Nothing Special   »   [go: up one dir, main page]

WO2005049900A1 - 炭素ナノ繊維素及び繊維状ナノ炭素並びに繊維状ナノ炭素の製造方法及びその装置 - Google Patents

炭素ナノ繊維素及び繊維状ナノ炭素並びに繊維状ナノ炭素の製造方法及びその装置 Download PDF

Info

Publication number
WO2005049900A1
WO2005049900A1 PCT/JP2003/014892 JP0314892W WO2005049900A1 WO 2005049900 A1 WO2005049900 A1 WO 2005049900A1 JP 0314892 W JP0314892 W JP 0314892W WO 2005049900 A1 WO2005049900 A1 WO 2005049900A1
Authority
WO
WIPO (PCT)
Prior art keywords
carbon
fibrous nanocarbon
catalyst
fluidized bed
gas
Prior art date
Application number
PCT/JP2003/014892
Other languages
English (en)
French (fr)
Inventor
Yuichi Fujioka
Akinori Yasutake
Toshihiko Setoguchi
Isao Mochida
Seong-Ho Yoon
Original Assignee
Mitsubishi Heavy Industries, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries, Ltd. filed Critical Mitsubishi Heavy Industries, Ltd.
Priority to EP03774132A priority Critical patent/EP1686203B1/en
Priority to DE60333874T priority patent/DE60333874D1/de
Priority to US10/537,151 priority patent/US7700065B2/en
Priority to AT03774132T priority patent/ATE478181T1/de
Priority to PCT/JP2003/014892 priority patent/WO2005049900A1/ja
Publication of WO2005049900A1 publication Critical patent/WO2005049900A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/158Carbon nanotubes
    • C01B32/16Preparation
    • C01B32/162Preparation characterised by catalysts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/05Preparation or purification of carbon not covered by groups C01B32/15, C01B32/20, C01B32/25, C01B32/30
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/18Nanoonions; Nanoscrolls; Nanohorns; Nanocones; Nanowalls
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F9/00Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments
    • D01F9/08Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments of inorganic material
    • D01F9/12Carbon filaments; Apparatus specially adapted for the manufacture thereof
    • D01F9/127Carbon filaments; Apparatus specially adapted for the manufacture thereof by thermal decomposition of hydrocarbon gases or vapours or other carbon-containing compounds in the form of gas or vapour, e.g. carbon monoxide, alcohols
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F9/00Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments
    • D01F9/08Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments of inorganic material
    • D01F9/12Carbon filaments; Apparatus specially adapted for the manufacture thereof
    • D01F9/127Carbon filaments; Apparatus specially adapted for the manufacture thereof by thermal decomposition of hydrocarbon gases or vapours or other carbon-containing compounds in the form of gas or vapour, e.g. carbon monoxide, alcohols
    • D01F9/1273Alkenes, alkynes
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F9/00Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments
    • D01F9/08Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments of inorganic material
    • D01F9/12Carbon filaments; Apparatus specially adapted for the manufacture thereof
    • D01F9/127Carbon filaments; Apparatus specially adapted for the manufacture thereof by thermal decomposition of hydrocarbon gases or vapours or other carbon-containing compounds in the form of gas or vapour, e.g. carbon monoxide, alcohols
    • D01F9/133Apparatus therefor

