明細書 アルミニウム Zニッケルクラッ ド材およびその製造方法並びに電池用外 部端子 技術分野 Description Aluminum Z nickel clad material, method for producing the same, and external terminal for battery
本発明は電池外装缶に接合される外部端子およびその素材として好適 に用いることができるアルミニウム Zニッケルクラッ ド材に関する。 背景技術 TECHNICAL FIELD The present invention relates to an external terminal joined to a battery outer can and an aluminum Z nickel clad material that can be suitably used as a material thereof. Background art
携帯電話ゃノ一卜型パソコンなどの小形の電子 ■ 電気機器には、 小形 電池が搭載されている。 この小形電池には、 純アルミニウムで形成され た外装缶を備えたものがある。 電池によって発生した電気は、 前記純ァ ルミニゥ厶製の外装缶に付設された外部端子およびこれに接合された導 電部材を介して各種電子部品に供給される。 前記導電部材は、 通常、 耐 食性、 耐久性に優れた純ニッケルで形成されている。 Small electronic devices such as mobile phones and notebook PCs ■ Small batteries are installed in electrical equipment. Some of these small batteries have an outer can made of pure aluminum. Electricity generated by the battery is supplied to various electronic components via an external terminal attached to the pure aluminum outer can and a conductive member joined thereto. The conductive member is usually formed of pure nickel having excellent corrosion resistance and durability.
前記外部端子は、 幅 3 mnu 長さ 2 0 關程度の方形をしている。 前記外 部端子には、 例えぱ特開 2 0 0 1 — 6 7 4 6号公報に記載されているよ うに、 純アルミニウム製の外装缶および純ニッケル製の導電部材との接 合性を考慮して、 純アルミニウムによって形成されたアルミニウム層と 純ニッケルによって形成されたニッケル層とが接合されたアルミニウム /ニッケルクラッ ド材によって形成されたものがある。 The external terminal has a rectangular shape with a width of about 3 mnu and a length of about 20 m. As described in Japanese Unexamined Patent Application Publication No. 2001-6746, the external terminals are designed to take into consideration the connection with an outer can made of pure aluminum and a conductive member made of pure nickel. Then, there is an aluminum / nickel cladding material in which an aluminum layer formed of pure aluminum and a nickel layer formed of pure nickel are joined.
従来、 このアルミニウム/ニッケルクラッ ド材は、 純ニッケルによつ て形成されたニッケルシ一 卜と純アルミニウムによって形成されたアル ミニゥムシ一 卜とを重ね合わせ、 その重ね合わせシー トを一対のロール に通して冷間圧接した後、 その圧接シ一 卜に拡散焼鈍が施されて、 アル
ミニゥ厶層とニッケル層とが拡散接合されることによって製作される。 冷間圧接における圧下率は、 両シー 卜が後の工程で剥がれない程度の接 合が得られるように 6 0 %程度以上とされる。 また、 高温での拡散焼鈍 は、 アルミニウム層とニッケル層との界面に脆弱な A I — N i 系金属間 化合物が生成し、 アルミニウム層とニッケル層との剥離強度を劣化させ ると考えられている。 このため、 拡散焼鈍は、 通常、 前記金属間化合物 が生成しないように 4 0 0 °C程度以下の低い焼鈍温度で短時間保持する ことによって行われている。 電池用外部端子は、 通常、 前記アルミニゥ 厶 /ニッケルクラッ ド材を長さ方向に沿って所要の外部端子幅と同幅の ス トリ ップにスリ ツ 卜し、 得られたス 卜 リ ップをさらに所要の長さにせ ん断加工することによって製造される。 Conventionally, in this aluminum / nickel clad material, a nickel sheet formed of pure nickel and an aluminum sheet formed of pure aluminum are laminated, and the laminated sheet is passed through a pair of rolls. After cold-welding, the sheet is subjected to diffusion annealing, It is manufactured by diffusion bonding of a nickel layer and a nickel layer. The rolling reduction in cold pressure welding is set to about 60% or more so that the sheets can be joined so that they cannot be peeled off in a later step. It is also believed that high-temperature diffusion annealing generates a vulnerable AI-Ni-based intermetallic compound at the interface between the aluminum and nickel layers, degrading the peel strength between the aluminum and nickel layers. . For this reason, diffusion annealing is usually carried out by holding at a low annealing temperature of about 400 ° C. or less for a short time so that the intermetallic compound is not generated. The external terminal for the battery is usually obtained by slitting the aluminum / nickel clad material into a strip having the same width as the required external terminal width along the length direction. It is manufactured by further cutting to the required length.
前記外部端子は、 従来、 電池外装缶にスポッ ト溶接 (抵抗溶接) によ り接合されていた。 スポッ ト溶接部では、 クラッ ド材のアルミニウムと ニッケルとが溶融凝固し、 金属間化合物が生成するため、 溶接部で電気 抵抗が増大し、 電池の効率が低下する。 このため、 近年、 外部端子は超 音波溶接によって接合されるようになってきた。 超音波溶接では、 溶接 部が溶融することなく、 アルミニウム層が電池外装缶に圧接された状態 となるため、 金属間化合物は生成せず、 電池効率の低下を防止すること ができる。 Conventionally, the external terminal has been joined to a battery outer can by spot welding (resistance welding). At the spot weld, the aluminum and nickel of the clad material are melted and solidified to form an intermetallic compound, which increases the electrical resistance at the weld and reduces the efficiency of the battery. For this reason, in recent years, external terminals have been joined by ultrasonic welding. In ultrasonic welding, since the aluminum layer is pressed against the battery outer can without melting the welded portion, no intermetallic compound is generated, and a decrease in battery efficiency can be prevented.
ところが、 従来の冷間圧接によ ·?て接合したアルミニウム/ニッケル クラッ ド材を素材として製作した電池用外部端子を用いて超音波溶接す ると、 接合強度のばらつきが大きく、 接合性が不安定であるという問題 がある。 However, by the conventional cold welding ·? When ultrasonic welding is performed using an external battery terminal made of aluminum / nickel clad material that has been joined by welding, there is a problem that the joining strength varies greatly and the joining properties are unstable.
また、 最近では、 外部端子として Z字形など種々の屈曲形状のものが 要求されるようになってきている。 かかる形態の外部端子を従来のクラ ッ ド材によって形成した場合、 曲げ加工の際に大きなスプリ ングバック
が生じ易く、 形状不良が生じやすいという問題がある。 In recent years, external terminals of various bending shapes such as a Z-shape have been required. When such external terminals are made of a conventional cladding material, a large springback is required during bending. There is a problem that the shape is easily generated and the shape defect is easily generated.
