Nothing Special   »   [go: up one dir, main page]

WO2007020834A1 - 定電流回路およびそれを用いたインバータならびに発振回路 - Google Patents

定電流回路およびそれを用いたインバータならびに発振回路 Download PDF

Info

Publication number
WO2007020834A1
WO2007020834A1 PCT/JP2006/315634 JP2006315634W WO2007020834A1 WO 2007020834 A1 WO2007020834 A1 WO 2007020834A1 JP 2006315634 W JP2006315634 W JP 2006315634W WO 2007020834 A1 WO2007020834 A1 WO 2007020834A1
Authority
WO
WIPO (PCT)
Prior art keywords
bipolar transistor
constant current
circuit
current
base
Prior art date
Application number
PCT/JP2006/315634
Other languages
English (en)
French (fr)
Inventor
Yutaka Shibata
Yoshiyuki Karasawa
Ichiro Yokomizo
Original Assignee
Rohm Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rohm Co., Ltd. filed Critical Rohm Co., Ltd.
Priority to EP06796313A priority Critical patent/EP1881391A4/en
Priority to US12/063,594 priority patent/US20090224819A1/en
Publication of WO2007020834A1 publication Critical patent/WO2007020834A1/ja

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05FSYSTEMS FOR REGULATING ELECTRIC OR MAGNETIC VARIABLES
    • G05F3/00Non-retroactive systems for regulating electric variables by using an uncontrolled element, or an uncontrolled combination of elements, such element or such combination having self-regulating properties
    • G05F3/02Regulating voltage or current
    • G05F3/08Regulating voltage or current wherein the variable is dc
    • G05F3/10Regulating voltage or current wherein the variable is dc using uncontrolled devices with non-linear characteristics
    • G05F3/16Regulating voltage or current wherein the variable is dc using uncontrolled devices with non-linear characteristics being semiconductor devices
    • G05F3/20Regulating voltage or current wherein the variable is dc using uncontrolled devices with non-linear characteristics being semiconductor devices using diode- transistor combinations
    • G05F3/30Regulators using the difference between the base-emitter voltages of two bipolar transistors operating at different current densities

