Nothing Special   »   [go: up one dir, main page]

WO2007015503A1 - 光電変換素子 - Google Patents

光電変換素子 Download PDF

Info

Publication number
WO2007015503A1
WO2007015503A1 PCT/JP2006/315272 JP2006315272W WO2007015503A1 WO 2007015503 A1 WO2007015503 A1 WO 2007015503A1 JP 2006315272 W JP2006315272 W JP 2006315272W WO 2007015503 A1 WO2007015503 A1 WO 2007015503A1
Authority
WO
WIPO (PCT)
Prior art keywords
photoelectric conversion
layer
type semiconductor
group
electrode
Prior art date
Application number
PCT/JP2006/315272
Other languages
English (en)
French (fr)
Inventor
Kiyoshi Musha
Tamotsu Takahashi
Original Assignee
Adeka Corporation
National University Corporation Hokkaido University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Adeka Corporation, National University Corporation Hokkaido University filed Critical Adeka Corporation
Priority to CN2006800286248A priority Critical patent/CN101248542B/zh
Priority to US11/997,836 priority patent/US20090107539A1/en
Priority to EP06782141A priority patent/EP1912267A4/en
Priority to JP2007529502A priority patent/JPWO2007015503A1/ja
Publication of WO2007015503A1 publication Critical patent/WO2007015503A1/ja

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/80Constructional details
    • H10K30/81Electrodes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y10/00Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/10Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation comprising heterojunctions between organic semiconductors and inorganic semiconductors
    • H10K30/15Sensitised wide-bandgap semiconductor devices, e.g. dye-sensitised TiO2
    • H10K30/151Sensitised wide-bandgap semiconductor devices, e.g. dye-sensitised TiO2 the wide bandgap semiconductor comprising titanium oxide, e.g. TiO2
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/20Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation comprising organic-organic junctions, e.g. donor-acceptor junctions
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/30Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation comprising bulk heterojunctions, e.g. interpenetrating networks of donor and acceptor material domains
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/50Photovoltaic [PV] devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/111Organic polymers or oligomers comprising aromatic, heteroaromatic, or aryl chains, e.g. polyaniline, polyphenylene or polyphenylene vinylene
    • H10K85/113Heteroaromatic compounds comprising sulfur or selene, e.g. polythiophene
    • H10K85/1135Polyethylene dioxythiophene [PEDOT]; Derivatives thereof
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/154Ladder-type polymers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/20Carbon compounds, e.g. carbon nanotubes or fullerenes
    • H10K85/211Fullerenes, e.g. C60
    • H10K85/215Fullerenes, e.g. C60 comprising substituents, e.g. PCBM
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • H10K85/311Phthalocyanine
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/40Organosilicon compounds, e.g. TIPS pentacene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/615Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
    • H10K85/621Aromatic anhydride or imide compounds, e.g. perylene tetra-carboxylic dianhydride or perylene tetracarboxylic di-imide
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Definitions