本発明はかかる問題に鑑みなされたもので、 超音波溶接を適用しても 安定した溶接接合性が得られ、 また曲げ加工を施しても形状不良が生じ 難い電池用外部端子、 それの素材として好適なアルミニウム /ニッケル クラッ ド材、 並びにその製造方法を提供することを目的とする。 発明の開示 SUMMARY OF THE INVENTION The present invention has been made in view of such a problem, and as a material for a battery external terminal, which is capable of obtaining stable weld bonding even when ultrasonic welding is applied, and hardly causing a shape defect even when subjected to bending, as a material thereof. It is an object of the present invention to provide a suitable aluminum / nickel clad material and a method for producing the same. Disclosure of the invention
本発明者は従来のアルミニウム/ニッケルクラッ ド材によって製作し た電池用外部端子を用いて超音波溶接を行うと接合性が不安定になり、 また従来のアルミニウム/ニッケルクラッ ド材は加工に際して形状不良 が生じ易いという原因について鋭意調査したところ、 アルミニウム/二 ッケルクラッ ド材のニッケル層が硬過ぎることが原因であることを見出 した。 また、 従来、 拡散焼鈍の際にアルミニウム層とニッケル層との界 面に A l — N ί 系金属間化合物が生成すると、 アルミニウム層とニッケ ル層との間の剥離強度が劣化すると考えられていたが、 A I — N i 系金 属間化合物層の厚さが特定の薄い領域では剥離強度は却って向上するこ とを見出した。 本発明はかかる知見に基づいてなされたものである。 すなわち、 本発明のアルミニウム/ニッケルクラッ ド材は、 アルミ二 ゥ厶の純度が 9 8 m a s s %以上の純アルミニウムで形成されたアルミニゥ 厶層と、 ニッケルの純度が 9 8 m a s s %以上の純ニッケルで形成された二 ッケル層とが拡散接合され、 前記ニッケル層の硬度が H V Ί 3 0〜 1 7 0 とされたものである。 前記アルミニウム層の厚さは 2 5 ~ Ί 0 0 m とすることが好ましく、 また前記ニッケル層の厚さは 5 0〜 2 0 0 μ. m とすることが好ましい。 The inventors of the present invention have found that when ultrasonic welding is performed using external terminals for a battery made of a conventional aluminum / nickel clad material, the bondability becomes unstable. After a thorough investigation into the causes of failure, the team found that the nickel layer of the aluminum / nickel clad was too hard. Conventionally, it has been thought that the peel strength between the aluminum layer and the nickel layer is degraded if an Al-N 系 -based intermetallic compound is formed at the interface between the aluminum layer and the nickel layer during diffusion annealing. However, it has been found that the peel strength is rather improved in the region where the thickness of the AI—Ni-based intermetallic compound layer is particularly small. The present invention has been made based on such findings. That is, the aluminum / nickel clad material of the present invention comprises an aluminum layer formed of pure aluminum having an aluminum purity of 98 mass% or more, and a pure nickel having a nickel purity of 98 mass% or more. The formed nickel layer is diffusion-bonded, and the hardness of the nickel layer is set to HVΊ30 to 170. The thickness of the aluminum layer is preferably 25 to Ί100 m, and the thickness of the nickel layer is preferably 50 to 200 μm.
このアルミニウム/ニッケルクラッ ド材によると、 ニッケル層の硬度 が H V 1 3 0 〜 1 7 0であり、 ニッケル層が過度に硬くないので、 超音
波溶接の際に超音波振動が超音波振動出力端部 (ホーン先端部) から二 ッケル層を介してアルミニウム層に速やかに伝達されるため、 安定した 溶接接合性が得られる。 また、 過度のスプリ ングバックも生じないため 、 良好な成形加工性が得られる。 一方、 ニッケル層が過度に軟らかくな いので、 クラッ ド材をせん断加工して電池用外部端子あるいはその素材 などの加工片を得る際に、 加工片のせん断縁に突起 (バリ) が生じ難い 。 バリがあると溶接相手材に対して加工片が密着せず、 超音波振動が伝 達し難くなる。 前記クラッ ド材では、 加工片にバリが生じ難いため、 超 音波振動が速やかに伝達され、 良好な超音波溶接性が得られる。 According to this aluminum / nickel clad material, the hardness of the nickel layer is HV130 to 170, and the nickel layer is not excessively hard. During the wave welding, the ultrasonic vibration is quickly transmitted from the ultrasonic vibration output end (horn tip) to the aluminum layer through the nickel layer, so that stable weldability can be obtained. In addition, since no excessive springback occurs, good moldability can be obtained. On the other hand, since the nickel layer is not excessively soft, projections (burrs) are less likely to occur on the sheared edge of the work piece when a work piece such as a battery external terminal or its material is obtained by shearing the clad material. If there is a burr, the work piece does not adhere to the welding partner, making it difficult to transmit ultrasonic vibration. In the clad material, since the burrs are not easily generated on the work piece, the ultrasonic vibration is quickly transmitted, and good ultrasonic weldability is obtained.
前記アルミニウム Zニッケルクラッ ド材において、 前記アルミニウム 層とニッケル層とは厚さが 0. 4 〜 1 0. O At m 、 好ましくは 1 . 0〜 6. O At m の A l — Ν ί 系金属間化合物層を介して拡散接合されること が望ましい。 A I — N i 系金属間化合物自体は脆弱であるが、 ニッケル 層あるいはアルミニウム層と前記金属間化合物層との境界の近傍領域で は脆弱性は現れず、 ニッケル層あるいはアルミニウム層と前記金属間化 合物層とは良好に接合する。 前記金属間化合物層の厚さが 0. 4〜 1 0 . Ο μ ηι 程度では、 前記金属間化合物層自体の脆弱性が現れ難いため、 アルミニウム層とニッケル層との接合性は比較的良好である。 さらに、 前記金属間化合物層の厚さを 1 . 0 ~ 6. 0 m とすることによって特 に優れた接合性が得られる。 このため、 クラッ ド材あるいはその加工片 に対して厳しい成形加工を行ってもアルミニウム層とニッケル層とは剥 離し難くなリ、 優れた成形加工性が得られる。 In the aluminum Z nickel clad material, the aluminum layer and the nickel layer have an Al—Ν-based metal having a thickness of 0.4 to 10. O Atm, preferably 1.0 to 6. It is desirable to perform diffusion bonding via an inter-compound layer. The AI—Ni-based intermetallic compound itself is brittle, but no brittleness appears in the area near the boundary between the nickel layer or aluminum layer and the intermetallic compound layer. Good bonding with the compound layer. When the thickness of the intermetallic compound layer is about 0.4 to 10. Ημηι, the brittleness of the intermetallic compound layer itself hardly appears, so that the bonding property between the aluminum layer and the nickel layer is relatively good. is there. Further, by setting the thickness of the intermetallic compound layer to be 1.0 to 6.0 m, particularly excellent bonding properties can be obtained. For this reason, even if the clad material or its work piece is subjected to severe forming processing, the aluminum layer and the nickel layer are not easily separated from each other, and excellent forming workability can be obtained.
