Nothing Special   »   [go: up one dir, main page]

WO2006106666A1 - シリコン酸化膜の製造方法、その制御プログラム、記憶媒体及びプラズマ処理装置 - Google Patents

シリコン酸化膜の製造方法、その制御プログラム、記憶媒体及びプラズマ処理装置 Download PDF

Info

Publication number
WO2006106666A1
WO2006106666A1 PCT/JP2006/306283 JP2006306283W WO2006106666A1 WO 2006106666 A1 WO2006106666 A1 WO 2006106666A1 JP 2006306283 W JP2006306283 W JP 2006306283W WO 2006106666 A1 WO2006106666 A1 WO 2006106666A1
Authority
WO
WIPO (PCT)
Prior art keywords
oxide film
plasma
silicon oxide
forming
processing
Prior art date
Application number
PCT/JP2006/306283
Other languages
English (en)
French (fr)
Inventor
Junichi Kitagawa
Shingo Furui
Original Assignee
Tokyo Electron Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Electron Limited filed Critical Tokyo Electron Limited
Priority to CN2006800109864A priority Critical patent/CN101156233B/zh
Priority to EP06730231A priority patent/EP1865548A4/en
Priority to JP2007512746A priority patent/JP5073482B2/ja
Priority to US11/910,322 priority patent/US20090239352A1/en
Publication of WO2006106666A1 publication Critical patent/WO2006106666A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/40Oxides
    • C23C16/401Oxides containing silicon
    • C23C16/402Silicon dioxide
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/04Coating on selected surface areas, e.g. using masks
    • C23C16/045Coating cavities or hollow spaces, e.g. interior of tubes; Infiltration of porous substrates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/50Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
    • C23C16/505Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using radio frequency discharges
    • C23C16/509Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using radio frequency discharges using internal electrodes
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/04Treatment of selected surface areas, e.g. using masks
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/06Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases
    • C23C8/08Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases only one element being applied
    • C23C8/10Oxidising
    • C23C8/12Oxidising using elemental oxygen or ozone
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/06Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases
    • C23C8/36Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases using ionised gases, e.g. ionitriding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32192Microwave generated discharge
    • H01J37/32211Means for coupling power to the plasma
    • H01J37/3222Antennas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/3244Gas supply means
    • H01J37/32449Gas control, e.g. control of the gas flow
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/32798Further details of plasma apparatus not provided for in groups H01J37/3244 - H01J37/32788; special provisions for cleaning or maintenance of the apparatus
    • H01J37/32816Pressure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32917Plasma diagnostics
    • H01J37/32935Monitoring and controlling tubes by information coming from the object and/or discharge
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/02227Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a process other than a deposition process
    • H01L21/0223Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a process other than a deposition process formation by oxidation, e.g. oxidation of the substrate
    • H01L21/02233Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a process other than a deposition process formation by oxidation, e.g. oxidation of the substrate of the semiconductor substrate or a semiconductor layer
    • H01L21/02236Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a process other than a deposition process formation by oxidation, e.g. oxidation of the substrate of the semiconductor substrate or a semiconductor layer group IV semiconductor
    • H01L21/02238Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a process other than a deposition process formation by oxidation, e.g. oxidation of the substrate of the semiconductor substrate or a semiconductor layer group IV semiconductor silicon in uncombined form, i.e. pure silicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/02227Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a process other than a deposition process
    • H01L21/02252Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a process other than a deposition process formation by plasma treatment, e.g. plasma oxidation of the substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/314Inorganic layers
    • H01L21/316Inorganic layers composed of oxides or glassy oxides or oxide based glass
    • H01L21/3165Inorganic layers composed of oxides or glassy oxides or oxide based glass formed by oxidation
    • H01L21/31654Inorganic layers composed of oxides or glassy oxides or oxide based glass formed by oxidation of semiconductor materials, e.g. the body itself
    • H01L21/31658Inorganic layers composed of oxides or glassy oxides or oxide based glass formed by oxidation of semiconductor materials, e.g. the body itself by thermal oxidation, e.g. of SiGe
    • H01L21/31662Inorganic layers composed of oxides or glassy oxides or oxide based glass formed by oxidation of semiconductor materials, e.g. the body itself by thermal oxidation, e.g. of SiGe of silicon in uncombined form
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/76Making of isolation regions between components
    • H01L21/762Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers
    • H01L21/76224Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using trench refilling with dielectric materials
    • H01L21/76232Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using trench refilling with dielectric materials of trenches having a shape other than rectangular or V-shape, e.g. rounded corners, oblique or rounded trench walls
    • H01L21/76235Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using trench refilling with dielectric materials of trenches having a shape other than rectangular or V-shape, e.g. rounded corners, oblique or rounded trench walls trench shape altered by a local oxidation of silicon process step, e.g. trench corner rounding by LOCOS
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02123Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon
    • H01L21/02164Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material being a silicon oxide, e.g. SiO2