  • the present invention relates to a photoelectric conversion element that generates an electromotive force by light irradiation.
  • an inorganic semiconductor composed of single crystal, polycrystal, amorphous silicon, or a compound such as Culn Se, GaAs, CdS is used.
  • Solar cells using these inorganic semiconductors have a relatively high energy conversion efficiency of 10% to 20%, so they are widely used as power sources for remote locations and auxiliary power sources for small portable electronic devices. Yes.
  • solar cells that use inorganic semiconductors are said to be sufficiently effective at present. It's hard to say.
  • solar cells using these inorganic semiconductors are manufactured by a plasma CVD method or a high-temperature crystal growth process, and require a lot of energy for device fabrication. It also contains components such as Cd, As, Se, etc. that may have a harmful effect on the environment, and there is a concern about destruction of the environment due to element disposal.
  • Organic solar cells can be broadly classified into dye-sensitized types and semiconductor types.
  • the dye-sensitized type was reported by Swiss Swiss Gratzel et al. In 1991 and attracted a great deal of attention. It absorbs ruthenium biviridinecarboxylic acid dye on the surface of a large-surface-area porous diacid-titanium thin film.
  • Non-patent Document 1 It has a structure in which the collected electrode is used and the electrolyte is brought into contact with the electrode.
  • high temperature is required for the treatment of titanium dioxide and the problems of using electrolyte and iodine have been pointed out, and practical application has not progressed very easily.
  • titanium dioxide can be processed at low temperatures and can be made into a plastic substrate, and if the electrolyte part can be solidified, it will be a significant step toward practical application.
  • Various methods have been tried for processing and solidification, but! / And the deviation are low!
  • the photoelectric conversion efficiency is limited. For example, the conversion efficiency is low for any of the forces that have been studied to use conductive polymers such as polyaline, polypyrrole, and polythiophene in the electrolyte portion (Non-patent Document 2).
  • Non-patent Document 3 Non-patent Document 3
  • Such a Schottky solar cell has a feature that a relatively large open circuit voltage (Voc) can be obtained, but has a problem that the photoelectric conversion efficiency tends to decrease as the amount of irradiation light increases.
  • the pn junction type uses an internal electric field generated at the junction surface between the p-type semiconductor and the n-type semiconductor, so an organic Z organic pn junction type that uses an organic material for both semiconductors, There are organic Z inorganic pn junction types that use materials. Such an organic pn junction solar cell has a relatively high conversion efficiency and is not sufficient (Non-patent Document 4).
  • the carrier separation ability increases as the film thickness increases, but the carrier transport ability. Therefore, there is a mixed layer thickness that maximizes the energy conversion efficiency. In this case as well, the influence of the decrease in carrier transport capacity is large, and there is a drawback that the film thickness must be made as thin as possible.
  • Non-Patent Document 8 As a method for selecting the crystal form in the film-forming process by the vapor deposition method, an improvement method by controlling the substrate temperature has been tried (Non-Patent Document 8), but a semiconductor layer having a high crystal characteristic and a desired crystal form force can be obtained. There are also problems that are difficult.
  • Non-patent Document 9 an attempt of a tandem cell in which two or more pn junction cells are stacked has been reported.
  • Non-Patent Document 1 B. O'regan, M. Gratzel, Nature, 353, 737 (1991)
  • Non-Patent Document 2 K. Murakoshi, R. Kogure, Y. Wada, and S. Yanagida, Chemistry Letters 1997, p471
  • Non-Patent Document 3 RO Loutfy et al., J. Chem. Phys. Vol. 71, pl211
  • Non-Patent Document 4 CW Tang, Appl. Phys. Lett. 48 (2), 13 January 1986, pi 83
  • Non-Patent Document 5 Patent-Youth, No. 11471, p8, Friday, February 18, 2005, Economic and Industrial Research Foundation
  • Non-Patent Document 6 P. Peumans, V. Bulovic and S. R. Forrest, Appl. Phys. Let t., 76, 2650 (2000)
  • Non-Patent Document 7 C. J. Brabec, S. E. Shaheen, C. Winder, and N. S. Sariciftc i, Appl. Phys. Lett., 80, 1288 (2002)
  • Non-Patent Document 8 Z. Bao, A. J. Lovinger, A. Dodabalapur, Appl. Phys. Lett., 69, 3066 (1996)
  • Non-Patent Document 9 M. Hiramoto, M. Suezaki, M. Yokoyama, Chemistry Letter s 1990, p327
  • an object of the present invention is to provide a flexible photoelectric conversion element having good processability / productivity, low toxicity and good photoelectric conversion efficiency.
  • the present inventors are one of the main reasons that many carriers generated at the interface are not transported, and therefore the area of the interface is not improved due to recombination in the vicinity of the interface, which has increased the conversion efficiency. Thought. Therefore, considering the rapid transport of many carriers generated near the interface to the electrode, and as a result of intensive studies, it was found that the above object could be achieved by using an organic semiconductor material with high carrier mobility. It was.
  • the present invention (the invention described in claim 1) is based on the above knowledge, and is a photoelectric conversion element having a photoelectric conversion layer between an opposing anode electrode and a cathode electrode,
  • the photoelectric conversion layer has a structure in which (l) a p-type semiconductor layer, (2) a mixed layer of a p-type semiconductor and an n-type semiconductor, and (3) an n-type semiconductor layer are sequentially stacked.
  • the p-type semiconductor in the layer and (2) the P-type semiconductor in the mixed layer, (2) the n-type semiconductor in the mixed layer, and (3) the n-type semiconductor in the n-type semiconductor layer are made of the same material.
  • the photoelectric conversion element having the following structure may be composed of different materials: at least one of the following (a) to (c):
  • the present invention provides a photoelectric conversion element characterized by employing the above.
  • An organic semiconductor thin film having a charge mobility of 0.005 cm 2 / V-sec or more is used for at least one of the semiconductor layers (1) to (3) above.
  • a buffer layer formed of an organic compound is provided between the anode electrode and Z or the cathode electrode and the photoelectric conversion layer, and the organic compound of the buffer layer and the anode electrode and Z or the cathode are disposed. Chemically bonding with the electrode
  • the present invention is a photoelectric conversion element having a photoelectric conversion layer between an opposing anode electrode and a cathode electrode, and the photoelectric conversion layer is ( l) a p-type semiconductor layer and (2) a structure in which a mixed layer of a p-type semiconductor and an n-type semiconductor is sequentially stacked [(1) a p-type semiconductor in a p-type semiconductor layer and (2) in a mixed layer
  • the p-type semiconductor is a photoelectric conversion element having the same material or a different material.
  • the present invention provides a photoelectric conversion element characterized by employing at least one photoelectric conversion efficiency improving means of (c).
  • An organic semiconductor thin film having a charge mobility of 0.005 cm 2 / V-sec or more is used for at least one of the semiconductor layers (1) to (2) above.
  • a buffer layer formed of an organic compound is provided between the anode electrode and Z or the cathode electrode and the photoelectric conversion layer, and the organic compound of the buffer layer and the anode electrode and Z or the cathode are disposed. Chemically bonding with the electrode
  • the present invention is a photoelectric conversion element having a photoelectric conversion layer between an opposing anode electrode and a cathode electrode, and the photoelectric conversion layer comprises: l) a p-type semiconductor layer, (2) a mixed layer of p-type semiconductor and n-type semiconductor, and (3) a structure in which a metal oxide layer is stacked in order [(l) p in the p-type semiconductor layer (2)
  • the p-type semiconductor in the mixed layer may be made of the same material or different materials.
  • the present invention provides a photoelectric conversion element characterized by employing at least one of the following photoelectric conversion efficiency improving means (a) to (c).
  • An organic semiconductor thin film having a charge mobility of 0.005 cm 2 / V-sec or more is used for at least one of the semiconductor layers (1) to (2) above.
  • a buffer layer formed of an organic compound is provided between the anode electrode and Z or the cathode electrode and the photoelectric conversion layer, and the organic compound of the buffer layer and the anode electrode and Z or the cathode are disposed. Chemically bonding with the electrode
  • the present invention (the invention described in claim 4) is a photoelectric conversion efficiency using an organic semiconductor thin film having a charge mobility of 0.005 cm so V ⁇ sec or more for at least one of the semiconductor layers.
  • the p-type semiconductor layer has a charge mobility.
  • the present invention has a plurality of photoelectric conversion units comprising the above-described photoelectric conversion layer composed of the semiconductor layer, and each photoelectric conversion unit includes: 6.
  • the present invention (the invention described in claim 7) is described in any one of claims 1 to 3 in which at least the photoelectric conversion efficiency improving means (b) is adopted.
  • the photoelectric conversion element is provided.
  • the present invention (the invention described in claim 8) is at least the photoelectric conversion according to any one of claims 1 to 3 adopting the photoelectric conversion efficiency improving means of (c) above. It provides elements.
  • the present invention (invention according to claim 9) is characterized in that, among the photoelectric conversion layers, (l) the p-type semiconductor layer has a thickness of lOnm or more. Any one of Items 8 provides the photoelectric conversion device according to Item 1.
  • At least one of the organic semiconductor compounds used in the semiconductor layer has a polyacene derivative represented by the following general formula (I):
  • a 3 and A 4 are each independently of each other a hydrogen atom; a halogen atom; an optionally substituted C to C hydrocarbon group;
  • the saturated or unsaturated ring that may be bridged to form a C-C saturated or unsaturated ring is oxygen
  • N is an integer greater than or equal to 1.
  • the present invention constitutes the photoelectric conversion layer
  • the photoelectric conversion element of the first invention has the following characteristics. That is, in a photoelectric conversion element having a photoelectric conversion layer between an opposing anode electrode and a cathode electrode, the photoelectric conversion layer includes: (1) a p-type semiconductor layer, and (2) a mixture of a p-type semiconductor and an n-type semiconductor. And (3) an n-type semiconductor layer sequentially stacked, (1) a p-type semiconductor in the p-type semiconductor layer, and (2) a p-type semiconductor in the mixed layer (2)
  • the n-type semiconductor in the mixed layer and (3) the n-type semiconductor in the n-type semiconductor layer may be made of the same material or different layers. This is characterized in that a high-mobility organic semiconductor thin film is used for at least one of these semiconductor layers, which may have any layer that does not prevent good charge transfer as a photoelectric conversion element. To do.
  • charge mobility higher mobility organic semiconductor thin film at this time is 0. 005cm 2 ZV 'has preferably fixture further preferably more sec 0. 01cm 2 ZV' sec or more, or even more preferably 0. lc m 2 ZV ′ sec or more, more preferably 0.4 cm 2 ZV ′ sec or more, and even more preferably 1. Ocm 2 / V ′ sec or more.
  • the upper limit of the charge mobility of the organic semiconductor thin film is not particularly limited, and is preferably as large as possible.
  • the photoelectric conversion layer comprising the semiconductor layers (1) to (3) is provided so that the (1) layer is located on the anode electrode side and the (3) layer is located on the cathode electrode side.
  • the photoelectric conversion element may be a photoelectric conversion element (3) that does not have an n-type semiconductor layer.
  • the p-type semiconductor layer used for the mixed layer of the p-type semiconductor and the n-type semiconductor preferably contains at least one polymer compound.
  • the polymer compound is not particularly limited, but may be a polymer of a thiophene derivative that may have a substituent, a polyphenylene derivative that may have a substituent, or a substituent. And polyphenylene-biylene derivatives.
  • the n-type semiconductor in this case is preferably a derivative such as C or C
  • Such a photoelectric conversion element containing a polymer in the mixed layer usually does not have the p-type semiconductor layer (1) or the n-type semiconductor layer (3), and the mixed layer has an electrode or an electrode and a buffer.
  • a certain level of photoelectric conversion can be achieved by adding more layers.
  • the photoelectric conversion efficiency is remarkably improved by quickly drawing out the charge accumulated in the mixed layer from the mixed layer, and the high mobility organic semiconductor thin film which is a p-type semiconductor.
  • the conversion efficiency is remarkably improved by adding to the photoelectric conversion element in which only the mixed layer has power.
  • the film thickness of the p-type semiconductor layer at this time is preferably 1 Onm or more, more preferably 20 ⁇ m or more and lOOnm or less.
  • the conversion element may be a conversion element in which a layer made of a metal oxide is added to the photoelectric conversion element made of the p-type semiconductor layer of (1) and the mixed layer of (2).
  • the metal oxide is not particularly limited, and examples thereof include titanium oxide and tin oxide. Even in such a photoelectric conversion element, the conversion efficiency is improved by adding a high mobility organic semiconductor thin film to the p-type semiconductor element of (1).
  • a high mobility organic semiconductor thin film having a charge mobility of 0.005 cm 2 ZV ' sec or more may be used in any of the (1) layer, (2) layer, and (3) layer.
  • the high mobility material a material that can form an organic semiconductor thin film having a charge mobility of 0.005 cm 2 / V-sec or more
  • the hole diffusion distance so that the film thickness can be increased. Therefore, there is an advantage that the hole separation is improved and the amount of light absorption is increased, the amount of generated carriers of holes and electrons is increased, and the current is increased.
  • the high mobility organic semiconductor thin film is used for the (2) layer. That is, in the case of a low mobility material, as the mixed layer thickness increases, the light utilization efficiency improves and the amount of generated carriers increases while the carrier transport capacity decreases conversely, so energy conversion is achieved. It is clear that there is a mixed layer thickness that maximizes efficiency. This is because p-type and n-type molecules coexist in the mixed layer, and the probability that the generated carriers will recombine is increasing. However, if a high mobility material is used, the thickness of the mixed layer film can be increased, thereby improving the light utilization efficiency, increasing the amount of generated carriers, and increasing the carrier transport capability, thereby maximizing the energy conversion efficiency. The mixed layer thickness increases, and as a result, the conversion efficiency can be improved. (2) In the mixed layer using the high mobility material, the probability that the generated carriers are recombined is also smaller than that of the low mobility material.
  • the use of a high mobility material has the following advantages. That is, when the electrode surface on the opposite side to the transparent electrode is flat, the incident light passes through the transparent electrode and the semiconductor layer in order, and is reflected by the opposite electrode, and then passes through the semiconductor layer and the transparent electrode in order. become. In contrast, if the electrode surface on the opposite side of the transparent electrode is uneven, light is diffusely reflected by the unevenness, increasing the reflectivity for confining the light inside, and increasing the optical path length in the semiconductor layer, thereby absorbing light. Increasing, that is, the light confinement structure (texture structure) can improve the light absorption efficiency, and the conversion efficiency can be improved (see, for example, JP-A-2005-2387). Although the size of the unevenness needs to be several tens of nm, the conversion efficiency can not be improved by the texture structure because the film cannot be thickened without using a high mobility material. If you can use the material, you will have the advantage.
  • the semiconductor layers (1) to (3) are formed in a thin film shape.
  • the preferred film thickness of the p-type semiconductor layer is 1 nm to 200 nm, and more preferred is 10 nm to 200 nm. Even better, the film thickness is 20 ⁇ ! ⁇ LOOnm.
  • the preferred film thickness of the mixed layer of p-type semiconductor and n-type semiconductor is 5 nm to 200 nm, and more preferably 10 nm to 100 nm.
  • the preferred film thickness when using an n-type semiconductor layer is Inn! ⁇ 200nm, more preferred V, film thickness is 5nm ⁇ 1OOnm.
  • the n-type semiconductor and the p-type semiconductor are mixed at the molecular level (or nano level).
  • the p-type semiconductor and the n-type semiconductor are mixed so that the volume ratio (the former: the latter) is 1: 0.1 to 1: 5.0. It is more preferable to mix so that it may become 1: 2.0.
  • a p-type semiconductor layer, (2) a mixed layer of a p-type semiconductor and an n-type semiconductor, and (3) a method of forming an n-type semiconductor layer is to form a conventionally known photoelectric conversion element to be described later V ⁇ .
  • a vacuum deposition method is employed when forming a mixed layer of p-type semiconductor and n-type semiconductor, a co-evaporation method may be used.Of course, both the p-type semiconductor and the n-type semiconductor are used. It can be formed by dissolving or dispersing in a solvent and using a solvent coating method (spin coating, etc.).
  • the metal acid layer of the metal acid layer is not particularly limited. Metal oxides such as tin oxide are preferred.
  • the film thickness is 20 nm to 100 nm, more preferably 20 nm to 100 nm.
  • a polyacene derivative as a semiconductor compound in at least one of the semiconductor layers of the above (1) to (3) 1, a polyacene derivative and another organic substance. It is preferable to use a mixture of As the polyacene derivative, a polyacene derivative represented by the following general formula (I) is particularly preferred. In addition, organic substances in the case of forming a mixture with a polyacene derivative are preferred, and they are oligomers and polymers. Any organic substance that improves charge mobility or stability by mixing with a polyacene derivative is not particularly limited. That's fine.
  • polyacene derivative a polyacene derivative represented by the following general formula (I) is particularly preferable.
  • the polyacene derivative represented by the following general formula (I) will be described in detail below.
  • a 3 and A 4 are each independently of each other a hydrogen atom; a halogen atom; an optionally substituted C to C hydrocarbon group;
  • 1 c alkoxy group may have a substituent
  • halogen atom examples include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom. Can be mentioned.
  • the C to C hydrocarbon group may be a saturated or unsaturated acyclic group.
  • c ⁇ hydrocarbon group is acyclic
  • it may be linear or branched.
  • C to C alkyl gel group and C to C polyol group are C to C alkyl groups, respectively.
  • Examples of the c to c alkyl group which may have a substituent are not limited.
  • Examples of the c to c alkynyl group which may have a substituent are not particularly limited.
  • C to C alkoxy groups useful in the practice of the present invention examples include, but are not limited to, methoxy, ethoxy, 2-methoxyethoxy, tert-butoxy, and the like.
  • groups include, but are not limited to, phenoxy, naphthoxy, phenol-phenoxy,
  • ruoxy group examples include methylphenoxy, ethylphenoxy, propylphenoxy, butyphenoxy and the like.
  • ball group examples include c to alkoxy groups which may have the above substituents.
  • alkoxycarbonyl groups corresponding to the alkoxy groups exemplified above.
  • the above-mentioned substituents may be included.
  • — X where X represents a halogen atom.
  • Examples of an optionally substituted amino group useful in the practice of the present invention include, but are not limited to, amino-containing dimethylamino-containing methylamino-aminophenyl-aminoamine and the like. .
  • optionally substituted amide groups useful in the practice of the present invention include, but are not limited to, acetateamide, benzamide, hexaneamide, and the like.
  • the silyl group which may have a substituent is a group represented by the formula — Si (R 12 ) (R 13 ) (R 14 ) [ In the formula, and, each independently of one another, may be substituted with a halogen atom-alkyl group; optionally substituted with a norogen atom-aryl
  • optionally substituted silyl groups useful in the practice of the present invention include, but are not limited to, trimethylsilyl, triethylsilyl, trimethoxysilyl, triethoxysilyl, diphenylmethylsilyl, triphenyl.
  • examples include silyl, triphenoxysilyl, dimethylmethoxysilyl, dimethylphenoxysilyl, and methylmethoxyphenol.
  • Examples of the substituent that may have a substituent introduced into the silyl group include a silyl group, a halogen atom, a hydroxyl group, and an amino group.
  • the halogen atom as the substituent includes a fluorine atom, a chlorine atom, a bromine atom and an iodine atom.
  • AA 3 and 4 when AA 3 and 4 are alkoxycarbonyl groups, they can be converted into carboxy groups by ordinary organic chemistry techniques.
  • the adjacent carboxyl group can be converted to a carboxylic anhydride, that is, a ring represented by the formula —c ( ⁇ o) —oc ( ⁇ o) — by dehydration.
  • the unsaturated ring may be an aromatic ring such as a benzene ring or a thiophene ring.
  • the ring formed by crosslinking each other is preferably a 4 to 16-membered ring, more preferably a 4 to 12-membered ring.
  • This ring may be an aromatic ring or an aliphatic ring.
  • This ring includes C-C hydrocarbon group, C-C alkoxy group, C-C aryloxy group.
  • Substituents such as a group, amino group, hydroxyl group or silyl group may be introduced.
  • the saturated or unsaturated ring is an oxygen atom, a sulfur atom, or a group represented by the formula N (R U ) — [wherein R 11 is a hydrogen atom or a hydrocarbon group. ] May be interrupted. R 11 is preferably a hydrogen atom or a C to C alkyl group.
  • n is an integer of 1 or more.
  • the polyacene derivatives represented by the general formula (I) are tetracyclic and pentacyclic, that is, naphthacene derivatives and pentacene derivatives, respectively.
  • n is not limited to 1 or 2, and may be an integer of 3 or more, an integer of 4 or more, or an integer of 5 or more. Although not particularly limited, it is preferably about 1 to 2 in consideration of reliable solubility, production cost and the like.
  • the photoelectric conversion element of the second invention has the following characteristics.
  • the energy gap between the work function of the anode electrode and (l) the HOMO (maximum occupied molecular orbital) of the p-type semiconductor layer, and the work function of Z or the cathode electrode and (3) the LUMO (minimum of the n-type semiconductor layer) is 0.5 eV or less, preferably 0.3 eV or less.
  • Organic layer The energy gap when taking out electric charge to the electrode is large, and the holes and electrons generated in the photoelectric conversion layer are lost. In order to reduce the decrease, the energy gap should be 0.5 eV or less, preferably 0.3 eV or less.
  • a polyacene derivative or a mixture with another organic substance is used as a semiconductor compound in at least one of the semiconductor layers of (1) to (3).
  • Particularly preferred as the polyacene derivative is the polyacene derivative represented by the general formula (I) described above.
  • the organic substance in the case of forming a mixture with the polyacene derivative is preferably another general organic substance, but an oligomer or a polymer is particularly preferable, and the force mobility or the mobility by mixing with the polyacene derivative is not particularly limited. Any organic substance that improves stability may be used.
  • the photoelectric conversion element of the third invention has the following characteristics. That is, a photoelectric conversion element having an organic semiconductor layer is characterized in that a buffer layer is provided between each electrode and the semiconductor layer, and the organic compound in the buffer layer and the electrode are chemically bonded. The so-called self-organization is the formation of a monolayer.
  • the molecular orientation of the buffer single layer compound in contact with the electrode can be controlled, the molecular orientation of the compound in the organic semiconductor layer in contact with the notfer layer may be controlled. It is conceivable that the molecular orientation of the buffer layer is controlled by the type, position and amount of the functional group bonded to the metal forming the electrode. As a result, a thin film having a preferred molecular orientation for the organic semiconductor layer is obtained, and a thin film with high charge mobility, which is an object of the present invention, can be produced.
  • the organic compound in the buffer layer must have a functional group containing a heteroatom such as nitrogen, oxygen, sulfur, or phosphorus. Is preferred. In particular, those containing sulfur are preferred-those having an SH group (thiol group) are most preferred.
  • a gold electrode including a gold thin film or an electrode containing gold
  • Specific examples of chemical bonding between the organic compound in the buffer layer and the electrode include, for example, Au by the reaction of gold (Au) forming the electrode with an organic compound in the buffer layer having an SH group (thiol group). — S-bonding. That is, a gold electrode (including a gold thin film or an electrode containing gold) may be reacted with a compound having an SH group.
  • examples of the organic compound having one buffer layer include those having one COOH group.
  • organic compound for the nofer layer examples include polycyclic aromatic compounds such as benzenethiol, naphthalene thiol, anthracene thiol, and anthracene carboxylic acid.
  • a conventional method can be adopted and is not particularly limited, and examples thereof include the following methods.
  • the organic compound in the buffer layer is dissolved in an appropriate solvent such as THF at a concentration of about 0.01 to 20% by mass, and the solution of the organic compound is dissolved.
  • an appropriate solvent such as THF
  • the organic compound forms a chemical bond with the electrode on the electrode.
  • One buffer layer can be formed.
  • the electrode and the organic compound in the buffer layer can be chemically bonded by vapor-depositing an organic compound in the nofer layer on the electrode.
  • what is necessary is just to form a photoelectric converting layer on the buffer one layer by the various formation methods mentioned later.
  • a buffer compound is deposited on the photoelectric conversion layer to form a buffer layer, and then an electrode material is deposited on the buffer layer to form an electrode.
  • the electrode and the organic compound in the buffer layer can be chemically bonded.
  • the buffer layer is formed as a thin film and may be a monomolecular layer.
  • the photoelectric conversion element of the third invention there is a polyacene derivative as a semiconductor compound in at least one of the semiconductor layers of (1) to (3) 1, a polyacene derivative and another organic substance.
  • a polyacene derivative represented by the general formula (I) described above is particularly preferred.