前記アルミニウム/ニッケルクラッ ド材は電池用外部端子の素材とし て好適であり、 前記アルミニウム/ニッケルクラッ ド材をシヤーによる 切断や打ち抜き加工等のせん断加工を施すことによって電池用外部端子 を容易に製作することができる。
前記アルミニウム/ニッケルクラッ ド材は、 ニッケルの純度が 9 8 m a s s %以上の純ニッケルで形成されたニッケルシー トを 1 0 0〜 3 0 0 °C に加熱し、 この加熱したニッケルシー トとアルミニウムの純度が 9 8 m a s s %以上の純アルミニウムで形成されたアルミニウムシー トとを重ね合 わせて圧下率 1 0〜 1 7 %で圧接した後、 得られた圧接シー トを拡散焼 鈍することによって容易に製造することができる。 前記拡散焼鈍は、 5 0 0〜 6 0 0 °Cの温度範囲で行うことが好ましい。 The aluminum / nickel clad material is suitable as a material for the battery external terminal, and the aluminum / nickel clad material is subjected to shearing such as cutting or punching with a shear to easily manufacture the battery external terminal. can do. The aluminum / nickel clad material is obtained by heating a nickel sheet formed of pure nickel having a nickel purity of 98 mass% or more to 100 to 300 ° C., and heating the heated nickel sheet and the aluminum sheet. The aluminum sheet made of pure aluminum with a purity of 98 mass% or more is overlapped and pressed at a rolling reduction of 10 to 17%, and then the obtained pressed sheet is easily annealed by diffusion annealing. Can be manufactured. The diffusion annealing is preferably performed in a temperature range of 500 to 600 ° C.
以上説明したように、 本発明のアルミニウム/ニッケルクラッ ド材に よれば、 そのニッケル層が H V 1 3 0〜 1 7 0の硬さに調整されている ので、 超音波溶接の際に安定した溶接接合性が得られ、 また過度のスプ リ ングバックが抑制され、 曲げ加工性にも優れる。 このため、 電池用外 部端子などの素材として好適である。 また、 本発明の製造方法によれば 、 特殊な設備を要することなく、 所定硬さのニッケル層を備えたアルミ ニゥ厶 Zニッケルクラッ ド材を容易に製造することができる。 図面の簡単な説明 As described above, according to the aluminum / nickel clad material of the present invention, since the nickel layer is adjusted to have a hardness of HV130 to 170, stable welding can be performed during ultrasonic welding. Bondability is obtained, excessive springback is suppressed, and bending workability is excellent. Therefore, it is suitable as a material for external terminals for batteries and the like. Further, according to the production method of the present invention, an aluminum Z nickel clad material provided with a nickel layer having a predetermined hardness can be easily produced without requiring special equipment. BRIEF DESCRIPTION OF THE FIGURES
國 Ί は、 本発明にかかるアルミニウム/ニッケルクラッ ド材の断面模 式図である。 Japan is a schematic sectional view of the aluminum / nickel clad material according to the present invention.
図 2 は、 圧接シ一 卜の接合強度、 拡散焼鈍後のクラッ ドシー トの剥離 強度の測定要領説明図である。 FIG. 2 is an explanatory view of the procedure for measuring the bonding strength of the pressure-welded sheet and the peel strength of the clad sheet after diffusion annealing.
図 3は、 アルミニウム/ニッケルクラッ ド材試験片の曲げ試験要領説 明図である。 Figure 3 is an explanatory diagram of the bending test procedure for aluminum / nickel clad specimens.
図 4は、 アルミニウム/ニッケルクラッ ド材試験片の 1 8 0 ° 曲げ試 験要領説明図である。 発明を実施するための最良の形態
本発明の実施形態にかかるアルミニウム/ニッケルクラッ ド材 1 は、 図 Ί に示すように、 アルミニウム層 3 と、 ニッケル層 2 とが圧接され、 拡散接合されたものであリ、 拡散焼鈍後の前記ニッケル層 2の硬度は H V I 3 ひ〜 1 7 0 とされている。 FIG. 4 is an explanatory diagram of a 180 ° bending test procedure of an aluminum / nickel clad material test piece. BEST MODE FOR CARRYING OUT THE INVENTION As shown in FIG. 2, the aluminum / nickel clad material 1 according to the embodiment of the present invention has an aluminum layer 3 and a nickel layer 2 pressed together and diffusion-bonded. The hardness of the nickel layer 2 is assumed to be HVI 3 to 170.
前記アルミニウム層 3、 前記ニッケル層 2は、 それぞれ純アルミニゥ 厶、 純ニッケルによって形成されている。 アルミニウム、 ニッケルの純 度は高いほど好ましいが、 本発明では不純物が 2 mass%程度まで許容さ れ、 アルミニウム、 ニッケルの純度が 9 8 mass%以上、 好ましくは 9 9 mass %以上、 より好ましくは 9 9. 9 mass %以上のものを用いることが 好ましい。 The aluminum layer 3 and the nickel layer 2 are made of pure aluminum and pure nickel, respectively. Although the purity of aluminum and nickel is preferably as high as possible, the present invention allows impurities up to about 2 mass%, and the purity of aluminum and nickel is 98 mass% or more, preferably 9.9 mass% or more, and more preferably 9 mass% or more. 9.9 mass% or more is preferably used.