Definitions

  • Silicon oxide film manufacturing method control program thereof, storage medium and plasma
  • the present invention relates to a method for forming a silicon oxide film, and more specifically, for example, in a trench in shallow trench isolation (STl), which is an element isolation technique in the manufacturing process of a semiconductor device.
  • STl shallow trench isolation
  • the present invention relates to a method for forming a silicon oxide film applicable to forming an oxide film.
  • STI is known as a technique for electrically separating elements formed on a silicon substrate.
  • silicon is etched using a silicon nitride film or the like as a mask to form a trench, and an insulating film such as SiO is embedded therein, followed by chemical mechanical polishing (CMP;
  • a step of flattening with a mask (silicon nitride film) as a stopper is performed by a cal mechanical polishing process.
  • Patent Document 1 Japanese Patent Laid-Open No. 2004-47599 (paragraph 0033, FIG. 8, etc.)
  • the silicon substrate may be thermally strained by a high temperature exceeding 1000 ° C, and in particular, the large diameter of the silicon substrate is advancing, which causes a problem! / ⁇
  • the silicon substrate has a crystal orientation
  • the formation of an oxide film by thermal oxidation is dependent on the crystal orientation, and the size of the oxide layer varies depending on the portion of the inner wall of the trench.
  • the thickness of the oxide layer varies depending on the portion of the inner wall of the trench.
  • the present invention provides a uniform film thickness on the inner surface of the trench formed in the silicon substrate without causing problems such as re-diffusion of impurities due to heat and substrate distortion, and rounds the shoulders and corners of the trench.
  • An object is to provide a method of forming an oxide film having a shape.
  • the proportion of oxygen in the processing gas is 1% or more and the processing pressure is 133.3 Pa or less.
  • a method for forming a silicon oxide film in which a silicon oxide film is formed by oxidizing the silicon surface exposed to a recess formed in a workpiece by the plasma.
  • the film quality of the oxide film can be made dense.
  • the film thickness difference due to the oxide film part is eliminated, and the oxide film can be formed with a uniform film thickness.
  • the shoulders of the recesses silicon corners
  • the corners at the bottom of the recesses (corner) Part) can be made uniform in thickness.
  • the plasma is a plasma formed by the processing gas and a microwave introduced into the processing chamber by a planar antenna having a plurality of slots.
  • a curved surface shape can be introduced into the corner of the silicon at the upper end of the side wall that constitutes the recess.
  • the curvature radius of the curved surface shape can be controlled by a combination of the processing pressure and the ratio of oxygen in the processing gas. Further, it is preferable that the curvature radius force of the curved surface is controlled to be not less than nm.
  • the processing pressure is preferably 1.3 to 133.3 Pa, more preferably 6.7 to 67 Pa. Moreover, it is more preferable that the ratio of oxygen in the processing gas is 1 to 100%, more preferably 25 to 100%. Further, the processing gas preferably contains hydrogen in a proportion of 0.1 to 10%. Further, the treatment temperature is preferably 300 to 1000 ° C. Further, the electron temperature of the plasma is preferably 0.5 to 2 eV, and the plasma density is preferably 1 ⁇ 10 1 (> ⁇ 5 ⁇ 10 12 / cm 3) .
  • the recess may be a trench in shallow trench isolation.
  • the concave portion may be a concave portion formed in the silicon substrate by etching or a concave portion formed in the laminated film by etching.
  • the second aspect of the present invention operates on a computer, and when executed, in the processing chamber of the plasma processing apparatus, the proportion of oxygen in the processing gas is 1% or more and the processing pressure is 133.3.
  • a control program is provided for controlling the plasma processing apparatus to be performed.
  • a computer-readable storage medium storing a control program that operates on a computer, and the control program is stored in a plasma processing apparatus at the time of execution.
  • a plasma is formed in the processing chamber at a rate of oxygen of 1% or more and a processing pressure of 133.3 Pa or less in the processing gas, and the plasma exposes the silicon surface exposed in the recesses formed in the object to be processed.
  • a computer-readable storage medium is provided for controlling the plasma processing apparatus so as to perform a silicon oxide film forming method for forming a silicon oxide film.
  • a plasma supply source for generating plasma a processing chamber capable of being evacuated for processing an object to be processed by the plasma, and in the processing chamber, Plasma is formed when the proportion of oxygen in the processing gas is 1% or more and the processing pressure is 133.3 Pa or less, and the plasma exposes the silicon surface exposed in the recesses formed in the object to be processed.
  • a plasma processing apparatus is provided.
  • the oxygen ratio is set to 1% or more, and an oxide film is formed at a processing pressure of 133.3 Pa or less, whereby an oxide film with a uniform thickness is formed in a recess such as a trench.
  • the shoulder of the recess can be curved (round).
  • the roundness can be controlled by the proportion of oxygen and the processing pressure. Therefore, in the formation of the oxide film after the trench formation of STI etc., the shape with rounded shoulders and corners with high precision that does not cause problems such as re-diffusion of impurities such as thermal oxidation and distortion of the substrate.
  • Recesses can be formed. In semiconductor devices (for example, MOS transistors) in which element isolation regions are formed using recesses in which an oxide film is formed by this method, leakage current is suppressed, meeting the demand for power saving. Is possible.
  • FIG. 1 is a schematic sectional view showing an example of a plasma processing apparatus suitable for carrying out the method of the present invention.
  • FIG. 2 is a drawing showing the structure of a planar antenna member.
  • FIG. 3A is a schematic diagram of a wafer cross section showing a state before processing.
  • FIG. 3B is a schematic view of a wafer cross section showing a state in which a silicon oxide film is formed.
  • FIG. 3C is a schematic view of a wafer cross section showing a state in which a silicon nitride film is formed.
  • FIG. 3D is a schematic view of a wafer cross section showing a state in which a resist layer is formed.
  • FIG. 3E is a schematic diagram of a wafer cross section showing a state in which silicon is exposed.
  • FIG. 3F is a schematic cross-sectional view of a wafer showing a state after ashing.
  • FIG. 3G is a schematic view of a wafer cross section showing a state in which a trench is formed in a silicon substrate.
  • FIG. 3H is a schematic view of a wafer cross section showing a state in which the inner wall surface of a trench is subjected to plasma oxidation treatment.
  • FIG. 31 is a schematic view of a wafer cross section showing a state after plasma oxidation treatment.
  • FIG. 4A is a schematic view of a wafer cross section after the formation of an oxide film by the method of the present invention.
  • FIG. 4B is an enlarged view of part A in FIG. 4A.
  • FIG. 4C is an enlarged view of part B in FIG. 4A.
  • FIG. 5 is a schematic view of a wafer cross section for explaining the film thickness of a sparse part and a dense part of a pattern.
  • FIG. 6 A graph plotting the relationship between pressure and radius of curvature in plasma processing.
  • FIG. 7 A drawing showing TEM photographs of the upper and lower portions of the trench after the oxygen treatment with 100% oxygen.
  • FIG. 8 A drawing showing TEM photographs of the upper and lower trenches after processing at a pressure of 6.7 Pa.
  • FIG. 1 is a cross-sectional view schematically showing an example of a plasma processing apparatus suitable for carrying out the plasma oxidation treatment method of the present invention.
  • This plasma processing apparatus introduces microwaves into a processing chamber with a flat antenna having a plurality of slots, particularly RLSA (Radial Line Slot Antenna), and generates plasma to achieve high density and low density.
  • RLSA Random Line Slot Antenna
  • It is configured as an RLSA microwave plasma processing apparatus that can generate microwave plasma at an electron temperature, and is suitably used for, for example, an oxide film treatment of an inner wall of a trench in STI.
  • the plasma processing apparatus 100 has a substantially cylindrical chamber 11 that is airtight and grounded.
  • a circular opening 10 is formed at a substantially central portion of the bottom wall la of the chamber 11, and an exhaust chamber 11 that communicates with the opening 10 and protrudes downward is provided on the bottom wall la. ing.
  • a susceptor 2 having a ceramic force such as A1N for horizontally supporting a semiconductor wafer (hereinafter referred to as “wafer”) W as a substrate to be processed is provided in the chamber 11.
  • This susceptor 2 is supported by a support member 3 that also has a ceramic force such as a cylindrical A1N that extends above the bottom center force of the exhaust chamber 11.
  • a guide ring 4 for guiding Ueno and W is provided on the outer edge of the susceptor 2.
  • the susceptor 2 has a resistance heating type
  • the heater 5 is embedded, and the heater 5 is supplied with power from the heater power source 6 to heat the susceptor 2 and heat the wafer W, which is an object to be processed.
  • the processing temperature can be controlled in a range from room temperature to 800 ° C.
  • a cylindrical liner 7 having a quartz force is provided on the inner periphery of the chamber 11.
  • a quartz baffle plate 8 having a large number of exhaust holes 8 a is provided in an annular shape so as to uniformly exhaust the inside of the chamber 11. It is supported.
  • wafer support pins (not shown) for supporting the wafer W and moving it up and down are provided so as to protrude and retract with respect to the surface of the susceptor 2.
  • An annular gas introduction member 15 is provided on the side wall of the chamber 11, and gas radiation holes are evenly formed.
  • a gas supply system 16 is connected to the gas introduction member 15.
  • the gas introduction member may be arranged in a shower shape.
  • the gas supply system 16 includes, for example, an Ar gas supply source 17, an O gas supply source 18, and an H gas supply source 19, and these gas power sources
  • Each gas reaches the gas introduction member 15 through the gas line 20 and is uniformly introduced into the chamber 11 from the gas radiation hole of the gas introduction member 15.
  • Each of the gas lines 20 is provided with a mass flow controller 21 and opening / closing valves 22 before and after the mass flow controller 21. It should be noted that other rare gases such as Kr, He, Ne, Xe, etc. may be used instead of Ar gas, and no rare gas may be included as will be described later.
  • An exhaust pipe 23 is connected to the side surface of the exhaust chamber 11, and an exhaust device 24 including a high-speed vacuum pump is connected to the exhaust pipe 23. Then, by operating the exhaust device 24, the gas force in the chamber 11 is uniformly discharged into the space 11 a of the exhaust chamber 11 and is exhausted through the exhaust pipe 23. As a result, the inside of the chamber 11 can be depressurized at a high speed to a predetermined degree of vacuum, for example, 0.133 Pa.
  • a loading / unloading port 25 for loading / unloading the wafer W to / from a transfer chamber (not shown) adjacent to the plasma processing apparatus 100, and the loading / unloading port 25 are opened and closed.
  • a gate valve 26 is provided!
  • An upper portion of the chamber 11 is an opening, and a ring-shaped support portion 27 is provided along the peripheral edge of the opening.
  • the support 27 has a dielectric such as quartz or AlO.
  • the microwave transmitting plate 28 that transmits the microwave is also airtightly provided through the seal member 29 due to the ceramic force. Therefore, the inside of the chamber 11 is kept airtight.
  • a disk-shaped planar antenna member 31 is provided above the microwave transmission plate 28 so as to face the susceptor 2.
  • the planar antenna member 31 is locked to the upper end of the side wall of the chamber 11.
  • the planar antenna member 31 is a disk having a diameter S of 300 to 400 mm and a thickness of 1 to several mm (for example, 5 mm) and a conductive material force.
  • the surface of the copper plate or the aluminum plate plated with silver or gold is also used, and a large number of microwave radiation holes 32 (slots) are formed to penetrate in a predetermined pattern.
  • the microwave radiation holes 32 have, for example, a long groove shape as shown in FIG. 2.
  • adjacent microwave radiation holes 32 are arranged in a “T” shape, and the plurality of microwave radiation holes 32 are arranged. 32 are arranged concentrically.
  • the length and arrangement interval of the microphone aperture 32 are determined according to the wavelength ( ⁇ g) of the microwave.
  • the interval of the microwave aperture 32 is gZ4, gZ2, or g.
  • the microwave radiation hole 32 may have another shape such as a circular shape or an arc shape.
  • the arrangement form of the microwave radiation holes 32 is not particularly limited, and the microwave radiation holes 32 may be arranged concentrically, for example, spirally or radially.
  • a slow wave material 33 made of a resin such as polytetrafluoroethylene or polyimide having a dielectric constant larger than that of a vacuum is provided.
  • the slow wave material 33 has a function of adjusting the plasma by shortening the wavelength of the microwave because the wavelength of the microwave becomes longer in vacuum. It should be noted that the planar antenna member 31 and the microphone aperture wave transmitting plate 28, and the slow wave member 33 and the planar antenna member 31 can be arranged in close contact with or spaced apart from each other.
  • a shield lid 34 made of a metal material such as aluminum, stainless steel, or copper is provided on the upper surface of the chamber 11 so as to cover the planar antenna member 31 and the slow wave material 33.
  • the upper surface of the chamber 11 and the shield cover 34 are sealed by a seal member 35.
  • a cooling water flow path 34a is formed in the shield lid 34, and by passing cooling water therethrough, the shield lid 34, the slow wave material 33, the planar antenna member 31, The wave transmitting plate 28 is cooled.
  • the shield lid 34 is grounded.
  • An opening 36 is formed at the center of the upper wall of the shield lid 34, and a waveguide 37 is connected to the opening.
  • a microwave generator 39 is connected to the end of the waveguide 37 via a matching circuit 38.
  • a microwave having a frequency of 2.45 GHz generated by the microwave generator 39 is propagated to the planar antenna member 31 through the waveguide 37.
  • the microwave frequency 8.35 GHz, 1.98 GHz, or the like can be used.
  • the waveguide 37 includes a coaxial waveguide 37a having a circular cross section extending upward from the opening 36 of the shield lid 34, and a mode converter 40 at the upper end of the coaxial waveguide 37a. And a rectangular waveguide 37b extending in the horizontal direction.
