000 description 2
- SRPWOOOHEPICQU-UHFFFAOYSA-N trimellitic anhydride Chemical compound OC(=O)C1=CC=C2C(=O)OC(=O)C2=C1 SRPWOOOHEPICQU-UHFFFAOYSA-N 0.000 description 2
- 238000004506 ultrasonic cleaning Methods 0.000 description 2
- 238000001771 vacuum deposition Methods 0.000 description 2
- 238000004804 winding Methods 0.000 description 2
- YAPRWCFMWHUXRS-UHFFFAOYSA-N (2-hydroxyphenyl) propanoate Chemical compound CCC(=O)OC1=CC=CC=C1O YAPRWCFMWHUXRS-UHFFFAOYSA-N 0.000 description 1
- ZXHDVRATSGZISC-UHFFFAOYSA-N 1,2-bis(ethenoxy)ethane Chemical compound C=COCCOC=C ZXHDVRATSGZISC-UHFFFAOYSA-N 0.000 description 1
- CDMGNVWZXRKJNS-UHFFFAOYSA-N 2-benzylphenol Chemical compound OC1=CC=CC=C1CC1=CC=CC=C1 CDMGNVWZXRKJNS-UHFFFAOYSA-N 0.000 description 1
- LSNNMFCWUKXFEE-UHFFFAOYSA-M Bisulfite Chemical compound OS([O-])=O LSNNMFCWUKXFEE-UHFFFAOYSA-M 0.000 description 1
- BCFJMQUQYVKRMI-UHFFFAOYSA-N C(=O)(O)OC(=O)C1=C(C(=CC=C1)C)C Chemical compound C(=O)(O)OC(=O)C1=C(C(=CC=C1)C)C BCFJMQUQYVKRMI-UHFFFAOYSA-N 0.000 description 1
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 1
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 1
- YZCKVEUIGOORGS-OUBTZVSYSA-N Deuterium Chemical compound [2H] YZCKVEUIGOORGS-OUBTZVSYSA-N 0.000 description 1
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 1
- 229920002845 Poly(methacrylic acid) Polymers 0.000 description 1
- 239000004952 Polyamide Substances 0.000 description 1
- 239000004642 Polyimide Substances 0.000 description 1
- 239000004743 Polypropylene Substances 0.000 description 1
- 239000004793 Polystyrene Substances 0.000 description 1
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 1
- XBDQKXXYIPTUBI-UHFFFAOYSA-M Propionate Chemical compound CCC([O-])=O XBDQKXXYIPTUBI-UHFFFAOYSA-M 0.000 description 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 1
- 239000007983 Tris buffer Substances 0.000 description 1
- 238000004833 X-ray photoelectron spectroscopy Methods 0.000 description 1
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 1
- 230000002159 abnormal effect Effects 0.000 description 1
- NIXOWILDQLNWCW-UHFFFAOYSA-N acrylic acid group Chemical group C(C=C)(=O)O NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 238000007754 air knife coating Methods 0.000 description 1
- 125000005907 alkyl ester group Chemical group 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- VBIXEXWLHSRNKB-UHFFFAOYSA-N ammonium oxalate Chemical compound [NH4+].[NH4+].[O-]C(=O)C([O-])=O VBIXEXWLHSRNKB-UHFFFAOYSA-N 0.000 description 1
- 150000008064 anhydrides Chemical class 0.000 description 1
- 238000000137 annealing Methods 0.000 description 1
- 125000003118 aryl group Chemical group 0.000 description 1
- 125000004429 atom Chemical group 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 239000002981 blocking agent Substances 0.000 description 1
- 238000009530 blood pressure measurement Methods 0.000 description 1
- 229910000019 calcium carbonate Inorganic materials 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 125000004432 carbon atom Chemical group C* 0.000 description 1
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 1
- 239000001913 cellulose Substances 0.000 description 1
- 229920002678 cellulose Polymers 0.000 description 1
- 238000005119 centrifugation Methods 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 239000011651 chromium Substances 0.000 description 1
- 239000004927 clay Substances 0.000 description 1
- 229910052570 clay Inorganic materials 0.000 description 1
- 238000007334 copolymerization reaction Methods 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 239000011889 copper foil Substances 0.000 description 1
- 239000003431 cross linking reagent Substances 0.000 description 1
- 238000007766 curtain coating Methods 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000003111 delayed effect Effects 0.000 description 1
- 229910052805 deuterium Inorganic materials 0.000 description 1
- GYUVMLBYMPKZAZ-UHFFFAOYSA-N dimethyl naphthalene-2,6-dicarboxylate Chemical compound C1=C(C(=O)OC)C=CC2=CC(C(=O)OC)=CC=C21 GYUVMLBYMPKZAZ-UHFFFAOYSA-N 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 125000004185 ester group Chemical group 0.000 description 1
- 230000032050 esterification Effects 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 239000011888 foil Substances 0.000 description 1
- 125000000524 functional group Chemical group 0.000 description 1
- 238000007756 gravure coating Methods 0.000 description 1
- WGCNASOHLSPBMP-UHFFFAOYSA-N hydroxyacetaldehyde Natural products OCC=O WGCNASOHLSPBMP-UHFFFAOYSA-N 0.000 description 1
- 238000005470 impregnation Methods 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 239000004615 ingredient Substances 0.000 description 1
- 239000010954 inorganic particle Substances 0.000 description 1
- 239000001023 inorganic pigment Substances 0.000 description 1
- 238000007733 ion plating Methods 0.000 description 1
- 239000011572 manganese Substances 0.000 description 1
- 229940071125 manganese acetate Drugs 0.000 description 1
- UOGMEBQRZBEZQT-UHFFFAOYSA-L manganese(2+);diacetate Chemical compound [Mn+2].CC([O-])=O.CC([O-])=O UOGMEBQRZBEZQT-UHFFFAOYSA-L 0.000 description 1
- HTIBHCNKRMYWAG-UHFFFAOYSA-N methoxysulfonyl methyl sulfate Chemical compound COS(=O)(=O)OS(=O)(=O)OC HTIBHCNKRMYWAG-UHFFFAOYSA-N 0.000 description 1
- KYTZHLUVELPASH-UHFFFAOYSA-N naphthalene-1,2-dicarboxylic acid Chemical compound C1=CC=CC2=C(C(O)=O)C(C(=O)O)=CC=C21 KYTZHLUVELPASH-UHFFFAOYSA-N 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 239000011146 organic particle Substances 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- 235000006408 oxalic acid Nutrition 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 238000010525 oxidative degradation reaction Methods 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 229920000233 poly(alkylene oxides) Polymers 0.000 description 1
- 229920001515 polyalkylene glycol Polymers 0.000 description 1
- 229920002647 polyamide Polymers 0.000 description 1
- 229920006149 polyester-amide block copolymer Polymers 0.000 description 1
- 229920000139 polyethylene terephthalate Polymers 0.000 description 1
- 239000005020 polyethylene terephthalate Substances 0.000 description 1
- 229920001721 polyimide Polymers 0.000 description 1
- 229920000098 polyolefin Polymers 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- 229920002223 polystyrene Polymers 0.000 description 1
- 229920005990 polystyrene resin Polymers 0.000 description 1
- 229920002635 polyurethane Polymers 0.000 description 1
- 239000004814 polyurethane Substances 0.000 description 1
- 229920005749 polyurethane resin Polymers 0.000 description 1
- 239000011591 potassium Substances 0.000 description 1
- 229910052700 potassium Inorganic materials 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- HKJYVRJHDIPMQB-UHFFFAOYSA-N propan-1-olate;titanium(4+) Chemical compound CCCO[Ti](OCCC)(OCCC)OCCC HKJYVRJHDIPMQB-UHFFFAOYSA-N 0.000 description 1
- 238000011002 quantification Methods 0.000 description 1
- 230000009257 reactivity Effects 0.000 description 1
- 239000011342 resin composition Substances 0.000 description 1
- 229940116351 sebacate Drugs 0.000 description 1
- CXMXRPHRNRROMY-UHFFFAOYSA-L sebacate(2-) Chemical compound [O-]C(=O)CCCCCCCCC([O-])=O CXMXRPHRNRROMY-UHFFFAOYSA-L 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 239000002356 single layer Substances 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 229910052717 sulfur Inorganic materials 0.000 description 1
- 239000000454 talc Substances 0.000 description 1
- 229910052623 talc Inorganic materials 0.000 description 1
- 229910052718 tin Inorganic materials 0.000 description 1
- 239000011135 tin Substances 0.000 description 1
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 description 1
- DTQVDTLACAAQTR-DYCDLGHISA-N trifluoroacetic acid-d1 Chemical compound [2H]OC(=O)C(F)(F)F DTQVDTLACAAQTR-DYCDLGHISA-N 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- 230000037303 wrinkles Effects 0.000 description 1
- 239000011701 zinc Substances 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01B—CABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
- H01B17/00—Insulators or insulating bodies characterised by their form
- H01B17/56—Insulating bodies
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B15/00—Layered products comprising a layer of metal
- B32B15/04—Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
- B32B15/08—Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C55/00—Shaping by stretching, e.g. drawing through a die; Apparatus therefor
- B29C55/02—Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets
- B29C55/10—Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets multiaxial
- B29C55/12—Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets multiaxial biaxial
