WO2006003775A1 - 耐硫化物応力割れ性に優れた低合金油井管用鋼 - Google Patents
耐硫化物応力割れ性に優れた低合金油井管用鋼 Download PDFInfo
- Publication number
- WO2006003775A1 WO2006003775A1 PCT/JP2005/010225 JP2005010225W WO2006003775A1 WO 2006003775 A1 WO2006003775 A1 WO 2006003775A1 JP 2005010225 W JP2005010225 W JP 2005010225W WO 2006003775 A1 WO2006003775 A1 WO 2006003775A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- steel
- oil well
- low alloy
- test
- diffusion coefficient
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/22—Ferrous alloys, e.g. steel alloys containing chromium with molybdenum or tungsten
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/10—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of tubular bodies
- C21D8/105—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of tubular bodies of ferrous alloys
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D9/00—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
- C21D9/08—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for tubular bodies or pipes
- C21D9/14—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for tubular bodies or pipes wear-resistant or pressure-resistant pipes
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/001—Ferrous alloys, e.g. steel alloys containing N
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/002—Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/02—Ferrous alloys, e.g. steel alloys containing silicon
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/04—Ferrous alloys, e.g. steel alloys containing manganese
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/06—Ferrous alloys, e.g. steel alloys containing aluminium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/24—Ferrous alloys, e.g. steel alloys containing chromium with vanadium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/28—Ferrous alloys, e.g. steel alloys containing chromium with titanium or zirconium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/32—Ferrous alloys, e.g. steel alloys containing chromium with boron
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P10/00—Technologies related to metal processing
- Y02P10/25—Process efficiency
Definitions
- the present invention relates to a low alloy oil well pipe steel excellent in sulfide stress cracking resistance, which is suitable for casings for oil wells and gas wells.
- Patent Document 1 proposes a method for improving SSC resistance by reducing impurity elements such as Mn and P.
- Patent Document 2 describes a method for improving the SSC resistance by refining crystal grains by twice-quenching heat treatment.
- Patent Document 3 proposes a method for obtaining a 125 ksi-grade steel material with excellent SSC resistance, which has been refined by induction heat treatment.
- Patent Document 4 describes a method for manufacturing steel pipes of 110 to 125 ksi class and 140 ksi class (YS force S965 to 1068 MPa) with excellent SSC resistance by increasing the hardenability and tempering temperature using the direct quenching method.
- Patent Document 5 Techniques have been proposed for obtaining low alloy steels with excellent SSC resistance of 110 to 140 ksi by optimizing alloy components.
- Patent Document 6 Patent Document 7 and Patent Document 8 propose a method for improving the SSC resistance of low alloy well steels of 110 to 140 ksi class by controlling the form of carbides.
- Patent Document 9 proposes a technique for delaying the SSC generation time of a 110 k: 125 ksi grade steel material by precipitating a large amount of fine V-based carbides.
- Patent Document 1 Japanese Patent Application Laid-Open No. 62-253720
- Patent Document 2 JP 59 232220 A
- Patent Document 3 JP-A-6-322478
- Patent Document 4 Japanese Patent Application Laid-Open No. 8-311551
- Patent Document 5 Japanese Patent Laid-Open No. 11 335731
- Patent Document 6 Japanese Unexamined Patent Publication No. 2000-178682
- Patent Document 7 Japanese Unexamined Patent Publication No. 2000-256783
- Patent Document 8 Japanese Patent Publication No. 2000-297344
- Patent Document 9 Japanese Unexamined Patent Publication No. 2000-119798
- An object of the present invention is to provide a steel for SSC oil well pipe that can stably secure excellent SSC resistance even if it is used for a high strength oil well pipe of 125 ksi class or higher.
- Dislocation density is determined by the X-ray diffraction method. [211] It is governed by the half width of the crystal plane (the degree of distortion of the crystal lattice), and the diffusion of hydrogen in the material is determined by the hydrogen permeation method. It is governed by the required hydrogen diffusion coefficient of steel.
- the present invention has been completed on the basis of such new knowledge, and the high-strength oil well tubular steel according to the present invention is as follows (1) to (5).
- the inventions related to the steels (1) to (5) are collectively referred to as the present invention.
- Nb 0.1.
- composition according to any one of the above (1) to (3) characterized by containing one or two of Ca: 0.01% or less and Mg: 0.01% or less by mass%.
- Low alloy oil well pipe steel Low alloy oil well pipe steel.
- an oil well pipe having excellent SSC resistance can be stably provided even if the yield stress (YS) is as high as 861 MPa or more.
- the oil well tubular steel according to the present invention needs to be controlled so that the half width and the hydrogen diffusion coefficient satisfy the equation (1). Therefore, first, a method for measuring the half width and the hydrogen diffusion coefficient of the steel is described. explain.
- Each steel having chemical components shown in Table 1 was melted in a vacuum of 150 kg, hot-rolled after hot forging, and then quenched and tempered to obtain a plate-shaped steel material.
- the total workability (%) and the hot rolling finishing temperature (° C) were variously changed.
- the total degree of processing (%) is 100 X ⁇ (cross-sectional area of plate-shaped steel before processing) (cross-sectional area after final processing) ⁇ Z (cross-sectional area of plate-shaped steel before processing) The value represented by [0024] [Table 2]
- Quenching and tempering was for adjusting the strength (YS) of the steel material to the vicinity of the upper limit of 125 ksi class, and had the strengths shown in Table 2. Quenching was carried out by holding at various temperatures for 30 minutes followed by water cooling, and tempering was carried out by holding at various temperatures for 1 hour and then allowed to cool. [0026] From this steel material, a test piece having a size of 1 X 10 X 10 mm 3 was collected, polished with No. 1200 emery paper, immersed in hydrogen peroxide at room temperature to which a small amount of hydrofluoric acid was added, After removing the work hardened layer, an X-ray diffraction experiment was performed to measure the half width of the peak of the [211] crystal plane.
- a round bar tensile test piece having a parallel part diameter of 6 mm and a parallel part length of 40 mm was taken from the steel material in the rolling direction, a tensile test was performed at room temperature, and the strength of the test piece was obtained from the measured value of YS.
- the SSC resistance was evaluated by two methods, a constant load test and a DCB test.
- DCB test evaluated DCB (Double Double) with a thickness of 10 mm, a width of 20 mm, and a length of 100 mm.