  • the mode change 40 between the rectangular waveguide 37b and the coaxial waveguide 37a has a function of converting the microphone mouth wave propagating in the TE mode in the rectangular waveguide 37b into the TEM mode.
  • An inner conductor 41 extends in the center of the coaxial waveguide 37a, and a lower end portion of the inner conductor 41 is connected and fixed to the center of the planar antenna member 31. Thereby, the microwave is uniformly and efficiently propagated to the planar antenna member 31 through the inner conductor 41 of the coaxial waveguide 37a.
  • Each component of the plasma processing apparatus 100 is connected to and controlled by a process controller 50 having a CPU.
  • the process controller 50 includes a keyboard that allows the process manager to input commands to manage the plasma processing apparatus 100, a display that displays and displays the operating status of the plasma processing apparatus 100, and the like.
  • One interface 51 is connected!
  • the process controller 50 stores a control program (software) for realizing various processes executed by the plasma processing apparatus 100 under the control of the process controller 50, and recipes in which processing condition data is recorded.
  • the stored storage unit 52 is connected.
  • the plasma processing is performed under the control of the process controller 50 by calling an arbitrary recipe from the storage unit 52 according to an instruction from the user interface 51 and causing the process controller 50 to execute it.
  • the desired processing in apparatus 100 is performed.
  • recipes such as the control program and processing condition data are stored in a computer-readable storage medium such as a CD-ROM, a hard disk, a flexible disk, or a flash memory. It is also possible to use the data stored in the network, or to transmit it online from another device, for example, via a dedicated line.
  • the plasma processing apparatus 100 configured as described above can form a high-quality film by a damage-free plasma processing even at a temperature as low as 800 ° C or lower, and is excellent in plasma uniformity, and process uniformity. Can be realized.
  • this plasma processing apparatus 100 can be suitably used for the purpose of oxidizing the inner wall of the trench in STI.
  • the gate valve 26 is opened, and the wafer W on which the trench is formed is loaded into the chamber 1 from the loading / unloading port 25, and is transferred onto the susceptor 2. Place.
  • the processing pressure is maintained. As the conditions at this time, if the ratio of oxygen in the processing gas is 1 to: L0 0%, 25% or more is preferable, 75% or more is more preferable, and 95% or more is preferable.
  • the gas flow rate ranges from Ar gas: 0 to 2000 mLZmin, O gas: 10 to 500 mLZmin
  • the ratio of oxygen to the total gas flow rate can be selected to be the above value.
  • the O gas partial pressure in the processing gas is 0.0133 Pa or higher, 13.3 Pa force, 6.7 to 133
  • the H gas can also be introduced from the H gas supply source 19 at a predetermined ratio.
  • H hydrogen
  • the ratio is 0.1 to 10% of the total amount of processing gas.
  • ⁇ 5% is more preferred 0.1-2% is desirable.
  • the processing pressure in the chamber can be selected as follows: 1. 3-133. 3Pa range force can be selected. 67Pa force S is more preferable, 6.7 to 13.
  • 3Pa is desirable. Also, 300-1000 ° C force can be selected as the processing temperature, 700-1000 ° C force S preferred, 700-800 ° C force preferred.
  • the microwave from the microwave generator 39 is guided through the matching circuit 38 to the waveguide.
  • Microwaves are sequentially supplied to the planar antenna member 31 through the rectangular waveguide 37b, the mode change 40, and the coaxial waveguide 37a.
  • the light is radiated to the upper space of the wafer W in the chamber 11 through the transmission plate 28.
  • the microwave propagates in the TE mode in the rectangular waveguide 37b, and the TE mode microwave is converted into the TEM mode by the mode converter 40, and the inside of the coaxial waveguide 37a is directed to the planar antenna member 31. Will be propagated.
  • the power of the microwave generator 39 is preferably 0.5 to 5 kW.
  • An electromagnetic field is formed in the chamber 11 by the microphone mouth wave radiated from the planar antenna member 31 through the microwave transmitting plate 28 to the chamber 11, and Ar gas and O gas are plasma.
  • the silicon surface exposed in the recess formed in the wafer w is oxidized by this plasma.
  • the microwave plasma is emitted from the large number of microwave radiation holes 32 of the planar antenna member 31, so that approximately 1 10 1 () to 5 10 12 / «11 3 It becomes a high-density plasma, its electron temperature is about 0.5-2eV, and the uniformity of plasma density is ⁇ 5% or less. Therefore, a thin oxide film can be formed by performing an acid treatment at a low temperature for a short time, and a high-quality oxide film with little damage to the acid film due to ions in plasma etc. can be obtained. There is an advantage that it can be formed.
  • FIG. 3A to FIG. 31 illustrate the steps from the trench formation in STI to the subsequent oxide film formation.
  • a silicon oxide film 102 such as SiO is formed on the silicon substrate 101 by a method such as thermal oxidation.
  • a silicon nitride film 103 such as SiN is formed on the silicon oxide film 102 by, eg, CVD (Chemical Vapor Deposition).
  • CVD Chemical Vapor Deposition
  • a resist layer 104 is formed by patterning using a photolithography technique.
  • the resist layer 104 is used as an etching mask, and the silicon nitride film 103 and the silicon oxide film 102 are selectively etched using, for example, a halogen-based etching gas, thereby corresponding to the pattern of the resist layer 104.
  • the silicon substrate 101 is exposed (FIG. 3E). That is, the silicon nitride film 103 forms a mask pattern for the trench.
  • Figure 3F shows V, so-called Atssin using oxygen-containing plasma with a processing gas containing oxygen, for example. A state in which the resist layer 104 is removed by performing the etching process is shown.
  • the trench 110 can be formed by selectively etching the silicon substrate using the silicon nitride film 103 and the silicon oxide film 102 as a mask. This etching may be performed by halogen or halogen such as CI, HBr, SF, and CF.
  • An etching gas containing an oxygen compound or o can be used.
  • FIG. 3H shows an oxidation treatment process in which plasma oxidation treatment is performed on the trench 110 of the wafer W after etching when the trench is formed in the STI.
  • the treatment gas in the acid / sodium treatment step may be a gas containing 1% or more of O.
  • a mixed gas of o and a rare gas can be used. In this case, no rare gas is included
  • NO gas for example, NO gas, NO gas, or N 2 O gas can be used.
  • the film quality of the oxide film 111 can be made fine, and the film thickness difference depending on the part of the trench 110, particularly the upper part of the trench and the lower part of the trench Thus, the oxide film 111 can be formed with a uniform film thickness.
  • 2 is, for example, 1 to 100%, preferably 25 to 100%, more preferably 50 to 100%, more preferably 75 to L00% force, and more preferably 95 to L00% force.
  • the amount of oxygen ions and oxygen radicals in the plasma is controlled, and further, the amount of oxygen ions and oxygen radicals that reach the inside of the trench 110 is controlled.
  • the corner portion can be rounded and a uniform silicon oxide film can be formed in the trench 110.
  • H gas can also be added to the processing gas at a predetermined ratio.
  • the amount of H is 10% or less with respect to the total amount of the processing gas, for example, 0.1 to 10%.
  • a range, preferably a range force of 0.5-5% can be selected.
  • the pressure in the acidifying treatment step is preferably 1.3 to 133.3 Pa force S, and more preferably 6.7 to 133.3 Pa force ⁇ . When the treatment pressure is set to 133.3 Pa or less at the above O ratio.
  • the trench shoulder 110a (silicon corner) can be rounded to form a curved surface.
  • the ion energy in the plasma is larger than that at a high pressure (for example, more than 133.3 Pa), so that the acid action by the ions becomes stronger. Since the difference in the acid rate between the corner portion and the flat portion is reduced, oxidation proceeds uniformly at the corners of the silicon at the shoulder 110a of the trench 110, and the corners of the silicon are removed and rounded. It is thought that.
  • the degree of roundness of the shoulder 110a (the radius of curvature r) can be controlled by the amount of O in the processing gas and the processing pressure.
  • the curvature radius r of the shoulder 110a is set to 2.8 nm or more, more preferably 4 to 8 nm! /.
  • the amount of oxygen in the processing gas is set to 25% or more, and further, the processing is performed at a pressure of 13.3 Pa or less, so that the corner 110b at the lower part of the trench 110 is centered on the periphery (round region).
  • the film thickness of the oxide film 111 that is, the portions denoted by reference numerals 111a and 111b in FIG. 31, can also be made uniform.
  • FIG. 4A schematically shows a cross-sectional structure of the main part of Ueno and W after the oxide film 111 is formed by the method for forming a silicon oxide film of the present invention, which is indicated by a broken line in the drawing.
  • An enlarged view of A is shown in Fig. 4B, and an enlarged view of B shown by a broken line is shown in Fig. 4C.
  • the shape of the shoulder 110a of the trench 110 is formed to be a curved surface so that the radius of curvature r force of the inner silicon 101 is 4 nm or more.
  • the film thickness of the oxide film 111 around the corner portion 110b at the bottom of the trench 110 round region
  • the film thicknesses L and L near the boundary between and the linear regions on both sides thereof are formed substantially evenly.
  • the film thickness difference due to the portion of the trench 110 where the thickness L of the oxide film 111 on the upper side wall of the trench 110 and the thickness L of the oxide film 111 on the lower side wall of the trench 110 are substantially equal is eliminated.
  • a silicon oxide film having a small difference in film thickness in the pattern structure on the surface of the wafer W can be formed.
  • the oxide film thickness (symbol a) of the dense part (dense part) and the oxide film thickness (symbol b) of the sparse part (sparse part) are abbreviated. It becomes possible to form evenly.
  • the oxide film 111 is formed by the silicon oxide film forming method of the present invention, according to the procedure of forming an element isolation region by STI, for example, SiO or the like is formed in the trench 110 by the CVD method.
  • polishing is performed by CMP using the silicon nitride film 103 as a stopper layer to planarize.
  • the element isolation structure can be formed by removing the silicon nitride film 103 and the upper portion of the buried insulating film by etching.
  • oxidation treatment was performed at different processing pressures on the trenches after etching in forming the element isolation region by STI.
  • the processing pressures were set to 6.7 Pa (50 mTorr), 13.3 Pa (lOOmTorr), 67 Pa (500 mTorr), 133.3 Pa (lTorr), 667 Pa (5 Torr), and 1267 Pa (9.5 Torr).
  • the process gas in the plasma oxidation process is Ar gas and O gas.
  • the ratio of O gas to the total process gas is 1%, 25
  • the processing temperature (substrate processing temperature) was 400 ° C, the power supplied to the plasma was set to 3.5 kW, and the processing film thickness was set to 8 nm.
  • the film thickness of the oxide film 111 in each part of the trench and the radius of curvature of the trench shoulder 110a were measured based on a cross-sectional image taken with a transmission electron microscope (Transmission Electron Microscopy) photograph.
  • Table 1 shows the measurement result of the curvature radius of the shoulder 110a of the trench.
  • the curvature radius r (nm) is standardized by the oxide film thickness L (nm) in the upper part of Table 1.
  • the value [curvature radius rZ oxide film thickness LX 100] is shown, and the radius of curvature r is shown at the bottom.
  • Table 2 shows the ratio of the oxide film thickness at the top of the trench to the oxide film thickness at the bottom of the trench (upper film thickness Z, lower film thickness).
  • the relationship between the radius of curvature and the pressure in this test is shown as a graph in Fig. 6. From Table 1 and Fig.
  • FIG. 6 shows a photograph taken with a transmission electron microscope (TEM) of the top and bottom of the trench due to the difference in pressure conditions when the oxygen ratio is 100%.
  • Figure 8 shows TEM photographs of the top and bottom of the trench due to the difference in the oxygen ratio when the processing pressure is 6.7 Pa. 7 and 8, symbols A and B mean portions corresponding to symbols A and B in FIG. 4, respectively.
  • TEM transmission electron microscope
  • the radius of curvature of the trench shoulder 110a is large under the pressure condition of oxygen ratio 25% or more and 13.3 Pa or less, especially when the pressure is 67Pa or less. Showed a tendency to increase.
  • the thickness difference of the oxide film 111 is the largest around 133.3 Pa, and the pressure below that at the top and bottom of the trench is below that. It was confirmed that the difference in film thickness tended to decrease as the pressure decreased, and that the film thickness difference was almost eliminated if it was 13.3 Pa or less.
  • the preferable oxygen ratio in the processing gas is 1 to 100%. 1.
  • the radius of curvature of the trench shoulder 110a formed by plasma treatment with the flow rate of 0 (no addition), lmLZmin (sccm) and 5mLZmin (sccm) is set to TE on the wafer W cross section.
  • the treatment temperature (substrate treatment temperature) in the plasma oxidation treatment was 400 ° C, and the power supplied to the plasma was 2750W.
  • the processing pressure was 133.3 Pa (lTorr).
  • Trench shoulder 110a Figure 9 shows the measurement results of the radius of curvature. From FIG. 9, it is understood that the curvature radius r is increased and the roundness of the trench shoulder 110a is increased by adding hydrogen. Therefore, in the plasma oxidation process in the STI trench, H in the process gas is preferably 10% or less.
  • a high-frequency plasma processing apparatus that excites plasma using a high-frequency power of 30 kHz to 300 MHz using a microwave plasma processing apparatus 100 that excites plasma by a microphone mouth wave with a frequency of 300 MHz to 300 GHz is used.
  • the plasma processing apparatus 100 such as a remote plasma system, an ICP plasma system, an ECR plasma system, a surface reflection wave plasma system, and a magnetron plasma system may be used as an example of the RLSA plasma processing apparatus 100.
  • the formation of the oxide film in the trench in the STI is taken as an example.
  • a device manufacturing process such as a side oxide film after etching of the polysilicon gate electrode
  • it can also be used when the corners of the etched polysilicon electrode are rounded.
  • the present invention can be suitably used in the manufacture of various semiconductor devices, for example, when element isolation is performed by STI.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Organic Chemistry (AREA)
  • Plasma & Fusion (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Computer Hardware Design (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Formation Of Insulating Films (AREA)
  • Element Separation (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