前記ニッケル層 2の硬度は本発明において重要であり、 ビッカース硬 度で Η ν ΐ 3 0〜 Ί 7 0 とされる。 ニッケル層 2の硬度は、 超音波溶接 性、 成形加工性等に大きな影響があり、 Η V 1 7 0超では成形加工の際 にスプリ ングバックによる形状不良が過大になりやすく、 また超音波溶 接の際に超音波がニッケル層 2からアルミニウム層 3 に伝達し難くなリ 、 アルミニウム層 3 と電池の外装缶との溶接が不安定になり、 安定した 溶接接合性が得られないようになる。 一方、 H v l 3 0未満では強度が 低下するとともに、 スリ ツ 卜などのせん断加工の際に切断面端部に大き なバリが生じるようになる。 外部端子の外周縁部にバリが生じると、 電 池外装缶や超音波溶接装置の超音波振動出力端部との間に隙間が生じ、 密着し難くなるため、 超音波振動が伝達し難くなリ、 溶接不良の原因に なる。 このため、 本発明ではニッケル層 2の硬度を H v l 3 0 ~ 1 7 0 、 好ましくは硬度 H v 1 4 0 〜 1 6 0 とする。 The hardness of the nickel layer 2 is important in the present invention, and is set to ビ νΐ30 to Ί70 in Vickers hardness. The hardness of the nickel layer 2 has a great effect on the ultrasonic weldability, formability, etc. で は When it exceeds V170, the shape defect due to the springback during forming tends to be excessive, and the ultrasonic melting Ultrasonic waves are difficult to transmit from the nickel layer 2 to the aluminum layer 3 at the time of contact, and the welding between the aluminum layer 3 and the battery outer can becomes unstable, so that stable weldability cannot be obtained. . On the other hand, if it is less than Hvl30, the strength is reduced, and large burrs are generated at the end of the cut surface when shearing a slit or the like. When burrs are formed on the outer peripheral edge of the external terminal, a gap is formed between the outer case of the battery and the ultrasonic vibration output end of the ultrasonic welding device, and it is difficult to adhere to the terminal. It may cause poor welding. Therefore, in the present invention, the hardness of the nickel layer 2 is set to Hv 30 to 170, preferably Hv 140 to 160.
前記アルミニウム層とニッケル層とは拡散焼鈍によって拡散接合され ている。 この拡散接合に伴い、 接合界面に A I - Ν ί 金属間化合物が生 成する場合がある。 A I — Ν ί 金属間化合物それ自体は脆弱であるため
、 アルミニウム層とニッケル層との間の剥離強度を低下させると考えら れていた。 しかし、 アルミニウム層とニッケル層との界面に生成した A I - N i 系金属間化合物層の厚さが極薄い領域では接合強度は低下せず 、 場合によってはかえつて向上することがわかった。 前記金属間化合物 層の厚さが 0 . 4 〜 1 0 . 0 t m 程度では、 実用上、 問題のない程度の 剥離強度を備える。 特に、 前記金属間化合物層の厚さを 1 . 0 〜 6 . 0 m 程度とすることによって、 後述の実施例から明らかなように、 剥離 強度は非常に高くなリ、 厳しい成形加工に対して十分適用することがで きるようになる。 The aluminum layer and the nickel layer are diffusion-bonded by diffusion annealing. Along with this diffusion bonding, an AI-Ν 間 intermetallic compound may be generated at the bonding interface. AI — Ν 間 Intermetallic compounds themselves are fragile However, it has been considered that the peel strength between the aluminum layer and the nickel layer is reduced. However, it was found that in the region where the thickness of the AI-Ni-based intermetallic compound layer formed at the interface between the aluminum layer and the nickel layer was extremely thin, the bonding strength did not decrease, but rather improved in some cases. When the thickness of the intermetallic compound layer is about 0.4 to 10.0 tm, the peel strength is practically satisfactory. Particularly, by setting the thickness of the intermetallic compound layer to about 1.0 to 6.0 m, the peel strength becomes extremely high, It can be applied sufficiently.
前記アルミニウム層 3の厚さは、 2 5 〜 1 0 0 ΠΙ が好ましい。 アル ミニゥ厶層 3があまリ薄いと製造過程でニッケル層 2 との圧接が困難に なり、 一方あまり厚いと電池外装缶との超音波溶接が困難になる。 この ため、 2 5 〜 1 0 0 /tt m が好ましく、 より好ましくは 3 0〜 7 0 At m 程 度である。 前記ニッケル層 2の厚さは、 超音波溶接性、 耐久性の確保の ために 5 0 t m 以上が好ましいが、 あまり厚く してもコス 卜高を招来す るだけなので 2 0 0 μ m 以下、 好ましくは 1 5 0 m 以下とするのがよ い。 The thickness of the aluminum layer 3 is preferably from 25 to 100 °. If the aluminum layer 3 is too thin, it will be difficult to press the nickel layer 2 in the manufacturing process, while if it is too thick, it will be difficult to ultrasonically weld it to the battery outer can. For this reason, it is preferably from 25 to 100 / ttm, and more preferably from about 30 to 70 Atm. The thickness of the nickel layer 2 is preferably 50 tm or more in order to ensure ultrasonic weldability and durability, but if it is too thick, it will only increase the cost, so it is less than 200 μm. Preferably, it is 150 m or less.
次に、 前記実施形態のアルミニウム Zニッケルクラッ ド材の製造方法 について説明する。 Next, a method of manufacturing the aluminum Z nickel clad material of the embodiment will be described.
前記アルミニウム/ニッケルクラッ ド材は、 純アルミニウムによって 形成されたアルミニウムシー トおよび純ニッケルによって形成された二 ッケルシー トを準備し、 前記ニッケルシー 卜を 1 0 0 〜 3 0 0 °Cに加熱 し、 加熱したニッケルシー 卜を前記アルミニウムシー 卜と重ね合わせて 、 一対のロールの隙間を通して 1 0 ~ 1 7 %の圧下率でロール圧接し、 これによつて得られたアルミニウム層とニッケル層とが接合された圧接 シー トを拡散焼鈍することによって製造される。 なお、 圧下率 (%) は
、 (圧下によつて減少する厚さ) / (元の全厚) X I 0 0で算出される 前記ニッケルシー トを 1 0 0 ~ 3 0 0 °Cに加熱することによって、 1 0〜 1 7 %の低圧下によつても 2 N / mm程度以上の十分な接合強度を有 する圧接シー トを得ることができる。 ニッケルシー トの加熱温度が、 1 0 0 °C未満では、 1 7 %の圧下率でロール圧接してもアルミニウムシー 卜との接合力が不足し、 圧接後の工程で剥離するおそれが生じる。 一方 、 3 0 0 °C超では圧接時のロールの潤滑が苛酷となり、 潤滑不良が生じ て、 圧接が困難になる。 このため、 ニッケルシー トの加熱温度を 1 0 0 〜 3 0 0 °C、 好ましくは 1 5 0〜 2 5 0 とする。 なお、 ニッケルシー 卜を所定の温度に加熱した後は、 できるだけ速やかにロール圧接するこ とが望ましく、 加熱後 5秒以内、 好ましくは 3秒以内にアルミ二ゥ厶シ 一卜と圧接することが推奨される。 The aluminum / nickel clad material is prepared by preparing an aluminum sheet formed of pure aluminum and a nickel sheet formed of pure nickel, and heating the nickel sheet to 100 to 300 ° C. The heated nickel sheet is superimposed on the aluminum sheet, and roll-pressed at a rolling reduction of 10 to 17% through a gap between the pair of rolls, whereby the obtained aluminum layer and nickel layer are bonded. Manufactured by diffusion annealing the welded sheet. The rolling reduction (%) is , (Thickness reduced by reduction) / (original total thickness) By heating the nickel sheet, calculated by XI 00, to 100-300 ° C, 10-17 %, It is possible to obtain a pressure-welded sheet having a sufficient bonding strength of about 2 N / mm or more. If the heating temperature of the nickel sheet is lower than 100 ° C., the bonding strength with the aluminum sheet is insufficient even if the roll is pressed at a rolling reduction of 17%, which may cause peeling in a process after the pressure welding. On the other hand, when the temperature exceeds 300 ° C., the lubrication of the roll at the time of pressing becomes severe, which causes poor lubrication and makes the pressing difficult. For this reason, the heating temperature of the nickel sheet is set to 100 to 300 ° C., preferably 150 to 250 ° C. After the nickel sheet is heated to a predetermined temperature, it is desirable that the roll be pressed as quickly as possible, and that the sheet be pressed against the aluminum sheet within 5 seconds, preferably 3 seconds after heating. Recommended.