Definitions

  • the present invention relates to a method for producing carbon nanofibrous material, fibrous nanocarbon, and fibrous nanocarbon and an apparatus therefor
  • the present invention relates to a carbon nanofibrous material (carbon nano-rod), a fibrous nanocarbon, a method for producing fibrous nanocarbon, and an apparatus therefor.
  • FIG. 49 schematically shows the structure of a conventional carbon nanofiber.
  • three types of carbon nanofibers have been proposed, as shown in Fig. 49, consisting of a laminated structure of a plate-like body with a hexagonal mesh of carbon (Rodriguez, NM 1993. J. Mater Res. 8: 3233).
  • These carbon materials have the following three-dimensional structures: a platelet structure shown in Fig. 49 (a), a herringbone structure or a fishbone structure shown in Fig. 49 (b).
  • Tubular, Ribbon or Parallel configuration in Fig. (C) Has been categorized.
  • conventional carbon nanofibers do not have diversity due to the specified simple structure, and have not yet been a material that satisfies various functions at the same time.
  • a basic reactor as shown in FIG. 50 has been used.
  • a raw material gas 01 of a carbon source is brought into contact with a catalyst 05 on a boat 04 in a reaction tube 03 provided with a heating means 02.
  • This is a so-called batch method in which carbon nanofibers 06 are grown on the catalyst 05.
  • the conventional apparatus as shown in FIG. 50 has a problem that mass production cannot be performed.
  • a gas phase flow method in which carbon nanofibers are produced by heating with heating means 02 while supplying a raw material gas 01 into a reaction tube 03 may be considered. ing.
  • the problem is that the temperature distribution in the reaction tube 03 tends to occur, and it tends to be uneven.
  • the grown product easily adheres to the inner wall surface of the reaction tube 03, and it becomes difficult to collect the product. As a result, there is a problem that scaling up is difficult.
  • the present invention provides a carbon nanofiber and a carbon nanofiber capable of exhibiting high performance in the storage and desorption of hydrogen and lithium, the catalytic action, the adsorption of nitrogen oxides, and the like. It is an object to provide a fibrous nanocarbon in which fibrin is arranged and accumulated, a method for producing the fibrous nanocarbon, and an apparatus therefor. Disclosure of the invention
  • a first invention for solving the above-mentioned problem is a carbon nanofiber characterized by comprising a carbon hexagonal network having a central axis extending in one direction.
  • the axial width (D) of the carbon hexagonal net surface is 2.5 ⁇ 0.5 nm, and the length (L) of the carbon hexagonal net surface is Is 17 ⁇ 15 nm.
  • a third invention is the carbon nanofiber according to the first or second invention, wherein the carbon hexagonal network plane is laminated in 2 to 12 layers.
  • a fourth invention is a fibrous nanocarbon characterized in that a plurality of the carbon nanofibrils according to any of the first to third inventions are assembled.
  • a fifth invention is the fibrous nanocarbon according to the fourth invention, wherein the carbon nanofibers are laminated in a three-dimensionally close-packed state.
  • a sixth invention is characterized in that in the fourth or fifth invention, a plurality of the carbon nanofibers are stacked so that their central axes are parallel to each other to form a carbon nanofiber element group. It is fibrous nano carbon.
  • the carbon nanofiber group comprises the carbon nanofiber group formed by laminating 2 to 12 carbon hexagonal mesh surfaces, and the carbon hexagonal mesh.
  • a fibrous nanocarbon characterized in that it is three-dimensionally laminated while having nanovoids between the carbon nanofibrous material and the carbon nanofibrous material having 2 to 12 layers laminated.
  • An eighth invention is the fibrous nanocarbon according to the fourth invention, wherein the carbon nanofibers are joined in series at an axial end to form a nanofiber group in the axial direction. .
  • the shaft end of the carbon nanofiber is heat treated. It is a fibrous nanocarbon characterized by being bonded by a process.
  • the carbon nanofiber group is greater than 0 degree and less than 20 degrees with respect to an axis orthogonal to a fiber axis in a laminating direction of the carbon nanofibers. It is a fibrous nanocarbon characterized by having a columnar shape when arranged at an arrangement angle.
  • the eleventh invention is based on the sixth invention, wherein the carbon nanofiber group is greater than 20 degrees but less than 80 degrees with respect to an axis orthogonal to a fiber axis in a laminating direction of the carbon nanofiber. It is a fibrous nanocarbon characterized by having a feather shape when arranged at the full array angle.
  • a twenty-second invention is the fibrous nanocarbon according to the tenth or eleventh invention, wherein the carbon nanoprotein group has a cedar aya structure.
  • a thirteenth invention is the tenth or eleventh invention, wherein the inter-plane distance (d. 2 ) of the carbon hexagonal network is 0.5 under a heat treatment condition of 700 ° C. or less.
  • a fiber width of the aggregate of carbon nanofibers is 8 to 500 nm, and an aspect ratio of the fiber is (Fibrous length / fiber width) is 10 or more.
  • the fifteenth invention is based on the eighth invention, wherein the carbon nanofiber group is arranged at an angle of 80 degrees or more and 88 degrees with respect to an axis orthogonal to a fiber axis in a laminating direction of the carbon nanofibers. It is a fibrous nanocarbon characterized by having a tubular shape by being arranged at an angle.
  • the fiber width of the aggregate of carbon nanofibrils is 8 to 80 nm, and the aspect ratio (fiber length / fiber width) of the fibers is 30 or more.
  • a fibrous nanocarbon characterized by the following.
  • a seventeenth invention is the fibrous nanocarbon according to any one of the tenth to sixteenth inventions, wherein a cross-sectional structure in a direction orthogonal to the fiber axis is polygonal.
  • the eighteenth invention is a method according to any of the tenth to seventeenth inventions, wherein A high-temperature heat treatment on the surface thereof, wherein the ends of the carbon nanofibers on the surface are two-dimensionally formed in a loop shape and three-dimensionally formed in a dome shape. It is.
  • a nineteenth invention for solving the above-mentioned problem is a method for producing fibrous nanocarbon comprising an aggregate of carbon nanofibrils by reacting a carbon raw material in a high-temperature fluidized bed using a catalyst.
  • a first gas supply step of supplying a reducing gas by using a fluidizing agent that combines a carrier supporting a metal catalyst via a binder as a fluidizing material, and supplying the carbon raw material in a gaseous state.
  • a method for producing fibrous nanocarbon comprising: performing the gas supply step of 2.
  • a 20th invention is the method for producing fibrous nanocarbon according to the 19th invention, wherein the average particle diameter of the fluid material also serving as a catalyst is 0.2 to 2 Omm.
  • a twenty-first invention is the method for producing fibrous nanocarbon according to the nineteenth invention, wherein the catalyst / fluid material is formed by carrying the catalyst on the surface of the carrier or an aggregate thereof. It is.
  • -A twenty-second invention is the fibrous nano-material according to the nineteenth invention, wherein the carrier of the catalyst / fluid material is any one of carbon black, alumina, silica, silica sand, and aluminosilicate. This is a method for producing carbon.
  • the metal catalyst of the fluid material that also serves as a catalyst is any one of Fe, Ni, Co, Cu, and Mo, or at least two or more of them. And a method for producing fibrous nanocarbon.
  • a twenty-fourth invention is the method for producing fibrous nanocarbon according to the nineteenth invention, wherein the flow rate in the fluidized bed is 0.02 to 2 m / s.
  • a twenty-fifth invention is characterized in that, in the nineteenth invention, the conditions of each of the first gas supply step, the carbon source supply step, and the second gas supply step are independently controlled. Is a method for producing fibrous nanocarbon.
  • a twenty-sixth invention is the method for producing fibrous nanocarbon according to the twenty-fifth invention, wherein the conditions are a temperature, a pressure, a time, and a gas atmosphere.
  • a twenty-seventh aspect is the nineteenth aspect, wherein the mixed flow of the catalyst and the inert gas is carried out under a pressure of 0.1 to 25 atm (hydrogen partial pressure 0 to 90%). Producing a fibrous nanocarbon by contacting the catalyst of the material with the carbon raw material at a temperature of 300 to 130 ° C. for a certain period of time. It is.
  • the catalyst component of the catalyst / fluid material is formed by a reducing action of the reducing gas.
  • a twenty-ninth invention is the invention according to the twenty-eighth invention, wherein the fibrous nanoparticle obtained by controlling the particle size of the metal catalyst when the metal catalyst of the catalyst / fluidizing material is miniaturized.
  • This is a method for producing fibrous nanocarbon, characterized in that the diameter of carbon is controlled.
  • the second gas supply step forms a zone having a high flow velocity locally in the fluidized bed, wherein the particles of the catalyst / fluidized material are each other, or
  • This is a method for producing fibrous nanocarbon, characterized in that the collision between particles and a wall surface promotes the miniaturization and wear of the fluid material also serving as a catalyst.
  • a thirty-first invention is the method for producing fibrous nanocarbon according to the thirtieth invention, wherein a zone having a high flow velocity in the fluidized bed is formed at a lower portion of the fluidized bed.
  • the invention is the method for producing fibrous nanocarbon according to the 30th invention, wherein a zone with a high flow velocity is formed by blowing a high-speed gas into the fluidized bed.
  • a thirty-third invention is the fibrous nanometer according to the thirty-second invention, wherein the particles scattered from the fluidized bed are re-supplied into the fluidized bed together with the high-speed gas. This is a method for producing carbon.
  • a thirty-fourth invention is the method for producing fibrous nanocarbon according to the nineteenth invention, wherein the produced fibrous nanocarbon is separated from the carrier or the catalyst.
  • a thirty-fifth invention is a production apparatus used for carrying out the method for producing fibrous nanocarbon according to the nineteenth invention, wherein the heating device is filled with the catalyst / fluid material and heats the inside.
  • a thirty-sixth invention is the fibrous nanocarbon production apparatus according to the thirty-fifth invention, wherein a collecting means for collecting the scattered particles is provided in the discharge line.
  • a thirty-seventh invention is the apparatus for producing fibrous nanocarbon according to the thirty-fifth invention, wherein the fluidized bed portion of the fluidized bed reactor has a high-speed fluidized portion and a low-speed fluidized portion. .
  • a thirty-eighth invention is the apparatus for producing fibrous nanocarbon according to the thirty-seventh invention, wherein the high-speed flow part has a collision part.
  • a thirty-ninth aspect is the apparatus for producing fibrous nanocarbon according to the thirty-fifth aspect, wherein high-speed gas blowing means for blowing gas into the fluidized bed reactor at a high speed is provided.
  • a 40th invention is the apparatus for producing fibrous nanocarbon according to the 39th invention, wherein the gas is blown at a high speed, and the collected particles are accompanied.
  • the first, second, and third fluid chambers in which the fluid material is capable of flowing and moving are formed in the fluidized bed reactor, and the first fluid is formed.
  • the first gas supply means is connected to the chamber
  • the carbon material supply means is connected to the second flow chamber
  • the second gas supply means is connected to the third flow chamber.
  • a forty-second invention is the thirty-fifth invention, wherein the first and second fluid chambers, in which the fluid material can flow, are formed in the fluidized bed reactor, and are different from the fluidized bed reactor.
  • Another fluidized bed reactor is provided as a third fluidized chamber, and a transfer means for transferring the fluidized material from the second fluidized chamber to the third fluidized chamber is provided.
  • a fibrous nanometer characterized by connecting the first gas supply means, connecting the carbon material supply means to the second flow chamber, and connecting the second gas supply means to the third flow chamber. It is an apparatus for producing carbon.
  • a forty-fourth invention is a production apparatus used for carrying out the method for producing fibrous nanocarbon according to the nineteenth invention, wherein the fluid material also serving as a catalyst is filled therein, and has heating means for heating the inside.
  • a first fluidized bed reactor having first gas supply means for supplying the reducing gas therein, and a transfer means for transferring the fluidized material from the first fluidized bed reactor.
  • a second fluidized bed reactor having therein a carbon source supply means for supplying the carbon source in a gaseous state, and a transfer unit for transferring the fluidized material and the reaction product from the second fluidized bed reactor.
  • a third fluidized bed reactor having second gas supply means for supplying the gas containing no carbon therein, and a discharge line for discharging gas and scattered particles from the third fluidized bed reactor 'Fibrous nano It is an apparatus for producing carbon.
  • a fifty-fifth invention is the fibrous nanocarbon production apparatus according to the forty-fourth invention, further comprising a plurality of the first fluidized bed reactors.
  • a forty-sixth invention is the apparatus for producing fibrous nanocarbon according to the forty-fourth invention, further comprising a plurality of the second fluidized bed reactors.
  • a forty-seventh invention is characterized in that, in the forty-fourth invention, a plurality of the third fluidized bed reactors are provided.
  • a fifty-eighth invention is directed to the fibrous nanocarbon according to any one of the thirty-fifth to forty-seventh inventions, wherein the average particle diameter of the catalyst / fluid material is 0.2 to 2 O mm.
  • Production equipment A 49th invention is characterized in that, in any one of the 35th to 47th inventions, the catalyst / fluid material is formed by carrying the catalyst on the surface of the carrier or an aggregate thereof. This is an apparatus for producing fibrous nanocarbon.
  • the carrier of the fluid material that also serves as a catalyst is any one of carbon black, alumina, silica, silica sand, and aluminosilicate.
  • a fifty-first invention which is an apparatus for producing fibrous nanocarbon characterized in that, in any one of the thirty-fifth to forty-seventh inventions, the metal catalyst of the catalyst / fluid material is Fe, Ni, An apparatus for producing fibrous nanocarbon, which is any one of Co, Cu, and Mo or a mixture of at least two of them.
  • a fifty-second invention is the method for producing fibrous nanocarbon according to any one of the thirty-fifth to forty-seventh inventions, wherein the flow velocity in the fluidized bed is 0.02 to 2 mZs. It is a device.
  • a fifty-third invention is a method according to any one of the thirty-fifth to forty-seventh inventions, wherein a mixed gas of hydrogen and an inert gas (hydrogen partial pressure 0 to 90%) under a pressure of 0.1 to 25 atm. ), wherein the fibrous nanocarbon is produced by contacting the catalyst of the catalyst / fluid material with the carbon raw material at a temperature of 300 to 130 ° C. for a certain period of time. It is a production device for nano carbon.
  • FIG. 1 is a schematic view of a carbon nanofiber according to the present invention.
  • FIG. 2 is a schematic view of a carbon nanofiber group according to the present invention.
  • FIG. 3 is a schematic diagram of carbon nanofibrous material and fibrous nanocarbon according to the present invention.
  • FIG. 4 is a schematic cross-sectional view of the carbon nanofiber according to the present invention.
  • FIG. 5 is a schematic diagram of a heat treatment of the carbon nanofiber according to the present invention.
  • Figure 6 shows the micrographs of the as-prepared carbon nanofibrils and the heat-treated carbon nanofibers. It is a true figure.
  • FIG. 7 is a high-resolution transmission micrograph and a scanning tunneling electron micrograph of carbon nanofibers.
  • FIG. 8 is a scanning tunneling electron micrograph and a schematic view thereof.
  • FIG. 9 is a schematic diagram showing a state in which a carbon nanofiber element group is formed.
  • FIG. 10 is a high-resolution transmission micrograph of fibrous nanocarbon having a columnar structure.
  • FIG. 11 is a schematic view of various shapes of a carbon nanofiber group.
  • FIG. 12 is a schematic view of a fibrous nanocarbon aggregate having a columnar structure.
  • FIG. 13 is a schematic view of another fibrous nanocarbon aggregate having a columnar structure.
  • FIG. 14 is a schematic cross-sectional view of fibrous nanocarbon.
  • FIG. 15 shows scanning tunneling electron micrographs of various shapes of carbon nanofibers.
  • FIG. 16 is a scanning tunneling electron micrograph of various shapes of carbon nanofibers.
  • FIG. 17 is a schematic diagram of a fibrous nanocarbon aggregate having a feather structure.
  • FIG. 18 is a high-resolution transmission micrograph of fibrous nanocarbon having a feather structure.
  • FIG. 19 is a schematic diagram of a fibrous nanocarbon aggregate having a tubular structure.
  • FIG. 20 is a schematic diagram of a heat-treated carbon nanofibrous material and a schematic diagram of fibrous nanocarbon obtained by assembling the same.
  • Fig. 21 shows the structure of the carbon nanofibers composing the fibrous nanocarbon in the columnar structure after high-temperature treatment at 280 ° C.
  • the angle of the transmitted electron beam of the high-resolution transmission electron microscope was changed. It is a photographic view taken at (30 degrees, 0 degrees, +30 degrees).
  • Fig. 22 shows the carbon nanofiber group that constitutes the fibrous nanocarbon having the columnar structure.
  • FIG. 2 is a high-resolution transmission electron microscope photograph of a 800 ° C. high temperature processed product.
  • FIG. 23 is a high-resolution transmission electron micrograph (magnification: 600,000 times) of the high-temperature processed product at 280 ° C. at an angle of ⁇ 30 degrees in FIG.
  • FIG. 24 is a high-resolution transmission electron micrograph of the high-temperature processed product at 280 ° C. at an angle of 0 ° in FIG. 21.
  • FIG. 25 is a high-resolution transmission electron micrograph of a high-temperature processed product at 280 ° C. at an angle of + 30 ° in FIG. 21.
  • FIG. 26 is a high-resolution transmission electron micrograph of the high-temperature processed product at 280 ° C. at an angle of 130 ° in FIG. 23.
  • FIG. 27 is a high-resolution transmission electron micrograph of the high-temperature processed product at 280 ° C. at an angle of 0 ° in FIG.
  • FIG. 28 is a high-resolution transmission electron micrograph of the high-temperature processed product at 280 ° C. at an angle of + 30 ° in FIG.
  • Fig. 29 shows a columnar structure, a feathered structure, and a tube shape.
  • FIG. 4 is a high-resolution transmission micrograph of fibrous nanocarbon having a (Tubular) structure.
  • FIG. 30 shows a group of carbon nanofibers in a state of being manufactured (manufactured at 600 ° C. using an iron catalyst) constituting fibrous nanocarbon having a columnar structure
  • 200 ° C. and 2 ° C. 3 is a photograph of a structure after a high-temperature treatment at 800 ° C., respectively, taken by a high-resolution transmission electron microscope.
  • FIG. 31 is a Raman scattering spectrum diagram of a fibrous nanocarbon consisting of a group of carbon nanofibers having a columnar structure before and after a heat treatment.
  • FIG. 32 is a schematic view of a first embodiment of a carbon nanofibril production apparatus according to the present invention.
  • FIG. 33 is a schematic view of the method for producing carbon nanofiber according to the present invention.
  • FIG. 34 is a diagram showing an example of separation of fibrous nanocarbon.
  • FIG. 35 is a diagram showing the relationship between the particle size and the flow velocity.
  • FIG. 36 is a diagram showing the relationship between the particle size and the flow velocity.
  • FIG. 37 is a schematic diagram of a second embodiment of a carbon nanofiber production apparatus according to the present invention. It is a schematic diagram.
  • FIG. 38 is a schematic view of a third embodiment of the carbon nanofibril production apparatus according to the present invention.
  • FIG. 39 is a schematic view of a fourth embodiment of the apparatus for producing carbon nanofiber according to the present invention.
  • FIG. 40 is a schematic diagram of a carbon nanofiber.
  • FIG. 41 is a schematic diagram of a carbon nanofiber.
  • FIG. 42 is a schematic view of a fifth embodiment of the apparatus for producing carbon nanofiber according to the present invention.
  • FIG. 43 is another schematic diagram of the fifth embodiment of the device for producing carbon nanofiber according to the present invention.
  • FIG. 44 is a schematic diagram of an apparatus for producing carbon nanofibrils according to a sixth embodiment of the present invention.
  • FIG. 45 is another schematic diagram of the sixth embodiment of the device for producing carbon nanofiber according to the present invention.
  • FIG. 46 is a micrograph of the fibrous nanocarbon obtained in Example 1.
  • FIG. 47 is a micrograph of the fibrous nanocarbon obtained in Example 2.
  • FIG. 48 is a micrograph of the fibrous nanocarbon obtained in Example 3.
  • Fig. 49 is a model diagram of a conventional nanofiber.
  • FIG. 50 is an explanatory view of a conventional basic reactor.
  • FIG. 51 is an explanatory diagram of a conventional gas phase flow method. BEST MODE FOR CARRYING OUT THE INVENTION
  • Embodiments of a method and an apparatus for producing carbon nanofibrous material, fibrous nanocarbon, and fibrous nanocarbon according to the present invention will be described below, but the present invention is not limited to these embodiments. Absent.
  • fiber width is the average 1 0 0 nm
  • the aspect ratio is of about 3 0, the surface area with nitrogen BET measurement 2 0 0 m 2 or more It has been found that it becomes a polygonal fibrous nanocarbon shown.
  • the carbon hexagonal network surface carbon hexagonal network
  • the carbon nanofiber as its nano aggregate carbon hexagonal network
  • the fibrous nanocarbon in which these carbon nanofibers are arranged and laminated are shown in Figs. It will be described based on.
  • FIG. 1 is a schematic diagram of a carbon nanofiber composed of a plurality of carbon hexagonal network planes
  • FIG. 2 is a schematic diagram showing an aggregated state of the carbon nanofiber.
  • a carbon nanofiber (Rod: Carbon Nano-fiberous-Rod) has a central axis extending in one direction, 1) 2 are configured.
  • the above-mentioned carbon nanofiber 12 can be a basic structural unit even if it is a single sheet (or a single layer).
  • the carbon hexagonal net surface 11 is laminated in a layer of 2 to 12 layers to form one structure. Forming a unit.
  • the number of layers is preferably 4 to 10 layers. The reason why the unit is formed by laminating 12 to 12 layers of carbon nanofibrous material is not yet clear, but it may be related to the crystal lattice structure of the metal catalyst used in the synthesis. It is thought that there is not.
  • FIG. 1 (a) is a schematic diagram in which a carbon hexagonal mesh plane 11 forms one constituent unit of a carbon nanofiber 12 by two layers.
  • FIG. 1 (b) is a schematic diagram in which a carbon hexagonal mesh plane 11 forms one constituent unit of carbon nanofibers 12 by eight layers.
  • the carbon hexagonal mesh plane 11 constituting the carbon nanofiber 12 is
  • the shaft width (D) is 2.5 ⁇ 0.5 nm and the length (L) is 17 ⁇ 15 nm. If the above-mentioned size is out of the above range, good carbon nanofibrous material 12 cannot be formed.
  • a plurality of carbon nanofibers 12 are closely packed and laminated to form a carbon nanofiber group 13, so that the carbon nanofibers 12 are formed together.
  • the nano voids 14 are spaces for taking in atoms such as hydrogen and lithium. Due to the large number of the nano voids 14, the effect as a novel functional material such as catalytic activity, occlusion or adsorption of a specific substance is exhibited.
  • FIG. 2 (a) it appears that the carbon nanofibrils 12 are in contact with each other, but the carbon nanofibrils 12 may or may not be in contact with each other There is also. If not, the nanovoids 14 will increase.
  • FIG. 2 (b) carbon nanofibers 12 having a hexagonal cross section are assembled so as to have a small gap. In this way, a plurality of carbon nanofiber groups 13 composed of carbon nanofibers 12 are three-dimensionally aggregated into a fibrous form, as shown in FIG. 15).
  • the carbon nanofibrous material 12 has a circular cross-sectional structure in a direction perpendicular to the axis in FIG. 2 (a) and a hexagonal shape in FIG. 2 (b). It is not limited. For example, as shown in Fig. 4, circular (see Fig. 4 (a)) and hexagonal (see Fig. 4 (b)) as well as octagon (see Fig. 4 (c)) ) Or a rectangle (see Fig. 4 (d)).
  • fibrous nanocarbon 15 formed by three-dimensionally assembling the carbon nanofiber groups 13 include a columnar structure, a columnar structure, a feather structure, and a tube shape. (Tubular) structure and the like (details will be described later). In the present embodiment, as an example, a description will be given centering on fibrous nanocarbon 15 having a columnar structure.
  • the carbon nanofiber 12 according to the present invention is a constituent unit. That is, it is not clear in the state, it becomes clear by heat treatment (or carbonization) at 160 ° C or more after production. That is, by performing the heat treatment at a high temperature of 160 ° C. or higher, the axial ends of the carbon nanofibers 12 are two-dimensionally looped and tertiary as shown in FIG. Originally, a carbon network is formed in a dome shape. As a result, it becomes clear that the carbon nanofibrous material 12 is one constituent unit.
  • the carbon nanofibers 12 whose ends are not looped in the as-produced state will be referred to as “As-pr mark ared state” and will be treated at a high temperature such as 280 ° C.
  • the heat-treated carbon nanofiber 12 is referred to as “a heat-treated state at 280 ° C.”.
  • Figure 6 shows a high-resolution transmission electron microscope of carbon nanofibrous material 12.
  • FIG. 6 (a) is a photograph of an aggregate of carbon nanofibers 12 obtained by a synthesis method described later
  • FIG. 6 (b) is a graph showing the heat at 280 ° C. described later. It is a photograph of an aggregate of carbon nanofibrous material 12 which has been processed to improve the degree of graphitization. The size of 10 nm is shown in FIG.
  • FIG. 7 is a photograph taken by an electron microscope of the carbon nanofiber 12 (in a heat-treated state at 280 ° C.).
  • FIG. 7 (a) is a photograph of a high-resolution transmission microscope (HRTEM)
  • FIG. 7 (b) is a photograph of a scanning tunneling microscope (STM). Both arrows in the photo indicate a size of 20 nm.
  • FIGS. 6 and 7 the lamination state of the carbon hexagonal netting surface 11 of 6 to 10 layers is both shown, and it can be confirmed that the carbon nanofibrous material 12 is constituted by these. Therefore, it can be confirmed that the carbon nanofibrous material 12 is formed from the constituent units and that these are combined to form the fibrous nanocarbon 15.
  • the reason why the scanning tunneling electron microscope (STM) photograph is unclear is that it is not possible to obtain a sharper image at this time due to the high magnification and the principle of photography. However, it is possible to confirm that carbon nanofiber 12 is one of the constituent units.
  • FIG. 8 is another scanning tunneling electron microscope (STM) photograph of carbon nanofiber 12 (at 800 ° C. heat treatment). In FIG. 8, the right side is an enlarged photograph of the left side. From the photograph on the right side of Fig. 8, the shape of the loop network at the shaft end is confirmed.
  • FIG. 9 is a schematic diagram showing a state in which the carbon nanofibers 12 shown on the right side of FIG. 8 are assembled to form a carbon nanofiber group 13.
  • the hexagonal carbon layer (Hexagonal Carbon Layer) according to the present embodiment is the same as a black-based material that occupies most of the current carbon materials. Is the basic unit of the structure. The nature of these carbon materials is basically determined by the integrity and size of the carbon hexagonal mesh, the thickness of the stack, the regularity of the stack, and the type and degree of selective orientation of the mesh. (Carbon Glossary Dictionary, p. 226, Japan Society for Carbon Materials, edited by the Carbon Glossary Dictionary Editing Committee, Agune Riding Company, Tokyo, 2000).
  • the carbon nanofibrous material 12 according to the present invention has a hexagonal mesh structure of carbon atoms as a basic unit, and is composed of 95% or more of carbon atoms. Further, by heat-treating the carbon nanofibrous material 12 at a high temperature of 2000 ° C. or more, the carbon nanofibrous material can be formed with 99% or more carbon atoms. Moreover, the interplanar spacing nano aggregates Kisagonaru network surface 1 1 to a carbon nano cellulose 1 2 carbon (d .. 2) is less than 0. 5 0 0 nm, pure graphite interplanar gap ( d.) It is close to the size of 2 ) (0.3354 nm). Therefore, the carbon nanofibrous material 12 according to the present invention has a high degree of graphitization.
  • the fibrous nanocarbon 1 5 is manufactured at 700 ° C. or lower, and can be logically inferred from the fact that the interplanar distance (d 0 2 ) of the carbon hexagonal network is less than 0.50 nm.
  • the fibrous nanocarbon 15 according to the present invention is formed by closely packing the carbon nanofibrous material 12 in a three-dimensional direction.
  • FIG. 3 shows a schematic diagram of the lamination of the carbon nanofibers 12 as an example of this lamination state.
  • the lamination shown in Fig. 3 is a columnar lamination structure, in which the carbon nanofibers 12 are laminated in the first direction (up and down on the paper) with the central axis of 13 to form fibrous nanocarbon 15.
  • FIG. 10 is a high-resolution transmission electron micrograph of fibrous nanocarbon 15 having a columnar structure and heat-treated at 280 ° C. As shown in Fig. 10, the carbon nanofibers 12 at the tip of the loop form a close-packed structure to form the carbon nanocarbon fibers 13 and become fibrous nanocarbons 15. You can see that.
  • FIG. 10 (a) is a 150,000-fold enlarged view of the fibrous nano carbon 15, and
  • FIG. 10 (b) is an axial direction of the fibrous nano carbon 15 (10 It is an enlarged view of both end portions (points A and B in FIG. 10 (a)) in a direction orthogonal to the diagram (a), in the left-right direction.
  • FIG. 10 (b) The carbon nanofibrous material 12 at the tip, which has a three-dimensional dome shape formed by force, heat, and heat treatment, is closest packed in the three-dimensional direction to form the carbon nanocarbon fiber group 13 It can be seen that fibrous nanocarbon 15 is obtained.
  • the carbon nanofibers 12 may be assembled in various ways. You. Typical examples of fibrous nanocarbon 15 composed of a plurality of three-dimensionally assembled carbon nanofibers 13 include columnar structures, feathered structures, and tubular shapes. (Tubular) There are three embodiments of the structure. Although the difference between these structures is not clear, it is considered that the morphology changes due to the difference between the catalyst and the production conditions.
  • FIG. 11 is a schematic view of the above three forms of the carbon nanofiber element group 13.
  • the first mode is arranged at an angle ( ⁇ ) greater than 0 degree and less than 20 degrees with respect to an axis (X) orthogonal to an axis (Y) in the laminating direction (fiber axis direction), Columnar fibrous nanocarbon group 13A (see Fig. 11 (a)).
  • the second mode is arranged at an angle (> 3) of more than 20 degrees and less than 80 degrees with respect to an axis (X) orthogonal to the axis (Y) in the laminating direction (fiber axis direction). It is called Feather-shaped fibrous nanocarbon group 13B (see Fig. 11 (b)).
  • the feather-shaped (Feather) fibrous nanocarbon group 13B has a cedar structure, but this opposition depends on the relationship with the catalyst. . Therefore, there may be cases where they do not face each other.
  • the tube is arranged at an angle ( ⁇ ) of 80 to 88 degrees with respect to an axis (X) orthogonal to the axis (Y) in the laminating direction (fiber axis direction).
  • Tubular fibrous nanocarbon group 13C (see Fig. 11 (c)).
  • FIG. 12 is a schematic view of an example of a columnar carbon nanofiber group.
  • FIG. 12 (a) shows that the carbon nanofiber group 13A is formed by laminating in a direction orthogonal to the axial direction of the columnar carbon nanofiber elements 12.
  • FIGS. 12 (b) and 12 (c) show a state where at least one or more carbon nanofiber groups 13A are juxtaposed and the central axis of the carbon nanofiber elements 12 is parallel. That is, in Fig. 12 (b), the carbon nanofiber groups 13A are arranged in parallel in two rows, and in Fig. 12 (c), the carbon nanofiber groups 13A are arranged side by side. But It is a parallel arrangement of four rows.
  • FIGS. 12 (b) and 12 (c) when the carbon nanofibers 13A are arranged side by side, the direction of the central axis of the carbon nanofibers 12 is the same. Direction.
  • carbon nanofibers 12 of various lengths in the axial direction of the carbon nanofibers 12 are laminated to form a carbon nanofiber group 13A. It is also possible to form nano-voids 1 and 4 in the laminated portion of element 12.
  • FIG. 13 in a planar state (see FIG. 13 (a)), there is a nanocavity 14 inside, and a rectangular cylindrical shape is formed so that four sides are surrounded by carbon nanofibers 12. It is also possible to form the carbon nanofiber group 13. Further, as shown in FIG. 14, the cross-sectional shape of the carbon nanofiber group 13 in a direction orthogonal to the fiber axis is various such as hexagonal, octagonal, quadrangular, and circular.
  • FIG. 15 is a high-resolution transmission microscope (HRTEM) photograph of fibrous nanocarbon 15
  • FIG. 16 is a scanning tunneling electron microscope (STM) photograph of fibrous nanocarbon 15. From these photographs, it was confirmed that the shape of the fibrous nanocarbon 15 in the three forms of the columnar structure, the feather structure (Feather) structure, and the tubular structure (Tubular structure) was substantially hexagonal or substantially pentagonal. Is done.
  • fibrous nanocarbon 15 with Columnar structure composed of 4 rows It turns out to be 60-80 nm. Therefore, fibrous nanocarbon 15 having a columnar structure with a fiber width of 200 nm has at least 10 rows of carbon nanofibril groups 13A arranged in parallel.
  • Such a fibrous nanocarbon 15 is prepared by using a pure transition metal represented by iron (Fe), conoureto (Co), nickel (Ni) alone or an alloy as a catalyst, at 400 to 1200 ° C. In a temperature range, a mixture gas of carbon monoxide or hydrocarbons such as methane (CH 4 ), ethylene (C 2 H 6 ), and propane (C 3 H 8 ) with hydrogen (hydrogen partial pressure: 0 to 90%) By contacting the catalyst for a certain period of time.
  • a pure transition metal represented by iron (Fe), conoureto (Co), nickel (Ni) alone or an alloy as a catalyst, at 400 to 1200 ° C.
  • a mixture gas of carbon monoxide or hydrocarbons such as methane (CH 4 ), ethylene (C 2 H 6 ), and propane (C 3 H 8 ) with hydrogen (hydrogen partial pressure: 0 to 90%)
  • a preferred production example for producing fibrous nanocarbon 15 having a columnar structure is as follows: It is.
  • FIG. 17 shows an example of the (nano carbon nano).
  • the carbon nanofiber group 13B has a cedar structure in which the carbon nanofibers 12 face each other at a predetermined angle.
  • the structure has a nano-cavity 14 and crosses each other as shown in Fig. 17 (b).
  • the fibrous nanocarbon 15 having a feathered (Feather) structure is larger than 20 degrees and smaller than 80 degrees with respect to the axis (X) orthogonal to the axis (Y) in the laminating direction (fiber axis direction). ( ⁇ ) (see Fig. 11 (b)).
  • the carbon nanofibrous material 12 of the carbon nanofibrous material group 13B having such a feathered (Feather) structure has a shaft width of 2.5 ⁇ 0.5 nm and a shaft length of 4 at the stage of synthesis. ⁇ 2 nm. This is because the angle of the carbon nanofibrous material 12 is sharper than that of the columnar (fibrous nanofibrous group 13A), so that the axial length L of the constituent carbon nanofibrous material 12 is shorter. It is because it becomes something.
  • the carbon nanofiber group 13 B carbon nanofibers, and the carbon hexagonal nanofiber network 11 of fibrous 12 have a plane-to-plane gap (d. 2 ) of less than 0.500 nm and a pure graphite plane. while It is close to the size of the gap (d 002 ) (0.3354 nm). Therefore, the carbon nanofiber 12 has a high degree of illness.
  • a specific example of production of the fibrous nano carbon 15 having a feather structure is as follows.
  • fibrous nanocarbon group 13B with a feathered structure uses nickel nitrate or a mixture of iron nitrate and iron nitrate instead of iron nitrate in the production of fibrous nanocarbon 15 with a columnar structure. Then, a nickel or nickel-iron alloy catalyst (nickel content: 70-90% (weight ratio)) is prepared by the same precipitation method.
  • a mixed gas of hydrogen and helium (hydrogen partial pressure: 20%) was flown at 100 sccm to the above catalyst at 0.5 ° C at 500 ° C. Reduce for ⁇ 10 hours. Then, the mixture is reacted at a temperature of 450 to 620 ° C for 0.25 to 3 hours while flowing a mixed gas of ethylene and hydrogen (hydrogen partial pressure: 10 to 90%) at 100 to 200 sccm to obtain a predetermined amount ( 2-5400 mg) of fibrous nanocarbon 15 with a cedar aya structure.
  • FIG. 19 an example of a fibrous nanocarbon 15 having a tubular structure in which carbon nanofibers 13 are formed by joining carbon nanofibers 12 at both ends in the axial direction so as to have a predetermined number of nodes in the axial direction. This is shown in FIG. As shown in FIG. 19, the carbon nanofiber group 13C having a tubular structure is formed by bonding carbon nanofiber elements 12 at both ends in the axial direction.
  • the fibrous nanocarbon group 13C having a tubular structure has an angle of 80 to 88 degrees with respect to the axis (X) orthogonal to the axis (Y) in the stacking direction (the fiber axis direction). ( ⁇ ) (see Fig. 11 (c)).
  • This tubular structure At the stage of synthesis, the carbon nanofibrous material 12 has a shaft width of 2.5 ⁇ 0.5 nm and a shaft length of 13 ⁇ 10 nm.
  • Fig. 19 (a) shows a structure in which the axial ends of carbon nanofibrous materials 12 are joined linearly (in the same row) to form a fibrous nanocarbon group 13C having a tubular structure.
  • Figure (b) shows a fibrous nanocarbon group with a tubular structure that is joined so that the shaft ends of a pair of carbon nanofibrils 1'2 sandwich the shaft end of a single carbon nanofibril 12
  • Fig. 19 (c) shows the tubular nanofibrous nanocarbon group 13C formed by joining the carbon nanofibers 12 so that their axial ends overlap each other. It is composed of The joining method is not limited to these, but since the joining is performed at both ends of the shaft, the carbon nanofiber element group 13C is formed with nodes.
  • the carbon hexagonal mesh plane 11 of the carbon nanofiber group 12 of the carbon nanofiber group 13 C has an interplanar gap (d. 2 ) of less than 0.3400 nm, and a pure graphite interplanar gap. It is close to the size of (d 002 ) (0.3354 nm). Therefore, the carbon nanofibrous material 12 has a high degree of illness.
  • this fibrous nanocarbon 15 consisting of a close-packed packed layer of only carbon nanofibrils 12 has fibrous nanocarbon 15 in tubular structure. (Heat treatment at 700 ° C or less), it can be logically inferred that the inter-plane distance (d 002 ) of the nano-assembly composed of the carbon hexagonal network 11 is less than 0.3400 nm.
  • a specific example regarding the production of the fibrous nanocarbon 15 having a tubular structure is as follows.