 プラズマ処理装置の処理室内で、酸素の割合を1%以上含む処理ガスを用い、133.3Pa以下の処理圧力でプラズマ形成し、前記プラズマにより、被処理体のシリコン層に形成された凹部に露出しているシリコン表面を酸化してシリコン酸化膜を形成することを特徴とする、シリコン酸化膜の形成方法が開示されている。  

Description

シリコン酸化膜の製造方法、 その制御プログラム、 記憶媒体及ぴプラズマ
処理装置 技術分野
[0001] 本発明は、シリコン酸化膜の形成方法に関し、詳細には、例えば、半導体装置の製 造過程の素子分離技術であるシヤロートレンチアイソレーション(Shallow Trench Isola tion; STl)におけるトレンチ内に酸ィ匕膜を形成する場合などに適用可能なシリコン酸 化膜の形成方法に関する。
背景技術
[0002] シリコン基板上に形成される素子を電気的に分離する技術として、 STIが知られて いる。 STIでは、シリコン窒化膜などをマスクとしてシリコンをエッチングしてトレンチを 形成し、その中に SiOなどの絶縁膜を埋め込んだ後、化学機械研磨 (CMP ;Chemi
2
cal Mechanical Polishing)処理によりマスク(シリコン窒化膜)をストッパーとして平坦ィ匕 する工程が実施される。
[0003] STIにお 、てトレンチ形成を行なう場合、トレンチの肩部 (溝の側壁の上端の角部) や、トレンチの隅 (溝の側壁の下端のコーナー部)の形状が鋭角的になることがある。 その結果、トランジスタなどの半導体装置において、これらの部位に応力が集中して 欠陥が生じ、リーク電流の増大、さらには消費電力の増加を招く要因になる。このた め、エッチングによりトレンチを形成した後、熱酸化法によりトレンチの内壁に酸化膜 を形成することにより、トレンチの形状をなめらかにすることが知られている(例えば、 特許文献 1)。
特許文献 1 :特開 2004— 47599号公報 (段落 0033、図 8など)
発明の開示
[0004] 従来の熱酸ィ匕法によりトレンチ内部に酸ィ匕膜を形成する際には、シリコン酸ィ匕膜の 粘性流動点以上となる 1000°C以上の高温でシリコン基板を熱処理する必要がある。 このため、半導体装置の形成順序によっては、不純物の再拡散などを生じさせるとい う問題が生じる。
すなわち、 STIにより素子分離を行なった後にゲート電極形成を行なう方法では、ト レンチをエッチングにより形成した次のステップで高温による熱処理を行なってもあま り問題は生じないが、近年では、シリコン基板に不純物拡散領域を設け、さらにゲー ト電極の積層構造を形成した後に、これらの層を一度にエッチングして素子分離用の トレンチを形成する手法が開発されており、この場合、トレンチ内部に酸化膜を形成 する目的で熱処理を行なうと、不純物の再拡散を引き起こすという問題が起こる。
[0005] また、熱処理の場合、 1000°Cを超える高温によってシリコン基板に熱歪みが生じる 懸念があり、特にシリコン基板の大口径ィ匕が進んで 、る現状にぉ 、て問題となって!/ヽ た。
さらに、シリコン基板は結晶方位を持っているため、熱酸化による酸化膜形成には 結晶方位依存性がみられ、トレンチ内壁の部位によって酸ィ匕速度に大小が生じ、一 様な酸ィ匕膜厚を得ることが困難であるという問題もあった。
[0006] 従って本発明は、熱による不純物の再拡散や基板歪みなどの問題を生じさせること なぐシリコン基板に形成されたトレンチの内面に均一な膜厚で、かつトレンチの肩部 や隅に丸み形状を有する酸化膜を形成する方法を提供することを目的とする。
[0007] 上記課題を解決するため、本発明の第 1の観点によれば、プラズマ処理装置の処 理室内で、処理ガス中の酸素の割合が 1%以上、かつ処理圧力が 133. 3Pa以下で プラズマ形成し、
前記プラズマにより、被処理体に形成された凹部に露出しているシリコン表面を酸 化してシリコン酸ィ匕膜を形成する、シリコン酸ィ匕膜の形成方法が提供される。
[0008] 第 1の観点によれば、処理ガス中の酸素の割合を 1% (体積基準;以下同様である) 以上にすることによって、酸ィ匕膜の膜質を緻密にすることができるとともに、酸化膜の 部位による膜厚差、特に凹部の上部と下部との膜厚差を解消し、均一な膜厚で酸ィ匕 膜を形成できる。また、上記酸素の割合において、処理圧力を 133. 3Pa以下にする ことによって、凹部の肩部(シリコンの角部)に丸みを形成して曲面形状にするととも に、凹部の下部における隅 (コーナー部)の酸ィ匕膜厚を均一にすることができる。
[0009] 上記第 1の観点にぉ 、て、前記プラズマは、前記処理ガスと、複数のスロットを有す る平面アンテナにより前記処理室内に導入されるマイクロ波と、によって形成されるプ ラズマであることが好まし!/、。 [0010] また、前記酸化膜を形成することにより、前記凹部を構成していた側壁の上端のシ リコンの角部に曲面形状を導入することができる。この場合、前記処理圧力と前記処 理ガス中の酸素の割合との組み合わせにより前記曲面形状の曲率半径を制御する ことができる。また、前記曲面形状の曲率半径力 nm以上になるように制御すること が好ましい。
[0011] 上記第 1の観点においては、前記処理圧力が、 1. 3-133. 3Paであることが好ま しぐ 6. 7〜67Paであることがより好ましい。また、前記処理ガス中の酸素の割合が 1 〜 100%であることが好ましぐ 25〜 100%であることがより好ましい。また、前記処理 ガスは、水素を 0. 1〜10%の割合で含むことが好ましい。さらに、処理温度が 300〜 1000°Cであることが好ましい。また、前記プラズマの電子温度は 0. 5〜2eVであるこ と力 子ましく、プラズマ密度は 1 X 101(>〜5 X 1012/cm3であることが好ましい。
[0012] また、前記凹部は、シヤロートレンチアイソレーションにおけるトレンチであってもよ い。
また、前記凹部は、エッチングによってシリコン基板に形成された凹部であってもよ ぐあるいは、エッチングによって積層膜に形成された凹部であってもよい。
[0013] 本発明の第 2の観点によれば、コンピュータ上で動作し、実行時に、プラズマ処理 装置の処理室内で、処理ガス中の酸素の割合が 1%以上、かつ処理圧力が 133. 3 Pa以下でプラズマ形成し、前記プラズマにより、被処理体に形成された凹部に露出 しているシリコン表面を酸ィ匕してシリコン酸ィ匕膜を形成するシリコン酸ィ匕膜の形成方 法が行なわれるように前記プラズマ処理装置を制御する、制御プログラムが提供され る。
[0014] また、本発明の第 3の観点によれば、コンピュータ上で動作する制御プログラムが記 憶されたコンピュータ読取り可能な記憶媒体であって、前記制御プログラムは、実行 時に、プラズマ処理装置の処理室内で、処理ガス中の酸素の割合が 1%以上、かつ 処理圧力が 133. 3Pa以下でプラズマ形成し、前記プラズマにより、被処理体に形成 された凹部に露出しているシリコン表面を酸ィ匕してシリコン酸ィ匕膜を形成するシリコン 酸ィ匕膜の形成方法が行なわれるように前記プラズマ処理装置を制御するものである 、コンピュータ読取り可能な記憶媒体が提供される。 [0015] また、本発明の第 4の観点によれば、プラズマを発生させるプラズマ供給源と、 前記プラズマにより、被処理体を処理するための真空排気可能な処理室と、 前記処理室内で、処理ガス中の酸素の割合が 1%以上、かつ処理圧力が 133. 3P a以下でプラズマ形成し、前記プラズマにより、被処理体に形成された凹部に露出し ているシリコン表面を酸ィ匕してシリコン酸ィ匕膜を形成するシリコン酸ィ匕膜の形成方法 が行なわれるように制御する制御部と、
を備えた、プラズマ処理装置が提供される。
[0016] 本発明によれば、プラズマを用い、酸素の割合を 1%以上とし、 133. 3Pa以下の処 理圧力で酸化膜を形成することにより、トレンチなどの凹部に均一な膜厚で酸ィ匕膜を 形成できるとともに、凹部の肩部を曲面形状 (丸み形状)にすることができる。しかも、 丸みの大きさ(曲率半径)を酸素の割合と処理圧力によって制御できる。従って、 STI 等のトレンチ形成後の酸ィ匕膜形成において、熱酸化のような不純物の再拡散や基板 の歪みなどの問題を生じさせることなぐ精度良ぐ肩部や隅が丸められた形状をした 凹部を形成できる。この方法によって酸ィ匕膜が形成された凹部を利用して素子分離 領域を形成してなる半導体装置 (例えば MOSトランジスタなど)においては、リーク電 流が抑制され、省電力化の要請にも対応可能である。
図面の簡単な説明
[0017] [図 1]本発明方法の実施に適したプラズマ処理装置の一例を示す概略断面図。
[図 2]平面アンテナ部材の構造を示す図面。
[図 3A]処理前の状態を示すウェハ断面の模式図である。
[図 3B]シリコン酸ィ匕膜を形成した状態を示すウェハ断面の模式図である。
[図 3C]シリコン窒化膜を形成した状態を示すウェハ断面の模式図である。
[図 3D]レジスト層を形成した状態を示すウェハ断面の模式図である。
[図 3E]シリコンを露出させた状態を示すウェハ断面の模式図である。
[図 3F]アツシング後の状態を示すウェハ断面の模式図である。
[図 3G]シリコン基板にトレンチを形成した状態を示すウェハ断面の模式図である。
[図 3H]トレンチの内壁面をプラズマ酸ィ匕処理している状態を示すウェハ断面の模式 図である。 [図 31]プラズマ酸ィ匕処理後の状態を示すウェハ断面の模式図である。
[図 4A]本発明方法による酸ィ匕膜形成後のウェハ断面の模式図である。
[図 4B]図 4Aにおける A部の拡大図である。
[図 4C]図 4Aにおける B部の拡大図である。
[図 5]パターンの疎部と密部の膜厚の説明に供するウェハ断面の模式図である。
[図 6]プラズマ処理における圧力と曲率半径との関係をプロットしたグラフ図面。
[図 7]酸素の割合 100%で酸ィ匕処理した後のトレンチ上部と下部の TEM写真を示す 図面。
[図 8]圧力 6. 7Paで処理した後のトレンチ上部と下部の TEM写真を示す図面。
[図 9]トレンチ上部の TEM写真を示す図面。
発明を実施するための最良の形態
[0018] 以下、図面を参照しながら、本発明の好ましい形態について説明する。
図 1は、本発明のプラズマ酸ィ匕処理方法の実施に適したプラズマ処理装置の一例 を模式的に示す断面図である。このプラズマ処理装置は、複数のスロットを有する平 面アンテナ、特に RLSA (Radial Line Slot Antenna;ラジアルラインスロットアンテナ) にて処理室内にマイクロ波を導入してプラズマを発生させることにより、高密度かつ低 電子温度のマイクロ波プラズマを発生させ得る RLSAマイクロ波プラズマ処理装置と して構成されており、例えば、 STIにおけるトレンチ内壁の酸ィ匕膜処理に好適に用い られる。
[0019] このプラズマ処理装置 100は、気密に構成され、接地された略円筒状のチャンバ一 1を有している。チャンバ一 1の底壁 laの略中央部には円形の開口部 10が形成され ており、底壁 laにはこの開口部 10と連通し、下方に向けて突出する排気室 11が設 けられている。
[0020] チャンバ一 1内には被処理基板である半導体ウェハ(以下、「ウェハ」と記す) Wを 水平に支持するための A1N等のセラミックス力もなるサセプタ 2が設けられて 、る。こ のサセプタ 2は、排気室 11の底部中央力 上方に延びる円筒状の A1N等のセラミツ タス力もなる支持部材 3により支持されている。サセプタ 2の外縁部にはウエノ、 Wをガ イドするためのガイドリング 4が設けられている。また、サセプタ 2には抵抗加熱型のヒ ータ 5が埋め込まれており、このヒータ 5はヒータ電源 6から給電されることによりサセ プタ 2を加熱して、その熱で被処理体であるウェハ Wを加熱する。このとき、例えば室 温から 800°Cまで範囲で処理温度が制御可能となっている。なお、チャンバ一 1の内 周には、石英力もなる円筒状のライナー 7が設けられている。また、サセプタ 2の外周 側には、チャンバ一 1内を均一排気するため、多数の排気孔 8aを有する石英製のバ ッフルプレート 8が環状に設けられ、このバッフルプレート 8は、複数の支柱 9により支 持されている。
[0021] サセプタ 2には、ウェハ Wを支持して昇降させるためのウェハ支持ピン(図示せず) がサセプタ 2の表面に対して突没可能に設けられている。