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C55/00—Shaping by stretching, e.g. drawing through a die; Apparatus therefor
- B29C55/02—Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets
- B29C55/10—Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets multiaxial
- B29C55/12—Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets multiaxial biaxial
- B29C55/14—Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets multiaxial biaxial successively
- B29C55/143—Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets multiaxial biaxial successively firstly parallel to the direction of feed and then transversely thereto
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B15/00—Layered products comprising a layer of metal
- B32B15/04—Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
- B32B15/08—Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
- B32B15/09—Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin comprising polyesters
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J5/00—Manufacture of articles or shaped materials containing macromolecular substances
- C08J5/18—Manufacture of films or sheets
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01B—CABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
- H01B17/00—Insulators or insulating bodies characterised by their form
- H01B17/56—Insulating bodies
- H01B17/62—Insulating-layers or insulating-films on metal bodies
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01B—CABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
- H01B5/00—Non-insulated conductors or conductive bodies characterised by their form
- H01B5/14—Non-insulated conductors or conductive bodies characterised by their form comprising conductive layers or films on insulating-supports
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G4/00—Fixed capacitors; Processes of their manufacture
- H01G4/002—Details
- H01G4/018—Dielectrics
- H01G4/06—Solid dielectrics
- H01G4/14—Organic dielectrics
- H01G4/18—Organic dielectrics of synthetic material, e.g. derivatives of cellulose
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29K—INDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
- B29K2067/00—Use of polyesters or derivatives thereof, as moulding material
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29K—INDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
- B29K2105/00—Condition, form or state of moulded material or of the material to be shaped
- B29K2105/0005—Condition, form or state of moulded material or of the material to be shaped containing compounding ingredients
- B29K2105/0044—Stabilisers, e.g. against oxydation, light or heat
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29K—INDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
- B29K2995/00—Properties of moulding materials, reinforcements, fillers, preformed parts or moulds
- B29K2995/0003—Properties of moulding materials, reinforcements, fillers, preformed parts or moulds having particular electrical or magnetic properties, e.g. piezoelectric
- B29K2995/0007—Insulating
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2367/00—Characterised by the use of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Derivatives of such polymers
- C08J2367/02—Polyesters derived from dicarboxylic acids and dihydroxy compounds
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/31504—Composite [nonstructural laminate]
- Y10T428/31678—Of metal
- Y10T428/31681—Next to polyester, polyamide or polyimide [e.g., alkyd, glue, or nylon, etc.]
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/31504—Composite [nonstructural laminate]
- Y10T428/31786—Of polyester [e.g., alkyd, etc.]
Definitions
- the present invention relates to a biaxially oriented film suitable for electrical insulation. More specifically, the present invention relates to a biaxially oriented film suitable for electrical insulation, having high withstand voltage characteristics ranging from room temperature to high temperature and maintaining high withstand voltage characteristics even after long-term heat treatment.
- a film for electrical insulation made of a crystalline thermoplastic resin for example, a film made of a polypropylene resin, a polystyrene resin, a polyester resin, or a polyurethane resin is known.
- Film for a film capacitor, flexible printed circuit board It is used as a film for motors and as a motor-insulating film.
- the film capacitor 1 is manufactured by a method in which the crystalline thermoplastic resin film described above and a metal thin film such as an aluminum foil are overlapped, wound or stacked.
- the flexible printed circuit board is manufactured by a method of forming a circuit by laminating a metal thin film on at least one surface of a crystalline thermoplastic resin film.
- the insulating film is used as, for example, a wedge material or a slot material that insulates the motor coil from the stay.
- Japanese Patent Application Laid-Open No. 2 00 0 1-7 3 8 5 5 Discloses the use of polyethylene 1,6-naphthalate film whose intrinsic viscosity and crystallinity are in a specific range.
- at least one stabilizer is added to the film weight.
- a thermoplastic resin film containing ⁇ 15,000 ppm has been proposed, and specifically, it is disclosed that a stabilizer is added during the production of the thermoplastic resin.
- 2000-300-3100 discloses at least one stabilizer having an ability to prevent oxidative degradation to 100 to 100 ppm, based on crystalline polyester. It is disclosed to be present at a concentration of This document emphasizes that the presence of stabilizers in a chemically bonded state to the crystalline polyester reduces the occurrence of surface defects and reduces contamination of film production equipment during production. It is also disclosed that it is preferable to use a hindered phenol having a carboxyl group and Z or an ester group in the polycondensation reaction of the polyester in order to chemically bind the polyester and the stabilizer. Has been.
- An object of the present invention is to provide a biaxially oriented film suitable for electrical insulation applications, which has a high withstand voltage characteristic from room temperature to a high temperature region and maintains a high withstand voltage characteristic even after long-term heat treatment. is there.
- the present inventor has improved dispersibility in the film when adding various additives to the film, unlike other technical fields such as the resin molded product field.
- the main method is to add an additive at any point in the polycondensation reaction of the resin, such as a hindered phenol. While it has been proposed to add a dical scavenging stabilizer during the polycondensation reaction, the present invention can be obtained by adding a radical scavenging stabilizer during film formation in place of the conventional method.
- the film does not react with the polyester resin and the radical scavenging stabilizer, and as a result, the radical scavenging ability of the radical scavenging stabilizer is increased and the catalyst is a titanium compound.
- a high withstand voltage characteristic can be obtained from room temperature to a high temperature range, and that the high withstand voltage characteristic S can be maintained even after long-term heat treatment. It has come.
- the above object of the present invention is a film comprising at least one layer of polyester, wherein the at least one layer of polyester contains a titanium compound as a catalyst and a radical scavenging stabilizer,
- the content of the trapping stabilizer is 1,000 to 50,000 p pm by weight with respect to the polyester, of which the proportion chemically bonded to the polyester does not exceed 200 p pm. This is achieved by a biaxially oriented polyester film for electrical insulation.
- the biaxially oriented film for electrical insulation of the present invention preferably has a radical supplemental stabilizer content of 16,000 to 50, OO Oppm, and the radical supplemental stabilizer is a phenolic stabilizer. It must be at least one selected from the group consisting of stabilizers and amine stabilizers, the melting point of the radical scavenging stabilizer must be 200 ° C or higher, and the polyester resin must be polyethylene 1,6-naphthalene dicarboxyl. If the dielectric breakdown voltage difference expressed by the following formula (1) is 50 ⁇ : I 10V / m and the dielectric breakdown voltage (BDV tl50 ) at 150 ° C is 28 QV / ii m or more There is,
- BDV t25 represents the breakdown voltage (VZim) at 25 ° C
- BDV t 150 represents the breakdown voltage (VZ ⁇ m) at 150 ° C.
- the dielectric breakdown voltage at 25 ° C after 300 hours of heat treatment at 150 ° C is 38 OV / um or more, containing 0.0001 to 0.1% by weight of inert particles The thing which comprises is mentioned.