Definitions

  • the present invention relates to a constant current circuit.
  • a constant current circuit is used to generate a constant current even when the temperature or power supply voltage fluctuates.
  • the constant current circuit can be constituted by, for example, a bandgap reference circuit that generates a reference voltage that does not have temperature dependence, and a voltage-current conversion circuit that converts the reference voltage into a current.
  • FIG. 4.50 of Non-Patent Document 1 describes a constant current circuit having such a configuration. According to this constant current circuit, a very stable constant current independent of temperature can be obtained.
  • Non-Patent Document 1 P. R. Gray et al., “Analog Integrated Circuit Design Technology for System LSIs, Vol. 4”, Bafukan, July 10, 2003, pp356-381
  • the bias current source using the thermal voltage has a simple circuit configuration and consumes less current. Instead, the bias current source uses a constant current circuit using the above-mentioned band gap reference circuit according to temperature characteristics. Inferior.
  • the present invention has been made in view of the above problems, and one of its purposes is to provide a constant current circuit having a simple configuration and excellent temperature characteristics.
  • a constant current circuit is proportional to a thermal voltage.
  • the bias current source that generates a constant current by applying the applied voltage to the current generating resistor, and the temperature that generates the temperature compensation current by applying a voltage corresponding to the voltage between the base emitters of the bipolar transistor to the temperature compensation resistor.
  • a compensation circuit This constant current circuit outputs the sum of the constant current generated by the bias current source and the temperature compensation current generated by the temperature compensation circuit.
  • the thermal voltage Vt and the base-emitter voltage Vbe of the bipolar transistor have positive and negative temperature dependencies, respectively. Therefore, by multiplying the constant current generated by the noise current source and the temperature compensation current generated by the temperature compensation circuit by a predetermined coefficient, the temperature dependence of the thermal voltage Vt and the temperature of the base emitter voltage Vbe are obtained. The dependence can be canceled and a constant current with small temperature dependence can be generated.
  • the temperature compensation circuit is provided in series on the path of a constant current generated by the bias current source, the first bipolar transistor and the second bipolar transistor connected between the base collector, the second bipolar transistor and the current
  • the temperature compensation circuit is provided in series on a constant current path generated by the bias current source.
  • the first bipolar transistor and the second bipolar transistor connected between the base collector, the third bipolar transistor forming a current mirror circuit with the second bipolar transistor, and the base connected to the base of the first bipolar transistor.
  • a fourth bipolar transistor having a temperature compensation resistor connected to the emitter, and a fifth bipolar transistor having a base connected to the base of the first bipolar transistor and an emitter connected to the collector of the third bipolar transistor, The sum of the collector currents of the fifth bipolar transistor and the fourth bipolar transistor may be output.
  • the current flowing through the third and fifth bipolar transistors is generated by the noise current source. Can approach a constant current.
  • the bias current source includes a sixth bipolar transistor connected between the base and collector, a base connected to the base of the sixth bipolar transistor, and a current generating resistor connected between the emitter and the fixed potential.
  • a bipolar transistor and a current mirror load connected to the collectors of the sixth and seventh bipolar transistors, and a current proportional to the current flowing through the current mirror load may be output.
  • this bias current source Since a voltage proportional to the thermal voltage Vt is applied to the current generation resistor, this bias current source generates a current proportional to the thermal voltage.
  • the constant current circuit described above may be integrated on a single semiconductor substrate. “Integrated integration” includes the case where all the circuit components are formed on a semiconductor substrate, and the case where the main components of the circuit are integrated. In addition, some resistors, capacitors, and the like may be provided outside the semiconductor substrate. By integrating the constant current circuit as a single LSI, the circuit area can be reduced.
  • Yet another embodiment of the present invention is an inverter.
  • This inverter includes the above-described constant current circuit and a transistor having the constant current circuit as a load.
  • the transistor can be biased with a very small current.
  • Yet another embodiment of the present invention is an oscillation circuit.
  • This oscillation circuit includes a voltage controlled crystal oscillator, a resistor provided in parallel with the voltage controlled crystal oscillator, and the above-described inverter provided in parallel with the voltage controlled crystal oscillator. According to this aspect, the current consumption of the circuit can be reduced.
  • Yet another embodiment of the present invention is an electronic device.
  • This electronic device includes the above-described oscillation circuit. According to this aspect, it is possible to reduce the current consumption of the oscillation circuit and extend the life of the battery.
  • FIG. 1 is a circuit diagram showing a configuration of a constant current circuit according to an embodiment.
  • FIG. 2 is a diagram showing the temperature dependence of the constant current Iref generated by the bias current source of FIG. 1 and the constant current Iref ′ output from the constant current circuit.
  • FIG. 3 is a circuit diagram showing a configuration of an inverter using the constant current circuit of FIG. 1.
  • FIG. 4 is a circuit diagram showing a configuration of an oscillation circuit including the inverter of FIG.
  • FIG. 5 is a circuit diagram showing a modification of the constant current circuit of FIG.
  • transistors 50 oscillator circuit, 52 voltage controlled crystal oscillator, 54 inverter, C1 first capacitor, C2 second capacitor, Rfb feedback resistor, Q1 first bipolar transistor, Q2 second bipolar transistor, Q3 third bipolar transistor, Q4 4th bipolar transistor, Q5 5th bipolar transistor, Q6 6th bipolar transistor, Q7 7th bipolar transistor, Q8 8th bipolar transistor, Q9 9th bipolar transistor, Q10 10th bipolar transistor, R1 Temperature compensation resistor, R2 Current generation resistor.
  • member A and member B are connected means that member A and member B are physically connected directly, or member A and member B are electrically connected. This includes cases where the connection is made indirectly through other members that do not affect the state.
  • the constant current circuit according to the embodiment described below can be suitably used for an application that generates a minute current of about sub / zA power / zA.
  • FIG. 1 is a circuit diagram showing a configuration of a constant current circuit 10 according to the embodiment.
  • the constant current circuit 10 according to the embodiment includes a bias current source 20 and a temperature compensation circuit 30.
  • the noise current source 20 generates a small constant current by applying the reference voltage to the resistor using the thermal voltage Vt as a reference voltage.
  • the temperature compensation circuit 30 compensates the temperature characteristic of the constant current Iref generated by the bias current source 20.
  • This constant current circuit 10 is integrated and integrated on a single semiconductor substrate.
  • the bias current source 20 includes an NPN-type sixth bipolar transistor Q6, a seventh bipolar transistor Q7, and a PNP-type eighth bipolar transistor Q8 to a tenth bipolar transistor Q10.
  • the sixth bipolar transistor Q6 has a base-collector connected and an emitter grounded.
  • the base of the seventh bipolar transistor Q7 is connected to the base of the sixth bipolar transistor Q6, and the current generating resistor R2 is connected between the emitter and ground.
  • the eighth bipolar transistor Q8 and the ninth bipolar transistor Q9 constitute a current mirror circuit.
  • the bases of the eighth bipolar transistor Q8 and the ninth bipolar transistor Q9 are connected in common, and the power supply voltage Vcc is applied to the emitter.
  • the collectors of the eighth bipolar transistor Q8 and the ninth bipolar transistor Q9 are connected to the collectors of the sixth bipolar transistor Q6 and the seventh bipolar transistor Q7. That is, the eighth bipolar transistor Q8 and the ninth bipolar transistor Q9 function as a current mirror load for the sixth bipolar transistor Q6 and the seventh bipolar transistor Q7.
  • the tenth bipolar transistor Q10 is provided in parallel with the eighth bipolar transistor Q8 and the ninth bipolar transistor Q9, and outputs a current Iref proportional to the current flowing through the current mirror load as a constant current.
  • the saturation currents of the sixth bipolar transistor Q6 and the seventh bipolar transistor Q7 are proportional to their respective emitter areas.
  • the saturation currents of the sixth bipolar transistor Q6 and the seventh bipolar transistor Q7 are Is6 and Is7, respectively, and the currents flowing in the eighth bipolar transistor Q8 and the ninth bipolar transistor Q9 are Iin and lout, respectively.
  • the ratio of currents Iin / Iout flowing through the eighth bipolar transistor Q8 and the ninth bipolar transistor Q9 is determined by the area ratio of the two transistors.