[0022] チャンバ一 1の側壁には環状をなすガス導入部材 15が設けられており、均等にガ ス放射孔が形成されて ヽる。このガス導入部材 15にはガス供給系 16が接続されて ヽ る。ガス導入部材はシャワー状に配置してもよい。このガス供給系 16は、例えば Arガ ス供給源 17、 Oガス供給源 18、 Hガス供給源 19を有しており、これらのガス力 そ
2 2
れぞれガスライン 20を介してガス導入部材 15に至り、ガス導入部材 15のガス放射孔 からチャンバ一 1内に均一に導入される。ガスライン 20の各々には、マスフローコント ローラ 21およびその前後の開閉バルブ 22が設けられている。なお、 Arガスに代えて 他の希ガス、例えば Kr、 He、 Ne、 Xeなどのガスを用いてもよぐまた、後述するよう に希ガスは含まなくてもよ ヽ。
[0023] 上記排気室 11の側面には排気管 23が接続されており、この排気管 23には高速真 空ポンプを含む排気装置 24が接続されて 、る。そしてこの排気装置 24を作動させる ことによりチャンバ一 1内のガス力 排気室 11の空間 11a内へ均一に排出され、排気 管 23を介して排気される。これによりチャンバ一 1内を所定の真空度、例えば 0. 133 Paまで高速に減圧することが可能となって 、る。
[0024] チャンバ一 1の側壁には、プラズマ処理装置 100に隣接する搬送室(図示せず)と の間でウェハ Wの搬入出を行うための搬入出口 25と、この搬入出口 25を開閉するゲ ートバルブ 26とが設けられて!/、る。
[0025] チャンバ一 1の上部は開口部となっており、この開口部の周縁部に沿ってリング状 の支持部 27が設けられている。この支持部 27に誘電体、例えば石英や Al O等の セラミックス力もなり、マイクロ波を透過するマイクロ波透過板 28がシール部材 29を介 して気密に設けられている。したがって、チャンバ一 1内は気密に保持される。
[0026] マイクロ波透過板 28の上方には、サセプタ 2と対向するように、円板状の平面アン テナ部材 31が設けられて 、る。この平面アンテナ部材 31はチャンバ一 1の側壁上端 に係止されている。平面アンテナ部材 31は、例えば 8インチサイズのウェハ Wに対応 する場合には、直径力 S300〜400mm、厚みが 1〜数 mm (例えば 5mm)の導電性 材料力もなる円板である。具体的には、例えば表面が銀または金メッキされた銅板ま たはアルミニウム板力もなり、多数のマイクロ波放射孔 32 (スロット)が所定のパターン で貫通して形成された構成となっている。このマイクロ波放射孔 32は、例えば図 2〖こ 示すように長溝状をなし、典型的には隣接するマイクロ波放射孔 32同士が「T」字状 に配置され、これら複数のマイクロ波放射孔 32が同心円状に配置されている。マイク 口波放射孔 32の長さや配列間隔は、マイクロ波の波長( λ g)に応じて決定され、例え ばマイクロ波放射孔 32の間隔は、 gZ4、 gZ2またはえ gとなるように配置される 。なお、図 2においては、同心円状に形成された隣接するマイクロ波放射孔 32同士 の間隔を Δι:で示している。また、マイクロ波放射孔 32は、円形状、円弧状等の他の 形状であってもよい。さらに、マイクロ波放射孔 32の配置形態は特に限定されず、同 心円状のほか、例えば、螺旋状、放射状に配置することもできる。
[0027] この平面アンテナ部材 31の上面には、真空よりも大きい誘電率を有する例えばポリ テトラフルォロエチレン、ポリイミドなどの榭脂からなる遅波材 33が設けられている。こ の遅波材 33は、真空中ではマイクロ波の波長が長くなることから、マイクロ波の波長 を短くしてプラズマを調整する機能を有している。なお、平面アンテナ部材 31とマイク 口波透過板 28との間、また、遅波材 33と平面アンテナ部材 31との間は、それぞれ密 着または離間させて配置することができる。
[0028] チャンバ一 1の上面には、これら平面アンテナ部材 31および遅波材 33を覆うように 、例えばアルミニウムやステンレス鋼、銅等の金属材カ なるシールド蓋体 34が設け られている。チャンバ一 1の上面とシールド蓋体 34とはシール部材 35によりシールさ れている。シールド蓋体 34には、冷却水流路 34aが形成されており、そこに冷却水を 通流させることにより、シールド蓋体 34、遅波材 33、平面アンテナ部材 31、マイクロ 波透過板 28を冷却するようになっている。なお、シールド蓋体 34は接地されている。
[0029] シールド蓋体 34の上壁の中央には開口部 36が形成されており、この開口部には 導波管 37が接続されている。この導波管 37の端部には、マッチング回路 38を介して マイクロ波発生装置 39が接続されている。これにより、マイクロ波発生装置 39で発生 した例えば周波数 2. 45GHzのマイクロ波が導波管 37を介して上記平面アンテナ部 材 31へ伝搬されるようになっている。なお、マイクロ波の周波数としては、 8. 35GHz 、 1. 98GHz等を用いることもできる。
[0030] 導波管 37は、上記シールド蓋体 34の開口部 36から上方へ延出する断面円形状 の同軸導波管 37aと、この同軸導波管 37aの上端部にモード変換器 40を介して接続 された水平方向に延びる矩形導波管 37bとを有している。矩形導波管 37bと同軸導 波管 37aとの間のモード変翻 40は、矩形導波管 37b内を TEモードで伝播するマ イク口波を TEMモードに変換する機能を有している。同軸導波管 37aの中心には内 導体 41が延在しており、この内導体 41の下端部は、平面アンテナ部材 31の中心に 接続固定されている。これにより、マイクロ波は、同軸導波管 37aの内導体 41を介し て平面アンテナ部材 31へ均一に効率よく伝播される。
[0031] プラズマ処理装置 100の各構成部は、 CPUを備えたプロセスコントローラ 50に接 続されて制御される構成となっている。プロセスコントローラ 50には、工程管理者がプ ラズマ処理装置 100を管理するためにコマンドの入力操作等を行うキーボードや、プ ラズマ処理装置 100の稼働状況を可視化して表示するディスプレイ等力もなるユー ザ一インターフェース 51が接続されて!、る。
[0032] また、プロセスコントローラ 50には、プラズマ処理装置 100で実行される各種処理を プロセスコントローラ 50の制御にて実現するための制御プログラム(ソフトウェア)や 処理条件データ等が記録されたレシピが格納された記憶部 52が接続されている。
[0033] そして、必要に応じて、ユーザーインターフェース 51からの指示等にて任意のレシ ピを記憶部 52から呼び出してプロセスコントローラ 50に実行させることで、プロセスコ ントローラ 50の制御下で、プラズマ処理装置 100での所望の処理が行われる。また、 前記制御プログラムや処理条件データ等のレシピは、コンピュータ読み取り可能な記 憶媒体、例えば CD— ROM、ハードディスク、フレキシブルディスク、フラッシュメモリ などに格納された状態のものを利用したり、あるいは、他の装置から、例えば専用回 線を介して随時伝送させてオンラインで利用したりすることも可能である。
[0034] このように構成されたプラズマ処理装置 100は、 800°C以下の低い温度でもダメー ジフリーなプラズマ処理により、良質な膜を形成できるとともに、プラズマ均一性に優 れており、プロセスの均一性を実現できる。
[0035] このプラズマ処理装置 100は、上述したように、 STIにおけるトレンチの内壁の酸化 処理などの目的で好適に利用可能なものである。プラズマ処理装置 100によりトレン チの酸化処理を行う際には、まず、ゲートバルブ 26を開にして搬入出口 25からトレン チが形成されたウェハ Wをチャンバ一 1内に搬入し、サセプタ 2上に載置する。
[0036] そして、ガス供給系 16の Arガス供給源 17および Oガス供給源 18力ら、 Arガスお
2
よび Oガスを所定の流量でガス導入部材 15を介してチャンバ一 1内に導入し、所定
2
の処理圧力に維持する。この際の条件としては、処理ガス中の酸素の割合が 1〜: L0 0%であればよぐ 25%以上が好ましぐ 75%以上がより好ましぐ 95%以上が望まし い。ガス流量は、 Arガス: 0〜2000mLZmin、 Oガス: 10〜500mLZminの範囲
2
から、全ガス流量に対する酸素の割合が上記値となるように選択することができる。ま た、処理ガス中の Oガス分圧は、 0. 0133Pa以上 133. 3Pa力 子ましく、 6. 7〜133
2
. 3Paがより好ましい。
[0037] また、 Arガス供給源 17および Oガス供給源 18からの Arガスおよび Oガスに加え
2 2
、 Hガス供給源 19から Hガスを所定比率で導入することもできる。この場合、 Hの
2 2 2 割合は、処理ガス全体の量に対して 0. 1〜10%となるようにすることが好ましぐ 0. 1
〜5%がより好ましぐ 0. 1〜2%が望ましい。
[0038] また、チャンバ一内処理圧力は、 1. 3-133. 3Paの範囲力 選択することができ、 ί列免ば、 6. 7〜133. 3Paの範囲力 S好ましく、 6. 7〜67Pa力 Sより好ましく、 6. 7〜13.
3Paが望ましい。また、処理温度は 300〜1000°C力も選択でき、 700〜1000°C力 S 好ましく、 700〜800oC力より好まし ヽ。
[0039] 次いで、マイクロ波発生装置 39からのマイクロ波をマッチング回路 38を経て導波管
37に導く。マイクロ波は、矩形導波管 37b、モード変 40、および同軸導波管 37a を順次通って平面アンテナ部材 31に供給され、平面アンテナ部材 31からマイクロ波 透過板 28を経てチャンバ一 1内におけるウェハ Wの上方空間に放射される。マイクロ 波は、矩形導波管 37b内では TEモードで伝搬し、この TEモードのマイクロ波はモー ド変換器 40で TEMモードに変換されて、同軸導波管 37a内を平面アンテナ部材 31 に向けて伝搬されていく。この際、マイクロ波発生装置 39のパワーは、 0. 5〜5kWと することが好ましい。
[0040] 平面アンテナ部材 31からマイクロ波透過板 28を経てチャンバ一 1に放射されたマ イク口波によりチャンバ一 1内で電磁界が形成され、 Arガスおよび Oガスがプラズマ
2
化し、このプラズマによりウェハ wに形成された凹部内に露出したシリコン表面を酸 化する。このマイクロ波プラズマは、マイクロ波が平面アンテナ部材 31の多数のマイ クロ波放射孔 32から放射されることにより、略1 101()〜5 1012/«113ぁるぃはそれ 以上の高密度のプラズマとなり、その電子温度は、 0. 5〜2eV程度、プラズマ密度の 均一性は、 ± 5%以下である。従って、低温かつ短時間で酸ィ匕処理を行って薄い酸 化膜を形成することができ、し力も酸ィ匕膜へのプラズマ中のイオン等によるダメージが 小さぐ良質な酸ィ匕膜を形成できるというメリットがある。
[0041] 次に、図 3A〜図 31、図 4および図 5を参照しながら、本発明のシリコン酸ィ匕膜の形 成方法を STI形成におけるエッチング後のトレンチ内部の酸ィ匕処理へ適用した例に ついて説明を行なう。図 3A〜図 31は、 STIにおけるトレンチの形成とその後で行なわ れる酸ィ匕膜形成までの工程を図示している。まず、図 3Aおよび図 3Bにおいて、シリ コン基板 101に例えば熱酸ィ匕などの方法により SiOなどのシリコン酸ィ匕膜 102を形
2
成する。次に、図 3Cでは、シリコン酸化膜 102上に、例えば CVD (Chemical Vapor Deposition)により Si Nなどのシリコン窒化膜 103を形成する。さらに、図 3Dでは、シ
3 4
リコン窒化膜 103の上に、フォトレジストを塗布した後、フォトリソグラフィー技術により パター-ングしてレジスト層 104を形成する。
[0042] 次に、レジスト層 104をエッチングマスクとし、例えばハロゲン系のエッチングガスを 用いてシリコン窒化膜 103とシリコン酸ィ匕膜 102を選択的にエッチングすることにより 、レジスト層 104のパターンに対応してシリコン基板 101を露出させる(図 3E)。つまり 、シリコン窒化膜 103により、トレンチのためのマスクパターンが形成される。図 3Fは、 例えば酸素などを含む処理ガスを用いた酸素含有プラズマにより、 V、わゆるアツシン グ処理を実施し、レジスト層 104を除去した状態を示す。