  • iron or an alloy of nickel and iron (nickel content ratio (weight ratio): 30 to 70%) using iron nitrate or a mixture of nickel nitrate and iron nitrate by the same precipitation method as in the above experiment ) Is prepared.
  • the prepared catalyst is reduced at 500 for 0.5 to 10 hours while flowing a mixed gas of hydrogen and helium (hydrogen partial pressure: 20%) at 100 sccm. .
  • a mixed gas of carbon monoxide and hydrogen (hydrogen partial pressure: 10-90%) was applied at 100-200 sccm.
  • the mixture is allowed to react for 0.2 to 3 hours in a temperature range of 62 to 65 ° C.
  • fibrous nanocarbon 15 having a tubular structure while flowing to produce a predetermined amount (2 to 150 mg) of fibrous nanocarbon 15 having a tubular structure.
  • fibrous nanocarbon 15 composed of the columnar carbon nanofibrous element group 13A is heat-treated at a temperature of 160 ° C. or more in a vacuum or an inert gas atmosphere.
  • the fibrous nanocarbon 15 composed of the carbon nanofiber group 13 according to the present invention has a high degree of graphitization in the columnar structure and the tubular structure even in the as-produced state, although it has sufficient properties as an artificial graphite-based highly functional material, if it is graphitized at more than 2000 ° C, it will have a high degree of graphitization in all structures including the Sugiaya structure .
  • the heat treatment is performed at a temperature of 160 ° C. or higher, preferably 200 ° C. or higher, more preferably 280 ° C. or higher.
  • Heat treatment temperature is 1 6
  • the degree of black shading will be low. Due to the heat treatment, the ends of the carbon nanofibers 12 on the carbon hexagonal network 11 on the surface of the fibrous nanocarbons 15 are two-dimensionally looped, and three-dimensionally circular or circular in cross section. It is joined into a hexagonal dome to form one unit.
  • FIG. 20 is a schematic diagram of a heat treatment of carbon nanofibrous material 12.
  • the carbon nanofibers 12 consisting of eight layers of carbon hexagonal mesh 11 form one unit, and one unit of the carbon nanofibers 12 has a high temperature (1 (600 ° C. or higher), the end faces of the carbon nanofibers 12 composed of carbon hexagonal mesh surfaces 11 are joined to form a dome-shaped graphitized carbon nanofibers group 1 3 is formed.
  • a plurality of the graphitized carbon nanofibers 13 are laminated to form fibrous nanocarbons 15.
  • FIG. 21 shows the transmission electron beam of the high-resolution transmission electron microscope after the carbon nanofiber group 13A constituting the fibrous nanocarbon 15 This is a picture taken with changing the angle of (-30 degrees, 0 degrees, +30 degrees).
  • Figures 23 to 25 show the results obtained by changing the angle of the transmission electron beam of the fibrous nanocarbon 15 shown in Fig. 22 (magnification 150,000 times) using a high-resolution transmission electron microscope (130 degrees).
  • Figures 23), 0 degrees (Fig. 24), +30 degrees (Fig. 25)) These are photographs (magnification: 600,000).
  • Figures 26 to 28 are enlarged photographs (magnification: 320,000 times) of Figures 23 to 25.
  • Figure 26 shows -30 degrees
  • Figure 27 shows 0 degrees
  • FIG. 28 shows +30 degrees each.
  • Figure 29 is a high-resolution scanning tunneling electron microscope (STM) photograph of three types of fibrous nanocarbon 15 before and after high-temperature heat treatment.
  • the (10) plane (100, 110 plane) consisting of the carbon hexagonal mesh plane 11 cannot be theoretically observed with a scanning tunneling electron microscope, so the end face cannot be observed at high magnification.
  • carbon nanofibrous material 12 was observed in all photographs of fibrous nanocarbon 15 before the three types of heat treatment. It can be confirmed that it becomes 5.
  • Fig. 30 (a) to (c) show the carbon nanofiber group 1 in a state of manufacturing (produced at 600 ° C using an iron catalyst) constituting fibrous nanocarbon 15 having a columnar structure. It is a high-resolution transmission electron microscope photograph of the structure after high-temperature treatment at 3 A, 2000 ° C., and 2800 ° C., respectively.
  • FIG. 31 shows Raman scattering spectra before and after heat treatment of fibrous nanocarbon 15 comprising columnar carbon nanofiber group 13A. Recent studies show that carbon The peak at 1350 cm- 1 in the Raman scattering spectrum of the sample is sensitive not only to the quantity of amorphous carbon but also to the quantity of the edge face (Edge face; 10 face) of the carbon hexagonal nano-net 11 It is clear that it represents.
  • the fibrous nanocarbon 15 having a columnar structure does not show much difference between before and after graphitization.
  • the peak near 135 cm- 1 was markedly increased by heat treatment at more than 2000 ° C. You can see that it is getting smaller.
  • the fibrous nanocarbon 15 made of the carbon nanofibrous material 12 according to the present invention has a high degree of graphitization in the columnar structure and the tubular structure, and thus has high conductivity.
  • It is suitable as a (heat and electricity) feeler, and is expected to be used as an electrode material for lithium secondary batteries, as an electromagnetic wave shielding material, or as a catalyst carrier for fuel cells and organic reactions, taking advantage of its high degree of blackening.
  • it since it has a high surface area in the Feather structure, it can be expected as a supercapacitor electrode material, a methane and hydrogen storage material, a desulfurization of SOx and the like, and a denitration material of N • x and the like.
  • FIG. 32 is a schematic diagram of a first embodiment of a device for producing fibrous nanocarbon.
  • the apparatus 100 for producing fibrous nanocarbon according to the present embodiment reacts a carbon raw material 106 in a high-temperature fluidized bed using a catalyst, A device for producing 15 in which a carrier carrying a catalyst is bound via a binder.
  • a fluidized bed reactor 103 equipped with a heating means 102 for heating the inside while filling the fluidized catalyst / catalyst 101 formed as described above, and the fluidized bed reactor 103 (inert gas containing H 2 or H 2, or CO, etc.) reducing gas within the 1 0 4 first gas supply means 1 0 5 supplies, in contact with the catalyst serves fluidized material 1 0 1 fibrous
  • a carbon raw material supply means 107 for supplying a carbon raw material 106 for producing nanocarbons 15 in a gaseous state to the fluidized bed reactor 103, and an inert gas 108 containing no carbon And second gas supply means 109 for supplying the gas into the above-mentioned fluidized bed reactor 103 and the gas G and the fibrous nanocarbon 15 obtained from the fluidized bed reactor 103
  • a discharge line 111 for discharging the particles 110.
  • the fluidized-bed reactor 103 is formed of a fluidized-bed portion 103A forming a fluidized-bed, and a free-ported portion 103B communicated with an upper portion of the fluidized-bed portion 103A.
  • the reaction type of the fluidized bed includes a bubble type fluidized bed type and a jet type fluidized bed type, and the present invention may use any type.
  • the free board section 103B preferably has a larger flow path cross-sectional area than the fluidized bed section 103A.
  • the gas discharge line 111 is provided with a particle collecting means 112 for collecting the scattered particles 110.
  • the collecting means 112 include a means for collecting or collecting particles such as a cycle filter.
  • the cyclone separates the scattered particles 110 contained in the gas G by centrifugal force, and collects the scattered particles 110 containing the separated fibrous nanocarbons 15 from the bottom of the cycle mouth or the like. be able to.
  • the fluidized material forming the fluidized bed is not a fluidized material such as general silica sand or alumina, but a fluidized material for catalyst 101. Then, in the present embodiment, after the catalyst / fluid material 101 forms a fluidized bed and the carbon raw material 106 is supplied to produce the fibrous nano carbon 15, as described later, The moving material 101 is pulverized to lose its function as a fluid material, and the fibrous nanocarbon 15 grown on the catalyst can be easily collected.
  • the fluidized bed The catalyst / fluid material 10 1 (catalyst) is uniformly present, the contact efficiency with the carbon raw material 106 is improved, a uniform reaction can be performed, and the fibrous nanocarbon 1 grown on the catalyst 1 For the recovery of 5, improve the separation efficiency of fibrous nanocarbon 15 grown on each catalyst by dividing catalyst fluidized material 101 into discrete units to form constituent units or their aggregate units. Thus, fibrous nanocarbon 15 having uniform properties can be easily obtained.
  • FIG. 33 is a schematic diagram showing the production of the fluidized catalyst / catalyst 101 and the process of producing fibrous nanocarbon 15 from the carbon raw material 1 ⁇ 6 using the fluidized fluid 101.
  • catalyst-use fluid material 101 formed by bonding carrier 122 carrying metal catalyst 122 through binder 123 is used as fluid material.
  • a second gas that supplies an inert gas 108 that does not contain carbon and deactivates the flow function of the catalyst / fluid material 101.
  • a supply step is a first gas supply step of supplying a reducing gas 104, and (2) a carbon raw material 106 supplied in a gaseous state, in the presence of a catalyst 121 of the above-mentioned fluid 1101, which also serves as a catalyst.
  • a second gas
  • the catalyst / fluid material 101 according to the present invention is obtained by binding a carrier 122 carrying a catalyst 121 with a binder 123. It is something.
  • the catalyst / fluid material 101 is shown only by the outline.
  • the catalyst 1 2 1 When the catalyst 1 2 1 is supported on the carrier 1 22, the catalyst 1 2 1 is supported on the carrier 1 2 in a finer state, so that the fibrous nano carbon 1 1 Since the fiber diameter of 5 can be made finer, for example, by controlling various conditions such as the concentration of the catalyst metal nitrate, the type of surfactant to be added, and drying conditions, the fine catalyst 1 2 1 can be formed. It can be carried on a carrier 122.
  • the smaller the initial particle size the more the degree of fineness proceeds.
  • the miniaturization of is important. For example, when the particle size of the initially supported catalyst 122 is 100 nm, the refining is 100 nm, and when the particle size of the initial supported catalyst 121 is 100 nm. The size can be reduced to 1 nm.
  • the obtained fluidized catalyst / catalyst 101 was filled in a fluidized bed reactor 103, and reduced gas was supplied from a first gas supply means 105.
  • H 2 as H 4 or an inert gas containing H 2 is supplied.
  • the reducing gas 104 such as H 2
  • the catalyst 121 supported on the carrier 122 is converted from a nitrate form into a metal, and the function as the catalyst 122 is exhibited.
  • the carbon raw material 106 is supplied in a gaseous state, and fibrous nanocarbon 15 is grown on the catalyst 122.
  • an inert gas 108 is separately introduced into the fluidized bed reactor 103 so that predetermined fluid conditions are obtained.
  • the carbon raw material 106 may be any compound as long as it is a compound containing carbon, for example, alkanes such as methane, ethane, propane and hexane; unsaturated organic compounds such as ethylene, propylene and acetylene; Examples include aromatic compounds such as benzene and toluene, and petroleum and coal (including coal conversion gas), but the present invention is not limited to these.
  • the fibrous nanocarbon 15 is generated and proceeds from the catalyst 121 of the fluid material 101 serving as a catalyst. For this reason, in order to obtain a finer fibrous nano carbon 15, in at least one of the first gas supply step, the carbon supply step, and the fibrous nano carbon generation step, hydrogen (H 2 ) By reducing the reducing gas 104 such as carbon monoxide (CO), the catalyst 121 is finer when the catalyst 121 supported on the carrier 122 is metallized. What should I do?
  • the size of the catalyst 122 when the initial particle size of the catalyst 122 is, for example, about 100 nm, the size can be reduced to about 1 nm by the size reduction. Therefore, in each of the above steps (the first gas supply step, the carbon supply step, and the fibrous nanocarbon generation step), the fibrous state obtained by adjusting various conditions such as the reducing gas 104 and the temperature is adjusted. Fiber diameter of nano carbon 15 ⁇ fiber structure can be controlled. Thereafter, when the reaction is completed, as shown in FIG. 33 (e), an inert gas 108 containing no carbon is supplied, and the inside of the fluidized bed reactor 103 is reacted by the heating means 102.
  • the binder 123 forming the catalyst-use fluidized material 101 is decomposed by thermal decomposition or the like, and the particle size of the fluidized material 101 is reduced to be finer. By doing so, the function as a fluid material is lost.
  • the fibrous nanocarbon 15 can be separated from the catalyst 121 or the carrier 122 by, for example, eliminating the catalyst 121 or the carrier 122 in the grown root part. An example of this separation is shown in FIG.
  • the catalyst / fluid material 101 has an average particle size of 0.2 to 2 Omm so as to exhibit a good fluidity function in the fluidized bed reactor 103. This is because by setting the average particle size of the catalyst / fluid material 101 within the above range, the fluidized bed reactor 103 can be vigorously stirred in the fluidized bed reactor 103, and as a result, a uniform reaction field can be formed. Because you can.
  • the catalyst / fluid material 101 can be prepared by a conventional granulation method (for example, a rotary pan granulation method, a rotating drum granulation method, a fluidized bed granulation method, etc., or a compression granulation method).
  • Granulation method forced granulation method such as extrusion granulation method, etc.
  • the flow rate in the fluidized bed reactor 103 is preferably in the range of 0.2 to 0.2 mZs when the particle size of the catalyst / fluid material 101 is 0.2 mm. This is because, as shown in FIGS. 35 and 36, when the flow velocity is less than 0.02 m / s, the fluidization of the catalyst / fluid material 101 does not take place and does not function as a fluidized bed. When the flow rate exceeds 0.2 m / s, the fluidized material 101 scatters out of the fluidized bed reactor 103 and the reaction time cannot be controlled, which is not preferable.
  • the superficial velocity of the fluidized bed may vary from 2 to 8 times the fluidization start velocity (Umf) of the fluid medium to be used, depending on various conditions such as the raw materials and additives used. Different optimum values may be selected and set. In other words, the superficial superficial velocity is set to a gas flow velocity 2 to 8 times larger than the fluidization start velocity. This superficial velocity is maintained at a selected optimum value mainly by controlling the amount of gas supplied from the inert gas supply means.
  • the contact reaction temperature between the catalyst 121 of the catalyst fluidized material 101 and the carbon raw material 106 is 300 to 130 ° C.
  • the pressure is between 0.1 and 25 atm. This is because if the temperature and the pressure are outside the above ranges, good fibrous nanocarbon 15 cannot be produced.
  • the carbon raw material 106 was brought into contact with the catalyst 121 of the fluidizing material 101 for a certain period of time in a reducing gas 104 at a hydrogen partial pressure of 0 to 90%, We are trying to obtain fibrous nano carbon 15.
  • H 2 is supplied in order to further promote the growth of fibrous nanocarbon 15 that grows on catalyst 121 of catalyst / fluid material 101.
  • hydrogen in the supplied carbon raw material 106 can be used.
  • various conditions such as temperature, pressure, time, and gas atmosphere may be independently controlled. Good. Specifically, for example, when the reduction and refinement of the catalyst 121 is performed in the first reducing gas supply step, the temperature is set lower than the production condition of the fibrous nanocarbon 15 in the carbon raw material supply step. May be.
  • the catalyst / fluid material 101 is constituted by a catalyst 122 supported on the surface of a carrier 122 or an aggregate thereof.
  • the carrier 122 has a particle size of about 4011 m, but is not particularly limited.
  • the above-mentioned aggregate refers to one in which several carriers 122 self-aggregate to have an average particle size of about 100 to 200 nm.
  • the material of the carrier 122 for example, carbon black (CB), alumina (A l 2 0 3), silica (S i), Kei sand (S i 0 2), and the like ⁇ Honoré amino silicates such
  • the material is not limited to these as long as it has a function of supporting the catalyst 121.
  • the carrier 122 preferably has an average particle size of 200 m or less.
  • the carrier 122 or the aggregate thereof formed by carrying the catalyst 121 on the surface thereof is combined with the binder 123 to form a combined fluidized material 101 having an average particle diameter of 0.2 'and 2 to 20 mm.
  • the catalyst 121 examples include Fe, Ni, Co, Cu, Mo, and a mixture of at least two or more thereof, but the present invention is not limited thereto.
  • a car pump rack is put into an aqueous solution of iron nitrate or iron acetate, and the surface of the car pump rack is put on the surface. Fe may be carried.
  • the catalyst 121 is supported on the surface 122a and the pores 122b of the support 122.
  • the binder 123 include a polymer adhesive, an inorganic adhesive, and other materials having a binding action.
  • polymer-based adhesive examples include phenol-based resin (maximum operating temperature: ⁇
  • urea-based resin maximum operating temperature: up to 288 ° C
  • epoxy-based resin maximum operating temperature: up to 288 ° C
  • polyimide-based resin maximum operating temperature: up to 3 4
  • a binder made of a thermosetting polymer material such as 9 ° C. This is because, as described later, in the fluidized bed reactor 103, the carbon raw material 106 is supplied at a high temperature (300 ° C. or higher) to produce the fibrous nano carbon 15, This is because reflow (melting) in a high temperature state can be suppressed.
  • the inorganic adhesive for example, it can be mentioned S i 0 2, A 1 2 0 3 , etc., the present invention is not limited thereto.
  • binding materials having a binding action examples include tars, heavy oil, and the like, but the present invention is not limited thereto.
  • fibrous nanocarbon 15 is produced at about 480 ° C., and thereafter, an inert gas 108 containing no carbon is supplied, and heating means 10
  • the binder 123 is thermally decomposed by heating at a stroke to about 800 ° C. by means of 2 so that the catalyst / fluid material 101 is subdivided into the unit of the carrier 122.
  • thermal decomposition is considered to proceed somewhat, but under the condition without oxygen, it is considered that coking and carbon sintering actually proceed along with thermal decomposition.
  • gasification with H 2 or combustion treatment in an environment where fibrous nanocarbon 15 does not burn may be performed at 800 ° C. or higher.
  • the above tars can be gasified and removed with H 2 , CO or the like at a temperature of 800 ° C. or more.
  • FIG. 37 is a schematic view of a second embodiment of the apparatus for producing fibrous nanocarbon.
  • the apparatus 200 for producing fibrous nanocarbon according to the present embodiment is different from the apparatus shown in FIG. 1 in that the fluid material 101 is flowed so as to be able to flow continuously.
  • the inside of the fluidized bed section 103 of the fluidized bed reactor 103 is divided into three to form the first to third fluidized chambers 203A-1, 203A-2, 203A-3.
  • the first fluid chamber 2 0 3 A-1 is reduced
  • a first gas supply means 105 for supplying gas 104 is provided, and a carbon material supply means 107 for supplying carbon material 106 is provided in the second fluid chamber 203 A-2.
  • the flow chamber 203 A-3 is provided with a second gas supply means 109 for supplying an inert gas 108 containing no carbon.
  • a plurality of partition plates 202 which are vertically and vertically suspended, are alternately provided in the fluidized bed reactor 103, so that the inside is formed while forming the fluidized bed.
  • the second fluid chamber is 203 A—2, and the eighth chamber 203 A—38 and the ninth room 203 A—39 are third fluid chambers 203 A—3.
  • the free board section 103B is common.
  • a fluidized material supply means 204 for supplying a fluidized material for catalyst 101 to the first fluidized chamber 203A-1 is provided, and the fluidized material for catalyst 101 is sequentially provided. I am trying to supply. Thereby, it can be manufactured continuously.
  • the first fluidized chamber 203A-1 stays for 7 hours, and the second fluidized chamber 203A-2
  • the position of the partition plate 202 and the volume in each chamber so that the residence time of one hour and the residence time of the third fluid chamber 203 A-3 can be one hour, the fluid material for catalyst 1 01 is allowed to stay in each room at any time.
  • the reducing gas 106 is supplied, so that the catalyst function of the catalyst-fluid material 101 is exhibited, and the second fluid chamber 203A-2 In this process, by supplying a carbon raw material gas 106, it is brought into contact with a catalyst-use fluid material 101 exhibiting a catalytic function to produce efficient fibrous nanocarbon 15;
  • the inert gas 108 containing no carbon is supplied and By raising the temperature higher than the reaction temperature, the catalyst function of the catalyst / fluid material 101 is lost and it is finely divided into pieces, and scattered together with the gas G as scattered particles 110 with a particle size of 40 to 100 nm. And collect them.
  • the catalyst and fluidizing material 101 that does not scatter is recovered by a separate recovery means.
  • a fluidized bed reactor comprising a first fluidized chamber and a second fluidized chamber to constitute a fluidized bed portion; and a fluidized bed reaction comprising a fluidized bed portion comprising the third fluidized chamber from the third fluidized chamber. It is also possible to provide a container.
  • FIG. 38 is a schematic diagram of a third embodiment of the apparatus for producing fibrous nanocarbon. As shown in FIG. 38, in the present embodiment, the fluidized-bed reactor 103 has each independent function and can be manufactured continuously.
  • the apparatus 300 for producing fibrous nanocarbon reacts a carbon raw material 106 in a high-temperature fluidized bed using a catalyst
  • This is a device for producing 15 which is filled with a catalyst / fluid material 101, provided with a heating means 102 for heating the inside, and supplies a reducing gas (H 2 or CO) 104
  • a first fluidized bed reactor 301 having a first gas supply means 105 to be transferred, and a transfer means 3002 for transferring a catalyst / fluidized material 101 from the first fluidized bed reactor 310
  • a carbon raw material supply means 107 for supplying a carbon raw material 106 for producing fibrous nanocarbon 15 in a gaseous state by bringing the raw material into contact with the catalyst / fluid 3 ⁇ 4 ′′ 101.
  • the first fluidized-bed reactor 301, the second fluidized-bed reactor 303, and the third fluidized-bed reactor 304 are provided with a fluidized-bed portion 3 as in the first embodiment. It is configured to include 0 1 A, 3 0 3 A, 3 0 5 and free port sections 3 0 1 8, 3 0 3 B, 3 0 5 B, respectively.
  • the reducing gas 106 is supplied, so that the catalyst function of the catalyst-fluidized material 101 is exhibited.
  • the mixture is supplied to the second fluidized bed reactor 303 by a transfer means 302 such as a gas stream.
  • the second fluidized bed reactor 303 by supplying the carbon raw material gas 106, it is brought into contact with the catalyst-use fluidized material 101 exhibiting the catalytic function, thereby achieving efficient fibrous nanocarbon. Produce 1-5.
  • the liquid is supplied to the third fluidized bed reactor 305 by a transfer means 304 such as a gas stream.
  • the inert gas 108 containing no carbon is supplied and the temperature is made higher than the reaction temperature, so that the catalytic function of the fluid material 101 also serves as a catalyst. It is made to be finely disintegrated and disintegrated, and scattered particles 110 having a particle size of 40 to 100 nm are scattered and collected together with the gas G.
  • fibrous nanocarbon 15 can be produced continuously.
  • the non-scattering fluid material 101 is separately collected by a collecting means.
  • Examples of the transfer means 302, 304 include, in addition to the above-described means such as air flow transfer, means for cutting out and using a feeder, etc., and transfer the fluid material 101 and the like. It is not limited to this as long as it can do it. Further, according to the residence time of the fluid material 101 in each of the reactors 301, 303, and 305, the volume in the reactors 301, 303, and 305 is determined. You may change it.
  • reaction conditions can be adjusted by setting the volume of the first fluidized bed reactor 301 to 7 times the volume of the second and third fluidized bed reactors 303, 305. it can.
  • first to third fluidized bed reactors 30 1, 30 3, and 30 5 have the same volume, and the first fluidized bed reactors 30 1 are connected in series as seven. Is also possible.
  • the throughput can be adjusted by providing a plurality of first fluidized bed reactors 301 as necessary.
  • the throughput can be adjusted by providing a plurality of second fluidized bed reactors 303.
  • the third fluidized bed reaction It is also possible to adjust the amount of processing by providing a plurality of containers 3 05.
  • FIG. 39 is a schematic diagram of a fourth embodiment of the apparatus for producing fibrous nanocarbon. As shown in FIG. 39, in the present embodiment, in the third embodiment, two second fluidized-bed reactors 303 are provided, and it is possible to manufacture the reactor under different reaction conditions. And
  • the production apparatus 400 for fibrous nanocarbon reacts carbon raw material 106 in a high-temperature fluidized bed using a catalyst
  • a device for producing the catalyst fluid which is provided with a heating means 102 for heating the inside while filling the inside with the catalyst / fluid material 101 and a reducing gas (H 2 or CO) 104
  • Fluidized-bed reactor having first gas supply means 105 for supplying gas to the inside
  • a first-stage second fluidized bed reactor 403-1 having a carbon raw material supply means 107 for supplying a carbon raw material 106 for producing nano carbon 15 in a gaseous state, Transfer means for transferring catalyst fluidized material 101 from second fluidized bed reactor 403-1 of the first stage
  • Carbon raw material supply means 10 for supplying carbon raw material 106 for producing fibrous nano carbon 15 by bringing it into contact with catalyst fluidizing material 101 in addition to containing 40 2-2
  • the reaction product and the fluidized material are transferred from the second fluidized bed reactor 400-3-2 of the second stage having 7 and the second fluidized bed reactor 400-3-2 of the second stage.
  • a third fluidized bed reactor 300 having a transfer means 304 and having a second gas supply means 109 for supplying an inert gas 108 containing no carbon therein; And a discharge line 111 for discharging the gas G and the scattered particles 110 from the fluidized bed reactor 300 of the present invention.
  • the temperature of the heating means 102 of the second fluidized bed reactor 403-1 of the first stage is smaller than that of the second fluidized bed reactor 4032 of the second stage.
  • the reaction temperature in the second fluidized bed reactor 403-1 of the first stage is increased.
  • the reaction temperature in the second fluidized bed reactor 403-1 of the first stage is increased.
  • the second fluidized bed in the second stage By setting the reaction temperature to 63 ° C. in the reactor 403-2, the tube-like (tubular) carbon nanofibers are placed under the feather-like carbon nanofiber group 13B.
  • a composite obtained by growing fibrin group 13A can be produced (see Fig. 41).
  • FIG. 42 is a schematic view of a fifth embodiment of the apparatus for producing fibrous nanocarbon.
  • the fluidized bed portion 103 of the fluidized bed reactor 103 is provided with a high-speed fluidized bed portion.
  • the fluid material 101 serving as a catalyst is vigorously stirred in A-1 so as to promote the miniaturization due to the wear of the fluid material 101 and the decrease in the binding force of the binders 123. .
  • the low-speed side fluidized bed portion 503 A-2 above the fluidized bed portion 103 A is scattered.
  • the flow velocity is controlled to about 0.1 m / s in order to prevent the flow rate.
  • the flow velocity is set to 0.2 to 1.2 m / s. It is set to about O mZ s, and the catalyst / fluid material 101 is vigorously stirred to reduce the fluid material 101 by abrasion.
  • an impingement member 501 is disposed in the high-speed fluidized bed portion 503A-1 and the catalyst and fluidizing material 101 is positively applied to the impingement member 501. It is possible to further promote miniaturization by causing collisions.
  • FIG. 44 is a schematic view of an apparatus for producing fibrous nanocarbon according to a sixth embodiment.
  • high-speed gas blowing means for blowing high-speed gas 601 from the side wall into the fluidized-bed reactor 103.
  • the catalyst / fluid material 101 was vigorously stirred by the injected high-speed gas 601, Fineness due to abrasion of material 101 and decrease in bonding strength of binder 123 We are trying to promote thinning.
  • N 2 gas or an inert gas is blown in as a high-speed gas 601 at a flow rate of 10 m / s from the high-speed gas blowing means 602 to vigorously agitate the catalyst / fluid material 101, Miniaturization due to wear of 101 can be achieved.
  • the coarse scattered particles 110 b separated by the particle recovery means 112 a are supplied again into the fluidized bed reactor 103, they are mixed with the high-speed gas 601 by the mixing means 603.
  • the coarse scattered particles 110b together with the high-speed gas 601 and blowing them the physical destructive force is improved to reduce the fineness due to the wear of the catalyst / fluid material 101 and to reduce the binding force of the binder 123. It is possible to further promote the miniaturization due to the reduction.
  • the fine scattered particles 110a containing the fibrous nanocarbon 15 can be separated and recovered by the separation means 112b on the further downstream side.
  • a zone having a high flow velocity is formed locally in the fluidized catalyst / catalyst 101 in the fluidized bed reactor 103, so that the fluidized material 101 Acceleration of the fluidizing material 101 with the wall surface of the reactor 103 or the collision member 503 or blowing of the high-speed gas 601 facilitates the miniaturization of the fluidizing material 101 due to wear and cracks due to collision between the fluidizing material 101 and the collision member 503.
  • the recovery efficiency of fibrous nano carbon 15 is improved.
  • the fibrous nano carbon 15 obtained in this way is made of transparent conductive material (conductive ink, conductive film, conductive plastic, ITO substitute, transparent electromagnetic wave shielding material, antistatic material (solar cell, mirror ), Transparent ultraviolet shielding material (for example, for cosmetics, vehicle glass coating, etc.), high-grade electric 'heat conductive materials (rollers for printers, facsimile machines, etc.)', high-grade conductive 'radiation devices, ceramic mixed materials, carbon-carbon composite materials , Battery conductive materials, etc., gas adsorption or storage materials such as methane, hydrogen storage materials, hydrogen separation materials, separation materials such as butane, capacitor electrodes, electric desalination electrodes, seawater decomposition (electrolysis tanks) oxygen electrode materials, Battery materials (lithium rechargeable batteries, NaS batteries, air rechargeable batteries, long-life alkaline battery conductive materials), FED materials, Nano-lithographic semiconductors, lead wires, MLUD I
  • transparent conductive material conductive ink, conductive film,
  • a first gas supply step of supplying a reducing gas by using a catalyst / fluid material obtained by binding a carrier carrying a metal catalyst via a binder as a fluid material A carbon raw material supply step of producing carbon nanofibers in the presence of a catalyst of a fluid that also serves as a catalyst, and a step of supplying a gas that does not contain carbon to lose the flow function of the fluid that also serves as a catalyst. 2), the catalyst is uniformly present in the fluidized bed, the contact efficiency with the raw material is improved, and a uniform reaction is carried out.
  • the fluidizing material that also functions as a catalyst is divided into small pieces to form constituent units or aggregates of carriers, thereby improving the efficiency of separation of fibrous nanocarbon grown on each catalyst. Let me mean The catalyst can be obtained in such properties.
  • Example 1 is a fibrous nanocarbon having a columnar structure.
  • iron nitrate was added to 200 ml of pure water to make 4 g of iron catalyst.
  • the F e 2 0 3 was prepared Te smell in the alumina boat loaded onto (length 10 mm, width 2. 5 mm, the depth 1. 5 mm (outer surface value)), an alumina tube (inner diameter 10 cm), hydrogen By performing a reduction treatment (at 480 ° C for 48 hours) while flowing a mixed gas of hydrogen and helium (hydrogen partial pressure: 10%) at 100 sccm, 4.02 g of an iron catalyst was obtained.
  • the fibrous nanocarbon of Example 1 was subjected to a high-temperature heat treatment. ⁇ That is, the fibrous nanocarbon prepared in Example 1 was
  • Heat treatment was performed at 000 ° C and 2800 ° C for 10 minutes.
  • This example is a fibrous nanocarbon having a feather structure.
  • a nickel catalyst was prepared by the precipitation method of Example 1 using nickel nitrate. Specifically, 4 to make g of a nickel catalyst, the pure water 200 meters l, nitrate - Tsu Kell (N i NO 3 ⁇ x H 2 O: Wako first grade reagent) 1 9. added 82 g Then, mix slowly and prepare a solution. Ammonia bicarbonate in the solution
  • the fibrous nanocarbon of Example 3 was subjected to a high-temperature heat treatment.
  • the fibrous nanocarbon prepared in Example 3 was heat-treated at 2,000 ° C. and 2800 ° C. for 10 minutes in an argon atmosphere.
  • the present example is a fibrous nanocarbon having a tubular structure.
  • An iron-nickel alloy catalyst was prepared by the precipitation method of Example 1 using iron nitrate and nickel nitrate.
  • nitrate nickel pure water 200m 1 (N i N0 3 ⁇ xH 2 O: Wako first grade reagent) 1 1. 90 g and iron nitrate
  • the prepared iron-nickel oxide was placed on an alumina boat (length: 10 mm, width: 2.5 mm, depth: 1.5 mm (outside value)), and placed in an alumina tube (inside diameter: 10 cm).
  • a reduction treatment 48 hours at 480 ° C.
  • a mixed gas hydrogen partial pressure: 10%
  • the fibrous nanocarbon of Example 5 was subjected to a high-temperature heat treatment.
  • the fibrous nanocarbon prepared in Example 5 was heat-treated at 2000 ° C and 2800 ° C for 10 minutes in an argon atmosphere.
  • FIG. 6 is a photograph obtained by magnifying the image observed at a magnification of 400,000 times to 8 times
  • FIG. 18 is a photograph obtained by photographing the image observed at a magnification of 400,000 times in (a) and (b).
  • c) is a photograph (3.2 million times) of (b) magnified 8 times more.
  • the fibrous nanocarbon obtained in Examples 1 to 6 was observed with a scanning tunneling electron microscope (Nanoscope III (DI, U.S.A.)).
  • Fig. 30 is a photograph of the fibrous nanocarbon of Example 1
  • FIG. 7 ( b) is a photograph observed at an angle different from that in Fig. 30 (c)
  • Fig. 15 is a photograph observed at low magnification
  • Fig. 29 is a photograph observed at high magnification.
  • Example 1 Placed in Example 1 above precipitation methods in prepared iron catalyst 50 mg of quartz port (length 10 mm s width 2. 5 mm, the depth 1. 5 mm (outer surface value)), a quartz tube (inner diameter 4. 5 cm), reduce the mixture at 500 ° C for 2 hours while flowing a mixed gas of hydrogen and helium (hydrogen partial pressure: 20%) at 100 sccm. Thereafter, the reaction was carried out at a temperature of 580 ° C for 60 minutes while flowing carbon monoxide gas at 100 sccm, but the production of fibrous nanocarbon was not completed.
  • quartz port length 10 mm s width 2. 5 mm, the depth 1. 5 mm (outer surface value)
  • a quartz tube inner diameter 4. 5 cm
  • Example 1 50 mg of the nickel catalyst prepared by the precipitation method of Example 1 above was placed on a quartz boat (length: 10 mm, width: 2.5 mm, depth: 1.5 mm (outer surface value)), and a quartz tube (with an inner diameter of 4 mm) was used. 5 cm), reduce the mixture at 500 ° C for 2 hours while flowing a mixed gas of hydrogen and helium (hydrogen partial pressure: 20%) at 100 sccm. After that, the mixture was reacted at a temperature of 580 ° C for 60 minutes while flowing a mixed gas of carbon monoxide and hydrogen (hydrogen partial pressure: 20%) at 100 sccm, but failed to produce fibrous nanocarbon.
  • a quartz boat length: 10 mm, width: 2.5 mm, depth: 1.5 mm (outer surface value)
  • a quartz tube with an inner diameter of 4 mm
  • Example 5 50 mg of the nickel catalyst prepared by the precipitation method of Example 1 above was placed on a quartz boat (length: 10 mm, width: 2.5 mm, depth: 1.5 mm (outside value)), and a quartz tube (with an inner diameter of 4.5 mm) was used. cm), a mixture of hydrogen and helium (hydrogen partial pressure: 20%) is passed at 100 sccm and reduced at 450 ° C for 2 hours. Thereafter, a mixed gas of carbon monoxide and hydrogen (hydrogen partial pressure: 20%) was flowed at 100 sccm at 580 ° C. At 60 ° C for 60 minutes, but failed to produce fibrous nanocarbon. ⁇ Comparative Example 5 >>
  • Example 1 50 mg of the nickel catalyst prepared by the precipitation method of Example 1 above was placed in a quartz boat (length: 10 mm, width: 2.5 mm, depth: 1.5 mm (outer surface value)), and a quartz tube (inner diameter) was used. (4.5 cm) in a mixed gas of hydrogen and helium (hydrogen partial pressure: 20%) at a flow rate of 100 sccm and reduced at 500 ° C for 2 hours. Thereafter, the mixture was reacted at a temperature of 680 ° C for 60 minutes while flowing a mixed gas of carbon monoxide and hydrogen (hydrogen partial pressure: 20%) at 100 sccm, but failed to produce fibrous nanocarbon.
  • a mixed gas of hydrogen and helium hydrogen partial pressure: 20%
  • the carrier was loaded with 5% of the above catalyst.
  • a phenolic resin-based polymer adhesive maximum operating temperature: up to 360 ° C
  • a fluid that doubles as a catalyst was granulated.
  • the catalyst was activated by the first gas supply using H 2 / He (20/80) and pre-treated for 7 hours. Next, ethylene (C 2 H 4 ) was used as the carbon raw material, C 2 H 4 / H 2 (4/1) was supplied, and reacted for 1 hour in a fluidized bed reactor at 480 ° C. Manufactured. After the production of the fibrous nanocarbon, in a H 2 ZHe (20/80) atmosphere, the temperature was raised to thermally decompose the binder, to make the catalyst / fluidizing material finer, to be scattered, and to be recovered by the recovery means.
  • FIG. Figure 46 (a) is 10,000 times and the scale size is 1 im.
  • Fig. 46 (b) is a magnification of 100,000 times, and the size of the scan is 1 nm.
  • FIG. Figure 47 (a) is 10,000 times and the scale size is 1 im.
  • Fig. 47 (b) is a 50,000-fold scale, and the size of the scan is 100 nm.
  • a fibrous nanocarbon was produced in the same manner as in Example 1, except that Fe—Ni (8/2) was used as the catalyst.
  • FIG. 48 shows a micrograph of the obtained fibrous nanocarbon.
  • Fig. 48 (a) is 10,000 times, and the scale size is 1 // m.
  • Figure 48 (b) is a 100,000-fold scale with a scale size of 1 nm. Industrial potential
  • the carbon nanofibrous material and the fibrous nanocarbon according to the present invention have a high degree of graphitization or a high surface area, high-performance materials (resin, metal, ceramitas, carbon-reinforced material, heat-radiating material) Materials, catalyst carriers, gas adsorption, composite materials for living organisms, etc.).
  • high capacity can be exhibited in hydrogen storage and adsorption / desorption, lithium storage and adsorption / desorption, catalytic action, nitrogen oxide adsorption, and the like.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Thermal Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Textile Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Composite Materials (AREA)
  • Inorganic Fibers (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