  • Iout Vt X ln ⁇ (Iin / Iout) (Is2 / lsl) '' ZR2,
  • the bias current source 20 generates the constant current lout by applying a voltage proportional to the thermal voltage Vt to the current generating resistor R2.
  • the constant current lout is duplicated by the tenth bipolar transistor Q10 and output as a constant current Iref.
  • Iref the constant current Iref generated by the bias current source 20 can be expressed by the following equation (3).
  • a ln ⁇ (Iin / Iout) (Is2 / lsl) ⁇ .
  • the temperature dependence of the constant current Iref generated by the bias current source 20 is examined.
  • the temperature dependence of the constant current Iref can be obtained by partial differentiation with each variable and is given by the following equation (4).
  • the temperature compensation circuit 30 is provided to cancel the temperature dependence of the constant current Iref given by the above equation (4).
  • the temperature compensation circuit 30 includes a first bipolar transistor Q1 to a fourth bipolar transistor Q4 and a temperature compensation resistor R1.
  • the first bipolar transistor Ql and the second bipolar transistor Q2 are provided in series on the path of the constant current Iref generated by the bias current source 20.
  • the first bipolar transistor Ql and the second bipolar transistor Q2 are connected between the base and the collector, respectively, and the emitter of the second bipolar transistor Q2 is grounded.
  • the first bipolar transistor Ql and the second bipolar transistor Q2 function as diodes, both of which are V.
  • the third bipolar transistor Q3 has a base connected in common to the second bipolar transistor Q2, and forms a current mirror circuit.
  • description will be made assuming that the transistor sizes of the first bipolar transistor Q1 to the fourth bipolar transistor Q4 are all equal.
  • the collector current of the third bipolar transistor Q3 is equal to the collector current of the second bipolar transistor Q2, that is, the constant current Iref.
  • the fourth bipolar transistor Q4 has a base connected to the base of the first bipolar transistor Q1, and a collector connected to the collector of the third bipolar transistor Q3.
  • a temperature compensation resistor R1 is connected between the emitter of the fourth bipolar transistor Q4 and ground.
  • the voltage applied to this temperature compensation resistor R1 is given by Vbel + Vbe2 ⁇ Vbe4. Assuming that the base-emitter voltages Vbel to Vbe4 of each transistor are all equal, the voltage Vbe is applied to the temperature compensation resistor R1.
  • a compensation current given by Icmp VbeZRl flows through the temperature compensation resistor R1. This compensation current Icmp is equal to the collector current of the fourth bipolar transistor Q4, U.
  • the temperature dependence of the compensation current Icmp will be considered.
  • the temperature dependence of the compensation current Icmp can be obtained by partial differentiation of the voltage Vbe between the base emitters of the bipolar transistor and the resistance at the temperature T, and is given by the following equation (5).
  • the temperature compensation circuit 30 outputs the sum (Iref + Icmp) of the collector currents of the third bipolar transistor Q3 and the fourth bipolar transistor Q4 as a constant current Iref ′.
  • the temperature characteristic of the constant current Iref ′ output from the temperature compensation circuit 30 is the sum of the temperature characteristic of the constant current Iref given by Equation (4) and the temperature characteristic of the compensation current Icmp given by Equation (5).
  • the temperature compensation resistor Rl and the current generating resistor R2 are made of polysilicon, their temperature dependence d R1Z 3 T and 3 R2Z d T are small compared to other terms and should be ignored. Can do.
  • the following equation (6) is obtained as the temperature characteristic of the constant current Iref ′ output from the temperature compensation circuit 30.
  • the temperature characteristic of the constant current Iref generated by the bias current source 20 is equal to the temperature of the compensation current Icmp generated by the temperature compensation circuit 30.
  • FIG. 2 is a diagram showing the temperature dependence of the constant current Iref generated by the bias current source 20 of FIG. 1 and the constant current Iref ′ output from the constant current circuit 10.
  • the temperature dependence in FIG. 2 is an actual measurement value obtained by actually manufacturing the constant current circuit 10 shown in FIG. 1 and measuring the temperature dependence.
  • the constant current Iref generated by the bias current source 20 fluctuates within a range of 10% in the range of 30 ° C to 80 ° C when the room temperature is 30 ° C.
  • the constant current Iref ′ generated by the constant current circuit 10 according to the present embodiment fluctuates only in the range of about 10%, which indicates that the temperature characteristics are improved.
  • FIG. 3 is a circuit diagram showing a configuration of an inverter 40 using the constant current circuit 10 of FIG.
  • the inverter 40 includes a transistor 42 and a constant current circuit 10.
  • the transistor 42 is an N-channel MOSFET in which the source is grounded and the input signal is input to the gate.
  • the constant current circuit 10 in FIG. 1 is connected to the drain of the transistor 42 as a constant current load.
  • the constant current Iref ′ generated by the constant current circuit 10 is assumed to be 0.3 A, for example.
  • the operating current can be made extremely small because it is biased with a very small constant current. Furthermore, since the temperature dependence of the constant current Iref ′ generated by the constant current circuit 10 is small, it is possible to maintain good characteristics as an inverter even if the temperature fluctuates.
  • FIG. 4 is a circuit diagram showing a configuration of an oscillation circuit 50 including the inverter 40 of FIG.
  • the oscillation circuit 50 includes a voltage controlled crystal oscillator 52, a first capacitor Cl, a second capacitor C2, a feedback resistor Rfb, an inverter 40, and an inverter 54.
  • Both ends of the voltage controlled crystal oscillator 52 are grounded via a first capacitor Cl and a second capacitor C2, respectively.
  • the inverter 40 and the feedback resistor Rfb are connected in parallel with the voltage controlled crystal oscillator 52.
  • the inverter 54 inverts the output signal of the inverter 40 and outputs it.
  • Some voltage controlled crystal oscillators 52 cease to oscillate when the bias current of inverter 40 decreases. Therefore, when bias current is supplied to the transistor 42 by the bias current source 20 without the temperature compensation circuit 30, the bias current set value at room temperature is increased so that sufficient bias current can be obtained even at low temperatures. As a result, the current consumption of the circuit increases.
  • a bias current with less temperature dependency of the inverter 40 is stably generated.
  • the set value of the bias current at room temperature can be set low, and the circuit current can be reduced. It can oscillate stably over a wide temperature range.
  • the oscillation circuit 50 shown in FIG. 4 When the oscillation circuit 50 shown in FIG. 4 is mounted on a battery-driven electronic device such as a watch, for example, the battery life can be extended by reducing the circuit current. Furthermore, as shown in FIG. 1, since the number of elements of the constant current circuit 10 is small, the circuit scale can be reduced, which contributes to downsizing of the device.
  • FIG. 5 is a circuit diagram showing a modification of the constant current circuit 10 of FIG.
  • the constant current circuit 10 in FIG. 5 includes a fifth bipolar transistor Q5 in addition to the constant current circuit 10 in FIG.
  • the same components as those in FIG. 1 are denoted by the same reference numerals, and redundant description is omitted.
  • the base of the NPN-type fifth bipolar transistor Q5 is connected to the base of the first bipolar transistor Q1, and the emitter is connected to the collector of the third bipolar transistor Q3. That is, the first bipolar transistor Ql, the fifth bipolar transistor Q5, the second bipolar transistor Q2, and the third bipolar transistor Q3 are cascode-connected current mirror circuits, and the collector current Iref of the fifth bipolar transistor Q5 is The current is equal to the constant current Iref output from the bias current source 20.
  • the constant current circuit 10 in FIG. 5 outputs the sum of the constant current Iref, which is the collector current of the fifth bipolar transistor Q5, and the compensation current Icmp, which is the collector current of the fourth bipolar transistor Q4. According to the constant current circuit 10 in FIG. 5, the constant current Iref ′ having a small temperature dependency can be generated, as in the constant current circuit 10 in FIG.
  • the eighth bipolar transistor Q8 to the tenth bipolar transistor Q10 provided in the bias current source 20 may be composed of P-channel MOSFETs.
  • the tenth bipolar transistor Q10 may be an NPN type, and a constant current may be output by making a current mirror connection with the sixth bipolar transistor Q6 and the seventh bipolar transistor Q7.
  • the temperature compensation circuit 30 is not limited to the configurations shown in FIGS.
  • NPN type Temperature compensation can also be performed by a circuit obtained by replacing PNP types with each other, replacing ground with a power source, and replacing the power source with ground.
  • the present invention can be used for a semiconductor device.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Nonlinear Science (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Automation & Control Theory (AREA)
  • Control Of Electrical Variables (AREA)
  • Amplifiers (AREA)