一方、 アルミニウムシー トは原則として加熱不要であり、 室温のまま でよい。 加熱するとしても 2 0 0 °C以下に止めることが好ましい。 ロー ル圧接における圧下率は低圧下率が採用されるため、 圧下前のアルミ二 ゥ厶シー トの厚さも必然的に薄くなる。 例えば、 クラッ ド材のアルミ二 ゥ厶層の厚さを 2 5 〜 1 O O At m にする場合、 アルミニウムシー トの厚 さは 2 8 ~ 1 1 1 At m となる。 2 5〜 1 2 0 μ ηι 程度の厚さのアルミ二 ゥ厶シ一卜を用いて口ール圧接する場合、 アルミニウムシー トを 2 0 0 °C超に加熱すると加熱によりシー トの強度が低下し、 ロール圧接の際に シー トに張りを与えるためにシー トに付与される張力に耐えられないよ うになり、 部分的に伸びが生じたり、 著しい場合には破断するなどの問 題が生じる。 On the other hand, aluminum sheets do not need to be heated in principle and can be left at room temperature. Even if it is heated, it is preferable to keep it at 200 ° C. or less. Since the rolling reduction in roll welding uses a low rolling reduction, the thickness of the aluminum sheet before rolling is necessarily reduced. For example, if the thickness of the aluminum layer of the cladding material is 25 to 1 OO Atm, the thickness of the aluminum sheet is 28 to 1111 Atm. When using aluminum sheet with a thickness of about 25 to 120 μηι, the aluminum sheet is heated to more than 200 ° C when the aluminum sheet is welded by pressure. The sheet will not be able to withstand the tension applied to the sheet due to the tension applied to the sheet during roll welding, causing problems such as partial elongation and breakage in severe cases. Occurs.
前記ロール圧接における圧下率は前記のとおり 1 0 〜 1 7 %とごく狭 い範囲にする必要がある。 5 %未満では、 ニッケルを 3 0 0 °Cに加熱し
た状態でも、 アルミニウムシー トとニッケルシー トとの接合強度が 2 N /mm程度以下となって十分な接合強度が得られず、 剥離するおそれが生じ る。 また、 5 %以上でも 1 0 %未満では、 バリが高くなリ、 超音波溶接 性が低下するよう になる。 一方、 1 7 %を超えて圧下すると、 ニッケル シー トを 3 0 0 °Cに加熱した状態でも圧下後の硬度が H V 1 7 0を超え るようになり、 成形加工性や超音波溶接性に問題が生じるようになる。 従って、 圧下率を 1 0〜 1 7 %、 好ましくは Ί 1 〜 Ί 5 %にする。 As described above, the rolling reduction in the roll pressing needs to be in a very narrow range of 10 to 17%. At less than 5%, heat nickel to 300 ° C. In this state, the bonding strength between the aluminum sheet and the nickel sheet is about 2 N / mm or less, and sufficient bonding strength cannot be obtained, which may cause peeling. Also, if it is 5% or more and less than 10%, burrs become high and ultrasonic weldability decreases. On the other hand, when the nickel sheet is reduced by more than 17%, the hardness after the reduction exceeds HV170 even when the nickel sheet is heated to 300 ° C, and the formability and ultrasonic weldability are reduced. Problems arise. Therefore, the rolling reduction is set to 10 to 17%, preferably to 1 to 5%.
ロール圧接によって接合された圧接シ一 卜は、 拡散焼鈍によってアル ミニゥ厶層とニッケル層とが拡散接合されて、 クラッ ド材となる。 拡散 焼鈍条件によって、 クラッ ド材におけるアルミニウム層とニッケル層と の間の剥離強度は種々変化するが、 クラッ ド材の剥離強度は実用的には 4 . 0 Ν Ζ 程度以上あればよい。 特にクラッ ド材に厳しい加工を施す 場合には、 8 . O N / mm程度以上、 より好ましくは 1 0 . O N / mm程度 以上の十分な剥離強度を有することが好ましい。 比較的短時間で十分な 剥離強度を得るには、 5 0 0〜 6 0 0 °Cの温度にて拡散焼鈍することが 好ましい。 4 0 0 ~ 4 5 0 °Cでも拡散焼鈍することができるが、 十分な 剥離強度を得るには、 焼鈍時間が 1 h r以上必要となり、 生産性が著し く低下する。 一方、 5 0 0 °Cでの焼鈍では 3 〜 2 0 m i n 程度、 6 0 0 °C では 1 〜 5 m i n 程度という比較的短時間で十分な剥離強度を得ることが できる。 なお、 拡散焼鈍によってニッケル層の硬度はわずかに低下する 傾向があるが、 その程度は焼鈍温度が高いほど、 焼鈍時間が長いほど大 きくなる。 The pressure-welded sheet joined by roll pressure welding becomes a clad material by diffusion bonding of the aluminum layer and the nickel layer by diffusion annealing. The peel strength between the aluminum layer and the nickel layer in the clad material varies depending on the diffusion annealing conditions, but the peel strength of the clad material is practically required to be about 4.0 mm2 or more. In particular, when the clad material is subjected to severe processing, it is preferable to have a sufficient peel strength of about 8.0 N / mm or more, more preferably about 10 O N / mm or more. In order to obtain sufficient peel strength in a relatively short time, it is preferable to perform diffusion annealing at a temperature of 500 to 600 ° C. Diffusion annealing can be performed even at 400 to 450 ° C, but in order to obtain sufficient peel strength, the annealing time is required to be 1 hr or more, and the productivity is significantly reduced. On the other hand, sufficient annealing strength can be obtained in a relatively short time of about 3 to 20 min at 500 ° C. and about 1 to 5 min at 600 ° C. The hardness of the nickel layer tends to decrease slightly due to diffusion annealing, but the degree increases as the annealing temperature increases and the annealing time increases.