一方向に伸びる中心軸を有する炭素ヘキサゴナル網面11から炭素ナノ繊維素12を構成し、この炭素ナノ繊維素12を三次元的に集合して繊維状ナノ炭素を形成した。

Description

炭素ナノ繊維素及び繊維状ナノ炭素並びに繊維状ナノ炭素の製造方法及びその 装置 技術分野
本発明は、 炭素ナノ繊維素 (カ明ーボンナノロッド Carbon Nano- Rod) 及び繊維 状ナノ炭素並びに繊維状ナノ炭素の製造方法及びその装置に関する。 背景技術 書
近年、 ナノ単位 (^!!!ニ^億分の !!!) の炭素材料として、 例えば、 カーボン ナノファイバ (1983年、 アメリカ、 Hyperion Catalytic International会社、 特 開昭 62 - 5000943号公報、 Multi-walled Nanotube, The number of walls varies , with 8 tol5 being typical. The outside diameter of the tube is approxi mately 10 to 15 nanometers. The inside diameter is approximately 5 nanom eters. Nanotubes are typically tens of microns in length. Aspect ratios on the order of 100 to 1000) , (H. P. Boehm, Carbon, 11, 583 (1973) , H. Mu rayama, T. Maeda, Nature, 245N 791、 Rodriguez, N. M. 1993. J. Mater. Res. 8 : 3233) 、 カーボンナノチューブ (S. Iijima, Nature, 354, 56 (1991) , S. Iijim a, ) が発見されて微細炭素材として注目されている。
従来のカーボンナノファイバの構造の概略を第 4 9図に示す。 従来、 カーボン ナノファイバにおいては、 第 4 9図に示すように、 カーボンのへキサゴナル網面 の板状体の積層構造からなる三種類の構造が提案されている (Rodriguez, N. M. 1993. J. Mater. Res. 8: 3233) 。 これら炭素材料は、 その 3次元構造として、 第 4 9図 (a ) のプレートリット (Platelet) 構造、 第 4 9図 (b ) のへリング ボーン (Herringbone) 又はフイシュボーン (Fishbone) 構造、 第 4 9図 (c ) のチューブラ (Tubular) 、 リボン (Ribbon) またはパラレール (Paral lel) 構 造に分類されてきた。 し力、しながら、 従来のカーボンナノファイバは、 規定され る単純構造から多様性がなく、 多面な機能を同時に満足する材料としてなつてい ない。
近年、 カーボンナノファイバを用いた用途研究がなされており、 例えば、 水素 やリチウムの吸蔵や吸脱着、 触媒作用、 窒素酸化物の吸着等が挙げられる。 しか しながら、 これらの用途のカーボンナノファイバにおいては、 対象物質に対する 高レ、吸蔵量が要求されるものの、 いまだに好適なものが出現していないのが現状 である。
よって、 多様な炭素ナノ繊維素の寸法、 形状が多様な配向や集積により、 極め て多様な構造を有する繊維状ナノ炭素を系統的に調製することで多様な特性を同 時に付与できる繊維状ナノ炭素物質の出現が強く望まれている。
また、 従来、 カーボンナノファイバの製造においては、 第 5 0図に示すような 基礎反応器が利用されている。 第 5 0図に示すよ に、 従来の基礎反応器は、 加 熱手段 0 2を備えた反応管 0 3内のボート 0 4上の触媒 0 5に炭素源の原料ガス 0 1を接触させることにより、 該触媒 0 5にカーボンナノファイバ 0 6を成長さ せるといういわゆるバッチ式である。 このため、 第 5 0図に示すような従来の装 置においては、 大量製造を行うことができないという問題があった。
そこで、 例えば、 第 5 1図に示すように、 原料ガス 0 1を反応管 0 3内に供給 しながら加熱手段 0 2により加熱することによりカーボンナノファイバを製造す る気相流動法が考えられている。
しかしながら、 第 5◦図に示したような基礎反応器や第 5 1図に示したような 気相流動法においては、 反応管 0 3内が温度分布を生じやすく、 不均一となりや すいという問題があると共に、 成長した生成物が反応管 0 3の内壁面に付着しや すく、 生成物の回収が困難になってしまうという問題がある。 この結果、 スケー ルアップが難しいという問題がある。
本発明は、 上記事情に鑑み、 水素やリチウムの吸蔵や吸脱着、 触媒作用、 窒素 酸化物の吸着等において、 高い能力を発揮しうる炭素ナノ繊維素及び当該炭素ナ ノ繊維素が配列して集積した繊維状ナノ炭素並びに当該繊維状ナノ炭素の製造方 法及びその装置を提供することを課題とする。 発明の開示
前述した課題を解決するための第 1の発明は、 一方向に伸びる中心軸を有する 炭素へキサゴナル網面からなることを特徴とする炭素ナノ繊維素である。
第 2の発明は、 第 1の発明において、 前記炭素へキサゴナ /レ網面の軸幅(D)が 、 2 . 5 ± 0 . 5 n mであり、 炭素へキサゴナル網面の長さ(L)が、 1 7 ± 1 5 n mであることを特徴とする炭素ナノ繊維素である。
第 3の発明は、 第 1又は第 2の発明において、 前記炭素へキサゴナル網面が、 2〜1 2層積層されていることを特徴とする炭素ナノ繊維素である。
第 4の発明は、 第 1から第 3の発明のいずれかの炭素ナノ繊維素が複数集合して なることを特徴とする繊維状ナノ炭素である。
第 5の発明は、 第 4の発明において、 前記炭素ナノ繊維素が、 三次元的に最密 充填された状態で積層していることを特徴とする繊維状ナノ炭素である。
第 6の発明は、 第 4又は第 5の発明において、 前記炭素ナノ繊維素が中心軸を 互いに平行とするように複数積層して炭素ナノ繊維素群を構成していることを特 徴とする繊維状ナノ炭素である。
第 7の発明は、 第 6の発明において、 前記炭素ナノ繊維素群が、 前記炭素へキ サゴナル網面を 2 ~ 1 2層積層してなる前記炭素ナノ繊維素と、 前記炭素へキサ ゴナル網面を 2〜1 2層積層してなる前記炭素ナノ繊維素との間に、 ナノ空隙を 有しつつ三次元的に積層されたものであることを特徴とする繊維状ナノ炭素であ る。
第 8の発明は、 第 4の発明において、 前記炭素ナノ繊維素が軸端部で直列接合 して軸方向にナノ繊維素群を構成してなることを特徴とする繊維状ナノ炭素であ る。
第 9の発明は、 第 8の発明において、 前記炭素ナノ繊維素の前記軸端部が熱処 理により接合していることを特徴とする繊維状ナノ炭素である。
第 1 0の発明は、 第 6の発明において、 前記炭素ナノ繊維素群が、 前記炭素ナ ノ繊維素の積層方向の繊維軸と直交する軸に対して、 0度より大きく 2 0度未満 の配列角度で配列することにより、 柱状 (Columnar) 形をなしていることを特徴 とする繊維状ナノ炭素である。
第 1 1の発明は、 第 6の発明において、 前記炭素ナノ繊維素群が、 前記炭素ナ ノ繊維素の積層方向の繊維軸と直交する軸に対して、 2 0度より大きく 8 0度未 満の配列角度で配列することにより、 羽状 (Feather) 形をなしていることを特 徴とする繊維状ナノ炭素である。
第 1 2の発明は、 第 1 0又は第 1 1の発明において、 前記炭素ナノ維素群が杉 綾構造であることを特徴とする繊維状ナノ炭素である。
第 1 3の発明は、 第 1 0又は第 1 1の発明において、 7 0 0 °C以下の熱処理条 件において、 前記炭素へキサゴナル網面の面間距離 (d。。2 ) が 0 . 5 0 0 η m未満であることを特徴とする繊維状ナノ炭素である。
第 1 4の発明は、 第 1 0から第 1 2の発明のいずれかにおいて、 前記炭素ナノ 繊維素の集合体の繊維幅が 8〜 5 0 0 n mであり、 繊維のァスぺク ト比 (繊維長 /繊維幅) が 1 0以上であることを特徴とする繊維状ナノ炭素である。
第 1 5の発明は、 第 8の発明において、 前記炭素ナノ繊維素群が、 炭素ナノ繊 維素の積層方向の繊維軸と直交する軸に対して、 8 0度以上 8 8度までの配列角 度で配列することにより、 チューブ状 (Tubular) 形をなしていることを特徴と する繊維状ナノ炭素である。
第 1 6の発明は、 第 1 5の発明において、 炭素ナノ繊維素の集合体の繊維幅が 8〜8 0 n mであり、 繊維のアスペク ト比 (繊維長/繊維幅) が 3 0以上である ことを特徴とする繊維状ナノ炭素である。
第 1 7の発明は、 第 1 0から第 1 6の発明のいずれかにおいて、 繊維軸と直交 する方向の断面構造が多角形であることを特徴とする繊維状ナノ炭素である。 第 1 8の発明は、 第 1 0から第 1 7の発明のいずれかにおいて、 1 6 0 0 °C以 上で高温熱処理され、 表面にある前記炭素ナノ繊維素の末端が二次元的にはルー プ状に形成され、 三次元的にはドーム状に形成されていることを特徴とする繊維 状ナノ炭素である。
また、 前述した課題を解決するための第 1 9の発明は、 炭素原料を触媒を用い て高温の流動層中で反応させ、 炭素ナノ繊維素の集合体からなる繊維状ナノ炭素 を製造する方法であって、 金属触媒を担持した担体をバインダーを介して結合し てなる触媒兼用流動材を流動材として用い、 還元ガスを供給する第 1のガス供給 工程と、 前記炭素原料をガス状態で供給し、 前記触媒兼用流動材の前記金属触媒 の存在下で炭素ナノ繊維素を製造する炭素原料供給工程と、 炭素を含有しないガ スを供給し、 前記触媒兼用流動材の流動機能を消失させる第 2のガス供給工程と を行うことを特徴とする繊維状ナノ炭素の製造方法である。
第 2 0の発明は、 第 1 9の発明において、 前記触媒兼用流動材の平均粒径が、 0 . 2〜 2 O mmであることを特徴とする繊維状ナノ炭素の製造方法である。 第 2 1の発明は、 第 1 9の発明において、 前記触媒兼用流動材が、 前記担体の 表面に前記触媒を担持したもの又はその凝集体からなることを特徴とする繊維状 ナノ炭素の製造方法である。 - 第 2 2の発明は、 第 1 9の発明において、 前記触媒兼用流動材の前記担体が、 カーボンブラック、 アルミナ、 シリカ、 ケィ砂、 アルミノシリケートのいずれか であることを特徴とする繊維状ナノ炭素の製造方法である。
第 2 3の発明は、 第 1 9の発明において、 前記触媒兼用流動材の前記金属触媒 が、 F e、 N i、 C o、 C u、 M oのいずれか又はこれらのうち少なくとも 2種 以上の混合物であることを特徴とする繊維状ナノ炭素の製造方法である。
第 2 4の発明は、 第 1 9の発明において、 流動層内の流速が、 0 . 0 2〜2 m / sであることを特徴とする繊維状ナノ炭素の製造方法である。
第 2 5の発明は、 第 1 9の発明において、 前記第 1のガス供給工程、 前記炭素 原料供給工程、 前記第 2のガス供給工程の各工程の条件をそれぞれ独立して制御 することを特徴とする繊維状ナノ炭素の製造方法である。 第 2 6の発明は、 第 2 5の発明において、 前記条件が、 温度、 圧力、 時間、 ガ ス雰囲気であることを特徴とする繊維状ナノ炭素の製造方法である。
第 2 7の発明は、 第 1 9の発明において、 0 . 1〜2 5気圧の圧力下、 水素と 不活性ガスとの混合ガス (水素分圧 0〜 9 0 %) 中、 前記触媒兼用流動材の前記 触媒と前記炭素原料とを 3 0 0〜1 3 0 0 °Cの温度で一定時間接触させることに より、 繊維状ナノ炭素を製造することを特徴とする繊維状ナノ炭素の製造方法で ある。
第 2 8の発明は、 第 1 9の発明において、 前記第 1のガス供給工程、 炭素原料 供給工程の少なくとも一方の工程で、 前記還元ガスの還元作用により、 前記触媒 兼用流動材の前記触媒成分をメタル化すると共に微細化することを特徴とする繊 維状ナノ炭素の製造方法である。
第 2 9の発明は、 第 2 8項の発明において、 前記触媒兼用流動材の前記金属触 媒を微細化する際に、 当該金属触媒の粒径を制御することにより、 得られる前記 繊維状ナノ炭素の径を制御することを特徴とする繊維状ナノ炭素の製造方法であ る。
第 3 0の発明は、 第 1 9の発明において、 前記第 2のガス供給工程が、 前記流 動層の局所に流速の速いゾーンを形成し、 前記触媒兼用流動材の粒子同士、 又は 、 当該粒子と壁面との衝突により、 当該触媒兼用流動材の微細化摩耗の促進を図 ることを特徴とする繊維状ナノ炭素の製造方法である。
第 3 1の発明は、 第 3 0の発明において、 前記流動層内の流速の速いゾーンを 当該流動層の下部に形成することを特徴とする繊維状ナノ炭素の製造方法である 第 3 2の発明は、 第 3 0の発明において、 前記流動層内に高速ガスを吹き込む ことにより、 流速の速いゾーンを形成することを特徴とする繊維状ナノ炭素の製 造方法である。
第 3 3の発明は、 第 3 2の発明において、 前記流動層から飛散した粒子を前記 高速ガスに同伴させて当該流動層内に再び供給することを特徴とする繊維状ナノ 炭素の製造方法である。
第 3 4の発明は、 第 1 9の発明において、 製造された前記繊維状ナノ炭素を前 記担体又は前記触媒から分離することを特徴とする繊維状ナノ炭素の製造方法で ある。
第 3 5の発明は、 第 1 9の発明の繊維状ナノ炭素の製造方法の実施に使用する 製造装置であって、 前記触媒兼用流動材が充填されると共に、 内部を加熱する加 熱手段を備えた流動層反応器と、 前記流動層反応器内に前記還元ガスを供給する 第 1のガス供給手段と、 前記流動層反応器内に前記炭素原料をガス状態で供給す る炭素原料供給手段と、 炭素を含有しない前記ガスを前記流動層反応器内に供給 する第 2のガス供給手段と、 前記流動層反応器からガス及び飛散粒子を排出する 排出ラインとを備えることを特徴とする繊維状ナノ炭素の製造装置である。 第 3 6の発明は、 第 3 5の発明において、 前記飛散粒子を回収する回収手段を 前記排出ラインに設けたことを特徴とする繊維状ナノ炭素の製造装置である。 第 3 7の発明は、 第 3 5の発明において、 前記流動層反応器の流動層部が、 高 速流動部と低速流動部とを有することを特徴とする繊維状ナノ炭素の製造装置で ある。
第 3 8の発明は、 第 3 7の発明において、 前記高速流動部内に衝突部を有する ことを特徴とする繊維状ナノ炭素の製造装置である。
第 3 9の発明は、 第 3 5の発明において、 前記流動層反応器内にガスを高速で 吹き込む高速ガス吹込み手段を設けたことを特徴とする繊維状ナノ炭素の製造装 置である。
第 4 0の発明は、 第 3 9の発明において、 前記ガスを高速で吹込む際に、 回収 した粒子を同伴させることを特徴とする繊維状ナノ炭素の製造装置である。 第 4 1の発明は、 第 3 5の発明において、 前記流動材が流動移動可能な第 1、 第 2、 第 3の流動室を前記流動層反応器内に形成すると共に、 前記第 1の流動室 に前記第 1のガス供給手段を連結し、 前記第 2の流動室に前記炭素原料供給手段 を連結し、 前記第 3の流動室に前記第 2のガス供給手段を連結したことを特徴と する繊維状ナノ炭素の製造装置である。
第 4 2の発明は、 第 3 5の発明において、 前記流動材が流動移動可能な第 1、 第 2の流動室を前記流動層反応器内に形成すると共に、 前記流動層反応器と異な る別の流動層反応器を第 3の流動室として設け、 前記第 2の流動室から前記第 3 の流動室に前記流動材を移送する移送手段を設けて、 前記第 1の流動室に前記第 1のガス供給手段を連結し、 前記第 2の流動室に前記炭素原料供給手段を連結し 、 前記第 3の流動室に前記第 2のガス供給手段を連結したことを特徴とする繊維 状ナノ炭素の製造装置である。
第 4 4の発明は、 第 1 9の発明の繊維状ナノ炭素の製造方法の実施に使用する 製造装置であって、 前記触媒兼用流動材が内部に充填され、 内部を加熱する加熱 手段を有すると共に、 内部に前記還元ガスを供給する第 1のガス供給手段を有す る第 1の流動層反応器と、 前記第 1の流動層反応器から前記流動材を移送する移 送手段を有すると共に、 内部に前記炭素原料をガス状態で供給する炭素原料供給 手段を有する第 2の流動層反応器と、 前記第 2の流動層反応器から前記流動材及 び反応生成物を移送する移送手段を有すると共に、 炭素を含有しない前記ガスを 内部に供給する第 2のガス供給手段を有する第 3の流動層反応器と、 前記第 3の 流動層反応器からガス及び飛散粒子を排出する排出ラインとを備えることを特徴 とする'繊維状ナノ炭素の製造装置である。
第 4 5の発明は、 第 4 4の発明において、 前記第 1の流動層反応器を複数備え ることを特徴とする繊維状ナノ炭素の製造装置である。
第 4 6の発明は、 第 4 4の発明において、 前記第 2の流動層反応器を複数備え ることを特徴とする繊維状ナノ炭素の製造装置である。
第 4 7の発明は、 第 4 4の発明において、 前記第 3の流動層反応器を複数備え ることを特 ί敷とする。
第 4 8の発明は、 第 3 5から第 4 7の発明のいずれかにおいて、 前記触媒兼用 流動材の平均粒径が、 0 . 2 ~ 2 O mmであることを特徴とする繊維状ナノ炭素 の製造装置である。 第 4 9の発明は、 第 3 5から第 4 7の発明のいずれかにおいて、 前記触媒兼用 流動材が、 前記担体の表面に前記触媒を担持したもの又はその凝集体からなるこ とを特徴とする繊維状ナノ炭素の製造装置である。
第 5 0の発明は、 第 3 5から第 4 7の発明のいずれかにおいて、 前記触媒兼用 流動材の前記担体が、 カーボンブラック、 アルミナ、 シリカ、 ケィ砂、 アルミノ シリケートのいずれかであることを特徴とする繊維状ナノ炭素の製造装置である 第 5 1の発明は、 第 3 5から第 4 7の発明のいずれかにおいて、 前記触媒兼用 流動材の前記金属触媒が、 F e、 N i、 C o、 C u、 M oのいずれか又はこれら のうち少なくとも 2種以上の混合物であることを特徴とする繊維状ナノ炭素の製 造装置である。
第 5 2の発明は、 第 3 5から第 4 7の発明のいずれかにおいて、 流動層内の流 速が、 0 . 0 2〜2 mZ sであることを特徴とする繊維状ナノ炭素の製造装置で ある。
第 5 3の発明は、 第 3 5から第 4 7の発明のいずれかにおいて、 0 . 1〜2 5 気圧の圧力下、 水素と不活性ガスとの混合ガス (水素分圧 0〜9 0 %) 中、 前記 触媒兼用流動材の前記触媒と前記炭素原料とを 3 0 0〜 1 3 0 0 °Cの温度で一定 時間接触させることにより、 繊維状ナノ炭素を製造することを特徴とする繊維状 ナノ炭素の製造装置である。 図面の簡単な説明
第 1図は、 本発明に係る炭素ナノ繊維素の模式図である。
第 2図は、 本発明に係る炭素ナノ繊維素群の模式図である。
第 3図は、 本発明に係る炭素ナノ繊維素及び繊維状ナノ炭素の模式図である。 第 4図は、 本発明に係る炭素ナノ繊維素の断面模式図である。
第 5図は、 本発明に係る炭素ナノ繊維素の熱処理の模式図である。
第 6図は、 炭素ナノ繊維素を製造したままの状態及び熱処理した後の顕微鏡写 真図である。
第 7図は、 炭素ナノ繊維素の高分解能透過型顕微鏡写真図及び走査型トンネル 電子顕微鏡写真図である。
第 8図は、 走査型トンネル電子顕微鏡写真図及びその模式図である。
第 9図は、 炭素ナノ繊維素群を形成している様子を示す模式図である。
第 1 0図は、 Columnar構造の繊維状ナノ炭素の高分解能透過型顕微鏡写真図で ある。
第 1 1図は、 炭素ナノ繊維素群の各種形状の模式図である。
第 1 2図は、 柱状 (Columnar) 構造の繊維状ナノ炭素集合体の模式図である。 第 1 3図は、 他の柱状 (Columnar) 構造の繊維状ナノ炭素集合体の模式図であ る。
第 1 4図は、 繊維状ナノ炭素の断面模式図である。
第 1 5図は、 炭素ナノ繊維素の各種形状の走查型トンネル電子顕微鏡写真図で ある。
第 1 6図は、 炭素ナノ繊維素の各種形状の走査型トンネル電子顕微鏡写真図で ある。
第 1 7図は、 羽状 (Feather) 構造の繊維状ナノ炭素集合体の模式図である。 第 1 8図は、 羽状 (Feather) 構造の繊維状ナノ炭素の高分解能透過型顕微鏡 写真図である。
第 1 9図は、 チューブ状 (Tubular) 構造の繊維状ナノ炭素集合体の模式図で ある。
第 2 0図は、 炭素ナノ繊維素を熱処理した模式図とそれが集合してなる繊維状 ナノ炭素の模式図である。
第 2 1図は、 Columnar構造の繊維状ナノ炭素を構成する炭素ナノ繊維素群の 2 8 0 0 °C高温処理した後の構造を、 高分解能透過型電子顕微鏡の透過電子ビーム の角度を変化させて(一 3 0度、 0度、 + 3 0度)撮影した写真図である。
第 2 2図は、 Columnar構造の繊維状ナノ炭素を構成する炭素ナノ繊維素群の 2
0 8 0 0 °C高温処理品の高分解能透過型電子顕微鏡写真図である。
第 2 3図は、 第 2 1図の角度— 3 0度の 2 8 0 0 °C高温処理品の高分解能透過 型電子顕微鏡写真図 (倍率: 6 0万倍) である。
第 2 4図は、 第 2 1図の角度 0度の 2 8 0 0 °C高温処理品の高分解能透過型電 子顕微鏡写真図である。
第 2 5図は、 第 2 1図の角度 + 3 0度の 2 8 0 0 °C高温処理品の高分解能透過 型電子顕微鏡写真図である。
第 2 6図は、 第 2 3図の角度一 3 0度の 2 8 0 0 °C高温処理品の高分解能透過 型電子顕微鏡写真図である。
第 2 7図は、 第 2 4図の角度 0度の 2 8 0 0 °C高温処理品の高分解能透過型電 子顕微鏡写真図である。
第 2 8図は、 第 2 5図の角度 + 3 0度の 2 8 0 0 °C高温処理品の高分解能透過 型電子顕微鏡写真図である。
第 2 9図は、 柱状 (Columnar) 構造、 羽状 (Feather) 構造、 チューブ状
(Tubular) 構造の繊維状ナノ炭素の高分解能透過型顕微鏡写真図である。
第 3 0図は、 Columnar構造の繊維状ナノ炭素を構成する製造 (鉄触媒を用いて 、 6 0 0 °Cで製造) した状態の炭素ナノ繊維素群、 及び 2 0 0 0 °C及び 2 8 0 0 °Cで各々高温処理した後の構造の高分解能透過型電子顕微鏡の写真である。 第 3 1図は、 Columnar構造の炭素ナノ繊維群からなる繊維状ナノ炭素の熱処理 前後のラマン散乱スぺクトル図である。
第 3 2図は、 本発明に係る炭素ナノ繊維素の製造装置の第 1の実施の形態の概 略図である。
第 3 3図は、 本発明に係る炭素ナノ繊維素の製造方法の模式図である。
第 3 4図は、 繊維状ナノ炭素の分離の一例を示す図である。
第 3 5図は、 粒径と流速との関係を示す図である。
第 3 6図は、 粒径と流速との関係を示す図である。
第 3 7図は、 本発明に係る炭素ナノ繊維素の製造装置の第 2の実施の形態の概 略図である。
第 3 8図は、 本発明に係る炭素ナノ繊維素の製造装置の第 3の実施の形態の概 略図である。
第 3 9図は、 本発明に係る炭素ナノ繊維素の製造装置の第 4の実施の形態の概 略図である。
第 4 0図は、 炭素ナノ繊維素の模式図概略図である。
第 4 1図は、 炭素ナノ繊維素の模式図概略図である。
第 4 2図は、 本発明に係る炭素ナノ繊維素の製造装置の第 5の実施の形態の概 略図である。
第 4 3図は、 本発明に係る炭素ナノ繊維素の製造装置の第 5の実施の形態の他 の概略図である。
第 4 4図は、 本発明に係る炭素ナノ繊維素の製造装置の第 6の実施の形態の概 略図である。
第 4 5図は、 本発明に係る炭素ナノ繊維素の製造装置の第 6の実施の形態の他 の概略図である。
第 4 6図は、 実施例 1で得られた繊維状ナノ炭素の顕微鏡写真である。
第 4 7図は、 実施例 2で得られた繊維状ナノ炭素の顕微鏡写真である。 · 第 4 8図は、 実施例 3で得られた繊維状ナノ炭素の顕微鏡写真である。
第 4 9図は、 従来のナノファイバのモデレ図である。
第 5 0図は、 従来の基礎反応器の説明図である。
第 5 1図は、 従来の気相流動法の説明図である。 発明を実施するための最良の形態
本発明に係る炭素ナノ繊維素及び繊維状ナノ炭素並びに繊維状ナノ炭素の製造 方法及びその装置の実施の形態を以下に説明するが、 本発明はこれらの実施の形 態に限定されるものではない。
〈炭素ナノ繊維素及び繊維状ナノ炭素〉 本発明者等は、 鋭意研究を重ねた結果、 繊維状ナノ炭素 (いわゆるカーボンナ ノファイバ) の新規なナノ構成単位を見出し、 それの構造単位からなる繊維状ナ ノ炭素を定義すると共に、 7 0 0 °C以下の比較的低温の製造条件だけで炭素へキ サゴナル網面の面間距離 ( d 0 0 2 ) が 0 . 5 0 0 n m以下の非常に高い黒鉛化 度を示す多角形断面の繊維状ナノ炭素を見出すと共に、 この繊維状ナノ炭素の構 成単位が独立した炭素ナノ繊維素の集合体であることを見出した。
さらに、 上記多角形断面の繊維状ナノ炭素の集合により、 例えば、 繊維幅が平 均 1 0 0 n m、 アスペクト比が 3 0程度のものが、 窒素 B E T測定で表面積が 2 0 0 m 2以上を示す多角形の繊維状ナノ炭素となることを見出した。
ここで、 炭素へキサゴナル網面 (炭素へキサゴナルネットワーク) とそれのナ ノ集合体である炭素ナノ繊維素及びこの炭素ナノ繊維素が配列して積層した繊維 状ナノ炭素を第 1, 2図に基づいて説明する。
第 1図は、 複数の炭素へキサゴナル網面からなる炭素ナノ繊維素の模式図であ り、 第 2図は、 炭素ナノ繊維素の集合状態を示す模式図である。