  • the photoelectric conversion element of the fourth invention has the following characteristics. That is, in a photoelectric conversion element having a photoelectric conversion layer between an anode electrode and a cathode electrode facing each other, the photoelectric conversion layer includes: (l) a p-type semiconductor layer and (2) a mixture of a p-type semiconductor and an n-type semiconductor.
  • an n-type semiconductor layer or a metal oxide layer sequentially laminated and (1) a p-type semiconductor in a p-type semiconductor layer and (2) a p-type semiconductor in a mixed layer, (2) n-type semiconductor and (3) in the mixed layer and the n-type semiconductor of n-type semiconductor layer, be respectively constituted of the same material, Yogu be configured in different wood fee ⁇ each One or more of these semiconductor layers may have an arbitrary layer that does not prevent good charge transfer as a photoelectric conversion element between layers, and the charge mobility is 0.005 cm 2 ZV ' Using an organic semiconductor thin film of sec or more, it has a plurality of photoelectric conversion units comprising the photoelectric conversion layer, and each photoelectric conversion unit has an intermediate electrode It is characterized by being separated by a layer forming an equipotential surface and Z or a charge generation layer.
  • Laminating photoelectric conversion units is effective for covering and effectively using the entire wavelength region of sunlight.
  • the film thickness of the photoelectric conversion layer is limited, so it is difficult to absorb 100% of sunlight with a single photoelectric conversion unit even in a certain wavelength region.
  • the number of the photoelectric conversion units is not particularly limited as long as it is two or more. However, from the viewpoint of improvement in photoelectric conversion efficiency and cost, it is preferable. About 2 to 3 pieces.
  • the layer forming the equipotential surface as the intermediate electrode includes, for example, ITO (indium tin oxide), IZO (indium zincate), Ag, Au, fullerenes, oligothiophene. Such a compound can be formed by forming a thin film on the photoelectric conversion unit.
  • the layer forming the equipotential surface preferably has a thickness of 0.1 to 50 nm.
  • the charge generation layer as the intermediate electrode may be, for example, N, ⁇ '-diphenyl-N, ⁇ '-di (m-tolyl) benzidine, 4, 4 ', 4 "-tris (N-3-methylphenol) N-phenol-amino) -Arylamine, such as triphenylamine, metal oxides such as VO, tetrafur
  • the charge generation layer is 0.1-5
  • the film thickness is Onm! /.
  • a buffer layer is provided between each electrode and the semiconductor layer, and the electrode and the organic compound in the buffer layer are chemically bonded.
  • At least one of the semiconductor layers (1) to (3) is a polyacene derivative as a semiconductor compound or a mixture of a polyacene derivative and another organic substance.
  • the polyacene derivative represented by the general formula (I) described above is particularly preferred.
  • the photoelectric conversion element of the present invention has, for example, a structure in which a support, an electrode A, a photoelectric conversion layer, an electrode B, and a covering layer are sequentially stacked.
  • the electrode B and the coating layer may be sequentially laminated.
  • Electrode A is an anode and electrode B is a cathode.
  • the support and the electrode A are formed of a light-transmitting material.
  • the coating layer and the electrode B are formed of a light-transmitting material.
  • the support, the electrode A, the electrode B, and the coating layer are formed of a light transmissive material.
  • the support is not limited by the material and thickness as long as the electrode A can be stably held on the surface. Therefore, the shape of the support may be plate or film.
  • the support for example, metals such as aluminum and stainless steel and alloys, plastics such as polycarbonate and polyester, wood, paper, and cloth are used.
  • the support needs to be made of a light-transmitting substance (material), and transparent glass, transparent plastic, etc. can be used.
  • the transparency means a property of transmitting light in a predetermined wavelength region used in the photoelectric conversion element, for example, light in the visible light region at a high rate.
  • the photoelectric conversion element of the present invention is preferably formed on the surface of the support.
  • the electrode A may also serve as the support. In this case, the support may be omitted.
  • the electrode A has a work function of 4.5 V or more in order to be able to form a near-ohmic junction with the organic p-type semiconductor compound contained in the photoelectric conversion layer. More preferably.
  • electrode B is close to n-type semiconductor compounds and ohmics.
  • the work function is 4.5 V or less in order to enable high-speed bonding.
  • the work functions of the pair of electrodes arranged opposite to each other may have a relatively large relationship with each other (that is, the work functions are different from each other). Therefore, the work function of the electrode A only needs to be relatively larger than that of the electrode B in this embodiment.
  • the work function difference between the two electrodes is preferably 0.5 V or more.
  • these restrictions may be relaxed.
  • Examples of the electrodes A and B include metals such as gold, platinum and silver, and zinc oxide, indium oxide, tin oxide (NESA), tin-doped indium oxide (ITO), fluorine-doped tin oxide (F TO) and other metal oxides, lithium, lithium-indium alloy, sodium, sodium-strium alloy, calcium, magnesium, magnesium silver alloy, magnesium indium alloy, indium, ruthenium, titanium, manganese, yttrium, aluminum, aluminum A lithium alloy, an aluminum calcium alloy, an aluminum magnesium alloy, a graphite thin film, an organic conductive compound such as PEDOT-PSS, or the like can be used as appropriate. These electrode materials may be used alone or in combination.
  • Electrodes A and B can be formed using these electrode materials by methods such as vapor deposition, sputtering, ionization vapor deposition, ion plating, and cluster ion beam. It may be formed by firing by a sol-gel method or the like.
  • the negative electrode may have a single layer structure or a multilayer structure.
  • the thickness of the electrode depends on the material of the electrode material used. For both the anode and the cathode, the thickness is generally set to about 5 to about LOOOnm, more preferably about 10 to 500 nm. Note that at least one of the electrodes needs to be transparent or translucent, and it is more preferable to set the electrode material and thickness so that the light transmittance is 70% or more.
  • the polyacene derivative according to the present invention represented by the general formula (I) acts as a p-type organic semiconductor compound or an n-type organic semiconductor compound depending on its structure.
  • an n-type organic semiconductor compound is obtained by bonding an electron-withdrawing functional group as a substituent to a polyacene skeleton structure, and a P-type organic semiconductor compound is obtained by bonding other functional groups.
  • P-type organic semiconductor The compound and the n-type organic semiconductor compound can also be obtained by doping a known substance.
  • Examples of the electron-withdrawing functional group include known electron-withdrawing groups such as a carbonyl group, a cyano group, a nitro group, a sulfonyl group, a phosphonyl group, and a halogen group, or a functional group to which these electron-withdrawing groups are bonded.
  • electron-withdrawing groups such as a carbonyl group, a cyano group, a nitro group, a sulfonyl group, a phosphonyl group, and a halogen group, or a functional group to which these electron-withdrawing groups are bonded.
  • a force in which the polyacene derivative according to the present invention represented by the general formula (I) is preferably used as a semiconductor compound may be used as well as other known semiconductor compounds. Good.
  • the photoelectric conversion element of the first invention it is essential to use a high mobility material in at least one layer of the photoelectric conversion layer, but a known semiconductor compound is used in the other layers. May be.
  • the polyacene derivative according to the present invention may be used alone or in combination with a known semiconductor compound which may be used in combination. May be.
  • Other p-type semiconductor compounds that can be used in the present invention include phthalocyanine pigments, indigo or thioindigo pigments, quinacridone pigments, and the like.
  • Examples of other compounds having a hole injecting and transporting function used in the present invention include triarylmethane derivatives, triarylamine derivatives, oxazole derivatives, hydrazone derivatives, stilbene derivatives, pyrazoline derivatives, polysilane derivatives, polyphenylene vinylene. And derivatives thereof, polythiophene and derivatives thereof, and poly (N-vinylcarbazole) derivatives.
  • triarylamine derivatives for example, 4,4′-bis [N-phenol-N— (4 ′ ′-methylphenol) amino] biphenyl, 4,4′-bis [N-phenol) -Lu-N- (3 "-methylphenol) amino] biphenyl, 4, 4'-bis [N-phenol-N- (3" -methoxyphenol) amino] biphenyl, 4, 4'-Bis [N-Ferule N-Naphtyl) amino] biphenyl, 3, 3'-Dimethyl-4,4'-Bis [N-Fel- N- (3 "-Methylphenol) Amino] biphenyl, 1,1-bis [4 '-[N, N di (4 "-methylphenol) amino] phenol] cyclohexane, 9,10bis [N- (4'- Methylphenol) N— (4 ”—n-Butylphenol) amino] phenanthrene, 3,8-bis (N, N-diphenylamino) one 6-
  • n-type semiconductor compounds usable in the present invention include perylene pigments, perinone pigments, polycyclic quinone pigments, azo pigments, C fullerenes as organic compounds.
  • organometallic complexes for example, tris (8-quinolinolato) aluminum, bis (10 benzo [h] quinolinolato) beryllium, beryllium salt of 5-hydroxyflavone, aluminum salt of 5-hydroxyflavone], oxadiazole derivatives [for example 1,3 bis [5 '— (p-tert-butylphenol) —1,3,4-oxazodiazo-lru2′-yl] benzene], triazole derivatives [eg 3- (4 ′ tert-butylphenol- 4) 5-phenol (4) -biphenol) 1, 2, 4 triazole], phenanthrine phosphorus derivatives [eg, 2,9 dimethyl-4,7 diphenyl-1,10 phenanthrene ( Bathocproin, BCP)], triazine derivatives
  • organometallic complexes for example, tris (8-quinolinolato) aluminum, bis (10 benzo [h] quinolinolato) beryllium
  • the method for forming the photoelectric conversion layer is not particularly limited.
  • a vacuum deposition method, an ionization deposition method, a solution coating method for example, a spin coating method, a casting method, a dip coating method, a bar coating method.
  • a thin film as a semiconductor layer of the above (1) to (3) can be produced by a roll coating method, a Langmuir 'closet method, an ink jet method or the like.
  • each layer is formed by vacuum vapor deposition, but is not limited to particular conditions of the vacuum deposition, 10- 5 Torr about less under vacuum, 50 to 600 ° C about a boat temperature (steam The deposition temperature is preferably about 0.005 to 50 nm Zsec at a substrate temperature of about 50 to 300 ° C. In this case, it is possible to produce a photoelectric conversion element having further excellent characteristics by continuously forming it under vacuum.
  • each layer is formed using a plurality of compounds by the vacuum deposition method, it is preferable to co-deposit by controlling the temperature of each boat containing the compounds individually.
  • each layer is formed by a solution coating method
  • a component for forming each layer or its component and a binder resin are dissolved or dispersed in an appropriate solvent to form a coating solution, and various coating methods using the coating solution
  • a thin film can be formed.
  • Usable binder resins include, for example, poly-N-butylcarbazole, polyacrylate, polystyrene, polyester, polysiloxane, polymethyl acrylate, polymethyl methacrylate, polyether, polycarbonate, polyamide and polyimide.
  • Polyamideimide Polyparaxylene, polyethylene, polyethylene ether, polypropylene ether, polyphenylene oxide, polyethersulfone, polyaline and derivatives thereof, polythiophene and derivatives thereof, polyphenylene biylene and derivatives thereof, polyfluorene And polymer compounds such as derivatives thereof, polyethylene biylene and derivatives thereof, and the like.
  • the binder resin may be used alone or in combination.
  • the above-mentioned solvent for dissolving or dispersing the component forming each layer or the component and the binder resin is exemplified by an organic solvent and water.
  • the organic solvent include hexane, octane, decane, Hydrocarbon solvents such as toluene, xylene, ethylbenzene, 1-methylnaphthalene, etc., ketone solvents such as acetone, methylethylketone, methylisobutylketone, cyclohexanone, dichloromethane, chlorophenol, tetrachloromethane, dichloroethane, trichloromethane Halogenated hydrocarbon solvents such as ethane, tetrachloroethane, black benzene, dichlorobenzene, and black toluene, ester solvents such as ethyl acetate, butyl acetate, amyl acetate,
  • the dispersion method is not particularly limited, but it can be dispersed in the form of fine particles using, for example, a ball mill, a sand mill, a paint shaker, an attritor, a homogenizer or the like.
  • the concentration of the coating solution can be set to a concentration range suitable for producing a thin film having a desired thickness by a coating method that is not particularly limited.
  • the concentration of the semiconductor compound in the coating solution is about 0.1 to 50% by weight, preferably about 1 to 30% by weight.
  • the amount used is not particularly limited, but in general, the semiconductor component forming each photoelectric conversion layer (for example, having one photoelectric conversion layer).
  • (1) to (3) about 5 to 99.9% by weight, preferably about 10 to 99% by weight, more preferably, based on the total amount of each semiconductor component forming the layer. Is set to about 15 to 90% by weight.
  • the polyacene derivative represented by the general formula (I), which is an organic semiconductor preferably used in the present invention is easy to design a molecule soluble in a solvent, and is applied to the above solution by spin coating or the like. It is suitable for thin film production by the method. By forming a thin film by the solution coating method using the polyacene derivative, workability and productivity are remarkably improved.
  • the film thickness of the photoelectric conversion layer is not particularly limited, but is generally 5 ⁇ ! It is preferable to set to about 5 ⁇ m.
  • a protective layer is provided on the manufactured device for the purpose of preventing contact with oxygen, moisture, etc., and the device is made of, for example, norafine, liquid paraffin, silicon oil, fluorocarbon. It can be protected by enclosing it in an inert material such as oil or zeolite containing fluorocarbon oil.
  • the material used for the protective layer examples include organic polymer materials (for example, fluorine resin, epoxy resin, silicone resin, epoxy silicone resin, polystyrene, polyester, polycarbonate, polyamide, Polyimide, polyamideimide, polyparaxylene, polyethylene, polyphenylene oxide), inorganic materials (eg, diamond thin film, amorphous silica, electrically insulating glass, metal oxide, metal nitride, metal carbonide, metal sulfide)
  • the material used for the protective layer may be used alone or in combination.
  • the protective layer may have a single layer structure or a multilayer structure.
  • a metal oxide film for example, an acid aluminum film
  • a metal fluoride film can be provided as a protective film on the electrode.
  • an organic phosphorus compound, polysilane, an aromatic amine derivative, a phthalocyanine derivative (for example, copper phthalocyanine), and an interface layer (intermediate layer) having a strong bonding force can be provided on the surface of the electrode.
  • the electrode can be used by treating the surface with, for example, acid, ammonia, Z hydrogen peroxide, or plasma.
  • the photoelectric conversion element of the present invention is used as a high-efficiency photoelectric conversion element as an extension of a conventional photoelectric conversion element such as a remote power source and an auxiliary power source for portable small electronic devices. , It can be used for all applications utilizing photoelectric conversion.
  • the polyacene derivative represented by the general formula (I) can be obtained, for example, by subjecting a hydrocarbon condensed ring represented by the following formula (II) to aromatics in the presence of a dehydrogenating reagent in a solvent. be able to.
  • hydrocarbon condensed ring represented by the above formula (II) has, for example, the following formula depending on the type of bond:
  • hydrocarbon condensed rings represented by (Ha), (lib) and (lie) are included.
  • n represented by the above formula (II) is an odd number and is a hydrocarbon condensed ring represented by the above formula (lib)
  • k in the above formula (lib) is (n + l) It is an integer indicated by Z2.
  • m in the above formula (lie) is represented by nZ2. Is an integer.
  • the hydrocarbon condensed ring represented by the above formula (Ila) In the case of producing the polyacene derivative represented by the general formula (I) by aromatizing the hydrocarbon condensed ring represented by the above formula (Ila), the hydrocarbon condensed ring represented by the above formula (Ila) One ring of will be aromatized. On the other hand, in the case of the hydrocarbon condensed ring represented by the above formula (lib) or the above formula (lie), two or more rings are aromatized.
  • the ring in the repeating unit may be an aromatic ring, an aromatic ring, or a case where the case is randomly repeated. Also included
  • the dehydrogenation test is performed.
  • the drug is preferably a compound represented by the following formula (III).
  • X 1 , X 2 , X 3 and X 4 are each independently a halogen atom or a cyan group.
  • halogen atom represented by X 1 , X 2 , X 3 and X 4 in the above formula (III) a chlorine atom, a bromine atom or a bromine atom is more preferable. More preferred is a chlorine atom.
  • X 1 , X 2 , X 3 and X 4 may all be chlorine atoms. That is, the compound represented by the above formula (III) may be chloral.
  • X 1 and X 2 may be a cyan group
  • X 3 and X 4 may be a chlorine atom. That is, the compound represented by the formula (III) may be 2,3-dichloro-5,6-disyanoquinone.
  • X 1 , X 2 , X 3 and X 4 may all be a cyan group. That is, the compound represented by the above formula (III) may be 2, 3, 5, 6-tetracyanoquinone! /.
  • the compound represented by the above formula (III) is preferably used in an amount of 0.9 to 1.2 equivalents of the compound represented by the above formula ( ⁇ ) in order to prevent the formation of such a by-product. It is more preferable to use an equivalent amount of 9 to 1.15. It is more preferable to use 0.995-1.05 equivalent.
  • reaction temperature is preferably from -80 to 200 ° C, more preferably from 0 to 100 ° C, and further preferably from 10 to 80 ° C. If desired, proceed with reaction blocking light Let me do it.
  • the dehydrating reagent preferably contains noradium.
  • palladium supported on carbon such as activated carbon, or what is sold as so-called palladium carbon (PdZc) can be suitably used.
  • PdZc is a catalyst widely used for dehydrogenation, and in the present invention, it can be used in the same manner as in conventional dehydrogenation.
  • the reaction temperature when PdZc is used is, for example, 200 to 500 ° C. However, the reaction temperature may be appropriately set depending on various conditions such as starting materials.
  • hydrocarbon condensed ring represented by the above formula (II) can be obtained, for example, by the following scheme.
  • a la and A 2a may each independently have a substituent containing a halogen atom, or a C-C alkoxycarbonyl group or a substituent containing a halogen atom.
  • a C to C aryloxycarbonyl group which may have X is a halogen atom, etc. Leaving group.
  • the bond indicated by the solid line and the dotted line represents a single bond or a double bond;
  • M represents a group 3 to 5 of the periodic table or a lanthanide series metal;
  • L 1 and L 2 are independent of each other.
  • L 1 and L 2 may be bridged;
  • Y 1 and Y 2 are each independently a leaving group.
  • the compound 3 shown in the following [Chemical Formula 10] was synthesized in the same manner as in the synthesis method of the Compound 2 in Synthesis Example 2, except that the diyne 2 shown in the following [Chemical Formula 11] was used instead of the above diyne 1. did. It was synthesized by the following procedure.
  • buffers 1 and 2 were used for the following buffers 1 and 2, respectively.
  • buffer 3 was synthesized from 9-bromoanthracene (manufactured by Tokyo Chemical Industry) by reaction via Grignard reagent.
  • an electrode mask (light-receiving area: 2 mm ⁇ 2 mm) was installed, and aluminum was deposited as an electrode to a film thickness of about lOOnm to produce a photoelectric conversion element.
  • the open circuit voltage, the short circuit current, the fill factor, and the conversion efficiency were measured at a white light intensity of 100 m WZcm 2 using a photoelectric conversion element evaluation apparatus manufactured by Spectrometer Co., Ltd. The results are shown in Table 2.
  • Example 2 1 2 Comparative product 1 Comparative product L + Comparative product 2 Comparative product 3 0.44 2.2 0.36 0.35
  • the ITO transparent electrode was patterned, cleaned, and fixed to the substrate holder of the vapor deposition apparatus.
  • Gold was deposited to a thickness of 5 nm on a fixed ITO transparent electrode.
  • This substrate was dipped in a 2% by mass THF solution of buffer 1 and pulled up, rinsed with THF, and then vacuum-dried to produce a buffer layer on the gold thin film.
  • the p-type organic semiconductor compound shown in Table 3 is dissolved in 1,2-dichloroethane, applied onto the nofer layer, dried, and dried to a thin film ((l) p-type semiconductor layer having a thickness of 50 nm). ) was produced.
  • Example 2 the film thickness of ⁇ -type organic semiconductor compound and ⁇ - type organic semiconductor compound shown in Table 3 at a mixing ratio (volume basis) of 1: 1.
  • 20 nm ((2) mixed layer) and n-type organic semiconductor compounds were sequentially deposited to a thickness of 20 nm ((3) n-type semiconductor layer).
  • an electrode mask (light receiving area: 2 mm ⁇ 2 mm) was placed, and aluminum was deposited as an electrode to a film thickness of about lOO nm to produce a photoelectric conversion element. With respect to this photoelectric conversion element, the same measurement as in Example 2 was performed. The results are shown in Table 3.
  • Example 2 In the same manner as in Example 2, the ITO transparent electrode was patterned and washed. In addition, UV ozone treatment was performed to increase the work function of the ITO electrode by 0.5 eV. Then, p-type organic semiconductor compound, P-type organic semiconductor compound and n-type organic semiconductor compound shown in Table 4-1 (mixing ratio is 1: 1 by volume), and n-type organic semiconductor compound are sequentially deposited. (L) A p-type semiconductor layer, (2) a mixed layer, and (3) an n-type semiconductor layer were prepared. Next, an electrode mask (light-receiving area: 2 mm ⁇ 2 mm) was installed, and aluminum was deposited as an electrode to a film thickness of about lOOnm to produce a photoelectric conversion element.
  • an electrode mask light-receiving area: 2 mm ⁇ 2 mm
  • Comparison example Comparison product 4 Comparison product 1 + Comparison product 2 Comparison product 2
  • the ITO transparent electrode was patterned, cleaned, and fixed to the substrate holder of the vapor deposition apparatus.
  • Gold was deposited to a thickness of 5 nm on a fixed ITO transparent electrode.
  • This substrate was dipped in a 2% by mass THF solution of the buffer compound shown in Table 5 and pulled up, rinsed with THF, and then vacuum-dried to produce a buffer layer I on the gold thin film.
  • the comparison product 1 has a thickness of 20 nm ((l) p-type semiconductor layer) on the buffer layer I, and the mixing ratio of the comparison product 1 and the comparison product 2 (volume basis) 1 :
  • the film thickness of 20 nm ((2) mixed layer) in 1 and the comparative product 2 were sequentially deposited in a film thickness of 20 nm ((3) n-type semiconductor layer).
  • the buffer compound shown in Table 5 was deposited to a thickness of lnm to prepare a buffer layer II, and then an electrode mask (light receiving area 2 mm X 2 mm) was installed to As a result, aluminum was vapor-deposited to a thickness of about 100 ⁇ m to produce photoelectric conversion elements (Examples 5-1 to 5-4). With respect to this photoelectric conversion element, the same measurement as in Example 2 was performed. The results are shown in Table 5. As in Example 2, after cleaning the ITO transparent electrode, PEDOT—PSS [Poly (ethylenedioxy) thiophene-polystyrene sulphonic acid] was spin-coated to a film thickness of 30 nm, and then dried under reduced pressure.
  • PEDOT—PSS Poly (ethylenedioxy) thiophene-polystyrene sulphonic acid
  • comparative product 1 is 20 nm (p-type half Conductor layer)
  • comparative product 1 and comparative product 2 were sequentially deposited at a mixing ratio (volume basis) of 20: 1 (mixed layer) and comparative product 2 by 20 nm (n-type semiconductor layer).
  • an electrode mask (light-receiving area is 2 mm x 2 mm) is installed, lithium fluoride is evaporated to a thickness of 0.5 nm to form inorganic buffer layer II, and then aluminum is deposited as an electrode to a thickness of about lOOnm.
  • a photoelectric conversion element was produced (Comparative Example 5-1). Further, photoelectric conversion elements were produced in the same manner as in Comparative Example 5-1, except that noffer layers I and II were not provided (Comparative Example 5-2). Measurements similar to Example 2 were performed. The results are shown in Table 5.
  • the ITO transparent electrode was patterned, cleaned, and fixed to the substrate holder of the vapor deposition apparatus.
  • compound 1 is 60nm ((l) p-type semiconductor layer)
  • comparative product 1 and comparative product 2 are mixed at a mixing ratio (volume basis) of 1: 1 by 20nm ((2) mixed layer)
  • Comparative product 2 was deposited by 20 nm
  • Comparative product 5 was sequentially deposited by lOnm ((3) n-type semiconductor layer) to form a photoelectric conversion unit 1.
  • 0.5 nm of silver was vapor-deposited, and then 5 nm was vapor-deposited with N, ⁇ '-diphenyl-N.
  • Example 6-1 For this photoelectric conversion element, the same measurement as in Example 2 was performed. The results are shown in Table 6.
  • tandem photoelectric conversion element A After forming the photoelectric conversion unit 1 into a film, ITO was deposited as an electrode to a thickness of 10 nm by sputtering. Next, a photoelectric conversion unit 2 was prepared in the same manner as the tandem photoelectric conversion element A, and aluminum was also evaporated to a thickness of 1 OOnm to prepare a tandem photoelectric conversion element B (Example 6-2). With respect to this photoelectric conversion element, the same measurement as in Example 2 was performed. The results are shown in Table 6.
  • the ITO transparent electrode was patterned, cleaned, and fixed to the substrate holder of the vapor deposition apparatus.
  • Compound 1 was deposited to a thickness of 10 nm ((l) p-type semiconductor layer) on the fixed ITO transparent electrode.
  • a 1: 1 mixture of compound 7 (P3HT) and compound 8 (PCBM) was dissolved in dichroic benzene and formed into a film by spin coating. The film thickness was controlled to 50 nm, 100 nm, 150 nm, and 175 nm according to the number of rotations of the spin coat at this time.
  • comparative product 5 was deposited by lOnm ((3) n-type semiconductor layer), and aluminum was deposited by lOOnm to produce a photoelectric conversion element.
  • a photoelectric conversion element was produced using Compound 2 or Compound 4 instead of Compound 1.
  • Compound 2 or Compound 4 was dissolved in toluene and formed into a film by a solution coating method.
  • Example 7 In the same manner as in Example 7, the transparent electrode was patterned, cleaned, and fixed to the substrate holder of the vapor deposition apparatus.
  • Compound 1 was vapor-deposited 10 nm ((l) p-type semiconductor layer) on the fixed transparent electrode.
  • a 1: 1 mixture of compound 7 and compound 8 was dissolved in dichroic benzene, and a film was formed by spin coating. After drying, water isopropano of titanium isopropoxide Then, a titanate layer was formed by a sol-gel method, and aluminum was deposited by lOOnm to prepare a photoelectric conversion element. Table 8 shows the results of this photoelectric conversion element.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Nanotechnology (AREA)
  • Mathematical Physics (AREA)
  • Theoretical Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Photovoltaic Devices (AREA)