前記圧接シー 卜の接合強度および拡散焼鈍後の同シー 卜 (クラッ ドシ — 卜) の剥離強度は以下の要領により測定される。 図 2 に示すように、 圧接シー トから採取した試験片 1 1 の端部でアルミニウム層 1 3、 ニッ ケル層 1 2を一部引き剥がし、 引き剥がした部分を垂直に折り曲げ、 そ
の末端を引張試験機によって引っ張って、 引き剥がすのに要した引き剥 がし力を求める。 その値を試験片の幅で除して単位幅当たりの引き剥が し力を接合強度として求める。 拡散焼鈍によってアルミニウム層とニッ ケル層とが拡散接合されたクラッ ドシー 卜は、 試験片の端部で各層を引 き剥がすことは困難であるので、 拡散焼鈍前に、 圧接シー トの端部を予 め引き剥がしておき、 拡散焼鈍後、 予め引き剥がしておいた引き剥がし 部分を垂直に折り曲げて、 上記と同様にして単位幅当たりの引き剥がし 力を求め、 これを剥離強度とする。 The bonding strength of the pressure-welded sheet and the peel strength of the same sheet (cladding sheet) after diffusion annealing are measured in the following manner. As shown in Fig. 2, the aluminum layer 13 and the nickel layer 12 were partially peeled off at the end of the test piece 11 taken from the insulation displacement sheet, and the peeled part was bent vertically, Pull the end of the plate with a tensile tester to determine the peeling force required to peel it off. Divide the value by the width of the test piece to determine the peeling force per unit width as the bonding strength. In the case of a clad sheet in which the aluminum layer and the nickel layer are diffusion-bonded by diffusion annealing, it is difficult to peel off each layer at the end of the test piece. After peeling in advance, and after diffusion annealing, the peeled part peeled off in advance is bent vertically, and the peeling force per unit width is calculated in the same manner as above, and this is defined as the peel strength.
以上のようにして製造されたアルミニウム Zニッケルクラッ ド材は、 適当な幅、 例えば外部端子の幅と同幅のス 卜リ ップにスリ ッ トされる。 外部端子は、 端子幅にスリ ッ 卜されたス 卜リ ップを必要な外部端子長に せん断加工することにより、 あるいは端子幅よりも広幅にスリ ツ 卜され たス トリ ップを打ち抜き加工することによって製作される。 また、 その ように加工された平板状の加工片に対して、 必要に応じて曲げ加工等の 成形加工が施されて、 所期の形状に加工される。 The aluminum Z nickel clad material manufactured as described above is slit into an appropriate width, for example, a strip having the same width as the width of the external terminal. For external terminals, the strip slit to the terminal width is sheared to the required external terminal length, or the strip stripped to a width wider than the terminal width is punched. Produced by Further, the plate-shaped workpiece processed in such a manner is subjected to a forming process such as a bending process as required, and is processed into an intended shape.
以下、 実施例を挙げて、 本発明をより具体的に説明するが、 本発明は かかる実施例によって限定的に解釈されるものではない。 実施例 Hereinafter, the present invention will be described more specifically with reference to Examples, but the present invention is not construed as being limited to such Examples. Example
以下の要領で種々のクラッ ド材の試料を製作した。 Various samples of the cladding material were manufactured in the following manner.
幅 6 0 m m、 厚さ 5 0 At m の純二ッケル (ニッケルの純度 9 9 . 9 %以 上) のニッケルシー トおよび同幅、 厚さ 5 0 y m の純アルミニウム(アル ミニゥ厶の純度 9 9 . 9 %以上) のアルミニウムシー トを準備した。 前 記二ッケルシ一トを 卜ンネル炉にて加熱した後、 卜ンネル炉を出てから 約 2秒以内に前記アルミニウムシ一 卜と重ね合わせて一対の圧下ロール に通して圧接した。 各試料のニッケルシー トの加熱温度、 ロール圧接の
際の圧下率を表 Ί に示す。 Nickel sheet with a width of 60 mm and a thickness of 50 Atm, nickel nickel (nickel purity of 99.9% or more) and pure aluminum of the same width and thickness of 50 ym (aluminum purity of 99 9% or more) aluminum sheet was prepared. After heating the nickel sheet in a tunnel furnace, the aluminum sheet was overlapped with the aluminum sheet within about 2 seconds after exiting the tunnel furnace, and passed through a pair of reduction rolls. Heating temperature of nickel sheet of each sample, Table 2 shows the rolling reduction at this time.
ロール圧接によってアルミニウム層とニッケル層とが圧接された圧接 シー トから幅 1 0 mm、 長さ 1 0 0 mmの試験片を採取し、 アルミニウム層 とニッケル層との接合強度を、 先に述べた測定要領により測定した。 接 合強度は、 以降の工程を問題なく処理するには 2 N / mm程度以上は必要 である。 A test piece with a width of 100 mm and a length of 100 mm was sampled from a pressure-welded sheet where the aluminum layer and the nickel layer were pressed by roll pressing, and the bonding strength between the aluminum layer and the nickel layer was described above. Measured according to the measurement procedure. The bonding strength needs to be about 2 N / mm or more to process the subsequent steps without any problem.
次に、 圧接シ一 卜に同表に示す焼鈍条件により拡散焼鈍を施して、 ァ ルミニゥ厶層とニッケル層とを拡散接合したクラッ ド材を得た。 このク ラッ ド材の剥離強度、 ニッケル層の硬度を測定した。 剥離強度は幅 Ί 0 mm , 長さ 1 0 0 mmの試験片を用いて先に述べた測定要領により、 また硬 度はピツカ一ス硬度計にて 0 . 2 k g f ( 1 . 9 6 N ) の荷重を加えて 測定した。 Next, the pressure-welded sheet was subjected to diffusion annealing under the annealing conditions shown in the same table to obtain a clad material in which the aluminum layer and the nickel layer were diffusion-bonded. The peel strength of this clad material and the hardness of the nickel layer were measured. The peel strength was measured according to the measurement procedure described above using a test piece with a width of about 0 mm and a length of 100 mm, and the hardness was 0.2 kgf (1.96 N) with a Pikkas hardness tester. The load was applied and measured.