本実施の形態では、 第 1, 2図に示すように、 一方向に伸びる中心軸を有する 炭素へキサゴナノレ網面 1 1から炭素ナノ繊維素 (カーボン ナノーフィプラス一 ロッド: Carbon Nano-fiberous-Rod) 1 2が構成されている。 上記炭素ナノ繊維 素 1 2は、 1枚 (又は 1層) でも基本構成単位となるが、 通常は、 上記炭素へキ サゴナル網面 1 1が 2〜1 2層層状に積層して 1つの構成単位を形成している。 また、 上記積層数は、 4 ~ 1 0層とするのが好適である。 このように炭素ナノ 繊維素 1 2力 2〜1 2層の積層により単位を構成している理由は、 まだ明らかで はないが、 合成に使われる金属触媒の結晶格子構造と関係があるのではないかと 考えられる。
ここで、 第 1図 (a ) は、 炭素へキサゴナル網面 1 1が 2層により炭素ナノ繊 維素 1 2の一構成単位を形成した模式図である。 また、 第 1図 (b ) は、 炭素へ キサゴナル網面 1 1が 8層により炭素ナノ繊維素 1 2の一構成単位を形成した模 式図である。 この炭素ナノ繊維素 1 2を構成する炭素へキサゴナル網面 1 1は、 軸幅 (D) が 2 . 5 ± 0 . 5 n mであり、 長さ (L ) が 1 7 ± 1 5 n mである。 なお、 上記大きさが上記範囲外の場合には、 良好な炭素ナノ繊維素 1 2を形成す ることができなレ、。
また、 第 2図に示すように、 この炭素ナノ繊維素 1 2が複数最密充填積層して 炭素ナノ繊維素群 1 3を構成することにより、 その炭素ナノ繊維素 1 2同士で形 成される軸 (第 2図中 X軸方向) に沿ったナノ空隙 1 4が多数存在することにな る。 上記ナノ空隙 1 4は、 例えば、 水素やリチウム等の原子を取り込む空間とな る。 上記ナノ空隙 1 4の多数の存在により、 触媒活性、 特定物質の吸蔵又は吸着 等の新規の機能性材料としての効果が発現される。
第 2図 (a ) においては、 炭素ナノ繊維素 1 2同士が接触しているようにみえ るが、 炭素ナノ繊維素 1 2同士が接触している場合もあるし、 接触していない場 合もある。 接触していない場合には、 ナノ空隙 1 4が増加することになる。 第 2 図 (b ) は、 六角形断面の炭素ナノ繊維素 1 2が少し隙間を有するように集合し ている。 このように、 炭素ナノ繊維素 1 2からなる炭素ナノ繊維素群 1 3が三次 元的に繊維状に複数集合することにより、 第 3図に示すように、 繊維状ナノ炭素 (いわゆるカーボンナノファイバ) 1 5を形成するものとなる。
また、 炭素ナノ繊維素 1 2は、 軸と直交する方向の断面構造が第 2図 (a ) で は円形であり、 第 2図 (b ) では六角形であるが、 本発明は、 これらに限定され るものではない。 例えば、 第 4図に示すように、 円形 (第 4図 (a ) 参照) や六 角形 (第 4図 (b ) 参照) はもちろんのこと、 例えば、 八角形 (第 4図 (c ) 参 照) 、 四角形 (第 4図 (d ) 参照) 等の矩形状であってもよい。
上記炭素ナノ繊維素群 1 3が三次元的に複数集合してなる繊維状ナノ炭素 1 5 の代表的な構造としては、 例えば、 柱状 (Columnar) 構造、 羽状 (Feather) 構 造、 チューブ状 (Tubular) 構造等が挙げられる (詳細は後述する) 。 なお、 本 実施の形態では、 一例として、 柱状 (Columnar) 構造の繊維状ナノ炭素 1 5を中 心に説明する。
本発明に係る炭素ナノ繊維素 1 2が一構成単位であることは、 製造したままの 状態では明確でないが、 製造後に 1 6 0 0 °C以上の熱処理 (又は炭化処理) する ことにより明確となる。 すなわち、 上記 1 6 0 0 °C以上の高温で熱処理すること で、 第 5図に示すように、 炭素ナノ繊維素 1 2の軸方向の末端が二次元的にはル ープ状に、 三次元的にはドーム状に炭素のネットワークを構成することになる。 この結果、 炭素ナノ繊維素 1 2が一つの構成単位であることが明確になる。 なお、 以下の説明において、 製造したままの状態で末端がループ状になってい ない炭素ナノ繊維素 1 2を 「As - pr印 ared状態」 と記載し、 2 8 0 0 °C等の高温 で熱処理した炭素ナノ繊維素 1 2を 「2 8 0 0 °C熱処理状態」 等と記載する。 第 6図は、 炭素ナノ繊維素 1 2の高分解能透過型電子顕微鏡
(High-resolution transmission electron microscope: H R T EM) による撮 影写真である。 ここで、 第 6図 (a ) は、 後述する合成方法によって得られた炭 素ナノ繊維素 1 2の集合体の写真、 第 6図 ( b ) は、 後述する 2 8 0 0 °Cで熱処 理して黒鉛化度合いを向上させた炭素ナノ繊維素 1 2の集合体の写真である。 な お、 第 6図中に 1 0 n mの大きさを示している。
第 7図は、 炭素ナノ繊維素 1 2 ( 2 8 0 0 °C熱処理状態) の電子顕微鏡による 撮影写真である。 ここで、 第 7図 (a ) は高分解能透過型顕微鏡 (H R T EM) 写真、 第 7図 (b ) は走查型トンネル電子顕微鏡 (Scanning tunneling microscope: S TM) 写真である。 写真中の矢印は共に 2 0 n mの大きさを示し ている。
第 6, 7図においては、 6〜1 0層の炭素へキサゴナノレ網面 1 1の積層状態が 共に表れており、 これらにより炭素ナノ繊維素 1 2が構成されていることが確認 できる。 よって、 炭素ナノ繊維素 1 2がーの構成単位から形成され、 これらが集 合して繊維状ナノ炭素 1 5を構成していることが確認できる。 なお、 上記走査型 トンネル電子顕微鏡 ( S T M) の写真が不鮮明であるのは、 高い倍率であると共 にその撮影原理により、 現時点においてこれ以上鮮明なものを得ることができな いからである。 し力 し、 炭素ナノ繊維素 1 2がーつの構成単位であることを確認 することはできる。 第 8図は、 炭素ナノ繊維素 1 2 ( 2 8 0 0 °C熱処理状態) の他の走査型トンネ ル電子顕微鏡 ( S TM) 写真である。 第 8図において、 右側は左側の拡大した写 真である。 図 8の右側の写真より、 軸端部でのループのネットワークの形状状態 が確認される。
第 9図は、 第 8図の右側に示した炭素ナノ繊維素 1 2が集合して炭素ナノ繊維 素群 1 3を形成している様子を示す模式図である。
ここで、 本実施の形態に係る炭素へキサゴナル網面 (Hexagonal Carbon Layer :炭素六角網面) とは、 現在の炭素材料の殆どを占めている黒色系の材料と同様 のものであり、 炭素原子の六角網面を構造の基本単位としている。 これらの炭素 材料の性質は、 この炭素へキサゴナル網面の完全性、 大きさ、 積層の厚さ、 その 積層の規則性、 さらにその網面の選択的配向の方式と度合いによって基本的に決 まることが知られている (カーボン用語辞典、 P. 226, 炭素材料学会、 カーボン 用語辞典編集委員会編、 (株) ァグネ乗風社、 東京、 2000) 。
本発明に係る炭素ナノ繊維素 1 2は、 炭素原子の六角網面の構造を基本単位と し、 9 5 %以上の炭素原子で成立している。 また、 この炭素ナノ繊維素 1 2を 2 0 0 0 °C以上の高い温度にて熱処理することによって 9 9 %以上の炭素原子で成 立するものとなる。 また、 炭素ナノ繊維素 1 2の炭素へキサゴナル網面 1 1のナ ノ集合体の面間間隙 (d。。2 ) は 0 . 5 0 0 n m未満であり、 純粋な黒鉛の面 間間隙 (d。。2 ) の大きさ (0 . 3 3 5 4 n m) に近似している。 よって、 本 発明に係る炭素ナノ繊維素 1 2は高 、黒鉛化度となっている。
このようなことは、 下記の表 1に示したように、 上記炭素ナノ繊維素 1 2だけ の最密充填積層からなる繊維状ナノ炭素 1 5において、 柱状 (Columnar) 組織の 繊維状ナノ炭素 1 5が、 7 0 0 °C以下で製造されたもので、 炭素へキサゴナル網 面の面間距離 ( d 0 0 2 ) が 0 . 5 0 0 n m未満であることから論理的に推論で きる。 〈表 1〉
繊維状ナノ炭素の X R D物性
Figure imgf000019_0001
本発明に係る繊維状ナノ炭素 1 5は、 上記炭素ナノ繊維素 1 2を三次元的方向 に最密充填して構成してなるものである。 この積層状態の一例である炭素ナノ繊 維素 1 2の積層の模式図を第 3図に示す。 第 3図に示している積層は、 Columnar 積層構造であり、 炭素ナノ繊維素 1 2の中心軸を平行にして第 1方向 (紙面の上 下方向) に'複数積層して炭素ナノ繊維素群 1 3を構成し、 繊維状ナノ炭素 1 5を 形成してなるものである。
第 1 0図は、 2 8 0 0 °Cで熱処理した Columnar構造の繊維状ナノ炭素 1 5の高 分解透過型電子顕微鏡写真である。 第 1 0図に示すように、 ループ形をなす先端 の炭素ナノ繊維素 1 2が最密充填されることにより炭素ナノ炭素繊維群 1 3が構 成されて、 繊維状ナノ炭素 1 5となることがわかる。 なお、 第 1 0図 (a ) は、 繊維状ナノ炭素 1 5の 1 5万倍の拡大図であり、 第 1 0図 ( b ) は、 繊維状ナノ 炭素 1 5の軸方向 (第 1 0図 (a ) 、 左右方向) と直交する方向の両端部 (第 1 0図 (a ) 中の A点及び B点) の拡大図である。
第 1 0図 (b ) 力、ら、 熱処理によって三次元的にドーム形をなした先端の炭素 ナノ繊維素 1 2が三次元的方向に最密充填されて炭素ナノ炭素繊維群 1 3が構成 されて、 繊維状ナノ炭素 15になることがよくわかる。 また、 炭素ナノ繊維素 1 2の集合態様は様々であり、 炭素ナノ繊維素 12の軸と直交する方向又は同一方 向又は交差する方向に積層又は集合して炭素ナノ炭素繊維群 13が構成される。 炭素ナノ繊維素群 13が三次元的に複数集合してなる繊維状ナノ炭素 1 5の代 表的な構造としては、 例えば、 柱状 (Columnar) 構造以外に、 羽状 (Feather) 構造、 チューブ状 (Tubular) 構造の三態様が挙げられる。 これらの構造の相違 は定かでないが、 触媒と製造条件の相違から形態が変化するものと考えられる。 第 1 1図は、 炭素ナノ繊維素群 1 3の上記三形態の模式図である。
第 1の形態は、 積層方向 (繊維軸方向) の軸 (Y) と直交する軸 (X) に対し て、 0度より大きく 20度未満の角度 (α) で配列してなるものであり、 柱状 ( Columnar) 形の繊維状ナノ炭素群 13Aという (第 1 1図 (a) 参照) 。
第 2の形態は、 積層方向 (繊維軸方向) の軸 (Y) と直交する軸 (X) に対し て、 20度より大きく 80度未満の角度 (]3) で配列してなるものであり、 羽状 (Feather) 形の繊維状ナノ炭素群 1 3 Bという (第 1 1図 (b) 参照) 。
なお、 第 1 1図からわかるように、 羽状 (Feather) 形の繊維状ナノ炭素群 1 3Bは、 杉綾構造をなしているが、 このように対向するのは、 触媒との関係によ る。 よって、 対向しないような場合も考えられる。
第 3の形態は、 積層方向 (繊維軸方向) の軸 (Y) と直交する軸 (X) に対し て、 80度以上 88度までの角度 (γ) で配列してなるものであり、 チューブ状 (Tubular) 形の繊維状ナノ炭素群 13 Cという (第 1 1図 (c) 参照) 。
第 12図は、 柱状 (Columnar) 形の炭素ナノ繊維素群の一例の模式図である。 第 12図 (a) は、 柱状 (Columnar) 形の炭素ナノ繊維素 12の軸方向と直交 する方向に積層して炭素ナノ繊維素群 1 3 Aが構成されることを示している。 第 12図 (b) , (c) は、 炭素ナノ繊維素群 1 3 Aを少なくとも一以上並設 すると共に、 炭素ナノ繊維素 12の中心軸を平行にしている状態を示している。 すなわち、 第 1 2図 (b) において、 炭素ナノ繊維素群 13Aは、 並設が二列状 態の並列であり、 第 12図 (c) において、 炭素ナノ繊維素群 13 Aは、 並設が 四列状態の並列である。 また、 第 12図 (b) , (c) に示すように、 真横に炭 素ナノ繊維素群 1 3 Aが並設された場合には、 炭素ナノ繊維素 12の中心軸の方 向が同方向となる。
なお、 第 12図 (d) に示すように、 炭素ナノ繊維素 12の軸方向の長さが様 々なものを積層して炭素ナノ繊維素群 1 3 Aを構成して、 各炭素ナノ繊維素 12 の積層部分にナノ空隙 1· 4を形成することも可能である。
また、 第 13図に示すように、 平面状態 (第 1 3図 (a) 参照) で内部にナノ 空隙 14を有し、 その四方を炭素ナノ繊維素 12で囲むように矩形の筒状をなす 炭素ナノ繊維素群 13を形成することも可能である。 また、 第 14図に示すよう に、 炭素ナノ繊維素群 13の繊維軸と直交する方向の断面形状は、 六角形、 八角 形、 四角形、 円形と種々のものとなる。
そして、 第 1 5図は、 繊維状ナノ炭素 15の高分解能透過型顕微鏡 (HRTE M) 写真、 第 16図は、 繊維状ナノ炭素 1 5の走査型トンネル電子顕微鏡 (S T M) 写真である。 これらの写真から、 柱状 (Columnar) 構造、 羽状 (Feather) 構造、 チューブ状 (Tubular) 構造の三態様の構造の繊維状ナノ炭素 1 5の形状 が略六角形又は略五角形であることが確認される。
Col議 nar構造の炭素ナノ繊維素群 13 Aは、 軸幅が' 1 5〜 20 n m程度である ので、 4列並設して構成される Columnar構造の繊維状ナノ炭素 15は、 繊維幅が 60— 80 nmになることがわかる。 よって、 繊維幅が 200 n mの Columnar構 造の繊維状ナノ炭素 15は、 少なくとも炭素ナノ繊維素群 1 3Aが 10列並設さ れていることになる。
このような繊維状ナノ炭素 15は、 鉄 (F e) ,コノ^レト (Co) 、 ニッケル (N i ) に代表する純粋な転移金属の単独又は合金を触媒とし、 400〜 120 0°Cの温度範囲で一酸化炭素又はメタン (CH4 ) 、 エチレン (C2 H6 ) 、 プロパン (C3 H8 ) 等の炭化水素を水素との混合ガス中 (水素分圧: 0~9 0 %) で一定時間触媒に接触することによって合成される。
Columnar構造の繊維状ナノ炭素 15の製造に関する好適な一製造例は次の通り である。
先ず、 硝酸鉄を利用し、 沈澱法 (Best, R. J. Russell, W. I, J. Amer. Soc . 76, 838(1954)、 Sinfelt, J. H. , Carter, J. L. , and Yates, D. J. , J. Catal. 24, 283(1972)) により鉄触媒を調製する。
調製した 30 m gの鉄触媒を石英製のボート (長さ 10 mm、 幅 2. 5 mm, 深さ 1. 5mm (外面 :) ) に載せ、 内径 4. 5 c mの石英管の中において、 水 素とヘリゥムとの混合ガス (水素分圧: 20%) を 100 s c cmで流しながら 500でで0. 5〜10時間還元する。 その後、 一酸化炭素と水素との混合ガス (水素分圧: 10〜90%) を 100〜200 s c c mで流しながら 450〜 6 20°Cの温度で 0. 25〜 3時間反応させて、 所定量 (2〜1500mg) の柱 状 (Columnar) 構造の繊維状ナノ炭素 1 5を製造する。
次に、 上記炭素ナノ繊維素 12を軸に対して一定角度を有するように三次元的 方向に最密充填して炭素ナノ繊維素群 1 3 Bを構成してなる羽状 (Feather構造 の繊維状ナノ炭素) の一例を第 17図に示す。 図 1 7に示すように、 炭素ナノ繊 維素群 13Bは、 炭素ナノ繊維素 12が所定角度をもって対向してなる杉綾構造 であり、 例えば、 第 1 7図 (a) に示すように、 間にナノ空隙 14を有したり、 第 17図 (b) に示すように、 互いに交差する構造をなしている。
羽状 (Feather) 構造の繊維状ナノ炭素 1 5は、 上述したように、 積層方向 ( 繊維軸方向) の軸 (Y) と直交する軸 (X) に対して、 20度より大きく 80度 未満の角度 (β) で配列してなるものである (第 1 1図 (b) 参照) 。 このよう な羽状 (Feather) 構造の炭素ナノ繊維素群 1 3 Bの炭素ナノ繊維素 1 2は、 合 成した段階において、 軸幅が 2. 5±0. 5 nm、 軸長さが 4± 2 nmである。 これは、 柱状 (Columnar) 構造の繊維状ナノ炭素群 13 Aよりも炭素ナノ繊維素 12の角度が鋭角となるので、 構成単位である炭素ナノ繊維素 1 2の軸の長さ L がより短いものとなるからである。
また、 炭素ナノ繊維素群 1 3 Bの炭素ナノ,繊維素 12の炭素へキサゴナノレ網面 1 1は、 面間間隙 ( d。。 2 ) が 0. 500 n m未満であり、 純粋な黒鉛の面間 間隙 (d 002 ) の大きさ (0. 3354 nm) に近似している。 よって、 炭素 ナノ繊維素 12は、 黒 匕度が高いものである。
このようなことは、 第 1 8図に示す羽状 (Feather) 構造の繊維状ナノ炭素 1 5の高分解能透過型電子顕微鏡の写真から、 炭素ナノ繊維素 12だけの充填積層 からなる繊維状ナノ炭素 1 5において、 炭素ナノ繊維素 12の軸幅と炭素へキサ ゴナル網面 1 1の構成数とそれからなるナノ集合体の二次元幅がほぼ一致するこ とから推論できる。
羽状 (Feather) 構造の繊維状ナノ炭素 1 5の製造に関する具体的な製造例は 次の通りである。
羽状 (Feather) 構造の繊維状ナノ炭素群 13 Bの製造は、 Columnar構造の繊 維状ナノ炭素 1 5の製造において、 硝酸鉄の代わりに硝酸ニッケル又は硝酸エツ ケルと硝酸鉄の混合物を利用し、 同様の沈澱法でニッケル又はニッケルと鉄の合 金触媒 (ニッケル含有比: 70〜90% (重量比) ) を調製する。
次に、 上記の実験と同様の方法及び装置により、 上記触媒に対して水素とヘリ ゥムとの混合ガス (水素分圧: 20%) を 100 s c cmで流しながら 500°C で 0. 5〜 10時間還元する。 その後、 エチレンと水素との混合ガス (水素分圧 : 10— 90 %) を 100〜200 s c c mで流しながら 450〜 620 °Cの温 度で 0. 25〜3時間反応させることにより、 所定量 (2〜5400mg) の杉 綾構造の繊維状ナノ炭素 1 5を製造する。
次に、 軸方向に所定数の節を有するように炭素ナノ繊維素 12を軸方向両端で 接合して炭素ナノ繊維素群 1 3 Cを構成したチューブラ構造の繊維状ナノ炭素 1 5の一例を第 1 9図に示す。 第 19図に示すように、 チューブラ構造の炭素ナノ 繊維素群 13Cは、 炭素ナノ繊維素 12が軸方向両端部において接合してなるも のである。
チューブラ構造の繊維状ナノ炭素群 1 3Cは、 上述したように、 積層方向 (繊 維軸方向) の軸 (Y) と直交する軸 (X) に対して、 80度以上 88度までの角 度 (γ) で配列してなるものである (図 1 1 (c) 参照) 。 このチューブラ構造 を構成する炭素ナノ繊維素 12は、 合成した段階において、 軸幅が 2. 5±0. 5 nm、 軸長さが 13 ± 10 nmである。
第 1 9図 (a) は、 炭素ナノ繊維素 1 2の軸端部が直線的 (同列) に接合して チューブラ構造の繊維状ナノ炭素群 1 3 Cを構成したものであり、 第 1 9図 (b ) は、 対をなす炭素ナノ繊維素 1'2の軸端部が単一の炭素ナノ繊維素 1 2の軸端 部を挟み込むようにして接合してチューブラ構造の繊維状ナノ炭素群 1 3 Cを構 成したものであり、 第 19図 (c) は、 炭素ナノ繊維素 1 2の軸端部が重なり合 うようにして接合してチューブラ構造の繊維状ナノ炭素群 1 3 Cを構成したもの である。 接合形式は.これらに限定されるものではないが、 軸の両端部で接合する ので、 節を有して炭素ナノ繊維素群 13 Cを形成することになる。
また、 炭素ナノ繊維素群 13 Cの炭素ナノ繊維素 12の炭素へキサゴナル網面 1 1は、 面間間隙 (d。。2 ) が 0. 3400 n m未満であり、 純粋な黒鉛の面 間間隙 (d 002 ) の大きさ (0. 3354 nm) に近似している。 よって、 炭 素ナノ繊維素 12は、 黒 匕度の高いものである。
このようなことは、 表 1に示したように、 この炭素ナノ繊維素 12だけの最密 充填積層からなる繊維状ナノ炭素 15において、 チューブラ組織の繊維状ナノ炭 素 15力 As- prepared段階 (700°C以下の熱処理) で、 炭素へキサゴナル網 面 1 1からなるナノ集合体の面間距離 (d 002 ) が 0. 3400 nm未満であ ることから論理的に推論できる。
チューブラ構造の繊維状ナノ炭素 15の製造に関する具体的な実施例は次の通 りである。
先ず、 硝酸鉄、 又は、 硝酸ニッケルと硝酸鉄との混合物を利用し、 上記の実験 と同様の沈澱法で鉄又はニッケルと鉄との合金 (ニッケル含有比 (重量比) : 3 0〜70%) の触媒を調製する。 上記の実験と同様の方法及び装置により、 調製 した触媒に対して、 水素とヘリゥムとの混合ガス (水素分圧: 20%) を 100 s c c mで流しながら 500でで 0. 5〜 10時間還元する。 その後、 一酸化炭 素と水素との混合ガス (水素分圧: 10〜90%) を 100〜200 s c c mで 流しながら 6 2 0〜 6 5 5 °Cの温度範囲で 0 . 2 5〜 3時間反応させて、 所定量 ( 2〜1 5 0 0 m g ) のチューブラ構造の繊維状ナノ炭素 1 5を製造する。 次に、 Columnar構造の炭素ナノ繊維素群 1 3 Aからなる繊維状ナノ炭素 1 5を 真空又は不活性ガスの雰囲気下で 1 6 0 0 °C以上の温度で熱処理した場合につい て説明する。
本発明に係る炭素ナノ繊維素群 1 3からなる繊維状ナノ炭素 1 5は、 前記表 1 に示したように、 Columnar構造及びチューブラ構造において、 製造したままの状 態でも黒鉛化度が高く、 人造黒鉛系の高機能性材料として十分な特性を備えてい るが、 2 0 0 0 °C以上の黒鉛化処理をすると、 杉綾構造を含めて全ての構造にお いて、 高い黒鉛化度となる。
熱処理条件としては、 1 6 0 0 °C以上の温度とし、 好適には 2 0 0 0 °C以上、 さらに好適には 2 8 0 0 °C以上で熱処理することが好ましい。 熱処理温度が 1 6
0 o°c未満であると、 黒 ΙίΗ匕の度合いが低いものとなってしまうからである。 熱処理により、 繊維状ナノ炭素 1 5の表面部の炭素へキサゴナル網面 1 1の炭 素ナノ繊維素 1 2の末端が二次元的にはループ状に、 三次元的には断面が円形又 は六角形のドーム状に接合されて、 一つの単位を構成することになる。
第 2 0図は、 炭素ナノ繊維素 1 2の熱処理の模式図である。 第 2 0図に示すよ うに、 8層の炭素へキサゴナル網面 1 1からなる炭素ナノ繊維素 1 2がーつの単 位をなし、 この炭素ナノ繊維素 1 2の一つの単位に高温 (1 6 0 0 °C以上) の熱 処理をすることにより、 炭素へキサゴナル網面 1 1からなる炭素ナノ繊維素 1 2 の端面が接合されてドーム状の黒鉛化処理された炭素ナノ繊維素群 1 3が形成さ れる。 この黒鉛化処理された炭素ナノ繊維素群 1 3が複数積層し、 繊維状ナノ炭 素 1 5が形成される。
なお、 黒鉛化処理前後の Columnar構造の繊維状ナノ炭素 1 5の高分解能透過型 電子顕微鏡 (H R T EM) の写真を示した前述の第 1 0図から、 高温処理以前の 炭素へキサゴナル網面 1 1の端面 (Edge面) は、 高温処理により、 二次元的には ループ状に接合されていることが確認できる。 第 2 1図は、 Columnar構造の繊維状ナノ炭素 1 5を構成する炭素ナノ繊維素群 1 3 Aを 2 8 0 0 °C高温処理した後に、 高分解能透過型電子顕微鏡の透過電子ビ ームの角度を変化させて (—3 0度、 0度、 + 3 0度) 撮影した写真である。 第 2 3〜 2 5図は、 第 2 2図 (倍率 1 5万倍) に示す繊維状ナノ炭素 1 5の高 分解能透過型電子顕微鏡の透過電子ビームの角度を変化させて (一 3 0度 (第 2 3図) 、 0度 (第 2 4図) 、 + 3 0度 (第 2 5図) ) 撮影した写真 (倍率 6 0万 倍) である。 また、 第 2 6〜2 8図は、 第 2 3〜 2 5図の拡大写真 (倍率 3 2 0 万倍) であり、 第 2 6図は—3 0度、 第 2 7図は 0度、 第 2 8図は + 3 0度を各 々示す。
これらの図面より、 先ず角度を変えると、 先端部のループ状末端の位置が変わ つて見えることが確認された。 この結果、 炭素へキサゴナル網面 1 1からなる炭 素ナノ繊維素 1 2の末端が接合されることで二次元的にはループ状端面を形成し ていることが確認でき、 6〜 8枚の積層構造が集合単位を形成して、 その一つの 単位から炭素ナノ繊維素 1 2が構成されていることが判明した。
第 2 9図は、 高温熱処理前後の三種類の繊維状ナノ炭素 1 5の高分解能走査型 トンネル電子顕微鏡 (S TM) 写真である。 炭素へキサゴナル網面 1 1からなる ( 1 0 ) 面 (1 0 0、 1 1 0面) は、 理論的に走査トンネル型電子顕微鏡で観察 できないので、 端面を高倍率で観察できない。 しかしながら、 三種類の熱処理以 前の繊維状ナノ炭素 1 5のすベての写真から炭素ナノ繊維素 1 2が観察され、 さ らに、 それの三次元的最密積層により繊維状ナノ炭素 1 5になることが確認でき る。
第 3 0図 ( a ) 〜 ( c ) は、 Columnar構造の繊維状ナノ炭素 1 5を構成する製 造 (鉄触媒を用いて 6 0 0 °Cで製造) した状態の炭素ナノ繊維素群 1 3 A、 及び 2 0 0 0 °C、 2 8 0 0 °Cで各々高温処理した後の構造の高分解能透過型電子顕微 鏡の写真である。