- the biaxially oriented film for electrical insulation of the present invention can be used for one film capacitor or one for overnight insulation.
- the present invention also includes a biaxially oriented laminated film in which a metal layer is laminated on at least one side of the biaxially oriented film for electrical insulation of the present invention.
- the polyester in the present invention is a polymer obtained by polycondensation of a diol and a dicarboxylic acid.
- dicarboxylic acids include terephthalic acid, isophthalic acid, 2,6-naphthalenedicarboxylic acid, 4,4, -diphenyldicarboxylic acid, adipic acid and sebacic acid power S.
- diol include ethylene glycol, 1,4-monobutanediol, 1,4-cyclohexanedimethyl alcohol, and 1,6-monohexanediol.
- polyesters obtained from dicarboxylic acids and diols polyethylene terephthalate and polyethylene 1,6-naphthalene dicarboxylate (hereinafter sometimes abbreviated as PEN) are preferable, and resistance to high temperatures is particularly high. From the viewpoint of voltage characteristics, polyethylene 1,2-naphthalenedicarboxylate is particularly preferred.
- the polyester in the present invention may be used alone, as a copolymer with other polyesters, or as a mixture with two or more kinds of polyesters.
- the other components in the copolymer or mixture are preferably 10 mol% or less, more preferably 5 mol% or less, based on the number of moles of the repeating structural unit.
- copolymer components include diol components such as jetty renderol, neopentyl alcohol, polyalkylene glycol, adipic acid, sebacic acid, fuuric acid, isofuric acid, terephthalic acid, naphthalenedicarboxylic acid And dicarboxylic acid components such as 5-sodiumsulfoisofuric acid, and among them, components other than the main components can be used as a copolysynthesis component.
- diol components such as jetty renderol, neopentyl alcohol, polyalkylene glycol, adipic acid, sebacic acid, fuuric acid, isofuric acid, terephthalic acid, naphthalenedicarboxylic acid
- dicarboxylic acid components such as 5-sodiumsulfoisofuric acid, and among them, components other than the main components can be used as a copolysynthesis component.
- the polyester of the present invention can be obtained by a conventionally known method, for example, dicarboxylic acid and glycol monoester. It can be obtained by a method of directly obtaining a low-polymerization degree polyester by a reaction of a dicarboxylic acid or a method of reacting a lower alkyl ester of a dicarboxylic acid with darlicol using a transesterification catalyst and then performing a polymerization reaction in the presence of the polymerization catalyst it can.
- a polyester using a titanium compound as a catalyst for producing the polyester is used.
- the titanium compound is preferably a titanium compound soluble in polyester.
- titanium compounds soluble in polyester include organic titanium compounds, specifically tetraethyl titanate, tetrapropyl titanate, tetrabutyl titanate, tetraphenyl titanate or partial hydrolysates thereof, titanyl ammonium oxalate, and oxalic acid.
- Examples thereof include titanyl potassium, titanium trisacetylacetonate, and a product obtained by reacting the above-mentioned titan compound with an aromatic polycarboxylic acid such as trimellitic anhydride or an anhydride thereof.
- an aromatic polycarboxylic acid such as trimellitic anhydride or an anhydride thereof.
- tetrabutyl titanate and trimellitic acid titanium power S are preferable.
- Trimellitic acid titanium can be obtained by reacting trimellitic anhydride with tetrabutyl titanate.
- such a titanium compound may be added before the start of the transesterification reaction, during the transesterification reaction, or after the transesterification reaction and immediately before the polycondensation reaction.
- it may be added after completion of the esterification reaction or may be added immediately before the polycondensation reaction.
- the content of the titanium compound contained in the polyester is preferably in the range of 5 to 20 ppm in terms of titanium atoms, more preferably 7 to 18 ppm, particularly preferably 8 to 1, based on the weight of the polyester. 7 ppm. If the content of the titanium compound is less than the lower limit, the production during the production of the polyester may be delayed. On the other hand, if the upper limit is exceeded, the heat resistance stability of the resulting polyester will deteriorate, and precipitation of the titanium compound will occur. Depending on the object, the withstand voltage characteristics may deteriorate.
- Antimony compounds generally used as a polymerization catalyst for polyesters tend to form precipitates, and the amount of catalyst used is large, so the precipitates derived from antimony compounds cause the breakdown voltage characteristics to deteriorate, Radical scavenging stabilizer A film with sufficient withstand voltage characteristics may not be obtained even if it is contained in polyester.
- a titanium compound when a titanium compound is used, it is possible to reduce the amount of the catalyst within a range in which the polymerization reaction can be maintained, and it is possible to reduce the amount of precipitates that hinder the withstand voltage characteristics. It is possible to develop a withstand voltage characteristic. Further, by using a titanium compound that is soluble in the polyester resin as the titanium compound, the amount of precipitates is further reduced, and the withstand voltage characteristics are further improved.
- the intrinsic viscosity of the polyester in the present invention is preferably 0.40 d 1 Zg or more, more preferably 0.40 to 0.80 d 1 Zg at 35 in 0-black mouth phenol. If the intrinsic viscosity is less than 0.4 dlZg, cutting may occur frequently during film formation, or the strength of the product after forming may be increased. On the other hand, when the intrinsic viscosity exceeds 0.8 d 1 Zg, productivity during polymerization may be lowered.
- a radical scavenging stabilizer is added as an essential component to the biaxially oriented polyester film for electrical insulation of the present invention.
- Such radical scavenging stabilizers are used to generate radicals generated for some reason in a material to which radical scavenging stabilizers are added. It has a function to stop the auto-oxidation chain reaction.
- the radical scavenging stabilizer itself becomes a stable radical with low reactivity after radical scavenging.
- radical scavenging stabilizers include, for example, phenol-based stabilizers and amine-based stabilizers.
- phenolic stabilizers include hindered phenols, and high molecular weight type hydroxyphenyl propionate and hydroxybenzylbenzene are particularly preferable.
- amine stabilizers include hindered amines, and examples thereof include a compound called bis (2, 2, 6, 6-tetramethyl-4-piberidinyl) sebacate having a basic structure called HAL S.
- the amount chemically bonded to the polyester in the film does not exceed 200 ppm based on the weight of the polyester.
- Radial scavenging stabilizers are not reactive with polyesters, or are largely unreacted when reacted, resulting in radical scavenging rather than radical scavenging stabilizers chemically bonded to polyester. Noh increases.
- the dielectric strength of the film As a catalyst that is one of the factors that affect the performance, the use of a titanium compound with a small decrease in withstand voltage allows the effect of the radical scavenging stabilizer to be fully manifested, resulting in higher resistance than conventional from room temperature to high temperatures.
- the proportion of polyester and radical scavenging stabilizer chemically bonded is determined according to the following measurement method. Dissolve the film in a mixed solvent of hexafluoroisopropanol and chloroform, add methanol to reprecipitate, separate the precipitated polymer, add methanol, and perform ultrasonic cleaning to leave the remaining low molecules Remove ingredients.
- the obtained sample can be dried under reduced pressure and NMR measurement can be performed to determine the proportion of the radical scavenging stabilizer chemically bonded to the polyester.
- the amount of the radical scavenging stabilizer chemically bonded to the polyester exceeds 20 Oppm, it exceeds the detection limit value of the NMR measuring apparatus, and thus quantification is possible.
- radical scavenging stabilizer after the polycondensation reaction of polyester is completely completed.
- a method of adding a radical scavenging stabilizer after completion of the polyester polycondensation reaction and before film formation is preferred, and the production method described later is preferably used.
- the content of the radical scavenging stabilizer is 1, 0 0 0-5 0, 0 0 0 p pm based on the weight of the polyester.
- the lower limit of the content of radical scavenging stabilizer is It is preferably 3,000 ppm, more preferably 5,000 ppm, even more preferably 10,000 ppm, particularly preferably 16,000 ppm, and most preferably 20, OOO ppm.