Abstract

対向する陽極電極と陰極電極との間に光電変換層を有する光電変換素子であり、該光電変換層が、(1)p型半導体層および(2)p型半導体とn型半導体との混合層、必要に応じてこれに(3)n型半導体層または金属酸化物層を順次積層した構造を有する光電変換素子において、以下に示す(a)~(c)のうちの少なくとも1つの光電変換効率向上手段を採用したことを特徴とする光電変換素子。  (a)上記(1)~(3)の半導体層の少なくとも1つに、電荷移動度が0.005cm2/V・sec以上の有機半導体薄膜を用いること  (b)上記陽極電極の仕事関数と上記(1)p型半導体層のHOMO(最高被占分子軌道)とのエネルギーギャップ、及び/又は、上記陰極電極の仕事関数と上記(3)n型半導体層のLUMO(最低空軌道)とのエネルギーギャップが、0.5eV以下であること  (c)上記陽極電極及び/又は上記陰極電極と上記光電変換層との間に有機化合物で形成されるバッファー層を設置し、該バッファー層の有機化合物と上記陽極電極及び/又は上記陰極電極とを化学結合させること

Description

明 細 書
光電変換素子
技術分野
[0001] 本発明は、光照射により起電力を発生する光電変換素子に関する。
背景技術
[0002] 近年、化石燃料による地球温暖化や人口の増加に伴うエネルギー需要の増大は、 人類の存亡に関わる大きな問題と成っている。一方、太陽光は、言うまでもなぐ太古 以来現在まで、地球の環境を育み、人類を含む全ての生物のエネルギー源となって きた。そこで、最近では、無限でかつ有害物質を発生しないクリーンなエネルギー源 として太陽光を利用することが検討されている。なかでも、光エネルギーを電気エネ ルギ一に変換する光電変換素子、所謂太陽電池が有力な技術手段として注目され ている。
[0003] 太陽電池の起電力材料としては、単結晶、多結晶、アモルファスのシリコンや Culn Se、 GaAs、 CdS等の化合物からなる無機半導体が使用されている。これらの無機 半導体を用いた太陽電池は、 10%から 20%と比較的高いエネルギー変換効率を示 すため、遠隔地用の電源や携帯用小型電子機器の補助的な電源として広く用いら れている。しかし、冒頭で述べたように、化石燃料の消費を抑えて地球環境の悪ィ匕を 防止するという目的に照らすと、現時点では無機半導体を用いた太陽電池は十分な 効果を上げているとは言い難い。なぜなら、これらの無機半導体を用いた太陽電池 は、プラズマ CVD法や高温結晶成長プロセスにより製造されており、素子の作製に 多くのエネルギーを必要とするためである。また、 Cd、 As、 Se等の環境に有害な影 響を及ぼしかねない成分を含んでおり、素子の廃棄による環境破壊の懸念もある。
[0004] この点を改善し得る光起電力材料として、有機半導体を用いた有機太陽電池が提 案されている。有機半導体は、多様性があること、毒性が低いこと、加工性'生産性が よくコストダウンが可能であること、可撓性を有するためフレキシブルィ匕が容易である こと等の優れた特長を有する。これらの優れた特長を活かし、実用化に向けた有機太 陽電池の研究が盛んである。 [0005] 有機太陽電池は色素増感型と半導体型とに大別できる。色素増感型は、 1991年 にスイスのグレーツェル(Gratzel)らが報告し大きな注目を浴びたもので、表面積の 大きい多孔質二酸ィ匕チタン薄膜の表面にルテニウムビビリジンカルボン酸色素を吸 収させた電極を用い、これに電解液を接触させた構造を有する(非特許文献 1)。し かし、二酸ィ匕チタンの処理に高温が必要であったり、電解液及びヨウ素を使用するこ との問題点が指摘され、実用化はなかなか進んでいない。二酸化チタンの処理が低 温でも可能になってプラスチック基板に作製可能になれば、また、電解液部分を固 体化できれば、実用化に向けて大きく前進することは明らかであり、二酸化チタンの 低温処理や固体化には種々の方法が試みられて 、るが、!/、ずれも低!、光電変換効 率に止まっている。例えば、電解質部分に導電性高分子であるポリア-リン、ポリピロ ール、ポリチォフェン等を使用することについて検討がなされている力 いずれも変 換効率は低!ヽ (非特許文献 2)。
[0006] 半導体型は、光生成した電荷ペアを解離させる機構の違いによってショットキー型 と pn接合型の 2種類に分けられる。ショットキー型は、有機半導体と金属との接合面 に誘起されるショットキー障壁による内部電界を利用する(非特許文献 3)。かかるショ ットキー型太陽電池は、比較的大きな開放電圧 (Voc)を得られるという特長を有する 反面、照射光量が増加すると光電変換効率が低下しやす 、と 、う課題を有して 、る
[0007] pn接合型は、 p型半導体と n型半導体の接合面に発生する内部電界を利用するも ので、両半導体に有機物を用いる有機 Z有機 pn接合型と、どちらかの半導体に無 機物を用いる有機 Z無機 pn接合型等がある。カゝかる有機 pn接合型太陽電池は、比 較的高 、変換効率が得られて 、るが十分ではな 、 (非特許文献 4)。
[0008] また、これまで有機半導体型太陽電池では、有機半導体で形成される pn接合の光 電変換層の厚みが数 nm程度しかな 、ため、単純積層型有機太陽電池では光の利 用効率が悪ぐ大きな光電流を取り出すことはできな力つた。このため、有機薄膜太 陽電池のエネルギー変換効率を向上させるには、光電変換層の拡大による利用効 率の改善が鍵とされていた。そこで、 p型半導体材料と n型半導体材料を混合した層 を設けて、有機半導体に分子レベルで 3次元的な pn接合を形成させて、変換効率の 大幅な向上を図っている(非特許文献 5)。
[0009] しかし、この混合層の膜厚を連続的に変化させた場合の光電変換特性を評価する と、膜厚が増えると光の利用効率が向上してキャリア発生量が増加する一方、キヤリ ァ輸送能は逆に減少してしまうため、エネルギー変換効率が極大となる混合層膜厚 が存在することが明ら力となっている。これは、混合層中では p型と n型の分子が共存 しており、発生したキャリアが再結合してしまう確率も大きくなつているためである。多 くの場合、キャリア輸送能の減少の影響が大きぐ膜厚をできるだけ薄くしなければ良 い効率が得られないという欠点があった。また、 p型半導体材料と n型半導体材料を 混合した層の外側の P型半導体層や n型半導体層にお 、ても、膜厚を厚くするとキヤ リア分離能は増加するがキャリアの輸送能は低下するため、エネルギー変換効率が 極大となる混合層膜厚が存在する。この場合もキャリア輸送能の減少の影響が大きく 、膜厚をできるだけ薄くしなければならないという欠点があった。
[0010] 一方、光電変換層の周辺にバッファ一層を設けて変換効率の改善を図る試みもな されている。例えば、陽極電極としての ITO電極に PEDOT—PSS [Poly (ethylene dioxy) thiophene― polystyrene sulphonic acid]の眉 (膜 J享丄 0〜100nm)を、 陰極電極側に BCP[Bathocuproine]層(膜厚 lOnm程度)や LiF (膜厚数 nm)を形 成する方法等が報告されている (非特許文献 6、 7)。
[0011] また、有機半導体化合物は結晶形によって異なる特性、例えば電荷移動度を有し 、有機半導体化合物は特定の結晶形にお ヽてのみ優れた光電特性を示すことが知 られている。蒸着法による成膜工程で結晶形を選択する方法として、基板温度制御 による改善方法が試みられているが(非特許文献 8)、高い光電特性を有する所望の 結晶形力もなる半導体層を得るのは難 、と 、う問題もある。
[0012] また、 pn接合セルを 2個以上積層したタンデム化セルの試みも報告されて 、る(非 特許文献 9)。
[0013] 非特許文献 1 : B. O'regan, M. Gratzel, Nature, 353, 737 (1991)
非特許文献 2 : K. Murakoshi, R. Kogure, Y. Wada, and S. Yanagida, Che mistry Letters 1997, p471
非特許文献 3 :R. O. Loutfy et al. , J. Chem. Phys. Vol. 71, pl211 非特許文献 4 : C. W. Tang, Appl. Phys. Lett. 48 (2) , 13 January 1986, pi 83
非特許文献 5 :特許-ユース、 No. 11471、 p8、平成 17年 2月 18日(金曜日)、財団 法人経済産業調査会
非特許文献 6 : P. Peumans, V. Bulovic and S. R. Forrest, Appl. Phys. Let t. , 76, 2650 (2000)
非特許文献 7 : C. J. Brabec, S. E. Shaheen, C. Winder, and N. S. Sariciftc i, Appl. Phys. Lett. , 80, 1288 (2002)
非特許文献 8 : Z. Bao, A. J. Lovinger, A. Dodabalapur, Appl. Phys. Lett. , 69, 3066 (1996)
非特許文献 9 : M. Hiramoto, M. Suezaki, M. Yokoyama, Chemistry Letter s 1990, p327
発明の開示
発明が解決しょうとする課題
[0014] 従って、本発明の目的は、加工性 ·生産性がよぐ毒性が低ぐ光電変換効率が良 好で、フレキシブルな光電変換素子を提供することにある。
課題を解決するための手段
[0015] p型半導体と n型半導体の混合層をつくり、界面の面積を大幅に増大することにより 、これまでの有機薄膜太陽電池の変換効率を改善してきているが、界面が増大した 分に相当する変換効率の向上が得られていないことを本発明者らは注目した。これ までの多くの議論は光を吸収して発生した励起子をどのようにして界面に運び、界面 でキャリアに変換するかというところに集中し、界面で溜まったキャリアをどのように輸 送するかと!/ヽぅ議論が欠落して!/ヽるように見えた。
[0016] 本発明者らは界面で発生した多くのキャリアが輸送されず、そのため界面付近で再 結合などにより、変換効率が増大した界面の面積分改善されていないひとつの大き な理由であると考えた。そこで界面付近で発生した多くのキャリアをいち早く電極へ 輸送することを考え、鋭意検討を重ねた結果、キャリア移動度の高い有機半導体材 料を使用することにより、上記目的を達成し得ることを見出した。 [0017] 本発明(請求の範囲第 1項に記載の発明)は、上記知見に基づきなされたもので、 対向する陽極電極と陰極電極との間に光電変換層を有する光電変換素子であり、該 光電変換層が、(l) p型半導体層、(2) p型半導体と n型半導体との混合層及び (3) n 型半導体層を順次積層した構造〔尚、(1) p型半導体層中の p型半導体と (2)混合層 中の P型半導体、 (2)混合層中の n型半導体と (3) n型半導体層中の n型半導体とは 、それぞれ、同一の材料で構成されていても、異なった材料で構成されていてもよい 〕を有する光電変換素子にぉ 、て、以下に示す (a)〜(c)のうちの少なくとも 1つ以上 の光電変換効率向上手段を採用したことを特徴とする光電変換素子を提供するもの である。
(a)上記(1)〜(3)の半導体層の少なくとも 1つに、電荷移動度が 0. 005cm2/V- sec以上の有機半導体薄膜を用いること
(b)上記陽極電極の仕事関数と上記(1) p型半導体層の HOMO (最高被占分子 軌道)とのエネルギーギャップ、及び Z又は、上記陰極電極の仕事関数と上記(3) n 型半導体層の LUMO (最低空軌道)とのエネルギーギャップ力 0. 5eV以下である こと
(c)上記陽極電極及び Z又は上記陰極電極と上記光電変換層との間に有機化合 物で形成されるバッファ一層を設置し、該バッファ一層の有機化合物と上記陽極電 極及び Z又は上記陰極電極とを化学結合させること
[0018] また、本発明(請求の範囲第 2項に記載の発明)は、対向する陽極電極と陰極電極 との間に光電変換層を有する光電変換素子であり、該光電変換層が、(l) p型半導 体層及び (2) p型半導体と n型半導体との混合層を順次積層した構造〔尚、(1) p型 半導体層中の p型半導体と (2)混合層中の p型半導体とは、それぞれ、同一の材料 で構成されて ヽても、異なった材料で構成されて ヽてもよ ヽ〕を有する光電変換素子 にお 、て、以下に示す (a)〜(c)のうちの少なくとも 1つ以上の光電変換効率向上手 段を採用したことを特徴とする光電変換素子を提供するものである。
(a)上記(1)〜(2)の半導体層の少なくとも 1つに、電荷移動度が 0. 005cm2/V- sec以上の有機半導体薄膜を用いること
(b)上記陽極電極の仕事関数と上記(1) p型半導体層の HOMO (最高被占分子 軌道)とのエネルギーギャップ、及び Z又は、上記陰極電極の仕事関数と上記(2)混 合層中の n型半導体層の LUMO (最低空軌道)とのエネルギーギャップ力 0. 5eV 以下であること
(c)上記陽極電極及び Z又は上記陰極電極と上記光電変換層との間に有機化合 物で形成されるバッファ一層を設置し、該バッファ一層の有機化合物と上記陽極電 極及び Z又は上記陰極電極とを化学結合させること
[0019] また、本発明(請求の範囲第 3項に記載の発明)は、対向する陽極電極と陰極電極 との間に光電変換層を有する光電変換素子であり、該光電変換層が、(l) p型半導 体層、 (2) p型半導体と n型半導体との混合層及び (3)金属酸化物層を順次積層し た構造〔尚、(l) p型半導体層中の p型半導体と (2)混合層中の p型半導体とは、それ ぞれ、同一の材料で構成されていても、異なった材料で構成されていてもよい〕を有 する光電変換素子にお!、て、以下に示す (a)〜(c)のうちの少なくとも 1つ以上の光 電変換効率向上手段を採用したことを特徴とする光電変換素子を提供するものであ る。
(a)上記(1)〜(2)の半導体層の少なくとも 1つに、電荷移動度が 0. 005cm2/V- sec以上の有機半導体薄膜を用いること
(b)上記陽極電極の仕事関数と上記(1) p型半導体層の HOMO (最高被占分子 軌道)とのエネルギーギャップ、及び Z又は、上記陰極電極の仕事関数と上記(2)混 合層中の n型半導体層の LUMO (最低空軌道)とのエネルギーギャップ力 0. 5eV 以下であること
(c)上記陽極電極及び Z又は上記陰極電極と上記光電変換層との間に有機化合 物で形成されるバッファ一層を設置し、該バッファ一層の有機化合物と上記陽極電 極及び Z又は上記陰極電極とを化学結合させること
[0020] また、本発明(請求の範囲第 4項に記載発明)は、少なくとも半導体層の少なくとも 1 つに、電荷移動度が 0. 005cmソ V· sec以上の有機半導体薄膜を用いる光電変換 効率向上手段を採用した請求の範囲第 1〜3項のいずれか 1項に記載の光電変換素 子を提供するものである。
また、本発明(請求の範囲第 5項に記載の発明)は、 p型半導体層に電荷移動度が 0. 005cm2ZV' sec以上の有機半導体薄膜を用いた請求の範囲第 1〜4項の 、ず れカ 1項に記載の光電変換素子を提供するものである。
[0021] また、本発明(請求の範囲第 6項に記載の発明)は、上記半導体層で構成される上 記光電変換層からなる光電変換ユニットを複数個有し、各光電変換ユニットは、中間 電極としての等電位面を形成する層及び Z又は電荷発生層によって仕切られて ヽる ことを特徴とする請求の範囲第 4又は 5項に記載の光電変換素子を提供するもので ある。
[0022] また、本発明(請求の範囲第 7項に記載の発明)は、少なくとも上記 (b)の光電変換 効率向上手段を採用した請求の範囲第 1〜3項のいずれか 1項に記載の光電変換素 子を提供するものである。
また、本発明(請求の範囲第 8項に記載の発明)は、少なくとも上記 (c)の光電変換 効率向上手段を採用した請求の範囲第 1〜3項のいずれか 1項に記載の光電変換素 子を提供するものである。
また、本発明(請求の範囲第 9項に記載の発明)は、上記光電変換層のうち(l) p型 半導体層の厚さが lOnm以上であることを特徴とする請求の範囲第 1〜8項のいずれ 力 1項に記載の光電変換素子を提供するものである。
[0023] また、本発明(請求の範囲第 10項に記載の発明)は、上記半導体層に用いられる 有機半導体ィ匕合物の少なくとも 1つが、下記一般式 (I)で示されるポリアセン誘導体 力 選ばれることを特徴とする請求の範囲第 1〜9項のいずれか 1項に記載の光電変 換素子を提供するものである。
[0024] [化 1]
[式中、
Figure imgf000008_0001
A3及び A4は、それぞれ互いに独立 して、水素原子;ハロゲン原子;置換基を有していてもよい C〜C 炭化水素基;置換
1 40
基を有していてもよい c〜c アルコキシ基;置換基を有していてもよい c〜c ァリ ールォキシ基;置換基を有していてもよい c〜
7 c アルキルァリールォキシ基;置換基 40
を有していてもよい C〜C アルコキシカルボ-ル基;置換基を有していてもよい C〜
2 40 7
C ァリールォキシカルボ-ル基;シァノ基( CN);力ルバモイル基( C ( = O) NH
40 2
);ハロホルミル基(—c(=o)—X、式中、 Xはハロゲン原子を示す。 );ホルミル基( — C ( = 0)— H);イソシァノ基;イソシアナト基;チオシアナト基;チォイソシアナト基; 置換基を有して ヽてもよ ヽァミノ基;置換基を有して ヽてもよ ヽアミド基;水酸基;又は 置換基を有して 、てもよ ヽシリル基、置換基を有して 、てもよ 、チェ-ル基であり、あ るいはこれらのうちの 2つ以上の基を含む官能基であり; 但し、 A1及び A2、 A3及び A 4は、互いに架橋して、式— C ( = 0)— B— C ( = 0)—で示される環を形成してもよく〔 式中、 Bは、酸素原子又は式— Ν (Β —で示される基 (式中、 Β1は、水素原子、 C〜
1
C 炭化水素基又はハロゲン原子である。)である。〕、また、 Α3及び Α4は、互いに架
40
橋して C〜C 飽和又は不飽和環を形成してもよぐ該飽和又は不飽和環は、酸素
4 40
原子、硫黄原子、又は式 N (RU)—で示される基 (式中、 R11は水素原子又は炭化 水素基である。)で中断されていてもよぐかつ、置換基を有していてもよく; nは、 1以 上の整数である。 ]
[0025] また、本発明(請求の範囲第 11項に記載の発明)は、上記光電変換層を構成する(
1) p型半導体層、 (2) p型半導体と n型半導体との混合層又は (3) n型半導体層ある いは金属酸化物層のうち少なくとも 1層が、溶液塗布法により形成されたことを特徴と する請求の範囲第 1〜10項のいずれか 1項に記載の光電変換素子を提供するもの である。
発明を実施するための最良の形態
[0026] 以下、本発明に関して詳細に説明する。
[0027] まず、上記 (a)の光電変換効率向上手段を採用した本発明の光電変換素子 (第一 の発明の光電変換素子)について説明する。
第一の発明の光電変換素子は以下の特徴を有する。つまり、対向する陽極電極と 陰極電極との間に光電変換層を有する光電変換素子において、該光電変換層は、 ( 1) p型半導体層、 (2) p型半導体と n型半導体との混合層及び (3) n型半導体層が順 次積層された構造を有し、 (1) p型半導体層の p型半導体と (2)混合層中の p型半導 体、(2)混合層中の n型半導体と (3) n型半導体層の n型半導体は、それぞれ同一の 材料で構成されていても、異なった材料で構成されていてもよぐ各層間には光電変 換素子としての良好な電荷移動を妨げることのない任意の層を有していてもよぐこ れらの半導体層の 1層以上に高移動度有機半導体薄膜を用いることを特徴とする。
[0028] このときの高移動度有機半導体薄膜の電荷移動度は 0. 005cm2ZV' sec以上が 好ましぐさらに好ましくは 0. 01cm2ZV' sec以上であり、またさらに好ましくは 0. lc m2ZV' sec以上であり、さらに好ましくは 0. 4cm2ZV' sec以上であり、またさらに好 ましくは 1. Ocm2/V' sec以上である。
上記有機半導体薄膜の電荷移動度の上限は、特に制限されず、大きいほど好まし い。尚、(1)〜(3)の半導体層からなる上記光電変換層は、陽極電極側に(1)層が 位置し、陰極電極側に(3)層が位置するように設けられる。
[0029] また光電変換素子は特に(3)の n型半導体層を有しない光電変換素子であっても よい。この場合、 p型半導体と n型半導体との混合層にもちいる p型半導体層は好まし くは少なくとも 1つの高分子化合物を含む。高分子化合物として特に制限するわけで はないが、置換基を有してもよいチォフェン誘導体の重合物、置換基を有しても良い ポリフエ-レン誘導体、置換基を有して ヽても良 、ポリフエ-レンビ-レン誘導体など があげられる。この場合の n型半導体としては好ましくは C あるいは C などの誘導体
60 70
である。 C あるいは C などの誘導体の例として特に制限するわけではないが、 C 、
60 70 60
C 、 PCBMなどがあげられる。
70
[0030] このような混合層に高分子を含む光電変換素子は通常(1)の p型半導体層や (3) の n型半導体層を有しておらず、混合層に電極あるいは電極とバッファ一層をつける だけである程度の光電変換率が達成される。し力しながら上述したように、混合層に 溜まる電荷を早く混合層から引き出すことにより光電変換効率は著しく改善されること を本発明において見出しており、 p型半導体である高移動度有機半導体薄膜をこの 混合層だけ力もなる光電変換素子に加えることにより著しく変換効率が改善される。 このときの p型半導体層の膜厚は好ましくは 1 Onm以上であり、さらに好ましくは 20η m以上 lOOnm以下である。またこのときの高移動度有機半導体薄膜の電荷移動度 については改めて記載しないが、すでに上述した説明を適宜適応するものとする。 [0031] また変換素子は(1)の p型半導体層および (2)の混合層からなる光電変換素子に 金属酸ィ匕物からなる層を加えた変換素子であってもよい。金属酸化物は特に制限す るわけではないが、酸化チタン、酸化スズなどである。このような光電変換素子にお いても(1)の p型半導体素子に高移動度有機半導体薄膜を加えることにより変換効 率が改善される。