また、 第 3 1図は、 Columnar構造の炭素ナノ繊維群 1 3 Aからなる繊維状ナノ 炭素 1 5の熱処理前後のラマン散乱スぺクトルである。 最近の研究により、 炭素 のラマン散乱スぺクトルにおける 1 3 5 0 c m— 1のピークは、 無定形炭素の定 量だけでなく、 炭素へキサゴナノレ網面 1 1の端面 (Edge面; 1 0面) の定量も敏 感に表すことが明らかになつている。
前記の表 1に示したように、 柱状 (Columnar) 構造の繊維状ナノ炭素 1 5は、 黒鉛化前後を比べてそれほど大きな差が見られない。 し力 し、 第 3 1図の透過電 子顕微鏡写真と第 3 2図のラマンスぺクトルからわかるように、 2 0 0 0 °C以上 の熱処理により 1 3 5 0 c m一1近傍のピークが著しく小さくなつていることが 確認できる。
これは、 2 0 0 0 °C以上の熱処理により、 Columnar構造の繊維状ナノ炭素 1 5 を構成している炭素ナノ繊維素群 1 3 Aの炭素へキサゴナル網面 1 1の Edge面 ( 1 0面) が末端の接合によって全て三次元的にドーム状の基底面 (0 0 2面) に なったことを明確に表している。 また、 この結果から、 熱処理以前の Columnar構 造の繊維状ナノ炭素 1 5は、 H O P G以外の通常の高黒鉛化度炭素において殆ど 存在しない炭素へキサゴナル網面 1 1の Edge面 (1 0面) を多量に含んでいるこ とが確認できた。
このように、 本発明に係る炭素ナノ繊維素 1 2による繊維状ナノ炭素 1 5は、 Columnar構造及びチューブラ構造において、 高黒鉛化度を有するので、 高伝導性
(熱、 電気) のフィーラとして好適であり、 高黒鈴化度を生かした応用としてリ チウムニ次電池の電極材、 電磁波遮蔽材または、 燃料電池用、 有機反応用触媒担 体としても応用が期待され、 また、 Feather構造において、 高表面積を有するの で、 スーパーキャパシタの電極材、 メタン、 水素の吸蔵材、 S O x等の脱硫、 N ◦ x等の脱硝材として期待できる。
〈繊維状ナノ炭素の製造方法及びその装置〉
第 3 2図は、 繊維状ナノ炭素の製造装置の第一の実施の形態の概略図である。 第 3 2図に示すように、 本実施の形態に係る繊維状ナノ炭素の製造装置 1 0 0 は、 炭素原料 1 0 6を触媒を用いて高温の流動層中で反応させ、 繊維状ナノ炭素 1 5を製造する装置であって、 触媒が担持された担体をバインダーを介して結合 してなる触媒兼用流動材 1 0 1を充填して流動層を形成すると共に、 内部を加熱 する加熱手段 1 0 2を備えた流動層反応器 1 0 3と、 上記流動層反応器 1 0 3内 に還元ガス (H 2 又は H 2 を含む不活性ガス、 又は C O等) 1 0 4を供給する 第 1のガス供給手段 1 0 5と、 触媒兼用流動材 1 0 1と接触させて繊維状ナノ炭 素 1 5を生成するための炭素原料 1 0 6をガス状態で上記流動層反応器 1 0 3內 に供給する炭素原料供給手段 1 0 7と、 炭素を含有しない不活性ガス 1 0 8を上 記流動層反応器 1 0 3内に供給する第 2のガス供給手段 1 0 9と、 上記流動層反 応器 1 0 3からガス G及び得られた繊維状ナノ炭素 1 5を含む飛散粒子 1 1 0を 排出する排出ライン 1 1 1とを具備するものである。
上記流動層反応器 1 0 3は、 流動層を形成する流動層部 1 0 3 Aと、 該流動層 部 1 0 3 Aの上部に連通状態としたフリーポード部 1 0 3 Bとから形成されてい る。 なお、 流動床の反応形式は、 気泡型流動層型と噴流型流動層型とがあるが、 本発明は、 いずれの形式を用いてもよい。 また、 フリーボード部 1 0 3 Bは、 流 動層部 1 0 3 Aよりもその流路断面積の大きいものが好ましい。
本実施の形態では、 上記ガス排出ライン 1 1 1に飛散粒子 1 1 0を回収する粒 子回収手段 1 1 2を介装している。 この回収手段 1 1 2としては、 例えばサイク 口ンゃフィルタ等の粒子を捕集又は回収する手段を挙げることができる。 上記サ イクロンは、 ガス Gに含まれる飛散粒子 1 1 0を遠心力により分離するものであ り、 分離した繊維状ナノ炭素 1 5を含む飛散粒子 1 1 0をサイク口ン底部等より 回収することができる。
本実施の形態では、 流動層を形成する流動材として、 一般の珪砂、 アルミナ等 の流動材を用いるものではなく、 触媒兼用流動材 1 0 1を用いている。 そして、 本実施の形態では、 上記触媒兼用流動材 1 0 1が流動層を形成し、 炭素原料 1 0 6を供給して繊維状ナノ炭素 1 5を製造した後において、 後述するように上記流 動材 1 0 1を微粉化等して流動材としての機能を消失させ、 触媒に成長した繊維 状ナノ炭素 1 5を容易に回収できるようにしている。
この結果、 繊維状ナノ炭素 1 5を製造する場合には、 流動層反応器 1 0 3内に 触媒兼用流動材 10 1 (触媒) が均一に存在するようになり、 炭素原料 1 06と の接触効率が良好となり、 均一な反応を行うことができると共に、 触媒に成長し た繊維状ナノ炭素 1 5の回収にあたっては、 触媒兼用流動材 1 0 1をばらばらに 細分化して構成単位又はその集合体の単位とすることにより、 各触媒に成長した 繊維状ナノ炭素 1 5の分離効率を向上させることができ、 均一な性状の繊維状ナ ノ炭素 1 5を容易に得ることができる。
第 3 3図は、 触媒兼用流動材 1 0 1の製造及び当該流動材 1 0 1を利用して炭 素原料 1 ◦ 6から繊維状ナノ炭素 1 5を製造する過程についての模式図である。 本発明に係る繊維状ナノ炭素 1 5の製造方法は、 金属触媒 1 2 1を担持した担 体 1 22をバインダー 1 2 3を介して結合してなる触媒兼用流動材 1 0 1を流動 材として用い、 (1) 還元ガス 1 04を供給する第 1のガス供給工程と、 (2) 炭素原料 1 06をガス状態で供給し、 上記触媒兼用流動材 1 0 1の触媒 1 2 1の 存在下で炭素ナノ繊維素 1 5を製造する炭素原料供給工程と、 (3) 炭素を含有 しない不活性ガス 1 08を供給し、 上記触媒兼用流動材 1 0 1の流動機能を消失 させる第 2のガス供給工程とを具備するものである。
先ず、 本発明に係る触媒兼用流動材 1 0 1は、 第 3 3図 (a) , (b) に示す ように、 触媒 1 2 1を担持した担体 1 2 2をバインダー 1 2 3により結合してな るものである。 なお、 第 3 3図 (c) 〜 (e) においては、 触媒兼用流動材 1 0 1を輪郭のみで示す。
触媒兼用流動材 1 0 1は、 上記触媒 1 2 1を担体 1 2 2に担持する際に、 触媒 1 2 1がより微小状態で担体 1 2 2に担持されることで、 繊維状ナノ炭素 1 5の 繊維径をより微細とすることができるので、 例えば、 触媒金属の硝酸塩の濃度、 添加する界面活性剤の種類、 乾燥条件等の諸条件を制御することで、 微細な触媒 1 2 1を担体 1 22に担持することができる。
また、 後述する還元ガス 1 04を用いた触媒 1 2 1の微細化工程においては、 初期の粒径が小さいほど微細化度が進行するので、 この担体 1 22に担持する際 の触媒 1 2 1の微細化は重要となる。 例えば、 初期の担持した触媒 1 2 1の粒径が 1 0 0 0 n mの場合には微細化が 1 0 n mであり、 初期の担持した触媒 1 2 1の粒径が 1 0 0 n mの場合には微細 化が 1 n mとすることができる。
次に、 第 3 3図 (c ) に示すように、 得られた触媒兼用流動材 1 0 1を流動層 反応器 1 0 3内に充填し、 第 1のガス供給手段 1 0 5より還元ガス 1 0 4として の H 2又は H 2を含む不活性ガスを供給する。 この H 2等の還元ガス 1 0 4の供 給により、 担体 1 2 2に担持された触媒 1 2 1を硝酸塩の形態から金属とし、 触 媒 1 2 1としての機能を発揮させることになる。
そして、 第 3 3図 (d ) に示すように、 炭素原料 1 0 6をガス状態で供給し、 触媒 1 2 1に繊維状ナノ炭素 1 5を成長させる。 この際、 所定の流動条件となる ように、 不活性ガス 1 0 8を流動層反応器 1 0 3内に別途導入している。
上記炭素原料 1 0 6としては、 炭素を含む化合物であればいずれのものでもよ く、 例えば、 メタン, エタン, プロパン, へキサン等のアルカン、 エチレン, プ ロピレン, アセチレン等の不飽和有機化合物、 ベンゼン, トルエン等の芳香族化 合物又は石油や石炭 (石炭転換ガスを含む) 等を挙げることができるが、 本発明 はこれらに限定されるものではない。
前記繊維状ナノ炭素 1 5は、 触媒兼用流動材 1 0 1の触媒 1 2 1を起点に生成 進行する。 このため、 より細い繊維状ナノ炭素 1 5を得るには、 第 1のガス供給 工程、 炭素供給工程、 繊維状ナノ炭素生成工程のうちの少なくとも 1つの工程に おいて、 雰囲気中の水素 (H 2 ) , 一酸化炭素 (C O) 等の還元ガス 1 0 4の還 元作用により、 担体 1 2 2上に担持されている触媒 1 2 1をメタルィヒさせる際に 当該触媒 1 2 1を微細化するようにすればよい。
例えば、 初期の触媒 1 2 1の粒径が例えば 1 0 0 n m程度であるとした場合に は、 微細化により 1 n m程度まで割って微細化を図ることができる。 よって、 上 記各工程 (第 1のガス供給工程、 炭素供給工程、 繊維状ナノ炭素生成工程) にお いて、 還元ガス 1 0 4や温度等の各種条件を調整することにより、 得られる繊維 状ナノ炭素 1 5の繊維径ゃ繊維構造を制御することができる。 その後、 反応が終了したら、 第 3 3図 (e ) に示すように、 炭素を含有しない 不活性ガス 1 0 8を供給すると共に、 加熱手段 1 0 2により流動層反応器 1 0 3 内を反応温度よりも高温とすることで、 触媒兼用流動材 1 0 1を形成しているバ インダー 1 2 3を熱分解等により分解して、 当該流動材 1 0 1の粒径を小さくし て微細化することにより、 流動材としての機能を消失させる。
流動機能が消失したものは、 担体 1 2 2の凝集体又はこれらの結合体となり、 微細化され、 飛散粒子 1 1 0として流動層反応器 1 0 3のフリ一ボード部 1 0 3 Bを介して排出ライン 1 1 1からガス Gと共に外部へ排出され、 粒子回収手段 1 1 2により回収される (第 3 2図参照) 。 その後、 回収された飛散粒子 1 1 0か ら繊維状ナノ炭素 1 5を分離することで製品としての繊維状ナノ炭素 1 5を得る ことができる。 なお、 流動層反応器 1 0 3内においても、 触媒 1 2 1に生成した 繊維状ナノ炭素 1 5が分離されている。
繊維状ナノ炭素 1 5は、 例えば、 成長した根幹部分の触媒 1 2 1又は担体 1 2 2を消失させることにより、 当該触媒 1 2 1又は担体 1 2 2から分離することが できる。 この分離の一例を第 3 4図に示す。
第 3 4図に示すように、 繊維状ナノ炭素 1 5の根幹部分の担体 1 2 2等をH 2 でガス化する方法や、 水蒸気 (H 2 O) や C 0 2をガス化剤として供給する方法 や、 ガス化促進のために温度を制御することにより、 繊維状ナノ炭素 1 5の根幹 部分の担体 1 2 2等を消失させる。 これにより、 触媒 1 2 1から成長した繊維状 ナノ炭素 1 5を、 担体 1 2 2又は担体 1 2 2に残る未利用の触媒 1 2 1から分離 することができる。 このような分離は、 流動層反応器 1 0 3から回収した後や、 流動層反応器 1 0 3内での製造の際の、 少なくとも一方のときに行うことができ る。
上記触媒兼用流動材 1 0 1は、 流動層反応器 1 0 3内において良好な流動機能 を発揮させるように、 平均粒径が 0 . 2 ~ 2 O mmとなっている。 これは、 触媒 兼用流動材 1 0 1の平均粒径を上記範囲とすることにより、 流動層反応器 1 0 3 内で激しく攪拌させることができ、 この結果、 均一な反応場を形成させることが できるからである。
上記触媒兼用流動材 1 0 1は、 従来公知の造粒方法 (例えば、 回転パン型造粒 方法、 回転ドラム型造粒方法、 流動層型造粒方法等の自足造粒方法や、 圧縮型造 粒方法、 押出し型造粒方法等の強制造粒方法等) により製造することができる。 また、 流動層反応器 1 0 3内の流速は、 触媒兼用流動材 1 0 1の粒径が 0 . 2 mmである場合には、 0 . 0 2〜0 . 2 mZ sであると好ましい。 これは、 第 3 5 , 3 6図に示すように、 流速が 0 . 0 2 m/ s未満であると、 触媒兼用流動材 1 0 1の流動化が起こらず流動層として機能せず、 流速が 0 . 2 m/ sを超える と、 当該流動材 1 0 1が流動層反応器 1 0 3外へ飛散し、 反応時間を制御するこ とができず、 好ましくないからである。
なお、 流動層の空塔速度は、 使用する原料や添加物など諸条件に応じて、 使用 する流動媒体の流動化開始速度 (Umf) を基準にした 2〜8倍の範囲内から、 そ れぞれ異なる最適値を選択して設定すればよい。 すなわち、 空塔速度は、 流動化 開始速度の 2〜 8倍大きなガス流速に設定される。 この空塔速度は、 主として不 活性ガス供給手段から供給されるガス量などを制御することにより、 選択した最 適値が一定に維持される。
また、 流動層反応器 1 0 3内においては、 触媒兼用流動材 1 0 1の触媒 1 2 1 と炭素原料 1 0 6との接触反応温度が 3 0 0〜1 3 0 0 °Cであると好ましく、 圧 力が 0 . 1〜 2 5気圧であると好ましい。 これは、 上記温度及び上記圧力が上記 範囲外であると、 良好な繊維状ナノ炭素 1 5を製造することができないからであ る。
また、 反応においては、 水素分圧 0〜9 0 %の還元ガス 1 0 4中、 上記炭素原 料 1 0 6を触媒兼用流動材 1 0 1の触媒 1 2 1に一定時間接触させることで、 繊 維状ナノ炭素 1 5を得るようにしている。 この反応において、 H 2を供給するの は、 触媒兼用流動材 1 0 1の触媒 1 2 1に成長する繊維状ナノ炭素 1 5の成長を より促進させるためである。 なお、 上記 H 2源としては、 供給する炭素原料 1 0 6中の水素を利用することも可能である。 また、 第 1の還元ガス供給工程、 炭素原料供給工程、 第 2のガス供給工程の各 工程においては、 温度、 圧力、 時間、 ガス雰囲気等の諸条件をそれぞれ独立して 制御するようにしてもよい。 具体的には、 例えば、 第 1の還元ガス供給工程で触 媒 121の還元微細化を行う際には、 炭素原料供給工程での繊維状ナノ炭素 15 の製造条件よりも温度を低くするようにしてもよい。
上記触媒兼用流動材 101は、 第 33図 ( a ) に示したように、 担体 122の 表面に触媒 121を担持してなるもの又はその凝集体から構成されている。 この 担体 122は、 粒径が 4011 m程度であるが、 特に限定されるものではない。 そ して、 上記凝集体は、 これら担体 122が数個自己凝集して 100〜200 nm 程度の平均粒径となったものをいう。
上記担体 122の材質としては、 例えば、 カーボンブラック (CB) 、 アルミ ナ (A l 2 03 ) 、 シリカ (S i) 、 ケィ砂 (S i 02 ) 、 ァノレミノシリケート 等を挙げることができるが、 触媒 121を担持させる機能を有するものであれば これらに限定されるものではない。
上記担体 122は、 平均粒径が 200 m以下であると好ましい。 この担体 1 22の表面に触媒 1 21を担持してなるもの又はその凝集体をバインダー 123 によって結合体を形成させることにより、 平均粒径 0.' 2〜20mmの触媒兼用 流動材 101としている。
上記触媒 1 21としては、 例えば、 F e、 N.i、 Co、 Cu、 Mo又はこれら の少なくとも 2種以上の混合物等を挙げることができるが、 本発明はこれらに限 定されるものではない。 例えば、 触媒 1 21に F eを使用し、 担体 122にカー ボンブラックを使用する場合には、 例えば、 硝酸鉄又は酢酸鉄等の水溶液にカー ポンプラックを投入して、 カーポンプラックの表面に F eを担持させるようにす ればよい。 この結果、 第 33図 (a) の拡大図に示しているように、 担体 122 の表面 122 a及び細孔 1 22 b内に触媒 1 21が担持されるようになる。 上記バインダー 123としては、 例えば、 高分子系接着剤、 無機系接着剤、 そ の他の結合作用を有する材料等を挙げることができる。
3 上記高分子系接着剤としては、 例えば、 フエノール系樹月旨 (最高使用温度:〜
3 6 0 °C) , 尿素系樹脂 (最高使用温度:〜 2 8 8 °C) , エポキシ系樹脂 (最高 使用温度:〜 2 8 8 °C) , ポリイミド系樹脂 (最高使用温度:〜 3 4 9 °C) 等の ような熱硬化性高分子材料からなる結合材を用いると好ましい。 これは、 後述す るように、 流動層反応器 1 0 3内において、 高温 (3 0 0 °C以上) で炭素原料 1 0 6を供給して繊維状ナノ炭素 1 5を製造するため、 当該高温状態における再流 動化 (溶融) を抑制することができるからである。
上記無機系接着剤としては、 例えば、 S i 02, A 1 2 03等を挙げることが できるが、 本発明はこれらに限定されるものではない。
その他の結合作用を有する結合材料としては、 例えば、 タール類、 重油等を挙 げることができるが、 本発明はこれらに限定されるものではない。
本発明では、 後述する実施例に示すように、 4 8 0 °C程度で繊維状ナノ炭素 1 5を製造し、 その後、 炭素を含有しない不活性ガス 1 0 8を供給し、 加熱手段 1 0 2により約 8 0 0 °C程度まで一気に加熱して上記バインダー 1 2 3を熱分解さ せ、 担体 1 2 2の単位まで触媒兼用流動材 1 0 1を細分化するようにしている。 なお、 4 8 0 °Cの条件においても、 熱分解が多少進行すると考えられるが, 酸 素のない条件では実際には熱分解と共にコーキングして、 炭素焼結が進行する'こ とも考えられる。 その場合には、 上述したように、 8 0 0 °C以上で H 2によるガ ス化又は繊維状ナノ炭素 1 5が燃焼しない環境での燃焼処理を行うようにすれば よい。
なお、 上記タール類は、 8 0 0 °C以上の温度において、 H 2, C O等によりガ ス化除去することができる。
第 3 7図は、 繊維状ナノ炭素の製造装置の第 2の実施の形態の概略図である。 第 3 7図に示すように、 本実施の形態にかかる繊維状ナノ炭素の製造装置 2 0 0 は、 図 1に示す装置において、 流動材 1 0 1が連続して流動可能となるように流 動層反応器 1 0 3の流動層部 1 0 3 A内を三分割して第 1〜 3流動室 2 0 3 A— 1、 2 0 3 A—2、 2 0 3 A— 3を形成し、 第 1流動室 2 0 3 A— 1には、 還元 ガス 1 0 4を供給する第 1のガス供給手段 1 0 5を設け、 第 2流動室 2 0 3 A— 2には炭素原料 1 0 6を供給する炭素原料供給手段 1 0 7を設け、 第 3流動室 2 0 3 A— 3には、 炭素を含有しない不活性ガス 1 0 8を供給する第 2のガス供給 手段 1 0 9を設けたものである。
なお、 第 1の実施の形態と同部材については同一符号を付してその説明を省略 する。
本実施の形態においては、 流動層反応器 1 0 3内に、 鉛直軸方向に垂下及び垂 設してなる複数の仕切板 2 0 2を交互に設けることで、 流動層を形成しつつ内部 を分割し、 図中、 左側から順に、 第 1部屋 2 0 3 A— 1 1と第 2部屋 2 0 3 A— 1 2と第 3部屋 2 0 3 A— 1 3とで第 1流動室 2 0 1 A— 1とし、 第 4部屋 2 0 3 A— 2 4と第 5部屋 2 0 3 A— 2 5と第 6部屋 2 0 3 A- 2 6と第 7部屋 2 0 3 A - 2 7とで第 2流動室 2 0 3 A— 2とし、 第 8部屋 2 0 3 A— 3 8と第 9部 屋 2 0 3 A— 3 9とで第 3流動室 2 0 3 A— 3としているが、 本発明はこれに限 定されるものではない。 なお、 フリーボード部 1 0 3 Bは共通である。
本実施の形態においては、 第 1流動室 2 0 3 A— 1に触媒兼用流動材 1 0 1を 供給する流動材供給手段 2 0 4が設けられており、 触媒兼用流動材 1 0 1を順次 供給するようにしている。 これにより、 連続して製造することができる。
例えば、 流動層反応器 1 0 3内の全体で、 9時間反応させる場合には、 第 1流 動室 2 0 3 A— 1において 7時間の滞留、 第 2流動室 2 0 3 A— 2において 1時 間の滞留、 第 3流動室 2 0 3 A— 3において 1時間の滞留ができるように、 仕切 り板 2 0 2の位置や各室内の容量を調整することで、 触媒兼用流動材 1 0 1を各 室内に任意の時間で滞留できるようにしている。
そして、 第 1流動室 2 0 3 A— 1においては、 還元ガス 1 0 6を供給すること で、 触媒兼用流動材 1 0 1の触媒機能を発揮させ、 第 2流動室 2 0 3 A— 2にお いては、 炭素原料ガス 1 0 6を供給することで、 触媒機能を発揮した触媒兼用流 動材 1 0 1と接触させて、 効率のよい繊維状ナノ炭素 1 5を製造し、 第 3流動室 2 0 3 A - 3においては、 炭素を含有しない不活性ガス 1 0 8を供給すると共に 反応温度よりも高温とすることで、 触媒兼用流動材 1 0 1の触媒機能を消失させ てパラバラに微細化し、 粒径 4 0〜1 0 0 n mの飛散粒子 1 1 0としてガス Gと 共に飛散させて回収するようにしている。 なお、 飛散しない触媒兼用流動材 1 0 1は別途回収手段により回収している。
また、 本実施の形態の他の例として、 第 1流動室と第 2流動室とから流動層部 を構成した流動層反応器と、 前記第 3流動室から流動層部を構成した流動層反応 器とを備えるようにすることも可能である。
第 3 8図は、 繊維状ナノ炭素の製造装置の第 3の実施の形態の概略図である。 第 3 8図に示すように、 本実施の形態では、 流動層反応器 1 0 3を各独立の機能 を有するものとして、 連続して製造することを可能としている。
第 3 8図に示すように、 本実施の形態に係る繊維状ナノ炭素の製造装置 3 0 0 は、 炭素原料 1 0 6を触媒を用いて高温の流動層中で反応させ、 繊維状ナノ炭素 1 5を製造する装置であって、 触媒兼用流動材 1 0 1を内部に充填すると共に、 内部を加熱する加熱手段 1 0 2を設けると共に、 還元ガス (H 2又は C O) 1 0 4を供給する第 1のガス供給手段 1 0 5を有する第 1の流動層反応器 3 0 1と、 第 1の流動層反応器 3 0 1から触媒兼用流動材 1 0 1を移送する移送手段 3 0 2 を有すると共に、 触媒兼用流動 ¾" 1 0 1と接触させて繊維状ナノ炭素 1 5を生成 するための炭素原料 1 0 6をガス状態で内部に供給する炭素原料供給手段 1 0 7 を有する第 2の流動層反応器 3 0 3と、 第 2の流動層反応器 3 0 3から反応生成 物と流動材とを移送する移送手段 3 0 4を有すると共に、 炭素を含有しない不活 性ガス 1 0 8を内部に供給する第 2のガス供給手段 1 0 9を有する第 3の流動層 反応器 3 0 5と、 上記第 3の流動層反応器 3 0 5からガス G及び飛散粒子 1 1 0 を排出する排出ライン 1 1 1とを具備するものである。
上記第 1の流動層反応器 3 0 1、 第 2の流動層反応器 3 0 3、 第 3の流動層反 応器 3 0 5は、 第 1の実施の形態と同様に、 流動層部 3 0 1 A、 3 0 3 A、 3 0 5 とフリーポード部3 0 1 8、 3 0 3 B、 3 0 5 Bとをそれぞれ備えて構成さ れている。 そして、 第 1の流動層反応器 3 0 1においては、 還元ガス 1 0 6を供給するこ とで、 触媒兼用流動材 1 0 1の触媒機能を発揮させる。 次いで、 気流搬送等の移 送手段 3 0 2により第 2の流動層反応器 3 0 3へ供給する。 そして、 第 2の流動 層反応器 3 0 3においては、 炭素原料ガス 1 0 6を供給することで、 触媒機能を 発揮した触媒兼用流動材 1 0 1と接触させて効率のよい繊維状ナノ炭素 1 5を製 造する。 続いて、 気流搬送等の移送手段 3 0 4により第 3の流動層反応器 3 0 5 へ供給する。 そして、 第 3流動層反応器 3 0 5においては、 炭素を含有しない不 活性ガス 1 0 8を供給すると共に反応温度よりも高温とすることで、 触媒兼用流 動材 1 0 1の触媒機能を消失させてバラパラに微細化し、 粒径 4 0〜 1 0 0 n m の飛散粒子 1 1 0としてガス Gと共に飛散させて回収するようにしている。 これ により、 連続して繊維状ナノ炭素 1 5を製造することができる。 また、 飛散しな い前記流動材 1 0 1は、 回収手段により別途回収している。
なお、 上記移送手段 3 0 2, 3 0 4としては、 上述した気流搬送等の手段の他 に、 フィーダを用いた切り出し搬送等による手段が挙げられるが、 前記流動材 1 0 1等を移送することができるものであればこれに限定されるものではない。 また、 各反応器 3 0 1, 3 0 3, 3 0 5内での前記流動材 1 0 1の滞留時間に 応じて、 当該反応器 3 0 1, 3 0 3, 3 0 5内の容積を変更するようにしてもよ い。 例えば、 平均滞留時間を第 1の流動層反応器 3 0 1で 7時間とし、 第 2の流 動層反応器 3 0 3及び第 3の流動層反応器 3 0 5で各々 1時間とする場合には、 第 1の流動層反応器 3 0 1の容積を第 2及び第 3の流動層反応器 3 0 3, 3 0 5 の容積の 7倍とすることで、 反応条件を調整することができる。