- the upper limit of the content of the radical scavenging stabilizer is preferably 45,000 ppm, more preferably 40, OOO ppm. If the content of the radical complement stabilizer is less than the lower limit, the withstand voltage characteristic at 150 ° C and the withstand voltage characteristic after long-term heating may not be sufficient. On the other hand, when the content of the radical scavenging stabilizer exceeds the upper limit, improvement of the withstand voltage characteristic corresponding to the increase cannot be expected, and addition of a large amount may cause poor dispersion and break the film or roughen the surface.
- the biaxially oriented polyester film of the present invention may contain inert particles in order to impart winding properties during film formation.
- the inert particles include inorganic particles such as calcium carbonate, silica, talc, and clay, organic particles made of any one of thermoplastic resins and thermosetting resins such as silicone and acrylic, barium sulfate, and titanium oxide. At least one kind of inorganic pigment particles can be used.
- Such inert particles can be used within a range not impairing the effects of the present invention.
- inert particles having an average particle diameter of 0.001 to 5 m can be contained in a range of 0.0001 to 1% by weight based on the film weight.
- the average particle size of the inert particles is more preferably 0.01 to 3 xm.
- the content of inert particles is determined by dissolving the polyester, selecting a solvent that does not dissolve the inert particles, dissolving the film, separating the particles by centrifugation, and the ratio of the particles to the film weight (% by weight) The content.
- the biaxially oriented polyester film of the present invention may further contain a small amount of at least one selected from the group consisting of a silicone stabilizer and a phosphorus stabilizer.
- Such a stabilizer examples include a thioether compound, specifically, a tetraester high molecular weight thioether compound.
- phosphorus stabilizers include phosphonic acid, phosphate compounds, and phosphate compounds. Of these, phosphite compounds can be preferably used.
- xio stabilizers and phosphorus stabilizers are effective in further improving the withstand voltage characteristics of the film when used in combination with radical scavenging stabilizers.
- the content of these stabilizers is preferably 1 to 10,000 ppm, more preferably 5 to 5,000 ppm, based on the weight of the polyester. When the content of the stabilizer is less than the lower limit, the synergistic effect of withstand voltage characteristics may not be sufficiently exhibited. On the other hand, if the stabilizer is added in excess of the upper limit of the content, the synergistic effect associated with the added amount is not exhibited, and the heat resistance inherent in the polyester may be reduced.
- the withstand voltage characteristic of the biaxially oriented polyester film of the present invention is evaluated by the insulation breakdown voltage.
- the biaxially oriented polyester film of the present invention has a dielectric breakdown voltage difference (hereinafter sometimes abbreviated as BDV t25 tl50 ) represented by the following formula (1) of 50 to 110 V / xm, and at 150 ° C.
- the dielectric breakdown voltage (BDV tl50 ) is preferably 280 V / m or more.
- Dielectric breakdown voltage difference BDV t25 — BDV tl5 . ⁇ ⁇ '(1)
- BDV t25 represents the breakdown voltage (V / m) at 25 ° C
- BDV t 150 represents the breakdown voltage (VZ m) at 150 ° C.
- the upper limit of the dielectric breakdown voltage difference is more preferably 105 VZ ⁇ m or less, and even more preferably 100 VZ Am or less. If the dielectric breakdown voltage difference exceeds the upper limit, the electrical characteristics when used in a capacitor, especially the characteristic power at high temperatures, is not sufficient, and it may not be suitable for applications where the usage environment is included in the high temperature range. is there.
- Such a dielectric breakdown voltage difference is achieved by using polyester, containing a radial supplement type stabilizer in the range specified in the present invention in the biaxially oriented polyester film, and the catalyst being a titanium compound.
- This breakdown voltage difference is By using reethylene 1, 2, 6-naphthalene dicarboxylate, the dielectric breakdown voltage difference can be further reduced, and by containing a radical scavenging stabilizer of more than 15,000 ppm based on the weight of the polyester, It can be 10 0 VZ zm or less.
- the dielectric breakdown voltage of the biaxially oriented polyester film at 25 ° C is preferably 370 V nom or more, more preferably 380 or more, more preferably 390 V / m or more, and particularly preferably 400 VZim or more. is there.
- Such a dielectric breakdown voltage is achieved by using polyester, containing a radical scavenging stabilizer in the range specified in the present invention in the biaxially oriented polyester film, and the catalyst being a titanium compound. .
- the dielectric breakdown voltage of the biaxially oriented polyester film at 150 ° C is preferably 280 V // im or more, more preferably 290 VZ m or more, more preferably 295 VZ m or more, particularly preferably 300 VZ m or more. It is.
- the breakdown voltage is such that polyester is used and a biaxially oriented polyester film contains a radical scavenging stabilizer within the range specified by the present invention, and such radical complement stabilizer is chemically bonded to the polyester.
- the amount of the catalyst is not more than 200 ppm and the powerful catalyst is a titanium compound.
- the effect of the amount of the radical scavenging stabilizer chemically bonded to the polyester not exceeding 200 ppm is that the catalyst is a titanium compound, especially in improving the breakdown voltage in the high temperature range of 150 ° C. It becomes remarkable when it is.
- the breakdown voltage at 25 ° C conforms to the plate electrode method described in JIS standard C 2151, manufactured by Tokyo Seiden Co., Ltd. This is the value measured under the DC voltage, 0.1 kV / s boost condition.
- the breakdown voltage at 150 ° C is compliant with JIS standard K6911 as described in detail in the measurement method.
- a withstand voltage tester TO S 5101 manufactured by Kikusui Electronics Co., Ltd.
- silicon oil It is a value measured under the condition of DC current at a temperature of 150 ° C and a boosting condition of 0.1 kV Zs.
- the breakdown voltage difference (BDV t25 _ tl50 ) is calculated by subtracting the breakdown voltage at 150 ° C from the breakdown voltage at 25 ° C. Is required.
- the dielectric breakdown voltage value at two points of 25 ° C. and 150 ° C. is evaluated as an index for evaluating the withstand voltage characteristics from room temperature to high temperature range.
- the voltage value decreases continuously as the temperature increases, and the breakdown voltage suddenly decreases at a certain temperature. Therefore, the technical significance of the value of the insulation breakdown voltage difference at 25 ° C. and 150 ° C. in the present invention is that the decrease in the dielectric breakdown voltage value with increasing temperature is smaller than that of the resin alone film. And, it means that there is no sudden breakdown voltage drop between 25 and 1550 ° C.
- the biaxially oriented polyester film of the present invention preferably has an insulation breakdown voltage of 3800 VZm or more at 25 ° C after heat treatment at 150 ° C for 30 hours. More preferably, it is 39 0 VZ_im or more, further preferably 39 5 V / xm or more, and particularly preferably 4 0 0 VZ ⁇ m or more.
- Such breakdown voltage is obtained by using polyester and containing a radical scavenging stabilizer in the biaxially oriented polyester film within the range specified in the present invention, and the radical scavenging stabilizer is chemically bonded to the polyester. Is achieved when the amount of the catalyst does not exceed 200 ppm and the catalyst is a titanium compound.
- the effect of the amount of the radical scavenging stabilizer chemically bonded to the polyester not exceeding 200 ppm is that when the catalyst is a titanium compound, a long-term heat treatment is performed at a high temperature such as 150. Even after this, a very significant effect is exhibited in that the breakdown voltage becomes equal to or higher than the initial breakdown voltage.
- the dielectric breakdown voltage after long-term heating in the present invention is obtained by measuring the dielectric breakdown voltage at 25 ° C. after heating at 150 ° C. for 30 hours and then allowing the film to stand at room temperature. It is.
- the method for measuring the breakdown voltage conforms to the breakdown voltage at 25 ° C after the above.
- the biaxially oriented polyester film of the present invention is either a single layer or a laminate of two or more layers.
- the configuration is also included.
- two or more layers it is necessary to include at least one polyester layer containing a titanium compound as a catalyst and a radical scavenging stabilizer.
- the total thickness of the biaxially oriented polyester film of the present invention is preferably 0.1 to 20 m, more preferably 0.5 to 15 m, and particularly preferably 1.0 to 10 mm.