Abstract

 回路素子数の増加を抑えつつ、温度特性を改善した定電流回路が提供される。  バイアス電流源20は、熱電圧Vtに比例した電圧を電流生成用抵抗R2に印加することにより定電流Irefを生成する。第1バイポーラトランジスタQ1、第2バイポーラトランジスタQ2は、バイアス電流源20により生成される定電流の経路上に直列に設けられる。第3バイポーラトランジスタQ3は、第2バイポーラトランジスタQ2とカレントミラー回路を形成する。第4バイポーラトランジスタQ4は、ベースが第1バイポーラトランジスタQ1のベースと接続され、エミッタに温度補償抵抗R1が接続される。定電流回路10は、第3バイポーラトランジスタQ3および第4バイポーラトランジスタQ4のコレクタ電流の和を出力する。

Description

明 細 書
定電流回路およびそれを用いたインバータならびに発振回路
技術分野
[0001] 本発明は、定電流回路に関する。
背景技術
[0002] 多くの電子回路において、温度や電源電圧が変動しても一定の定電流を生成する ための定電流回路が用いられている。定電流回路は、たとえば温度依存性をもたな い基準電圧を生成するバンドギャップリファレンス回路と、基準電圧を電流に変換す る電圧電流変換回路によって構成することができる。たとえば、非特許文献 1の図 4. 50には、このような構成の定電流回路が記載されている。この定電流回路によれば、 温度に依存しない非常に安定した定電流を得ることができる。
[0003] 一方で、時計などの電池駆動型の電子機器においては、電池の寿命の観点から、 回路の消費電流は極限まで低減することが望ましい。すなわち、定電流回路が使用 されるアプリケーションによっては、トランジスタなどの素子数をなるベく少なくし、かつ 回路の消費電流を低減したい場合がある。このような場合には、非特許文献 1の図 4 . 41に記載されるような熱電圧を用いたバイアス電流源を用いるのが一般的である。
[0004] 非特許文献 1 : P. R.グレイ他著、「システム LSIのためのアナログ集積回路設計技術 上巻 原著第 4版」培風館、 2003年 7月 10日、 pp356〜381
発明の開示
発明が解決しょうとする課題
[0005] し力しながら、熱電圧を用いたバイアス電流源は、回路構成が簡易で消費電流が 少な 、代わりに、温度特性にぉ 、て上述のバンドギャップリファレンス回路を用いた 定電流回路に劣る。
[0006] 本発明は係る課題に鑑みてなされたものであり、その目的のひとつは、簡易な構成 で温度特性に優れた定電流回路の提供にある。
課題を解決するための手段
[0007] 上記課題を解決するために、本発明のある態様の定電流回路は、熱電圧に比例し た電圧を電流生成用抵抗に印加することにより定電流を生成するバイアス電流源と、 ノイポーラトランジスタのベースェミッタ間電圧に相当する電圧を温度補償抵抗に印 加することにより温度補償電流を生成する温度補償回路と、を備える。この定電流回 路は、バイアス電流源により生成される定電流と、温度補償回路により生成される温 度補償電流の和を出力する。
[0008] 熱電圧 Vtおよびバイポーラトランジスタのベースェミッタ間電圧 Vbeは、それぞれ 正および負の温度依存性を有する。したがって、ノィァス電流源により生成される定 電流と、温度補償回路により生成される温度補償電流に、所定の係数を乗じて加算 することにより、熱電圧 Vtの温度依存性とベースェミッタ間電圧 Vbeの温度依存性を キャンセルすることができ、温度依存性の小さな定電流を生成することができる。
[0009] 温度補償回路は、バイアス電流源により生成される定電流の経路上に直列に設け られ、ベースコレクタ間が接続された第 1バイポーラトランジスタおよび第 2バイポーラ トランジスタと、第 2バイポーラトランジスタとカレントミラー回路を形成する第 3バイポ ーラトランジスタと、ベースが第 1バイポーラトランジスタのベースと接続され、コレクタ が第 3バイポーラトランジスタのコレクタに接続され、ェミッタに温度補償抵抗が接続さ れた第 4バイポーラトランジスタと、を備え、第 3バイポーラトランジスタおよび第 4バイ ポーラトランジスタのコレクタ電流の和を出力してもよい。
[0010] 温度補償抵抗には、第 1、第 2バイポーラトランジスタのベースェミッタ間電圧の和( Vbel + Vbe2)力も第 3バイポーラトランジスタのベースェミッタ間電圧 Vbe3を引い た電圧(Vbel +Vbe2— Vbe3)力印カロされることになる。いま、 Vbel =Vbe2=Vb e3=Vbeと仮定すると、温度補償抵抗には、電圧 Vbeが印加されることになり、温度 補償抵抗および第 4バイポーラトランジスタに流れる電流 Ixは、温度補償抵抗の抵抗 値を R1とすると、 Ix=VbeZRlで与えられる。一方、第 3バイポーラトランジスタには 、 ノィァス電流源により生成される定電流が流れることになる。この態様によると、第 4 バイポーラトランジスタに流れる電流 Ixの温度特性を利用して、バイアス電流源により 生成される定電流の温度特性を打ち消すことにより、温度依存性の少ない定電流を 生成することができる。
[0011] 温度補償回路は、バイアス電流源により生成される定電流の経路上に直列に設け られ、ベースコレクタ間が接続された第 1バイポーラトランジスタおよび第 2バイポーラ トランジスタと、第 2バイポーラトランジスタとカレントミラー回路を形成する第 3バイポ ーラトランジスタと、ベースが第 1バイポーラトランジスタのベースと接続され、ェミッタ に温度補償抵抗が接続された第 4バイポーラトランジスタと、ベースが第 1バイポーラ トランジスタのベースと接続され、ェミッタが第 3バイポーラトランジスタのコレクタに接 続された第 5バイポーラトランジスタと、を備え、第 5バイポーラトランジスタおよび第 4 バイポーラトランジスタのコレクタ電流の和を出力してもよい。
[0012] この態様〖こよると、上述の温度補償回路に加えて、第 5バイポーラトランジスタを設 けることにより、第 3、第 5バイポーラトランジスタに流れる電流を、ノィァス電流源によ つて生成される定電流に近づけることができる。
[0013] バイアス電流源は、ベースコレクタ間が接続された第 6バイポーラトランジスタと、ベ 一スが第 6バイポーラトランジスタのベースと接続され、ェミッタと固定電位間に電流 生成用抵抗が接続された第 7バイポーラトランジスタと、第 6、第 7バイポーラトランジ スタのコレクタに接続されたカレントミラー負荷と、を備え、カレントミラー負荷に流れる 電流に比例した電流を出力してもよい。
電流生成用抵抗には、熱電圧 Vtに比例した電圧が力かるため、このバイアス電流 源によれば、熱電圧に比例した電流が生成される。
[0014] 上述の定電流回路は、ひとつの半導体基板上に一体集積ィ匕されていてもよい。な お、「一体集積化」とは、回路の構成要素のすべてが半導体基板上に形成される場 合や、回路の主要構成要素が一体集積化される場合が含まれ、回路定数の調節用 に一部の抵抗やキャパシタなどが半導体基板の外部に設けられていてもよい。定電 流回路を 1つの LSIとして集積ィ匕することにより、回路面積を削減することができる。
[0015] 本発明のさらに別の態様は、インバータである。このインバータは、上述の定電流 回路と、この定電流回路を負荷とするトランジスタと、を備える。
この態様によると、トランジスタを非常に小さな電流でバイアスすることができる。
[0016] 本発明のさらに別の態様は、発振回路である。この発振回路は、電圧制御水晶発 振器と、電圧制御水晶発振器と並列に設けられた抵抗と、電圧制御水晶発振器と並 列に設けられた上述のインバータと、を備える。 この態様〖こよると、回路の消費電流を低減できる。
[0017] 本発明のさらに別の態様は、電子機器である。この電子機器は、上述の発振回路 を備える。この態様〖こよると、発振回路の消費電流を低減し、電池の寿命を延ばすこ とがでさる。
[0018] なお、以上の構成要素の任意の組合せや本発明の構成要素や表現を、方法、装 置、システムなどの間で相互に置換したものもまた、本発明の態様として有効である。 図面の簡単な説明
[0019] [図 1]実施の形態に係る定電流回路の構成を示す回路図である。
[図 2]図 1のバイアス電流源により生成される定電流 Irefおよび、定電流回路から出力 される定電流 Iref 'の温度依存性を示す図である。