[0032] 電荷移動度が 0. 005cm2ZV' sec以上の高移動度有機半導体薄膜は、(1)層、( 2)層及び(3)層のどの層に用いてもょ 、。
まず、高移動度有機半導体薄膜を (1)層に用いた場合は、(2)層で発生した電子 と正孔のキャリアが再結合する前に分離することが必要だが、正孔の移動速度が速 いため、分離が良好になる。更に、高移動度材料 (電荷移動度が 0. 005cm2/V- se c以上の有機半導体薄膜を形成することができる材料)により正孔の拡散距離が長く なるため、膜厚を厚くでき、そのため正孔の分離が良好になるとともに、光の吸収量 が増加して正孔と電子のキャリア発生量が増え、電流が増加すると 、う利点もある。
[0033] 高移動度有機半導体薄膜を (2)層に用いる場合については、次のように考えられ る。即ち、低移動度材料の場合には、混合層膜厚が増えると、光の利用効率が向上 してキャリア発生量が増加する一方、キャリア輸送能は逆に減少してしまうため、エネ ルギー変換効率が極大となる混合層膜厚が存在することが明らかとなっている。これ は、混合層中では p型と n型の分子が共存しており、発生したキャリアが再結合してし まう確率も大きくなつているためである。しかし、高移動度材料を用いると、混合層膜 厚を厚くでき、そのため光の利用効率が向上してキャリア発生量が増加し、キャリア輸 送能も長くなるため、エネルギー変換効率が極大となる混合層膜厚が増加し、その 結果として変換効率の向上が図れる。上記高移動度材料を用いた (2)混合層中で は、発生したキャリアが再結合してしまうことの確率も、低移動度材料の場合に比べ て小さくなる。
[0034] 高移動度有機半導体薄膜を (3)層に用いた場合は、(2)層で発生した電子と正孔 のキャリアが再結合する前に分離することが必要だが、電子の移動速度が速いため、 この分離が良好になる。更に、高移動度材料により電子の移動距離が長くなるため、 膜厚を厚くでき、そのため電子の分離が良好になるとともに、光の吸収量が増加して 正孔と電子のキャリア発生量が増え、電流が増加すると!、う利点もある。
[0035] 更に、高移動度材料を用いると次のような利点もある。即ち、透明電極と反対側の 電極表面が平坦な場合は、入射した光は、透明電極、半導体層を順に通過し、反対 側の電極で反射した後、半導体層、透明電極を順に通過することになる。これに対し て、透明電極と反対側の電極表面に凹凸があると、この凹凸により光が乱反射し、光 を内部に閉じ込める反射率が上がり、半導体層での光路長が増加するため光吸収 が増加する、即ち、光閉じ込め構造 (テクスチャー構造)により光吸収効率が改善で き、変換効率の向上が図られる(例えば、特開 2005— 2387公報参照)。この凹凸の 大きさは数十 nmは必要であるが、高移動度材料を用いな ヽと膜厚を厚くできな ヽの で、テクスチャー構造による変換効率の向上は図れないが、上記高移動度材料を用 Vヽれば可能となると 、う利点も生じる。
[0036] 上記(1)〜(3)の半導体層は薄膜状に形成され、(l) p型半導体層の好ましい膜厚 は、 lnm〜200nmであり、より好ましい膜厚は 10nm〜200nmである、さらにより好 まし 、膜厚は 20ηπ!〜 lOOnmである。 (2) p型半導体及び n型半導体の混合層の好 ましい膜厚は、 5nm〜200nmであり、より好ましい膜厚は 10nm〜100nmである。 ( 3) n型半導体層を用いる場合の好ましい膜厚は、 Inn!〜 200nmであり、より好まし V、膜厚は 5nm〜 1 OOnmである。
[0037] また、(2) p型半導体と n型半導体との混合層にお 、ては、分子レベル (もしくはナノ レベル)で n型半導体と p型半導体とが混合していることが好ましい。また、 p型半導体 と n型半導体とは、体積比 (前者:後者)が 1 : 0. 1〜1 : 5. 0となるように混合されてい るのが好ましぐ 1 : 0. 5〜1 : 2. 0となるように混合されているのがより好ましい。
[0038] (1) p型半導体層、 (2) p型半導体と n型半導体との混合層及び (3) n型半導体層の 形成方法は、後で説明する従来公知の光電変換素子の形成方法により行なえばよ Vヽ。特に (2) p型半導体及び n型半導体の混合層を形成する際に真空蒸着法を採用 する場合は、共蒸着法を用いればよいが、もちろん、 p型半導体及び n型半導体の両 者を溶剤に溶解もしくは分散させて、溶剤塗布法 (スピンコート等)〖こより形成すること ちでさる。
上記金属酸ィヒ物層の金属酸ィヒ物は特に制限するわけではないが、酸ィヒチタンや 酸化スズなどの金属酸化物が好ましぐ 好ましい膜厚は Inn!〜 200nmであり、より 好まし ヽ膜厚は 20nm〜100nmである。
[0039] 第 1の発明の光電変換素子にぉ 、ては、上記(1)〜(3)の半導体層の少なくとも一 層に、半導体化合物としてポリアセン誘導体ある 1、はポリアセン誘導体と他の有機物 との混合物を使用することが好ましい。ポリアセン誘導体としては下記一般式 (I)で示 されるポリアセン誘導体が特に好ま ヽ。またポリアセン誘導体と混合物を形成する 場合の有機物は好まし 、のはオリゴマーやポリマーで、特に制限するわけではな ヽ 力、ポリアセン誘導体と混合することにより電荷移動度あるいは安定性を向上させる 有機物であればよい。
ポリアセン誘導体としては下記一般式 (I)で示されるポリアセン誘導体が特に好まし い。下記一般式 (I)で示されるポリアセン誘導体について、以下に詳しく説明する。
[0040] [化 2]
[式中、
Figure imgf000013_0001
A3及び A4は、それぞれ互いに独立 して、水素原子;ハロゲン原子;置換基を有していてもよい C〜C 炭化水素基;置換
1 40
基を有していてもよい c〜
1 c アルコキシ基;置換基を有していてもよい
40 c〜
6 c ァリ 40 ールォキシ基;置換基を有していてもよい c〜
7 c アルキルァリールォキシ基;置換基 40
を有していてもよい C〜C アルコキシカルボ-ル基;置換基を有していてもよい C〜
2 40 7
C ァリールォキシカルボ-ル基;シァノ基( CN);力ルバモイル基( C ( = O) NH
40 2
);ハロホルミル基(—c(=o)—X、式中、 Xはハロゲン原子を示す。 );ホルミル基( — C ( = 0)— H);イソシァノ基;イソシアナト基;チオシアナト基;チォイソシアナト基; 置換基を有して ヽてもよ ヽァミノ基;置換基を有して ヽてもよ ヽアミド基;水酸基;又は 置換基を有していてもよいシリル基、置換基を有していても良いチェニル基であり、あ るいはこれらのうちの 2つ以上の基を含む官能基である。 ]
[0041] 上記ハロゲン原子の例としては、フッ素原子、塩素原子、臭素原子、ヨウ素原子が 挙げられる。
[0042] 本発明にお 、て、 C〜C 炭化水素基は、飽和若しくは不飽和の非環式であっても
1 40
よいし、飽和若しくは不飽和の環式であってもよい。 c〜 炭化水素基が非環式の
1 c 40
場合には、線状でもよいし、枝分かれでもよい。 c〜 化水素基には、
1 c 炭
40 c〜 ァ
1 c 40 ルキル基、 C〜C アルケニル基、 C〜C アルキニル基、 C〜C ァリル基、 C〜C
2 40 2 40 3 40 4 40 アルキルジェニル基、 C〜C ポリェニル基、 C〜C ァリール基、 C〜C アルキル
4 40 6 18 6 40 ァリール基、 C〜C ァリールアルキル基、 C〜C シクロアルキル基、 C〜C シクロ
6 40 4 40 4 40 ァルケ-ル基等が含まれる。
c〜c アルキル基、 c〜c ァルケ-ル基、 c〜c アルキ-ル基、 c〜c ァリル
1 40 2 40 2 40 3 40 基、 C〜C アルキルジェ-ル基及び C〜C ポリエ-ル基は、それぞれ、 C〜C ァ
4 40 4 40 1 20 ルキル基、 c〜
2 c ァルケ-ル基、
20 c〜
2 c アルキ-ル基、
20 c〜 ァリル基、
3 c 20 c〜
4 c 20 アルキルジェ -ル基及び c〜 ポリエ- キ
4 c ル基であることが好ましぐ
20 c〜 アル
1 c 10 ル基、 C〜C ァルケ-ル基、 C〜C アルキ-ル基、 C〜C ァリル基、 C〜C アル
2 10 2 10 3 10 4 10 キルジェ-ル基及び c〜c ポリエ-ル基であることがさらに好ましい。
4 10
[0043] 本発明の実施にぉ 、て、置換基を有して!/、てもよ 、C〜C 炭化水素基として有用
1 40
な、置換基を有していてもよい c〜c アルキル基の例には、制限するわけではない
1 40
1S メチル、ェチル、プロピル、 n—ブチル、 tーブチル、ドデ力-ル、トリフルォロメチ ル、ペルフルオロー n—ブチル、 2, 2, 2—トリフルォロェチル、ベンジル、 2—フエノ キシェチル等がある。
本発明の実施において、置換基を有していてもよい C〜C 炭化水素基として有用
1 40
な、置換基を有していてもよい c〜
6 c ァリール基の例には、制限するわけではない 18
力 フエニル、 2 トリル、 3 トリル、 4 トリル、ナフチル、ビフエ-ル、 4 フエノキシ フエ-ル、 4 フルオロフェ -ル、 3—カルボメトキシフエ-ル、 4 カルボメトキシフエ -ル等がある。
本発明の実施において、置換基を有していてもよい C〜C 炭化水素基とし有用な
1 40
、置換基を有していてもよい c〜c アルキニル基の例には、特に制限するわけでは
2 18
ないが、ェチニルなどがある。
[0044] 本発明の実施において有用な、置換基を有していてもよい C〜C アルコキシ基の 例には、制限するわけではないが、メトキシ、エトキシ、 2—メトキシエトキシ、 tーブトキ シ等がある。
[0045] 本発明の実施において有用な、置換基を有していてもよい C〜C ァリールォキシ
6 40
基の例には、制限するわけではないが、フエノキシ、ナフトキシ、フエ-ルフエノキシ、
4—メチルフエノキシ等がある。
[0046] 本発明の実施において有用な、置換基を有していてもよい C〜C アルキルァリー
7 40
ルォキシ基としては、メチルフエノキシ、ェチルフエノキシ、プロピルフエノキシ、ブチ ルフエノキシ等が挙げられる。
本発明の実施において有用な、置換基を有していてもよい c〜
2 c アルコキシカル 40
ボ-ル基としては、例えば、上記の置換基を有していてもよい c〜 アルコキシ基と
1 c 40
して例示したアルコキシ基に対応するアルコキシカルボ-ル基が挙げられる。
本発明の実施において有用な、置換基を有していてもよい C〜C ァリールォキシ
7 40
カルボニル基としては、例えば、上記の置換基を有していてもよい c〜
6 c ァリールォ 40 キシ基として例示したァリールォキシ基に対応するァリールォキシカルボ-ル基が挙 げられる。
[0047] シァノ基( CN);力ルバモイル基( C ( = O) NH );ハロホルミル基( C ( = O)
2
— X、式中、 Xはハロゲン原子を示す。 );ホルミル基(― C ( = 0)— H);イソシァノ基; イソシアナト基;チオシアナト基;又はチォイソシアナト基は、例えば、アルコキシカル ボニル基力も通常の有機化学の手法により変換することができる。また、力ルバモイ ル基(一 C ( = 0) NH )、ハロホルミル基(一 C ( = 0)— X、式中、 Xはハロゲン原子を
2
示す。)、ホルミル基( C ( = 0)—H)等は、シァノ基、アルコキシカルボ-ル基と互 、に変換することができる。
[0048] 本発明の実施において有用な、置換基を有していてもよいァミノ基の例には、制限 するわけではないが、アミ入ジメチルアミ入メチルアミ入メチルフエ-ルアミ入フエ -ルァミノ等がある。
本発明の実施において有用な、置換基を有していてもよいアミド基の例には、制限 するわけではないが、ァセトアミド、ベンズアミド、へキサンアミド等がある。
[0049] 置換基を有していてもよいシリル基としては、式— Si(R12) (R13) (R14)で示される基 [ 式中、 、 及び は、それぞれ、互いに独立して、ハロゲン原子で置換されてい てもよい 〜 アルキル基;ノヽロゲン原子で置換されていてもよい 〜 ァリール
1 40 6 40 アルキル基;ノヽロゲン原子で置換されていてもよい c 〜c アルコキシ基;ノヽロゲン原
1 40
子で置換されていてもよい 〜 ァリールアルキルォキシ基である。 ]を挙げること
6 40
ができる。
本発明の実施において有用な、置換基を有していてもよいシリル基の例には、制限 されるわけではないが、トリメチルシリル、トリェチルシリル、トリメトキシシリル、トリエト キシシリル、ジフエニルメチルシリル、トリフエニルシリル、トリフエノキシシリル、ジメチ ルメトキシシリル、ジメチルフエノキシシリル、メチルメトキシフエ-ル等がある。
〜 炭化水素基、 〜 アルコキシ基、 〜 ァリールォキシ基、アミノ基、
1 40 1 40 6 40
シリル基等には、置換基が導入されていてもよぐこの置換基としては、例えば、シリ ル基、ハロゲン原子、水酸基、アミノ基等が挙げられる。
上記置換基としてのハロゲン原子には、フッ素原子、塩素原子、臭素原子及びヨウ 素原子が含まれる。 〜 炭化水素基、 〜 アルコキシ基、 〜 ァリールォ
1 40 1 40 6 40 キシ基等の水素原子が、フッ素原子で置換されている場合には、ポリアセン誘導体 の溶解度が増大するので好まし 、。またトリイソプロピルェチニル基が置換されて 、る ときにはポリアセン誘導体の安定性が増大するので好ましい。
及び 、 及び は、互いに架橋して、式— —で示さ れる環を形成してもよい [式中、 は、酸素原子又は式 —で示される基 (式 中、 は、水素原子、 〜 炭化水素基又はハロゲン原子である)である]。
1 40
例えば、 A A 3及び 4が、アルコキシカルボ-ル基である場合には、通常の有 機化学の手法により、カルボキシ基に変換することができる。そして、隣接するカルボ キシル基は、脱水することにより、無水カルボン酸、即ち、式—c(=o)—o c(= o)—で示される環に変換することができる。同様にして、無水カルボン酸は、通常の 有機化学の手法により、イミド、即ち、式— c(=o) (= )—で示される 環 は上記の意味を有する。 )に変換することができる。
また、 及び は、互いに架橋して、 〜 飽和又は不飽和環を形成してもよ!/ヽ
4 40
。不飽和環は、ベンゼン環、チォフェン環等の芳香族環であってもよい。 及び が 互いに架橋して形成する環は、 4〜16員環であることが好ましぐ 4〜12員環である ことが更に好ましい。この環は、芳香族環であってもよいし、脂肪族環であってもよい 。この環には、 C〜C 炭化水素基、 C〜C アルコキシ基、 C〜C ァリールォキシ
1 20 1 20 6 20
基、アミノ基、水酸基又はシリル基等の置換基が導入されていてもよい。
前記飽和又は不飽和環は、酸素原子、硫黄原子、又は式 N (RU)—で示される 基 [式中、 R11は水素原子又は炭化水素基である。 ]で中断されていてもよい。 R11は 水素原子又は C〜Cアルキル基であることが好ましぐ水素原子又は C〜Cアルキ
1 6 1 4 ル基であることがさらに好ましい。
[0055] nは、 1以上の整数である。 nが 1及び 2の場合には、前記一般式 (I)で示されるポリ ァセン誘導体は、それぞれ、 4環式及び 5環式、即ち、ナフタセン誘導体及びペンタ セン誘導体となる。
従来は、縮合多環芳香族化合物中の芳香族環の数が増大するにつれて、溶解度 が減少する傾向にあった。しかし、後述する製造方法によれば、縮合多環芳香族化 合物中の芳香族環の数が増大しても、適切な様々な置換基を導入することにより、溶 解度を維持することができる。従って、 nは 1〜2に限られることなく、 3以上の整数で あってもよいし、 4以上の整数であってもよいし、 5以上の整数であってもよぐその上 限は、特に制限されないが、確実な溶解性、製造コスト等を考慮すると、 1〜2程度が 好ましい。
[0056] 現在、無置換ペンタセンは、有機化合物の中でもキャリア移動度が最も高 、こと力 S 知られており、盛んに研究がなされているが、溶媒には不溶のため、薄膜作製は真 空蒸着法が一般的で、スピンコート等の湿式法は困難である。前記一般式 (I)で示さ れる本発明に係るポリアセン誘導体のうち、「R R2
Figure imgf000017_0001
A2 、 A3及び A4の少なくとも一つは水素原子でないもの」は、溶媒に可溶な分子設計が 容易であり、スピンコート等による薄膜作製が可能なため、真空蒸着法に比べて加工 性 ·生産性が格段に向上する。また、薄膜中の結晶性は、化合物自身や分子間の相 互作用、溶媒の種類等を選択することにより、自己組織化的に、制御することも可能 となる。
[0057] 次に、前記 (b)の光電変換効率向上手段を採用した本発明の光電変換素子 (第 2 の発明の光電変換素子)について説明する。
第 2の発明の光電変換素子は以下の特徴を有する。つまり、陽極電極の仕事関数 と(l) p型半導体層の HOMO (最高被占分子軌道)とのエネルギーギャップ、及び Z 又は、陰極電極の仕事関数と (3) n型半導体層の LUMO (最低空軌道)とのエネル ギーギャップが、 0. 5eV以下、好ましく 0. 3eV以下であることを特徴とする。有機層 力 電極に電荷を取り出す際のエネルギーギャップが大き 、と、光電変換層で生成 した正孔ゃ電子が失われる。その減少を少なくするには、エネルギーギャップが 0. 5 eV以下、好ましくは 0. 3eV以下がよい。
[0058] 第 2の発明の光電変換素子にぉ 、ては、前記(1)〜(3)の半導体層の少なくとも一 層に、半導体化合物としてポリアセン誘導体または他の有機物との混合物を使用す ることが好ましぐポリアセン誘導体としては前記で説明した一般式 (I)で示されるポリ ァセン誘導体が特に好まし 、。
またポリアセン誘導体と混合物を形成する場合の有機物は他の一般的な有機物が 好ましいが、特に好ましいのはオリゴマーやポリマーで、特に制限するわけではない 力、ポリアセン誘導体と混合することにより電荷移動度あるいは安定性を向上させる 有機物であればよい。
[0059] 第 2の発明おいて、特に詳述しな力つた部分については、第 1の発明についての説 明を適宜適用することができる。
[0060] 次に、前記 (c)の光電変換効率向上手段を採用した本発明の光電変換素子 (第 3 の発明の光電変換素子)について説明する。
第 3の発明の光電変換素子は以下の特徴を有する。つまり、有機半導体層を有す る光電変換素子において、各電極と半導体層の間にバッファ一層を設置し、ノ ッファ 一層の有機化合物と電極とが化学結合していることを特徴とする。所謂自己組織ィ匕 単分子層の形成である。
光電変換層から電極に電荷を取り出す際には、さまざまなエネルギー障壁が存在 するが、バッファ一層の有機化合物と電極とが化学結合していればその問題は大幅 に減少する。電極の仕事関数の大小が不問になる、バッファ一層に接する有機半導 体層の分子配向性を制御できる等の可能性も生じる。電荷移動度は化合物特有の 数値ではなぐ化合物の種類によってある範囲を有する。即ち、電荷移動度は薄膜 にて測定され、その薄膜中での分子配向性や結晶性によることが知られている。光 電変換層における有機半導体は、薄膜中でィ匕合物の配向性を制御することが望まし い。電極に接したバッファ一層化合物の分子配向性が制御できれば、ノ ッファー層 に接する有機半導体層の化合物の分子配向性も制御できる可能性がある。このバッ ファー層の分子配向性は、電極を形成する金属等に結合する官能基の種類、位置 及び量によって制御することが考えられる。それらの結果、有機半導体層に好ましい 分子配向を有する薄膜が得られ、本発明の目的である電荷移動度の高い薄膜作製 が可能となる。
[0061] 電極とバッファ一層の有機化合物とをィ匕学結合させるためには、バッファ一層の有 機化合物が、窒素、酸素、硫黄、リンといったへテロ原子を含む官能基を有するもの であることが好ましい。特に、硫黄を含むものが好ましぐ—SH基 (チオール基)を有 するものが最も好ましい。電極は、例えば有機化合物がー SH基を有する場合は金 電極 (金薄膜又は金を含有する電極を含む)が好ましい。具体的にバッファ一層の有 機化合物と電極との化学結合の例を挙げると、例えば、電極を形成する金 (Au)と SH基 (チオール基)を有するバッファ一層の有機化合物との反応による Au— S 結 合が挙げられる。即ち、金電極 (金薄膜又は金を含有する電極を含む)と、 SH基を 有する化合物とを反応させればよい。他に、バッファ一層の有機化合物の例としては 、 一 COOH基を有するものも挙げられる。
ノ ッファー層の有機化合物の具体例としては、ベンゼンチオール、ナフタレンチォ ール、アントラセンチオール、アントラセンカルボン酸等の多環芳香族化合物が挙げ られる。
[0062] 電極とバッファ一層の有機化合物とをィ匕学結合させる方法としては、従来の方法を 採用することができ特に制限されないが、例えば以下の方法が挙げられる。
光電変換層の形成前にバッファ一層を形成する場合は、バッファ一層の有機化合 物を THF等の適宜な溶媒に 0. 01〜20質量%程度の濃度で溶解して、該有機化合 物の溶液を調製し、次いで、該溶液に電極基板を浸漬し引き上げた後、適宜な溶媒 でリンスし、乾燥させること〖こより、電極上に、上記有機化合物が電極と化学結合を形 成しているバッファ一層を形成することができる。また、電極上に、ノ ッファー層の有 機化合物を蒸着することによつても、電極とバッファ一層の有機化合物とをィ匕学結合 させることができる。尚、光電変換層は、後述の各種形成方法によってバッファ一層 上に形成すればよい。 また、光電変換層の形成後にバッファ一層を形成する場合 は、光電変換層上にバッファー化合物を蒸着してバッファ一層を形成した後、該バッ ファー層上に電極物質を蒸着して電極を形成することによって、電極とバッファ一層 の有機化合物とをィ匕学結合させることができる。
[0063] バッファ一層は薄膜状に形成され、単分子層でよい。