また、 前記クラッ ド材から断面観察試験片を採取し、 下記の要領にて クラッ ド材のアルミニウム層とニッケル層との間に形成された A I — N i 系金属間化合物層の平均厚さを測定した。 前記断面観察試験片をその 板厚方向に沿った断面 (板厚断面) を観察面とするように合成樹脂に埋 め込み、 前記板厚断面が露出するように埋め込み試験片を研磨し、 S E (走査型電子顕微鏡) にて 4 0 0 0倍で断面観察を行った。 測定結果 を表 1 に併せて示す。 なお、 観察された金属間化合物層は、 E P M Aに よつて元素分析したところ、 A I — N i 系金属間化合物によつて形成さ れていることが確認された。 Also, a cross-sectional observation specimen was collected from the clad material, and the average thickness of the AI—Ni intermetallic compound layer formed between the aluminum layer and the nickel layer of the clad material was determined as follows. It was measured. The cross-section observation test piece is embedded in a synthetic resin so that a cross section (plate thickness cross section) along the thickness direction is set as an observation surface, and the embedded test piece is polished so that the thickness cross section is exposed. (Scanning electron microscope) The cross section was observed at 400 × magnification. The measurement results are also shown in Table 1. The observed intermetallic compound layer was subjected to elemental analysis by EPMA, and it was confirmed that the layer was formed by an AI-Ni-based intermetallic compound.
また、 前記クラッ ド材をニッケル層が下側となるようにスリ ツ夕一に 供給して切断し、 幅 3 mmのス トリ ップを得た。 前記スリ ツターは、 上下 一対の回転刃からなる切断部を複数有しており、 前記回転刃は回転しな がら互いに交叉するように近接することによってクラッ ド材を切断する 。 このため、 切断されたス トリ ップの一方の切断面においてはニッケル
層の下端部にバリが形成され、 他方の切断面においてはアルミニウム層 の上端部にバリが形成された。 前記ニッケル層およびアルミニウム層の 端部に形成されたバリの高さ ( t m ) を表面粗度計によって測定した。 バリ高さが 1 Ο μ ηι 超になると、 超音波溶接性に悪影響を及ぼすように なるため、 ノ リ高さについては 1 0 m 以下を合格とする。 Further, the clad material was supplied and slit all at once so that the nickel layer was on the lower side, and a strip having a width of 3 mm was obtained. The slitter has a plurality of cutting portions each including a pair of upper and lower rotary blades, and the rotary blades cut the clad material by rotating and approaching each other so as to cross each other. Therefore, one of the cut surfaces of the cut strip is made of nickel. Burrs were formed at the lower end of the layer, and burrs were formed at the upper end of the aluminum layer on the other cut surface. The height (tm) of burrs formed at the ends of the nickel layer and the aluminum layer was measured by a surface roughness meter. If the burr height exceeds 1Ομηι, ultrasonic weldability will be adversely affected. Therefore, the glue height shall be 10 m or less.
このようにして得られたアルミニウム/ニッケルクラッ ドのス トリ ツ プを長さ 2 0 mmにせん断加工して溶接試験片を得た。 溶接試験片のアル ミニゥ厶層側表面を 0. 5 mmの純アルミニウム板 (幅 5 mm X長さ 3 0 mm ) に当接して、 幅方向の中央部を超音波溶接した。 溶接条件は以下のと おりである。 The aluminum / nickel clad strip thus obtained was sheared to a length of 20 mm to obtain a welded test piece. The aluminum layer side surface of the welded specimen was brought into contact with a 0.5 mm pure aluminum plate (5 mm wide × 30 mm long), and the center in the width direction was ultrasonically welded. The welding conditions are as follows.
超音波溶接機 : 超音波工業株式会社製、 型式 U S W - 2 4 1 0 Z 1 5 S 加圧力 : 2 0 0 N Ultrasonic welding machine: manufactured by Ultrasonic Industry Co., Ltd., Model U SW-2410Z15S Pressing force: 200N
印加時間 : 0. 3秒 Application time: 0.3 seconds
ピークパワー : 2 5 0 W Peak power: 250 W
エネルギー : 6 3 J Energy: 6 3 J
超音波溶接後、 溶接部の接合力を測定した。 測定要領は、 図 3 に示す よう に、 溶接後の溶接試験片 2 1 と純アルミニウム板 2 2を溶接部 Wの 端で各々 し字形に垂直に折り曲げ、 その端部を引っ張り、 接合部を剥離 させるのに要する引っ張リカを接合力として測定した。 このような測定 を各試料につき 5点行い、 接合力の最大値と最小値との差 Δ Fを求めた 。 接合部は安定した溶接接合が得られることが重要であり、 前記 が 0. 5 k g f ( 4. 9 N ) 超では超音波溶接の接合安定性が問題となる ので、 超音波溶接性については Δ F≤ 4 · 9 Nを合格とする。 After ultrasonic welding, the joining strength of the weld was measured. As shown in Fig. 3, the measurement procedure was as follows: the welded test piece 21 and the pure aluminum plate 22 after welding were each bent perpendicularly at the end of the welded portion W into a U-shape, the ends were pulled, and the joint was peeled off. The tensile strength required to make the joint work was measured as the joining force. Five such measurements were performed for each sample, and the difference ΔF between the maximum value and the minimum value of the bonding force was determined. It is important that stable welded joints are obtained at the joints.If the above value exceeds 0.5 kgf (4.9 N), the joining stability of ultrasonic welding becomes a problem. F≤4 · 9 N is accepted.
また、 前記ス トリ ップから長さ 5 0 mmの曲げ試験片 Sを採取し、 ステ ィフネス試験機 ( P. C. A社製、 型式 7 1 9型) を用いて、 スプリ ン グバックが観察し易いように開き角 6 0 ° (屈曲部の曲げ半径 0. 3 8
mm) の V形に曲げ加工し、 加工後の試験片の V形部の開き角度 0 ° を測 定し、 スプリ ングバック量 Δ 0 = 0 — 6 0を求めた。 前記 が 2 0 ° 超になると、 となり合う 2辺のなす角が 9 0 ° に屈曲した曲げ加工を行 う際に加工精度の劣化が著しくなるので、 曲げ加工性については Δ Θ≤ 2 0 ° を合格とする。 これらの測定結果を表 1 に併せて示す。 Further, a bending test piece S having a length of 50 mm was sampled from the strip, and a stiffness tester (manufactured by PCA, model 719 type) was used to make it easy to observe the springback. Opening angle 60 ° (bending radius of bending part 0.3 8 mm), and the open angle of the V-shaped part of the test specimen was measured at 0 ° to determine the amount of springback Δ 0 = 0 — 60. When the above exceeds 20 °, the bending accuracy is remarkably deteriorated when performing the bending process in which the angle formed by the two sides adjacent to each other is bent to 90 °, so that the bending workability is Δ Θ ≤ 20 °. Is passed. Table 1 shows the measurement results.