- Cantilever Bent Beam specimens were collected and followed by the NACE TM 0177 D method. It was immersed in bath A and bath B for 336h, and the stress intensity factor K value was measured. The measured values are shown in Table 2.
- the SSC resistance is judged to be good.
- a disk-shaped test piece having a diameter of 70 mm and a thickness of 1.5 mm was taken from a steel material, and the hydrogen diffusion coefficient was measured by a hydrogen permeation test.
- FIG. 1 shows a schematic diagram of a hydrogen permeation test apparatus.
- the cell (force sword cell 1) on the hydrogen intrusion side is filled with the bath used in the above SSC test.
- the cell on the opposite side (the anode cell 2) is filled with 1N NaOH aqueous solution, and the test piece 3 is held at a constant potential of 0V with respect to the reference electrode 5 (here, silver-silver chloride electrode).
- Hydrogen atoms generated on the force sword cell side pass through the test piece and are released to the anode cell side.
- the value of the current flowing between the test piece and the counter electrode 6 (here, the platinum counter electrode) is measured by the potentiostat 4 as the hydrogen permeation current value.
- FIG. 2 is a diagram showing the hydrogen permeation current value measured as a result of the hydrogen permeation test. Hydrogen permeation occurs over time after the test piece is immersed in the solution, and the hydrogen permeation current value eventually reaches the steady state value ⁇ ), but the transition process (max)
- Table 2 shows the calculation result of the hydrogen diffusion coefficient D (10 -6 cm 2 / s).
- Table 2 shows the steel production conditions (total workability, rolling finishing temperature, quenching temperature), strength (YS), half width H, and SSC test (constant load test, DCB test) as described above. The results are also listed.
- FIG. 3 is obtained by organizing the results of the constant load test, a horizontal axis half width H, the vertical axis hydrogen diffusion coefficient D (10_ 6 cm 2 / s ). It can be seen that the SSC resistance improves as the half width and the hydrogen diffusion coefficient both decrease. To ensure sufficient SSC resistance as 125ksi grade, and the arc of the relationship between half value width H and the hydrogen diffusion coefficient D (10- 6 cm 2 / S ) may be so as to satisfy the following formula (1) Admitted.
- FIG. 4 shows the results of investigating the correlation between the total degree of work and the half width for steel (a) in Table 1.
- the full width at half maximum increases when the total degree of processing is too large. The reason for this is thought to be that when the total degree of work is large, the work strain during rolling remains after heat treatment. In addition, the full width at half maximum also increases when the total processing degree is too small. This reason is thought to be that when the total degree of processing is small, the structure after quenching becomes coarse, and the half-value width increases.
- FIG. 5 shows the results of investigating the correlation between the rolling finishing temperature and the half width and the correlation between the rolling finishing temperature and the hydrogen diffusion coefficient for the steel (a) in Table 1.
- the higher the finishing temperature the smaller the half width and the hydrogen diffusion coefficient.
- the reason for this is considered to be that as the rolling finishing temperature is higher, fine carbide forming elements such as Mo and V are sufficiently dissolved in the steel at the end of rolling, and are precipitated as fine carbides during the subsequent heat treatment.
- Fig. 6 shows the results of investigating the correlation between quenching temperature and half-value width and quenching temperature and hydrogen diffusion coefficient for steel (a) in Table 1.
- the higher the quenching temperature the smaller the half width and the hydrogen diffusion coefficient.
- the finer carbide-forming elements such as Mo and V are sufficiently dissolved in the steel, and the easier it is to precipitate as fine carbides during subsequent tempering. it is conceivable that.
- C is an element effective for enhancing the hardenability and improving the strength. Its content is 0.
- Si is an element effective for deoxidation of steel and has an effect of increasing temper softening resistance.
- it is necessary to contain 0.05% or more.
- the Si content is set to 0.05 to 0.5%. Preferred, the range is 0.05-0.3%.
- Mn is an effective element for ensuring the hardenability of steel. For this purpose, it is necessary to contain 0.05% or more. On the other hand, if the content exceeds 1%, it segregates at the grain boundary together with impurity elements such as P and S, and the toughness and SSC resistance decrease. Therefore, the Mn content is set to 0.05 to 1%. The desirable range is 0.:! To 0.6%.
- the upper limit of P is preferably 0.015%.
- the content of P is preferably as low as possible.
- the upper limit of S is preferably 0.003%.
- the content of S is desirably as low as possible.
- A1 is an element effective for deoxidation of steel. If the content is less than 0.005%, the effect cannot be obtained. On the other hand, since the effect is saturated even if the content exceeds 0.10%, the upper limit was made 0.10%.
- the A1 content of the present invention refers to acid-soluble AK (so-called “sol. Al”).
- Cr is an element effective for enhancing the hardenability of steel. To obtain this effect, it is necessary to contain 0.1% or more. However, if its content exceeds 1.0%, the dislocation density of the steel increases and the SSC resistance decreases. For this reason, the Cr content is set to 0.1 to 1.0%. The desired range is 0.:! ⁇ 0.6%.
- ⁇ : 0 ⁇ 5 ⁇ :! ⁇ 0% Mo is an important element in the steel of the present invention. It enhances the hardenability of the steel, forms fine carbides during tempering, reduces the half width and hydrogen diffusion coefficient, and improves the SSC resistance. In order to obtain this effect, it is necessary to contain 0.5% or more. On the other hand, even if the content exceeds 1.0%, the effect is saturated, so the upper limit was made 1.0%. The desired range is 0.6 to 0.8%.
- Ti has the effect of fixing N, an impurity in steel, as a nitride.
- Ti which is a surplus than necessary for N fixation, precipitates finely as carbides and works effectively for fine graining by the pinning effect.
- N fixation is necessary to suppress B from becoming BN to improve hardenability and to maintain B in a solid solution state to ensure sufficient hardenability.
- it is necessary to contain 0.002% or more.
- a desirable content is 0.005 to 0.03%. Further, the desired content is 0.01 to 0.02%.
- V is an important element in the steel of the present invention and, like Mo, precipitates as fine carbides during tempering, and is effective in reducing the half width by high temperature tempering and reducing the hydrogen diffusion coefficient. In order to obtain this effect, it is necessary to contain 0.05% or more. On the other hand, if the content exceeds 0.3%, the effect is saturated, so the upper limit was made 0.3%.