[0043] 図 3Gでは、シリコン窒化膜 103およびシリコン酸化膜 102をマスクとして、シリコン 基板に対し選択的にエッチングを実施することにより、トレンチ 110を形成することが できる。このエッチングは、例えば CI、 HBr、 SF、 CFなどのハロゲンまたはハロゲ
2 6 4
ン化合物や、 oなどを含むエッチングガスを使用して行なうことができる。
2
[0044] 図 3Hは、 STIにおけるトレンチを形成した際のエッチング後のウェハ Wのトレンチ 1 10に対しプラズマ酸化処理を施している酸化処理工程を示している。この酸化処理 工程を、以下に示す条件で実施することによって、図 31に示すようにトレンチ 110の 肩部 110aに丸みを持たせ、かつ、トレンチ 110の内面に均一な膜厚で酸ィ匕膜 111を 形成できる。
[0045] 酸ィ匕処理工程における処理ガスとしては、 Oを 1%以上含有するガスであればよく
2
、例えば oと希ガスとの混合ガスを用いることができる。この場合、希ガスは含まなく
2
てもよい。また、 O以外に例えば NOガス、 NOガス、 N Oガスを用いることもできる。
2 2 2
全処理ガスに対する酸素の割合(百分率)を 1〜100%にすることによって、酸化膜 1 11の膜質を緻密にすることができるとともに、トレンチ 110の部位による膜厚差、特に トレンチ上部とトレンチ下部のコーナー近傍との膜厚差を解消し、均一な膜厚で酸ィ匕 膜 111を形成できる。
処理ガス中の Oの量は、高いほど効果が大きいので、 50%以上がより好ましぐ 75
2
%以上がさらに好ましぐ 95%以上が望ましい。従って、処理ガス中の Oの量として
2 は、例えば 1〜100%であればよぐ 25〜100%力 子ましく、 50〜100%がより好まし く、 75〜: L00%力さらに好ましく、 95〜: L00%力望ましい。
このように、処理ガス中の酸素分圧を調節することにより、プラズマ中の酸素イオン や酸素ラジカルの量を制御し、さらにトレンチ 110内部に到達する酸素イオンや酸素 ラジカルの量を制御することによって、コーナー部に丸みを形成することが出来るとと もに、トレンチ 110内に均一なシリコン酸ィ匕膜を形成できる。
[0046] また、処理ガス中には、 Oガスに加え、 Hガスを所定比率で添加することもできる。
2 2
この場合、 Hの量は、処理ガス全体の量に対して 10%以下、例えば 0. 1〜10%の
2
範囲、好ましくは 0. 5〜5%の範囲力 選択できる。 [0047] また、酸ィ匕処理工程の圧力は、 1. 3〜133. 3Pa力 S好ましく、 6. 7〜133. 3Pa力 ^よ り好ましい。上記した Oの割合において、処理圧力を 133. 3Pa以下にすることによ
2
つて、トレンチの肩部 110a (シリコンの角部)に丸みを形成して曲面形状にすることが できる。特に 13. 3Pa以下の低い圧力では、高圧(例えば 133. 3Pa超)に比べ、プラ ズマ中のイオンエネルギーが大きくなるため、イオンによる酸ィ匕作用が強くなり、つま り、酸ィ匕レートが速くなるので、コーナー部と平面部との酸ィ匕レートの差が小さくなるこ とでトレンチ 110の肩部 110aにおけるシリコンの角で酸化が均一に進み、シリコンの 角がとれ、丸みが形成されるものと考えられる。ここで、肩部 110aの丸みの程度(曲 率半径 r)は処理ガス中の Oの量と処理圧力によって制御可能であり、処理圧力を 1
2
33. 3Pa以下とし、 Oの量を 1%以上にすればよい。半導体装置のリーク電流を抑
2
制する観点からは、この肩部 110aの曲率半径 rを 2. 8nm以上とすることが好ましぐ 4〜8nmとなるようにすることがより好まし!/、。
[0048] また、処理ガス中の酸素の量を 25%以上とし、さらに 13. 3Pa以下の圧力で処理を 行なうことによって、トレンチ 110の下部のコーナー 110bを中心としてその周囲(ラウ ンド領域)における酸ィ匕膜 111、つまり図 31における符号 111a, 111bで示す部分の 膜厚をも均一にすることができる。
[0049] 図 4Aは、本発明のシリコン酸化膜の形成方法によって酸化膜 111を形成した後の ウエノ、 Wの要部の断面構造を模式的に示したものであり、図中、破線で示す Aの拡 大図を図 4Bに、破線で示す Bの拡大図を図 4Cに、それぞれ示す。
図 4A、図 4Bから見て取れるように、トレンチ 110の肩部 110aの形状は、内部のシ リコン 101の丸みの曲率半径 r力 例えば 4nm以上となるように曲面に形成されてい る。また、図 4A、図 4Cに示すように、トレンチ 110の底のコーナー部 110bを中心とし て、その周囲 (ラウンド領域)における酸ィ匕膜 111の膜厚、つまり、コーナー部 110b の膜厚 Lとその両側の直線領域との境界付近の膜厚 L、 Lが略均等に形成される。
3 2 4
さらに、トレンチ 110の側壁上部の酸ィ匕膜 111の膜厚 Lと、側壁下部の酸ィ匕膜 111 の膜厚 Lも略等しぐトレンチ 110の部位による膜厚差が解消される。
2
[0050] また、前記条件でプラズマ酸化処理を行なうことにより、ウェハ Wの表面のパターン 構造における膜厚の疎密差が少ないシリコン酸ィ匕膜を形成できる。具体的には、例 えば図 5に示すように、パターンが密な部分 (密部)の酸ィ匕膜厚 (符号 a)と、パターン が疎な部分 (疎部)との酸化膜厚 (符号 b)とを略均等に形成することが可能になる。
[0051] 本発明のシリコン酸ィ匕膜の形成方法によって酸ィ匕膜 111を形成した後は、 STIによ る素子分離領域形成の手順に従い、例えば CVD法によりトレンチ 110内に SiOなど
2 の絶縁膜を埋込んだ後、シリコン窒化膜 103をストッパー層として CMPによって研磨 を行ない平坦化する。平坦ィ匕した後は、エッチングによってシリコン窒化膜 103およ び埋込み絶縁膜の上部を除去することにより、素子分離構造を形成できる。
[0052] 次に、本発明の効果を確認した試験結果について説明する。
図 1に記載したプラズマ処理装置 100を用い、 STIによる素子分離領域形成におけ るエッチング後のトレンチに対し、処理圧力を変えて酸化処理を実施した。処理圧力 は、 6. 7Pa (50mTorr) , 13. 3Pa (lOOmTorr) , 67Pa (500mTorr) , 133. 3Pa ( lTorr)、 667Pa (5Torr)、 1267Pa (9. 5Torr)とした。プラズマ酸化処理における 処理ガスは、 Arガスと Oガスを用い、全処理ガスに対する Oガスの割合を、 1%、 25
2 2
%、 50%、 75%および 100% (O単独)で処理した。
2
[0053] 処理ガスの全流量が 500mLZmin (sccm)となるように、酸素の割合を調整した。
処理温度(基板処理温度)は 400°Cで、プラズマへの供給パワーは 3. 5kW、処理膜 厚は 8nmに設定した。
[0054] 酸化処理後、トレンチ各部の酸ィ匕膜 111の膜厚と、トレンチ肩部 110aの曲率半径 を、透過型電子顕微鏡(Transmission Electron Microscopy)写真による断面の撮像 を元に測定した。
トレンチ肩部 110aの曲率半径!:の測定結果を表 1に示した。なお、酸ィ匕膜 111の膜 厚が大きいと丸みも大きくなる傾向があるので、表 1の上段には、曲率半径 r (nm)を 酸ィ匕膜厚 L (nm)により規格ィ匕した値 [曲率半径 rZ酸ィ匕膜厚 L X 100]を示し、下段 に曲率半径 rを示す。また、トレンチ上部の酸ィ匕膜厚とトレンチ下部の酸ィ匕膜厚の比( 上部の膜厚 Z下部の膜厚)を表 2に示した。さらに、この試験における曲率半径と圧 力との関係について、図 6にグラフとして示した。表 1と図 6から、処理圧力が 133. 3 Pa以下であれば、酸素の割合が 1%でも 2. 8nm以上の曲率半径が得られることが ゎカゝる。 また、酸素の割合が 100%の場合の圧力条件の違いによるトレンチ上部と下部の 形状を透過型電子顕微鏡 (TEM)により撮影した写真を図 7に示した。また、処理圧 力 6. 7Paの場合における酸素の割合の違いによるトレンチ上部と下部の形状の TE M写真を図 8に示した。なお、図 7および図 8において、符号 A、 Bは、それぞれ図 4 における符号 A、符号 Bに対応する部位であることを意味する。
[表 1]
Figure imgf000016_0001
上段;膜厚による規格値
下段:曲率半径 (単位; nm) [表 2]
o2流量 圧力(Pa)
比率 6.7 13.3 67 133 667 1267
1% 0.81 0.76
25% 0.92 0.75 0.66
50% 0.92 0.81 0.73
75% 0.80
100% 1.04 0.99 0.74 0.63 0.99 0.97
[0057] 表 1、図 7および図 8から、トレンチ肩部 110aの曲率半径は、酸素の割合 25%以上 かつ 133. 3Pa以下の圧力条件で大きくなつており、特に、圧力が 67Pa以下で顕著 に大きくなる傾向が示された。
また、表 2、図 7および図 8から、例えば酸素の割合が 100%の条件では、 133. 3P a付近で酸化膜 111の膜厚差が最も大きぐそれ以下の圧力ではトレンチ上部と下部 の膜厚差は低圧になるに従い小さくなる傾向が示され、 13. 3Pa以下であれば、ほ ぼ膜厚差が解消されて 、ることが確認された。
従って、好ましい処理ガス中の酸素の割合は 1〜100%であり、 1. 33〜133. 3Pa の範囲で処理圧力を制御しながら、 STIトレンチ内のプラズマ酸ィ匕処理を実施するこ とによって、均一な膜厚でコーナー部の丸みを最適に形成することができる。
[0058] 次に、図 1に記載したプラズマ処理装置 100を用い、 STIにおけるエッチング後のト レンチに対し、処理ガスの流量を、 ArZO = 500/5mL/min (sccm)に、水素を
2
流量 0 (添カ卩せず)、 lmLZmin (sccm)および 5mLZmin (sccm)となるように添カロ し、プラズマ処理して形成したトレンチ肩部 110aの曲率半径を、ウェハ W断面の TE
M写真を元に測定した。
[0059] プラズマ酸ィ匕処理における処理温度 (基板処理温度)は 400°Cで、プラズマへの供 給パワーは 2750Wとした。処理圧力は、 133. 3Pa (lTorr)とした。
[0060] 酸化処理後、トレンチ肩部 110aの曲率半径を、透過型電子顕微鏡 (Transmission
Electron Microscopy)写真による断面の撮像を元に測定した。トレンチ肩部 110aの 曲率半径の測定結果を図 9に示した。図 9より、水素を添加することにより、曲率半径 rが大きくなり、トレンチ肩部 110aの丸みが大きくなつていることが理解される。従って 、 STIトレンチ内のプラズマ酸化処理において、処理ガス中に Hを、 10%以下、好ま
2
しくは 0. 5〜5%、望ましくは 1〜2%の割合で添加することにより、コーナー部の丸み を最適化できることが示された。
[0061] 以上、本発明の実施形態を述べたが、本発明は上記実施形態に制約されることは なぐ種々の変形が可能である。例えば図 1では、周波数 300MHz〜300GHzのマ イク口波によりプラズマを励起させるマイクロ波プラズマ処理装置 100を用いた力 周 波数 30kHz〜300MHzの高周波を用いてプラズマを励起させる高周波プラズマ処 理装置を用いることもできる。
また、 RLSA方式のプラズマ処理装置 100を例に挙げた力 例えばリモートプラズ マ方式、 ICPプラズマ方式、 ECRプラズマ方式、表面反射波プラズマ方式、マグネト ロンプラズマ方式等のプラズマ処理装置であってもよい。
[0062] また、上記実施形態では、 STIにおけるトレンチ内の酸ィ匕膜形成を例に挙げたが、 これ以外に、例えばポリシリコンゲート電極のエッチング後の側面酸ィ匕などのデバイ ス製造工程において、エッチング後のポリシリコン電極の角部を丸く形成する場合な どにも利用できる。
産業上の利用可能性
[0063] 本発明は、各種半導体装置の製造において、例えば STIにより素子分離を行なう 場合などに好適に利用できる。