[図 3]図 1の定電流回路を用いたインバータの構成を示す回路図である。
[図 4]図 3のインバータを備えた発振回路の構成を示す回路図である。
[図 5]図 1の定電流回路の変形例を示す回路図である。
符号の説明
[0020] 10 定電流回路、 20 バイアス電流源、 30 温度補償回路、 40 インバータ、
42 トランジスタ、 50 発振回路、 52 電圧制御水晶発振器、 54 インバータ 、 C1 第 1キャパシタ、 C2 第 2キャパシタ、 Rfb 帰還抵抗、 Q1 第 1バイポ ーラトランジスタ、 Q2 第 2バイポーラトランジスタ、 Q3 第 3バイポーラトランジスタ 、 Q4 第 4バイポーラトランジスタ、 Q5 第 5バイポーラトランジスタ、 Q6 第 6バ イポーラトランジスタ、 Q7 第 7バイポーラトランジスタ、 Q8 第 8バイポーラトラン ジスタ、 Q9 第 9バイポーラトランジスタ、 Q10 第 10バイポーラトランジスタ、 R1 温度補償抵抗、 R2 電流生成用抵抗。
発明を実施するための最良の形態
[0021] 以下、本発明を好適な実施の形態をもとに図面を参照しながら説明する。各図面に 示される同一または同等の構成要素、部材、処理には、同一の符号を付するものとし 、適宜重複した説明は省略する。また、実施の形態は、発明を限定するものではなく 例示であって、実施の形態に記述されるすべての特徴やその組み合わせは、必ずし も発明の本質的なものであるとは限らない。 本明細書において、「部材 Aと部材 Bが接続」された状態とは、部材 Aと部材 Bが物 理的に直接的に接続される場合や、部材 Aと部材 Bが、電気的な接続状態に影響を 及ぼさない他の部材を介して間接的に接続される場合も含む。
[0022] 以下で説明する実施の形態に係る定電流回路は、サブ/ z A力 数/ z A程度の微小 な電流を生成する用途に好適に用いることができる。
図 1は、実施の形態に係る定電流回路 10の構成を示す回路図である。実施の形態 に係る定電流回路 10は、バイアス電流源 20、温度補償回路 30を含む。ノ ィァス電 流源 20は、熱電圧 Vtを基準電圧として、この基準電圧を抵抗に印加することにより 微小な定電流を生成する。温度補償回路 30は、バイアス電流源 20により生成される 定電流 Irefの温度特性を補償する。この定電流回路 10は、ひとつの半導体基板上 に一体集積化して構成される。
[0023] 以下の説明にお ヽては、抵抗を表す符号を、その抵抗の抵抗値としても用いるもの とする。バイアス電流源 20は、 NPN型の第 6バイポーラトランジスタ Q6、第 7バイポ ーラトランジスタ Q7および PNP型の第 8バイポーラトランジスタ Q8〜第 10バイポーラ トランジスタ Q10を備える。
[0024] 第 6バイポーラトランジスタ Q6は、ベースコレクタ間が接続され、ェミッタが接地され る。第 7バイポーラトランジスタ Q7は、ベースが第 6バイポーラトランジスタ Q6のべ一 スと接続され、ェミッタと接地間に電流生成用抵抗 R2が接続される。第 8バイポーラト ランジスタ Q8、第 9バイポーラトランジスタ Q9は、カレントミラー回路を構成している。 第 8バイポーラトランジスタ Q8、第 9バイポーラトランジスタ Q9のベースは共通に接続 され、ェミッタには電源電圧 Vccが印加される。第 8バイポーラトランジスタ Q8、第 9バ イポーラトランジスタ Q9それぞれのコレクタは、第 6バイポーラトランジスタ Q6、第 7パ イポーラトランジスタ Q7のコレクタと接続されている。すなわち、第 8バイポーラトラン ジスタ Q8、第 9バイポーラトランジスタ Q9は、第 6バイポーラトランジスタ Q6、第 7バイ ポーラトランジスタ Q7に対してカレントミラー負荷として機能する。
[0025] 第 10バイポーラトランジスタ Q 10は、第 8バイポーラトランジスタ Q8、第 9バイポーラ トランジスタ Q9と並列に設けられており、カレントミラー負荷に流れる電流に比例した 電流 Irefを定電流として出力する。 [0026] このように構成されたノ ィァス電流源 20の動作について説明する。第 6バイポーラト ランジスタ Q6、第 7バイポーラトランジスタ Q7の飽和電流は、それぞれのェミッタ面積 に比例する。いま、第 6バイポーラトランジスタ Q6、第 7バイポーラトランジスタ Q7の飽 和電流をそれぞれ Is6、 Is7とし、第 8バイポーラトランジスタ Q8、第 9バイポーラトラン ジスタ Q9に流れる電流をそれぞれ Iin、 loutとする。第 8バイポーラトランジスタ Q8、 第 9バイポーラトランジスタ Q9に流れる電流の比 Iin/Ioutは、 2つのトランジスタの 面積比で決定される。
[0027] 電流生成用抵抗 R2にかかる電圧は、下記式(1)で与えられる。
lout X R2=Vt X ln{ (Iin/Iout) (Is2/ls 1 ) } · · · ( 1 )
したがって、電流生成用抵抗 R2には、熱電圧 Vtに比例した電圧が印加される。ま た、電流生成用抵抗 R2に流れる電流 loutは、下記式(2)で与えられる。
Iout=Vt X ln{ (Iin/Iout) (Is2/lsl)」 ZR2, · · (2)
[0028] このようにして、バイアス電流源 20は、熱電圧 Vtに比例した電圧を電流生成用抵 抗 R2に印加することにより定電流 loutを生成する。定電流 loutは、第 10バイポーラ トランジスタ Q10によって複製され、定電流 Irefとして出力される。本実施の形態では 、第 8バイポーラトランジスタ Q8〜第 10バイポーラトランジスタ Q10のトランジスタサイ ズは等しぐ Iin=Iout=Irefが成り立つものとして説明する。この場合、バイアス電流 源 20により生成される定電流 Irefは、下記式(3)で表すことができる。
Iref =Vt X a /R2 · ' · (3)
ここで、 a =ln{ (Iin/Iout) (Is2/lsl) }である。
[0029] ここで、バイアス電流源 20により生成される定電流 Irefの温度依存性について検討 する。定電流 Irefの温度依存性は、各変数で偏微分することにより得ることができ、下 記式 (4)で与えられる。
[数 1]
Figure imgf000008_0001
ここで、 d Vt/ d Tおよび d R2/ d Tは!、ずれも正である, [0030] 温度補償回路 30は、上記式 (4)で与えられる定電流 Irefの温度依存性をキャンセ ルするために設けられる。温度補償回路 30は、第 1バイポーラトランジスタ Q1〜第 4 バイポーラトランジスタ Q4、温度補償抵抗 R1を備える。
[0031] 第 1バイポーラトランジスタ Ql、第 2バイポーラトランジスタ Q2は、バイアス電流源 2 0により生成される定電流 Irefの経路上に直列に設けられる。第 1バイポーラトランジ スタ Ql、第 2バイポーラトランジスタ Q2は、それぞれベースコレクタ間が接続され、第 2バイポーラトランジスタ Q2のェミッタは接地される。第 1バイポーラトランジスタ Ql、 第 2バイポーラトランジスタ Q2は、 V、ずれもダイオードとして機能する。
[0032] 第 3バイポーラトランジスタ Q3は、第 2バイポーラトランジスタ Q2とベースが共通に 接続されており、カレントミラー回路を形成する。本実施の形態では、第 1バイポーラ トランジスタ Q1から第 4バイポーラトランジスタ Q4のトランジスタサイズはすべて等し いものとして説明する。この場合、第 3バイポーラトランジスタ Q3のコレクタ電流は、第 2バイポーラトランジスタ Q2のコレクタ電流、すなわち定電流 Irefと等しくなる。
[0033] 第 4バイポーラトランジスタ Q4は、ベースが第 1バイポーラトランジスタ Q1のベース と接続され、コレクタが第 3バイポーラトランジスタ Q3のコレクタに接続される。第 4バ イポーラトランジスタ Q4のェミッタと接地間には、温度補償抵抗 R1が接続される。こ の温度補償抵抗 R1にかかる電圧は、 Vbel +Vbe2— Vbe4で与えられる。各トラン ジスタのベースェミッタ間電圧 Vbel〜Vbe4がすべて等しいと仮定すると、温度補償 抵抗 R1には、 Vbeの電圧が印加されることになる。その結果、温度補償抵抗 R1には 、 Icmp =VbeZRlで与えられる補償電流が流れることになる。この補償電流 Icmp は、第 4バイポーラトランジスタ Q4のコレクタ電流と等 U、。