[0064] 第 3の発明の光電変換素子にぉ 、ては、前記(1)〜(3)の半導体層の少なくとも一 層に、半導体化合物としてポリアセン誘導体ある 1、はポリアセン誘導体と他の有機物 との混合物を使用することが好ましぐポリアセン誘導体としては前記で説明した一般 式 (I)で示されるポリアセン誘導体が特に好ま 、。
[0065] 第 3の発明おいて、特に詳述しな力つた部分については、第 1の発明についての説 明を適宜適用することができる。
[0066] 次に、前記 (a)の光電変換効率向上手段を採用した本発明の光電変換素子 (第 1 の発明の光電変換素子)の好ましい一実施形態 (第 4の発明の光電変換素子)につ いて説明する。
第 4の発明の光電変換素子は以下の特徴を有する。つまり、対向する陽極電極と 陰極電極との間に光電変換層を有する光電変換素子において、該光電変換層は、 ( l) p型半導体層および (2) p型半導体と n型半導体との混合層またはこれにさらに (3 ) n型半導体層あるいは金属酸化物層が順次積層された構造を有し、(l) p型半導体 層の P型半導体と (2)混合層中の p型半導体、 (2)混合層中の n型半導体と (3) n型 半導体層の n型半導体とは、それぞれ同一の材料で構成されていても、異なった材 料で構成されて ヽてもよぐ各層間には光電変換素子としての良好な電荷移動を妨 げることのない任意の層を有していてもよぐこれらの半導体層の 1つ以上に電荷移 動度が 0. 005cm2ZV'sec以上の有機半導体薄膜を用い、上記光電変換層からな る光電変換ユニットを複数個有し、各光電変換ユニットは、中間電極としての等電位 面を形成する層及び Z又は電荷発生層によって仕切られて ヽることを特徴とする。 [0067] 太陽光の全波長領域をカバーし且つ有効利用するには、光電変換ユニットを積層 することが有効である。有機半導体では光電変換層の膜厚に限界があるため、ある 波長領域においてさえ 1つの光電変換ユニットで太陽光を 100%吸収することは難し い。また、太陽光の全波長領域に吸収を有する半導体材料の開発も困難である。そ こで、異なった波長領域に吸収のある半導体材料力 なる光電変換ユニットを積層 すること〖こよって、太陽光の有効利用を図る。従来の pn接合型素子を単純に積層し ても好結果は少ないが、本発明の光電変換素子では高効率ィ匕が図れる。
[0068] 第 4の発明の光電変換素子において、上記光電変換ユニットの個数は、 2個以上 であれば特に制限されないが、光電変換効率の向上とコストとのバランス等の観点か ら、好ましくは 2〜3個程度である。
[0069] 中間電極としての上記の等電位面を形成する層は、例えば、 ITO (インジウム ·すず 酸化物)、 IZO (インジウム '亜鉛酸ィ匕物)、 Ag、 Au、フラーレン類、オリゴチォフェン 類等の化合物を、上記光電変換ユニット上に薄膜状に成膜することにより形成するこ とができる。等電位面を形成する層は、 0. l〜50nmの膜厚であることが好ましい。 中間電極としての上記電荷発生層は、例えば、 N, Ν'—ジフエ-ル— N, Ν'—ジ( m—トリル)ベンジジン、 4, 4', 4"—トリス(N— 3—メチルフエ-ル一 N—フエ-ル一 ァミノ)—トリフエ-ルァミン等のァリールアミンゃ、 V O等の金属酸化物、テトラフル
2 5
ォロテトラシァノキノジメタン等の電子受容性を有する化合物を、上記光電変換ュ- ット上に薄膜状に成膜することにより形成することができる。電荷発生層は、 0. 1〜5
Onmの膜厚であることが好まし!/、。
[0070] また、第 4の発明の光電変換素子においては、第 3の発明の光電変換素子のように
、各電極と半導体層との間にバッファ一層を設置し、電極と該バッファ一層の有機化 合物とが化学結合して 、ることが好ま 、。
また、第 4の発明の光電変換素子においては、前記(1)〜(3)の半導体層の少なく とも一層に、半導体化合物としてポリアセン誘導体ある 、はポリアセン誘導体と他の 有機物との混合物を使用することが好ましぐ前記で説明した一般式 (I)で示されるポ リアセン誘導体が特に好ま 、。
[0071] 以上、本発明の 4種類の光電変換素子について説明した力 それぞれの特徴を複 数有する光電変換素子も、もちろん本発明の範囲内である。
[0072] 次に、本発明の光電変換素子について、さらに説明する。以下の説明は、第 1〜4 の発明のいずれにも適宜適用される。し力しながら、以下の説明は、本発明の光電 変換素子の構成を特に限定するものではな 、。
[0073] 本発明の光電変換素子は、例えば、支持体、電極 A、光電変換層、電極 B及び被 覆層が順次積層された構造を有する。或いは、支持体、電極 A、光電変換層、中間 電極、光電変換層、電極 B及び被覆層、又は、支持体、電極 A、光電変換層、中間 電極、光電変換層、中間電極、光電変換層、電極 B及び被覆層が順次積層された 構造でもよい。尚、電極 Aが陽極であり、電極 Bが陰極である。
[0074] 光電変換素子においては、電極 A又は Bの少なくとも一方から光電変換層へ光が 到達する必要がある。支持体及び電極 Aから光電変換層へ照射光を到達させるため には、支持体及び電極 Aを光透過性の材料で形成する。同様に、被覆層及び電極 B から光電変換層へ照射光を到達させるためには、被覆層及び電極 Bを光透過性の 材料で形成する。更に、両側カゝら光電変換層へ光を到達させるためには、支持体、 電極 A、電極 B及び被覆層を光透過性の材料で形成する。
[0075] 支持体は電極 Aを表面に安定して保持することが可能であれば、材質や厚みには 制限されない。そのため、支持体の形状は板状でもフィルム状でもよい。支持体には 、例えば、アルミニウム、ステンレス等の金属や合金類、ポリカーボネート、ポリエステ ル等のプラスチック、木材、紙、布等が使用される。照射光を支持体側から入射する 場合は、支持体は光透過性の物質 (材料)から構成される必要があり、透明性を有す るガラス、透明プラスチック等が使用できる。ここで、透明性とは、光電変換素子にお いて使用される所定波長領域、例えば可視光領域の光を高率で透過する性質をいう 。尚、本発明の光電変換素子は、支持体の表面に形成されることが望ましいが、電極 A自体にある程度硬度があり、自立性を有する場合は、電極 Aが支持体を兼ねる構 成としてもよく、この場合、支持体は省略されてもよい。
[0076] 電極 Aは、光電変換層に含まれる有機 p型半導体化合物とォーミックに近い接合を 形成可能にするために、仕事関数が 4. 5V以上であることが望ましぐ 4. 8V以上で あることがより好ましい。これに対して、電極 Bは n型半導体化合物とォーミックスに近 い接合を可能にするため仕事関数が 4. 5V以下であることが好ましい。尚、本発明に おいて、対向配置される一対の電極の仕事関数は、相互に相対的に大小関係を有 する(即ち互いに仕事関数の異なる)ものとすればよい。従って、本実施形態におい ても電極 Aの仕事関数が電極 Bよりも相対的に大きければよい。この場合、両電極間 の仕事関数の差は 0. 5V以上であることが好ましい。尚、各電極と半導体層の間に ノ ッファー層を設置し、電極上のバッファ一層の化合物と電極とが化学結合して 、る 場合は、これらの制約が緩和されることがある。
[0077] 電極 A及び Bとしては、例えば、金、白金、銀等の金属類、及び酸化亜鉛、酸化ィ ンジゥム、酸化錫(NESA)、錫ドープ酸化インジウム(ITO)、フッ素ドープ酸化錫(F TO)等の金属酸化物、リチウム、リチウム—インジウム合金、ナトリウム、ナトリウム—力 リウム合金、カルシウム、マグネシウム、マグネシウム 銀合金、マグネシウム インジ ゥム合金、インジウム、ルテニウム、チタニウム、マンガン、イットリウム、アルミニウム、 アルミニウム リチウム合金、アルミニウム カルシウム合金、アルミニウム マグネシ ゥム合金、グラフアイト薄膜、 PEDOT—PSS等の有機導電性ィ匕合物等を、適宜用い ることができる。これらの電極物質は、単独で使用してもよぐあるいは複数併用して もよい。電極 A及び Bは、これらの電極物質を用いて、例えば、蒸着法、スパッタリン グ法、イオン化蒸着法、イオンプレーティング法、クラスターイオンビーム法等の方法 により、形成することができる。ゾルゲル法等により焼成して形成してもよい。また、陰 極は一層構造であってもよぐあるいは多層構造であってもよい。電極の厚みは、使 用する電極物質の材料にもよる力 陽極、陰極とも、一般に、 5〜: LOOOnm程度、より 好ましくは 10〜500nm程度に設定する。尚、少なくとも一方の電極が透明ないし半 透明であることが必要であり、光透過率が 70%以上となるように電極の材料、厚みを 設定することがより好ましい。
[0078] 本発明の光電変換素子にぉ 、て、前記一般式 (I)で示される本発明に係るポリア セン誘導体は、その構造によって p型有機半導体化合物又は n型有機半導体化合物 として作用することができる。一般に、 n型有機半導体化合物はポリアセン骨格構造 に置換基として電子吸引性の官能基を結合させることにより得られ、 P型有機半導体 化合物はそれ以外の官能基を結合させることにより得られる。また、 p型有機半導体 化合物及び n型有機半導体化合物は、公知の物質をドーピングすることによつても得 られる。電子吸引性の官能基としては、カルボニル基、シァノ基、ニトロ基、スルホ二 ル基、ホスホニル基、ハロゲン基等の公知の電子吸引基、もしくはこれらの電子吸引 基が結合した官能基が挙げられ、特に n型有機半導体化合物として使用する場合は 、 A\ A2、 A3、 A4のいずれかに電子吸引基を有することが好ましい。
[0079] 本発明の光電変換素子においては、半導体ィ匕合物として、前記一般式 (I)で示さ れる本発明に係るポリアセン誘導体が好ましく用いられる力 その他の公知の半導体 化合物を使用してもよい。また、第 1の発明の光電変換素子においては、高移動度 材料を光電変換層の少なくとも一層に使用することが必須であるが、他の層には公 知の半導体ィ匕合物を使用してもよい。また、本発明に係るポリアセン誘導体を使用し た有機半導体層にお ヽては、本発明に係るポリアセン誘導体を単独で使用してもよく 、あるいは複数併用してもよぐ公知の半導体化合物と併用してもよい。
[0080] 本発明において使用可能な他の p型半導体ィ匕合物としては、フタロシアニン系顔料 、インジゴ又はチォインジゴ系顔料、キナクリドン系顔料等が挙げられる。本発明にお いて用いられる他の正孔注入輸送機能を有する化合物としては、トリアリールメタン誘 導体、トリアリールァミン誘導体、ォキサゾール誘導体、ヒドラゾン誘導体、スチルベン 誘導体、ピラゾリン誘導体、ポリシラン誘導体、ポリフエ二レンビニレン及びその誘導 体、ポリチォフェン及びその誘導体、ポリ N ビニルカルバゾール誘導体等が挙げ られる。また、トリアリールァミン誘導体 (例えば、 4, 4'—ビス〔N—フエ-ル— N— (4' '—メチルフエ-ル)ァミノ〕ビフエ-ル、 4, 4'—ビス〔N—フエ-ル— N— (3"—メチル フエ-ル)ァミノ〕ビフエ-ル、 4, 4'—ビス〔N—フエ-ルー N— (3"—メトキシフエ-ル )ァミノ〕ビフエ-ル、 4, 4'—ビス〔N—フエ-ルー N— ナフチル)ァミノ〕ビフエ- ル、 3, 3'—ジメチル— 4, 4'—ビス〔N—フエ-ル— N— (3"—メチルフエ-ル)ァミノ 〕ビフエ-ル、 1, 1—ビス〔4'— [N, N ジ(4"—メチルフエ-ル)ァミノ]フエ-ル〕シ クロへキサン、 9, 10 ビス〔N— (4'—メチルフエ-ル) N— (4"— n—ブチルフエ -ル)ァミノ〕フエナントレン、 3, 8—ビス(N, N—ジフエ-ルァミノ)一 6—フエ-ルフエ ナントリジン、 4—メチル N, N ビス〔4", 4" '—ビス [Ν', Ν'—ジ(4—メチルフエ- ル)ァミノ]ビフエ-ル— 4—ィル〕ァ-リン、 Ν, Ν'—ビス〔4— (ジフエ-ルァミノ)フエ -ル〕 N, Ν'—ジフエ-ルー 1, 3 ジァミノベンゼン、 Ν, Ν'—ビス〔4— (ジフエ- ルァミノ)フエ-ル〕一 Ν, Ν'—ジフエ-ル一 1, 4 ジァミノベンゼン、 5, 5"—ビス〔4 —(ビス [4—メチルフエ-ル]ァミノ)フエ-ル〕一 2, 2' : 5', 2"—ターチォフェン、 1, 3, 5—トリス(ジフエ-ルァミノ)ベンゼン、 4, 4', 4"—トリス(Ν—力ルバゾリィル)トリフ ェニノレアミン、 4, 4', 4"—トリス〔?^— (3"'—メチノレフエ二ノレ) Ν フエニノレアミノトリ フエ-ルァミン、 4, 4', 4"—トリス〔?^, Ν ビス(4"'— tert—ブチルビフエ-ルー 4," '—ィル)ァミノ〕トリフエ-ルァミン、 1, 3, 5 トリス〔?^— (4'—ジフエ-ルァミノフエ- ル) N フ ニルァミノ〕ベンゼン等〕が挙げられる。尚、正孔注入輸送機能を有す る化合物は、単独で使用してもよぐあるいは複数併用してもよい。
[0081] 本発明において使用可能な他の n型半導体ィ匕合物としては、有機物では、ペリレン 系顔料、ペリノン系顔料、多環キノン系顔料、ァゾ系顔料、 C フラーレン
60 や C フラー
70 レン及びその誘導体等を用いることができ、無機物では、酸化亜鉛、酸化チタン、硫 化カドミウム等を用いることができる。また、有機金属錯体〔例えば、トリス (8—キノリノ ラート)アルミニウム、ビス(10 ベンゾ [h]キノリノラート)ベリリウム、 5 ヒドロキシフラ ボンのベリリウム塩、 5—ヒドロキシフラボンのアルミニウム塩〕、ォキサジァゾール誘導 体〔例えば、 1, 3 ビス [5'— (p— tert ブチルフエ-ル)— 1, 3, 4—ォキサジァゾ 一ルー 2' ィル]ベンゼン〕、トリァゾール誘導体〔例えば、 3—(4' tert—ブチルフ ェ -ル) 4 フエ-ル一 5— (4"—ビフエ-ル)一 1, 2, 4 トリァゾール〕、フエナント 口リン誘導体 [例えば、 2,9 ジメチルー 4,7 ジフエ-ルー 1, 10 フエナント口リン( バソクプロイン、 BCP)]、トリァジン誘導体、キノリン誘導体、キノキサリン誘導体、ジフ ェニルキノン誘導体、ニトロ置換フルォレノン誘導体、チォピランジオキサイド誘導体 等を用いることができる。
[0082] 光電変換層の形成方法に関しては、特に限定するものではないが、例えば、真空 蒸着法、イオン化蒸着法、溶液塗布法 (例えば、スピンコート法、キャスト法、ディップ コート法、バーコート法、ロールコート法、ラングミュア'ブロゼット法、インクジェット法 等)により、前記(1)〜(3)の半導体層としての薄膜を形成することにより作製すること ができる。真空蒸着法により各層を形成する場合、真空蒸着の条件は特に限定する ものではないが、 10— 5Torr程度以下の真空下で、 50〜600°C程度のボート温度 (蒸 着源温度)、 50〜300°C程度の基板温度で、 0. 005〜50nmZsec程度の蒸着 速度で実施することが好ましい。この場合、真空下で、連続して形成することにより、 諸特性に一層優れた光電変換素子を製造することができる。真空蒸着法により各層 を複数の化合物を用いて形成する場合、化合物を入れた各ボートを個別に温度制 御して、共蒸着することが好ましい。
[0083] 溶液塗布法により各層を形成する場合、各層を形成する成分あるいはその成分と バインダー樹脂等を、適当な溶媒に溶解又は分散させて塗布液とし、該塗布液を用 いて各種の塗布法により、薄膜を形成することができる。使用しうるバインダー榭脂と しては、例えば、ポリ N—ビュルカルバゾール、ポリアタリレート、ポリスチレン、ポリ エステル、ポリシロキサン、ポリメチルアタリレート、ポリメチルメタタリレート、ポリエーテ ル、ポリカーボネート、ポリアミド、ポリイミド、ポリアミドイミド、ポリパラキシレン、ポリエ チレン、ポリエチレンエーテル、ポリプロピレンエーテル、ポリフエ二レンオキサイド、ポ リエーテルスルフォン、ポリア-リン及びその誘導体、ポリチォフェン及びその誘導体 、ポリフエ-レンビ-レン及びその誘導体、ポリフルオレン及びその誘導体、ポリチェ 二レンビ-レン及びその誘導体等の高分子化合物が挙げられる。バインダー榭脂は 、単独で使用してもよぐあるいは複数併用してもよい。
[0084] 各層を形成する成分あるいはその成分とバインダー榭脂等を溶解又は分散させる 上記溶媒としては、有機溶媒及び水が挙げられ、該有機溶媒としては、例えば、へキ サン、オクタン、デカン、トルエン、キシレン、ェチルベンゼン、 1ーメチルナフタレン等 の炭化水素系溶媒、アセトン、メチルェチルケトン、メチルイソブチルケトン、シクロへ キサノン等のケトン系溶媒、ジクロロメタン、クロロホノレム、テトラクロロメタン、ジクロロ ェタン、トリクロ口エタン、テトラクロ口エタン、クロ口ベンゼン、ジクロロベンゼン、クロ口 トルエン等のハロゲン化炭化水素系溶媒、酢酸ェチル、酢酸プチル、酢酸アミル等 のエステル系溶媒、メタノール、エタノール、プロパノール、ブタノール、ペンタノール 、へキサノーノレ、シクロへキサノーノレ、メチノレセロソノレブ、ェチノレセロソノレブ、エチレン グリコール等のアルコール系溶媒、ジブチルエーテル、テトラヒドロフラン、ジォキサン 、ァ-ソール等のエーテル系溶媒、 N, N ジメチルホルムアミド、 N, N ジメチルァ セトアミド、 1—メチル—2 ピロリドン、 1, 3 ジメチルー 2—イミダゾリジノン、ジメチ ルスルフオキサイド等の極性溶媒等が挙げられ、これらの溶媒は単独で用いてもよく 併用してちょい。
[0085] 分散する方法としては、特に限定するものではな 、が、例えば、ボールミル、サンド ミル、ペイントシェーカー、アトライター、ホモジナイザー等を用いて微粒子状に分散 することができる。
塗布液の濃度に関しては、特に限定するものではなぐ実施する塗布法により、所 望の厚みの薄膜を作製するに適した濃度範囲に設定することができるが、一般には
、塗布液中の半導体ィ匕合物の濃度が 0. 1〜50重量%程度、好ましくは 1〜30重量 %程度である。尚、バインダー榭脂を使用する場合、その使用量に関しては、特に限 定するものではないが、一般には、各光電変換層を形成する半導体成分に対して( 例えば、一層の光電変換層を有する素子を形成する場合には、(1)〜(3)層を形成 する各半導体成分の総量に対して)、 5〜99. 9重量%程度、好ましくは 10〜99重 量%程度、より好ましくは 15〜90重量%程度になるように設定する。
[0086] 本発明で好ましく用いられる有機半導体である前記一般式 (I)で示されるポリアセン 誘導体は、前述したように溶媒に可溶な分子設計が容易であり、スピンコート等の上 記溶液塗布法による薄膜作製に好適である。該ポリアセン誘導体を用いて溶液塗布 法により薄膜作製を行うことにより、加工性 ·生産性が格段に向上する。
[0087] 光電変換層の膜厚に関しては、特に限定するものではないが、一般に、 5ηπ!〜 5 μ m程度に設定することが好ましい。
[0088] 作製した素子に対し、酸素や水分等との接触を防止する目的で、保護層(封止層) を設けたり、また、素子を、例えば、ノラフィン、流動パラフィン、シリコンオイル、フル ォロカーボン油、ゼォライト含有フルォロカーボン油等の不活性物質中に封入して保 護することができる。
[0089] 上記保護層に使用する材料としては、例えば、有機高分子材料 (例えば、フッ素ィ匕 榭脂、エポキシ榭脂、シリコーン榭脂、エポキシシリコーン榭脂、ポリスチレン、ポリエ ステル、ポリカーボネート、ポリアミド、ポリイミド、ポリアミドイミド、ポリパラキシレン、ポ リエチレン、ポリフエ-レンオキサイド)、無機材料 (例えば、ダイヤモンド薄膜、ァモル ファスシリカ、電気絶縁性ガラス、金属酸化物、金属窒化物、金属炭素化物、金属硫 化物)、さらには光硬化性榭脂等を挙げることができ、保護層に使用する材料は、単 独で使用してもよぐあるいは複数併用してもよい。保護層は、一層構造であってもよ ぐまた多層構造であってもよい。
[0090] また、電極に保護膜として、例えば、金属酸ィ匕膜 (例えば、酸ィ匕アルミニウム膜)、金 属フッ化膜を設けることもできる。また、電極の表面に、例えば、有機リンィ匕合物、ポリ シラン、芳香族ァミン誘導体、フタロシアニン誘導体 (例えば、銅フタロシアニン)、力 一ボン力も成る界面層(中間層)を設けることもできる。さらに、電極はその表面を、例 えば、酸、アンモニア Z過酸化水素、あるいはプラズマで処理して使用することもでき る。
[0091] 本発明の光電変換素子は、遠隔地用の電源、携帯用小型電子機器の補助的な電 源等の従来の光電変換素子の延長としての高効率の光電変換素子としての用途の 他、光電変換を利用する全ての用途に使用することができる。
[0092] 次に、本発明で好ましく用いられる有機半導体である前記一般式 (I)で示されるポリ ァセン誘導体の製造方法につ 、て説明する。前記一般式 (I)で示されるポリアセン誘 導体は、例えば、溶媒中で、下記式 (II)で示される炭化水素縮合環を、脱水素試薬 の存在下、芳香族ィ匕すること〖こより得ることができる。
[0093] [化 3]
[式中、
Figure imgf000028_0001
A4及び nは前記一般式 (I)にお いてと同じ意味を有する。実線と点線とで示される結合は、単結合又は 2重結合を示 す。]
[0094] 上記式 (II)で示される炭化水素縮合環には、例えば、結合の種類によって、下記式
(Ha)、 (lib)及び (lie)で示される炭化水素縮合環が含まれる。
[0095] [化 4]
Figure imgf000029_0001
[上記式 (Ila)、(lib)及び (lie)中、
Figure imgf000029_0002
A4 及び nは前記一般式 (I)においてと同じ意味を有する。 R5a及び R5bはそれぞれ R5と同 じ意味を有し、 R6a及び R6bはそれぞれ R6と同じ意味を有する。 ]
[0096] 上記式 (II)で示される炭化水素縮合環力 nが奇数であり、上記式 (lib)で示される 炭化水素縮合環である場合、上記式 (lib)中の kは、(n+ l)Z2で示される整数であ る。上記式 (Π)で示される炭化水素縮合環が、 nが偶数であり、上記式 (lie)で示され る炭化水素縮合環である場合、上記式 (lie)中の mは、 nZ2で示される整数である。
[0097] 上記式 (Ila)で示される炭化水素縮合環を芳香族化して前記一般式 (I)で示される ポリアセン誘導体を製造する場合には、上記式 (Ila)で示される炭化水素縮合環の 一つの環が芳香族化されることになる。一方、上記式 (lib)又は上記式 (lie)で示され る炭化水素縮合環の場合には、 2以上の環が芳香族化されることになる。