- the film thickness is less than the lower limit, it is difficult to form a film, and the withstand voltage characteristic is lowered.
- the film thickness exceeds the upper limit, it may be difficult to reduce the size of the film capacitor or the insulating member.
- the biaxially oriented polyester film of the present invention may have a coating layer on at least one surface of the outermost layer.
- a coating layer can be obtained by coating a coating agent comprising a binder resin and a solvent on a biaxially oriented film.
- the binder resin various resins such as thermoplastic resin or thermosetting resin can be used.
- polyester copolymers are particularly preferably used.
- the solvent include organic solvents such as toluene, ethyl acetate, methyl ethyl ketone, and mixtures thereof, and water.
- the coating layer of the present invention may further contain a crosslinking agent, a surfactant, and inert particles as a component for forming the coating film.
- a surfactant include polyalkylene oxide.
- a method of laminating the coating layer for example, a method of applying a coating to at least one side of a biaxially stretched film and drying, a method of applying a coating to the stretchable film, and then drying, The method of extending
- the stretchable film is an unstretched film, a uniaxially stretched film, or a biaxially stretched film, and among these, a longitudinally stretched uniaxially stretched in the film extrusion direction (longitudinal direction).
- a stretched film is particularly preferred.
- any known coating method can be used.
- a roll coating method a gravure coating method, a roll brush method, a spray coating method, an air knife coating method, an impregnation method, and a curtain coating method.
- the methods can be used alone or in combination.
- the biaxially oriented polyester film of the present invention is obtained by producing a polyester resin composition containing polyester and a radical scavenging stabilizer as essential components, and biaxially stretching the composition.
- a polyester resin composition containing polyester and a radical scavenging stabilizer as essential components, and biaxially stretching the composition.
- it is preferable to produce a polyester resin composition by any of the following methods.
- polyester chips and radical scavenging stabilizer powder are blended in advance and supplied in a solid state at the time of film film extrusion.
- the method for producing a polyester resin composition 1) is a method in which a polymerized polyester chip and a radical scavenging stabilizer are melt-kneaded using a biaxial kneader.
- Specific methods include adding a predetermined amount of radical scavenging stabilizer to a solid resin, mixing them and then melt-kneading them with a twin-screw kneader, or melting a resin and then a predetermined amount of radicals. Examples thereof include a method of adding a supplemental stabilizer and melt-kneading with a twin-screw kneader.
- the radical scavenging stabilizer may be added directly, or may be added after preparing a master polymer in advance.
- the concentration of the fixing agent is preferably 0.5 to 5% by weight. If the concentration is less than the lower limit, the amount of the master polymer may increase and it may not be efficient. On the other hand, it may be difficult to produce a master polymer in the range where the concentration exceeds the upper limit.
- the polymerized polyester chip and the powder of the radical scavenging stabilizer are blended in advance and added to the raw material inlet in the extruder used for film formation and melted in the extruder.
- This is a kneading method.
- the radical scavenging stabilizer may be added directly in the same manner as in the method 1), or may be added after a master-polymer is prepared in advance.
- the concentration of the radical scavenging stabilizer in the mass polymer is preferably 0.5 to 5% by weight. If the concentration is less than the lower limit, the amount of the master polymer may increase and it may not be efficient.
- the amount of radical scavenging stabilizer chemically bonded to the polyester can be controlled to 200 ppm or less.
- the reactive functional group of the radical scavenging stabilizer reacts with the polyester raw material or low molecular weight substance, and can be easily used as a copolymerization component or end group blocking agent.
- the amount of chemical bonding exceeds 200 ppm.
- the method 1) or 2) can be used as the main method for adding the radical scavenging stabilizer, and the method of adding the radical scavenging stabilizer in the polymerization stage of the polyester resin can be used as a subordinate method.
- the amount added according to the conventional method is limited to combinations within the range of as little as possible of 30% or less, or even 10% or less of the total radical scavenging stabilizer addition amount. This is because when the amount exceeds this range, the amount of the radical scavenging stabilizer chemically bonded to the polyester exceeds 2 O Oppm, and the withstand voltage characteristics after long-term heating deteriorate.
- a polymer containing a radical scavenging stabilizer obtained by the method of 1) or 2) is used as a master polymer, and a polymer containing no radical scavenging stabilizer is used.
- the addition amount of the radical scavenging stabilizer may be adjusted by a method of melt kneading with a shaft kneader.
- polyester resin composition further contains at least one selected from the group consisting of inert particles, and Z or io stabilizers and phosphorus stabilizers
- these additives are radical scavenging stable. It can be added in the same manner as the agent.
- the method for obtaining the biaxially oriented polyester film of the present invention is specifically described below, but is not particularly limited to the following examples.
- the resin composition obtained by the above-described method is dried as desired, and then supplied to an extruder and formed into a sheet form from a T-die.
- the sheet-like molded product extruded from the T-die is cooled and solidified with a cooling drum having a surface temperature of 10 to 60 ° C, and this unstretched film is heated by, for example, roll heating or infrared heating, and then longitudinally oriented. Stretch to obtain a longitudinally stretched film. Such longitudinal stretching is preferably performed by utilizing a difference in peripheral speed between two or more rolls.
- the longitudinal stretching temperature is preferably higher than the glass transition point (T g) of the polyester resin, more preferably 20 to 40 higher than T g.
- the longitudinal draw ratio may be appropriately adjusted according to the requirements of the application to be used, but is preferably 2.5 times or more and 5.0 times or less, more preferably 3.0 times or more and 4.5 times or less. When the longitudinal draw ratio is less than the lower limit, the thickness unevenness of the film becomes worse and a good film may not be obtained. When the longitudinal draw ratio exceeds the upper limit, breakage is likely to occur during film formation.
- the obtained longitudinally stretched film is subsequently stretched in the transverse direction, and then subjected to heat-fixing and heat-relaxation treatments as necessary to obtain a biaxially oriented film. Such treatment is performed while the film is running. .
- the transverse stretching treatment starts at a temperature 20 ° C. higher than the glass transition point (T g) of the resin and is performed while raising the temperature to a temperature lower than the melting point (Tm) (1 20 to 30) of the resin.
- the transverse stretching start temperature is preferably (T g +40) or less.
- the maximum transverse stretching temperature is preferably a temperature that is lower than Tm by (100 to 40) ° C. When the transverse stretching start temperature is too low, the film is easily broken.
- the temperature of the transverse stretching process may be continuous or stepwise (sequential), but it is usually raised stepwise.
- the transverse stretching zone of the stenter is divided into a plurality of zones along the film running direction, and the temperature is raised by flowing a heating medium of a predetermined temperature for each zone.
- the transverse draw ratio may be appropriately adjusted according to the requirements of the application to be used, but is preferably 2.5 times or more and 5.0 times or less, more preferably 3.0 times or more and 4.5 times or less.
- the transverse draw ratio is less than the lower limit, the thickness unevenness of the film tends to be large and a good film may not be obtained.
- the transverse draw ratio exceeds the upper limit, breakage tends to occur during film formation.
- the biaxially stretched film is then subjected to heat setting treatment force S as necessary.
- heat setting treatment By performing heat setting treatment, the dimensional stability of the obtained film under high temperature conditions can be increased.
- the heat shrinkage rate at 200 ° C. is preferably 1 to 3%, more preferably 1 2 ⁇ 2%, particularly preferably 1-1%.
- a metal film is vapor-deposited on the film to produce a laminated film. Wrinkle force S may enter.
- heat fixing treatment should be (Tm—100 ° C) or higher, and (Tm—70 °) ° C to (Tm — It is preferable to do within the range of 4 0).
- the biaxially oriented polyester film of the present invention is further subjected to heat treatment at 150 to 2201 for 1 to 60 seconds in an offline process in order to suppress thermal shrinkage, and then gradually under a temperature atmosphere of 50 to 80.
- An annealing treatment for cooling may be applied.
- the biaxially oriented polyester film of the present invention has a polyester resin group mainly comprising the method 1) in order to increase the dispersibility of the radical scavenging stabilizer in the film.