[0034] ここで、補償電流 Icmpの温度依存性について考察する。補償電流 Icmpの温度依 存性は、バイポーラトランジスタのベースェミッタ間電圧 Vbeおよび抵抗をそれぞれ 温度 Tで偏微分して得ることができ、下記式(5)で与えられる。
[数 2]
Figure imgf000009_0001
[0035] 温度補償回路 30は、第 3バイポーラトランジスタ Q3および第 4バイポーラトランジス タ Q4のコレクタ電流の和(Iref +Icmp)を定電流 Iref 'として出力する。温度補償回 路 30から出力される定電流 Iref 'の温度特性は、式 (4)で与えられる定電流 Irefの温 度特性と、式(5)で与えられる補償電流 Icmpの温度特性の和で与えられる。いま、 温度補償抵抗 Rl、電流生成用抵抗 R2がポリシリコンで形成されると仮定すると、そ の温度依存性 d R1Z 3 T、 3 R2Z d Tは、他項に比べて小さいため、無視すること ができる。その結果、温度補償回路 30から出力される定電流 Iref 'の温度特性として 、下記式 (6)を得る。
[数 3]
Θ I ref 6Vt 1 6Vbe (^
ΘΤ " R2" ΘΤ R1 ΘΤ 、り j
[0036] 定電流回路 10から出力される定電流 Iref 'の温度依存性を抑えるためには、上記式
(6)を 0となるように設計すればよい。ここで、 3 VtZ 3 T=kZq (k:ボルツマン定数 、 q :電子素量)であり、 3 VbeZ 3 T=— 2mVZ°Cが成り立つ。したがって、式(6) の右辺第 1項が正であるのに対して、右辺第 2項は負の値をとるため、定数 Q;、 Rl、 R2を適切に選択することによって、右辺のそれぞれの項を等しくすることができる。 定数 a;、抵抗値 Rl、 R2は、シミュレーションあるいは実験を行うことにより最適な値を 選べばよい。
[0037] このように、本実施の形態に係る定電流回路 10によれば、バイアス電流源 20により 生成される定電流 Irefの温度特性を、温度補償回路 30で生成される補償電流 Icmp の温度特性によってキャンセルすることにより、温度依存性の小さな定電流 Iref 'を生 成することができる。
[0038] 図 2は、図 1のバイアス電流源 20により生成される定電流 Irefおよび、定電流回路 1 0から出力される定電流 Iref 'の温度依存性を示す図である。なお、図 2の温度依存 性は、図 1に示す定電流回路 10を実際に製造して温度依存性を測定した実測値で ある。図 2に示すように、バイアス電流源 20により生成される定電流 Irefは、常温 30 °Cを中心値とした場合、 30°Cから 80°Cの範囲において士数 10%の範囲で変動 するのに対し、本実施の形態に係る定電流回路 10により生成される定電流 Iref'は、 士 10%程度の範囲で変動するにすぎず、温度特性が改善されることがわ力る。
[0039] 図 1の定電流回路 10は、さまざまな回路に対してバイアス電流を供給するバイアス 回路として応用することができる。図 3は、図 1の定電流回路 10を用いたインバータ 4 0の構成を示す回路図である。インバータ 40は、トランジスタ 42、定電流回路 10を備 える。トランジスタ 42は、ソースが接地され、入力信号がゲートに入力された Nチャン ネル MOSFETである。図 1の定電流回路 10は、トランジスタ 42のドレインに定電流 負荷として接続される。図 3のインバータ 40において、定電流回路 10により生成され る定電流 Iref'はたとえば 0. 3 Aであるとする。
[0040] このように構成されたインバータ 40によれば、非常に小さな定電流でバイアスされ ているため、動作電流をきわめて小さくすることができる。さらに、定電流回路 10によ り生成される定電流 Iref'の温度依存性は小さいため、温度が変動しても、インバー タとして良好な特性を保つことができる。
[0041] 図 4は、図 3のインバータ 40を備えた発振回路 50の構成を示す回路図である。発 振回路 50は、電圧制御水晶発振器 52、第 1キャパシタ Cl、第 2キャパシタ C2、帰還 抵抗 Rfb、インバータ 40、インバータ 54を備える。
電圧制御水晶発振器 52の両端はそれぞれ、第 1キャパシタ Cl、第 2キャパシタ C2 を介して接地されている。インバータ 40および帰還抵抗 Rfbは、電圧制御水晶発振 器 52と並列に接続されている。インバータ 54は、インバータ 40の出力信号を反転し て出力する。
[0042] 電圧制御水晶発振器 52には、インバータ 40のバイアス電流が低下すると、発振し なくなるものが存在する。したがって、温度補償回路 30を備えないバイアス電流源 20 によってトランジスタ 42にバイアス電流を供給する場合においては、低温時において も十分なバイアス電流が得られるように、常温時のバイアス電流の設定値を高くして おく必要があり、結果として回路の消費電流が大きくなるという問題があった。
[0043] これに対して、上述した本実施の形態に係る図 4の発振回路 50によれば、インバー タ 40の温度依存性の少ないバイアス電流が安定にして生成される。その結果、常温 でのバイアス電流の設定値を低く設定することができ、回路電流を低減できるとともに 広 、温度範囲で安定に発振させることができる。
[0044] 図 4に示す発振回路 50を、たとえば時計などのような電池駆動型の電子機器に搭 載した場合、回路電流を削減することにより電池の寿命を延ばすことができる。さらに 、図 1に示すように、定電流回路 10の素子数は少ないため、回路規模を小さくするこ とができ、機器の小型化にも資することとなる。
[0045] 上記実施の形態は例示であり、それらの各構成要素や各処理プロセスの組合せに いろいろな変形例が可能なこと、またそうした変形例も本発明の範囲にあることは当 業者に理解されるところである。
[0046] 図 5は、図 1の定電流回路 10の変形例を示す回路図である。図 5の定電流回路 10 は、図 1の定電流回路 10にカ卩えて、第 5バイポーラトランジスタ Q5を備えている。図 5 において、図 1と同一の構成要素には同一の符号を付し、重複した説明は省略する
[0047] NPN型の第 5バイポーラトランジスタ Q5のベースは、第 1バイポーラトランジスタ Q1 のベースと接続され、ェミッタは第 3バイポーラトランジスタ Q3のコレクタに接続される 。すなわち、第 1バイポーラトランジスタ Ql、第 5バイポーラトランジスタ Q5、第 2バイ ポーラトランジスタ Q2、第 3バイポーラトランジスタ Q3は、カスコード接続されたカレン トミラー回路であって、第 5バイポーラトランジスタ Q5のコレクタ電流 Irefは、バイアス 電流源 20から出力される定電流 Irefに等しい電流となる。
[0048] 図 5の定電流回路 10は、第 5バイポーラトランジスタ Q5のコレクタ電流である定電 流 Irefと第 4バイポーラトランジスタ Q4のコレクタ電流である補償電流 Icmpの和を出 力する。図 5の定電流回路 10によれば、図 1の定電流回路 10と同様に、温度依存性 の小さな定電流 Iref 'を生成することができる。
[0049] また、図 1および図 5において、バイアス電流源 20に設けられた第 8バイポーラトラ ンジスタ Q8〜第 10バイポーラトランジスタ Q10は、 Pチャンネル MOSFETで構成し てもよい。また、第 10バイポーラトランジスタ Q10を NPN型とし、第 6バイポーラトラン ジスタ Q6、第 7バイポーラトランジスタ Q7とカレントミラー接続することにより、定電流 を出力してもよい。
[0050] 温度補償回路 30も図 1、図 5の構成に限られるものではない。たとえば、 NPN型と PNP型を相互に置換し、接地を電源に、電源を接地に置き換えることにより得られる 回路によっても温度補償を行うことができる。
[0051] 実施の形態にもとづき、本発明を説明したが、実施の形態は、本発明の原理、応用 を示しているにすぎないことはいうまでもなぐ実施の形態には、請求の範囲に規定さ れた本発明の思想を離脱しない範囲において、多くの変形例や配置の変更が可能 であることは 、うまでもな!/、。
産業上の利用可能性
[0052] 本発明は、半導体装置に利用することができる。