- a preferred range is from 0.05 to 0.20%.
- the upper limit was made 0.005%.
- the desired range is 0.0002 to 0.002%.
- N 0.01% or less
- N is present as an impurity in steel and segregates at the grain boundaries, reducing the SSC resistance.
- TiN or ZrN is formed. If the N content exceeds 0.01%, N cannot be fixed with Ti or Zr, and N precipitates as BN, so B is also effective in improving hardenability. Not obtained, and SSC resistance decreases toughness. Therefore, the upper limit was set to 0.01%.
- the upper limit of N is preferably 0.007%.
- the N content is preferably as low as possible.
- ⁇ (Oxygen) is also present in steel as an impurity like N, and if its content exceeds 0.01%, a coarse oxide is formed, and toughness or SSC resistance decreases. Therefore, the upper limit was set to 0.01%.
- the upper limit of 0 (oxygen) is preferably 0.005%. ⁇ It is desirable that the oxygen content be as low as possible.
- the balance may contain Nb, Zr, Ca, Mg in addition to Fe.
- Nb 0 to 0.1% or less
- Nb is an optional additive element. If added, it exists as an undissolved carbide and is effective for fine graining due to the pinning effect. In order to obtain this effect, it is necessary to contain 0.002% or more. On the other hand, even if the content exceeds 0.1%, the effect is saturated, and Nb carbides are excessively generated and the toughness is lowered, so the upper limit was made 0.1%. A desirable range is 0.005 to 0.03%.
- Zr is an optional additive element. When added, it has the effect of fixing N, which is an impurity in the steel, as a nitride, similar to Ti. Excess Zr than is necessary for N fixation becomes a carbide and precipitates finely, effectively working to refine the structure.
- N fixation suppresses B to be added to BN to improve hardenability, and maintains B in a solid solution state to ensure sufficient hardenability. In order to obtain this effect, it is necessary to contain 0.002% or more. On the other hand, even if the content exceeds 0.1%, this effect is saturated and the toughness decreases, so the upper limit was made 0.1%.
- the desired soot content is 0.005 to 0.06%. Further, the desired content is 0.01 to 0.04%.
- Ca is an optional additive element. If added, it combines with S in the steel to form sulfides, improves the shape of inclusions and improves SSC resistance. In order to acquire this effect, it is necessary to make it contain 0.0001% or more. On the other hand, if the content exceeds 0.01%, the effect is saturated, In addition, coarse Ca-based inclusions are formed and the toughness and SSC resistance are lowered, so the upper limit was made 0.01%. The desired range is 0.0003 to 0.003%.
- Mg is an optional additive element. If added, it combines with S in the steel to form sulfides like Ca, forming sulfides, improving the shape of inclusions and improving SSC resistance. In order to obtain this effect, it is necessary to contain 0.0001% or more. On the other hand, even if the content exceeds 0.01%, the effect is saturated, and coarse Mg-based inclusions are formed, and the toughness and SSC resistance are reduced. Therefore, the upper limit was made 0.01%. . The desired range is 0.0003 to 0.003%.
- a tensile test was performed at room temperature, and the strength of the test piece was determined from the YS measurement value.
- the SSC resistance was evaluated by the two methods of constant load test and DCB test as described above.
- a disk-shaped test piece having a diameter of 12 to 20 mm and a thickness of 1.5 mm was collected, and a hydrogen diffusion coefficient was measured by a hydrogen permeation test.
- Table 4 shows the steel production conditions, YS, half-value width, hydrogen diffusion coefficient, and SSC test results.
- An SSC test (constant load test, DCB test) was performed in bath A for evaluation. All of these specimens satisfy the above-mentioned formula (1) in terms of the half width H and the hydrogen diffusion coefficient D (10 _6 cm 2 / s).
- the K value measured in the DCB test without breaking was 25 or more, and the SSC resistance was good.
- Test No. 19 has a large total degree of processing.
- Test No. 20 has a low rolling finishing temperature.
- Test No. 21 has a low quenching temperature.
- Test No. 22 has Cr over 1.0%
- Test No. 23 has Mo force SO. Less than 5%
- Test No. 24 has V less than 0.05%.
- the full width at half maximum and the hydrogen diffusion coefficient increased, and the SSC resistance was not good.
- Test numbers 25 to 28 are test pieces having strengths adjusted to YS values in the vicinity of 861 MPa (upper limit of 110 ksi class) using steels A to D. Similar to test numbers 1 to 18, these specimens also have a K value of 25 or more measured in the constant load test without breaking or in the DCB test.
- the SSC resistance was good.
- the steel of the present invention has not only good SSC resistance in the 125 ksi class as in test numbers 1 to 18 but also SSC resistance in the lOksi class as in test numbers 21 to 28. It turns out that it is good.
- an oil well pipe having excellent SSC resistance can be stably provided even if the yield stress (YS) is as high as 861 MPa or more.
- FIG. 1 shows a schematic diagram of a hydrogen permeation test apparatus.
- FIG. 2 is a diagram showing a hydrogen permeation current value measured as a result of a hydrogen permeation test.
- Fig. 3 shows the results of the constant load test.
- the horizontal axis shows the half-value width H, and the vertical axis shows the hydrogen diffusion coefficient D (10 _6 cm 2 / S ).