- the composition may be manufactured and then further melt-kneaded.
- the kneading method is not particularly limited. The kneading can be performed using, for example, a 1-axis ruder, a 2-axis ruder, and a kneader.
- the melt-kneading treatment temperature is a temperature that is 5 to 100 ° C. higher than the temperature at which the resin component melts, and particularly preferably a temperature that is 10 to 60 ° C. higher than the resin melting point. If the temperature is too high, decomposition of the resin or abnormal reaction may occur.
- the kneading treatment time is at least 30 seconds or more and 15 minutes or less, preferably 1 to 10 minutes.
- the biaxially oriented polyester film of the present invention may be a biaxially oriented laminated film in which other layers are further laminated on at least one surface for the purpose of imparting other functions.
- a layer containing an oxygen atom-containing compound may be further provided on at least one side of the biaxially oriented film.
- X-ray photoelectron spectroscopy is used.
- the ratio of oxygen atoms to carbon atoms measured is preferably 10% or more, more preferably 15% or more.
- As the oxygen atom-containing compound cellulose, S I_ ⁇ 2 are exemplified. For S I_ ⁇ 2 vacuum deposition, it may be laminated by any of the methods ion plating pos- sesses or sputtering.
- the functional layer may be a metal layer.
- the material of the metal layer is not particularly limited, and examples thereof include aluminum, zinc, nickel, chromium, tin, copper, and alloys thereof.
- the metal layer may be laminated by any one of vacuum deposition, sputtering, and application through an adhesive.
- the biaxially oriented polyester film of the present invention has excellent withstand voltage characteristics from room temperature to a high temperature range, and therefore can be suitably used as an electrical insulating film. It can be preferably used as an insulating film. Specifically, it can be used as a base film for electrical insulation applications such as motor insulation members such as film capacitors, wedge materials and slot materials, flexible printed circuit boards, and flat cables.
- a film capacitor is formed by winding a laminated film in which a metal layer is laminated on one side of the biaxially oriented polyester film of the present invention. It is obtained by laminating.
- the flexible printed circuit board is obtained by laminating a copper foil or a metal layer made of conductive paste on at least one surface of the biaxially oriented polyester film of the present invention, and forming a fine circuit pattern on the metal layer. It is done.
- motor insulating members such as wedge materials and slot materials can be obtained by subjecting the biaxially oriented polyester film of the present invention to deformation processing using a punch with R.
- the dielectric breakdown voltage at 150 C was subtracted from the dielectric breakdown voltage at 25 ° C to obtain the dielectric breakdown voltage difference.
- the obtained biaxially oriented polyester film was allowed to stand in a gear oven and heat-treated at 150 ° C for 300 hours, and then the film taken out of the oven was allowed to stand at room temperature, and then the dielectric breakdown voltage at 25 ° C. was measured.
- the film thickness was measured using an electronic micrometer (trade name “K-1 312 ⁇ ” manufactured by Anritsu Corporation) at a needle pressure of 30 g.
- NDC 2,6-Naphthalenediyl sulfonic acid dimethyl ester
- EG ethylene glycol
- titanium compound ⁇ Is added to a SUS container and the ester exchange reaction is carried out while raising the temperature from 140 ° C to 240 ° C, and the reaction mixture is polymerized. The temperature was increased to 295 ° C, and the polycondensation reaction was carried out under a high vacuum of 3 OPa or less.
- Polyester obtained by the method of P 1 and a phenol-based stabilizer “I rgano X (registered trademark) 1010” as a radical scavenging stabilizer were charged into a twin screw extruder at a set temperature of 300.
- the polyester resin composition was obtained by melt kneading.
- the phenolic stabilizer is 2% by weight based on the weight of the polyester.
- Polyester obtained by the method of P 1 and phenolic stabilizer “Ir ganox (registered trademark) 1330” as a radical scavenging type stabilizer are put into a twin screw extruder at a set temperature of 300 ° C.
- the polyester resin composition was obtained by melt kneading.
- the phenol-based stabilizer was used so that its content was 2.8% by weight (28 ⁇ 10 3 ppm) with respect to the weight of the polyester.
- Polyester obtained by using the antimony catalyst by the method of P 4 and a phenol-based stabilizer “Irgan 0 X (registered trademark) 1010” as a radial supplement type stabilizer, biaxial at a set temperature of 300 ° C.
- the polyester resin composition was obtained by putting into an extruder and performing melt kneading.
- the phenol stabilizer was used so that its content was 0.5% by weight (5 ⁇ 10 3 ppm) based on the weight of the polyester.
- Polyester obtained by the method of P 1 and phenolic stabilizer “I rgano X (registered trademark) 1010” as a radical scavenging type stabilizer are charged into a twin screw extruder at a set temperature of 300 ° C. Then, melt-kneading was performed to obtain a polyester resin composition.
- the phenolic stabilizer was used so that its content was 6% by weight (60 ⁇ 10 3 ppm) with respect to the weight of the polyester.
- reaction mixture was transferred to a polymerization reactor, heated to 295 ° C, and subjected to a polycondensation reaction under a high vacuum of 3 OPa or less, and 1,6-n-naphthorange polyethylene with an intrinsic viscosity of 0.6 dlZg. Strong lupoxylate was obtained.
- the P 2 polymer was dried at 180 ° C. for 6 hours, then fed to an extruder heated to 30 ° C., and formed into a sheet from a 29 ° C. die. Further, the unstretched film obtained by cooling and solidifying this sheet with a cooling drum having a surface temperature of 6 Ot was introduced into a group of rolls heated to 140 ° C., and stretched by 3.6 times in the longitudinal direction (longitudinal direction). Cooled with a roll at 0 ° C.
- a biaxially oriented polyester film having a thickness of 3 m was obtained in the same manner as in Example 1 except that the polymers listed in Table 1 were used.
- the film of the present invention has a high withstand voltage characteristic from room temperature to a high temperature region, and maintains a high withstand voltage characteristic even after powerful long-term heat treatment.