Claims

請求の範囲
[1] 熱電圧に比例した電圧を電流生成用抵抗に印加することにより定電流を生成する バイアス電流源と、
ノイポーラトランジスタのベースェミッタ間電圧に相当する電圧を温度補償抵抗に 印加することにより温度補償電流を生成する温度補償回路と、
を備え、前記バイアス電流源により生成される定電流と、前記温度補償回路により 生成される温度補償電流の和を出力することを特徴とする定電流回路。
[2] 前記温度補償回路は、
前記バイアス電流源により生成される定電流の経路上に直列に設けられ、ベースコ レクタ間が接続された第 1バイポーラトランジスタおよび第 2バイポーラトランジスタと、 前記第 2バイポーラトランジスタとカレントミラー回路を形成する第 3バイポーラトラン ジスタと、
ベースが前記第 1バイポーラトランジスタのベースと接続され、コレクタが前記第 3バ イポーラトランジスタのコレクタに接続され、ェミッタに温度補償抵抗が接続された第 4 ノイポーラトランジスタと、を備え、
前記第 3バイポーラトランジスタおよび前記第 4バイポーラトランジスタのコレクタ電 流の和を出力することを特徴とする請求項 1に記載の定電流回路。
[3] 前記温度補償回路は、
前記バイアス電流源により生成される定電流の経路上に直列に設けられ、ベースコ レクタ間が接続された第 1バイポーラトランジスタおよび第 2バイポーラトランジスタと、 前記第 2バイポーラトランジスタとカレントミラー回路を形成する第 3バイポーラトラン ジスタと、
ベースが前記第 1バイポーラトランジスタのベースと接続され、ェミッタに温度補償 抵抗が接続された第 4バイポーラトランジスタと、
ベースが前記第 1バイポーラトランジスタのベースと接続され、ェミッタが前記第 3バ イポーラトランジスタのコレクタに接続された第 5バイポーラトランジスタと、
を備え、
前記第 5バイポーラトランジスタおよび前記第 4バイポーラトランジスタのコレクタ電 流の和を出力することを特徴とする請求項 1に記載の定電流回路。
[4] 前記バイアス電流源は、
ベースコレクタ間が接続された第 6バイポーラトランジスタと、
ベースが前記第 6バイポーラトランジスタのベースと接続され、ェミッタと固定電位間 に電流生成用抵抗が接続された第 7バイポーラトランジスタと、
前記第 6、第 7バイポーラトランジスタのコレクタに接続されたカレントミラー負荷と、 を備え、前記カレントミラー負荷に流れる電流に比例した電流を出力することを特徴 とする請求項 1から 3のいずれかに記載の定電流回路。
[5] 1つの半導体基板上に一体集積化されたことを特徴とする請求項 1から 3のいずれ かに記載の定電流回路。
[6] 請求項 1から 3の 、ずれかに記載の定電流回路と、
前記定電流回路を負荷とするトランジスタと、
を備えることを特徴とするインバータ。
[7] 電圧制御水晶発振器と、
前記電圧制御水晶発振器と並列に設けられた帰還抵抗と、
前記電圧制御水晶発振器と並列に設けられた請求項 6に記載のインバータと、 を備えることを特徴とする発振回路。
[8] 請求項 7に記載の発振回路を備えることを特徴とする電子機器。
PCT/JP2006/315634 2005-08-17 2006-08-08 定電流回路およびそれを用いたインバータならびに発振回路 WO2007020834A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP06796313A EP1881391A4 (en) 2005-08-17 2006-08-08 CONSTANT CIRCUIT, INVERTER AND OSCILLATION CIRCUIT WITH SUCH A CONSTANT CIRCUIT
US12/063,594 US20090224819A1 (en) 2005-08-17 2006-08-08 Constant current circuit, and inverter and oscillation circuit using such constant current circuit