また、 第 1〜 3の流動層反応器 3 0 1 , 3 0 3 , 3 0 5を全て同じ容積とし、 第 1の流動層反応器 3 0 1を 7つとして直列に接続するようにすることも可能で ある。
また、 必要に応じて第 1の流動層反応器 3 0 1を複数備えるようにして、 処理 量を調整することも可能である。 同様に、 第 2の流動層反応器 3 0 3を複数備え るようにして、 処理量を調整することも可能である。 同様に、 第 3の流動層反応 器 3 0 5を複数備えるようにして、 処理量を調整することも可能である。
第 3 9図は、 繊維状ナノ炭素の製造装置の第 4の実施の形態の概略図である。 第 3 9図に示すように、 本実施の形態では、 第 3の実施の形態において、 第 2の 流動層反応器 3 0 3を 2基設け、 反応条件を異なるものとして製造することを可 能としている。
第 3 9図に示すように、 本実施の形態に係る繊維状ナノ炭素の製造装置 4 0 0 は、 炭素原料 1 0 6を触媒を用いて高温の流動層中で反応させ、 繊維状ナノ炭素 1 5を製造する装置であって、 上記触媒兼用流動材 1 0 1を内部に充填すると共 に、 内部を加熱する加熱手段 1 0 2を設けると共に、 還元ガス (H 2又は C O) 1 0 4を内部に供給する第 1のガス供給手段 1 0 5を有する第 1の流動層反応器
3 0 1と、 第 1の流動層反応器 3 0 1から触媒兼用流動材 1 0 1を移送する移送 手段 4 0 2 - 1を有すると共に、 触媒兼用流動材 1 0 1と接触させて繊維状ナノ 炭素 1 5を生成するための炭素原料 1 0 6をガス状態で内部に供給する炭素原料 供給手段 1 0 7を有する第 1段目の第 2の流動層反応器 4 0 3—1と、 第 1段目 の第 2の流動層反応器 4 0 3 - 1から触媒兼用流動材 1 0 1を移送する移送手段
4 0 2— 2を有すると共に、 触媒兼用流動材 1 0 1と接触させて繊維状ナノ炭素 1 5を生成するための炭素原料 1 0 6をガス状態で内部に供給する炭素原料供給 手段 1 0 7を有する第 2段目の第 2の流動層反応器 4 0 3— 2と、 第 2段目の第 2の流動層反応器 4 0 3— 2から反応生成物と流動材とを移送する移送手段 3 0 4を有すると共に、 炭素を含有しない不活性ガス 1 0 8を内部に供給する第 2の ガス供給手段 1 0 9を有する第 3の流動層反応器 3 0 5と、 上記第 3の流動層反 応器 3 0 5からガス G及び飛散粒子 1 1 0を排出する排出ライン 1 1 1とを具備 するものである。
そして、 例えば、 第 1段目の第 2の流動層反応器 4 0 3 - 1の加熱手段 1 0 2 の温度条件よりも第 2段目の第 2の流動層反応器 4 0 3 - 2の加熱手段 1 0 2の 温度条件を変える (例えば温度を 1 0 0 °C高めとする等) ことで、 例えば、 第 1 段目の第 2の流動層反応器 4 0 3 - 1内で反応温度 4 8 0 °Cとして、 触媒兼用流 動材 1 0 1の触媒 1 2 1上に羽状 (Feather) 構造の炭素ナノ繊維素群 1 3 Bを 成長させた後 (第 4 0図参照) 、 第 2段目の第 2の流動層反応器 4 0 3— 2内で 反応温度を 6 3 0 °Cとすることにより、 該羽状 (Feather) 構造の炭素ナノ繊維 素群 1 3 Bの下にチューブ状 (Tubular) 構造の炭素ナノ繊維素群 1 3 Aを成長 させた複合体を製造することができる (第 4 1図参照) 。
第 4 2図は、 繊維状ナノ炭素の製造装置の第 5の実施の形態の概略図である。 第 4 2図に示すように、 本実施の形態に係る繊維状ナノ炭素の製造装置 5 0 0で は、 流動層反応器 1 0 3の流動層部 1 0 3 Aが、 高速側流動層部 5 0 3 A— 1と 低速側流動層部 5 0 3 A _ 2とから構成され、 繊維状ナノ炭素 1 5を製造した後 の第 2のガス供給工程において、 高速側流動層部 5 0 3 A— 1内で触媒兼用流動 材 1 0 1を激しく攪拌して、 当該流動材 1 0 1の摩耗による微細化やパインダー 1 2 3の結合力の低下による微細化の促進を図るようにしている。
具体的には、 例えば、 触媒兼用流動材 1 0 1の粒径を 0 . 5 mmとした場合、 流動層部 1 0 3 Aの上部の低速側流動層部 5 0 3 A— 2では、 飛散の防止のため に流速を 0 . 1 m/ s程度に制御するが、 流動層部 1 0 3 Aの下部の高速側流動 層部 5 0 3 A— 1では、 流速を 0 . 2〜1 . O mZ s程度に設定し、 触媒兼用流 動材 1 0 1を激しく攪拌し、 当該流動材 1 0 1の摩耗による微細化を図るのであ る。
なお、 第 4 3図に示すように、 高速側流動層部 5 0 3 A— 1内に衝突部材 5 0 1を配設し、 該衝突部材 5 0 1に触媒兼用流動材 1 0 1を積極的に衝突させ、 微 細化を更に促進することも可能である。
第 4 4図は、 繊維状ナノ炭素の製造装置の第 6の実施の形態の概略図である。 第 4 4図に示すように、 本実施の形態に係る繊維状ナノ炭素の製造装置 6 0 0で は、 流動層反応器 1 0 3に側壁から高速ガス 6 0 1を吹込む高速ガス吹込手段 6 0 2を設け、 繊維状ナノ炭素 1 5を製造した後の第 2のガス供給工程において、 吹き込まれた高速ガス 6 0 1により触媒兼用流動材 1 0 1を激しく攪拌して、 当 該流動材 1 0 1の摩耗による微細化やバインダー 1 2 3の結合力の低下による微 細化の促進を図るようにしている。
具体的には、 例えば、 N2ガスや不活性ガス等を高速ガス 601として 10m /sの流速で高速ガス吹込手段 602から吹き込むことで、 触媒兼用流動材 10 1を激しく攪拌し、 当該流動材 101の摩耗による微細化を図ることができる。 なお、 第 45図に示すように、 粒子回収手段 112 aで分離した粗粒の飛散粒 子 1 10 bを流動層反応器 103内に再度供給する際に、 混合手段 603で高速 ガス 601と混合し、 粗粒の飛散粒子 1 10 bを高速ガス 601に同伴させて吹 き込むことで、 物理的な破壊力を向上させて触媒兼用流動材 101の摩耗による 微細化やバインダー 123の結合力の低下による微細化の促進をさらに図ること も可能である。 このとき、 繊維状ナノ炭素 1 5を含む微粒の飛散粒子 1 10 aは さらに下流側の分離手段 1 12 bにより分離回収することも可能である。
つまり、 第 5, 6の実施の形態は、 第 2のガス供給工程において、 流動層反応 器 103内の触媒兼用流動材 101の局所に流速の早いゾーンを形成することに より、 当該流動材 101同士の衝突、 当該流動材 101と上記反応器 103の壁 面や前記衝突部材 503との衝突、 又は、 高速ガス 601の吹き込み等により、 触媒兼用流動材 101の摩耗や割れ等による微細化を促進し、 繊維状ナノ炭素 1 5の回収効率を向上させるようにしているのである。 - このようにして得られた繊維状ナノ炭素 1 5は、 透明性導電材 (導電インキ一 、 導電フィルム、 導電プラスチック、 I TO代替材、 透明電磁波遮断材、 帯電防 止材 (太陽光電池、 ミラー等) , 透明紫外線遮蔽材 (例えば化粧品用途、 車両ガ ラスコーティング用途等) 、 高級電気 '熱伝導材 (プリンター、 ファクシミリ等 のロール) 、 高級導電 '放熱装置、 セラミックス混合材、 炭素 ·炭素複合材、 電 池の導電材等、 メタン等のガス吸着又は吸蔵材、 水素吸蔵材、 水素分離材、 ブタ ン等の分離材、 キャパシター電極、 電気脱塩電極、 海水分解 (電解槽) 酸素電極 材、 電池材料 (リチウム二次電池、 Na S電池、 空気二次電池、 長寿命アルカリ 電池導電材) 、 F ED材、 N a n o—リソグラピ半導体、 リ一ド線、 MLUD I
(遺伝子検索、 診断材) 、 ナノ脳波プルーブ、 生物互換性材料、 高選択性触媒、担 体、 高活性触媒担体、 黒鉛触媒代替材、 高活性触媒担体 (例えば P t、 P t - R h用) 、 薄膜セパレータ、 大気汚染物質 (S〇x、 N O x、 オゾン) 吸着材、 水 質汚染物吸着材、 脱塩浄化用電極材、 各種ガスセンサー、 導電性紙等の各種複合 材料、 ガス吸着材料、 バイオ材料等に用いると好適なものとなる。
従って、 本発明によれば、 金属触媒を担持した担体をバインダーを介して結合 してなる触媒兼用流動材を流動材として用い、 還元ガスを供給する第 1のガス供 給工程と、 炭素原料をガス状態で供給し、 触媒兼用流動材の触媒の存在下で炭素 ナノ繊維素を製造する炭素原料供給工程と、 炭素を含有しないガスを供給し、 触 媒兼用流動材の流動機能を消失させる第 2のガス供給工程とを備えているので、 流動層内において触媒が均一に存在することになり、 原料との接触効率が良好と なり、 均一な反応を行うと共に、 触媒に成長した繊維状ナノ炭素の回収にあたつ ては、 触媒機能を兼用する流動材をばらばらに細分化して担体の構成単位又はそ の集合体とすることで、 各触媒に成長した繊維状ナノ炭素の分離効率を向上させ て、 均一な性状の触媒を得ることができる。
[実施例]
〈炭素ナノ繊維素及び繊維状ナノ炭素〉
本発明に係る炭素ナノ繊維素及び繊維状ナノ炭素の好適な実施例を以下に説明 するが、 本発明はこれらの実施例に何ら限定されるものではない。
《実施例 1》
実施例 1は、 柱状 (Columnar) 構造の繊維状ナノ炭素である。
硝酸鉄を利用し、 沈澱法 (Best, R. J. Russell, W. . , J. Amer. Soc. 76, 838 (1954)、 Sinfelt, J. H. , Carter, J. L. , and Yates, D. J. C. , J. Catal . 24, 283 (1972) ) により鉄触媒を調製した。
具体的には、 4 gの鉄触媒を作るため、 2 0 0 m lの純水に硝酸鉄
( F e Ν 0 3 · 9 H 2 O:和光社製試薬 1級) 2 9 . 5 4 gを添加し、 ゆっくり 攪拌して溶液を調製する。 その溶液に炭酸水素アンモニア (N H4 H C 0 3 (Ammonium hydrogen carbonate) :純正社製 1級) を沈殿物 (F e C〇3 ■ xH2 O) が生じるまで攪拌しながら添加する。 そして、 沈殿 物をろ過して純水で炭酸水素アンモニアがなくなるまで精製する。 精製した沈殿 物を真空乾燥 (80°Cで 8時間) した後、 水平型のタンマン炉を使い、 空気雰囲 気中で加熱処理 ( 450 °Cで 5時間) することによって F e 2 03を得た。
調製した F e 2 03をアルミナ製のボート (長さ 10mm、 幅 2. 5 mm, 深さ 1. 5mm (外面値) ) に載せて、 アルミナ管 (内径 10 cm) の中におい て、 水素とヘリゥムとの混合ガス (水素分圧: 10%) を 100 s c cmで流し ながら還元処理 ( 480 °Cで 48時間) することにより、 4. 02 gの鉄触媒を 得た。
次に、 上述した方法で調製した鉄触媒 5 Omgを石英製のボート (長さ 10m m、 幅 2. 5 mm, 深さ 1. 5mm (外面値) ) に載せ、 石英管 (内径 4. 5 c m) の中において、 水素とヘリウムとの混合ガス (水素分圧: 20%) を 100 s c cmで流しながら還元 (500°Cで 2時間) する。 その後、 一酸化炭素と水 素との混合ガス (水素分圧: 20%) を 100 s c cmで流しながら反応 (58
0°Cで 60分) させて、 所定量 (1252mg) の繊維状ナノ炭素を製造した。
《実施例 2》
本実施例は、 実施例 1の繊維状ナノ炭素を高温熱処理したものである。 · すなわち、 上記実施例 1にて調製した繊維状ナノ炭素をアルゴン雰囲気下で 2
000°C及び 2800°Cで 10分間熱処理した。
《実施例 3》
本実施例は、 羽状 (Feather) 構造の繊維状ナノ炭素である。
硝酸ニッケルを利用し、 実施例 1の沈澱法によりニッケル触媒を調製した。 具体的には、 4 gのニッケル触媒を作るため、 200m lの純水に、 硝酸-ッ ケル (N i NO 3 · x H2 O:和光社製試薬 1級) 1 9. 82 gを添加し、 ゆ つくり提拌して溶液を調製する。 その溶液に炭酸水素アンモニア
(NH4 HC03 (Ammonium hydrogen carbonate) :純正社製 1級) を沈殿 ( N i C03 ■ xH2 O) が生じるまで摄拌しながら添加する。 そして、 沈殿物 をろ過して純水で炭酸水素アンモニアがなくなるまで精製する。 精製した沈殿物 を真空乾燥 (80°Cで 8時間) した後、 水平型のタンマン炉を使い、 空気雰囲気 中で加熱処理 (450 °Cで 5時間) することによつて酸化ュッケルを得た。 調製した酸化ニッケルをアルミナ製のボート (長さ 10mm、 幅 2. 5 mm, 深さ 1. 5mm (外面値) ) に載せて、 アルミナ管 (内径 10 cm) の中におい て、 水素とヘリゥムとの混合ガス (水素分圧: 10%) を 100 s c cmで流し ながら還元処理 (480°( で48時間) することにより、 4. O l gの鉄触媒を 得た。
次に、 上記の方法で調製した二ッケル触媒 50 m gを石英製のボート (長さ 1 0mm、 幅 2. 5 mm, 深さ 1. 5 mm (外面値) ) に載せ、 石英管 (内径 4. 5 cm) の中において、 水素とヘリウムとの混合ガス (水素分圧: 20%) を 1 00 s c cmで流しながら還元 (500°Cで 2時間) する。 その後、 エチレンと 水素との混合ガス (水素分圧: 20%) を 100 s c cmで流しながら反応 (5 80°Cで 60分) させて、 所定量 (60mg) の繊維状ナノ炭素を製造した。 《実施例 4》
本実施例は、 実施例 3の繊維状ナノ炭素を高温熱処理したものである。
すなわち、 上記実施例 3にて調製した繊維状ナノ炭素をアルゴン雰囲気下で 2 000°C及び 2800°Cで 10分間熱処理した。
《実施例 5》
本実施例は、 チューブ状 (Tubular) 構造の繊維状ナノ炭素である。
硝酸鉄及び硝酸二ッケルを利用し、 実施例 1の沈澱法により鉄-二ッケル合金 触媒を調製した。
具体的には、 4 gの鉄一ニッケル触媒を作るため、 200m 1の純水に硝酸二 ッケル (N i N03 ■ xH2 O:和光社製試薬 1級) 1 1. 90 g及び硝酸鉄
(F e Ν03 · 9H2 O:和光社製試薬 1級) 1 1. 80 gを添加し、 ゆっくり 攪拌して溶液を調製する。 その溶液に炭酸水素アンモニア NH4 HC03
(Ammonium hydrogen carbonate) :純正社製 1級) を沈殿
4 (N i C03 - xH2 O) が生じるまで攪桦しながら添加する。 沈殿物はろ過 し純水で炭酸水素アンモニアがなくなるまで精製する。 そして、 沈殿物をろ過し て純水で炭酸水素アンモニアがなくなるまで精製する。 精製した沈殿物を真空乾 燥 (80°Cで 8時間) した後、 水平型のタンマン炉を使い、 空気雰囲気中で加熱 処理 (450 °Cで 5時間) することによって酸ィ匕鉄一ニッケルを得た。
調製した酸化鉄一ニッケルをアルミナ製のボート (長さ 10mm、 幅 2. 5 m m、 深さ 1. 5mm (外面値) ) に載せて、 アルミナ管 (内径 10 c m) の中に おいて、 水素とヘリゥムとの混合ガス (水素分圧: 10%) を 100 s c cmで 流しながら還元処理 (480°〇で48時間) することにより、 4. 05 gの鉄一 ニッケル触媒を得た。
次に、 上記の方法で調製した鉄—ニッケル触媒 50 m gを石英製のポート長さ
10mm、 幅 2. 5 mm, 深さ 1. 5 mm (外面値) ) に載せ、 石英管 (内径 4 . 5 cm) の中において、 水素とヘリウムとの混合ガス (水素分圧: 20%) を
100 s c cmで流しながら還元 (500°Cで 2時間) する。 その後、 一酸化炭 素と水素との混合ガス (水素分圧: 80%) を 200 s c cmで流しながら反応 (630°Cで 60分) させて、 所定量 (432mg) の繊維状ナノ炭素を製造し た。
《実施例 6》
本実施例は、 実施例 5の繊維状ナノ炭素を高温熱処理したものである。
具体的には、 上記実施例 5にて調製した繊維状ナノ炭素をアルゴン雰囲気下で 2000°C及び 2800°Cで 10分間熱処理した。
《X線回折測定》
実施例 1〜 6で得られた繊維状ナノ炭素 1 50mgを 15mgの標準シリコン と混合し、 広角 X線回折装置 (理学社製) を用いて、 5° から 90° 間での回折 を行うことにより (CuKaf泉、 40 kV、 30 mA, Stepwise Method) 、 回 折曲線を得た。
得られた X線パータンから、 面間距離 (d 002 ) 、 積層の大きさ (L c002 ) 、 結晶子の大きさ (L a 11 Q ) をそれぞれ学振法によって計算した。 その結 果を上記表 1に示す。
《電界走査透過型電子顕微鏡による観察》
実施例 1〜 4で得られた繊維状ナノ炭素の繊維径及び組織を調べるために、 電 界走査透過型電子顕微鏡 ( J EM— 2010 F) で観察した。
具体的には、 実施例 1〜 4で得られた繊維状ナノ炭素を n—ブタノールに微量 入れて、 超音波分散により、 薄い透明性の色が出るまで完全に分散させた後、 こ の分散液を微細網試料セルに 1〜 2滴滴下して、 当該試料セルを常温の空気中で 1日乾燥させて観察した。
その結果を前記第 6図 (実施例 1, 2) 及び前記第 18図 (実施例 3, 4) に 示す。 なお、 第 6図は、 40万倍で観察した影像を 8倍に拡大した写真であり、 第 18図は、 ( a ) , ( b ) が 40万倍で観察した影像を撮影した写真、 ( c ) が (b) をさらに 8倍拡大した写真 (320万倍) である。
《走査トンネル型電子顕微鏡の観察》
上記実施例 1〜 6で得られた繊維状ナノ炭素を走査トンネル型電子顕微鏡 (Nanoscope III (DI, U.S.A.) ) で観察した。
具体的には、 上記実施例 1〜 6で得られた繊維状ナノ炭素をエタノールに微量 入れて超音波で完全に分散させた後、 この分散液を HOPGに 1滴滴下して、 空 気中で 8時間乾燥させて観察した (トンネリング電圧 IV、 トンネリング電流 3 . 0 n A) 。
その結果を第 30図 (実施例 1, 2) 、 第 7図 (b) (実施例 2) 、 第 1 5図 (実施例 1〜6) 、 第 29図 (実施例 1〜6) に示す。 なお、 第 30図は、 (a ) が実施例 1の繊維状ナノ炭素を観察した写真、 (b) , (c) が実施例 2の繊 維状ナノ炭素を観察した写真、 第 7図 (b) は、 第 30図 (c) と異なる角度で 観察した写真、 第 15図は、 低倍率で観察した写真、 第 29図は、 高倍率で観察 した写真である。
次に、 比較例を示す。 《比較例 1》
上記実施例 1の沈殿法で調製した鉄触媒 50 m gを石英製のボート (長さ 10 mm, 幅 2. 5 mm, 深さ 1. 5 mm (外面値) ) に載せ、 石英管 (内径 4. 5 cm) の中において、 水素とヘリウムとの混合ガス (水素分圧: 20%) を 10 0 s c c mで流しながら 500 で 0. 3時間還元する。 その後、 一酸化炭素と 水素との混合ガス (水素分圧: 20%) を 100 s c c mで流しながら 580 °C の温度で 60分反応したが、 繊維状ナノ炭素の製造に至らなかった。
《比較例 2》
上記実施例 1の沈殿法で調製した鉄触媒 50 m gを石英製のポート (長さ 10 mms 幅 2. 5mm、 深さ 1. 5 mm (外面値) ) に載せ、 石英管 (内径 4. 5 cm) の中において、 水素とヘリウムとの混合ガス (水素分圧: 20%) を 10 0 s c cmで流しながら 500°Cで 2時間還元する。 その後、 一酸化炭素ガスを 100 s c cmで流しながら 580°Cの温度で 60分反応したが、 繊維状ナノ炭 素の製造に至らなかった。
《比較例 3》
上記実施例 1の沈殿法で調製した二ッケル触媒 50 m gを石英製のボート (長 さ 10mm、 幅 2. 5 mm, 深さ 1. 5 mm (外面値) ) に載せ、 石英管 (内径 4. 5 cm) の中において、 水素とヘリウムとの混合ガス (水素分圧: 20%) を 100 s c c mで流しながら 500°Cで 2時間還元する。 その後、 一酸化炭素 と水素との混合ガス (水素分圧: 20%) を 100 s c c mで流しながら 580 °Cの温度で 60分反応したが、 繊維状ナノ炭素の製造に至らなかった。
《比較例 4》
上記実施例 1の沈殿法で調製したニッケル触媒 50 m gを石英製のボート (長 さ 10mm、 幅 2. 5mm、 深さ 1. 5 mm (外面値) ) に載せ、 石英管 (内径 4. 5 cm) の中において、 水素とヘリウムとの混合ガス (水素分圧: 20%) を 100 s c cmで流しながら 450°Cで 2時間還元する。 その後、 一酸化炭素 と水素の混合ガス (水素分圧: 20%) を 100 s c cmで流しながら 580°C の温度で 60分反応したが、 繊維状ナノ炭素の製造に至らなかった。 《比較例 5》
上記実施例 1の沈殿法で調製した二ッケル触媒 50 m gを石英製のボート (長 さ 10mm、 幅 2. 5 mm、 深さ 1. 5 mm (外面値) ) に载せ、 石英管 (内径 4. 5 cm) の中において、 水素とヘリウムとの混合ガス (水素分圧: 20%) を 100 s c c mで流しながら 500°Cで 2時間還元する。 その後、 一酸化炭素 と水素との混合ガス (水素分圧: 20%) を 100 s c c mで流しながら 680 °Cの温度で 60分反応したが、 繊維状ナノ炭素の製造に至らなかった。
《比較例 6》
上記実施例 5の方法で調製した鉄一二ッケル触媒 5 Omgを石英製のボート ( 長さ 10mm、 幅 2. 5mm、 深さ 1. 5mm (外面値) ) に載せ、 石英管 (内 径 4. 5 cm) の中において、 水素とヘリウムとの混合ガス (水素分圧: 20% ) を 100 s c cmで流しながら 500°Cで 2時間還元する。 その後、 一酸化炭 素と水素との混合ガス (水素分圧: 80%) を 200 s c cmで流しながら 70 0°Cの温度で 60分反応したところ、 所定量 (2 Omg) のナノ炭素が得られた ものの、 透過型弟子顕微鏡で観察した結果、 繊維状のものを観察することはでき なかった。
〈繊維状ナノ炭素の製造方法及びその装置〉
本発明に係る繊維状ナノ炭素の製造方法及びその装置の好適な実施例を以下に 説明するが、 本発明はこれらの実施例に何ら限定されるものではない。
《実施例 1》
F e-N i (2/8) を触媒に用い、 カーボンブラック (三菱ガス化学社製 「 MS- 3050 B (商品名) 」 (BET = 43m2 /g、 粒径 = 40 nm) ) を 担体に用い、 当該担体に上記触媒を 5 %担持させた。 バインダーとしてフエノー ル系樹脂製の高分子系接着剤 (最高使用温度:〜 360°C) を用い、 触媒兼用流 動材を造粒した。
この触媒兼用流動材を用い、 第 32図に示す第 1の実施の形態の装置を使用し て、 繊維状ナノ炭素を製造した。
第 1のガス供給による触媒の活性化には H2 /He (20/80) を用い、 7 時間前処理を施した。 次に、 炭素原料としてエチレン (C2 H4 ) を用い、 C2 H4 /H2 (4/1) のものを供給して、 480°Cの流動層反応器内で 1時間反 応させて製造した。 繊維状ナノ炭素の製造後、 H2 ZHe (20/80) の雰囲 気において、 昇温してバインダーを熱分解し、 触媒兼用流動材を微粒子化させ、 飛散させて回収手段により回収した。
得られた繊維状ナノ炭素の顕微鏡写真を第 46図に示す。 第 46図 (a) は、 1万倍のものであり、 スケールのサイズが 1 imである。 第 46図 (b) は、 1 0万倍のものであり、 スケーノレのサイズが 1 nmである。
《実施例 2》
触媒に N i—Mo (2/8) を用い、 担体に酸化チタン (T i〇2 ) を用い、 反応温度を 560°Cとした以外は、 実施例 1と同様に操作して繊維状ナノ炭素を 製造した。
得られた繊維状ナノ炭素の顕微鏡写真を第 47図に示す。 第 47図 (a) は、 1万倍のものであり、 スケールのサイズが 1 imである。 第 47図 (b) は、 5 万倍のものであり、 スケーノレのサイズが 100 nmである。
《実施例 3》
触媒に F e— N i (8/2) を用いた以外は、 実施例 1と同様に操作して繊維 状ナノ炭素を製造した。
得られた繊維状ナノ炭素の顕微鏡写真を第 48図に示す。 第 48図 (a ) は、 1万倍のものであり、 スケールのサイズが 1 //mである。 第 48図 (b) は、 1 0万倍のものであり、 スケールのサイズが 1 nmである。 産業上の利用の可能性
本発明に係る炭素ナノ繊維素及び繊維状ナノ炭素は、 高黒鉛化度又は高表面積 を有するので、 高機能性材料 (樹脂、 金属、 セラミタス、 炭素強化材料、 放熱材 料、 触媒担体、 ガス吸着、 生体用複合材料等) に用いて好適である。 特に水素吸 蔵や吸着 ·脱着、 リチウムの吸蔵や吸着 '脱着、 触媒作用、 窒素酸化物の吸着等 においては、 高い能力を発揮しうることになる。