Claims

請求の範囲
[I] プラズマ処理装置の処理室内で、処理ガス中の酸素の割合が 1%以上、かつ処理 圧力が 133. 3Pa以下でプラズマ形成し、
前記プラズマにより、被処理体に形成された凹部に露出しているシリコン表面を酸 化してシリコン酸化膜を形成する、シリコン酸化膜の形成方法。
[2] 前記プラズマは、前記処理ガスと、複数のスロットを有する平面アンテナにより前記 処理室内に導入されるマイクロ波と、によって形成されるプラズマである、請求項 1〖こ 記載のシリコン酸ィ匕膜の形成方法。
[3] 前記酸ィ匕膜を形成することにより、前記凹部を構成していた側壁の上端のシリコン の角部に曲面形状を導入する、請求項 1に記載のシリコン酸化膜の形成方法。
[4] 前記処理圧力と前記処理ガス中の酸素の割合との組み合わせにより前記曲面形 状の曲率半径を制御する、請求項 3に記載のシリコン酸化膜の形成方法。
[5] 前記曲面形状の曲率半径力 nm以上になるように制御する、請求項 4に記載のシ リコン酸化膜の形成方法。
[6] 前記処理圧力が、 1. 3〜133. 3Paである、請求項 1に記載のシリコン酸ィ匕膜の形 成方法。
[7] 前記処理圧力が、 6. 7〜67Paである、請求項 1に記載のシリコン酸ィ匕膜の形成方 法。
[8] 前記処理ガス中の酸素の割合力^〜 100%である、請求項 1に記載のシリコン酸ィ匕 膜の形成方法。
[9] 前記処理ガス中の酸素の割合が 25〜100%である、請求項 1に記載のシリコン酸 化膜の形成方法。
[10] 前記処理ガスは、水素を 0. 1〜10%の割合で含む、請求項 1に記載のシリコン酸 化膜の形成方法。
[II] 処理温度が 300〜: L000°Cである、請求項 1に記載のシリコン酸化膜の形成方法。
[12] 前記プラズマの電子温度が 0. 5〜2eVである、請求項 1に記載のシリコン酸ィ匕膜の 形成方法。
[13] 前記プラズマのプラズマ密度が 1 X 101(>〜5 X 1012Zcm3である、請求項 1に記載 のシリコン酸ィ匕膜の形成方法。
[14] 前記凹部は、シヤロートレンチアイソレーションにおけるトレンチである、請求項 1に 記載のシリコン酸ィ匕膜の形成方法。
[15] 前記凹部は、エッチングによってシリコン基板に形成された凹部である、請求項 1に 記載のシリコン酸ィ匕膜の形成方法。
[16] 前記凹部は、エッチングによって積層膜に形成された凹部である、請求項 1に記載 のシリコン酸ィ匕膜の形成方法。
[17] コンピュータ上で動作し、実行時に、プラズマ処理装置の処理室内で、処理ガス中 の酸素の割合が 1%以上、かつ処理圧力が 133. 3Pa以下でプラズマ形成し、前記 プラズマにより、被処理体に形成された凹部に露出しているシリコン表面を酸ィ匕して シリコン酸ィ匕膜を形成するシリコン酸ィ匕膜の形成方法が行なわれるように前記プラズ マ処理装置を制御する、制御プログラム。
[18] コンピュータ上で動作する制御プログラムが記憶されたコンピュータ読取り可能な記 憶媒体であって、前記制御プログラムは、実行時に、プラズマ処理装置の処理室内 で、処理ガス中の酸素の割合が 1%以上、かつ処理圧力が 133. 3Pa以下でプラズ マ形成し、前記プラズマにより、被処理体に形成された凹部に露出しているシリコン 表面を酸ィ匕してシリコン酸ィ匕膜を形成するシリコン酸ィ匕膜の形成方法が行なわれるよ うに前記プラズマ処理装置を制御する、コンピュータ読取り可能な記憶媒体。
[19] プラズマを発生させるプラズマ供給源と、
前記プラズマにより、被処理体を処理するための真空排気可能な処理室と、 前記処理室内で、処理ガス中の酸素の割合が 1%以上、かつ処理圧力が 133. 3P a以下でプラズマ形成し、前記プラズマにより、被処理体に形成された凹部に露出し ているシリコン表面を酸ィ匕してシリコン酸ィ匕膜を形成するシリコン酸ィ匕膜の形成方法 が行なわれるように制御する制御部と、
を備えた、プラズマ処理装置。
PCT/JP2006/306283 2005-03-31 2006-03-28 シリコン酸化膜の製造方法、その制御プログラム、記憶媒体及びプラズマ処理装置 WO2006106666A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN2006800109864A CN101156233B (zh) 2005-03-31 2006-03-28 氧化硅膜的制造方法和等离子体处理装置
EP06730231A EP1865548A4 (en) 2005-03-31 2006-03-28 METHOD FOR PRODUCING A SILICON OXIDE FILM, A CONTROL PROGRAM THEREFOR, A RECORDING MEDIUM AND A PLASMA PROCESSING DEVICE
JP2007512746A JP5073482B2 (ja) 2005-03-31 2006-03-28 シリコン酸化膜の製造方法、その制御プログラム、記憶媒体及びプラズマ処理装置
US11/910,322 US20090239352A1 (en) 2005-03-31 2006-03-28 Method for producing silicon oxide film, control program thereof, recording medium and plasma processing apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005103653 2005-03-31
JP2005-103653 2005-03-31