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Manufacturing & Machinery (AREA)
- Heat Treatment Of Steel (AREA)
- Heat Treatment Of Articles (AREA)
- Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
Abstract
Description
Claims
Priority Applications (10)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
UAA200700315A UA81878C2 (uk) | 2004-06-14 | 2005-03-06 | Низьколегована сталь для свердловинних нафтових труб |
MXPA06014367A MXPA06014367A (es) | 2004-06-14 | 2005-06-03 | Aleacion baja en acero para tubos de pozo petrolero excelentes en resistencia la agrietamiento por esfuerzo de sulfuro. |
BRPI0512032-2A BRPI0512032B1 (pt) | 2004-06-14 | 2005-06-03 | Aço de baixo teor de liga para tubos de poços de petróleo |
EA200700026A EA011681B1 (ru) | 2004-06-14 | 2005-06-03 | Низколегированная сталь для скважинных нефтяных труб, обладающая высоким сопротивлением растрескиванию под действием напряжений в сульфидосодержащей среде |
AU2005258696A AU2005258696B2 (en) | 2004-06-14 | 2005-06-03 | Low alloy steel for oil well pipe having excellent sulfide stress cracking resistance |
CA2569907A CA2569907C (en) | 2004-06-14 | 2005-06-03 | Low alloy steel for oil well pipes excellent in sulfide stress cracking resistance |
ES05746052.9T ES2654940T3 (es) | 2004-06-14 | 2005-06-03 | Acero débilmente aleado para tuberías de pozos petrolíferos y de excelente resistencia contra el agrietamiento por tensiones internas debidas al sulfuro de hidrogeno |
EP05746052.9A EP1785501B1 (en) | 2004-06-14 | 2005-06-03 | Low alloy steel for oil well pipe having excellent sulfide stress cracking resistance |
US11/640,030 US8168010B2 (en) | 2004-06-14 | 2006-12-14 | Low alloy steel for oil well pipes having excellent sulfide stress cracking resistance |
NO20070033A NO340360B1 (no) | 2004-06-14 | 2007-01-03 | Lavlegert stål for oljebrønnrør med utmerket motstand mot sulfid-spenningssprekking |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004175242A JP4140556B2 (ja) | 2004-06-14 | 2004-06-14 | 耐硫化物応力割れ性に優れた低合金油井管用鋼 |
JP2004-175242 | 2004-06-14 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/640,030 Continuation US8168010B2 (en) | 2004-06-14 | 2006-12-14 | Low alloy steel for oil well pipes having excellent sulfide stress cracking resistance |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2006003775A1 true WO2006003775A1 (ja) | 2006-01-12 |
Family
ID=35585470
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2005/010225 WO2006003775A1 (ja) | 2004-06-14 | 2005-06-03 | 耐硫化物応力割れ性に優れた低合金油井管用鋼 |
Country Status (14)
Country | Link |
---|---|
US (1) | US8168010B2 (ja) |
EP (1) | EP1785501B1 (ja) |
JP (1) | JP4140556B2 (ja) |
CN (1) | CN100554474C (ja) |
AR (1) | AR050159A1 (ja) |
AU (1) | AU2005258696B2 (ja) |
BR (1) | BRPI0512032B1 (ja) |
CA (1) | CA2569907C (ja) |
EA (1) | EA011681B1 (ja) |
ES (1) | ES2654940T3 (ja) |
MX (1) | MXPA06014367A (ja) |
NO (1) | NO340360B1 (ja) |
UA (1) | UA81878C2 (ja) |
WO (1) | WO2006003775A1 (ja) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9803256B2 (en) | 2013-03-14 | 2017-10-31 | Tenaris Coiled Tubes, Llc | High performance material for coiled tubing applications and the method of producing the same |
WO2018179512A1 (ja) * | 2017-03-30 | 2018-10-04 | Jfeスチール株式会社 | 耐サワーラインパイプ用高強度鋼板およびその製造方法並びに耐サワーラインパイプ用高強度鋼板を用いた高強度鋼管 |
WO2019064459A1 (ja) * | 2017-09-28 | 2019-04-04 | Jfeスチール株式会社 | 耐サワーラインパイプ用高強度鋼板およびその製造方法並びに耐サワーラインパイプ用高強度鋼板を用いた高強度鋼管 |
US11105501B2 (en) | 2013-06-25 | 2021-08-31 | Tenaris Connections B.V. | High-chromium heat-resistant steel |
US11124852B2 (en) | 2016-08-12 | 2021-09-21 | Tenaris Coiled Tubes, Llc | Method and system for manufacturing coiled tubing |
US11952648B2 (en) | 2011-01-25 | 2024-04-09 | Tenaris Coiled Tubes, Llc | Method of forming and heat treating coiled tubing |
US12129533B2 (en) | 2015-04-14 | 2024-10-29 | Tenaris Connections B.V. | Ultra-fine grained steels having corrosion- fatigue resistance |
Families Citing this family (52)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DK1627931T3 (en) | 2003-04-25 | 2018-11-05 | Tubos De Acero De Mexico S A | Seamless steel tube which is intended to be used as a guide pipe and production method thereof |
JP4725216B2 (ja) * | 2005-07-08 | 2011-07-13 | 住友金属工業株式会社 | 耐硫化物応力割れ性に優れた低合金油井管用鋼 |
EP2044228B1 (en) | 2006-06-29 | 2010-05-19 | Tenaris Connections AG | Seamless precision steel tubes with improved isotropic toughness at low temperature for hydraulic cylinders and process for obtaining the same |
MX2007004600A (es) * | 2007-04-17 | 2008-12-01 | Tubos De Acero De Mexico S A | Un tubo sin costura para la aplicación como secciones verticales de work-over. |
US7862667B2 (en) | 2007-07-06 | 2011-01-04 | Tenaris Connections Limited | Steels for sour service environments |
JP4251229B1 (ja) * | 2007-09-19 | 2009-04-08 | 住友金属工業株式会社 | 高圧水素ガス環境用低合金鋼および高圧水素用容器 |
MX2010005532A (es) | 2007-11-19 | 2011-02-23 | Tenaris Connections Ltd | Acero bainítico de alta resistencia para aplicaciones octg. |
BRPI0904814B1 (pt) | 2008-11-25 | 2020-11-10 | Maverick Tube, Llc | método de fabricação de um produto de aço |
WO2010113843A1 (ja) * | 2009-04-01 | 2010-10-07 | 住友金属工業株式会社 | 高強度Cr-Ni合金継目無管の製造方法 |
EP2325435B2 (en) | 2009-11-24 | 2020-09-30 | Tenaris Connections B.V. | Threaded joint sealed to [ultra high] internal and external pressures |
CN102373368A (zh) * | 2010-08-23 | 2012-03-14 | 宝山钢铁股份有限公司 | 一种石油套管用钢及其制造方法 |
IT1403688B1 (it) | 2011-02-07 | 2013-10-31 | Dalmine Spa | Tubi in acciaio con pareti spesse con eccellente durezza a bassa temperatura e resistenza alla corrosione sotto tensione da solfuri. |
IT1403689B1 (it) | 2011-02-07 | 2013-10-31 | Dalmine Spa | Tubi in acciaio ad alta resistenza con eccellente durezza a bassa temperatura e resistenza alla corrosione sotto tensioni da solfuri. |
US8636856B2 (en) | 2011-02-18 | 2014-01-28 | Siderca S.A.I.C. | High strength steel having good toughness |
US8414715B2 (en) | 2011-02-18 | 2013-04-09 | Siderca S.A.I.C. | Method of making ultra high strength steel having good toughness |
AR088424A1 (es) | 2011-08-22 | 2014-06-11 | Nippon Steel & Sumitomo Metal Corp | Tubo de acero para pozo de petroleo con excelente resistencia a la corrosion bajo tension por presencia de sulfuros |
JP2013087336A (ja) * | 2011-10-19 | 2013-05-13 | Nippon Telegr & Teleph Corp <Ntt> | 水素脆化防止方法 |
US9340847B2 (en) * | 2012-04-10 | 2016-05-17 | Tenaris Connections Limited | Methods of manufacturing steel tubes for drilling rods with improved mechanical properties, and rods made by the same |
EA025937B1 (ru) * | 2012-06-20 | 2017-02-28 | Ниппон Стил Энд Сумитомо Метал Корпорейшн | Сталь для трубных изделий нефтепромыслового сортамента и способ ее производства |
JP5333700B1 (ja) * | 2012-11-05 | 2013-11-06 | 新日鐵住金株式会社 | 耐硫化物応力割れ性に優れた低合金油井管用鋼及び低合金油井管用鋼の製造方法 |
MX2015008990A (es) | 2013-01-11 | 2015-10-14 | Tenaris Connections Ltd | Empalme para herramientas de tuberia de perforacion resistente a la excoriacion y tuberia de perforacion correspondiente. |
US9187811B2 (en) | 2013-03-11 | 2015-11-17 | Tenaris Connections Limited | Low-carbon chromium steel having reduced vanadium and high corrosion resistance, and methods of manufacturing |
EP2789701A1 (en) | 2013-04-08 | 2014-10-15 | DALMINE S.p.A. | High strength medium wall quenched and tempered seamless steel pipes and related method for manufacturing said steel pipes |
EP2789700A1 (en) | 2013-04-08 | 2014-10-15 | DALMINE S.p.A. | Heavy wall quenched and tempered seamless steel pipes and related method for manufacturing said steel pipes |
AR096965A1 (es) | 2013-07-26 | 2016-02-10 | Nippon Steel & Sumitomo Metal Corp | Tubo de acero de baja aleación para pozo petrolero y método para la manufactura del mismo |
CN104195464A (zh) * | 2014-07-24 | 2014-12-10 | 安徽广源科技发展有限公司 | 一种矿山用高铬合金钢及其制造方法 |
AR101200A1 (es) | 2014-07-25 | 2016-11-30 | Nippon Steel & Sumitomo Metal Corp | Tubo de acero de baja aleación para pozo de petróleo |
EP3208358B1 (en) * | 2014-10-17 | 2019-08-14 | Nippon Steel Corporation | Low alloy steel pipe for oil wells |
CN105177434B (zh) * | 2015-09-25 | 2017-06-20 | 天津钢管集团股份有限公司 | 125ksi钢级耐硫化氢应力腐蚀油井管的制造方法 |
EP3425076B1 (en) * | 2016-02-29 | 2021-11-10 | JFE Steel Corporation | Low-alloy, high-strength seamless steel pipe for oil country tubular goods |
BR112018069480B1 (pt) * | 2016-02-29 | 2021-10-05 | Jfe Steel Corporation | Tubo de aço sem costura de parede espessa de alta resistibilidade de baixa liga para produtos tubulares petrolíferos |
CN106119708A (zh) * | 2016-06-28 | 2016-11-16 | 邯郸新兴特种管材有限公司 | 一种95Ksi钢级抗硫化氢应力腐蚀的油井管用低合金钢 |
RU2707845C1 (ru) * | 2016-09-01 | 2019-11-29 | Ниппон Стил Корпорейшн | Стальной материал и стальная труба для нефтяной скважины |
RU2709567C1 (ru) | 2016-10-06 | 2019-12-18 | Ниппон Стил Корпорейшн | Стальной материал, стальная труба для нефтяной скважины и способ для производства стального материала |
US10434554B2 (en) | 2017-01-17 | 2019-10-08 | Forum Us, Inc. | Method of manufacturing a coiled tubing string |
CA3049859A1 (en) * | 2017-01-24 | 2018-08-02 | Nippon Steel Corporation | Steel material and method for producing steel material |
JP6551633B1 (ja) | 2017-12-26 | 2019-07-31 | Jfeスチール株式会社 | 油井用低合金高強度継目無鋼管 |
BR112020012824B1 (pt) * | 2017-12-26 | 2023-04-18 | Jfe Steel Corporation | Tubo de aço sem emenda de alta resistência e baixo teor de liga para produtos tubulares para a indústria petrolífera |
WO2019131036A1 (ja) | 2017-12-26 | 2019-07-04 | Jfeスチール株式会社 | 油井用低合金高強度継目無鋼管 |
BR112020016837B1 (pt) | 2018-02-28 | 2023-12-12 | Nippon Steel Corporation | Material de aço adequado para uso em ambiente ácido |
AR114708A1 (es) | 2018-03-26 | 2020-10-07 | Nippon Steel & Sumitomo Metal Corp | Material de acero adecuado para uso en entorno agrio |
AR114712A1 (es) | 2018-03-27 | 2020-10-07 | Nippon Steel & Sumitomo Metal Corp | Material de acero adecuado para uso en entorno agrio |
AR115003A1 (es) | 2018-04-05 | 2020-11-18 | Nippon Steel & Sumitomo Metal Corp | Material de acero adecuado para uso en entorno agrio |
JP6901045B2 (ja) | 2018-04-09 | 2021-07-14 | 日本製鉄株式会社 | 鋼管、及び、鋼管の製造方法 |
US11434554B2 (en) | 2018-04-09 | 2022-09-06 | Nippon Steel Corporation | Steel material suitable for use in sour environment |
AU2019251876A1 (en) | 2018-04-09 | 2020-08-06 | Nippon Steel Corporation | Steel pipe and method for producing steel pipe |
WO2020071219A1 (ja) | 2018-10-01 | 2020-04-09 | 日本製鉄株式会社 | サワー環境での使用に適した継目無鋼管 |
BR112021000070B1 (pt) | 2018-10-04 | 2023-11-07 | Nippon Steel Corporation | Material de aço adequado para uso em ambiente ácido |
MX2021003354A (es) | 2018-10-31 | 2021-05-27 | Nippon Steel Corp | Material de acero y metodo para producir el material de acero. |
AR118070A1 (es) | 2019-02-15 | 2021-09-15 | Nippon Steel Corp | Material de acero adecuado para uso en ambiente agrio |
AR118071A1 (es) | 2019-02-15 | 2021-09-15 | Nippon Steel Corp | Material de acero adecuado para uso en ambiente agrio |
US20220186350A1 (en) | 2019-03-22 | 2022-06-16 | Nippon Steel Corporation | Seamless steel pipe suitable for use in sour environment |
Citations (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS59232220A (ja) | 1983-06-14 | 1984-12-27 | Sumitomo Metal Ind Ltd | 耐硫化物腐食割れ性に優れた高強度鋼の製法 |
JPS62253720A (ja) | 1986-04-25 | 1987-11-05 | Nippon Steel Corp | 硫化物応力割れ抵抗性に優れた低合金高張力油井用鋼の製造方法 |
JPH06322478A (ja) | 1993-02-26 | 1994-11-22 | Nippon Steel Corp | 耐硫化物応力割れ抵抗性に優れた高強度鋼およびその製造方法 |
JPH08311551A (ja) | 1995-05-15 | 1996-11-26 | Sumitomo Metal Ind Ltd | 耐硫化物応力割れ性に優れた高強度継目無鋼管の製造方法 |
JPH0959719A (ja) * | 1995-06-14 | 1997-03-04 | Sumitomo Metal Ind Ltd | 高強度高耐食継目無鋼管の製造方法 |
EP0828007A1 (en) | 1995-05-15 | 1998-03-11 | Sumitomo Metal Industries, Ltd. | Process for producing high-strength seamless steel pipe having excellent sulfide stress cracking resistance |
JPH11286720A (ja) | 1998-04-03 | 1999-10-19 | Sumitomo Metal Ind Ltd | 耐硫化物応力割れ性に優れた高強度鋼材の製造方法 |
JPH11335731A (ja) | 1998-05-21 | 1999-12-07 | Sumitomo Metal Ind Ltd | 耐硫化物応力割れ性に優れた高強度鋼材の製造方法 |
JP2000119798A (ja) | 1998-10-13 | 2000-04-25 | Nippon Steel Corp | 硫化物応力割れ抵抗性に優れた高強度鋼及び油井用鋼管 |
JP2000178682A (ja) | 1998-12-09 | 2000-06-27 | Sumitomo Metal Ind Ltd | 耐硫化物応力腐食割れ性に優れる油井用鋼 |
JP2000256783A (ja) | 1999-03-11 | 2000-09-19 | Sumitomo Metal Ind Ltd | 靭性と耐硫化物応力腐食割れ性に優れる高強度油井用鋼およびその製造方法 |
JP2000297344A (ja) | 1999-04-09 | 2000-10-24 | Sumitomo Metal Ind Ltd | 靭性と耐硫化物応力腐食割れ性に優れる油井用鋼およびその製造方法 |
JP2001073086A (ja) | 1999-09-06 | 2001-03-21 | Sumitomo Metal Ind Ltd | 高靱性・高耐食性継目無鋼管 |
JP2001271134A (ja) | 2000-03-24 | 2001-10-02 | Sumitomo Metal Ind Ltd | 耐硫化物応力割れ性と靱性に優れた低合金鋼材 |
JP2002060893A (ja) * | 2000-08-18 | 2002-02-28 | Sumitomo Metal Ind Ltd | 耐硫化物応力腐食割れ性に優れた油井用鋼とその製造方法 |
JP2004002978A (ja) * | 2002-03-29 | 2004-01-08 | Sumitomo Metal Ind Ltd | 低合金鋼 |
Family Cites Families (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06220536A (ja) * | 1993-01-22 | 1994-08-09 | Nkk Corp | 耐硫化物応力腐食割れ性に優れた高強度鋼管の製造法 |
JPH0741856A (ja) * | 1993-07-28 | 1995-02-10 | Nkk Corp | 耐硫化物応力腐食割れ性に優れた高強度鋼管の製造法 |
JPH1150148A (ja) * | 1997-08-06 | 1999-02-23 | Sumitomo Metal Ind Ltd | 高強度高耐食継目無鋼管の製造方法 |
JPH1161254A (ja) * | 1997-08-13 | 1999-03-05 | Sumitomo Metal Ind Ltd | 高強度高耐食継目無鋼管の製造方法 |
JP3620326B2 (ja) * | 1999-01-29 | 2005-02-16 | 住友金属工業株式会社 | 細粒組織で強度バラツキの小さい継目無鋼管 |
JP4367588B2 (ja) * | 1999-10-28 | 2009-11-18 | 住友金属工業株式会社 | 耐硫化物応力割れ性に優れた鋼管 |
JP3543708B2 (ja) * | 1999-12-15 | 2004-07-21 | 住友金属工業株式会社 | 耐硫化物応力腐食割れ性に優れた油井用鋼材およびそれを用いた油井用鋼管の製造方法 |
UA56411A (uk) | 2002-03-20 | 2003-05-15 | Приватне Науково-Виробниче Підприємство "Сатурн" | Ливарний сплав на основі алюмінію |
JP4609138B2 (ja) * | 2005-03-24 | 2011-01-12 | 住友金属工業株式会社 | 耐硫化物応力割れ性に優れた油井管用鋼および油井用継目無鋼管の製造方法 |
JP4725216B2 (ja) * | 2005-07-08 | 2011-07-13 | 住友金属工業株式会社 | 耐硫化物応力割れ性に優れた低合金油井管用鋼 |
-
2004
- 2004-06-14 JP JP2004175242A patent/JP4140556B2/ja not_active Expired - Fee Related
-
2005
- 2005-03-06 UA UAA200700315A patent/UA81878C2/uk unknown
- 2005-06-03 EA EA200700026A patent/EA011681B1/ru not_active IP Right Cessation
- 2005-06-03 CA CA2569907A patent/CA2569907C/en not_active Expired - Fee Related
- 2005-06-03 AU AU2005258696A patent/AU2005258696B2/en not_active Ceased
- 2005-06-03 ES ES05746052.9T patent/ES2654940T3/es active Active
- 2005-06-03 BR BRPI0512032-2A patent/BRPI0512032B1/pt not_active IP Right Cessation
- 2005-06-03 MX MXPA06014367A patent/MXPA06014367A/es active IP Right Grant
- 2005-06-03 CN CNB2005800194665A patent/CN100554474C/zh not_active Expired - Fee Related
- 2005-06-03 WO PCT/JP2005/010225 patent/WO2006003775A1/ja active Application Filing
- 2005-06-03 EP EP05746052.9A patent/EP1785501B1/en not_active Not-in-force
- 2005-06-09 AR ARP050102357A patent/AR050159A1/es unknown
-
2006
- 2006-12-14 US US11/640,030 patent/US8168010B2/en active Active
-
2007
- 2007-01-03 NO NO20070033A patent/NO340360B1/no not_active IP Right Cessation
Patent Citations (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS59232220A (ja) | 1983-06-14 | 1984-12-27 | Sumitomo Metal Ind Ltd | 耐硫化物腐食割れ性に優れた高強度鋼の製法 |
JPS62253720A (ja) | 1986-04-25 | 1987-11-05 | Nippon Steel Corp | 硫化物応力割れ抵抗性に優れた低合金高張力油井用鋼の製造方法 |
JPH06322478A (ja) | 1993-02-26 | 1994-11-22 | Nippon Steel Corp | 耐硫化物応力割れ抵抗性に優れた高強度鋼およびその製造方法 |
JPH08311551A (ja) | 1995-05-15 | 1996-11-26 | Sumitomo Metal Ind Ltd | 耐硫化物応力割れ性に優れた高強度継目無鋼管の製造方法 |
EP0828007A1 (en) | 1995-05-15 | 1998-03-11 | Sumitomo Metal Industries, Ltd. | Process for producing high-strength seamless steel pipe having excellent sulfide stress cracking resistance |
JPH0959719A (ja) * | 1995-06-14 | 1997-03-04 | Sumitomo Metal Ind Ltd | 高強度高耐食継目無鋼管の製造方法 |
JPH11286720A (ja) | 1998-04-03 | 1999-10-19 | Sumitomo Metal Ind Ltd | 耐硫化物応力割れ性に優れた高強度鋼材の製造方法 |
JPH11335731A (ja) | 1998-05-21 | 1999-12-07 | Sumitomo Metal Ind Ltd | 耐硫化物応力割れ性に優れた高強度鋼材の製造方法 |
JP2000119798A (ja) | 1998-10-13 | 2000-04-25 | Nippon Steel Corp | 硫化物応力割れ抵抗性に優れた高強度鋼及び油井用鋼管 |
JP2000178682A (ja) | 1998-12-09 | 2000-06-27 | Sumitomo Metal Ind Ltd | 耐硫化物応力腐食割れ性に優れる油井用鋼 |
JP2000256783A (ja) | 1999-03-11 | 2000-09-19 | Sumitomo Metal Ind Ltd | 靭性と耐硫化物応力腐食割れ性に優れる高強度油井用鋼およびその製造方法 |
JP2000297344A (ja) | 1999-04-09 | 2000-10-24 | Sumitomo Metal Ind Ltd | 靭性と耐硫化物応力腐食割れ性に優れる油井用鋼およびその製造方法 |
JP2001073086A (ja) | 1999-09-06 | 2001-03-21 | Sumitomo Metal Ind Ltd | 高靱性・高耐食性継目無鋼管 |
JP2001271134A (ja) | 2000-03-24 | 2001-10-02 | Sumitomo Metal Ind Ltd | 耐硫化物応力割れ性と靱性に優れた低合金鋼材 |
JP2002060893A (ja) * | 2000-08-18 | 2002-02-28 | Sumitomo Metal Ind Ltd | 耐硫化物応力腐食割れ性に優れた油井用鋼とその製造方法 |
JP2004002978A (ja) * | 2002-03-29 | 2004-01-08 | Sumitomo Metal Ind Ltd | 低合金鋼 |
Non-Patent Citations (1)
Title |
---|
See also references of EP1785501A4 |
Cited By (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11952648B2 (en) | 2011-01-25 | 2024-04-09 | Tenaris Coiled Tubes, Llc | Method of forming and heat treating coiled tubing |
US10378075B2 (en) | 2013-03-14 | 2019-08-13 | Tenaris Coiled Tubes, Llc | High performance material for coiled tubing applications and the method of producing the same |
US11377704B2 (en) | 2013-03-14 | 2022-07-05 | Tenaris Coiled Tubes, Llc | High performance material for coiled tubing applications and the method of producing the same |
US9803256B2 (en) | 2013-03-14 | 2017-10-31 | Tenaris Coiled Tubes, Llc | High performance material for coiled tubing applications and the method of producing the same |
US10378074B2 (en) | 2013-03-14 | 2019-08-13 | Tenaris Coiled Tubes, Llc | High performance material for coiled tubing applications and the method of producing the same |
US11105501B2 (en) | 2013-06-25 | 2021-08-31 | Tenaris Connections B.V. | High-chromium heat-resistant steel |
US12129533B2 (en) | 2015-04-14 | 2024-10-29 | Tenaris Connections B.V. | Ultra-fine grained steels having corrosion- fatigue resistance |
US11124852B2 (en) | 2016-08-12 | 2021-09-21 | Tenaris Coiled Tubes, Llc | Method and system for manufacturing coiled tubing |
JPWO2018179512A1 (ja) * | 2017-03-30 | 2019-04-18 | Jfeスチール株式会社 | 耐サワーラインパイプ用高強度鋼板およびその製造方法並びに耐サワーラインパイプ用高強度鋼板を用いた高強度鋼管 |
WO2018179512A1 (ja) * | 2017-03-30 | 2018-10-04 | Jfeスチール株式会社 | 耐サワーラインパイプ用高強度鋼板およびその製造方法並びに耐サワーラインパイプ用高強度鋼板を用いた高強度鋼管 |
JP6521196B1 (ja) * | 2017-09-28 | 2019-05-29 | Jfeスチール株式会社 | 耐サワーラインパイプ用高強度鋼板およびその製造方法並びに耐サワーラインパイプ用高強度鋼板を用いた高強度鋼管 |
CN111183238A (zh) * | 2017-09-28 | 2020-05-19 | 杰富意钢铁株式会社 | 耐酸管线管用高强度钢板及其制造方法以及使用了耐酸管线管用高强度钢板的高强度钢管 |
EP3677698A4 (en) * | 2017-09-28 | 2020-07-08 | JFE Steel Corporation | HIGH-STRENGTH STEEL PLATE FOR ACID-RESISTANT PIPE, MANUFACTURING METHOD THEREOF, AND HIGH-STRENGTH STEEL PIPE USING HIGH-STRENGTH STEEL PLATE FOR ACID-RESISTANT PIPE |
WO2019064459A1 (ja) * | 2017-09-28 | 2019-04-04 | Jfeスチール株式会社 | 耐サワーラインパイプ用高強度鋼板およびその製造方法並びに耐サワーラインパイプ用高強度鋼板を用いた高強度鋼管 |
Also Published As
Publication number | Publication date |
---|---|
UA81878C2 (uk) | 2008-02-11 |
NO340360B1 (no) | 2017-04-10 |
EA011681B1 (ru) | 2009-04-28 |
BRPI0512032B1 (pt) | 2014-01-28 |
AU2005258696B2 (en) | 2008-10-09 |
BRPI0512032A (pt) | 2008-02-06 |
JP4140556B2 (ja) | 2008-08-27 |
US8168010B2 (en) | 2012-05-01 |
AU2005258696A1 (en) | 2006-01-12 |
CN1969053A (zh) | 2007-05-23 |
CA2569907A1 (en) | 2006-01-12 |
CA2569907C (en) | 2013-08-06 |
AR050159A1 (es) | 2006-10-04 |
EA200700026A1 (ru) | 2007-04-27 |
NO20070033L (no) | 2007-01-03 |
EP1785501A4 (en) | 2010-04-14 |
MXPA06014367A (es) | 2007-06-25 |
EP1785501B1 (en) | 2017-11-08 |
ES2654940T3 (es) | 2018-02-15 |
US20070137736A1 (en) | 2007-06-21 |
CN100554474C (zh) | 2009-10-28 |
JP2005350754A (ja) | 2005-12-22 |
EP1785501A1 (en) | 2007-05-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4140556B2 (ja) | 耐硫化物応力割れ性に優れた低合金油井管用鋼 | |
JP6047947B2 (ja) | 耐サワー性に優れたラインパイプ用厚肉高強度継目無鋼管およびその製造方法 | |
JP4609138B2 (ja) | 耐硫化物応力割れ性に優れた油井管用鋼および油井用継目無鋼管の製造方法 | |
CN104395489B (zh) | 油井管用钢及其制造方法 | |
CN109642282B (zh) | 双相不锈钢及其制造方法 | |
CN111094610B (zh) | 钢管和钢板 | |
JP4379550B2 (ja) | 耐硫化物応力割れ性と靱性に優れた低合金鋼材 | |
AU2014294080B2 (en) | High-strength steel material for oil well and oil well pipes | |
CN104781440B (zh) | 抗硫化物应力裂纹性优异的低合金油井管用钢及低合金油井管用钢的制造方法 | |
CN101218364A (zh) | 抗硫化物应力裂纹性优异的低合金油井管用钢 | |
EP2942415A1 (en) | Abrasion resistant steel plate having low-temperature toughness and hydrogen embrittlement resistance, and manufacturing method therefor | |
JP2000178682A (ja) | 耐硫化物応力腐食割れ性に優れる油井用鋼 | |
JP2000256783A (ja) | 靭性と耐硫化物応力腐食割れ性に優れる高強度油井用鋼およびその製造方法 | |
JP6229794B2 (ja) | 油井用継目無ステンレス鋼管およびその製造方法 | |
JP5884202B2 (ja) | 高強度ラインパイプ用熱延鋼板 | |
BR112019004836B1 (pt) | Tubo de aço contínuo de alta resistibilidade para poço de petróleo, e método para produção do mesmo | |
JP6179604B2 (ja) | 電気抵抗溶接鋼管用鋼帯および電気抵抗溶接鋼管ならびに電気抵抗溶接鋼管用鋼帯の製造方法 | |
JP2017166019A (ja) | 高強度油井用低合金継目無鋼管及びその製造方法 | |
JP4687554B2 (ja) | 焼入れ部材用鋼板、焼入れ部材及びその製造方法 | |
JP4432719B2 (ja) | ラインパイプ用厚鋼板及びその製造方法 | |
JP4321434B2 (ja) | 低合金鋼及びその製造方法 | |
JP7207557B2 (ja) | 油井管用ステンレス継目無鋼管およびその製造方法 | |
JPH10130785A (ja) | 熱間加工性に優れた油井用マルテンサイト系ステンレス鋼 | |
JP7347714B1 (ja) | 油井用高強度ステンレス継目無鋼管 | |
US20240352564A1 (en) | Corrosion-resistant and high toughness oil casing and method for manufacturing same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A1 Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW |
|
AL | Designated countries for regional patents |
Kind code of ref document: A1 Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
WWE | Wipo information: entry into national phase |
Ref document number: 2005258696 Country of ref document: AU |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2569907 Country of ref document: CA |
|
WWE | Wipo information: entry into national phase |
Ref document number: PA/a/2006/014367 Country of ref document: MX |
|
WWE | Wipo information: entry into national phase |
Ref document number: 11640030 Country of ref document: US Ref document number: 200580019466.5 Country of ref document: CN |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWW | Wipo information: withdrawn in national office |
Ref document number: DE |
|
ENP | Entry into the national phase |
Ref document number: 2005258696 Country of ref document: AU Date of ref document: 20050603 Kind code of ref document: A |
|
WWP | Wipo information: published in national office |
Ref document number: 2005258696 Country of ref document: AU |
|
REEP | Request for entry into the european phase |
Ref document number: 2005746052 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2005746052 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 200700026 Country of ref document: EA |
|
WWP | Wipo information: published in national office |
Ref document number: 2005746052 Country of ref document: EP |
|
WWP | Wipo information: published in national office |
Ref document number: 11640030 Country of ref document: US |
|
ENP | Entry into the national phase |
Ref document number: PI0512032 Country of ref document: BR |