また、 前記曲げ試験片 Sを用いて 1 8 0 ° 曲げ試験を下記の要領で行 つた。 図 4 に示すように、 アルミニウム層が内側となるように試験片 S の長さ方向の中央部を中心として 1 8 0 ° 折り曲げて重ね合わせた後、 元の状態に戻し、 中央部におけるアルミニウム層とニッケル層との局部 的な剥離の発生状態を目視観察した。 局部剥離が全く生じなかったもの を Α Α、 軽微な局部剥離が生じたものを Α、 明瞭な局部剥離が生じたも のを Βとして、 観察結果を表 1 に併せて示す。
Using the bending test piece S, a 180 ° bending test was performed in the following manner. As shown in Fig. 4, the test piece S was folded 180 ° around the center in the longitudinal direction so that the aluminum layer was on the inside, and then returned to the original state. The state of occurrence of local peeling between the metal and the nickel layer was visually observed. The observation results are shown in Table 1 as も の when no local peeling occurred, Α when slight local peeling occurred, and を when clear local peeling occurred.
表 1 より、 ニッケル層の硬さが H v l 3 0 〜 1 7 0の実施例 (試料 No . 4 〜 6、 1 0 〜 1 3、 1 5 〜 1 9、 2 1 、 2 2 ) は超音波溶接性、 曲 げ加工性が良好であることがわかる。 一方、 ニッケル層の硬さが H v l 7 0超の試料 No, Ί 、 7、 8、 2 3では超音波溶接性、 曲げ加工性のい ずれも問題がある。 また、 圧下率が低いため、 ニッケル層の硬さが Η ν 1 2 0の試料 No. 3では、 アルミニウム層側のバリ高さが 1 0 μ ηι を超 え、 溶接性が低下している。 試料 No. 2, 9は、 圧下率あるいはニッケ ルシー 卜の加熱温度が不適であるため、 圧接シー 卜の剥離強度が過小で あり、 ニッケル層とアルミニウム層とが取り扱い中に剥離したため、 拡 散焼鈍を行う ことができなかったものである。 また、 試料 No. 1 4は二 ッケルシ一 卜の加熱温度が過大でぁリ、 潤滑不良が生じたため、 圧接を 行う ことができなかったものである。 Table 1 shows that the examples (sample Nos. 4 to 6, 10 to 13, 15 to 19, 21 and 22) in which the hardness of the nickel layer is Hvl 30 to 170 are ultrasonic. It can be seen that the weldability and bending workability are good. On the other hand, for sample Nos., Ί, 7, 8, and 23 in which the hardness of the nickel layer exceeds Hvl 70, there are problems with both ultrasonic weldability and bending workability. Also, since the rolling reduction is low, in Sample No. 3 in which the hardness of the nickel layer is νν120, the burr height on the aluminum layer side exceeds 10 μηι, and the weldability is reduced. In Samples Nos. 2 and 9, the reduction rate or the heating temperature of the nickel sheet was unsuitable, and the peel strength of the pressure-welded sheet was too low. The nickel layer and the aluminum layer peeled during handling, causing diffusion annealing. Could not be performed. Sample No. 14 could not be press-welded because the heating temperature of the nickel shell was too high and the lubrication was poor.
—方、 A I — N i 系金属間化合物層の平均厚さが Ί . 0 〜 6. 0 At m の実施例 (試料 No. 4〜 6、 1 0 〜 Ί 3、 1 5、 1 8、 2 1 ) では、 拡 散焼鈍後の剥離強度が 8 N / mm以上と優れた拡散接合性が得られている 。 平均厚さが 0. 4 μ ηι の試料 No. 1 7や 9. 8 m の試料 No, 1 9は 、 剥離強度が 5 N Zmm程度とやや低い値であつたが、 1 8 0 ° 曲げ試験 において局部剥離は軽微であり、 実用上問題のない成形加工性を有して いる。 これに対して、 前記金属間化合物層が生じなかった試料 No. 1 6 や過大な厚さの試料 No. 2 2では、 超音波溶接性、 曲げ加工性は良好で あるものの、 剥離強度が低下して局部剥離の程度が大きい。 このため、 これらの試料のクラッ ド材は、 厳しい成形加工が施される用途にはあま り適さない。 試料 No. 2 0は 5 5 0 °Cの焼鈍温度に対して焼鈍時間が長 すぎるため、 金属間化合物の生成が過多となリ、 剥離強度の測定が不可 能であった。 試料 No. 2 3 は、 従来のクラッ ド材に対応するものであり 、 圧接時の圧下率が高いため、 拡散焼鈍温度が 3 5 0 °Cでも良好な剥離
強度が得られたが、 ニッケル層の硬度が高いため、 超音波溶接性、 曲げ 加工性の劣化が著しい。
— Example, AI — Examples in which the average thickness of the Ni-based intermetallic compound layer is Ί0.0 to 6.0 Atm (Sample Nos. 4 to 6, 10 to Ί3, 15, 15, 18, 2 In 1), excellent diffusion bondability was obtained with a peel strength of 8 N / mm or more after diffusion annealing. Sample Nos. 17 and 9.8 with an average thickness of 0.4 μηι and 17 and 9.8 m had slightly lower peel strengths of about 5 Nzmm, but the 180 ° bending test In this case, local peeling was slight, and the moldability was satisfactory without practical problems. On the other hand, in sample No. 16 in which the intermetallic compound layer was not formed and in sample No. 22 having an excessive thickness, the ultrasonic weldability and bending workability were good, but the peel strength was low. Then, the degree of local peeling is large. For this reason, the cladding materials of these samples are not well suited for applications where severe forming is performed. Since the annealing time of Sample No. 20 was too long at the annealing temperature of 550 ° C, the generation of intermetallic compounds was excessive and the measurement of peel strength was impossible. Sample No. 23 corresponds to the conventional cladding material, and has a high rolling reduction at the time of pressure welding, so that it can be peeled well even at a diffusion annealing temperature of 350 ° C. Although strength was obtained, the ultrasonic weldability and bending workability deteriorated significantly due to the high hardness of the nickel layer.