- it can be used for film capacitors, motor insulation, and insulation films for flexible printed circuit boards. It is especially useful as an insulating film for capacitors used in automobile engine rooms that require long-term reliability in high-temperature environments.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Manufacturing & Machinery (AREA)
- Power Engineering (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Organic Chemistry (AREA)
- Materials Engineering (AREA)
- Health & Medical Sciences (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Mechanical Engineering (AREA)
- Manufacture Of Macromolecular Shaped Articles (AREA)
- Organic Insulating Materials (AREA)
- Laminated Bodies (AREA)
- Compositions Of Macromolecular Compounds (AREA)
- Fixed Capacitors And Capacitor Manufacturing Machines (AREA)
- Insulating Bodies (AREA)
- Shaping By String And By Release Of Stress In Plastics And The Like (AREA)
Abstract
Description
Claims
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009517873A JP5081910B2 (ja) | 2007-06-04 | 2008-05-28 | 電気絶縁用二軸配向フィルム |
US12/602,964 US20100209722A1 (en) | 2007-06-04 | 2008-05-28 | Biaxially oriented film for electric insulation |
CN2008800187148A CN101681701B (zh) | 2007-06-04 | 2008-05-28 | 电绝缘用双轴取向薄膜 |
KR1020097021798A KR101504372B1 (ko) | 2007-06-04 | 2008-05-28 | 전기 절연용 2 축 배향 필름 |
EP20080765052 EP2164079B1 (en) | 2007-06-04 | 2008-05-28 | Biaxially oriented film for electrical insulation |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007147880 | 2007-06-04 | ||
JP2007-147880 | 2007-06-04 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2008149869A1 true WO2008149869A1 (ja) | 2008-12-11 |
Family
ID=40093683
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2008/060239 WO2008149869A1 (ja) | 2007-06-04 | 2008-05-28 | 電気絶縁用二軸配向フィルム |
Country Status (6)
Country | Link |
---|---|
US (1) | US20100209722A1 (ja) |
EP (1) | EP2164079B1 (ja) |
JP (1) | JP5081910B2 (ja) |
KR (1) | KR101504372B1 (ja) |
CN (1) | CN101681701B (ja) |
WO (1) | WO2008149869A1 (ja) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2011052563A1 (ja) | 2009-10-28 | 2011-05-05 | 帝人デュポンフィルム株式会社 | 電気絶縁用二軸配向フィルムおよび電気絶縁用二軸配向フィルムを用いてなるフィルムコンデンサー |
JP2011093984A (ja) * | 2009-10-28 | 2011-05-12 | Teijin Dupont Films Japan Ltd | 電気絶縁用二軸配向フィルム |
WO2011071003A1 (ja) * | 2009-12-10 | 2011-06-16 | 住友化学株式会社 | 電磁コイル用絶縁フィルムおよびそれを備えたモーターおよびトランス |
JP2011201041A (ja) * | 2010-03-24 | 2011-10-13 | Teijin Dupont Films Japan Ltd | 電気絶縁用二軸配向ポリエステルフィルム、それからなるフィルムコンデンサーおよび電気絶縁用二軸配向ポリエステルフィルムの製造方法 |
JP2012097163A (ja) * | 2010-10-29 | 2012-05-24 | Dainippon Printing Co Ltd | ポリエステル樹脂組成物 |
JP2012209541A (ja) * | 2011-03-17 | 2012-10-25 | Toray Ind Inc | コンデンサ用二軸延伸ポリプロピレンフィルム、金属化フィルムおよびフィルムコンデンサ |
Families Citing this family (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8809733B2 (en) * | 2009-10-16 | 2014-08-19 | Apple Inc. | Sub-surface marking of product housings |
US10071583B2 (en) * | 2009-10-16 | 2018-09-11 | Apple Inc. | Marking of product housings |
US8724285B2 (en) | 2010-09-30 | 2014-05-13 | Apple Inc. | Cosmetic conductive laser etching |
US20120248001A1 (en) | 2011-03-29 | 2012-10-04 | Nashner Michael S | Marking of Fabric Carrying Case for Portable Electronic Device |
DE102011087740A1 (de) | 2011-12-05 | 2013-06-06 | Mitsubishi Polyester Film Gmbh | Verwendung einer antimonfreien Polyesterfolie zur Herstellung von Folienbeuteln und -schläuchen mit hoher Temperaturresistenz |
US8879266B2 (en) | 2012-05-24 | 2014-11-04 | Apple Inc. | Thin multi-layered structures providing rigidity and conductivity |
US10071584B2 (en) | 2012-07-09 | 2018-09-11 | Apple Inc. | Process for creating sub-surface marking on plastic parts |
CN102744941A (zh) * | 2012-07-25 | 2012-10-24 | 江苏双星彩塑新材料股份有限公司 | 一种超薄抗静电型电容器用pet薄膜及其制备方法 |
DE102013210368A1 (de) | 2013-06-04 | 2014-12-04 | Mitsubishi Polyester Film Gmbh | Antimonfreie Polyesterfolien für die Verwendung im Lebensmittelkontakt bei hohen Temperaturen |
DE102016220280A1 (de) * | 2016-10-17 | 2018-04-19 | Mitsubishi Polyester Film Gmbh | Orientierte Polyesterfolien mit erhöhter Wärmeleitfähigkeit |
US10999917B2 (en) | 2018-09-20 | 2021-05-04 | Apple Inc. | Sparse laser etch anodized surface for cosmetic grounding |
TWI851508B (zh) * | 2023-12-27 | 2024-08-01 | 東元電機股份有限公司 | 用於高壓馬達絕緣系統的製造方法 |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0631881A (ja) * | 1992-07-14 | 1994-02-08 | Mitsubishi Kasei Corp | 積層体 |
JP2000173855A (ja) | 1998-12-10 | 2000-06-23 | Mitsubishi Polyester Film Copp | コンデンサー用ポリエチレン−2,6−ナフタレートフィルム |
JP2002348361A (ja) * | 2001-03-21 | 2002-12-04 | Toray Ind Inc | ポリエステル組成物およびフィルム |
JP2003301039A (ja) | 2002-03-11 | 2003-10-21 | Mitsubishi Polyester Film Gmbh | 二軸延伸フィルム及びその製造方法 |
JP2005289065A (ja) | 2004-04-01 | 2005-10-20 | Mitsubishi Polyester Film Gmbh | フィルム及びその製造方法ならびにそれから成るコンデンサー |
JP2006077250A (ja) * | 2004-09-10 | 2006-03-23 | Mitsubishi Polyester Film Gmbh | ポリエステルフィルム及びその製造方法 |
JP2006199917A (ja) * | 2004-12-22 | 2006-08-03 | Toyobo Co Ltd | 金属板貼合せ用ポリエステルフィルム、ラミネート金属板及び金属容器 |
Family Cites Families (26)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3445504A (en) * | 1965-01-26 | 1969-05-20 | Standard Oil Co | Stabilized terephthalate compositions |
US3285855A (en) * | 1965-03-11 | 1966-11-15 | Geigy Chem Corp | Stabilization of organic material with esters containing an alkylhydroxy-phenyl group |
JPS5414320B2 (ja) * | 1972-07-25 | 1979-06-06 | ||
JPS5046000A (ja) * | 1973-08-30 | 1975-04-24 | ||
DE69032002T2 (de) * | 1989-09-27 | 1998-07-23 | Toray Industries | Polyesterverbundfilm |
JP2925057B2 (ja) * | 1993-08-30 | 1999-07-26 | 東レ株式会社 | 二軸配向積層ポリエステルフイルム |
CN1069260C (zh) * | 1994-08-30 | 2001-08-08 | 东丽株式会社 | 双轴拉伸聚酯薄膜及其制造方法 |
DE19540437B4 (de) * | 1994-10-31 | 2004-04-01 | Toyoda Gosei Co., Ltd. | Hochglanz-Formteil aus Harz |
AR003526A1 (es) * | 1995-09-08 | 1998-08-05 | Mallinckrodt Chemical Inc | Sistema estabilizador para estabilizar materiales polimeros y metodo para producir un sistema estabilizado en forma de pellets. |
US5763512A (en) * | 1996-03-29 | 1998-06-09 | Ciba Specialty Chemicals Corporation | Stabilization of polyamide, polyester and polyketone |
WO1997042267A1 (en) * | 1996-05-03 | 1997-11-13 | Alliedsignal Inc. | Novel nylon compositions |
US5898058A (en) * | 1996-05-20 | 1999-04-27 | Wellman, Inc. | Method of post-polymerization stabilization of high activity catalysts in continuous polyethylene terephthalate production |
DE69834544T2 (de) * | 1997-09-25 | 2007-05-03 | Toray Industries, Inc. | Polyesterfilm enthaltend spezifische hydroxyapatit-partikelchen |