Claims

請求の範囲
1. 一方向に伸びる中心軸を有する炭素へキサゴナル網面からなる
ことを特徴とする炭素ナノ繊維素。
2. 請求の範囲第 1項において、
前記炭素へキサゴナル網面の軸幅(D)が、 2. 5±0. 5 nmであり、 炭素へキサゴナル網面の長さ(L)が、 17 ± 15 n mである
ことを特徴とする炭素ナノ繊維素。
3. 請求の範囲第 1項又は第 2項において、
前記炭素へキサゴナル網面が、 2〜1 2層積層されている
ことを特徴とする炭素ナノ繊維素。
4. 請求の範囲第 1項から第 3項のいずれかの炭素ナノ繊維素が複数集合して なる
ことを特徴とする繊維状ナノ炭素。 '
5. 請求の範囲第 4項において、
前記炭素ナノ繊維素が、 三次元的に最密充填された状態で積層している ことを特徴とする繊維状ナノ炭素。
6. 請求の範囲第 4項又は第 5項において、
前記炭素ナノ繊維素が中心軸を互いに平行とするように複数積層して炭素ナノ 繊維素群を構成している
ことを特徴とする繊維状ナノ炭素。
7 . 請求の範囲第 6項において、
前記炭素ナノ繊維素群が、
前記炭素へキサゴナル網面を 2〜 1 2層積層してなる前記炭素ナノ繊維素と、 前記炭素へキサゴナル網面を 2〜 1 2層積層してなる前記炭素ナノ繊維素との間 に、 ナノ空隙を有しつつ三次元的に積層されたものである
ことを特徴とする繊維状ナノ炭素。
8 . 請求の範囲第 4項において、
前記炭素ナノ繊維素が軸端部で直列接合して軸方向にナノ繊維素群を構成して なる
ことを特 ί敫とする繊維状ナノ炭素。
9 . 請求の範囲第 8項において、
前記炭素ナノ繊維素の前記軸端部が熱処理により接合している
ことを特徴とする繊維状ナノ炭素。
1 0 . 請求の範囲第 6項において、
前記炭素ナノ繊維素群が、 前記炭素ナノ繊維素の積層方向の繊維軸と直交する 軸に対して、 0度より大きく 2 0度未満の配列角度で配列することにより、 柱状 (Columnar) 形をなしている
ことを特徴とする繊維状ナノ炭素。
1 1 . 請求の範囲第 6項において、
前記炭素ナノ繊維素群が、 前記炭素ナノ繊維素の積層方向の繊維軸と直交する 軸に対して、 2 0度より大きく 8 0度未満の配列角度で配列することにより、 羽 状 (Feather) 形をなしている
ことを特徴とする繊維状ナノ炭素。
12. 請求の範囲第 10項又は第 1 1項において、
前記炭素ナノ維素群が杉綾構造である
ことを特徴とする繊維状ナノ炭素。
13. 請求の範囲第 10項又は第 1 1項において、
700°C以下の熱処理条件において、 前記炭素へキサゴナル網面の面間距離 ( d 002 ) 力 SO. 500 nm未満である
ことを特徴とする繊維状ナノ炭素。
14. 請求の範囲第 10項から第 12項のいずれかにおいて、
前記炭素ナノ繊維素の集合体の繊維幅が 8〜 500 n mであり、 繊維のァスぺ タト比 (繊維長 Z繊維幅) が 10以上である
ことを特徴とする繊維状ナノ炭素。
15. 請求の範囲第 8項において、
前記炭素ナノ繊維素群が、 炭素ナノ繊維素の積層方向の繊維軸と直交する軸に 対して、 80度以上 88度までの配列角度で配列することにより、 チューブ状 ( Tubular) 形をなしている
ことを特徴とする繊維状ナノ炭素。
16. 請求の範囲第 1 5項において、
炭素ナノ繊維素の集合体の繊維幅が 8〜 80 n mであり、 繊維のァスぺクト比 (繊維長 Z繊維幅) が 30以上である
ことを特徴とする繊維状ナノ炭素。
17. 請求の範囲第 10項から第 16項のいずれかにおいて、 繊維軸と直交する方向の断面構造が多角形である
ことを特徴とする繊維状ナノ炭素。
1 8 . 請求の範囲第 1 0項から第 1 7項のいずれかにおいて、
1 6 0 0 °C以上で高温熱処理され、 表面にある前記炭素ナノ繊維素の末端が二 次元的にはループ状に形成され、 三次元的にはドーム状に形成されている ことを特敷とする繊維状ナノ炭素。
1 9 . 炭素原料を触媒を用いて高温の流動層中で反応させ、 炭素ナノ繊維素の 集合体からなる繊維状ナノ炭素を製造する方法であって、
金属触媒を担持した担体をバインダーを介して結合してなる触媒兼用流動材を 流動材として用い、
還元ガスを供給する第 1のガス供給工程と、
前記炭素原料をガス状態で供給し、 前記触媒兼用流動材の前記金属触媒の存在 下で炭素ナノ繊維素を製造する炭素原料供給工程と、
炭素を含有しないガスを供給し、 前記触媒兼用流動材の流動機能を消失させる 第 2のガス供給工程と '
を行うことを特徴とする繊維状ナノ炭素の製造方法。
2 0 . 請求の範囲第 1 9項において、
前記触媒兼用流動材の平均粒径が、 0 . 2〜 2 O mmである
ことを特徴とする繊維状ナノ炭素の製造方法。
2 1 . 請求の範囲第 1 9項において、
前記触媒兼用流動材が、 前記担体の表面に前記触媒を担持したもの又はその凝 集体からなる
ことを特徴とする繊維状ナノ炭素の製造方法。
5
2 2 . 請求の範囲第 1 9項において、
前記触媒兼用流動材の前記担体が、 カーボンブラック、 アルミナ、 シリカ、 ケ ィ砂、 アルミノシリケートのいずれかである
ことを特徴とする繊維状ナノ炭素の製造方法。
2 3 . 請求の範囲第 1 9項において、
前記触媒兼用流動材の前記金属触媒が、 F e、 N i、 C o、 C u、 M oのいず れか又はこれらのうち少なくとも 2種以上の混合物である
ことを特徴とする繊維状ナノ炭素の製造方法。
2 4 . 請求の範囲第 1 9項において、
流動層内の流速が、 0 . 0 2〜2 m/ sである
ことを特徴とする繊維状ナノ炭素の製造方法。
2 5 . 請求の範囲第 1 9項において、
前記第 1のガス供給工程、 前記炭素原料供給工程、 前記第 2のガス供給工程の 各工程の条件をそれぞれ独立して制御する
ことを特徴とする繊維状ナノ炭素の製造方法。
2 6 · 請求の範囲第 2 5項において、
前記条件が、 温度、 圧力、 時間、 ガス雰囲気である
ことを特徴とする繊維状ナノ炭素の製造方法。
2 7 . 請求の範囲第 1 9項において、
0 . :!〜 2 5気圧の圧力下、 水素と不活性ガスとの混合ガス (水素分圧 0〜 9 0 %) 中、 前記触媒兼用流動材の前記触媒と前記炭素原料とを 3 0 0〜1 3 0 0 °Cの温度で一定時間接触させることにより、 繊維状ナノ炭素を製造する ことを特徴とする繊維状ナノ炭素の製造方法。
2 8 . 請求の範囲第 1 9項において、
前記第 1のガス供給工程、 炭素原料供給工程の少なくとも一方の工程で、 前記 還元ガスの還元作用により、 前記触媒兼用流動材の前記触媒成分をメタル化する と共に微細化する
ことを特徴とする繊維状ナノ炭素の製造方法。
2 9 . 請求の範囲第 2 8項において、
前記触媒兼用流動材の前記金属触媒を微細化する際に、 当該金属触媒の粒径を 制御することにより、 得られる前記繊維状ナノ炭素の径を制御する
ことを特徴とする繊維状ナノ炭素の製造方法。
3 0 . 請求の範囲第 1 9項において、
前記第 2のガス供給工程が、 前記流動層の局所に流速の速いゾーンを形成し、 前記触媒兼用流動材の粒子同士、 又は、 当該粒子と壁面との衝突により、 当該触 媒兼用流動材の微細化摩耗の促進を図る
ことを特徴とする繊維状ナノ炭素の製造方法。
3 1 . 請求の範囲第 3 0項において、
前記流動層内の流速の速いゾーンを当該流動層の下部に形成する
ことを特徴とする繊維状ナノ炭素の製造方法。
3 2 . 請求の範囲第 3 0項において、
前記流動層内に高速ガスを吹き込むことにより、 流速の速レ、ゾーンを形成する ことを特徴とする繊維状ナノ炭素の製造方法。
3 3 . 請求の範囲第 3 2項において、
前記流動層から飛散した粒子を前記高速ガスに同伴させて当該流動層内に再び 供給する
ことを特徴とする繊維状ナノ炭素の製造方法。
3 4 . 請求の範囲第 1 9項において、
製造された前記繊維状ナノ炭素を前記担体又は前記触媒から分離する ことを特徴とする繊維状ナノ炭素の製造方法。
3 5 . 請求の範囲第 1 9項の繊維状ナノ炭素の製造方法の実施に使用する製造 装置であって、
前記触媒兼用流動材が充填されると共に、 内部を加熱する加熱手段を備えた流 動層反応器とヽ
前記流動層反応器内に前記還元ガスを供給する第 1のガス供給手段と、 前記流動層反応器内に前記炭素原料をガス状態で供給する炭素原料供給手段と 炭素を含有しない前記ガスを前記流動層反応器内に供給する第 2のガス供給手 段と、
前記流動層反応器からガス及び飛散粒子を排出する排出ラインと
を備えることを特徴とする繊維状ナノ炭素の製造装置。
3 6 . 請求の範囲第 3 5項において、
前記飛散粒子を回収する回収手段を前記排出ラインに設けた
ことを特徴とする繊維状ナノ炭素の製造装置。
3 7 · 請求の範囲第 3 5項において、 前記流動層反応器の流動層部が、 高速流動部と低速流動部とを有する ことを特徴とする繊維状ナノ炭素の製造装置。
3 8 . 請求の範囲第 3 7項において、
前記高速流動部内に衝突部を有する
ことを特徴とする繊維状ナノ炭素の製造装置。
3 9 . 請求の範囲第 3 5項において、
前記流動層反応器内にガスを高速で吹き込む高速ガス吹込み手段を設けた ことを特徴とする繊維状ナノ炭素の製造装置。
4 0 . 請求の範囲第 3 9項において、
前記ガスを高速で吹込む際に、 回収した粒子を同伴させる
ことを特徴とする繊維状ナノ炭素の製造装置。
4 1 . 請求の範囲第 3 5項において、
前記流動材が流動移動可能な第 1、 第 2、 第 3の流動室を前記流動層反応器内 に形成すると共に、
前記第 1の流動室に前記第 1のガス供給手段を連結し、
前記第 2の流動室に前記炭素原料供給手段を連結し、
前記第 3の流動室に前記第 2のガス供給手段を連結した
ことを特徴とする繊維状ナノ炭素の製造装置。
4 2 . 請求の範囲第 3 5項において、
前記流動材が流動移動可能な第 1、 第 2の流動室を前記流動層反応器内に形成 すると共に、
前記流動層反応器と異なる別の流動層反応器を第 3の流動室として設け、 前記第 2の流動室から前記第 3の流動室に前記流動材を移送する移送手段を設 けて、
前記第 1の流動室に前記第 1のガス供給手段を連結し、
前記第 2の流動室に前記炭素原料供給手段を連結し、
前記第 3の流動室に前記第 2のガス供給手段を連結した
ことを特徴とする繊維状ナノ炭素の製造装置。
4 4 . 請求の範囲第 1 9項の繊維状ナノ炭素の製造方法の実施に使用する製造 装置であって、
前記触媒兼用流動材が内部に充填され、 内部を加熱する加熱手段を有すると共 に、 内部に前記還元ガスを供給する第 1のガス供給手段を有する第 1の流動層反 応器と、
前記第 1の流動層反応器から前記流動材を移送する移送手段を有すると共に、 内部に前記炭素原料をガス状態で供給する炭素原料供給手段を有する第 2の流動 層反応器と、
前記第 2の流動層反応器から前記流動材及び反応生成物を移送する移送手段を 有すると共に、 炭素を含有しない前記ガスを内部に供給する第 2のガス供給手段 を有する第 3の流動層反応器と、
前記第 3の流動層反応器からガス及び飛散粒子を排出する排出ラインと を備えることを特徴とする繊維状ナノ炭素の製造装置。
4 5 . 請求の範囲第 4 4項において、
前記第 1の流動層反応器を複数備える
ことを特徴とする繊維状ナノ炭素の製造装置。
4 6 . 請求の範囲第 4 4項において、
前記第 2の流動層反応器を複数備える ことを特徴とする繊維状ナノ炭素の製造装置,
47. 請求の範囲第 44項において、
前記第 3の流動層反応器を複数備える
ことを特徴とする繊維状ナノ炭素の製造装置。
48. 請求の範囲第 35項から第 47項のいずれかにおいて、
前記触媒兼用流動材の平均粒径が、 0. 2 ~ 20 mmである
ことを特徴とする繊維状ナノ炭素の製造装置。
49. 請求の範囲第 35項から第 47項のいずれかにおいて、
前記触媒兼用流動材が、 前記担体の表面に前記触媒を担持したもの又はその凝 集体からなる
ことを特徴とする繊維状ナノ炭素の製造装置。
50. 請求の範囲第 35項から第 47項のいずれかにおいて、
前記触媒兼用流動材の前記担体が、 カーボンブラック、 アルミナ、 シリカ、 ケ ィ砂、 アルミノシリケートのいずれかである
ことを特徴とする繊維状ナノ炭素の製造装置。
51. 請求の範囲第 35項から第 47項のいずれかにおいて、
前記触媒兼用流動材の前記金属触媒が、 F e、 N i、 Co、 Cu、 Moのいず れか又はこれらのうち少なくとも 2種以上の混合物である
ことを特徴とする繊維状ナノ炭素の製造装置。
52. 請求の範囲第 35項から第 47項のいずれかにおいて、
流動層内の流速が、 0. O Z ZmZsである ことを特徴とする繊維状ナノ炭素の製造装置。
53. 請求の範囲第 35項から第 47項のいずれかにおいて、
0. 1〜 25気圧の圧力下、 水素と不活性ガスとの混合ガス (水素分圧 0〜 9 0 %) 中、 前記触媒兼用流動材の前記触媒と前記炭素原料とを 300〜 1300 °Cの温度で一定時間接触させることにより、 繊維状ナノ炭素を製造する
ことを特徴とする繊維状ナノ炭素の製造装置。
PCT/JP2003/014892 2003-11-21 2003-11-21 炭素ナノ繊維素及び繊維状ナノ炭素並びに繊維状ナノ炭素の製造方法及びその装置 WO2005049900A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP03774132A EP1686203B1 (en) 2003-11-21 2003-11-21 Carbon nano fibrous rod and fibrous nano carbon, and method and apparatus for preparing fibrous nano carbon
DE60333874T DE60333874D1 (de) 2003-11-21 2003-11-21 Kohlenstoffnanofaserstab und faserförmiger nanokohlenstoff sowie verfahren und vorrichtung zur herstellung von faserförmigem nanokohlenstoff
US10/537,151 US7700065B2 (en) 2003-11-21 2003-11-21 Carbon nano-fibrous rod, fibrous nanocarbon, and method and apparatus for producing fibrous nanocarbon
AT03774132T ATE478181T1 (de) 2003-11-21 2003-11-21 Kohlenstoffnanofaserstab und faserförmiger nanokohlenstoff sowie verfahren und vorrichtung zur herstellung von faserförmigem nanokohlenstoff
PCT/JP2003/014892 WO2005049900A1 (ja) 2003-11-21 2003-11-21 炭素ナノ繊維素及び繊維状ナノ炭素並びに繊維状ナノ炭素の製造方法及びその装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2003/014892 WO2005049900A1 (ja) 2003-11-21 2003-11-21 炭素ナノ繊維素及び繊維状ナノ炭素並びに繊維状ナノ炭素の製造方法及びその装置

Publications (1)

Publication Number Publication Date
WO2005049900A1 true WO2005049900A1 (ja) 2005-06-02

Family

ID=34611322

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/014892 WO2005049900A1 (ja) 2003-11-21 2003-11-21 炭素ナノ繊維素及び繊維状ナノ炭素並びに繊維状ナノ炭素の製造方法及びその装置

Country Status (5)

Country Link
US (1) US7700065B2 (ja)
EP (1) EP1686203B1 (ja)
AT (1) ATE478181T1 (ja)
DE (1) DE60333874D1 (ja)
WO (1) WO2005049900A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114835111A (zh) * 2022-05-30 2022-08-02 中北大学 一种纳米螺旋石墨纤维材料及其制备方法和应用

Families Citing this family (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060286024A1 (en) * 2005-06-15 2006-12-21 Baker R Terry K Synthesis and cleaving of carbon nanochips
TW200845067A (en) * 2006-11-02 2008-11-16 Sumitomo Chemical Co Electrode membrane, electrode and method for producing the same, and electric double layer capacitor
US8460763B2 (en) * 2007-03-01 2013-06-11 Plasmatrix Materials Ab Method for enhancing dynamic stiffness
EP2188207A2 (en) * 2007-09-07 2010-05-26 Binyomin A. Cohen A filter material for generating oxygen and/or hydrogen from a source
CA2758694C (en) 2009-04-17 2017-05-23 Seerstone Llc Method for producing solid carbon by reducing carbon oxides
NO2749379T3 (ja) 2012-04-16 2018-07-28
MX2014012548A (es) 2012-04-16 2015-04-10 Seerstone Llc Metodos y estructuras para reducir oxidos de carbono con catalizadores no ferrosos.
JP6379085B2 (ja) 2012-04-16 2018-08-22 シーアストーン リミテッド ライアビリティ カンパニー 炭素酸化物を含有するオフガスを処理するための方法
EP2838839B1 (en) 2012-04-16 2020-08-12 Seerstone LLC Method for producing solid carbon by reducing carbon dioxide
WO2013158161A1 (en) 2012-04-16 2013-10-24 Seerstone Llc Methods and systems for capturing and sequestering carbon and for reducing the mass of carbon oxides in a waste gas stream
US9896341B2 (en) 2012-04-23 2018-02-20 Seerstone Llc Methods of forming carbon nanotubes having a bimodal size distribution
CN104619637B (zh) 2012-07-12 2017-10-03 赛尔斯通股份有限公司 包含碳纳米管的固体碳产物以及其形成方法
US10815124B2 (en) 2012-07-12 2020-10-27 Seerstone Llc Solid carbon products comprising carbon nanotubes and methods of forming same
US9598286B2 (en) 2012-07-13 2017-03-21 Seerstone Llc Methods and systems for forming ammonia and solid carbon products
US9779845B2 (en) 2012-07-18 2017-10-03 Seerstone Llc Primary voltaic sources including nanofiber Schottky barrier arrays and methods of forming same
WO2014085378A1 (en) 2012-11-29 2014-06-05 Seerstone Llc Reactors and methods for producing solid carbon materials
JP2014169521A (ja) * 2013-02-05 2014-09-18 Honda Motor Co Ltd カーボンナノチューブ繊維及びその製造方法
EP3114077A4 (en) 2013-03-15 2017-12-27 Seerstone LLC Methods of producing hydrogen and solid carbon
US9586823B2 (en) 2013-03-15 2017-03-07 Seerstone Llc Systems for producing solid carbon by reducing carbon oxides
EP3129135A4 (en) 2013-03-15 2017-10-25 Seerstone LLC Reactors, systems, and methods for forming solid products
EP3129321B1 (en) 2013-03-15 2021-09-29 Seerstone LLC Electrodes comprising nanostructured carbon
US9783421B2 (en) 2013-03-15 2017-10-10 Seerstone Llc Carbon oxide reduction with intermetallic and carbide catalysts
US11130678B2 (en) * 2016-07-20 2021-09-28 Paul H. Matter Carbon formation reactor and method of using same
US11752459B2 (en) 2016-07-28 2023-09-12 Seerstone Llc Solid carbon products comprising compressed carbon nanotubes in a container and methods of forming same
KR102579608B1 (ko) * 2016-08-04 2023-09-18 에스케이이노베이션 주식회사 탄소나노튜브의 제조방법
US20220332573A1 (en) * 2020-09-04 2022-10-20 Hindustan Petroleum Corporation Limited Co-production of hydrogen-enriched compressed natural gas and carbon nanotubes
CN114551802B (zh) * 2022-02-24 2024-06-07 山东能源集团有限公司 一种碳纳米棒复合材料的制备方法和应用
WO2024054914A1 (en) * 2022-09-07 2024-03-14 Pact Fuel, Llc Reactor and process for producing carbonaceous materials

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4855091A (en) * 1985-04-15 1989-08-08 The Dow Chemical Company Method for the preparation of carbon filaments
US5830326A (en) * 1991-10-31 1998-11-03 Nec Corporation Graphite filaments having tubular structure and method of forming the same
US20020058139A1 (en) * 2000-11-10 2002-05-16 Showa Denko K.K. Fine carbon fiber and method for producing the same
JP2003146635A (ja) * 2001-08-27 2003-05-21 Mitsubishi Heavy Ind Ltd カーボンナノ材料製造方法、カーボンナノ材料製造装置及びカーボンナノ材料製造設備

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4663230A (en) 1984-12-06 1987-05-05 Hyperion Catalysis International, Inc. Carbon fibrils, method for producing same and compositions containing same
JP2662413B2 (ja) 1988-04-12 1997-10-15 昭和電工株式会社 気相成長炭素繊維の製造方法
US5618875A (en) * 1990-10-23 1997-04-08 Catalytic Materials Limited High performance carbon filament structures
JP2687794B2 (ja) 1991-10-31 1997-12-08 日本電気株式会社 円筒状構造をもつ黒鉛繊維
JP3355157B2 (ja) 1999-09-24 2002-12-09 株式会社荏原製作所 カーボンナノファイバーの製造方法
JP2001288624A (ja) 2000-04-04 2001-10-19 Toyota Motor Corp カーボンナノファイバーおよび水素吸蔵材
US6413487B1 (en) 2000-06-02 2002-07-02 The Board Of Regents Of The University Of Oklahoma Method and apparatus for producing carbon nanotubes
JP4010767B2 (ja) 2000-11-10 2007-11-21 昭和電工株式会社 微細炭素繊維集合体
US7052668B2 (en) * 2001-01-31 2006-05-30 William Marsh Rice University Process utilizing seeds for making single-wall carbon nanotubes
JP4382311B2 (ja) * 2001-03-21 2009-12-09 守信 遠藤 気相成長法による炭素繊維の製造方法
JP3787680B2 (ja) 2001-03-27 2006-06-21 大阪瓦斯株式会社 グラファイトリボンおよびその製造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4855091A (en) * 1985-04-15 1989-08-08 The Dow Chemical Company Method for the preparation of carbon filaments
US5830326A (en) * 1991-10-31 1998-11-03 Nec Corporation Graphite filaments having tubular structure and method of forming the same
US20020058139A1 (en) * 2000-11-10 2002-05-16 Showa Denko K.K. Fine carbon fiber and method for producing the same
JP2003146635A (ja) * 2001-08-27 2003-05-21 Mitsubishi Heavy Ind Ltd カーボンナノ材料製造方法、カーボンナノ材料製造装置及びカーボンナノ材料製造設備

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114835111A (zh) * 2022-05-30 2022-08-02 中北大学 一种纳米螺旋石墨纤维材料及其制备方法和应用
CN114835111B (zh) * 2022-05-30 2024-04-30 中北大学 一种纳米螺旋石墨纤维材料及其制备方法和应用

Also Published As

Publication number Publication date
EP1686203A1 (en) 2006-08-02
EP1686203B1 (en) 2010-08-18
DE60333874D1 (de) 2010-09-30
US7700065B2 (en) 2010-04-20
US20060057054A1 (en) 2006-03-16
ATE478181T1 (de) 2010-09-15
EP1686203A4 (en) 2007-11-07

Similar Documents

Publication Publication Date Title
WO2005049900A1 (ja) 炭素ナノ繊維素及び繊維状ナノ炭素並びに繊維状ナノ炭素の製造方法及びその装置
Ruiz-Cornejo et al. Synthesis and applications of carbon nanofibers: a review
KR101543052B1 (ko) 카본나노튜브의 제조방법 및 카본나노튜브 제조장치
JP4004502B2 (ja) 極細繊維状ナノ炭素製造方法
JP2003342840A (ja) 繊維状ナノ炭素の製造方法及び装置
Coville et al. A review of shaped carbon nanomaterials
Zhao et al. Hierarchical nanocomposites derived from nanocarbons and layered double hydroxides‐properties, synthesis, and applications
TW448132B (en) Nanostructured oxides and hydroxides and methods of synthesis therefor
JP5436528B2 (ja) カーボンナノファイバ基板上のカーボンナノチューブ
JP5629681B2 (ja) 炭素材料及びその製造方法
US20060008408A1 (en) Fibrous nano-carbon and preparation method thereof
Jeevanandam et al. Sustainability of one-dimensional nanostructures: fabrication and industrial applications
KR20070087697A (ko) 다공성 섬유상 나노탄소 및 그 제조방법
JP2007230816A (ja) カーボン材料の分散方法及びカーボン材料製造装置
Bhagabati et al. Synthesis/preparation of carbon materials
JP4160780B2 (ja) 繊維状ナノ炭素
KR100675992B1 (ko) 탄소 나노로드, 섬유상 나노탄소, 및 섬유상 나노탄소의 제조방법 및 그의 장치
Dziike et al. Synthesis of carbon nanofibers over lanthanum supported on radially aligned nanorutile: A parametric study
KR101040928B1 (ko) 소섬경 플레이트리트 탄소나노섬유 및 그 제조방법
JP2006231198A (ja) ナノカーボン材料製造用触媒、その製造方法、ナノカーボン材料の製造装置
KR100483803B1 (ko) 섬유상 나노탄소 제조법
JP4511972B2 (ja) ナノカーボン材料生成用担体、その担体の製造方法、ナノカーボン材料製造装置
KR20040080868A (ko) 고비표면적 탄소재
KR100713609B1 (ko) 섬유쌍 탄소
Amreen Emerging Trends of Miniaturized Carbon Nanomaterial Based Energy Storage Microdevices

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2003774132

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2006057054

Country of ref document: US

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 10537151

Country of ref document: US

AK Designated states

Kind code of ref document: A1

Designated state(s): KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR

WWE Wipo information: entry into national phase

Ref document number: 1020057012202

Country of ref document: KR

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWP Wipo information: published in national office

Ref document number: 1020057012202

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 2003774132

Country of ref document: EP