[0098] もっとも、上記式 (II)で示される炭化水素縮合環には、繰り返し単位中の環が、芳 香族環である場合と、芳香族環でな!、場合がランダムに繰り返される場合も含まれる
[0099] 前記一般式 (I)で示されるポリアセン誘導体の製造方法にお!、て、前記脱水素試 薬は、下記式 (III)で示される化合物であることが好ま 、。
[化 5]
Figure imgf000030_0001
[式中、 X1、 X2、 X3及び X4は、それぞれ、互いに独立して、ハロゲン原子又はシァノ 基である。 ]
[0101] 上記式 (III)で示される化合物は、上記式 (II)で示される炭化水素縮合環と反応し て、 1, 4—ジヒドロキシ—シクロへキサン誘導体に変換する。
[0102] 上記式 (III)中の X1、 X2、 X3及び X4で示されるハロゲン原子としては、塩素原子、臭 素原子又はヨウ素原子が好ましぐ塩素原子又は臭素原子がより好ましぐ塩素原子 が更に好ましい。例えば、 X1、 X2、 X3及び X4は全て塩素原子であってもよい。即ち、 上記式(III)で示される化合物はクロラ-ルであってもよい。あるいは、 X1及び X2がシ ァノ基であり、 X3及び X4が塩素原子であってもよい。即ち、上記式 (III)で示される化 合物は 2, 3—ジクロロ— 5, 6—ジシァノキノンであってもよい。 X1、 X2、 X3及び X4が全 てシァノ基であってもよい。即ち、上記式 (III)で示される化合物は 2, 3, 5, 6—テトラ シァノキノンであってもよ!/、。
[0103] 前記脱水素試薬として上記式 (III)で示される化合物を用いた場合には、上記式 (II I)で示される化合物が更に生成物のポリアセン誘導体と Diels— Alder反応をして、 副生成物を生じる場合がある。該副生成物は、所望により、カラムクロマトグラフィー 等により除去すればよい。
上記式 (III)で示される化合物は、このような副生成物の生成を防止するために、上 記式(Π)で示される化合物の 0. 9〜1. 2当量用いること力好ましく、 0. 9〜1. 15当 量用いることがより好ましぐ 0. 95-1. 05当量用いることが更に好ましい。
[0104] 前記芳香族化の反応に用いる溶媒としては、有機溶媒が好ましぐ特にベンゼン等 の芳香族化合物が好ましい。反応温度としては、— 80〜200°Cが好ましぐ 0-100 °Cがより好ましぐ 10〜80°Cが更に好ましい。所望により、光を遮断して反応を進行 させてちょい。
[0105] また、前記一般式 (I)で示されるポリアセン誘導体の製造方法にお!、て、前記脱水 素試薬は、ノラジウムを含むことが好ましい。例えば、活性炭のような炭素に担持され たパラジウム、 、わゆるパラジウムカーボン(PdZc)として巿販されて 、るものを好適 に用いることができる。 PdZcは、脱水素化に広く用いられている触媒であり、本発 明にお 、ても従来の脱水素化にぉ 、てと同様に用いることができる。 PdZcを用いる 場合の反応温度は、例えば、 200〜500°Cである。もっとも、該反応温度は、出発物 質等の様々な条件に依存して、適宜設定すればよい。
[0106] 上記式 (II)で示される炭化水素縮合環は、例えば、下記のようなスキームで得ること ができる。
[0107] [化 6]
Figure imgf000031_0001
[式中、
Figure imgf000031_0002
A4及び nは、前記一般式 (I)においてと同じ意 味を有する。 Ala及び A2aは、それぞれ、互いに独立して、ハロゲン原子を含む置換基 を有していてもよい C〜C アルコキシカルボ-ル基又はハロゲン原子を含む置換基
6 40
を有していてもよい C〜C ァリールォキシカルボ-ル基である。 Xはハロゲン原子等 の脱離基である。実線と点線とで示される結合は、単結合又は 2重結合を示し; Mは 、周期表の第 3〜5族又はランタ-ド系列の金属を示し; L1及び L2は、互いに独立し て、ァ-オン性配位子を示し、ただし、 L1及び L2は、架橋されていてもよく; Y1及び Y2 は、それぞれ、互いに独立して、脱離基である。 ]
実施例
[0108] 以下、実施例により本発明をさらに詳細に説明するが、勿論、本発明はこれらに限 定されるものではない。尚、合成例で得られた各化合物は、昇華精製法等により精製 して実施例に用いた。
[0109] 〔合成例 1〕化合物 1
下記〔化 7〕に示す構造を有する化合物の市販品 (Aldrich社製)を、化合物 1として 用いた。
[0110] [化 7]
Figure imgf000032_0001
(化合物 1 )
[0111] 〔合成例 2〕化合物 2の合成
下記〔化 8〕に示す化合物 2を、以下の手順で合成した。
[0112] [化 8]
(化台物 2 )
Figure imgf000032_0002
[0113] THF中に溶解したジルコノセンジクロリドに一 78°Cで n—ブチルリチウムを 2当量カロ え 1時間攪拌した。この液に下記化合物ジイン 1を 1当量加え室温で攪拌すると、下 記化合物ジルコナシクロペンタジェン 1が生成した。これに CuClを 2当量、 N, N—ジ メチルプロピレンゥレア(DMPU)を 3当量、ジメチルアセチレンジカルボキシレート( DMAD)を 1当量カ卩えて 50°Cで 3時間攪拌すると、化合物 2のジヒドロ体が得られた 。このジヒドロ体を 2, 3—ジクロロー 5, 6—ジシァノベンゾキノン(DDQ) l当量と反応 させると、化合物 2が得られた。
[0114] [化 9] (ジィン 1 )
Figure imgf000033_0001
[0115] 〔合成例 3〕化合物 3の合成
上記ジイン 1に代えて下記〔化 11〕に示すジイン 2を用いた以外は、合成例 2の化合 物 2の合成方法と同様にして、下記〔化 10〕に示すィ匕合物 3を合成した。以下の手順 で合成した。
[0116] [化 10]
(化合物 3 )
Figure imgf000033_0002
[0117] [化 11]
(ジイン 2 )
Figure imgf000033_0003
[0118] 〔合成例 4〕化合物 4の合成
下記〔化 12〕に示す化合物 4を、以下の手順で合成した
[0119] [化 12]
(化合物 4 )
Figure imgf000033_0004
非特許文献 (JACS、 2001、 123、 9482)に記載のとおりに、トリイソプロピルァセ チレンカゝら合成したグリニャール試薬とペンタセンキノンを反応させ、反応液を塩化ス ズを含む塩酸溶液で処理することにより、青色固体として化合物 4を得ることができた [0121] 〔合成例 5〕化合物 5の合成
下記〔化 13〕に示す化合物 5を、以下の手順で合成した。
[0122] [化 13]
(化合物 5 )
Figure imgf000034_0001
[0123] 3. 78 ( 1011111101)のぺリレンー3, 4, 9, 10—テトラカルボン酸無水物と 2. 9g (25 mmol)の o フエ二レンジァミンとを 50mlの N—メチノレピロリドン中で、 205°C〖こて 18 時間反応させた。反応の進行とともに、生成物が徐々に沈殿した。沈殿物を濾別し、 50mlのテトラヒドロフランで懸濁洗浄を 4回繰り返した後、乾燥して化合物 5を得た。 収量は 4. 5g (収率 80%)であった。
[0124] 〔合成例 6〕化合物 6の合成
下記〔化 14〕に示す化合物 6を、以下の手順で合成した。
[0125] [化 14]
Figure imgf000034_0002
特許文献 (JACS、 2004、 126、 8138)に記載のとおりに、テトラフノレ才ロフタノレ 酸無水物とハイド口キノンカもアントラキノン誘導体とし、これをスズで処理して 2, 3- ジヒドロー 1, 4 アントラセンジオンとし、更にテトラフルオロフタル酸無水物と反応さ せて 6, 13 ペンタセンジオンとし、次いで四フッ化硫黄でフッ素化後、亜鉛で処理 することによって、化合物 6を得ることができた。
[0126] 〔バッファ一層用の有機化合物〕
下記バッファー 1及び 2は、それぞれ市販品 (東京化成製)を用いた。また、下記バ ッファー 3は、 9—ブロムアントラセン (東京化成製)から Grignard試薬を経由する反 応により合成した。
[0127] [化 15] (パッファー 1 )
(バッファー 2 )
(パッファー 3 )
Figure imgf000035_0001
[0128] 〔比較化合物〕
比較化合物としての下記比較品 1、 2及び 3は、それぞれ市販品(東京化成製)を用 いた。
[0129] [化 16]
(比較品 2 )
Figure imgf000035_0002
(比較品 4 )
Figure imgf000035_0003
〔実施例 1〕
FET法にて、化合物 1〜6及び比較品:!〜 3の電荷移動度 (キャリア移動度)を測定 した。測定したキャリアの種類と結果と化合物の文献値を表 1に示す。(非特許文献 A ppl. Phys. Lett. 1998, 72, 1854- 1856 ; J. Appl. Phys., 2004, 96, 769 ; Appl. Phys. L ett., 2003, 83, 3108 ; Appl. Phys. Lett.2004, 84, 3789 ; J. Phys. Chem. B 107, 5877 (2003) ; J. Phys. Chem. B 2004, 108, 8614-8621)
[0131] [表 1]
Figure imgf000036_0001
[0132] 〔実施例 2〕
厚さ 130nmの ITO透明電極を有するガラス基板をパターユングした後、アセトン、 基板洗浄剤、蒸留水、イソプロピルアルコールの順に超音波洗浄し、更に UVZォゾ ン洗浄した後、真空蒸着装置のホルダーに固定した。蒸着槽を 10— 4Pa程度に減圧し 、有機物用マスクを用い、表 2に示す有機半導体化合物を用い、 p型有機半導体ィ匕 合物を膜厚 50nm ((l)p型半導体層)、 p型有機半導体化合物と n型有機半導体化合 物とを混合比 (体積基準) 1: 1で膜厚 20nm ((2)混合層)、 n型有機半導体化合物を 膜厚 20nm ((3)n型半導体層)に順次蒸着した。次いで、電極用マスク (受光面積は 2 mm X 2mm)を設置し、電極としてアルミニウムを膜厚約 lOOnmに蒸着し、光電変換 素子を作製した。この光電変換素子について、開放電圧、短絡電流、曲線因子及び 変換効率を、分光計器 (株)社製光電変換素子評価装置を用い、白色光強度 100m WZcm2にて測定した。結果を表 2に示す。
[0133] [表 2] 有機半導体化合物 測定結果
(2) p型半導体と 変換
(1) P型 (3) n型 開放電圧 短絡電流 曲線
n型半導体との混合層 効率 半導体餍 半導体層 ( V ) (rnA/cm2) 因子
( p型 + n型) { % )
2一 L 化合物 1 比較品 1 +比較品 2 比較 0¾ 2 0.40 5.8 0.42 0,97 実 2一 2 化合物 1 化合物 1 +比較品 2 比較品 2 0.42 4.4 0.40 0,14
2一 3 化合物 2 比較品 1 +比較品 2 比較品 2 0.48 4.0 0.36 0.69 施
2一 4 化合物 3 比較品 1 +比較品 2 比較品 2 0.42 5.0 0.37 0.78 例 2― 5 化合物 4 比較品 1 +比較品 2 比較品 2 0.45 3.9 0.39 0.68
2一 6 比較品 1 比較品 1 +比較品 2 化合物 6 0.36 4.8 0.40 0.69 比 2 1 比較品 1 比較品 1 +比較品 2 比較品 2 0.54 1.6 0.42 0.36 較
例 2一 2 比較品 1 比較品 L +比較品 2 比較品 3 0.44 2.2 0.36 0.35
[0134] 〔実施例 3〕
実施例 2と同様にして、 ITO透明電極をパター-ングし洗浄後、蒸着装置の基板ホ ルダ一に固定した。固定した ITO透明電極に、金を 5nmの厚さに蒸着した。この基 板をバッファー 1の 2質量%THF溶液に浸漬し引き上げた後、 THFにてリンスし、次 いで真空乾燥して、金薄膜上にバッファ一層を作製した。次に、表 3に示した p型有 機半導体化合物を 1, 2—ジクロルェタンに溶解して、ノ ッファー層上に塗布し、乾燥 して、膜厚 50nmの薄膜 ((l)p型半導体層)を作製した。次いで、真空蒸着装置のホ ルダ一に固定し、実施例 2と同様に、表 3に示す ρ型有機半導体化合物と η型有機半 導体化合物とを混合比 (体積基準) 1: 1で膜厚 20nm ((2)混合層)、 n型有機半導体 化合物を膜厚 20nm ((3)n型半導体層)に順次蒸着した。次いで、電極用マスク (受 光面積は 2mmX 2mm)を設置し、電極としてアルミニウムを膜厚約 lOOnmに蒸着し 、光電変換素子を作製した。この光電変換素子について、実施例 2と同様の測定を 行った。結果を表 3に示す。
[0135] [表 3] 有機半導体化合物 測定結果
(2) p型半導体と 短絡 変換
(1) P型 (3) n型 開放電圧 曲線
n型半導体との混合層 電流 効率 半導体層 半導体層 (V) 因子
( P型 + n型) (mA/cm¾) (¾ ) 実施例
化合物 2 比較品 1 +比較お 2 比較品 2 0.42 6,2 0.40 1.04
3一 1
実施例
化合物 3 比較品 1 +比蛟品 2 比較品 2 0.43 4.7 0.39 0.79 3 - 2
実施例
化合物 4 比較品 1 +比較品 2 比較品 2 0.39 4, 1 0.42 0.67 3 - 3
参考例 化合物 1 比較品 1 +比較品 2 比較品 2 溶媒に不溶なため薄膜作製不可 比較例
比較品 1 比蛟品 1 +比較品 2 比較品 2 溶媒に不溶なため薄膜作製不可 3一 1
[0136] 尚、表 3から明らかなように、 p型有機半導体化合物として置換基を有していない化 合物 1を用いると、化合物 1は溶媒に不溶なため溶液塗布法による薄膜が作製でき ず、光電変換素子は得られなかった (参考例)。これに対し、置換基を有している化 合物を用いると、該化合物は溶解性に優れるため、溶液塗布法による薄膜作成が可 能であった(実施例 3— 1〜3— 3)。し力しながら、前記表 2の実施例 2の結果からも 明らかなように、化合物 1は、蒸着法による薄膜作製は可能で、蒸着法を採用した場 合には良好な諸特性を有する光電変換素子が得られる。
[0137] 〔実施例 4〕
実施例 2と同様に、 ITO透明電極をパターユングし洗浄した。更に、 UVオゾン処理 を行って ITO電極の仕事関数を 0. 5eV高くした。その後、表 4—1に示す p型有機半 導体化合物、 P型有機半導体化合物及び n型有機半導体化合物 (混合比は体積基 準で 1: 1)、 n型有機半導体化合物を順次蒸着して、(l)p型半導体層、(2)混合層及 び (3)n型半導体層を作製した。次いで、電極用マスク (受光面積は 2mm X 2mm)を 設置し、電極としてアルミニウムを膜厚約 lOOnmに蒸着し、光電変換素子を作製し た。この光電変換素子について、実施例 2と同様の測定を行った。結果を表 4—1に 示す。 また、大気中光電分光法による薄膜のイオンィ匕ポテンシャル及び吸収スぺク トルよりエネルギーギャップを求めた。結果を表 4 2に示す。
[0138] [表 4-1] 有機半導体化合物 測定結果
(2) p型半導体と
(1)P型 (3)n型 開放 変換 n型半導体との混合層 短絡電流 曲線 半導体層 半導体層 電圧 効率
(P型 + n型) (mA/cm2) 因子
[膜厚 nm] [膜厚 nm] (V)
[膜厚 nm]
実施例 比較品 1 比較品 1 +比較品 2 化合物 5
0.50 6.3 0.40 1.26
4一 1 [ 20 nm] [20 nm] [ 20 nm]
実施例 化合物] 比較品 1 +比較品 2 化合物 5
0,4丄 8.2 0.45 1.51
4 - 2 [ 50 nm] [ 20 nm] [ 1 0 nm]
比較例 比較品 4 比較品 1 +比較品 2 比較品 2
0.46 3.2 0.32 0.47 4 - 1 [20 nm] [ 20 nm] [20 nm]
[0139] [表 4-2]
Figure imgf000039_0001
[0140] 〔実施例 5〕
実施例 2と同様にして、 ITO透明電極をパターユングし洗浄後、蒸着装置の基板ホ ルダ一に固定した。固定した ITO透明電極に、金を 5nmの厚さに蒸着した。この基 板を表 5に示したバッファー化合物の 2質量%THF溶液に浸漬し引き上げた後、 TH Fにてリンスし、次いで真空乾燥して、金薄膜上にバッファ一層 Iを作製した。次に、有 機物用マスクを用い、バッファ一層 I上に、比較品 1を膜厚 20nm((l)p型半導体層)、 比較品 1と比較品 2とを混合比 (体積基準) 1: 1にて膜厚 20nm((2)混合層)、比較品 2を膜厚 20nm((3)n型半導体層)に、順次蒸着した。更に、(3)n型半導体層上に、表 5に示したバッファー化合物を膜厚 lnmに蒸着してバッファ一層 IIを作製後、電極用 マスク(受光面積は 2mm X 2mm)を設置し、電極としてアルミニウムを膜厚約 100η mに蒸着し、光電変換素子を作製した (実施例 5— 1〜5— 4)。この光電変換素子に ついて、実施例 2と同様の測定を行った。結果を表 5に示す。 また、実施例 2と同様 に ITO透明電極を洗浄し後、 PEDOT— PSS [Poly (ethylenedioxy) thiophene -polystyrene sulphonic acid]を膜厚 30nmにスピンコートした後、減圧乾燥し 、電極とは化学結合がないバッファ一層 Iを作製した。次に、比較品 1を 20nm(p型半 導体層)、比較品 1と比較品 2とを混合比 (体積基準)で 1 : 1にて 20nm (混合層)、比 較品 2を 20nm (n型半導体層)順次蒸着した。更に、電極用マスク (受光面積は 2m m X 2mm)を設置し、フッ化リチウムを膜厚 0. 5nmに蒸着して無機バッファ一層 IIを 作製後、電極としてアルミニウムを膜厚約 lOOnmに蒸着し、光電変換素子を作製し た (比較例 5— 1)。また、ノ ッファー層 I及び IIを設けないこと以外は、比較例 5—1と 同様にして、光電変換素子を作製した (比較例 5— 2)これらの光電変換素子につ!、 て、実施例 2と同様の測定を行った。結果を表 5に示す。
[0141] [表 5]
Figure imgf000040_0001
[0142] 〔実施例 6〕
実施例 2と同様にして、 ITO透明電極をパターユングし洗浄後、蒸着装置の基板ホ ルダ一に固定した。固定した ITO透明電極上に、化合物 1を 60nm ((l)p型半導体層 )、比較品 1と比較品 2とを混合比 (体積基準)で 1 : 1にて 20nm ((2)混合層)、比較品 2を 20nm及び比較品 5を lOnm ((3)n型半導体層)順次蒸着し、光電変換ユニット 1 を成膜した。次に、中間電極として、銀を 0. 5nm蒸着後、 N, Ν'—ジフエ-ル— N, で 5nm蒸着した。次いで、光電変換ユニット 1の成膜工程をもう一度繰り返して光電 変換ユニット 2を作製した。最後に銀を lOOnmの厚さに蒸着し、タンデム型光電変換 素子 Aを作製した (実施例 6— 1)。この光電変換素子について、実施例 2と同様の測 定を行った。結果を表 6に示す。
また、タンデム型光電変換素子 Aと同様に光電変換ユニット 1を成膜した後、中間 電極として ITOをスパッタリングの手法を用いて 10nmの厚さに成膜した。次いで、タ ンデム型光電変換素子 Aと同様に光電変換ユニット 2を作製して力もアルミニウムを 1 OOnmの厚さに蒸着し、タンデム型光電変換素子 Bを作製した (実施例 6— 2)。この 光電変換素子について、実施例 2と同様の測定を行った。結果を表 6に示す。
[0143] [表 6]
Figure imgf000041_0002
[0144] [実施例 7]
実施例 2と同様にして、 ITO透明電極をパターユングし洗浄後、蒸着装置の基板ホ ルダ一に固定した。固定した ITO透明電極上に、化合物 1を 10nm ( (l) p型半導体 層)蒸着した。これに化合物 7 (P3HT)と化合物 8 (PCBM)の 1: 1の混合物をジクロ口 ベンゼンに溶カゝし、スピンコート法により製膜した。このときのスピンコートの回転数に より、膜厚を 50nm、 100nm、 150nm、 175nmにコントロールした。乾燥後、比較品 5を lOnm ((3)n型半導体層)蒸着し、アルミニウムを lOOnm蒸着して光電変換素子 を作製した。
また、化合物 1の代わりに化合物 2または化合物 4を用いて光電変換素子を作製し た。この場合、化合物 2または化合物 4はトルエンに溶解させ、溶液塗布法により製膜 した。
また、比較品 5を用いないで、(l)p型半導体層および (2)p型半導体と n型半導体との 混合層からなる光電変換素子を作製した。この光電変換素子の結果を表 7に示す。
[0145] [化 17]
Figure imgf000041_0001
(化合物 7 )
[0146] [化 18] 【化 】
Figure imgf000042_0001
(化合物 8 )
[0147] [化 19]
Figure imgf000042_0002
(比較品
[0148] [表 7]
Figure imgf000042_0003
[実施例 8]
実施例 7と同様にして、 ΙΤΟ透明電極をパターユングし洗浄後、蒸着装置の基板ホ ルダ一に固定した。固定した ΙΤΟ透明電極上に、化合物 1を 10nm ( (l) p型半導体 層)蒸着した。これに化合物 7と化合物 8の 1: 1の混合物をジクロ口ベンゼンに溶かし 、スピンコート法により製膜した。乾燥後、チタンイソプロボキシドの水一イソプロパノ ール溶液を塗布しゾルゲル法によりチタン酸ィ匕物層を製膜し、アルミニウムを lOOnm 蒸着して光電変換素子を作製した。この光電変換素子の結果を表 8に示す。
[表 8]
Figure imgf000043_0001
産業上の利用可能性
本発明によれば、加工性 ·生産性がよぐ毒性が低ぐ光電変換効率が良好な光電 変換素子を提供することができる。