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005236261A JP2007052569A (ja) 2005-08-17 2005-08-17 定電流回路およびそれを用いたインバータならびに発振回路
JP2005-236261 2005-08-17

Publications (1)

Publication Number Publication Date
WO2007020834A1 true WO2007020834A1 (ja) 2007-02-22

Family

ID=37757496

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/315634 WO2007020834A1 (ja) 2005-08-17 2006-08-08 定電流回路およびそれを用いたインバータならびに発振回路

Country Status (7)

Country Link
US (1) US20090224819A1 (ja)
EP (1) EP1881391A4 (ja)
JP (1) JP2007052569A (ja)
KR (1) KR20080034826A (ja)
CN (1) CN101091145A (ja)
TW (1) TW200712825A (ja)
WO (1) WO2007020834A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010086056A (ja) * 2008-09-29 2010-04-15 Sanyo Electric Co Ltd 定電流回路
CN103592988A (zh) * 2012-08-14 2014-02-19 上海华虹宏力半导体制造有限公司 对基准电流的电压系数进行补偿的电路

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101499787B (zh) * 2008-02-02 2012-06-06 华润矽威科技(上海)有限公司 一种具有频率抖动特性的振荡器电路
US8106346B2 (en) * 2008-09-04 2012-01-31 Semiconductor Energy Laboratory Co., Ltd. Photodetector
CN101557669B (zh) * 2009-03-11 2012-10-03 深圳市民展科技开发有限公司 一种高精度可控电流源
US8581632B2 (en) 2012-02-08 2013-11-12 Mediatek Inc. Comparator with transition threshold tracking capability
CN102654780A (zh) * 2012-05-17 2012-09-05 无锡硅动力微电子股份有限公司 应用于集成电路的温度补偿电流基准电路
CN103699171B (zh) * 2012-09-27 2015-10-28 无锡华润矽科微电子有限公司 具有高稳定性的能隙基准电流电路结构
CN103684354B (zh) * 2013-05-21 2015-01-07 国家电网公司 一种环形振荡电路、环形振荡器及其实现方法
US9600015B2 (en) * 2014-11-03 2017-03-21 Analog Devices Global Circuit and method for compensating for early effects
CN105071803A (zh) * 2015-08-21 2015-11-18 东南大学 一种温度和工艺补偿型环形振荡器
JP6624873B2 (ja) * 2015-09-30 2019-12-25 エイブリック株式会社 発振回路
TWI720305B (zh) * 2018-04-10 2021-03-01 智原科技股份有限公司 電壓產生電路
CN111665898B (zh) * 2020-06-23 2021-01-22 华南理工大学 一种基于GaAs HBT工艺的功放芯片偏置电路

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61501744A (ja) * 1984-10-01 1986-08-14 モトロ−ラ・インコ−ポレ−テッド 温度係数可変の電流源
JPH11122048A (ja) * 1997-10-15 1999-04-30 Oki Electric Ind Co Ltd 定電流源回路とそれを用いたディジタル/アナログ変換回路

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63258109A (ja) * 1987-04-15 1988-10-25 Victor Co Of Japan Ltd 基準電流源
JPS6419809A (en) * 1987-07-15 1989-01-23 Fuji Electric Co Ltd Constant current source circuit
US5038053A (en) * 1990-03-23 1991-08-06 Power Integrations, Inc. Temperature-compensated integrated circuit for uniform current generation
JP3322685B2 (ja) * 1992-03-02 2002-09-09 日本テキサス・インスツルメンツ株式会社 定電圧回路および定電流回路

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61501744A (ja) * 1984-10-01 1986-08-14 モトロ−ラ・インコ−ポレ−テッド 温度係数可変の電流源
JPH11122048A (ja) * 1997-10-15 1999-04-30 Oki Electric Ind Co Ltd 定電流源回路とそれを用いたディジタル/アナログ変換回路

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1881391A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010086056A (ja) * 2008-09-29 2010-04-15 Sanyo Electric Co Ltd 定電流回路
CN103592988A (zh) * 2012-08-14 2014-02-19 上海华虹宏力半导体制造有限公司 对基准电流的电压系数进行补偿的电路

Also Published As

Publication number Publication date
EP1881391A4 (en) 2008-04-02
KR20080034826A (ko) 2008-04-22
TW200712825A (en) 2007-04-01
US20090224819A1 (en) 2009-09-10
JP2007052569A (ja) 2007-03-01
EP1881391A1 (en) 2008-01-23
CN101091145A (zh) 2007-12-19

Similar Documents

Publication Publication Date Title
WO2007020834A1 (ja) 定電流回路およびそれを用いたインバータならびに発振回路
US7880534B2 (en) Reference circuit for providing precision voltage and precision current
US9459647B2 (en) Bandgap reference circuit and bandgap reference current source with two operational amplifiers for generating zero temperature correlated current
JP4950622B2 (ja) 温度補償低電圧基準回路
US7834610B2 (en) Bandgap reference circuit
US7692481B2 (en) Band-gap reference voltage generator for low-voltage operation and high precision
US20090051341A1 (en) Bandgap reference circuit
US20080265860A1 (en) Low voltage bandgap reference source
US6384586B1 (en) Regulated low-voltage generation circuit
JP3519361B2 (ja) バンドギャップレファレンス回路
US20090051342A1 (en) Bandgap reference circuit
JPH04266110A (ja) バンドギャップ基準回路
US20070080740A1 (en) Reference circuit for providing a temperature independent reference voltage and current
JPH11154833A (ja) 電圧電流変換回路
US20100079198A1 (en) Constant Current Circuit
US20100264980A1 (en) Temperature-compensated voltage comparator
JPH06326528A (ja) 差動増幅器およびそれを備えたバンドギャップ電圧発生器
US6380723B1 (en) Method and system for generating a low voltage reference
CN104977968B (zh) 一种高阶温度补偿的带隙基准电路
JPH11122059A (ja) 差動アンプ
JP4328391B2 (ja) 電圧および電流基準回路
TWI716323B (zh) 電壓產生器
JPH11231955A (ja) 基準電流源回路
US10310539B2 (en) Proportional to absolute temperature reference circuit and a voltage reference circuit
JP4314669B2 (ja) バンドギャップリファレンス回路

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 200680001513.8

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2006796313

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 1020077021786

Country of ref document: KR

Ref document number: KR

WWP Wipo information: published in national office

Ref document number: 2006796313

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 12063594

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE