Nothing Special   »   [go: up one dir, main page]

WO2006085502A1 - 有線通信におけるダイバーシチ受信方法及び受信装置 - Google Patents

有線通信におけるダイバーシチ受信方法及び受信装置 Download PDF

Info

Publication number
WO2006085502A1
WO2006085502A1 PCT/JP2006/301969 JP2006301969W WO2006085502A1 WO 2006085502 A1 WO2006085502 A1 WO 2006085502A1 JP 2006301969 W JP2006301969 W JP 2006301969W WO 2006085502 A1 WO2006085502 A1 WO 2006085502A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
voltage
current
diversity
line
Prior art date
Application number
PCT/JP2006/301969
Other languages
English (en)
French (fr)
Inventor
Tadashi Araki
Minoru Okada
Original Assignee
Sumitomo Electric Industries, Ltd.
National University Corporation NARA Institute of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries, Ltd., National University Corporation NARA Institute of Science and Technology filed Critical Sumitomo Electric Industries, Ltd.
Publication of WO2006085502A1 publication Critical patent/WO2006085502A1/ja

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B3/00Line transmission systems
    • H04B3/54Systems for transmission via power distribution lines
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B2203/00Indexing scheme relating to line transmission systems
    • H04B2203/54Aspects of powerline communications not already covered by H04B3/54 and its subgroups
    • H04B2203/5404Methods of transmitting or receiving signals via power distribution lines
    • H04B2203/5416Methods of transmitting or receiving signals via power distribution lines by adding signals to the wave form of the power source
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B2203/00Indexing scheme relating to line transmission systems
    • H04B2203/54Aspects of powerline communications not already covered by H04B3/54 and its subgroups
    • H04B2203/5404Methods of transmitting or receiving signals via power distribution lines
    • H04B2203/5425Methods of transmitting or receiving signals via power distribution lines improving S/N by matching impedance, noise reduction, gain control
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B2203/00Indexing scheme relating to line transmission systems
    • H04B2203/54Aspects of powerline communications not already covered by H04B3/54 and its subgroups
    • H04B2203/5462Systems for power line communications
    • H04B2203/547Systems for power line communications via DC power distribution

Definitions

  • the present invention relates to a diversity receiving method and a receiving apparatus that improve reception quality when communication is performed using a line such as a power line, a wiring in an automobile, and a telephone line as a transmission line. .
  • the diversity reception method is a method of improving reception quality by receiving a plurality of reception signals having the same content and combining them or selecting one having better quality.
  • Diversity reception methods have been conventionally used in the field of wireless communications, such as signals received on different antennas, signals with different polarizations, and signals with different arrival angles (diversity branch signals are called diversity branches), etc. On the other hand, it has been done to improve the quality of received signals.
  • Patent Documents 1 and 2 propose a method for diversity reception of a communication signal at a receiving end via a plurality of power lines through which the same communication signal is transmitted.
  • Patent Document 1 JP 2004-64405 A
  • Patent Document 2 JP-A-11-205201
  • Patent Document 3 US Pat. No. 4,668,934 (Japanese Patent Laid-Open No. 61-101127) Disclosure of Invention
  • the diversity branch In general, in order to obtain the effect of improving the reception quality by diversity, the diversity branch The correlation between them needs to be small. That is, when one is in a bad state (eg, the amplitude is small), the other is bad (eg, the amplitude is large).
  • An object of the present invention is to provide a diversity receiving method and a receiving apparatus capable of improving reception quality using current and voltage that are in a complementary relationship at a signal receiving end in wired communication.
  • the voltage and current of the line are detected at the receiving end of the line, respectively, and the detected voltage signal. This is a method of diversity receiving a detected current signal.
  • This method can be expected to improve reception quality by using the complementary relationship between current and voltage.
  • the diversity reception method of the present invention is a method of communicating signals by superimposing signals on a pair of lines, respectively detecting the voltage and current of the line at the receiving end of the line, and detecting the detected current signal and
  • each voltage signal is subjected to Fourier transform, and the current signal and voltage signal subjected to the Fourier transform are combined for each frequency component to receive diversity.
  • a current signal and a voltage signal are each Fourier-transformed and converted into a frequency domain signal, and then synthesized.
  • the frequency characteristics of the load impedance generally vary in a signal band that is not uniform.
  • FIG. 1 is a graph in which the horizontal axis represents frequency, and the vertical axis represents current signal and voltage signal amplitudes. .
  • the frequency characteristics of the current signal and the voltage signal are not uniform, and the current signal and the voltage signal have opposite patterns.
  • current signals and voltage signals that are complementary in the frequency domain can be combined to complement each other, and the nonuniformity of the signal spectrum within the band can be improved.
  • the voltage signal and the current signal may employ so-called combining diversity, in which the current signal and the voltage signal are combined with weighting so that the reception quality is optimal.
  • so-called selection diversity which selects the one with the better reception quality, may be employed.
  • Selection diversity can be thought of as combining diversity where one of the weighting factors is 1 and the other is 0.
  • An example of the reception quality is SNi: ⁇ .
  • the voltage signal and the current signal are individually Fourier transformed.
  • the number of Fourier transform circuits can be halved, and the circuit configuration of the Fourier transform circuit is simplified.
  • the line is, for example, a power line, a wiring in a car, or a telephone line.
  • a power line or a wiring in an automobile is used as a track
  • the load impedance of the electrical device connected to the track varies with time depending on the power on / off of the device.
  • the line is a telephone line
  • the load impedance varies depending on the on-hook and off-hook of the telephone connected to the line, so that the present invention can be effectively applied.
  • the diversity receiver of the present invention receives signals superimposed on a pair of lines, detects a current signal obtained by detecting the current of the line, and a voltage of the line.
  • a diversity receiving unit is provided for diversity receiving the obtained voltage signal.
  • This device can be expected to improve reception quality by using the complementary relationship between current and voltage.
  • the diversity receiver of the present invention uses a current signal obtained by detecting the current of the line and a voltage signal obtained by detecting the voltage of the line as frequency signals, respectively.
  • a Fourier transform unit that performs Fourier transform, and a diversity receiver that synthesizes the Fourier-transformed current signal and voltage signal for each frequency component are provided.
  • the current signal can be obtained through a current detection unit that detects current at the receiving end of the line, and the voltage signal is obtained through a voltage detection unit that detects voltage at the receiving end of the line. be able to. According to this configuration, a current signal and a voltage signal can be obtained without installing a current detection unit and a voltage detection unit inside the reception device, and the reception device can be downsized.
  • FIG. 1 is a graph showing frequency characteristics of amplitudes of a current signal and a voltage signal.
  • FIG. 2 is a block diagram showing a signal detection circuit at a power receiving end when signals are communicated with being superimposed on a pair of power lines or telephone lines.
  • FIG. 3 is a circuit block diagram when a high-pass filter F is used for each of the current component detection circuit and the voltage component detection circuit.
  • FIG. 4 is a diagram for explaining the principle of synthetic diversity.
  • FIG. 5 is a block diagram showing an OFDM combining diversity receiver.
  • FIG. 6 is a block diagram showing an SCBT system diversity receiver.
  • FIG. 7 is a block diagram showing a simplified synthesis diversity FFT circuit.
  • FIG. 8 is a block diagram showing a simplified combining diversity receiver of the OFDM system.
  • FIG. 9 is a block diagram showing an SCBT receiver.
  • FIG. 2 is a block diagram showing a signal detection circuit at a power receiving end of a power line or telephone line when communication is performed with signals superimposed on a pair of power lines or telephone lines.
  • the power line may be a transmission / distribution line that supplies commercial power to a home or office, or an in-vehicle wiring that supplies DC power in the vehicle.
  • the signal may be any of a baseband code signal such as an RZ code and a Manchester code, or a band signal subjected to digital modulation such as PSK, FSK, and QAM.
  • a baseband code signal such as an RZ code and a Manchester code
  • a band signal subjected to digital modulation such as PSK, FSK, and QAM.
  • the signal is detected as a current signal by the current component detection circuit 1 and detected as a voltage signal by the voltage component detection circuit 2.
  • the current signal can be easily detected as, for example, a voltage across a resistor inserted in series with the line.
  • a coil current transformer
  • a current probe is used that detects the voltage generated in the winding by inserting a power line into the magnetic circuit of the transformer.
  • the voltage signal can be detected by detecting the voltage generated between the lines at the receiving end, and the circuit configuration for the detection is arbitrary.
  • the current signal itself is not necessarily represented by a current change! It may be converted into a voltage by a resistor or the like. In the following description of the embodiment of the present invention, it is assumed that both the current signal and the voltage signal are signals represented by voltage changes.
  • these current signals and voltage signals are handled as diversity branches, and the reception quality is improved by combining these voltage signals and current signals or by selecting one of them.
  • the frequency band of the detected voltage signal and current signal is higher than the power line power frequency of the power line and the telephone signal frequency of the telephone line. It is desirable to pass through a high-pass filter F to eliminate it.
  • FIG. 3 is a circuit block diagram when the high-pass filter F is used for each of the current component detection circuit 1 and the voltage component detection circuit 2.
  • the form of the high-pass filter F is arbitrary, such as a circuit using resistors and capacitors, or a circuit using coils and capacitors.
  • “combined diversity” that adds a predetermined weighting factor to the current signal ir (t) and the voltage signal vr (t) for the best communication quality, and the current signal ir (t),
  • “Selective Diversity” to select whichever of the voltage signal vr (t) is better or better communication quality.
  • “Communication quality is good” means, for example, higher received power, higher signal-to-noise ratio, or lower transmission distortion.
  • there is a type of selection diversity in which the selection switching circuit is installed in the pre-demodulation stage where the selection switching circuit is installed in the pre-demodulation stage.
  • FIG. 4 is a diagram for explaining the principle of synthetic diversity.
  • the current signal ir (t) and voltage signal vr (t) are converted into frequency signals Ir (k) and Vr (k) by Fourier transform (FFT), respectively.
  • FFT Fourier transform
  • the frequency spectrum of Ir (k) and the frequency spectrum of Vr (k) complement each other. Therefore, at a frequency where the amplitude of Ir (k) is large, Ir (k) is multiplied by a large weighting factor and Vr (k) is multiplied by a small weighting factor, and at a frequency where the amplitude of Vr (k) is large, Vr Multiply (k) by a large weighting factor and Ir (k) by a small weighting factor.
  • the synthesized signal has a larger amplitude vector.
  • the synthesized signal is inversely Fourier transformed and converted back to a time signal for demodulation.
  • the combined signal is demodulated for each frequency component.
  • FIG. 5 is a block diagram showing an OFDM (Orthogonal Frequency Division Multiplex) scheme combining diversity receiver.
  • the combined diversity receiver inputs the current signal ir (t) and the voltage signal vr (t) to V, respectively.
  • the current signal ir (t) is converted into 2N parallel signals through a serial-parallel conversion circuit 4a that parallelizes the serialized signal every N symbols (N is 256, for example).
  • the voltage signal vr (t) also becomes 2N parallel signals through the N-symbol serial / parallel conversion circuit 4b.
  • ⁇ 2 is added because the IFFT (Inverse Fourier Transform) circuit has complex input and output, so it has an imaginary part as well as a real part.
  • the current signal ir (t) and voltage signal vr (t) are Since it is a real signal, the values of the imaginary part are all zero.
  • Each parallel signal is Fourier-transformed by FFT circuits 5a and 5b.
  • the Fourier transformed signal is expressed as Ir (k), Vr (k).
  • Transmission path characteristics of the current signal ir (t) and the voltage signal vr (t) are estimated by the transmission path characteristics estimation units 8a and 8b, respectively.
  • Transmission path characteristics are the transfer function from the transmission end to the reception end of the line. For example, it can be obtained by extracting a noise signal that is pre-inserted into the signal with a filter and measuring its intensity and phase.
  • the transmission path characteristic estimators 8a and 8b output the transfer function in the frequency domain for the current signal Ir (k) and the voltage signal Vr (k). These signals are a total of 2N parallel signals of the real part and imaginary part expressed by the same discrete frequency as the above discrete frequency k, and are expressed as hi (k) and hv (k), respectively. hi (k) and hv (k) represent transmission path characteristics.
  • the synthesis equalization unit 6 multiplies the signals Ir (k) and Vr (k) after the respective Fourier transforms by weighting factors gi (k) and gv (k) and adds them.
  • the added signal R (k) is expressed as follows.
  • R (k) gi (k) Ir (k) + gv (k) Vr (k)
  • the power PS (k) and noise PN (k) of the added signal R (k) are
  • PS (k) ⁇ d 2
  • PN (k) 2 an 2 (
  • ⁇ d 2 is the power of the transmission signal
  • PS (k) / PN (k) ⁇ d 2 ⁇ [2 ⁇ n 2 (
  • weight coefficients gi (k) and gv (k) that minimize the denominator can be obtained.
  • gv (k) hV (k) / (
  • the synthesis equalization unit 6 determines the weight coefficients gi (k) and gv (k) so as to maximize the SN ratio of the signal R (k) after the addition.
  • the error rate of the demodulated signal can be minimized.
  • the transmission path characteristic estimation units 8a and 8b described above may use other powers that have determined hi (k) and hv (k) as transmission path characteristics using pilot signals. For example, a method of estimating the transmission path characteristics by inserting a signal having a shape-divided shape (such as a chirp signal or a PN sequence) at appropriate intervals and measuring the distortion at the receiver side, or transmitting data symbols Instead, there is a method of estimating the transmission path characteristics by transmitting known symbols at regular intervals and measuring the distortion.
  • a shape-divided shape such as a chirp signal or a PN sequence
  • the synthesis equalization unit 6 determines the weighting factors gi (k) and gv (k) so that the signal-to-noise ratio of the signal R (k) is maximized.
  • Other conditions that can be set may be set. For example, a condition that minimizes the BER (Bitzer rate) may be set.
  • the signal R (k) added by the synthesis equalization unit 6 enters the demodulator 7 and is converted into the original code string.
  • the code string is parallel-serial converted by the N symbol parallel-serial conversion circuit 10 and extracted as information data.
  • this combined diversity receiver detects a current signal and a voltage signal at the power receiving end of the power line or telephone line, and sends the current signal and the voltage signal to a predetermined value so that the transmission characteristics are the best. Since they are synthesized with weights, the best signal can be restored at any point in time.
  • Ngnore-chirizo block izs transmission method (; single carrier block transmission, 3 ⁇ 4 CBT, hereinafter referred to as SCBT method) will be described.
  • the SCBT scheme is a block transmission scheme in which a signal block composed of a plurality of information symbols is transmitted and equalization and demodulation processing is performed in units of blocks on the receiving side!
  • This is a transmission method in which a guard interval (GI) is added to a block and discrete frequency domain equalization is performed on the receiving side.
  • GI guard interval
  • the signal is a baseband signal for transmitting information symbols in a single frequency band, or a band signal obtained by modulating a single carrier.
  • CP single carrier block transmission witn cyclic prefix method
  • discrete Fourier transform is used on the receiving side.
  • FIG. 6 is a block diagram showing an SCBT combined diversity receiver in wired communication.
  • the difference between the SCBT method and the OFDM method is that in the OFDM method, the signal is subjected to inverse Fourier transform on the transmission side and sent to the transmission line, and the receiver performs Fourier transform and equalizes the signal for use.
  • the transmitter sends the signal to the transmission line without performing the inverse Fourier transform
  • the receiver performs the Fourier transform, equalizes the signal in the frequency domain, and uses the inverse Fourier transform.
  • OFDM is a multi-carrier and SCBT is a single carrier.
  • SCBT N-symbol serial / parallel conversion circuits 4a and 4b, FFT circuit 5, transmission path characteristic estimation units 8a and 8b, and synthesis equalization unit 6 is substantially the same circuit as the OFDM system circuit.
  • the signal R (k) synthesized by the synthesis equalizer 6 is inverse Fourier transformed by the IFFT circuit 9 and transformed to a symbol string on the time axis.
  • the symbol string is serially converted to N symbols, demodulated by a demodulator 7, and extracted as information data.
  • the SCBT scheme diversity receiver can restore the best signal at any point in time, similar to the OFDM scheme diversity receiver.
  • the current signal ir (t) is represented by 2N parallel complex signals. N of the imaginary part is 0, and the real part is actually required. N.
  • the voltage signal vr (t) is also represented by 2N parallel complex signals, of which N in the imaginary part are 0 and what is actually required is N in the real part. Therefore, the FFT circuits 5a and 5b have a redundant circuit configuration.
  • Fig. 7 shows this simplified synthesis diversity FFT circuit 5.
  • This FFT circuit 5 is obtained by multiplying the real part of the current signal ir (t), which is N parallel signals, and the real part of the voltage signal vr (t), which is N parallel signals, by an imaginary unit j.
  • X (k) and Z (k) are the real part and imaginary part of U (k), respectively. Since X (k) and Z (k) are not Fourier transform values of the desired current and voltage signals, they are converted to Fourier transform values Ir (k) and Vr (k) of the current and voltage signals by the following calculation. .
  • Ir (k) [X (k) / 2 + X (N-k) / 2] + j [Z (k) / 2-Z (n-k) / 2] (1)
  • Vr (k) [Z (k) / 2 + Z (N-k) / 2] j [X (k) / 2— X (n-k) / 2] (2)
  • this simplified synthesis diversity method has the advantage that only one FFT circuit 5 is required.
  • the circuits of FIGS. 5 and 6 use two FFT circuits 5a and 5b, but do not actually have the processing power of one FFT circuit.
  • the current signal ir (t) which is N parallel signals
  • the voltage signal vr (t) form one complex time signal, so one FFT circuit 5 Can be processed using.
  • the Fourier transform value Ir (k) of the current signal and the Fourier transform value Vr (k) of the voltage signal can be separated from the output of the FFT circuit 5 by simple four arithmetic operations. Therefore, the circuit size of the entire FFT can be halved, the receiving apparatus can be simplified, and the same diversity effect as when the two FFT circuits are used can be obtained.
  • FIG. 8 is a block diagram showing a simplified combining diversity receiver of the OFDM scheme.
  • the FFT circuit 5 includes a complexing unit 51, an FFT unit 52, and a calculation unit 53.
  • the complexing unit 51 includes the N parallel circuits corresponding to the current signal ir (t).
  • the FFT unit 52 performs a Fourier transform on this signal, and outputs a complex signal U (k) in the frequency domain.
  • the calculation unit 53 uses the above-described equations (1) and (2) to calculate Ir (k), Find Vr (k).
  • the synthesis equalization unit 6 determines the weighting coefficients gi (k) and gv (k), multiplies them by the signals Ir (k) and Vr (k) after each Fourier transform, and adds them.
  • the added signal R (k) is expressed as The
  • R (k) gi (k) Ir (k) + gv (k) Vr (k)
  • the synthesis equalization unit 6 determines the weight coefficients gi (k) and gv (k) so as to maximize the SN ratio of the signal R (k) after the addition.
  • the demodulator 7 converts the signal R (k) into an original code string, and the code string is N-symbol-parallel converted and extracted as information data.
  • FIG. 9 is a block diagram showing a simplified combined diversity receiver of the SCBT method.
  • the difference from the SCBT system diversity receiver of FIG. 6 is that the current signal ir (t) passes through the N-symbol serial-parallel converter circuit 14a and becomes N parallel signals with the imaginary part 0 omitted.
  • the voltage signal vr (t) also passes through the N symbol serial / parallel conversion circuit 14b and becomes N parallel signals.
  • the FFT circuit 5 includes a complexing unit 51, an FFT unit 52, and a calculation unit 53.
  • the complexing unit 51 uses the N parallel real signals corresponding to the current signal ir (t) and the N parallel real signals corresponding to the voltage signal vr (t) to generate a complex time signal.
  • the FFT unit 52 performs a Fourier transform on this function, and the calculation unit 53 obtains Ir (k) and Vr (k) using the equations (1) and (2) described above.
  • the functions of the other synthesis equalization unit 6 and IFFT circuit 9 are the same as in FIG. As described above, the OFDM system and the SCBT system simplified combining diversity receiver can obtain the same diversity effect as when the two FFT circuits are used.
  • the embodiment of the present invention has been described above, but the embodiment of the present invention is not limited to the above-described embodiment.
  • the current detection unit and the voltage detection unit are combined with the diversity reception unit. It may be a receiving device.
  • various modifications can be made within the scope of the present invention.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Radio Transmission System (AREA)
  • Cable Transmission Systems, Equalization Of Radio And Reduction Of Echo (AREA)

Abstract

 電力線、自動車内の配線、電話線などの一対の線路の受信端で前記線路の電流信号ir(t)、電圧信号vr(t)をそれぞれ検出する。合成等化部6は、それぞれフーリエ変換された電流信号Ir(k)、電圧信号Vr(k)に対して、重み係数gi(k),gv(k)を乗じて加算する。この加算後の信号のSN比を最大にするように、重み係数gi(k),gv(k)を決定する。電流と電圧の相補的な関係を利用して、受信品質の向上効果が期待できる。

Description

有線通信におけるダイバーシチ受信方法及び受信装置
技術分野
[0001] 本発明は、電力線、自動車内の配線、電話線などの線路を伝送路に用いて通信を 行う場合に、受信品質の向上を実現するダイバーシチ受信方法及び受信装置に関 するものである。
背景技術
[0002] ダイバーシチ受信方法は、同一内容の複数の受信信号を受信して、それらを合成 したり、品質の良い方を選択したりして、受信品質を向上させる方法である。
ダイバーシチ受信方法は、従来、無線通信の分野において、異なった空中線で受 信した信号、偏波の違う信号、電波到来角度の違う信号 (これらのダイバーシチの対 象とする信号をダイバーシチブランチという)などに対して、受信信号の品質を向上さ せるために行われてきた。
[0003] 有線通信においても、ダイバーシチ受信の考えが取り入れられている(特許文献 1 , 2参照)。
特許文献 1, 2では、同一の通信信号が伝送される複数の電力線を介して、受信端 で、通信信号をダイバーシチ受信する方法が提案されて!ヽる。
特許文献 1:特開 2004-64405号公報
特許文献 2 :特開平 11-205201号公報
特許文献 3 :米国特許第 4, 668,934号明細書 (特開昭 61-101127号公報) 発明の開示
発明が解決しょうとする課題
[0004] ところが、前記特許文献 1, 2記載のダイバーシチ受信方法は、複数の線路を利用 している。
このため、送信端と受信端との間に、複数の線路を布設しなければならず、このた め通信システム構築のためのコストが増大するという問題がある。
一般に、ダイバーシチによる受信品質向上効果を得るには、ダイパーシチブランチ 間の相関が小さいことが必要である。すなわち、一方が悪い状態 (例:振幅が小さい) のときに、他方が悪くな ヽ (例:振幅が大き 、) 、う相補的な関係にあることが必要で ある。
[0005] 本発明者は、一対の線路を流れる電流と電圧の関係が、相補的な関係にあること に注目した。
すなわち、線路につながれている負荷のインピーダンスが大きな場合、負荷の電圧 は上がり、電流は小さくなる。負荷のインピーダンスが小さい場合は、負荷の電圧は 下がり、電流は大きくなる。
[0006] したがって、信号の受信端において、電流と電圧は相補的な関係にあるので、これ らをダイバーシチブランチに選べば、受信品質の向上効果が期待できる。
本発明は、有線通信における信号の受信端において、相補的な関係にある電流と 電圧とを用いて、受信品質を向上させることができるダイバーシチ受信方法及び受信 装置を提供することを目的とする。
課題を解決するための手段
[0007] 本発明のダイバーシチ受信方法は、信号を、一対の線路に重畳して通信する場合 に、前記線路の受信端で前記線路の電圧及び電流をそれぞれ検出し、検出された 電圧信号と、検出された電流信号とをダイバーシチ受信する方法である。
この方法により、電流と電圧の相補的な関係を利用して、受信品質の向上効果が 期待できる。
[0008] 本発明のダイバーシチ受信方法は、信号を、一対の線路に重畳して通信する方法 において、前記線路の受信端で前記線路の電圧及び電流をそれぞれ検出し、前記 検出された電流信号及び電圧信号をそれぞれフーリエ変換し、前記フーリエ変換さ れた電流信号及び電圧信号を、周波数成分ごとに合成して、ダイバーシチ受信する 方法である。
この方法では、電流信号及び電圧信号をそれぞれフーリエ変換して周波数領域の 信号に変換してから合成を行う。特に、広帯域な信号を伝送する場合、一般に負荷 インピーダンスの周波数特性は均一ではなぐ信号帯域内で大小の変動が生じる。
[0009] 図 1は、横軸に周波数、縦軸に電流信号及び電圧信号の振幅をとつたグラフである 。電流信号及び電圧信号の周波数特性は不均一であり、電流信号と電圧信号とで 互いに逆パターンになっている。本発明の方法によれば、周波数領域で相補性のあ る電流信号と電圧信号とを合成することにより、互いに補い合うことができ、帯域内で の信号スペクトルの不均一性を改善できる。
[0010] 前記ダイバーシチ受信は、電流信号及び電圧信号に対して、受信品質が最良にな るようにそれぞれ重みを付けて合成する、いわゆる合成ダイバーシチを採用してもよ ぐ前記電圧信号及び電流信号のうち受信品質の良いほうを選択する、いわゆる選 択ダイバーシチを採用しても良い。選択ダイバーシチは、重み付け係数の一方を 1, 他方を 0とする合成ダイバーシチと考えることもできる。前記受信品質として、例えば、 SNi:匕がある。
[0011] 特に、前記電圧信号及び電流信号のいずれかを実数部、他方を虚数部にして複 素時間信号を作成してフーリエ変換することとすれば、前記電圧信号と電流信号を 個別にフーリエ変換するのに比べて、フーリエ変換回路の個数が半分で済み、フーリ ェ変換回路の回路構成が簡単になるという利点がある。
前記フーリエ変換に関係した信号の伝送方式として、 OFDM方式や、シングルキ ャリアブロック伝送方式があげられる。
[0012] 前記線路は、例えば電力線、自動車内の配線又は電話線である。線路として電力 線や自動車内の配線を用いる場合、線路に接続された電気機器の負荷インピーダ ンスは、その機器の電源オンオフにより時間的に変動する。また線路が電話線の場 合も、線路に接続された電話機のオンフック、オフフックにより負荷インピーダンスが 変動するので、本発明が効果的に適用できる。
[0013] また、本発明のダイバーシチ受信装置は、一対の線路に重畳された信号を受信す るものであり、線路の電流を検出して得られる電流信号と、前記線路の電圧を検出し て得られる電圧信号とをダイバーシチ受信するダイバーシチ受信部を備える。
この装置により、電流と電圧の相補的な関係を利用して、受信品質の向上効果が 期待できる。
[0014] また、本発明のダイバーシチ受信装置は、前記線路の電流を検出して得られる電 流信号と、前記線路の電圧を検出して得られる電圧信号とをそれぞれ周波数信号に フーリエ変換するフーリエ変換部と、前記フーリエ変換された電流信号及び電圧信 号を、周波数成分ごとに合成するダイバーシチ受信部とを備えるものである。
フーリエ変換することにより、周波数領域で相補性のある電流信号と電圧信号とを 合成することができるので、帯域内での信号スペクトルの不均一性を改善できる。
[0015] 前記電流信号は、前記線路の受信端で電流を検出する電流検出部を通して得るこ とができ、前記電圧信号は、前記線路の受信端で電圧を検出する電圧検出部を通し て得ることができる。この構成によれば、受信装置内部に電流検出部、電圧検出部を 設置しなくても電流信号、電圧信号が得られ、受信装置が小型化できる。
本発明における上述の、又はさらに他の利点、特徴及び効果は、添付図面を参照 して次に述べる実施形態の説明により明らかにされる。
図面の簡単な説明
[0016] [図 1]電流信号及び電圧信号の振幅の周波数特性を示すグラフである。
[図 2]信号を一対の電力線又は電話線に重畳して通信する場合の、受電端における 信号の検出回路を示すブロック図である。
[図 3]電流成分検出回路と、電圧成分検出回路にそれぞれ高域通過フィルタ Fを用 いた場合の回路ブロック図である。
[図 4]合成ダイバーシチの原理を説明するための図である。
[図 5]OFDM方式の合成ダイバーシチ受信装置を示すブロック図である。
[図 6]SCBT方式の合成ダイバーシチ受信装置を示すブロック図である。
[図 7]簡略ィ匕された合成ダイバーシチ方式の FFT回路を示すブロック図である。
[図 8]OFDM方式の簡略ィ匕された合成ダイバーシチ受信装置を示すブロック図であ る。
[図 9]SCBT方式の受信装置を示すブロック図である。
符号の説明
[0017] 1 電流成分検出回路
2 電圧成分検出回路
3 負荷
4a, 4b Nシンボル直並列変換回路 5, 5a, 5b FFT回路
6 合成等化部
7 復調器
8a, 8b 伝送路特性推定部
9 IFFT回路
10 Nシンポノレ並直列変換回路
14a, 14b Nシンボル並直列変換回路
51 複素化部
52 FFT咅
53 演算部
発明を実施するための最良の形態
[0018] 以下、本発明の実施の形態を、添付図面を参照しながら詳細に説明する。
図 2は、信号を一対の電力線又は電話線に重畳して通信する場合の、電力線又は 電話線の受電端における信号の検出回路を示すブロック図である。
前記電力線としては、家庭やオフィスに商用電力を供給する送配電線でもよぐ車 両内に直流電力を供給する車両内配線でもよい。
[0019] 前記信号は、 RZ符号、マンチェスタ符号などのベースバンド符号ィ匕信号、又はそ れに PSK, FSK, QAMなどのディジタル変調が施された帯域信号のいずれであつ てもよい。
信号は、電流成分検出回路 1により電流信号として検出され、電圧成分検出回路 2 により電圧信号として検出される。
[0020] 電流信号は、例えば線路に直列に挿入した抵抗の両端の電圧として容易に検出で きるが、抵抗を挿入すると損失を生じるため、線路を取り囲むコイル (変流器)を挿入 するのが一般的である。ここでは、変流器の一種として、電力線を変圧器の磁気回路 に挿入して、その巻き線に発生する電圧を検出する電流プローブを使用する。
電圧信号は、受電端の線路間に発生する電圧を検出すればよぐその検出のため の回路構成は任意である。
[0021] なお、注意すべきは、電流信号自体は、必ずしも電流変化で表されて!/、る必要は なぐ抵抗等により電圧に変換されていてもよいことである。以下、本発明の実施形態 では、電流信号、電圧信号ともに、電圧変化で表された信号であるとして説明を進め る。
本発明のダイバーシチ受信方法では、これらの電流信号、電圧信号をダイバーシ チブランチとして扱い、これらの電圧信号及び電流信号を合成することにより、又は、 いずれかを選択することにより、受信品質を向上させる。
[0022] なお、検出される電圧信号及び電流信号の周波数帯域は、電力線の電源周波数 や電話線の電話信号の周波数よりも高い周波数であるので、周波数の低い電源電 圧-電流や電話信号を除去するために、高域通過フィルタ Fを通しておくことが望まし い。
図 3は、電流成分検出回路 1と、電圧成分検出回路 2にそれぞれ高域通過フィルタ Fを用いた場合の回路ブロック図である。高域通過フィルタ Fの形式は、抵抗とコンデ ンサを使用した回路、コイルとコンデンサを使用した回路など任意である。
[0023] 以下、これらの検出された電流信号を ir(t)、電圧信号を vr(t)と表記する。
ダイバーシチ方式には、通信品質が最良になるように電流信号 ir(t)、電圧信号 vr(t) にそれぞれ所定の重み係数をかけて加算する「合成ダイバーシチ」と、電流信号 ir(t) 、電圧信号 vr(t)の 、ずれか通信品質の良!、方を選択する「選択ダイバーシチ」とが ある。「通信品質が良い」とは、例えば受信電力を比較して高い方、 SN比の高い方 又は伝送ひずみの小さい方などをいう。また、選択ダイバーシチには、選択スィッチ ング回路を復調前段に設置する力復調後段に設置するかの種類がある。
[0024] 以下の実施形態では、合成ダイバーシチを例にとって詳しく説明する。
図 4は、合成ダイバーシチの原理を説明するための図である。
電流信号 ir(t)、電圧信号 vr(t)をそれぞれフーリエ変換 (FFT)して周波数信号 Ir(k) , Vr(k)に変換する。図 4では、 Ir(k)の周波数スペクトルと、 Vr(k)の周波数スペクトルと 力 互いに補い合う関係になっている。そこで、 Ir(k)の振幅が大きくなる周波数では、 Ir(k)に大きな重み係数を、 Vr(k)に小さな重み係数を乗算し、 Vr(k)の振幅が大きくな る周波数では、 Vr(k)に大きな重み係数を、 Ir(k)に小さな重み係数を乗算する。両方 の信号を合成することにより、図 4に示すような合成後の信号を得ることができる。この 合成後の信号は、 Ir(k)のみの場合、又は Vr(k)のみの場合と比べて、振幅の大きなス ベクトルが得られている。後述の SCBT方式の場合、図 4に示すように、この合成後 の信号をフーリエ逆変換して、時間信号に戻し復調する。 OFDM方式の場合は、こ の合成後の信号を周波数成分ごとに復調する。
[0025] 以下、合成ダイバーシチ受信装置の具体例を詳細に説明する。
図 5は、 OFDM(Orthogonal Frequency Division Multiplex)方式の合成ダイバーシ チ受信装置を示すブロック図である。
合成ダイバーシチ受信装置は、電流信号 ir(t)、電圧信号 vr(t)をそれぞれ入力して V、る。電流信号 ir(t)は、直列化された信号を Nシンボル (Nは例えば 256)ごとに並列 化する直並列変換回路 4aを通って、 2N個の並列信号となる。電圧信号 vr(t)も、 Nシ ンボル直並列変換回路 4bを通って、 2N個の並列信号となる。〃2"が付くのは、 IFFT (逆フーリエ変換)回路の入出力が複素数なので、実数部とともに、虚数部を有する ためである。ただし、電流信号 ir(t)、電圧信号 vr(t)は実数信号なので、虚数部の値は すべて 0である。
[0026] 各並列信号は、 FFT回路 5a, 5bでフーリエ変換される。フーリエ変換された信号を Ir(k)、 Vr(k)と表記する。ここで" k〃は離散周波数を表す変数であり、 k=0,l,2,...,N-lで ある。
一方、電流信号 ir(t)、電圧信号 vr(t)は、それぞれ伝送路特性推定部 8a, 8bによつ て、伝送路特性が推定される。伝送路特性は、線路の送信端から受信端までの伝達 関数である。例えば、信号にあら力じめ挿入されたノ ィロット信号をフィルタで取り出 し、その強度と位相を測定すれば得られる。
[0027] 伝送路特性推定部 8a, 8bは、電流信号 Ir(k)及び電圧信号 Vr(k)に対する周波数 領域での上記伝達関数を出力する。これらの信号は上記離散周波数 kと同じ離散周 波数で表現される実数部、虚数部の合計 2N個の並列信号であり、それぞれ hi(k), h v(k)と表す。 hi(k), hv(k)は伝送路特性を表す。
合成等化部 6は、重み係数 gi(k), gv(k)を、各フーリエ変換後の信号 Ir(k)、 Vr(k)に 乗じて加算する。加算された信号 R(k)は、次のように表される。
[0028] R(k) = gi(k)Ir(k) + gv(k)Vr(k) 加算された信号 R(k)の電力 PS(k)とノイズ PN(k)は、それぞれ、
PS(k)= σ d2|gi(k)hi(k)+gv(k)hv(k)|2
PN(k) = 2 a n2(|gi(k)卩 + |gv(k)|2)
で表される。ここで、 σ d2は送信信号の電力、 2 σ η2は受信機で付加されるノイズの電 力である。 hi(k), hv(k)は伝送路特性推定部 8a, 8bにおいてすでに求まっているの で、 gi(k)hi(k) + gv(k)hv(k)= lの制約条件下で、 SN比
PS(k)/PN(k)= σ d2 Ζ[2 σ n2(|gi(k)|2 + |gv(k)|2)]
を最大にする重み付け係数を得るには、分母を最小にする重み係数 gi(k), gv(k)を求 めればよい。
[0029] ラグランジュの未定係数法 (Lagrange multiplier)を用いると、 SN比が最大になるとき の重み係数 gi(k), gv(k)は、前記 hi(k), hv(k)を用いて、
Figure imgf000010_0001
gv(k) = hV(k)/ ( |h*i(k) I2 + |hV(k)|2)
で表される。ここで〃 *〃は複素共役を表す。
[0030] 合成等化部 6は、この加算後の信号 R(k)の SN比を最大にするように、重み係数 gi( k), gv(k)を決定する。
これによつて、復調後の信号の誤り率を最小にすることが可能となる。
なお、以上の伝送路特性推定部 8a, 8bはパイロット信号を使って伝送路特性を hi( k), hv(k)を決定していた力 それ以外でもよい。例えば、形の分力つている信号 (チヤ ープ信号や PN系列など)を適当な間隔で挿入し、受信機側でその歪みを測定して伝 送路特性を推定する方法、送信データシンボルの代わりに既知のシンボルを一定間 隔で送信しその歪みを測定して伝送路特性を推定する方法がある。
[0031] また、合成等化部 6は、信号 R(k)の SN比が最大になるよう重み係数 gi(k), gv(k)を 決定していたが、それ以外に伝送品質が改善できる他の条件を設定してもよい。例 えば BER (ビツェラーレート)を最小にする条件を設定してもよい。
合成等化部 6で加算された信号 R(k)は、復調器 7に入り、もとの符号列に変換され る。符号列は、 Nシンボル並直列変換回路 10で並直列変換され、情報データとして 取り出される。 [0032] 以上のように、この合成ダイバーシチ受信装置では、電力線又は電話線の受電端 における電流信号、電圧信号を検出して、伝送特性が最良になるように、電流信号、 電圧信号を所定の重みで合成するので、どの時点においても、最良の信号を復元す ることがでさる。
次に、次にンングノレキヤリゾブロック izs送方式 (; single carrier block transmission, ¾C BT、以下 SCBT方式という)の場合を説明する。
[0033] なお、 SCBT方式とは、複数の情報シンボルから構成された信号ブロックを送信し、 受信側でこのブロック単位で等化や復調の処理を行うブロック伝送方式にお!、て、送 信ブロックにガード区間(guard interval, GI)を付加し、受信側で離散周波数領域等 化を行う伝送方式である。
ここで信号は、単一の周波数帯域で情報シンボルを伝送するベースバンド信号、ま たは単一搬送波 (シングルキャリア)を変調した帯域信号である。
[0034] ガード区間として、送信ブロック末尾一部のコピー(サイクリックプレフィクス)を挿入 したもの Sし— CP (single carrier block transmission witn cyclic prefixノ方式と呼び、 受信側で離散フーリエ変換を用いることにより効果的な周波数領域等化を実施でき る。以上の 田【ま、 "Frequency Domain Equalization for Single-Carrier Broadband Wireless Systems IEEE Communications Magazin April 2002, p.58- 66.を参照。
[0035] 図 6は、有線通信における SCBT方式の合成ダイバーシチ受信装置を示すブロッ ク図である。
この SCBT方式と OFDM方式との違いは、 OFDM方式では信号を送信側で逆フ 一リエ変換して伝送路に送り出し、受信機がその信号をフーリエ変換し、等化して使 用するのに対して、 SCBT方式では、送信機の方で逆フーリエ変換しないで伝送路 に送り出し、受信機でその信号をフーリエ変換し、周波数領域で等化し、逆フーリエ 変換して使用することである。伝送信号スペクトルの観点では OFDMではマルチキヤ リア、 SCBTではシングルキャリアの形態となる。
[0036] SCBT方式の受信機側では、受信時間信号を離散フーリエ変換するので、以上に 説明した本発明の内容を適用することができる。そのため、 SCBT方式の Nシンボル 直並列変換回路 4a, 4b、 FFT回路 5、伝送路特性推定部 8a, 8b、及び合成等化部 6は、 OFDM方式の回路と実質的に同じ回路である。
図 6において、合成等化部 6で合成された信号 R(k)は、 IFFT回路 9で逆フーリエ変 換され、時間軸上のシンボル列に変換される。シンボル列は、 Nシンボル並直列変換 され、復調器 7に入って復調され、情報データとして取り出される。
[0037] 以上のように SCBT方式の合成ダイバーシチ受信装置でも、上記 OFDM方式の 合成ダイバーシチ受信装置と同様に、どの時点においても、最良の信号を復元する ことができる。
次に、電流信号 ir(t)、電圧信号 vr(t)の一つを実数部、他の一つを虚数部とみなす 簡略化された合成ダイバーシチ方式を説明する。
[0038] 図 5、図 6の回路では、電流信号 ir(t)は 2N個の並列複素信号で表される力 そのう ち虚数部の N個は 0であり、実際に必要なのは実数部の N個である。電圧信号 vr(t)も 2N個の並列複素信号で表されるが、そのうち虚数部の N個は 0であり、実際に必要 なのは実数部の N個である。従って、 FFT回路 5a, 5bとしては冗長な回路構成であ つた o
この簡略化された合成ダイバーシチ方式の FFT回路 5を、図 7に示す。この FFT回 路 5は、 N個の並列信号である電流信号 ir(t)の実数部と、 N個の並列信号である電 圧信号 vr(t)の実数部に虚数単位 jをかけたものとの和
u(t)=ir(t)+jvr(t)
を入力信号としている。入力信号 u (t)は、フーリエ変換されて FFT回路 5の出力には 周波数領域の信号 U(k)=X(k)+jZ(k)が得られる。ここで、 X(k), Z(k)はそれぞれ U(k )の実数部、虚数部である。 X(k), Z(k)は所望の電流、電圧信号のフーリエ変換値で はないので、次の演算により電流、電圧信号のフーリエ変換値 Ir(k)、 Vr(k)に変換す る。
[0039] Ir(k)=[X(k)/2+X(N-k)/2] +j [Z(k)/2-Z(n-k)/2] (1)
Vr(k)=[Z(k)/2+Z(N-k)/2] j [X(k)/2— X(n- k)/2] (2)
ここで Nは時間領域の標本数、つまり FFTのポイント数、 n=0,...,N— 1である。 この演算により FFT回路 5出力値より、電流信号のフーリエ変換値 Ir(k)と電圧信号 のフーリエ変換値 Vr(k)を分離することができる。 [0040] こうして分離された Ir(k), Vr(k)は、合成等化部 6に入力される。以下の処理は、図 6 で説明したのと同様である。
この簡略ィ匕された合成ダイバーシチ方式では、図 5、図 6の回路と異なり、 FFT回 路 5が 1つで済むのが利点となる。すなわち、図 5、図 6の回路では、 2つの FFT回路 5a, 5bを使いながら、実際には、 FFT回路 1つ分の処理し力していない。ところが、こ の図 7の回路では、 N個の並列信号である電流信号 ir(t)と、電圧信号 vr(t)とで 1つの 複素時間信号を構成しているので、 1つの FFT回路 5を使って処理を行うことができ る。また FFT回路 5出力から電流信号のフーリエ変換値 Ir(k)と電圧信号のフーリエ変 換値 Vr(k)の分離は簡単な四則演算で実現できる。したがって、 FFT全体の回路規 模が半分で済み、受信装置の簡素化が実現できるとともに、前記の 2個の FFT回路 を使用した場合と同じダイバーシチ効果を得ることができる。
[0041] 図 8は、 OFDM方式の簡略化された合成ダイバーシチ受信装置を示すブロック図 である。
この簡略化された合成ダイバーシチ受信装置と、図 5の合成ダイバーシチ受信装 置との相違点は、電流信号 ir(t)が、 Nシンボル直並列変換回路 14aを通って、虚数 部 0が省略された N個の並列信号となり、電圧信号 vr(t)も、 Nシンボル直並列変換回 路 14bを通って、 N個の並列信号となることである。〃2"は付かない。
[0042] FFT回路 5は、図 5と違って、複素化部 51、 FFT部 52、演算部 53により構成される 複素化部 51は、電流信号 ir(t)に相当する前記 N個の並列実数信号と、電圧信号 vr (t)に相当する前記 N個の並列実数信号とを使って、複素時間信号
u(t)=ir(t)+jvr(t)
を作る。
[0043] FFT部 52は、この信号をフーリエ変換し、周波数領域の複素信号 U(k)を出力する 演算部 53は、前述した (1)(2)式を使って、 Ir(k), Vr(k)を求める。
合成等化部 6は、前述したように、重み係数 gi(k), gv(k)を決定して、各フーリエ変換 後の信号 Ir(k)、 Vr(k)に乗じて、加算する。加算された信号 R(k)は、次のように表され る。
[0044] R(k) = gi(k)Ir(k) + gv(k)Vr(k)
合成等化部 6は、この加算後の信号 R(k)の SN比を最大にするように、重み係数 gi( k), gv(k)を決定する。復調器 7は信号 R(k)をもとの符号列に変換し、符号列は、 Nシ ンボル並直列変換され、情報データとして取り出される。
図 9は、 SCBT方式の簡略ィ匕された合成ダイバーシチ受信装置を示すブロック図で ある。
[0045] 図 6の SCBT方式合成ダイバーシチ受信装置との違いは、電流信号 ir(t)が、 Nシン ボル直並列変換回路 14aを通って、虚数部 0が省略された N個の並列信号となり、電 圧信号 vr(t)も、 Nシンボル直並列変換回路 14bを通って、 N個の並列信号となること である。
また、 FFT回路 5は、図 6と違って、複素化部 51、 FFT部 52、演算部 53により構成 される。
[0046] 複素化部 51は、電流信号 ir(t)に相当する N個の並列実数信号と、電圧信号 vr(t)に 相当する N個の並列実数信号とを使って、複素時間信号
u(t)=ir(t)+jvr(t)
を作り、 FFT部 52は、この関数をフーリエ変換し、演算部 53は、前述した (1)(2)式を 使って、 Ir(k), Vr(k)を求める。他の合成等化部 6、 IFFT回路 9などの機能は、図 6と 同様である。以上のように OFDM方式及び SCBT方式の簡素化合成ダイバーシチ 受信装置でも、前記の 2個の FFT回路を使用した場合と同じダイバーシチ効果を得 ることがでさる。
[0047] 以上で、本発明の実施の形態を説明したが、本発明の実施は、前記の形態に限定 されるものではなぐ例えば、電流検出部と電圧検出部とをダイバーシチ受信部ととも に具備する受信装置としてもよい。その他、本発明の範囲内で種々の変更を施すこ とが可能である。

Claims

請求の範囲
[1] 信号を、一対の線路に重畳して通信する方法において、
前記線路の受信端で前記線路の電圧及び電流をそれぞれ検出し、
検出された電圧信号と、検出された電流信号とをダイバーシチ受信することを特徴 とする有線通信におけるダイバーシチ受信方法。
[2] 信号を、一対の線路に重畳して通信する方法において、
前記線路の受信端で前記線路の電圧及び電流をそれぞれ検出し、
前記検出された電流信号及び電圧信号をそれぞれフーリエ変換し、
前記フーリエ変換された電流信号及び電圧信号を、周波数成分ごとに合成するこ とを特徴とする有線通信におけるダイバーシチ受信方法。
[3] 前記電流信号及び電圧信号に対して、受信品質が最良になるようにそれぞれ重み を付けて合成する請求項 1記載の有線通信におけるダイバーシチ受信方法。
[4] 前記受信品質は SN比である請求項 3記載の有線通信におけるダイバーシチ受信 方法。
[5] 前記電圧信号及び電流信号のいずれかを実数部、他方を虚数部にして複素時間 信号を作成して、フーリエ変換する請求項 2記載の有線通信におけるダイバーシチ 受信方法。
[6] 前記電圧信号及び電流信号のうち受信品質の良いほうを選択する請求項 1記載の 有線通信におけるダイバーシチ受信方法。
[7] 前記受信品質は SN比である請求項 6記載の有線通信におけるダイバーシチ受信 方法。
[8] 前記電流信号及び電圧信号の伝送方式は、 OFDM(Orthogonal Frequency Divisi on Multiplex)方式である請求項 2記載の有線通信におけるダイバーシチ受信方法。
[9] 前記電流信号及び電圧信号の伝送方式は、複数シンボルから構成される信号プロ ックにガード区間を付加して送信し、受信側で離散周波数領域等化を行うシングル キャリアブロック伝送方式である請求項 2記載の有線通信におけるダイバーシチ受信 方法。
[10] 前記線路は、電力線、自動車内の配線又は電話線である請求項 1記載の有線通 信におけるダイバーシチ受信方法。
[11] 一対の線路に重畳された信号を受信する装置において、
前記線路の電流を検出して得られる電流信号と、前記線路の電圧を検出して得ら れる電圧信号とをダイバーシチ受信するダイバーシチ受信部を備えることを特徴とす る受信装置。
[12] 一対の線路に重畳された信号を受信する装置において、
前記線路の受信端で電流を検出して得られる電流信号と、前記線路の電圧を検出 して得られる電圧信号とをそれぞれ周波数信号にフーリエ変換するフーリエ変換部と
、前記フーリエ変換された電流信号及び電圧信号を、周波数成分ごとに合成するダ ィバーシチ受信部とを備えることを特徴とする受信装置。
[13] 前記電流信号は、前記線路の電流を検出する電流検出部を通して検出され、前記 電圧信号は、前記線路の受信端で電圧を検出する電圧検出部を通して検出される 請求項 11記載の受信装置。
PCT/JP2006/301969 2005-02-09 2006-02-06 有線通信におけるダイバーシチ受信方法及び受信装置 WO2006085502A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005-032925 2005-02-09
JP2005032925A JP2008141224A (ja) 2005-02-09 2005-02-09 有線通信におけるダイバーシチ受信方法及び受信装置

Publications (1)

Publication Number Publication Date
WO2006085502A1 true WO2006085502A1 (ja) 2006-08-17

Family

ID=36793074

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/301969 WO2006085502A1 (ja) 2005-02-09 2006-02-06 有線通信におけるダイバーシチ受信方法及び受信装置

Country Status (2)

Country Link
JP (1) JP2008141224A (ja)
WO (1) WO2006085502A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102035573A (zh) * 2009-09-24 2011-04-27 株式会社电装 利用用于移动体的电力线路进行通信的方法
JP2015198971A (ja) * 2015-07-07 2015-11-12 富士フイルム株式会社 光音響画像化方法および装置
CN107710655A (zh) * 2015-08-07 2018-02-16 三菱电机株式会社 发送装置、接收装置、发送方法以及接收方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61245724A (ja) * 1985-04-24 1986-11-01 Mitsubishi Electric Corp 配電線搬送受信方式
JPH11145881A (ja) * 1997-11-06 1999-05-28 Mitsubishi Electric Corp 信号搬送システムにおける信号受信方法
JP2000036801A (ja) * 1998-07-21 2000-02-02 Nec Corp ダイバーシティ受信機
JP2004064405A (ja) * 2002-07-29 2004-02-26 Denso Corp 電力線通信方法及び装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61245724A (ja) * 1985-04-24 1986-11-01 Mitsubishi Electric Corp 配電線搬送受信方式
JPH11145881A (ja) * 1997-11-06 1999-05-28 Mitsubishi Electric Corp 信号搬送システムにおける信号受信方法
JP2000036801A (ja) * 1998-07-21 2000-02-02 Nec Corp ダイバーシティ受信機
JP2004064405A (ja) * 2002-07-29 2004-02-26 Denso Corp 電力線通信方法及び装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
FALCONER D. ET AL.: "Frequency domain equalization for single-carrier broadband wireless systems", IEEE COMMUNICATIONS MAGAZINE, vol. 40, no. 4, April 2002 (2002-04-01), pages 58 - 66, XP002231706 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102035573A (zh) * 2009-09-24 2011-04-27 株式会社电装 利用用于移动体的电力线路进行通信的方法
JP2015198971A (ja) * 2015-07-07 2015-11-12 富士フイルム株式会社 光音響画像化方法および装置
CN107710655A (zh) * 2015-08-07 2018-02-16 三菱电机株式会社 发送装置、接收装置、发送方法以及接收方法
CN107710655B (zh) * 2015-08-07 2019-06-28 三菱电机株式会社 发送装置、接收装置、发送方法以及接收方法

Also Published As

Publication number Publication date
JP2008141224A (ja) 2008-06-19

Similar Documents

Publication Publication Date Title
US7936851B2 (en) Channel equalization
US9800447B2 (en) Multi-mode orthogonal frequency division multiplexing transmitter for highly-spectrally-efficient communications
US6563885B1 (en) Decimated noise estimation and/or beamforming for wireless communications
CN103259572B (zh) 采用分集合并的信号处理单元和操作接收器装置的方法
WO2008116970A1 (en) Frequency offset correction
WO2001047167A1 (en) Estimation of two propagation channels in ofdm
JP2003516036A (ja) 多重搬送波通信システムにおける同一チャンネルの干渉除去方法
JP4637498B2 (ja) 通信装置および通信方法
CN101361307A (zh) 无线通信装置
US20040252772A1 (en) Filter bank based signal processing
WO2001020831A1 (fr) Dispositif de communication ofdm et procede de detection
WO2015064127A1 (ja) 送信装置、受信装置および通信システム
US6563841B1 (en) Per-bin adaptive equalization in windowed DMT-type modem receiver
EP2592801A1 (en) Wireless communication receiver with phase noise estimation and phase noise compensation performed after channel estimation and related wireless communication receiving method
WO2020217941A1 (ja) 変調装置及び復調装置
WO2017183631A1 (ja) Los-mimo復調装置、通信装置、los-mimo伝送システム、los-mimo復調方法及びプログラム
CN108616469B (zh) 一种sc-fde系统的接收端iq不平衡估计和补偿方法及装置
WO2004002035A1 (ja) Ofdm受信装置及びofdm信号の補正方法
US20070009023A1 (en) Equalizer and equalizing method
WO2006095513A1 (ja) Ofdmダイバーシティ受信装置
US8971463B2 (en) Channel estimation in a communications system
KR100790484B1 (ko) 직교 주파수 분할 다중을 위한 부분 응답 시그널링
Taheri et al. Overhead reduced preamble-based channel estimation for MIMO-FBMC systems
WO2006085502A1 (ja) 有線通信におけるダイバーシチ受信方法及び受信装置
JP5340199B2 (ja) マルチキャリア変調装置及び復調装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06713112

Country of ref document: EP

Kind code of ref document: A1

WWW Wipo information: withdrawn in national office

Ref document number: 6713112

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: JP