Claims

請求の範囲
[1] 対向する陽極電極と陰極電極との間に光電変換層を有する光電変換素子であり、 該光電変換層が、(l) p型半導体層、(2) p型半導体と n型半導体との混合層及び (3 ) n型半導体層を順次積層した構造〔尚、(1) p型半導体層中の p型半導体と (2)混合 層中の p型半導体、 (2)混合層中の n型半導体と (3) n型半導体層中の n型半導体と は、それぞれ、同一の材料で構成されていても、異なった材料で構成されていてもよ V、〕を有する光電変換素子にぉ 、て、以下に示す (a)〜(c)のうちの少なくとも 1っ以 上の光電変換効率向上手段を採用したことを特徴とする光電変換素子。
(a)上記(1)〜(3)の半導体層の少なくとも 1つに、電荷移動度が 0. 005cm2/V- sec以上の有機半導体薄膜を用いること
(b)上記陽極電極の仕事関数と上記(1) p型半導体層の HOMO (最高被占分子 軌道)とのエネルギーギャップ、及び Z又は、上記陰極電極の仕事関数と上記(3) n 型半導体層の LUMO (最低空軌道)とのエネルギーギャップ力 0. 5eV以下である こと
(c)上記陽極電極及び Z又は上記陰極電極と上記光電変換層との間に有機化合 物で形成されるバッファ一層を設置し、該バッファ一層の有機化合物と上記陽極電 極及び Z又は上記陰極電極とを化学結合させること
[2] 対向する陽極電極と陰極電極との間に光電変換層を有する光電変換素子であり、 該光電変換層が、(l) p型半導体層及び (2) p型半導体と n型半導体との混合層を順 次積層した構造〔尚、(1) p型半導体層中の p型半導体と (2)混合層中の p型半導体 とは、それぞれ、同一の材料で構成されていても、異なった材料で構成されていても ょ 、〕を有する光電変換素子にぉ 、て、以下に示す (a)〜(c)のうちの少なくとも 1つ 以上の光電変換効率向上手段を採用したことを特徴とする光電変換素子。
(a)上記(1)〜(2)の半導体層の少なくとも 1つに、電荷移動度が 0. 005cm2/V- sec以上の有機半導体薄膜を用いること
(b)上記陽極電極の仕事関数と上記(1) p型半導体層の HOMO (最高被占分子 軌道)とのエネルギーギャップ、及び Z又は、上記陰極電極の仕事関数と上記(2)混 合層中の n型半導体層の LUMO (最低空軌道)とのエネルギーギャップ力 0. 5eV 以下であること
(C)上記陽極電極及び Z又は上記陰極電極と上記光電変換層との間に有機化合 物で形成されるバッファ一層を設置し、該バッファ一層の有機化合物と上記陽極電 極及び Z又は上記陰極電極とを化学結合させること
[3] 対向する陽極電極と陰極電極との間に光電変換層を有する光電変換素子であり、 該光電変換層が、(1) P型半導体層、(2) p型半導体と n型半導体との混合層及び (3 )金属酸化物の層を順次積層した構造〔尚、(l) p型半導体層中の p型半導体と (2) 混合層中の P型半導体とは、それぞれ、同一の材料で構成されていても、異なった材 料で構成されて 、てもよ 、〕を有する光電変換素子にぉ 、て、以下に示す (a)〜 (c) のうちの少なくとも 1つ以上の光電変換効率向上手段を採用したことを特徴とする光 電変換素子。
(a)上記(1)〜(2)の半導体層の少なくとも 1つに、電荷移動度が 0. 005cm2/V- sec以上の有機半導体薄膜を用いること
(b)上記陽極電極の仕事関数と上記(1) p型半導体層の HOMO (最高被占分子 軌道)とのエネルギーギャップ、及び Z又は、上記陰極電極の仕事関数と上記(2)混 合層中の n型半導体層の LUMO (最低空軌道)とのエネルギーギャップ力 0. 5eV 以下であること
(c)上記陽極電極及び Z又は上記陰極電極と上記光電変換層との間に有機化合 物で形成されるバッファ一層を設置し、該バッファ一層の有機化合物と上記陽極電 極及び Z又は上記陰極電極とを化学結合させること
[4] 少なくとも上記半導体層の少なくとも 1つに、電荷移動度が 0. 005cm2ZV' sec以 上の有機半導体薄膜を用いる光電変換効率向上手段を採用した請求の範囲第 1〜 3項の 、ずれか 1項に記載の光電変換素子。
[5] p型半導体層に電荷移動度が 0. 005cm2ZV' sec以上の有機半導体薄膜を用い た請求の範囲第 1〜4項のいずれ力 1項に記載の光電変換素子。
[6] 上記半導体層で構成される上記光電変換層からなる光電変換ユニットを複数個有 し、各光電変換ユニットは、中間電極としての等電位面を形成する層及び Z又は電 荷発生層によって仕切られて!/、ることを特徴とする請求の範囲第 4又は 5項に記載の 光電変換素子。
[7] 少なくとも上記 (b)の光電変換効率向上手段を採用した請求の範囲第 1〜3項のい ずれか 1項に記載の光電変換素子。
[8] 少なくとも上記 (c)の光電変換効率向上手段を採用した請求の範囲第 1〜3項のい ずれか 1項に記載の光電変換素子。
[9] 上記光電変換層のうち(l) p型半導体層の厚さが lOnm以上であることを特徴とす る請求の範囲第 1〜8項のいずれか 1項に記載の光電変換素子。
[10] 上記の半導体層に用いられる有機半導体ィ匕合物の少なくとも 1つが、下記一般式(
I)で示されるポリアセン誘導体力 選ばれることを特徴とする請求の範囲第 1〜9項の いずれか 1項に記載の光電変換素子。
[化 1]
[式中、
Figure imgf000046_0001
A3及び A4は、それぞれ互いに独立 して、水素原子;ハロゲン原子;置換基を有していてもよい C〜C 炭化水素基;置換
1 40
基を有していてもよい c〜
1 c アルコキシ基;置換基を有していてもよい
40 c〜
6 c ァリ 40 ールォキシ基;置換基を有していてもよい c〜
7 c アルキルァリールォキシ基;置換基 40
を有していてもよい C〜C アルコキシカルボ-ル基;置換基を有していてもよい C〜
2 40 7
C ァリールォキシカルボ-ル基;シァノ基( CN);力ルバモイル基( C ( = O) NH
40 2
);ハロホルミル基(—c(=o)—X、式中、 Xはハロゲン原子を示す。 );ホルミル基( — C ( = 0)— H);イソシァノ基;イソシアナト基;チオシアナト基;チォイソシアナト基; 置換基を有して ヽてもよ ヽァミノ基;置換基を有して ヽてもよ ヽアミド基;水酸基;又は 置換基を有して 、てもよ ヽシリル基、置換基を有して 、てもよ 、チェ-ル基であり、あ るいはこれらのうちの 2つ以上の基を含む官能基であり;但し、 A1及び A2、 A3及び A4 は、互いに架橋して、式一 C ( = 0)— B— C ( = 0)—で示される環を形成してもよく〔 式中、 Bは、酸素原子又は式— Ν (Β —で示される基 (式中、 Β1は、水素原子、 C〜 C 炭化水素基又はハロゲン原子である。)である。〕、また、 A3及び A4は、互いに架
40
橋して c〜c 飽和又は不飽和環を形成してもよぐ該飽和又は不飽和環は、酸素
4 40
原子、硫黄原子、又は式—N (RU)—で示される基 (式中、 R11は水素原子又は炭化 水素基である。)で中断されていてもよぐかつ、置換基を有していてもよく; nは、 1以 上の整数である。 ]
[11] 上記光電変換層を構成する(1) P型半導体層、(2) p型半導体と n型半導体との混 合層又は(3) n型半導体層あるいは金属酸ィ匕物層のうち少なくとも 1層力 溶液塗布 法により形成されたことを特徴とする請求の範囲第 1〜10のいずれか 1項に記載の 光電変換素子。
PCT/JP2006/315272 2005-08-02 2006-08-02 光電変換素子 WO2007015503A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN2006800286248A CN101248542B (zh) 2005-08-02 2006-08-02 光电转换元件
US11/997,836 US20090107539A1 (en) 2005-08-02 2006-08-02 Photoelectric device
EP06782141A EP1912267A4 (en) 2005-08-02 2006-08-02 PHOTOELECTRIC CONVERSION ELEMENT
JP2007529502A JPWO2007015503A1 (ja) 2005-08-02 2006-08-02 光電変換素子

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2005224134 2005-08-02
JP2005-224134 2005-08-02
JP2006-118519 2006-04-21
JP2006118519 2006-04-21

Publications (1)

Publication Number Publication Date
WO2007015503A1 true WO2007015503A1 (ja) 2007-02-08

Family

ID=37708783

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/315272 WO2007015503A1 (ja) 2005-08-02 2006-08-02 光電変換素子

Country Status (5)

Country Link
US (1) US20090107539A1 (ja)
EP (1) EP1912267A4 (ja)
JP (1) JPWO2007015503A1 (ja)
CN (1) CN101248542B (ja)
WO (1) WO2007015503A1 (ja)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009043683A1 (de) 2007-09-28 2009-04-09 Siemens Aktiengesellschaft Organischer photodetektor mit reduziertem dunkelstrom
US20100133434A1 (en) * 2008-11-28 2010-06-03 National Chiao Tung University Organic semiconductor infrared distance sensing apparatus and organic infrared emitting apparatus thereof
WO2010101241A1 (ja) * 2009-03-05 2010-09-10 コニカミノルタホールディングス株式会社 有機光電変換素子、太陽電池及び光センサアレイ
JP2012114187A (ja) * 2010-11-24 2012-06-14 Konica Minolta Holdings Inc 有機光電変換素子、およびそれを用いた有機太陽電池
WO2012132447A1 (ja) 2011-03-31 2012-10-04 出光興産株式会社 有機薄膜太陽電池及び有機薄膜太陽電池モジュール
JP2013115084A (ja) * 2011-11-25 2013-06-10 Rohm Co Ltd 有機薄膜太陽電池およびその製造方法
CN104137287A (zh) * 2010-10-15 2014-11-05 密歇根大学董事会 用于控制光伏器件中光活性层的外延生长的材料
JP2015015415A (ja) * 2013-07-08 2015-01-22 富士フイルム株式会社 光電変換層の成膜方法
JP2016181634A (ja) * 2015-03-25 2016-10-13 株式会社東芝 光電変換素子およびその製造方法

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010041022A (ja) * 2008-07-08 2010-02-18 Sumitomo Chemical Co Ltd 光電変換素子
KR101564330B1 (ko) 2009-10-15 2015-10-29 삼성전자주식회사 유기 나노와이어를 포함하는 태양전지
CN102576805A (zh) * 2009-10-30 2012-07-11 住友化学株式会社 有机光电转换元件及其制造方法
CN102668153A (zh) * 2009-10-30 2012-09-12 住友化学株式会社 有机光电转换元件
CN102683600B (zh) * 2011-03-09 2016-03-30 海洋王照明科技股份有限公司 电荷再生结构、其制备方法及应用
KR101942423B1 (ko) 2011-09-09 2019-04-12 삼성전자주식회사 광 다이오드
KR102270705B1 (ko) * 2013-12-06 2021-06-29 삼성전자주식회사 유기 광전 소자 및 이미지 센서
CN106463563B (zh) * 2014-07-17 2019-05-10 索尼公司 光电转换元件及其制造方法、成像装置、光学传感器
KR102355558B1 (ko) * 2014-07-31 2022-01-27 삼성전자주식회사 이미지 센서
JP6275883B2 (ja) * 2015-02-12 2018-02-07 富士フイルム株式会社 有機半導体膜形成用組成物、有機半導体膜及びその製造方法、並びに、有機半導体素子及びその製造方法
CN112002808A (zh) * 2015-05-29 2020-11-27 索尼半导体解决方案公司 光电转换元件、固体摄像装置和电子设备
CN118315403A (zh) * 2018-07-30 2024-07-09 索尼公司 摄像元件和摄像装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09508504A (ja) * 1994-11-23 1997-08-26 フィリップス エレクトロニクス ネムローゼ フェンノートシャップ 光応答性装置
JP2001156321A (ja) * 1999-03-09 2001-06-08 Fuji Xerox Co Ltd 半導体装置およびその製造方法
JP2002502129A (ja) * 1998-02-02 2002-01-22 ユニアックス コーポレイション 切替え可能な光電感度を有する有機ダイオード
WO2003016599A1 (fr) * 2001-08-09 2003-02-27 Asahi Kasei Kabushiki Kaisha Element a semi-conducteur organique
JP2004055686A (ja) * 2002-07-17 2004-02-19 Sharp Corp 太陽電池およびその製造方法
JP2004319705A (ja) * 2003-04-15 2004-11-11 Univ Kanazawa 有機太陽電池

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06318725A (ja) * 1993-05-10 1994-11-15 Ricoh Co Ltd 光起電力素子およびその製造方法
US6953947B2 (en) * 1999-12-31 2005-10-11 Lg Chem, Ltd. Organic thin film transistor
US20040183070A1 (en) * 2003-03-21 2004-09-23 International Business Machines Corporation Solution processed pentacene-acceptor heterojunctions in diodes, photodiodes, and photovoltaic cells and method of making same
DE10326547A1 (de) * 2003-06-12 2005-01-05 Siemens Ag Tandemsolarzelle mit einer gemeinsamen organischen Elektrode
US7109519B2 (en) * 2003-07-15 2006-09-19 3M Innovative Properties Company Bis(2-acenyl)acetylene semiconductors
US6972431B2 (en) * 2003-11-26 2005-12-06 Trustees Of Princeton University Multilayer organic photodetectors with improved performance
JP5089986B2 (ja) * 2003-11-28 2012-12-05 メルク パテント ゲゼルシャフト ミット ベシュレンクテル ハフツング 有機半導体層およびその改善

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09508504A (ja) * 1994-11-23 1997-08-26 フィリップス エレクトロニクス ネムローゼ フェンノートシャップ 光応答性装置
JP2002502129A (ja) * 1998-02-02 2002-01-22 ユニアックス コーポレイション 切替え可能な光電感度を有する有機ダイオード
JP2001156321A (ja) * 1999-03-09 2001-06-08 Fuji Xerox Co Ltd 半導体装置およびその製造方法
WO2003016599A1 (fr) * 2001-08-09 2003-02-27 Asahi Kasei Kabushiki Kaisha Element a semi-conducteur organique
JP2004055686A (ja) * 2002-07-17 2004-02-19 Sharp Corp 太陽電池およびその製造方法
JP2004319705A (ja) * 2003-04-15 2004-11-11 Univ Kanazawa 有機太陽電池

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
BRABEC C.J. ET AL.: "Effect of LiF/metal electrodes on the performance of plastic solar cells", APPLIED PHYSICS LETTERS, vol. 80, no. 7, 2002, pages 1288 - 1290, XP001068293 *
PEUMANS P. ET AL.: "Efficient photon harvesting at high optical intensities in ultrathin organic double heterostructure photovoltaic diodes", APPLIED PHYSICS LETTERS, vol. 76, no. 19, 2000, pages 2650 - 2652, XP000950494 *
See also references of EP1912267A4 *

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009043683A1 (de) 2007-09-28 2009-04-09 Siemens Aktiengesellschaft Organischer photodetektor mit reduziertem dunkelstrom
US20100133434A1 (en) * 2008-11-28 2010-06-03 National Chiao Tung University Organic semiconductor infrared distance sensing apparatus and organic infrared emitting apparatus thereof
WO2010101241A1 (ja) * 2009-03-05 2010-09-10 コニカミノルタホールディングス株式会社 有機光電変換素子、太陽電池及び光センサアレイ
JP5763522B2 (ja) * 2009-03-05 2015-08-12 コニカミノルタ株式会社 有機光電変換素子、太陽電池及び光センサアレイ
CN104137287A (zh) * 2010-10-15 2014-11-05 密歇根大学董事会 用于控制光伏器件中光活性层的外延生长的材料
JP2012114187A (ja) * 2010-11-24 2012-06-14 Konica Minolta Holdings Inc 有機光電変換素子、およびそれを用いた有機太陽電池
WO2012132447A1 (ja) 2011-03-31 2012-10-04 出光興産株式会社 有機薄膜太陽電池及び有機薄膜太陽電池モジュール
JP2013115084A (ja) * 2011-11-25 2013-06-10 Rohm Co Ltd 有機薄膜太陽電池およびその製造方法
JP2015015415A (ja) * 2013-07-08 2015-01-22 富士フイルム株式会社 光電変換層の成膜方法
JP2016181634A (ja) * 2015-03-25 2016-10-13 株式会社東芝 光電変換素子およびその製造方法

Also Published As

Publication number Publication date
CN101248542A (zh) 2008-08-20
EP1912267A4 (en) 2011-07-27
EP1912267A1 (en) 2008-04-16
US20090107539A1 (en) 2009-04-30
CN101248542B (zh) 2011-08-10
JPWO2007015503A1 (ja) 2009-02-19

Similar Documents

Publication Publication Date Title
WO2007015503A1 (ja) 光電変換素子
US8022295B2 (en) Photoelectric conversion devices
JP5214250B2 (ja) 有機光活性装置
JP5417039B2 (ja) インドール誘導体及びそれを用いた有機薄膜太陽電池
US20140144509A1 (en) Compounds for Organic Photovoltaic Devices
JP5851268B2 (ja) 有機薄膜太陽電池素子用材料、及びそれを用いた有機薄膜太陽電池
JP2010073987A (ja) 有機薄膜太陽電池用材料
JP2013175752A (ja) 有機太陽電池
JP2011029220A (ja) 有機薄膜太陽電池用材料及びそれを用いた有機薄膜太陽電池
TW201609727A (zh) N-氟烷基取代之二溴萘二亞胺及彼等做為半導體之用途
JP2009132674A (ja) アセナフトフルオランテン化合物からなる光電変換素子用材料及びそれを用いた光電変換素子
JP2008166558A (ja) 光電変換素子用材料及びそれを用いた光電変換素子
JP5498674B2 (ja) 有機薄膜太陽電池用材料及びそれを用いた有機薄膜太陽電池
JP2010254608A (ja) フタルイミド系化合物、ナフタルイミド系化合物、無水ナフタル酸系化合物、これら含む電子輸送材料、及び有機薄膜太陽電池
JP2008166561A (ja) 光電変換素子用材料及びそれを用いた光電変換素子
JP5525895B2 (ja) 有機薄膜太陽電池材料及びそれを用いた有機薄膜太陽電池
US20130180590A1 (en) Phenanthroline compound, electron transport material obtained from said compound, and organic thin-film solar cell comprising said compound
WO2012014460A1 (ja) インデノペリレン化合物、インデノペリレン誘導体を含有してなる有機薄膜太陽電池用材料、及びそれを用いた有機薄膜太陽電池
JP2011029219A (ja) 有機薄膜太陽電池用材料及びそれを用いた有機薄膜太陽電池
JP5658937B2 (ja) インデノペリレン化合物及びそれを用いた有機薄膜太陽電池
JP2009267092A (ja) 光起電力素子用材料および光起電力素子
JP5427500B2 (ja) 有機薄膜太陽電池用材料及びそれを用いた有機薄膜太陽電池
JP5560132B2 (ja) 有機薄膜太陽電池用材料及びそれを用いた有機薄膜太陽電池
Yee Molecularly defined bulk heterojunctions using complementary hydrogen-bonding
JP2014077042A (ja) ジベンゾピロメテン化合物を含む有機薄膜太陽電池材料

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200680028624.8

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application
DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2007529502

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2006782141

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 11997836

Country of ref document: US

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)