SG76565A1 (en) * | 1997-10-14 | 2000-11-21 | Toray Industries | Biaxially oriented polyester films and their production methods |
GB9724942D0 (en) * | 1997-11-27 | 1998-01-28 | Solvay Sociutu Anonyme | Oxidant stable containers |
DE19813264A1 (de) * | 1998-03-25 | 1999-09-30 | Hoechst Diafoil Gmbh | Polyesterfolie mit an den Anwendungszweck angepaßter Oberflächentopographie, Verfahren zu ihrer Herstellung und ihre Verwendung |
US6368720B1 (en) * | 1998-11-20 | 2002-04-09 | Toray Industries, Inc. | Formable biaxially-oriented polyester film |
US6974620B1 (en) * | 2000-02-28 | 2005-12-13 | Toray Industries, Inc. | Polyester film for heat-resistant capacitor, metallized film thereof, and heat-resistant film capacitor containing the same |
US6596198B1 (en) * | 2000-04-28 | 2003-07-22 | Albemarle Corporation | Additive system for polymers in pellet form which provides proportioned stabilization and internal mold release characteristics |
EP1270640B1 (en) * | 2000-08-22 | 2004-02-18 | Mitsui Chemicals, Inc. | Catalysts for polyester production, process for producing polyester, and polyester |
JP3763455B2 (ja) * | 2001-01-26 | 2006-04-05 | オムロン株式会社 | ケミカルフィルタの交換時期判定方法 |
US6908650B2 (en) * | 2001-03-02 | 2005-06-21 | Ciba Specialty Chemicals Corporation | Polyester and polyamide compositions of low residual aldehyde content |
GB0117830D0 (en) * | 2001-07-21 | 2001-09-12 | Voith Fabrics Heidenheim Gmbh | Stabilised polyester compositions and monofilaments thereof for use in papermachine clothing and other industrial fabrics |
DE10227437A1 (de) * | 2002-06-20 | 2004-01-08 | Mitsubishi Polyester Film Gmbh | Stabilisierte Folie auf Basis von titankatalysierten Polyestern |
US7169880B2 (en) * | 2003-12-04 | 2007-01-30 | Eastman Chemical Company | Shaped articles from cycloaliphatic polyester compositions |
DE102005019979A1 (de) * | 2005-04-27 | 2006-11-02 | Mitsubishi Polyester Film Gmbh | Schwarze Folie aus thermoplastischem Polyester |
-
2008
- 2008-05-28 EP EP20080765052 patent/EP2164079B1/en not_active Not-in-force
- 2008-05-28 KR KR1020097021798A patent/KR101504372B1/ko active IP Right Grant
- 2008-05-28 CN CN2008800187148A patent/CN101681701B/zh not_active Expired - Fee Related
- 2008-05-28 JP JP2009517873A patent/JP5081910B2/ja active Active
- 2008-05-28 WO PCT/JP2008/060239 patent/WO2008149869A1/ja active Application Filing
- 2008-05-28 US US12/602,964 patent/US20100209722A1/en not_active Abandoned
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0631881A (ja) * | 1992-07-14 | 1994-02-08 | Mitsubishi Kasei Corp | 積層体 |
JP2000173855A (ja) | 1998-12-10 | 2000-06-23 | Mitsubishi Polyester Film Copp | コンデンサー用ポリエチレン−2,6−ナフタレートフィルム |
JP2002348361A (ja) * | 2001-03-21 | 2002-12-04 | Toray Ind Inc | ポリエステル組成物およびフィルム |
JP2003301039A (ja) | 2002-03-11 | 2003-10-21 | Mitsubishi Polyester Film Gmbh | 二軸延伸フィルム及びその製造方法 |
JP2005289065A (ja) | 2004-04-01 | 2005-10-20 | Mitsubishi Polyester Film Gmbh | フィルム及びその製造方法ならびにそれから成るコンデンサー |
JP2006077250A (ja) * | 2004-09-10 | 2006-03-23 | Mitsubishi Polyester Film Gmbh | ポリエステルフィルム及びその製造方法 |
JP2006199917A (ja) * | 2004-12-22 | 2006-08-03 | Toyobo Co Ltd | 金属板貼合せ用ポリエステルフィルム、ラミネート金属板及び金属容器 |
Non-Patent Citations (1)
Title |
---|
See also references of EP2164079A4 |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2011052563A1 (ja) | 2009-10-28 | 2011-05-05 | 帝人デュポンフィルム株式会社 | 電気絶縁用二軸配向フィルムおよび電気絶縁用二軸配向フィルムを用いてなるフィルムコンデンサー |
JP2011093984A (ja) * | 2009-10-28 | 2011-05-12 | Teijin Dupont Films Japan Ltd | 電気絶縁用二軸配向フィルム |
US9754721B2 (en) | 2009-10-28 | 2017-09-05 | Teijin Dupont Films Japan Limited | Biaxially oriented film for electrical insulation and film capacitor made using biaxially oriented film for electrical insulation |
WO2011071003A1 (ja) * | 2009-12-10 | 2011-06-16 | 住友化学株式会社 | 電磁コイル用絶縁フィルムおよびそれを備えたモーターおよびトランス |
JP2011201041A (ja) * | 2010-03-24 | 2011-10-13 | Teijin Dupont Films Japan Ltd | 電気絶縁用二軸配向ポリエステルフィルム、それからなるフィルムコンデンサーおよび電気絶縁用二軸配向ポリエステルフィルムの製造方法 |
JP2012097163A (ja) * | 2010-10-29 | 2012-05-24 | Dainippon Printing Co Ltd | ポリエステル樹脂組成物 |
JP2012209541A (ja) * | 2011-03-17 | 2012-10-25 | Toray Ind Inc | コンデンサ用二軸延伸ポリプロピレンフィルム、金属化フィルムおよびフィルムコンデンサ |
Also Published As
Publication number | Publication date |
---|---|
EP2164079A4 (en) | 2010-07-07 |
KR20100017093A (ko) | 2010-02-16 |
JP5081910B2 (ja) | 2012-11-28 |
CN101681701B (zh) | 2011-12-14 |
EP2164079A1 (en) | 2010-03-17 |
CN101681701A (zh) | 2010-03-24 |
US20100209722A1 (en) | 2010-08-19 |
KR101504372B1 (ko) | 2015-03-19 |
JPWO2008149869A1 (ja) | 2010-08-26 |
EP2164079B1 (en) | 2014-06-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2008149869A1 (ja) | 電気絶縁用二軸配向フィルム | |
JP5410763B2 (ja) | 電気絶縁用二軸配向フィルム、それからなるフィルムコンデンサー構成部材およびそれからなるフィルムコンデンサー | |
KR101781662B1 (ko) | 전기 절연용 2 축 배향 필름 및 전기 절연용 2 축 배향 필름을 사용하여 이루어지는 필름 콘덴서 | |
JP2005530908A (ja) | 二軸配向ポリエステルフィルム及びそれらの銅との積層板 | |
WO2001065575A1 (fr) | Film polyester pour condensateur thermoresistant, son film metallise et condensateur a film thermoresistant le contenant | |
US20220411575A1 (en) | Polyester resin composition, polyester film, and laminate for electronic device | |
JP5507960B2 (ja) | 電気絶縁用二軸配向フィルム | |
JP2001172482A (ja) | コンデンサー用ポリエステルフィルム、コンデンサー用金属化フィルムおよびフィルムコンデンサー | |
JP2009062472A (ja) | ポリフェニレンスルフィドフィルムおよびそれからなるコンデンサ | |
JP2011231174A (ja) | 難燃性ポリエステルフィルムおよびそれからなる難燃性フラットケーブル | |
JP2020050870A (ja) | フィルムおよびそれを用いてなる回路、ケーブル、電気絶縁シート、回転機 | |
JP5379033B2 (ja) | 配向ポリエステルフィルムおよびその製造方法 | |
JP2013131323A (ja) | 電気絶縁用二軸配向フィルム | |
JP5592132B2 (ja) | 電気絶縁用二軸配向ポリエステルフィルム、それからなるフィルムコンデンサーおよび電気絶縁用二軸配向ポリエステルフィルムの製造方法 | |
JP7031306B2 (ja) | 配向ポリエステルフィルム | |
JPH0721070B2 (ja) | ポリエステルフイルム及びこれを用いたコンデンサ | |
JP4817729B2 (ja) | 難燃延伸ポリエステルフィルム | |
JP2012229370A (ja) | 電気絶縁用二軸配向フィルム | |
JP2004103787A (ja) | コンデンサー用ポリエステルフィルム | |
JP2012214527A (ja) | 電気絶縁用二軸配向ポリエステルフィルム | |
JPH07126364A (ja) | 低誘電性ポリエステル | |
JP2024135132A (ja) | 液晶ポリマーフィルムおよびその製造方法ならびに該液晶ポリマーフィルムを含む積層体および多層基板 | |
JP2006143793A (ja) | 二軸配向フィルムおよび電気絶縁用フィルム | |
CN118076673A (zh) | 聚酯薄膜、柔性扁平电缆及线束 | |
JP2004031681A (ja) | コンデンサー用積層フィルムおよびそれを用いたコンデンサー |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 200880018714.8 Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 08765052 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 20097021798 Country of ref document: KR Kind code of ref document: A |
|
ENP | Entry into the national phase |
Ref document number: 2009517873 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2008765052 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 12602964 Country of ref document: US |