Publications (1)

Publication Number Publication Date
WO2006106666A1 true WO2006106666A1 (ja) 2006-10-12

Family

ID=37073232

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/306283 WO2006106666A1 (ja) 2005-03-31 2006-03-28 シリコン酸化膜の製造方法、その制御プログラム、記憶媒体及びプラズマ処理装置

Country Status (7)

Country Link
US (1) US20090239352A1 (ja)
EP (1) EP1865548A4 (ja)
JP (1) JP5073482B2 (ja)
KR (1) KR100945322B1 (ja)
CN (1) CN101156233B (ja)
TW (1) TWI390072B (ja)
WO (1) WO2006106666A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008078637A1 (ja) * 2006-12-25 2008-07-03 National University Corporation Nagoya University パターン形成方法、および半導体装置の製造方法
JP2009021565A (ja) * 2007-06-12 2009-01-29 Semiconductor Energy Lab Co Ltd 半導体装置及び半導体装置の作製方法

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100843244B1 (ko) 2007-04-19 2008-07-02 삼성전자주식회사 반도체 소자 및 그 제조 방법
US7812375B2 (en) * 2003-05-28 2010-10-12 Samsung Electronics Co., Ltd. Non-volatile memory device and method of fabricating the same
KR100869742B1 (ko) * 2006-12-29 2008-11-21 동부일렉트로닉스 주식회사 반도체 소자의 소자 분리막 형성 방법
JP4969304B2 (ja) * 2007-04-20 2012-07-04 東京エレクトロン株式会社 熱処理板の温度設定方法、熱処理板の温度設定装置及びコンピュータ読み取り可能な記憶媒体
KR101038615B1 (ko) * 2007-12-27 2011-06-03 주식회사 하이닉스반도체 반도체 소자의 소자 분리막 형성 방법
KR101015849B1 (ko) * 2009-03-03 2011-02-23 삼성모바일디스플레이주식회사 박막트랜지스터, 그의 제조방법 및 이를 포함하는 유기전계발광표시장치
KR101049799B1 (ko) * 2009-03-03 2011-07-15 삼성모바일디스플레이주식회사 박막트랜지스터, 그의 제조방법 및 이를 포함하는 유기전계발광표시장치
KR101041141B1 (ko) 2009-03-03 2011-06-13 삼성모바일디스플레이주식회사 유기전계발광표시장치 및 그의 제조방법
KR20100100187A (ko) * 2009-03-05 2010-09-15 삼성모바일디스플레이주식회사 다결정 실리콘층의 제조방법
KR101049801B1 (ko) 2009-03-05 2011-07-15 삼성모바일디스플레이주식회사 다결정 실리콘층의 제조방법 및 이에 이용되는 원자층 증착장치
KR101056428B1 (ko) 2009-03-27 2011-08-11 삼성모바일디스플레이주식회사 박막트랜지스터, 그의 제조방법, 및 이를 포함하는 유기전계발광표시장치
KR101094295B1 (ko) * 2009-11-13 2011-12-19 삼성모바일디스플레이주식회사 다결정 실리콘층의 제조방법, 박막트랜지스터의 제조방법, 및 유기전계발광표시장치의 제조방법
JP5629098B2 (ja) * 2010-01-20 2014-11-19 東京エレクトロン株式会社 シリコン基板上のパターン修復方法
JP2012216632A (ja) * 2011-03-31 2012-11-08 Tokyo Electron Ltd プラズマ処理方法、及び素子分離方法
JP2012216667A (ja) * 2011-03-31 2012-11-08 Tokyo Electron Ltd プラズマ処理方法
JP6235785B2 (ja) 2013-03-18 2017-11-22 日本電子材料株式会社 プローブカード用ガイド板およびプローブカード用ガイド板の製造方法
US9728646B2 (en) * 2015-08-28 2017-08-08 Taiwan Semiconductor Manufacturing Co., Ltd. Flat STI surface for gate oxide uniformity in Fin FET devices
CN114639602A (zh) * 2020-12-15 2022-06-17 东京毅力科创株式会社 蚀刻方法和蚀刻装置
CN112289737B (zh) * 2020-12-25 2021-05-14 晶芯成(北京)科技有限公司 一种半导体结构的制造方法
JP7304905B2 (ja) * 2021-01-29 2023-07-07 株式会社Kokusai Electric 基板処理方法、半導体装置の製造方法、基板処理装置、およびプログラム
WO2024118789A1 (en) * 2022-11-29 2024-06-06 Applied Materials, Inc. Oxidation conformality improvement with in-situ integrated processing

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001160555A (ja) * 1999-11-30 2001-06-12 Tadahiro Omi 111面方位を表面に有するシリコンを用いた半導体装置およびその形成方法
JP2003297822A (ja) * 2002-03-29 2003-10-17 Tokyo Electron Ltd 絶縁膜の形成方法
JP2004349546A (ja) * 2003-05-23 2004-12-09 Tokyo Electron Ltd 酸化膜形成方法、酸化膜形成装置および電子デバイス材料

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW520453B (en) * 1999-12-27 2003-02-11 Seiko Epson Corp A method to fabricate thin insulating films
US6368941B1 (en) * 2000-11-08 2002-04-09 United Microelectronics Corp. Fabrication of a shallow trench isolation by plasma oxidation
JP4012466B2 (ja) * 2001-03-28 2007-11-21 忠弘 大見 プラズマ処理装置
US7381595B2 (en) * 2004-03-15 2008-06-03 Sharp Laboratories Of America, Inc. High-density plasma oxidation for enhanced gate oxide performance
US6808748B2 (en) * 2003-01-23 2004-10-26 Applied Materials, Inc. Hydrogen assisted HDP-CVD deposition process for aggressive gap-fill technology
US6855647B2 (en) * 2003-04-02 2005-02-15 Hewlett-Packard Development Company, L.P. Custom electrodes for molecular memory and logic devices
US6753237B1 (en) * 2003-04-28 2004-06-22 Macronix International Co., Ltd. Method of shallow trench isolation fill-in without generation of void
US7521316B2 (en) * 2004-09-09 2009-04-21 Samsung Electronics Co., Ltd. Methods of forming gate structures for semiconductor devices

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001160555A (ja) * 1999-11-30 2001-06-12 Tadahiro Omi 111面方位を表面に有するシリコンを用いた半導体装置およびその形成方法
JP2003297822A (ja) * 2002-03-29 2003-10-17 Tokyo Electron Ltd 絶縁膜の形成方法
JP2004349546A (ja) * 2003-05-23 2004-12-09 Tokyo Electron Ltd 酸化膜形成方法、酸化膜形成装置および電子デバイス材料

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1865548A4 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008078637A1 (ja) * 2006-12-25 2008-07-03 National University Corporation Nagoya University パターン形成方法、および半導体装置の製造方法
JP2008159892A (ja) * 2006-12-25 2008-07-10 Univ Nagoya パターン形成方法、および半導体装置の製造方法
US8119530B2 (en) 2006-12-25 2012-02-21 National University Corporation Nagoya University Pattern forming method and semiconductor device manufacturing method
JP2009021565A (ja) * 2007-06-12 2009-01-29 Semiconductor Energy Lab Co Ltd 半導体装置及び半導体装置の作製方法
US8921902B2 (en) 2007-06-12 2014-12-30 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof

Also Published As

Publication number Publication date
TW200704815A (en) 2007-02-01
JP5073482B2 (ja) 2012-11-14
CN101156233A (zh) 2008-04-02
TWI390072B (zh) 2013-03-21
KR20070107142A (ko) 2007-11-06
EP1865548A1 (en) 2007-12-12
JPWO2006106666A1 (ja) 2008-09-11
EP1865548A4 (en) 2011-01-05
CN101156233B (zh) 2010-12-08
US20090239352A1 (en) 2009-09-24
KR100945322B1 (ko) 2010-03-08

Similar Documents

Publication Publication Date Title
JP5073482B2 (ja) シリコン酸化膜の製造方法、その制御プログラム、記憶媒体及びプラズマ処理装置
JP4633729B2 (ja) 半導体装置の製造方法およびプラズマ酸化処理方法
JP5138261B2 (ja) シリコン酸化膜の形成方法、プラズマ処理装置および記憶媒体
TWI388004B (zh) A semiconductor device manufacturing method, a plasma oxidation treatment method, and a plasma processing apparatus
JP5231233B2 (ja) プラズマ酸化処理方法、プラズマ処理装置、及び、記憶媒体
JP5089121B2 (ja) シリコン酸化膜の形成方法およびプラズマ処理装置
WO2007099922A1 (ja) プラズマ酸化処理方法および半導体装置の製造方法
WO2011040426A1 (ja) 半導体装置の製造方法
JP4906659B2 (ja) シリコン酸化膜の形成方法
TW200941579A (en) Method for forming silicon oxide film, storage medium, and plasma processing apparatus
JP5231232B2 (ja) プラズマ酸化処理方法、プラズマ処理装置、及び、記憶媒体
WO2007136049A1 (ja) シリコン酸化膜の形成方法および形成装置
JP5291467B2 (ja) プラズマ酸化処理方法、記憶媒体、及び、プラズマ処理装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200680010986.4

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2007512746

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 1020077021725

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2006730231

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 11910322

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: RU

WWP Wipo information: published in national office

Ref document number: 2006730231

Country of ref document: EP